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Abstract 

The cerebellum appears to undergo late maturation in children and early decline at older age. 

Whether these age-related changes affect bimanual coordination performance remains unclear 

at best. Here, we identified the ages at which bimanual coordination performance stops 

improving and starts declining. In an independent cohort, we defined brain regions of interest 

involved in bimanual coordination using functional magnetic resonance imaging. We used 

these regions of interest to investigate the extent to which the grey matter of cerebellar and 

other brain regions explains bimanual coordination performance from 10 to 80 years old. 

Results showed that bimanual coordination performance starts declining from age 40 years. In 

participants aged 10 to 20 years, cerebellar lobule VI was the only significant brain predictor 

of bimanual coordination performance. In participants aged 60 to 80 years, this cerebellar 

region, together with the primary sensorimotor cortex, formed a group of strongest predictors. 

These results from two independent samples (10–20 and 60–80 years) suggest that cerebellar 

lobule VI is critical for the development and preservation of bimanual coordination skills in 

children and older adults, respectively. Additionally, post-hoc analyses suggested that the 

primary motor cortex mediated the adverse effect of age on bimanual coordination performance 

in older adults. 
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1. Introduction 

Human aging is characterized by a progressive loss of physiological integrity that initiates 

shortly after development ceases (Sobel, 1966). From a movement control perspective, this age-

related loss of integrity can impact musculoskeletal receptors and effectors (Kararizou et al., 

2005; Nair, 2005), and the nervous system processing, transmitting and integrating 

sensorimotor information (e.g., brain grey and white matter; Fjell et al., 2013; Sexton et al., 

2014). At older age, the adverse effects of cellular and tissue aging become behaviorally 

observable, but the age at which sensorimotor functions start declining varies. For example, 

muscle strength decline starts around age 30–40 years (Brooks and Faulkner, 1994; Kallman et 

al., 1990), whereas quiet standing balance (Abrahamová and Hlavacka, 2008) and fine 

unimanual movement performance (Smith et al., 1999) have been reported to start declining at 

age 60 years. However, the age at which bimanual movement performance starts declining 

remains unclear. 

In everyday functioning, bimanual movements occur twice as often as unimanual movements 

(Rinehart et al., 2009; Vega-Gonzalez and Granat, 2005) and they serve as a critical marker of 

functional independence (Katz et al., 1970). This calls for a better understanding of how 

bimanual performance changes over the lifespan. Performance on bimanual coordination tasks 

depends on the brain’s ability to effectively integrate sensorimotor information (Swinnen, 

2002). Many studies have investigated the extent to which aging impacts the relationship 

between bimanual coordination performance and brain function and/or structure (for a review, 

see Maes et al., 2017). In children, the microstructural organization of the corpus callosum, the 

largest white matter bundle in the brain, correlates with performance on alternated bimanual 

finger tapping (Marion et al., 2003; Muetzel et al., 2008). However, it remains unclear which 

grey matter structures best determine bimanual coordination performance at this age. In adults, 

the brain areas associated with bimanual coordination include, among others, the primary 

sensorimotor areas (Donchin et al., 1998; Puttemans et al., 2005), supplementary motor area 

(SMA; Puttemans et al., 2005; Sadato et al., 1997; Swinnen and Wenderoth, 2004), premotor 

cortex (Sadato et al., 1997; Swinnen and Wenderoth, 2004), prefrontal cortex (Puttemans et al., 

2005), motor cingulate (Puttemans et al., 2005), basal ganglia (putamen, globus pallidus, 

caudate, and nucleus accumbens; Chalavi et al., 2017; Puttemans et al., 2005), and cerebellum 

(Tracy et al., 2001; Swinnen and Wenderoth, 2004), with prominent activity in the latter region 

(Debaere et al., 2004a). In older adults aged 61–78 years, activity during a bimanual 

coordination task increases as compared to younger adults aged 21–31 years in cortical areas, 

such as the SMA, dorsolateral prefrontal cortex (DLPFC), parietal cortex, secondary 

somatosensory area, and cingulate cortex (Goble et al., 2010). Moreover, grey matter volume 

of the primary motor cortex (M1), primary somatosensory cortex (S1), premotor cortex, motor 

cingulate, and SMA has been shown to be positively associated with bimanual coordination 

performance in task-related cortical areas (van Ruitenbeek et al., 2017). However, it remains 

unknown which of these brain regions best explains bimanual performance across the lifespan.  

The cerebellum is a good candidate as it has been repeatedly reported as being significantly 

associated with task performance (Beets et al., 2015; Debaere et al., 2003, 2004a, 2004b; Goble 

et al., 2010; Santos Monteiro et al., 2017; Wenderoth et al., 2004, 2006). Moreover, we recently 

suggested that the cerebellum could be critical for determining the impact of aging on motor 

control in adults, due to early cerebellar neuron death (Boisgontier, 2015). The cerebellum is 

divided into ten vermal and hemispheric lobules organized in lobes: The anterior lobe (lobules 

I–V), posterior lobe (lobules VI–IX), and flocculonodular lobe (lobule X) (Schmahmann et al., 

2009). These lobules are each related to motor and cognitive functions (Stoodley and 

Schmahmann, 2010; Stoodley et al., 2012). Extracerebellar structures involved in sensorimotor 

processing are anatomically linked with the anterior lobe (lobules II-V) and lobule VIII (Snider 
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and Eldred, 1951; Kelly et al., 2003; Stoodley and Schmahmann, 2009), and hand sensorimotor 

representation is located in lobules V and VIII (Grodd et al., 2001). Extracerebellar structures 

involved in nonmotor processing are anatomically linked to lobules VI and VII (Stoodley and 

Schmahmann, 2010). However, some sensorimotor tasks also rely on spatial representation and 

executive functions that involve the cerebellar posterior lobe (Donchin et al., 2012; Rabe et al., 

2009). Populations of neurons in the cerebrum and cerebellum are not equally affected by 

normal aging. The number of neurons is stable in many cerebral areas (Peters and Kemper, 

2012), whereas the anterior lobe of the cerebellum undergoes a 40% loss of both Purkinje and 

granule cells (Andersen et al., 2003), which typically starts at the age of 50–60 years (Hall et 

al., 1975). This loss is concurrent with a volume decline (Luft et al., 1999; Walhovd et al., 2005) 

in almost all lobules (Bernard and Seidler, 2013b). This difference in neuron loss between the 

cerebrum and cerebellum can be explained by the age-related vulnerability of cerebellar 

neurons. Specifically, Purkinje cells show high and premature susceptibility to mitochondrial 

and proteostasis defects (Hekman and Gomez, 2015), whereas cerebellar granule cells are 

particularly vulnerable to oxidative stress (Wang and Michaelis, 2010). Because the cerebellum 

estimates intrinsic and extrinsic forces that act on the body (Wolpert et al., 1998; Laurens et al., 

