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Preface

Shifting freight traffic from road to rail and waterborne transportation can sub-

stantially improve the economic and environmental performance of logistics sys-

tems. Regrettably, even with technology and regulations developing over the last

few decades, modal shifts have remained modest at best. Innovative approaches

are urgently required to promote a greater use of more sustainable transportation

modes.

Synchromodal transportation, or synchromodality, describes a structured and

synchronized combination of different transportation modes serving for aggregated

transportation demand, which entails a modal shift from road to the more sustain-

able transportation modes such as rail or waterway. However, rail or waterway

transportation generally lack the flexibility in delivery quantity, frequency, sched-

ule, etc., and result in larger inventory and/or longer periods between deliveries.

Companies therefore often hesitate to implement synchromodality because of the

presumption to trade higher inventory and/or lower service level for sustainability.

In this dissertation, we investigate synchromodality from a supply chain per-

spective (SSCP) to support shippers implement synchromodality and increase the

share of intermodal transportation by quantifying the impact of synchromodality

on companies’ inventory and service levels. The distinct feature of this concept

can be pinpointed in two aspects:

� Simultaneous use of more than one transportation mode in a single corridor.

Whereas an inflexible, slow, but cheap transportation mode (e.g., intermodal

rail) focuses on the sustainability of the transportation system, a flexible,

fast, but more expensive transportation mode (e.g., direct trucking) guar-

antees adequate service levels. The parallel usage therefore captures both

cost and responsiveness of the transportation system.

� Optimization of transportation problems from a supply chain perspective
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Preface

considering the inventory controls. Transportation decisions are, after all,

part of companies’ supply chain strategy and need to be jointly optimized

with other activities of the supply chain. Technically speaking, the extension

of transportation problem into a wider realm of supply chain management

broadens the boundaries of the optimization problem and hence allows a

new “global optimum”.

The SSCP concept is illustrated by two quantitative modeling studies to sup-

port companies jointly manage their transportation and internal inventory con-

trols. The first study captures the key drivers and characteristics of modal split

via simple approximate analytical expressions. The second study uses stochastic

dynamic programming to obtain the optimality of modal split decisions, includ-

ing the optimal delivery quantity and frequency of rail transportation, and the

optimal inventory controls at the distribution center. In addition to the con-

ceptual and methodological contributions, a VBA-based Excel tool is presented

to help managers implement synchromodality without necessarily understanding

the mathematical details of the synchromodality models. The tool also allows

the users to analyze the impact of synchromodality on other metrics of compa-

nies’ supply chain, such as inventory management, production smoothing, and

full container loading, etc.

A validation of our models using real data demonstrates that companies

can jointly reduce cost and carbon emissions by applying synchromodality. In-

terestingly, companies could significantly increase their share in the sustainable

intermodal rail transportation, with only a minor increase in inventory cost. The

transportation cost savings obtained from a modal split will not only offset the

extra spending in inventory, but also reduce the total costs of the supply chain

without sacrificing the service level.

Our case studies suggest that the application of SSCP has the potential to

substantially reduce CO2 emissions through optimization of companies’ “internal”

supply chain, whereas the “external” interventions such as a carbon tax imposed

by the government have only a minor incremental effect unless they are set at

very high levels.
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Chapter 1

Introduction

Ceci n’est pas une pipe.1

– René Magritte (1898-1967), Belgium artist.

The objective of this dissertation is to support companies implement syn-

chromodal transportation (synchromodality). In this introductory chapter, we

motivate the research problem, define the research questions, and describe the

outline of the thesis.

1.1 Research motivation and objective

Between now and 2050 we will have to reduce our greenhouse gas (GHG) emissions

dramatically to keep our environment sustainable. According to calculations from

the Intergovernmental Panel on Climate Change (IPCC), annual GHG emissions

need to be reduced by 40 − 70% between 2010 and 2050, for us to have 50%

chance of keeping the increase in average global temperature staying within 2�

by 2100 (IPCC, 2014). The Paris Accord, agreed at the COP21 conference in

December 2015, committed the 195 participating countries to keeping this average

1 Literally translated as “This is not a pipe.”, it is a caption of a painting of a pipe. The
contradiction is meant to intrigue and confound viewers.

1



1.1. Research motivation and objective

temperature increase “well below 2� by 2100”, putting added pressure on them

to cut GHG emissions (European Commission, 2015a).

All industrial sectors except transportation have been steadily reducing their

GHG emissions. In the U.S., GHG emissions linked to transportation have in-

creased by 17% since 1990 (U.S. Environmental Protection Agency, 2014). In the

EU-28 (the 28 state members of the European Union), the transportation sector

increased its relative share of total GHG emissions from 15% to 22% between

1990 and 2013 (EUROSTAT, 2015). The freight share of total transportation

emissions is even expected to rise from 42% in 2010 to 60% in 2050 (OECD/ITF,

2015), making the freight transportation one of the hardest sectors to decarbonize

(Guérin et al., 2014).