2013; Huang et al., 2013), this early neuron loss may prevent the cerebellum from outputting 

accurate force-estimates, thereby increasing the computational load required to perform a motor 

task at the same level as in younger adults (Boisgontier et al., 2013). At the cortical level, this 

additional load is indicated by age-related hyperactivation, which has been reported in regions 

involved in bimanual coordination (Coxon et al., 2010; Goble et al., 2010). At the behavioral 

level, the additional computational load is indicated by a declining ability to perform a motor 

task concurrently with another task (Verhaeghen et al., 2003). These inaccurate estimates also 

likely result in an increased reliance on reactive motor control, which is based on time-delayed 

sensory feedback. Due to such delays, movement corrections are always late with regard to the 

portion of movement they intend to correct. Accordingly, individuals with inaccurate estimates 

are expected to reach their goal through a series of corrective movements. This increased 

number of corrective movements has consistently been reported in children and older adults 

compared to younger adults (e.g., Boisgontier and Nougier, 2013; Burton, 1987; Helsen et al., 

2016; Yan et al., 2000). At the other end of the age range, the cerebellum shows protracted 

development (Wang and Zoghbi, 2001), with volume peaking at age 11 to 16 (Tiemeier et al., 

2010). Behavioral studies using smooth pursuit eye movements or split-belt walking have 

suggested late maturation of predictive mechanisms in children (Ego et al., 2016; Vasudevan 

et al., 2011), which may be linked to the protracted development. Taken together, these results 

suggest that the cerebellum is critical for sensorimotor functions early and late in the lifespan.  

We tested the ages at which bimanual coordination performance stopped improving and started 

declining. We also investigated the extent to which the grey matter structure of brain regions 

of interest (ROI) involved in bimanual coordination explained performance in participants aged 

from 10 to 80 years. We hypothesized that, compared to other ROIs involved in bimanual 

coordination, the cerebellar ROI is a stronger predictor of performance, particularly in children 

and older adults. To further investigate which parts of the cerebellum are the most critical for 

bimanual coordination over the lifespan, we used a voxelwise approach over the whole 

cerebellum (Diedrichsen, 2006; Diedrichsen et al., 2009). We hypothesized that the anterior 

lobe and lobule VI are strong predictors of bimanual coordination performance as they have 

been shown to be critical for motor tasks (i.e., sequence learning and visuomotor adaptation; 

Bernard and Seidler, 2013a) and specifically for bimanual coordination tasks (Debaere et al., 

2004a). As studies showed that the anterior lobe (Andersen et al., 2003; Bernard and Seidler, 

2013b) and vermis (Luft et al., 1999; Raz et al., 2001) were more impacted by age than other 
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cerebellar regions, we also hypothesized that the grey matter volume of these structures 

explains more variance in bimanual coordination performance in older adults. 

 

2. Methods 

2.1. Participants 

One hundred and nine healthy volunteers (age range 10–80 years; mean age 44 ± 21 years; n = 

11–21 per 10-year age cohort) participated in the study. Based on the spline results (see section 

3.1), the dataset was split at 20 and 40 years. Given the known effect of aging, a split was added 

at 60 years. These splits resulted in four age groups: Children and adolescents (n = 17; 10–20 

years), younger adults (n = 32; 20–40 years), middle-aged adults (n = 28; 40–60 years), and 

older adults (n = 32; 60–80 years). All participants were right-handed according to the 

Edinburgh Handedness Inventory (Oldfield, 1971). All participants had a normal or corrected-

to-normal vision and no neurological, psychiatric, or cardiovascular disorders. All participants 

or their parents gave their written informed consent and procedures were performed according 

to guidelines established by the ethics committee for biomedical research at KU Leuven, 

Belgium, and in accordance with the World Medical Association International Code of Medical 

Ethics. 

 

2.2. Experimental setup 

Participants were seated in front of a computer monitor with both forearms resting on a custom-

made adjustable ramp. A 5-cm diameter dial was mounted at the end of each ramp. Angular 

displacements of the dials were registered by non-ferromagnetic optical shaft encoders (Avago 

Technologies, sampling frequency = 100 Hz, accuracy = 0.089º) fixed to the rotation axes of 

the dials. The gain was set to 10 arbitrary units (au) per rotation and 16.2 complete rotations of 

the left or right dial were required to draw a vertical or horizontal line of the same length as the 

experimental target lines on a computer screen. 

 

2.3. Bimanual multifrequency tracking task 

Participants were presented with a white target dot on a computer screen. They were instructed 

to track the dot as it moved along a blue line by rotating the dials with the thumb and index 

finger of both hands according to specific coordination patterns and frequency ratios without 

vision of the upper limbs. As they rotated the dials, a red cursor moved on the screen to provide 

online visual feedback (Figure 1A). Four bimanual coordination patterns corresponding to the 

target line direction were tested: Inwards, outwards, clockwise, and counter-clockwise hand 

rotation. The left and right hands controlled movements on the ordinate and abscissa axis, 

respectively. Each pattern was performed according to 5 frequency ratios: 1:1, 1:2, 1:3, 2:1, and 

3:1 (left hand:right hand), resulting in 20 different target line directions (Figure 1B). 

 

2.4. Procedure 

Prior to data recording, participants performed 12 familiarization trials with different target 

lines to get used to the dial–cursor couples (left dial clockwise–cursor moves up; left dial 

counterclockwise–cursor moves down; right dial clockwise–cursor moves to the right; right 

dial counterclockwise–cursor moves to the left). These trials were performed without accuracy 

requirements and were not recorded. Before each recorded trial, the target line appeared for 2 

s. The target dot then moved along the line for 10 s at a constant speed from the center of the 

screen to the end of the target line. The goal was to match the movement of the white dot (target) 

with the movement of the red feedback dot as accurately as possible in terms of both space and 

time. The intertrial interval was 3 s. Four 6-min blocks with 3-minute rests in between were 



5 

administered, each consisting of 24 trials presented in pseudorandom order. All participants 

performed a total of 96 recorded trials, for a total of 10,464 observations. Each block included 

all 20 distinctive target lines, with the 1:1 trial for each coordination pattern repeated twice. 

 

 
 

Figure 1. The bimanual tracking task. A. Experimental setup. Participants were instructed to track a white target dot moving 

along a blue line on a screen by rotating the dials with the thumb and index finger according to specific coordination patterns 

and frequency ratios without vision of the upper limbs. As they rotated the dials, a red cursor moved on the screen to provide 

online visual feedback. B. Coordination patterns and frequency ratios. A total of 20 conditions were tested. C. Linear 

mixed models and generalization. Treating conditions as random in the linear mixed models allowed generalizing our results 

to all potential conditions of the population of conditions. The conditions tested in the experiment are illustrated with grey 

lines. M1= bilateral primary motor area; S1 = bilateral primary somatosensory area; SE = standard error; SMA = supplementary 

motor area; VIF = highest variance inflation factor; * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

2.5. Physical activity 

Physical activity was assessed using the International Physical Activity Questionnaire (IPAQ; 

Booth, 2000), which assesses PA undertook across leisure time, domestic and gardening 

activities, and work-related and transport-related activities. The specific types of activity are 

classified into three categories: Walking, moderate-intensity activities, and vigorous-intensity 

activities. Frequency (days per week) and duration (time per day) are collected separately for 

each specific activity category. The total score used to describe physical activity was computed 

as the weighted sum of the duration (in minutes) and frequency (in days) of walking, moderate-

intensity, and vigorous-intensity activity. Each type of activity was weighted by its energy 

requirements defined in Metabolic Equivalent of Task (MET): 3.3 METs for walking, 4.0 

METs for moderate physical activity, and 8.0 METs for vigorous physical activity (Ainsworth 

et al., 2000). The total score of the IPAQ has been shown to correlate with objective measures 

of physical activity such as maximal treadmill time (Papathanasiou et al., 2010), accelerometer 

data (Mader et al., 2006; Craig et al., 2003), pedometer data (Deng et al., 2008) and actimeter 

data (Scheeres et al., 2009). 
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2.6. Kinematic data analysis 

Accuracy was assessed by the target deviation of the time series, computed as follows for each 

trial: 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  ∑ √(𝑥𝑐𝑢𝑟𝑠𝑜𝑟 − 𝑥𝑡𝑎𝑟𝑔𝑒𝑡)
2

+ (𝑦𝑐𝑢𝑟𝑠𝑜𝑟 − 𝑦𝑡𝑎𝑟𝑔𝑒𝑡)²

𝑛

1

 

where n is the number of data samples over a trial of 10 s (10 × 10²), 𝑥𝑐𝑢𝑟𝑠𝑜𝑟 and 𝑦𝑐𝑢𝑟𝑠𝑜𝑟 are the 

respective position of the red cursor on the x and y axis, and 𝑥𝑡𝑎𝑟𝑔𝑒𝑡  and 𝑦𝑡𝑎𝑟𝑔𝑒𝑡  are the 

respective position of the white target dot on the x and y axis. Higher target deviation scores 

reflected poorer performance. 

 

2.7. Structural brain imaging 

2.7.1. Image acquisition 

Brain images were acquired on a 3.0 T Siemens Magnetom Trio magnetic resonance imaging 

scanner (Siemens, Erlangen, DE) with a 12-channel head coil. For all participants, a high 

resolution T1-weighted structural image was acquired using magnetization-prepared rapid 

gradient-echo imaging (MP-RAGE; repetition time, 2.3 s; echo time, 2.98 ms; flip angle, 9 deg; 

160 slices; voxel resolution, 1.0 × 1.0 × 1.1 mm; field of view, 240 × 256 mm). 

 

2.7.2. Image processing for the comparison of cerebellar versus other ROIs 

All T1 structural images were manually checked for the presence of anatomical abnormalities 

and magnetic resonance artifacts. Cortical grey matter structure was analyzed using optimized 

voxel-based morphometry (VBM; Good et al., 2001; Smith et al., 2004; Douaud et al., 2007). 

This morphometric method estimates grey matter volume based on high-resolution three-

dimensional magnetic resonance images. The VBM procedure involves the spatial 

normalization of the images from all the participants into the same stereotaxic space, 

segmentation of the grey matter from the spatially normalized images, and smoothing of these 

grey-matter segments, which transforms volume differences into image intensity differences 

(Ashburner and Friston, 2000). Grey matter volume was our primary grey matter measure of 

interest. Structural images were brain-extracted, centered on the massa intermedia, grey-matter 

segmented, and subsequently registered to the MNI152 standard space using nonlinear 

registration (Andersson et al. 2007). Images were then averaged to create a grey matter template 

for each age group: Children and adolescents (10–20 years), younger adults (20–40 years), 

middle-aged adults (40–60 years), older adults (60–80 years), and middle-aged and older adults 

(40–80 years). All native images for each group were nonlinearly registered to this group-

specific template and modulated to correct for local vertex expansion or atrophy. Modulated 

images were then smoothed with an isotropic Gaussian kernel with a sigma of 4 mm. Total 

intracranial volume was then calculated using VBM8 in SPM8 (Ridgway et al., 2011). 

To determine the ROIs for analysis, we used a separate activation map based on a task-related 

functional Magnetic Resonance Imaging (fMRI) dataset from our lab. The dataset comprised 

functional images of 26 younger (aged 17–27 years; Beets et al., 2015) and 25 older adults 

(aged 60–80 years; Chalavi et al., 2017; Santos Monteiro et al., 2017) who did not participate 

in the present study but who performed a similar task. Individual blood-oxygen-level-dependent 

(BOLD) contrasts of interest were created based on the difference between activity during a 

bimanual coordination task and in a control condition without movement (Beets et al., 2015). 

A conjunction analysis [younger (bimanual task > baseline) ∩ older adults (bimanual task > 

baseline)] of z-score maps was performed to obtain overlapping regions between younger and 
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older adults (Nichols et al., 2005). Significance was set at p < 0.05, with familywise error 

correction for multiple comparisons and brain activity clusters larger than 20 voxels. The 

resulting functional map represents the brain areas that are active during bimanual coordination 

in both younger and older adults. To define ROIs for our VBM analysis, we used the regions 

from the statistical map of the conjunction analysis with peak voxel at z-score ≥ 4.20 (van 

Ruitenbeek et al., 2017), which corresponded to p-values < 1×10-4 after correction for 

familywise errors (FWE). These ROIs are consistent with the ROIs of another study 

investigating the brain regions involved in the control of bimanual coordination in younger and 

older adults (Goble et al., 2010). The resulting nine ROIs are illustrated in Figure 2 and detailed 

in Supplemental Table 1: The bilateral primary motor cortex (M1), bilateral primary 

somatosensory cortex (S1), bilateral SMA, bilateral premotor cortex (dorsal and ventral), right 

middle frontal gyrus, bilateral superior parietal cortex, bilateral inferior occipital cortex, 

cerebellar lobule VI (vermis and hemispheres), and motor cingulate. These ROIs were binarized 

and used to extract the mean intensity of the grey matter voxels in each ROI for each participant, 

using the fslmeants command. 

 

 
Figure 2. Regions of interest (ROIs). A. Images of the nine ROIs. B. Boxplots of the mean intensity of grey matter voxels 

for each ROI for each age group. The boxplot visualizes the median, lower (25th percentile), and upper hinge (75th 

percentile), two whiskers (values no greater than 1.5 times the inter-quartile range), and outliers. C = children; YA = younger 

adults; MA = middle-aged adults; OA = older adults; S1 = bilateral primary somatosensory cortex; Sup. Parietal = bilateral 

superior parietal cortex; SMA = bilateral supplementary motor area; M1 = bilateral primary motor cortex; Mid. Frontal = right 

middle frontal cortex; Inf. Occipital = bilateral inferior occipital cortex; Cerebellum = lobule VI.  
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The ROI approach was implemented to test the extent to which subregions of the cerebellum 

explained bimanual coordination performance as compared to other brain ROIs. This approach 

allowed the application of linear mixed models (also known as hierarchical models; see section 

2.8.2) that have shown to provide a better framework than traditional regression analyses 

(Boisgontier and Cheval, 2016). The ROI approach was complemented by a whole-cerebellum 

voxelwise analysis. 