In addition to the environmental challenges, the transportation industry is

also confronted with critical social issues. Statistics from European Commission

(2016) demonstrate that the current road network has been over-utilized, which

brings in extra “stress” to our society in terms of accidents, noises, air pollutions,

etc. (Maibach et al., 2008). One intensively discussed social problem linked to

transportation, among others, is congestion. European Commission (2012) finds

that the total monetary cost of congestion mounts up to 134.3 billion euro in

2012, which is equivalent to about one percent of the total GDP of EU-28. It is

even estimated that the congestion will be even more severe in the coming decades

(Centre for Economics and Business Research, 2014). Another critical social chal-

lenge of the transportation industry is the truck driver shortage. According to

American Trucking Associations (2015), the U.S. transportation industry faces a

shortage of about 38, 000 truck drivers in 2014, and this number is expected to

grow to almost 175, 000 by 2024. The driver shortage is also found in some of the

emerging countries such as South Africa (FleetWatch, 2014) and India (The Times

of India, 2011). The main reason for this shortage is that young generations are

unwilling to work as truck drivers because of low wage rates, long periods away

from home, poor working conditions, etc. (see, e.g., Bloomberg, 2013; Boston

Consulting Group, 2015). A recent report from the McKinnon et al. (2017) states

that “the shortage of truck drivers is currently the highest profile logistics skills

issue in terms of company concerns, political lobbying, and media coverage”.

Finally, road transportation is costly. According to Boston Consulting Group

(2015), freight costs are steadily rising, which reverses the effects of all supply

chain cost-saving efforts. Road transportation is about five times more expensive

than rail or waterway transportation per tonne-kilometer (TKM) of freight ship-

ment (European Commission, 2016). This despite the fact that the profit margins

2



Introduction

of road transportation carriers are already very thin and further cost reductions

are almost impossible (American Trucking Associations, 2014).

Clearly, the state-of-the-art freight system is not sustainable and urgently

requires significant changes. One richly studied approach is the enforcement of a

penalty cost for road transportation in the form of carbon taxes or toll charges by

the policymakers (see, e.g., Tavasszy and van Meijeren, 2011; Fahimnia et al., 2015;

European Commission, 2015b; European Court of Auditors, 2016). However,

these approaches are practically not favored by companies, because they aim to

improve the environmental impact of logistics systems by increasing companies’

total spending. Companies incur higher cost in freight transportation due to extra

spending on carbon taxes and/or toll charges, whereas the profit margin of freight

transportation industry is nowadays already at a minor level. A study by the FTA

and PricewaterhouseCoopers in 2013 has shown that the profit margin for the 100

biggest road transportation companies in the UK was only 1.0% in 2012, while the

average over the 2008 to 2012 period was 2.4% (Freight Transport Association,

2013). A report on the European haulage market reveals that the profit margins

of freight transportation ranging between −2.0% and +2.0% in France and 2.5%

to 3.0% in Portugal (AECOM, 2014). On the other hand, the practical impact

of a carbon tax on freight decarbonisation is being questioned. Proost and Van

Dender (2001), for example, find that even though fuel is already heavily taxed in

Europe, road transportation continues to grow rapidly. Cachon (2014) proposes

a model to show that in a retailer store allocation problem, “a price on carbon is

an ineffective mechanism for reducing emissions”.

Another frequently mentioned approach is modal shift, i.e., transferring freight

to “greener” transportation modes (Gota, 2016). According to European Envi-

ronment Agency (2013), CO2 emissions per tonne-kilometer from railways and

inland waterways are about 3.5 and 5.0 times lower than those from road freight

transportation. Shifting freight from road to these alternative modes can there-

fore be one of the most important means of decarbonizing logistics (see, e.g.,

Holguin-Veras et al., 2008; Winebrake et al., 2008; McKinnon, 2008; Hoen et al.,

2013). However, in Europe, strenuous efforts over many years by national govern-

ments and the European Union (EU) to shift freight from road to rail and water

have been unsuccessful. Between 1995 and 2013, road’s share of total tonne-kms

increased, rail’s share declined and that of inland waterways remained fairly sta-

ble (Figure 1.1) (EUROSTAT, 2015). A recent report from the European Court

of Auditors (2016) confirms that rail’s share of the European freight market has

declined since 2011 despite the fact that approximately 28 billion Euros of fi-

3
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nancial support was injected into railway projects across the EU over the period

2007 − 2013. Therefore innovations are urgently needed to promote and revive

modal shift as a freight policy option.

Figure 1.1: The share of road transportation (tonne-kilometer) in EU-28 re-
mains about 70% over the last decades, while the shares of the alternative, more
sustainable transportation modes remain modest (EUROSTAT, 2015).

Synchromodal transportation, or synchromodality, is regarded as an innova-

tive approach to increase the sustainability of logistics systems (Verweij, 2011).

It encourages companies to shift freight volumes from trucks to the more sustain-

able transportation modes such as trains or barges, and to synchronize the use of

the transportation modes in a structured, integrated network. Distinct features

of synchromodality include simultaneous use of more than one transportation

modes in a single corridor so that to utilize the complementary nature of different

transportation modes (Tavasszy et al., 2015; Behdani et al., 2016), and flexible,

real-time shifts between different transportation modes in order to obtain highest

modal split flexibility (Roth et al., 2013; Reis, 2015).

Synchromodality is a key building stone of the Physical Internet (PI, or

π)(ALICE, 2014). The PI is an open global logistics system inspired by the infor-

mation highway: Whereas the “digital” Internet transfers digital data smoothly

among users, the “Physical” Internet moves physical objects seamlessly through

an open and interconnected logistics network (Wible et al., 2014). The introduc-

tion of PI uncovers a paradigm-breaking logistics system that transforms the way

physical objects are moved and aims to achieve a smart, efficient and sustainable

future logistics system (Montreuil, 2011). Apparently, the seamless and efficient

4
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movements of physical objectives desire structured and synchronized transporta-

tion systems.