 

 
 

Figure 3. A. Scatterplot and marginal densities of age and Box–Cox-transformed target deviation in the sample of 109 

participants. Each dot represents an observation from a participant. B. Effect of age on bimanual coordination performance 

over the lifespan. The effect and 95% confidence interval of continuous age on the Box–Cox-transformed target deviation 

aggregated over the conditions were tested using spline smoothing. Results showed a negative linear effect of age from 10 to 

20 years, no effect from 20 to 40 years, and a positive linear effect from 40 to 80 years. 

 

2.8. Statistical analysis 

2.8.1. Nonparametric local smoothing: Spline analysis 

The effect of age on bimanual coordination performance over the lifespan is expected to be 

nonlinear (Leinen et al., 2016; Figure 3A), and is generally modeled with the inclusion of a 

quadratic or cubic term in the equation. However, this approach presents several limitations 

(Davidian and Giltinan, 1995), and nonparametric local smoothing has been shown to be more 

robust (Fjell et al., 2010). The spline smoothing method is described in detail in Hastie et al. 

(2008) and Wood (2006). Using the R-language mgcv package, version 1.8-12 (http://www.r-

http://www.r-project.org/)
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project.org/), we implemented smoothing splines to define age ranges for which the age effect 

was linear. Because splines have not yet been developed to determine significance in designs 

such as that used in the present study, we used linear mixed models to test which brain regions 

involved in bimanual coordination were the best predictors of performance.  

 

 

2.8.2. Linear mixed models 

The extent to which the nine ROIs explained the normalized target deviation for each 

independent age group was analyzed using linear mixed models. For each group, we built a 

dataset with repeated nested measurements crossed with each condition to create linear mixed 

models with crossed random factors. Unlike traditional analysis of variance, linear mixed 

models take into account both the nested (multiple observations within a single participant in a 

particular condition) and crossed (participants observed in multiple conditions) structure of the 

data, thereby providing results with lower type I error rates, i.e., stronger reliability (Baayen et 

al., 2008). In light of the recent concerns about false positive rates in imaging studies (Eklund 

et al., 2016), the addition of such conservative statistical methods to imaging analyses should 

be promoted. Linear mixed models also avoid information loss due to averaging over trials 

(Judd et al., 2015). Moreover, as illustrated in Figure 1C, treating both participants and 

conditions as random effects allows generalizing the results not only to the population of 

participants but also to the population of conditions (Barr et al., 2013). Linear mixed model 

series specifying participants and target condition (n = 20) as random factors were built for each 

age group using the R language lmerTest package, version 2.0-30 (http://www.r-project.org/). 

P-values were calculated based on Satterthwaite’s approximations for degrees of freedom. All 

models were fitted using maximum likelihood (ML) to allow between-model comparisons 

within series (Zuur et al., 2009; Faraway, 2006) based on the Akaike Information Criterion 

(AIC), with lower scores indicating more accurate fit. In each model, target deviation was 

normalized using the Box–Cox method (Box and Cox, 1964; Osborne, 2010). The covariates 

were age, gender, physical activity, trial number, session number, and total intracranial volume. 

Physical activity was included in the models to control for its effect on bimanual coordination 

(Boisgontier et al., 2017) and brain structure (Williams et al., 2017). Whether the significant 

effects of the ROIs were modulated by physical activity was also checked by including an 

interaction term in the equation but this interaction was never significant (all p-values > 0.05). 

The order of trials and sessions were included in the models to control for potential practice 

effects (i.e., fatigue and/or learning effects; Maes et al., 2017). Order of trials can be used as a 

control with linear mixed models only, as traditional analyses of variance require averaging 

trials. The continuous variables were standardized. For each group, an unconditional model and 

a conditional model including the control variables (Supplemental Table 2) were tested to 

provide a basis for pseudo R2 computation. The nine ROIs were then included in the models 

(Full model; Supplemental Table 2). The equation of the full models was as follows: 

 

Yij = (β0 + γ0i + θ0j) + β1 Continuous Agej + β2 Genderj + β3 Trialij + β4 Sessionij

+ β5 Physical Activityj + β6Total Intracranial Volumej + β7 Premotorj

+ β8 Primary Somatosensoryj + β9 Superior Parietalj

+ β10 Middle Frontalj

+ β11 Inferior Occipitalj  + β12 Supplementary Motorj  + β13 Cingulatej  

+ β14 Cerebellumj + β15 Primary Motorj + ϵij  

 

http://www.r-project.org/)
http://www.r-project.org/)
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where Yij is the participant’s score in condition i, β0 to β15 are the fixed effect coefficients, 

γ0i is the random effect for condition i (random intercept), θ0j  is the random effect for 

participant j (random intercept), and ϵij is the error term. 

In the first three models in the series (unconditional model, model with covariates, full model), 

p-values were retrieved from the model fitted using ML to minimize Type 2 error rates (Luke, 

2017). Finally, a sensitive model excluding the nonsignificant ROIs was tested, with p-values 

retrieved using restricted maximum likelihood (REML) to reduce Type 1 error rates (Luke, 

2017). The threshold for statistical significance was set to 0.05. Beta estimates (b) above 0.20, 

0.30, and 0.50 were indicative of small, medium, and large effect sizes, respectively (Cohen, 

1988). Multicollinearity was quantified using variance inflation factors (VIF), with lower scores 

indicating lower multicollinearity. A VIF score higher than 10 generally indicates high 

multicollinearity (e.g., Hair et al., 1995). Here, we reported the highest VIF across predictors. 

Pseudo R2 values were computed to estimate the percentage reduction of prediction errors from 

the unconditional to the conditional model. Pseudo R2 are estimates of the effect sizes, like R2 

values in traditional ordinary least squares regression analysis (Singer and Willett, 2003).  

 

2.8.3. Mediation analysis 

Using the R language RMediation package (version 1.1.4) in Lavaan (version 0.5-20), we 

performed a multiple mediation analysis to investigate the significant ROIs reported in older 

adults (M1, S1, and cerebellum) as potential mediators of the relationship between continuous 

age and target deviation in the different age groups. Participant’s gender, physical activity, and 

total intracranial volume were also included in the model as control variables. 

 

2.9. Complementary analysis 

The ROI approach supported our hypothesis of a prominent role of the cerebellum as compared 

to other brain regions involved in the sensorimotor control of bimanual coordination (see 

section 3.2). To complement the ROI approach, we used a whole-cerebellum voxelwise 

approach to test voxels that were not included in the ROI approach (i.e., voxels that were not 

significantly activated during bimanual coordination performance in younger and older adults 

in the fMRI analysis; see section 2.6.2). As a first preprocessing step, the anatomical MRI scan 

for each participant was segmented into grey matter, white matter, cerebrospinal fluid, skull, 

skin, and out-of-brain tissue using SPM8. To further optimize spatial normalization of the 

infratentorial structures, we used the SUIT toolbox v2.7 

(http://www.diedrichsenlab.org/imaging/suit.htm; Diedrichsen, 2006; Diedrichsen et al., 2009). 

Grey mater segments were manually cropped in MRIcron 

(https://www.nitrc.org/projects/mricron) to remove the brainstem and isolate the cerebellum. 

The cropped images were subsequently normalized to the SUIT template using the DARTEL 

engine (Ashburner, 2007) while correcting for volume changes due to normalization (i.e., affine 

modulation). The resulting normalization parameters were used to reslice the grey matter 

segments for each participant into SUIT atlas space. Global cerebellum volume was quantified 

by integrating the tissue probabilities over all voxels in the native segmented images. To avoid 

possible edge effects around the border between white and grey matter, we used an absolute 

grey matter threshold of p < 0.2. To preserve precision in the definition of the cerebellum, a 4-

mm default full width at half-maximum Gaussian kernel was used for smoothing. We applied 

an explicit brain mask to the grey matter segment to include only voxels that were considered 

as grey matter in 80% of all participants with a 0.2 probability. The association between the 

cerebellum volume and target deviation was tested using a multiple regression model with 

continuous age and total intracranial volume as covariates. Statistical inference was performed 
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at the cluster level (cluster defining height threshold p < 0.001), correcting for multiple 

comparisons over the search volume using familywise error correction at p < 0.05. Anatomical 

localization of the cerebellar lobules was determined using the probabilistic MRI atlas of the 

human cerebellum (Diedrichsen et al., 2009). 

 

3. Results 

3.1. Bimanual coordination performance over the lifespan 

Smoothing splines were used to robustly assess the effect of age on the normalized target 

deviation. Specifically, the effect of age on the Box–Cox-transformed target deviation, 

aggregated over the conditions, was tested with no other effect in the model. A cubic regression 

smoothing spline was used with 6.25 degrees of freedom estimated automatically by 

generalized cross-validation (GCV). Results showed a negative linear effect of age from 10 to 

20 years, no effect from 20 to 40 years, and a positive linear effect from 40 to 80 years (Figure 

3B). No low-level polynomial could correctly approximate this effect over the entire age range. 

 

3.2. Cortical predictors of bimanual coordination performance by age group 

In the sensitive model for participants aged 10 to 20 years (n = 17; 11 females), the mean 

intensity of the grey matter voxels in the cerebellum ROI showed a significant fixed effect on 

target deviation (b = -0.368, p = 0.022; Table 1; Figure 4), with higher intensity predicting 

lower target deviation. None of the other ROIs significantly explained target deviation. Control 

variables explained 84% of the variance in target deviation, with age (b = -0.594, p = 0.002), 

practice effect across sessions (b = -0.168, p < 2 ×10-16), and physical activity (b = -0.294, p = 

0.041) each making a significant contribution to the regression equation. The addition of the 

six ROIs (inferior occipital cortex, SMA, premotor cortex, S1, M1, and cerebellum) to the 

model increased the explained variance by 11%.  

 

 
 

Figure 4. Significant fixed effects of the regions of interest (ROIs) and 95% confidence intervals. Mean intensity of grey 

matter voxels for ROIs significantly predicted the Box–Cox-transformed target deviation from age 10 to 20 years (cerebellum), 

40 to 60 years (cingulate, premotor, and primary somatosensory cortex (S1)), and 60 to 80 years (cerebellum, primary motor 

cortex (M1), and S1). * p < 0.05, ** p < 0.01. 

 

In the sensitive model for participants aged 20 to 40 years (n = 32; 17 females), none of the 

ROIs significantly explained target deviation (Table 1). Control variables explained 20% of the 

variance in target deviation, with practice effect across sessions (b = -0.154, p < 2 ×10-16) 

making a significant contribution to the regression equation. 

In the sensitive model for participants aged 40 to 60 years (n = 28; 14 females), the mean 

intensity of the grey matter voxels in the cingulate (b = -0.210, p = 0.041), premotor (b = 0.219, 

p = 0.022), and S1 ROI (b = 0.275, p = 0.005) showed a significant fixed effect on target 
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deviation (Table 1; Figure 4). Higher intensity in the cingulate ROI predicted lower target 

deviation, whereas higher intensity in the premotor and S1 ROIs predicted higher target 

deviation. Control variables explained 31% of the variance in target deviation, with age (b = 

0.173, p = 0.035) and practice effect across sessions (b = -0.118, p < 2 ×10-16) each making a 

significant contribution to the regression equation. The addition of the three ROIs to the model 

increased the explained variance by 29%. 

In the sensitive model for participants aged 60 to 80 years (n = 32; 14 females), the mean 

intensity of the grey matter voxels in the S1 (b = 0.583, p = 0.029), M1 (b = -0.517, p = 0.041), 

and cerebellum ROIs (b = -0.354, p = 0.026) showed a significant fixed effect on target 

deviation (Table 1; Figure 4). Higher intensity in the M1 and cerebellum ROIs predicted lower 

target deviation, whereas higher intensity in the S1 ROI predicted higher target deviation. 

Control variables explained 42% of the variance in target deviation, with gender (b = -0.916, p 

< 7 ×10-4), practice effect across trials (b = -0.006, p = 0.016) and sessions (b = -0.182, p < 2 

×10-16), and physical activity (b = 0.308, p = 0.012), but not age (b = 0.165, p = 0.154), making 

a significant contribution to the regression equation. The addition of the three ROIs to the model 

increased the explained variance by 18%. 

Given the similar performance slope for the 40–60 and 60–80 groups (Figure 3), a 

complementary analysis was performed to investigate whether the significant effects of the 

ROIs in these two groups interacted with age. In this model (n = 60; 28 females), the mean 

intensity of the grey matter voxels in the cerebellum (b = -0.168, p = 0.038), cingulate (b = -

0.186, p = 0.024), and S1 ROIs (b = 0.425, p = 0.002) still showed a significant fixed effect on 

target deviation. However, none of the ROIs interacted with age (all ps > 0.223). This result 

suggests that future studies on the impact of the cerebellum on bimanual coordination in aging 

could start sampling at age 40 years to determine whether the mechanisms involved differ 

between these two age groups. 

The complementary voxelwise analysis of the whole cerebellum grey matter segment showed 

no significant effect. 

 

3.3. Primary motor cortex mediation 

In the sensitive model for participants aged 60 to 80 years, the nonsignificance of the fixed 

effect of age (Table 1) was inconsistent with the spline analysis (Figure 3). In addition, this 

effect was significant when the ROIs were not included in the model (Supplemental Table 2D). 