However, the current development of synchromodality is still in its early

stage. The mainstream literature studies transportation problems with logistics

service provider being the principal agent, and surprisingly little is known about

shippers’ (manufacturers) opportunities in synchromodality implementation and

freight modal split. Compared to road, rail or waterway transportation generally

lack the flexibility to vary carrying capacity and may hence result in unneces-

sary high inventory in the supply chain. They often operate following rigid, pre-

designed timetables and cannot efficiently respond to unexpected demand surges.

Groothedde et al. (2005) describe that a typical industry practice is to ship the

stable and well-predictable volume in the inflexible rail/water transportation and

all the other variable volume in direct trucking. However, when the demand

is volatile, the stable part is often marginal and restricted. The modest shares

of rail and waterway transportation over decades in Figure 1.1 indirectly reflect

companies’ hesitation to encourage modal split.

In order to fill in the research gap, we partnered with companies to inves-

tigate shippers’ challenges and opportunities in synchromodality. The research

is inspired by industry practice, and the results of the research summarized in

this dissertation have been used to guide companies implementing synchromodal-

ity. In this dissertation, we aim to contribute to synchromodality research by

answering the following questions:

(i) How can a shipper implement synchromodality and shift freight to the

“greener” transportation modes without increasing total supply chain costs

or reducing service levels?

(ii) What is the impact of synchromodality on the shipper’s supply chain met-

rics, such as inventory controls, carbon emission, production smoothing,

etc.?

1.2 Outline of this dissertation

In Chapter 2 of this dissertation, we first review the recent literature stream from

multimodal, intermodal, to synchromodal transportation to get a better under-

standing of the current state-of-the-art of the synchromodality studies. On the

basis of the literature review, we propose a new concept called synchromodality

from a supply chain perspective (SSCP), which broadens synchromodality from
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the transportation system to shipper’s supply chain realm. This concept suggests

shippers consider the total costs of the supply chain instead of focusing on the

transportation part only. In addition to the conceptual analysis, we propose a first

model to quantify the operationalization of SSCP in a case study suggested by a

multinational company. This model differs from the current mainstream freight

transportation models linked to inventory management (e.g., total logistics costs

models) that it considers dynamic inventory replenishment policies under stochas-

tic demand, rather than restrained with economic order quantity inventory models

with deterministic demand. The case study demonstrates that it is possible to

significantly increase the share of intermodal rail transportation within a corridor,

without necessarily increasing total logistics costs or reducing the service level. In

this way the total logistics costs and the CO2 emissions can be jointly reduced.

The analysis also suggests that when companies apply SSCP, an external carbon

tax from the government would only entail marginal incremental savings in CO2

emissions.

In Chapter 3 we provide an approximate closed-from solution that enables to

determine the split in cargo volumes between a fast but expensive transportation

mode (e.g., truck) and a slow but cheap transportation mode (e.g., train or barge).

The objective of the model is to minimize long run average costs per period

including transportation and inventory. The model is inspired by the classical

Tailored Base-Surge (TBS) policy from dual-sourcing literature, where in every

period, the slow mode delivers a constant quantity and the fast mode delivers

under a base stock control. The closed-form solution provides structural insights

on the trade-off between transportation cost savings and additional holding cost

spending, which can be roughly captured by comparing two simple parameters:

the unit transportation cost saving and the unit inventory holding cost. We

validate our results and find that our analytic expressions of the modal split

decision are close to optimality, with an approximation error of average cost per

period up to 3%. The numerical test also shows that as much as 85% of the

expected volume could be split into the more sustainable slow mode.

In Chapter 4 we generalize the inventory model discussed in the previous

chapter by taking the fixed cost of the slow mode into account (aligned with the

practical insights that rail transportation exhibits economies of scale), adding an

extra decision in its delivery frequency, and releasing the assumption of the base

stock policy of the fast mode. We show that, though the base stock policy is not

imposed, the optimal replenishment decisions of the fast mode indeed have a base

stock structure. In an infinite-horizon problem, the base stock levels in a cycle (a
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cycle accounts for the periods between two slow mode deliveries) converge. These

structural properties allow us to obtain the optimal modal split using stochastic

dynamic programming with acceptable computing effort. We determine the op-

timal controls of road and rail transportation and the corresponding inventory

management, that minimize the long run average transportation and inventory

costs per period. In a numerical study, we show how the optimal modal split

decision is impacted by the various parameters of the supply chain.

In Chapter 5 we present a VBA-based Excel tool to support supply chain

managers implement synchromodality without necessarily understanding the de-

tails of the mathematical models. By using the tool, we validate our synchro-

modality models presented in the previous chapters using real company data, and

quantify the impact of synchromodality on the various supply chain metrics of the

company. Interestingly, we find that with only a marginal increase in inventory,

companies are able to increase the share of intermodal rail transportation for one

of its fast-moving stock keeping units (SKU) 2 to about 67%. The implementa-

tion of synchromodality also reduces the total supply chain costs and smooths

production without sacrificing service levels. For slow-moving SKUs with a high

(larger than one) coefficient of variation (CV), the share of intermodal rail drops

significantly. Longer inventory review periods are recommended to aggregate de-

mand from several periods and reduce CV. As the synchromodality tool is based

on the level of the SKU, we provide a binary programming model to aggregate

the volume shifted to the slow mode from multiple SKUs to full container loads,

such that the resulting total costs are minimized.