Therefore, we used a multiple mediation model to investigate whether the positive relationship 

between continuous age of older adults and target deviation (b = 0.265, p = 0.015; Figure 5A) 

was mediated by the mean intensity of grey matter voxels in the M1, cerebellum, and/or S1 

ROIs. Results showed an indirect effect of M1 (b = 0.252, p = 0.032; Figure 5B), whereby the 

age-related lower intensity of this structure (b = -0.488, p = 0.001) predicted higher target 

deviation (b = -0.527, p = 0.004). The indirect effects of S1 (b = -0.197, p = 0.087) and the 

cerebellum (b = 0.044, p = 0.479) and the total indirect effect of the three ROIs (b = 0.099, p = 

0.154) were not significant. These results suggest that, in older adults, the age-related decrease 

in M1 volume may be indirectly responsible for the age-related increase in target deviation. 
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 10–20 years 

Participants: 17 Observations: 
1632 

Conditions: 20 

  20–40 years 

Participants: 32 

Observations: 3072 

Conditions: 20 

 

 40–60 years 

Participants: 28 

Observations: 2688 

Conditions: 20 

  60–80 years 

Participants: 32 

Observation: 3072 

Conditions: 20 

 

Fixed Effects  b SE p   b SE p   b SE p   b SE p  

Intercept  3.035 0.108 <4×10-10 ***  2.444 0.152 <2×10-14 ***  2.881 0.112 <2×10-16 ***  5.094 0.163 <2×10-16 *** 

Age  -0.594 0.072 0.002 **  -0.113 0.085 0.260   0.173 0.065 0.035 *  0.165 0.098 0.154  

Gender  0.021 0.167 0.941   0.022 0.252 0.940   -0.221 0.157 0.244   -0.916 0.202 <7×10-4 *** 

Trial  -0.002 0.003 0.537   -0.001 0.002 0.705   -0.002 0.002 0.237   -0.006 0.003 0.016 * 

Session  -0.168 0.016 <2×10-16 ***  -0.154 0.009 <2×10-16 ***  -0.118 0.011 <2×10-16 ***  -0.182 0.016 <2×10-16 *** 

Physical Activity  -0.294 0.069 0.041 *  -0.033 0.088 0.747   0.076 0.067 0.345   0.308 0.099 0.012 * 

TIV  -0.331 0.084 0.055   -0.195 0.126 0.190   0.047 0.072 0.587   0.039 0.103 0.747  

Inferior Occipital  -0.176 0.066 0.159                 

SMA  -0.256 0.087 0.126   -0.064 0.172 0.751            

Cingulate       -0.239 0.141 0.154   -0.210 0.082 0.041 *      

Premotor  0.383 0.105 0.070   0.388 0.178 0.071   0.219 0.075 0.022 *      

S1  0.319 0.095 0.089        0.275 0.075 0.005 **  0.583 0.219 0.029 * 

M1  -0.359 0.102 0.077             -0.517 0.209 0.041 * 

Cerebellum  -0.368 0.072 0.022 *            -0.354 0.130 0.026 * 

Random Effects  σ²     σ²     σ²     σ²    

Participant                     

    Intercept  0.034     0.194     0.095     0.189    

Condition                     

    Intercept  0.065     0.039     0.032     0.090    

Residual   0.497     0.333     0.384     1.003    

Pseudo R²   0.953     0.352     0.598     0.600   

AIC    3602.4     5551.8     5221.5     8899.3  

VIF    4.781     5.165     1.894     7.679  

 

Table 1. Cortical predictors of bimanual coordination performance over the lifespan. The extent to which the bilateral primary motor area (M1), primary somatosensory area (S1), 
supplementary motor area (SMA), premotor cortex, right middle frontal, superior parietal cortex, inferior occipital cortex, cerebellum (lobule VI), and cingulate regions of interest (ROI, in bold) 
were predictive of the normalized target deviation in each independent age group was analyzed using linear mixed models. Linear mixed model series specifying participants and target condition 
(n = 20) as random factors were built for each age group. The dependent variable, target deviation, was normalized using the Box-Cox method. The control variables were age, gender, physical 
activity, trial number, session number, and total intracranial volume and the predictor of interest were the nine ROIs were included in the models (see Supplemental Material). The sensitive 
models reported here were tested for each age group with the non-significant-ROIs tested in the previous step being removed. Multicollinearity was quantified using highest Variance Inflation 
Factors (VIF) across predictors with lower scores indicating lower multicollinearity. A VIF score higher than 10 is usually seen as indicative of high multicollinearity. Pseudo R² was computed as 
the percentage by which errors of prediction (participants' σ²) were reduced compared to the unconditional model (Supplemental material). The Akaike Information Criterion (AIC) was used as 
an indicator of fit accuracy, with lower scores indicating a more accurate fit. * p < 0.05, ** p < 0.01, *** p < 0.001 retrieved using restricted maximum likelihood. 
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Figure 5. Mediation analysis. A. Age effect in older adults. Age of older adults predicted the Box–Cox-transformed target 

deviation when the regions of interest (ROIs) were not included in the model. B. Indirect effects. Results of the mediation 

analysis showing the significant mediating effect of the primary motor cortex (M1) and the nonsignificant mediating effect of 

the primary somatosensory cortex (S1) and cerebellum. * p < 0.05, ** p < 0.01, *** p < 0.001. 

 

4. Discussion 

In this study, we investigated whether the cerebellum was a stronger predictor of bimanual 

coordination performance than other ROIs in 109 participants aged 10 to 80 years. Results 

showed that bimanual coordination performance starts declining at age 40 years and that in 

participants aged 10 to 20 years, the cerebellar ROI was the only significant brain predictor of 

bimanual coordination performance. In participants aged 60 to 80 years, the cerebellar ROI also 

formed a group, together with the M1 and S1, of the strongest predictors. Moreover, the M1 

mediated the adverse effect of age on bimanual coordination performance in older adults. 

 

4.1. Turning points in bimanual coordination performance over the lifespan 

Age-related improvement in bimanual accuracy in childhood and impairment in older adults 

have been widely demonstrated (e.g., Maes et al., 2017; Marion et al., 2003; Leinen et al., 

2016), and were therefore expected here. However, the ages at which bimanual coordination 

performance stops improving and starts declining remained unclear. Using smoothing splines, 

we showed that bimanual coordination performance on a bimanual multifrequency tracking 

task stopped improving at age 20 years, which concurs with previous findings of a positive 

correlation between age and alternated finger tapping performance in children aged 9 to 24 
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years (Muetzel et al., 2008). Results also showed that performance declined from age 40 years, 

or 20 years earlier than for fine unimanual movement performance (Smith et al., 1999). This 

earlier decline could be explained by the higher complexity of bimanual relative to unimanual 

tasks (Boisgontier et al., 2014), as this difference has been shown to determine the age effect 

on performance, with higher impact on older than younger adults (Moes et al., 1995). The 

reason for this difference may relate to compensatory mechanisms such as the ones defined in 

the compensation-related utilization of neural circuits hypothesis (CRUNCH; Grady, 2012; 

Reuter-Lorenz and Cappell, 2008; Schneider-Garces et al., 2010). In less complex conditions, 

cognitive resources are still available and could be used to compensate for the age-related 

decline of the sensorimotor system. However, when the task becomes more complex, these 

compensatory mechanisms become more difficult to implement, which results in an impaired 

behavioral performance. The importance of cognitive resources, such as attention and working 

memory, in bimanual coordination tasks has been evidenced in children (Corporaal et al., 2017) 

and older adults (Goble et al., 2010). 