Synchromodality research is still in its early stage and this dissertation offers

some first investigation of this interesting problem. In Chapter 6 we discuss the

limitations of this dissertation as well as possible extensions of synchromodality

research. One example is that the models proposed in this dissertation are all

based on the stationary demand assumption. Non-stationary demand patterns,

which might be practical more realistic, could be studied. Another example is

that this dissertation is restricted to shippers’ synchromodality problems and

logistics service providers’ perspective should be acknowledged, where freight can

be flexibly shifted to different transportation modes when necessary. Possible

extensions are discussed.

2 A fast-moving SKU is a bestseller of the industry that generally has high demand mean and
low demand variability.
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Chapter 2

Synchromodality from a supply

chain perspective

The real tragedy of the poor is the poverty of their aspirations.

- Adam Smith (1723-1790), Scottish economist.

Abstract

Despite the growing interest from manufacturers to implement synchro-

modality, most companies still rely heavily on road transportation, and

modal shifts to rail and water have remained modest at best. In this chap-

ter we argue that this is partly the result of a failure to take a holistic supply

chain view of the modal shift process. On the basis of a literature review,

we broaden the conventional focus of multimodal transportation to give it

a supply chain dimension, and propose the concept of “Synchromodality

from a Supply Chain Perspective” (SSCP). Using a case study we show

that when the supply chain impacts are taken into account, it is possible

to significantly increase the share of intermodal rail transportation within a

corridor, without necessarily increasing total logistics costs or reducing the

service level. In this way the environmental impact of freight activities can

be significantly reduced.
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2.1. Introduction

2.1 Introduction

There is a mounting body of evidence justifying that we will have to make deep

cuts in greenhouse gas (GHG) emissions from transportation in order to keep our

environment sustainable. According to Schipper et al. (2000) and IPCC (2014),

this will involve the application of a broad range of measures, falling into four

categories: 1) activity (reducing the demand for transportation), 2) structure

(shifting freight to lower carbon modes), 3) intensity (improving its energy effi-

ciency) and 4) fuel (switching to lower carbon energy sources). By far the most

frequently mentioned freight decarbonization measure in the Intended Nationally

Determined Contribution (INDC) documents submitted to COP21 was modal

shift, i.e. transferring freight to lower carbon transportation modes (Gota, 2016).

According to European Environment Agency (2013), CO2 emissions per tonne-

kilometer from railways and inland waterways are about 3.5 and 5.0 times lower

than those from road freight transportation. Shifting freight from road to these

alternative modes can therefore be one of the most important means of decar-

bonizing logistics (Holguin-Veras et al., 2008; Winebrake et al., 2008; McKinnon,

2008; Hoen et al., 2013).

Modal shift has long been “seen by policy makers and politicians as the

most promising way of easing the environmental and congestion problems asso-

ciated with goods movement” (McKinnon, 2015). There has been over 50 years

of research on the factors influencing companies’ choice of freight transportation

mode (e.g., Bayliss and Edwards, 1970; Jeffs and Hills, 1990), and the use of

public policy to alter the allocation of freight between modes. The case for gov-

ernment intervention has been underpinned by the belief that, at a macro-level,

the freight modal split is economically and/or environmentally sub-optimal. This

sub-optimality has resulted partly from a failure to internalize the environmental

costs of freight transportation modes, but also from differences in the regulatory

and pricing regimes of the various modes and deficiencies in corporate modal

choice behavior. Much emphasis has been placed on the relative pricing of the al-

ternative modes and numerous attempts have been made to quantify cross-modal

price elasticities (De Jong et al., 2010; De Jong, 2013). Comparative freight rates,

however, are only one of many factors influencing the freight modal split at both

micro- and macro-levels. Other criteria, such as transit time, reliability, accessi-

bility, flexibility, and security, are also important determinants of modal selection.

In Europe, strenuous efforts over many years by national governments and

the EU to shift freight from road to rail and water have been unsuccessful. A
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recent report from the European Court of Auditors (2016) confirms that rail’s

share of the European freight market has declined since 2011 despite the fact

that approximately 28 billion Euros of financial support was injected into railway

projects across the EU over the period 2007 − 2013. Therefore innovations are

urgently needed to promote and revive modal shift as a freight policy option.

One of the reasons for the modal split being so difficult to change is that many

stakeholders have not been taking adequate account of the overall supply chain

impact of multimodal transportation. Trains or barges are in general cheaper and

greener, but they lack flexibility in delivery quantity, frequency, and scheduling.

As a consequence, logistics managers tend to perceive a straight shift from trucks

to trains and barges as likely to have a negative impact on the supply chain. More

specifically, in the absence of any associated adjustment to supply chain processes,

a shift from trucks to trains and barges often leads to increases in inventory. As

rail and inland waterway services are generally slower and less frequent than the

equivalent road trips, in-transit inventories and stock levels might be higher at

both ends of the journey. Trains and barges also require large and stable shipment

volumes in order to be cost-efficient, making it difficult for them to cater for flows

that are subject to widely fluctuating demand.