 

4.2. The cerebellum explains bimanual coordination performance early and late in life 

As hypothesized, grey matter structure of the cerebellar ROI (lobule VI) involved in bimanual 

coordination was a strong predictor of bimanual coordination performance in older adults, with 

higher intensity predicting higher performance. As the cerebellum has been shown to be critical 

for predictive movement control (Wolpert et al., 1998; Laurens et al., 2013; Huang et al., 2013), 

our results support previous studies suggesting age-related decline in this control mechanism 

(Boisgontier and Nougier, 2013; Casamento-Moran et al., 2017). These studies showed age-

related differences in motor plans of goal-directed movement only when sensory feedback 

could not be used due to temporal constraints. Additionally, this cerebellar region (lobule VI) 

was the best predictor of performance in children, suggesting that the maturation of accurate 

predictive estimates, which have been associated with Purkinje cell activity in the cerebellar 

vermis (Laurens et al., 2013), drives bimanual coordination performance in this population. 

This result is consistent with previous findings showing that lobule VI is critical for motor tasks 

(i.e., sequence learning and visuomotor adaptation) and especially for spatial tasks (including 

interlimb coordination tasks (Beets et al., 2015; Debaere et al., 2003, 2004a, 2004b; Goble et 

al., 2010; Santos Monteiro et al., 2017; Wenderoth et al., 2004, 2006). This result also supports 

previous findings based on smooth pursuit eye movements and split-belt walking, suggesting 

that the maturation of motor functions is determined by the developmental state of the 

cerebellum (Ego et al., 2016; Vasudevan et al., 2011). These results in children and older adults 

also support previous findings of the critical role of the cerebellum in bimanual coordination 

(Debaere et al., 2004a). Taken together, these results underscore the cerebellum’s critical role 

in bimanual coordination performance in children and older adults, and they suggest that 

predictive models in the cerebellum are key for the development and preservation of motor 

functions. 

The complementary whole-cerebellum voxelwise analysis did not show any significant result, 

thereby failing to support the results of the linear mixed model ROI analysis and also failing to 

reveal additional cerebellar regions involved in bimanual coordination (such as the anterior lobe 

of the cerebellum as hypothesized). The non-significance of the voxelwise results may be 

related to the lower power and/or higher noise associated with this analysis as compared to the 

ROI analysis, which is based on linear mixed models and averages intensities across voxels of 

the ROI. 

 

4.3. Other grey matter regions explaining bimanual coordination performance 
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Our results also showed that higher grey matter intensity in the M1 was associated with higher 

bimanual coordination performance in older adults, supporting the results of previous bimanual 

coordination studies showing the effect of age on M1 integrity and structural connectivity. In a 

similar bimanual multifrequency tracking task, better performance was associated with better 

corpus callosum microstructural properties of the subregion connecting the M1 in older adults 

(Serbruyns et al., 2015; Fujiyama et al., 2016) and higher grey matter intensity in the M1 (van 

Ruitenbeek et al., 2017). Our results also revealed that the M1 mediates the effect of age on 

bimanual performance in older adults, suggesting for the first time that the effect of aging on 

bimanual performance may be indirect and explained by the adverse effect of aging on M1 grey 

matter structure. However, this mediation stems from correlational data and, as such, cannot 

imply causality but encourages future studies to further investigate this avenue.  

Our results also revealed that grey matter intensity of the motor cingulate explains bimanual 

coordination performance in adults aged 40 to 60 years, consistent with previous fMRI studies 

of bimanual coordination showing age-related hyperactivity in the cingulate motor cortex 

(Goble et al., 2010) and grey matter decline in this region (van Ruitenbeek et al., 2017) during 

these tasks. Other studies have shown that the anterior cingulate seems to be particularly 

important for bimanual tasks by suppressing intrinsically favored coordination tendencies 

(Wenderoth et al., 2005). 

Unlike the abovementioned regions, higher grey matter intensity in the S1 and premotor cortex 

were associated with lower bimanual coordination performance. Although unexpected, this 

result was consistent for the S1 across the two older groups. This could be explained by a 

stronger reliance on somatosensory feedback in older adults, which has been shown to result in 

poorer performance on motor tasks compared to predictive movement control (Boisgontier and 

Nougier, 2013). This result could also be specific to the task, as maximum reliance on visual 

information may have been the best task performance strategy in the present study, which would 

imply that the somatosensory feedback hampers performance. 

Vigor signal originates in the basal ganglia (Dudman and Krakauer, 2016) and appears to 

control the gain of decision-related cells in the premotor cortex (Thura and Cisek, 2016). 

Administration of levodopa into the basal ganglia ameliorates deficits in movement vigor 

(Panigrahi et al., 2015). However, increased movement vigor can also result in premature 

responses in a choice reaction-time task (Economidou et al., 2012) and exaggerated postural 

adjustments (Boisgontier et al., 2017). In line with these findings, higher grey matter intensity 

in the premotor cortex may result in lower thresholds to vigor signals and trigger movements 

that are more vigorous. Such increased vigor may result in premature or exaggerated 

adjustments of the movement trajectory, thereby increasing target deviation, i.e., increasing 

errors in a bimanual coordination task. 

 

5. Conclusion 

The grey matter structure of cerebellar lobule VI appears to be critical for the control of 

bimanual movement at both ends of the age spectrum. One specific neural mechanism that 

could be associated with this age-related plasticity is predictive modeling, which is thought to 

take place in the cerebellum. Whether these findings obtained from a bimanual coordination 

task can be applied to a wider range of sensorimotor tasks remains to be determined. 
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Supplemental Material 

Supplemental Table 1. Regions of interest (ROIs). inf. = inferior, L = left, M1 = primary motor cortex, mid. = 
middle, R = right, S1 = primary somatosensory cortex, SMA = supplementary motor area, sup. = superior. 
Coordinates in MNI space. 

 
ROI label Area Hemisphere x y z z-score n voxels 
Cerebellum Lobule VI L -20 -52 -26 4.64 219 
 Lobule VI R 24 -50 -28 5.02  
 Lobule VI vermis  2 -66 -26 4.93  

Cingulate Motor cingulate 

cortex 

L -6 -20 46 5.31 156 
 Motor cingulate R 6 -24 44 5.09  

Inferior Occipital Inferior occipital 

gyrus 

L -50 -76 -6 4.50 90 
 Inferior occipital R 58 -64 -16 4.76  

M1 M1 L -42 -22 56 6.22 441 
 M1 R 34 -30 64 6.05  

Middle frontal Middle frontal gyrus R 36 38 36 4.89 51 
Premotor Premotor - dorsal L -28 -20 64 5.87 1589 
 Premotor - dorsal R 28 -14 61 4.77  
 Premotor - ventral L -28 -8 54 5.72  
 Premotor - ventral R 32 -8 52 5.79  

S1 S1 - dorsal L -36 -42 64 5.87 1524 
 S1 - dorsal R 34 -36 56 5.73  
 S1 - ventral L -34 -26 44 6.15  
 S1 - ventral R 36 -26 46 6.53  

SMA SMA - dorsal Bilat 2 -2 64 5.02 294 
 SMA - posterior Bilat 4 -10 50 5.84  
 SMA - anterior Bilat 2 6 48 5.84  

Superior Parietal Superior parietal 

cortex 

L -18 -64 54 5.05 155 
 Superior parietal R 14 -60 60 4.92  
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Supplemental Table 2A. Age group: 10–20 years; Unconditional model, model with control variables 
(covariates), and model with the nine regions of interest (Full model). 