The end-to-end impact of the modal shift requires a change in the logistical

decision-making process. Freight modal choice is, after all, a part of the supply

chain strategy and needs to be jointly optimized with other supply chain activ-

ities, like inventory management and customer service levels. This involves the

shipper more directly in the process and puts some onus to alter their schedules

to accommodate changes in transportation mode.

Some researchers have already analyzed transportation as a part of the supply

chain. Woodburn (2003) conducted a survey of 137 British shippers and observed

that managers’ perception of rail as possibly impairing supply chain performance

is a barrier to this mode increasing its market share. Eng-Larsson and Kohn

(2012) analyzed six case studies and found that shippers make modal shift de-

cisions in a different way than Logistics Service Providers (LSPs) because they

need to consider trade-offs and synergies across the supply chain as a whole. This

previous research is mainly qualitative in nature and needs to be complemented

by quantitative studies and best practices case studies.

In this chapter, we aim to fill this research gap and contribute to the exist-

ing literature on the following two points: First, this study broadens the focus

of multimodal research from the transportation system to the supply chain. We

review the development of multimodal transportation and the recent evolution of

11



2.2. The conceptual framework of SSCP

the so-called synchromodality concept. We argue that this concept needs to be

more deeply embedded in supply chain management and propose the expression

“Synchromodality from a Supply Chain Perspective” (SSCP) to reflect this. This

is discussed in Section 2.2. Secondly, this study provides a quantitative demon-

stration using a company case study to show how modal shift can be enabled

when the supply chain impact is taken into account. In Section 2.3 we show that

by following an SSCP approach, a company can markedly increase the share of

intermodal rail transportation within a particular transportation corridor without

sacrificing either logistical efficiency or service quality. Section 2.3 also assesses

the environmental impact of this modal shift using a case study of a company and

discusses the role of a carbon tax herein. Section 2.4 summarizes the chapter and

indicates further SSCP research opportunities.

2.2 The conceptual framework of SSCP

Companies adopting a multimodal strategy have to decide the optimum allo-

cation of their freight among different modes. The development of intermodal

transportation has expanded the range of modal options available. By allowing

companies to combine different modes in various ways in the course of a single

journey, it has further complicated the modal choice decision. The advent of syn-

chromodality has made this decision even more complex, but also increased the

potential for companies to make greater use of transportation modes besides road.

The next section reviews the evolution of modal split research from multimodality

and intermodality to synchromodality

2.2.1 Multimodal, intermodal, and synchromodal transporta-

tion

The general concept of combining the use of several modes for any shipment

at strategic, tactical, or operational level is generally described as “multimodal

transportation”. Different modes can be used for various types of commodity,

movements of distance, and requirements of services. A company’s relative de-

pendence on different modes can also vary significantly between countries reflect-

ing, among other things, differences in the national freight market, the relative

density of modal infrastructures and government transportation policy. Over the

years numerous studies have been conducted on the topic and detailed literature

reviews can be found in articles of McGinnis (1989), Meixell and Norbis (2008),
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Reis et al. (2013), SteadieSeifi et al. (2014), and Reis (2015).

Multimodality should be distinguished from “intermodality”. Although there

is a lack of consensus on the definition of intermodality (Bontekoning et al., 2004),

it is widely accepted that it refers to a sequence of different transportation modes

used on a single journey, and very likely, a unitized module is used along this

freight journey: For example, a container is “pre-hauled” by truck from the sender

to an intermodal terminal, trunk-hauled by train or ship to another intermodal

terminal, and then “post-hauled” by truck to the receiver. The same sealed,

modular unit (e.g. a container) travels from origin to destination (Macharis and

Bontekoning, 2004). Modular consignments are channeled through intermodal

terminals where they are transshipped between modes in large numbers to exploit

the scale economies of rail and water-borne transportation (European Commis-

sion, 1997). The literature on intermodality has been reviewed by, among others,

Macharis and Bontekoning (2004), Bontekoning et al. (2004), Crainic and Kim

(2007), SteadieSeifi et al. (2014), and Reis (2015).

Recently synchromodality (or “synchromodal transportation” has emerged

as the next conceptual development linked to multimodal transportation (e.g.,

Verweij, 2011; Roth et al., 2013; Tavasszy et al., 2015). In one of its first ex-

planations, Verweij (2011) characterized synchromodality as the ability to switch

freely between transportation modes at particular times while a consignment is

in transit. For example, a container that was originally planned to be shipped

via intermodal rail transportation might be switched to direct trucking at certain

terminals, because of real-time constraints or a desire to improve utilization/cut

costs. The necessary level of flexibility for switching between different transporta-

tion modes requires efficient and responsive coordination of the schedules of the

available transportation modes. In this way, synchromodality offers the potential

to switch mode at several nodes on the route, while meeting cost and service level

requirements.

Behdani et al. (2016) and Tavasszy et al. (2015) describe the distinctive fea-

ture of synchromodality as “horizontal integration” of freight transportation plan-

ning, which allows for parallel use of different transportation modes from the

origin to the destination. Freight flows on a particular route, possibly satisfy-

ing the same order, are then split between different modes. This contrasts with

“vertical integration” of different modes which is inherent in a door-to-door inter-

modal movement. Figure 2.1 illustrates both concepts. Intermodal transportation

comprises sequential use of multiple transportation modes. synchromodal trans-

portation, on the other hand, permits their simultaneous usage, and furthermore,
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one of these modes could be an intermodal service. Tavasszy et al., (2015) de-

fine synchromodality as “synchronized intermodality”. When Logistics Service

Providers (LSPs) implement the horizontal integration of different transporta-

tion modes and internally synchronize flows, they can do so without consulting

shippers. The shippers then make a-modal or “modal-free” bookings, giving LSPs

discretion to use multiple modes on schedules that meet the shippers’ service level

requirement at the agreed costs (Gorris et al., 2011).

Figure 2.1: The vertical and horizontal integration of freight transportation plan-
ning (Behdani et al., 2016; Tavasszy et al., 2015).

Groothedde et al. (2005) show how this “horizontal integration” can be oper-

ationalized. In their case study, they model parallel usage of two transportation

modes: a premium, fast and flexible transportation mode (direct trucking), and a

relatively inexpensive, slow and inflexible transportation mode (intermodal). The

two transportation modes are synchronized in such a way that the stable part

of the freight demand is carried by intermodal transportation, and the variable

peaks are accommodated by direct trucking.

2.2.2 Review of the current literature on synchromodality

While multimodal and intermodal transportation have been extensively reviewed

in the literature, synchromodality is relatively new. We therefore reviewed the

recent literature on synchromodality to get a better understanding of the current

state-of-the-art. The keywords “synchromodality” and“synchromodal transporta-

tion” were inserted into the following databases: Emerald Insight, Google Scholar,

IEEE Xplore, JSTOR, OECD (Organisation for Economic Co-operation and De-

velopment) library, Springer Link and Web of Science. In total 24 articles written

in English were found that elaborate on the concept of synchromodality: nine

journal articles, seven conference proceedings, three book chapters, four white

papers and one working paper. We are aware that there may exist additional
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reports or articles in other languages. In Table 2.1 we list these 24 articles, to-

gether with their definition of the synchromodality concept and its advantages as

described in their work.

Several key points emerged from the literature:

(i) Synchromodality research is still in its early stage. The number of publica-

tions, however, is growing as shown in Figure 2.2.

(ii) The majority of the studies are exploratory and qualitative in nature, which

is not surprising for an emerging concept. The first quantitative study was

found only in 2015. In 2016 three more quantitative studies were published.

The emergence of quantitative studies indicates a deepening understanding

of the concept and growing interest in its implementation.

(iii) Until now the synchromodality concept is largely defined in transportation

terms and logistics service providers (LSPs) are its principal agents. Al-

though in the original proposal of Verweij (2011) both the LSPs and the

shippers were involved in its implementation, later research has generally

focused on LSPs only. In the latter case, shippers simply leave the freight

mode choice to the LSPs, thus making a “mode-free” booking.

(iv) The most quoted benefit of synchromodality lies in improved sustainabil-

ity, both in economic and environmental terms. This accrues partly from

increased probability of freight modal shift but also from greater flexibil-

ity in the real-time planning of transportation modes to adapt to variable

demand.

(v) The relationship between synchromodality and the management of supply

chain processes, particularly the management of inventory, has not yet been

discussed in detail in the literature.
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Table 2.1: A view of current synchromodality literature up to 2015

Author(year) Principal Explanation of Synchromodality

Verweij (2011) LSP and
shippers

Optimal operational alignment of shippers and carri-
modes and infrastructure

Lu and Borbon-
Galvez (2012)

LSP An efficient, cost-effective and environmental friend-

Pleszko (2012) LSP Carriage of goods by using favorable and available

Roth et al. (2013) LSP MT that switches between different modes within
mentally friendly distribution

Platform Synchro-
modaliteit (2013)

LSP MT that seamlessly switches between modes, consol-
additional efficiency

SteadieSeifi et al.
(2014)

LSP A structured, efficient and synchronized combination

Lu (2014) LSP The use of alternative transportation modes in a
circumstances as well as product and supply chain

Oonk (2014) LSP MT that cooperates within transport chains, aimed
all times

ALICE (2014) LSP and
shippers

The service that, through informed and flexible plan-
to make mode and routing decisions at the individual

Hofman (2014) LSP N.A.

Singh (2014) LSP MT that efficiently plans and optimizes the utiliza-

Reis (2015) LSP and
Shippers

MT that adds adaptive mode choice based on real
transport system

Van Riessen et al.(
2015a,2015b,2015c)

LSP MT that optimizes all transportation in an integrally

Singh and Van
Sinderen (2015)

LSP MT that allows LSPs to have the freedom in trans-
quanlity requirements

Xu et al. (2015) LSP A structured, efficient and synchronized combination

Tavasszy et al.
(2015)

LSP A network of well-synchronized and interconnected
cater for the aggregate transportation demand

Putz et al. (2015) LSP MT network that the modes are operated in parallel

DINALOG (2015) LSP A shipper agrees with an LSP on the delivery of
sustainability but gives the LSPs the freedom to
these specifications

Prandtstetter et
al. (2016)

LSP MT consisting of at least two modes and supporting
based on optimized mode choice decisions

Mes and Iacob
(2016)

LSP MT in which the best possible combination of trans-
transportation order

Zhang and Pel
(2016)

LSP The same as DINALOG (2015)

Behdani et al.
(2016)