 

 
 10–20 years 

Unconditional model 

 10–20 years 

Model with covariates 

 10–20 years 

Full model 

Fixed Effects  b SE t  b SE p  b SE p 

Intercept  2.587 0.215 12.01  3.072 0.141 <2×10-16  3.027 0.127 <2×10-16 

Age      -0.625 0.090 <3×10-6  -0.671 0.089 <1×10-6 

Gender      -0.126 0.237 0.601  0.002 0.204 0.991 

Trial      -0.002 0.003 0.537  -0.002 0.003 0.537 

Session      -0.168 0.016 <2×10-16  -0.168 0.016 <2×10-16 

Physical Activity      -0.113 0.090 0.2239  -0.280 0.063 <5×10-4 

TIV      -0.311 0.110 0.0115  -0.344 0.082 <7×10-4 

Premotor          0.402 0.107 0.002 

S1          0.414 0.106 0.001 

Superior parietal          -0.037 0.070 0.607 

Middle Frontal          -0.168 0.099 0.108 

Inferior Occipital          -0.280 0.081 0.003 

SMA          -0.236 0.099 0.029 

Cingulate          -0.028 0.100 0.785 

Cerebellum          -0.332 0.076 <5×10-4 

M1          -0.369 0.126 0.009 

Random Effects  σ²    σ²    σ²   

Participant             

    Intercept  0.726    0.115    0.025   

Condition             

    Intercept  0.066    0.066    0.064   

Residual   0.533    0.497    0.497   

Pseudo R²       0.841    0.966  

AIC    3740.5    3609.2    3603.8 

VIF        1.817    9.110 
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Supplemental Table 2B. Age group: 20–40 years; Unconditional model, model with control variables 
(covariates), and model with the nine regions of interest (Full model). 

 

 
 20–40 years 

Unconditional model 

 20–40 years 

Model with covariates 

 20–40 years 

Full model 

Fixed Effects  b SE t  b SE p  b SE p 

Intercept  2.062 0.107 19.30  2.488 0.165 <2×10-16  2.460 0.139 <2×10-16 

Age      -0.070 0.089 0.437  -0.211 0.083 0.017 

Gender      -0.070 0.276 0.801  0.011 0.240 0.962 

Trial      -0.001 0.002 0.705  -0.001 0.002 0.705 

Session      -0.154 0.009 <2×10-16  -0.154 0.009 <2×10-16 

Physical Activity      -0.070 0.092 0.450  -0.023 0.077 0.769 

TIV      -0.200 0.134 0.145  -0.135 0.127 0.295 

Premotor          0.725 0.193 <7×10-4 

S1          0.133 0.187 0.483 

Superior parietal          0.093 0.125 0.460 

Middle Frontal          0.075 0.086 0.387 

Inferior Occipital          0.173 0.090 0.064 

SMA          -0.340 0.159 0.040 

Cingulate          -0.325 0.120 0.011 

Cerebellum          0.050 0.127 0.696 

M1          -0.095 0.197 0.634 

Random Effects          σ²   

Participant             

    Intercept  0.299    0.238    0.121   

Condition             

    Intercept  0.039    0.039    0.039   

Residual   0.363    0.333    0.333   

Pseudo R²       0.204    0.596  

AIC    5809.5    5552.3    5549.1 

VIF        2.517    9.945 
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Supplemental Table 2C. Age group: 40–60 years; Unconditional model, model with control variables 
(covariates), and model with the nine regions of interest (Full model) 

 

 
 40–60 years 

Unconditional model 

 40–60 years 

Model with covariates 

 40–60 years 

Full model 

Fixed Effects  b SE t  b SE p  b SE p 

Intercept  2.450 0.101 24.22  2.974 0.131 <2×10-16  2.927 0.112 <2×10-16 

Age      0.169 0.078 0.038  0.201 0.078 0.016 

Gender      -0.407 0.182 0.033  -0.314 0.170 0.075 

Trial      -0.002 0.002 0.236  -0.002 0.002 0.236 

Session      -0.118 0.011 <2×10-16  -0.118 0.011 <2×10-16 

Physical Activity      0.036 0.078 0.648  0.063 0.065 0.345 

TIV      0.001 0.091 0.993  0.061 0.074 0.419 

Premotor          0.207 0.093 0.035 

S1          0.352 0.139 0.017 

Superior parietal          -0.134 0.073 0.075 

Middle Frontal          -0.084 0.063 0.189 

Inferior Occipital          -0.031 0.077 0.690 

SMA          -0.007 0.086 0.932 

Cingulate          -0.172 0.081 0.043 

Cerebellum          -0.037 0.098 0.709 

M1          -0.004 0.155 0.982 

Random Effects          σ²   

Participant             

    Intercept  0.237    0.164    0.069   

Condition             

    Intercept  0.032    0.032    0.031   

Residual  0.402    0.384    0.384   

Pseudo R²       0.309    0.711  

AIC    5348.7    5230.2    5224.8 

VIF        1.377    9.247 
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Supplemental Table 2D. Group 60-80 years: Unconditional model, model with control variables (covariates), 
and model with the nine regions of interest (full model). 

 

 
 60–80 years 

Unconditional model 

 60–80 years 

Model with covariates 

 60–80 years 

Full model 

Fixed Effects  b SE t  b SE p  b SE p 

Intercept  4.072 0.137 29.66  5.163 0.177 <2×10-16  5.127 0.148 <2×10-16 

Age      0.268 0.099 0.011  0.160 0.093 0.095 

Gender      -0.883 0.219 <4×10-4  -0.976 0.178 <5×10-6 

Trial      -0.007 0.003 0.004  -0.006 0.003 0.016 

Session      -0.196 0.016 <2×10-16  -0.182 0.016 <2×10-16 

Physical Activity      0.112 0.096 0.252  0.314 0.101 0.004 

TIV      0.119 0.108 0.281  0.102 0.100 0.320 

Premotor          -0.071 0.169 0.676 

S1          0.659 0.200 0.002 

Superior parietal          -0.058 0.084 0.494 

Middle Frontal          0.044 0.088 0.623 

Inferior Occipital          0.017 0.090 0.853 

SMA          -0.095 0.145 0.517 

Cingulate          -0.130 0.121 0.290 

Cerebellum          -0.349 0.115 0.004 

M1          -0.492 0.198 0.018 

Random Effects          σ²   

Participant             

    Intercept  0.472    0.272    0.136   

Condition             

    Intercept  0.084    0.084    0.090   

Residual   1.058    1.007    1.003   

Pseudo R²       0.424    0.711  

AIC    9350.4    9189.8    8898.0 

VIF        1.375    8.678 
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