LSP An integrated transportation service by looking at
transportation modes
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Advantages of Synchromodality

ers in their choice of transportation An flexible, efficient and sustainable trans-
port strategy

ly multimodal transportation (MT)
strategy

The optimal flexibility and sustainability

transport modes Flexible and sustainable utilization of
transport resources

a more timely, efficient and environ- Flexible, sustainable transport process
with lower cost and higher service level

idate consignments and achieve A sustainable and flexible transport strat-
egy

of two or more transport modes A flexible (real-time) transportation pro-
cess

flexible way, depending on temporary
characteristics

An efficient, sustainable, and reliable
transportation network

at using the right transport modes at Alternatives and options for flexibility and
responsiveness

ning, booking and management, allows
shipment level as late as possible

An transportation network that reduces
costs and saves both time and energy

Real time design and coordination of value
chains in the transport system

tion of different transport modes Flexibility in changing different modes,
emission reduction

time information and situation of the Efficient transport service based on real
time information

operated network Efficient and sustainable transportation
plan for all orders

portation modes to fulfill timing and Higher flexibility, lower GHG emissions,
and lower costs

of two or more transportation modes Optimized transportation profit

transportation modes, which together Flexible and sustainable transportation
chain with higher service

and interconnected with each other Flexible transportation network with sus-
tainably use of transportation resources

products at specified costs, quality, and
decide on how to deliver according to

Speed, cost reduction and sustainability

real-time switching among these modes Flexible and environment friendly trans-
portation service

portation mode is selected for every Minimization of cost, delay, and emissions

Cost and emission reduction without sac-
rificing the service level

the complementary nature of available Improve service and cost by optimally use
of all transportation modes
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Figure 2.2: The number of published articles on synchromodality up to 2015

2.2.3 Synchromodality from a supply chain perspective

While synchromodality adds the synchronization of the transportation modes

to the conventional intermodality problem, the SSCP concept further extends

synchromodality from being a transportation concept to a principle impacting

more widely on supply chain decision-making.

Figure 2.3 illustrates intermodal transportation, synchromodal transporta-

tion and SSCP. Synchromodal transportation (Figure 2.3b) extends the one-

dimensional freight pathway of intermodal transportation (Figure 2.3a) to a two-

dimensional freight flow network involving simultaneous use of different modal

pathways in the same corridor. One of these pathways could be intermodal trans-

portation. In SSCP, the transportation decision, after all, is only one building

block in the overall optimization of a supply chain (see Figure 2.3c). The meaning

of “synchro” in synchromodality needs to be broadened from the synchronization

(and scheduling) of the different transportation modes towards the synchroniza-

tion (and scheduling) of transportation with other supply chain activities such as

inventory management and the setting of service levels.
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In Groothedde et al. (2005) the synchronized parallel usage of direct truck-

ing and intermodal transportation is discussed, thereby operationalizing synchro-

modality from an LSP’s perspective. We suggest that, when a shipper wants to

implement synchromodality, it needs to evaluate the transportation decisions from

an overall supply chain perspective. For example, intermodal transportation may

lack the flexibility to vary carrying capacity and may result in unnecessarily high

inventory in the supply chain. It also requires a long lead time and therefore may

not satisfy demand surges at short notice. As a consequence more sophisticated

supply chain models in which transportation decisions are synchronized with other

decisions within the supply chain, such as dynamic inventory management and

service level controls, are required.

The SSCP approach entails a more holistic view of the supply chain incen-

tives that the shippers may have when they make synchromodal decisions, instead

of simply outsourcing the transportation decision to the LSPs and leaving them

to optimize the transportation operation. Even where shippers contract out their

transportation, they can still exert control over the choice of mode and carrier

through a “control tower”. According to a survey by Boston Consulting Group

(2015) with 40 international corporations, up to 59% of the surveyed shippers now

manage transportation in-house, as they believe that they can have a “better con-

trol of their service levels”. A broader third-party logistics study by CapGemini

(2016) reports that although shippers in general continue to rely heavily on LSPs,

about 35% of them are insourcing more control of their logistics activities. The

reasons offered for this include misalignment of logistics goals and objectives, lack

of transparency and effective communications, lack of IT capabilities among LSPs,

etc.

Naturally, LSPs and shippers have different business models and operational

strategies. The LSPs that explore synchromodality as a business model tend only

to consider how it affects their own transportation operations. Shippers, on the

other hand, are also interested in its wider impacts on endogenous elements in the

production and distribution systems, such as inventories and production sched-

ules. As a consequence, the shipper-based, supply chain perspective on synchro-

modality is much broader than that of an LSP. The differences are summarized

in Table 2.2.

Synchromodality from a Supply Chain Perspective is defined as:

A multimodal strategy that incorporates the flexible choice of freight trans-

portation modes into shippers’ management of supply chain processes.
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Table 2.2: Different perspectives of synchromodality

Transportation perspective Supply chain perspective

Organization mainly LSPs Shippers
Scope A transportation network End-to-end supply chain
Complexity Network extent and inter-

modal connections
Supply chain trade-offs and
synergies

Objective A flexible transportation net-
work, where all transporta-
tion modes are efficiently uti-
lized and modal shift facili-
tated

A optimized supply
chain, where inventory-
transportation trade-offs
are recalibrated to exploit
multimodal flexibility

Quantitative
Research
Method

Transportation planning
algorithms, e.g., the multi-
objective k-shortest path
problem used by Mes and
Iacob (2016)

Supply chain optimization,
e.g., modals integrating
transportation and inventory
decisions

This perspective redefines the modal choice decision and encourages shippers

to re-examine their transportation strategies from a holistic supply chain per-

spective. Synchromodality requires the active involvement of shippers in modal

split decisions to align mode choice with production and inventory management

and to accommodate transportation changes into their end-to-end supply chains.

Shipper’s responsibility and effort are acknowledged, in order to improve the per-

formance of the supply chain.

2.2.4 SSCP and the total logistics costs approach

Whereas synchromodality allows for parallel usage of different transportation

modes from the origin to the destination, SSCP aims to determine the optimal

allocation of freight between the transportation modes that optimizes the total

supply chain performance. This is closely related to the literature applying a to-

tal logistics costs (TLC) approach to optimize freight modal choice and inventory

decisions, which is already extensively discussed in the literature. The general

problem setting is proposed by Baumol and Vinod (1970), who develop a total

logistics costs model (they define it an “inventory-theoretic model”) to analyze

the trade-off between transportation and inventory costs. When companies use a

slow rather than a fast transportation mode, it will increase the inventory holding

costs.
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Baumol and Vinod’s TLC model is extended in various ways, e.g., by con-

sidering demand variability Das (1974), inventory backorder costs Constable and

Whybark (1978), capacity and service level constraints Sheffi et al. (1988), produc-

tion set-up costs Blumenfeld et al. (1991), to multi-products with different value

and transportation schedules Speranza and Ukovich (1994), in a multi-echelon

inventory setting Miller and Matta (2003), in a transportation network allowing

for freight consolidation in specific nodes in the network De Jong and Ben-Akiva

(2007), lead time variability Dullaert and Zamparini (2013), etc. All these mod-

els aim to support companies’ decisions in freight mode choice and inventory

controls. Lloret-Battle and Combes (2013), Combes (2013), and Combes and

Tavasszy (2016) provide empirical justification of the inventory-theoretic model,

and show that shippers significantly increase their freight mode decisions when

incorporating inventory controls. We refer to Winston (1983), Min and Zhou

(2002), Meixell and Norbis (2008), and Tavasszy et al. (2012) as extensive litera-

ture reviews on studies applying a total logistics costs approach.

Although there is a substantial body of literature on the application of the

TLC approach, Groothedde et al. (2005) is one of the few studies that incorpo-

rates simultaneous usage of more than one transportation mode. In their model,

the more stable part of the freight demand that can be more accurately predicted

is allocated to an intermodal transportation service, while the more variable part

is delivered by truck. Our research relaxes the limiting assumption made by

Groothedde et al. (2005) that only stable, predictable flows are shifted to inter-

modal services. This should permit greater use of slower, greener intermodal

services. Rather than restrict the use of these services to a particular category

of demand, our model allocates freight in relation to TLC measured on a supply

chain basis from the shipper’s perspective allowing for dynamic inventory manage-

ment and stochastic customer demand. Application of our model should therefore

enable shippers to exploit synchromodality more fully and increase their usage of

intermodal transportation.

2.3 A case study of SSCP

In this section, we present the findings of a real world research project, which

examined the potential for increasing a large shipper’s relative use of intermodal

rail transportation by using SSCP. In order to preserve commercial confidentiality,

it is not possible to reveal the company data used in this case study. Instead,

the values declared for key parameters are realistic industry-level figures and not
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specific to any particular company. We show that by applying SSCP with industry

level parameters, the company can increase its modal split of currently 30% of

the freight volume shipped via intermodal rail in one specific corridor, to as much

as 70% consigned on intermodal rail transportation in the same corridor. The

environmental impact of this modal shift involves a reduction of CO2 emissions

with 30% on this specific transportation lane.

Whereas the SSCP concept involves the integration of the flexible choice of

freight mode into a shipper’s supply chain strategy, including transportation, in-

ventory, production, etc., in this case study we restrict to the modal split between

two transportation modes, intermodal rail and truck, and focus on the essential

transportation-inventory trade-off in managing supply chains. As flexible mode

shifts are practically infeasible in this corridor, we did not take that attribute of

synchromodality into account.

2.3.1 Current baseline situation in the literature

A shipper operates a distribution center (D), which is replenished from its plant

(P). The replenishment orders are measured in the standard unit of Full Con-

tainer Load (FCL). An FCL accounts for the volume loaded in a standard 45-foot

container. Replenishment orders vary over time, and we assume that the replen-

ishment order follows a gamma distribution and normalize its mean to be 100.

Note, because the objective of companies is to increase the ratio of intermodal

rail transportation, the normalization of the numbers will not affect the outcome.

Due to the nature of the products, replenishment orders are highly volatile. Stan-

dard deviation is assumed to be 60, indicating that the coefficient of variation of

the freight volume is 60%.

The road corridor connecting plant P and distribution center D is 500 kilo-

meters. There is no direct rail connection between P and D, but there is an

intermodal rail corridor that consists of a rail leg of 500 kilometers and a road leg

of 50 kilometers. The distance of this corridor is larger than 300 kilometers, which

is long enough to use intermodal rail transportation as suggested by European

Commission (2011). Intermodal rail transportation is assumed to has a lower

cost than road transportation per unit of delivery. However, despite its cost ad-

vantage, intermodal rail transportation has inflexibilities in delivery quantity and

schedule: Because of the rigidity of the train schedule and its transportation ca-

pacity, intermodal rail transportation requires shippers to commit stable volumes

over a long planning horizon. This stability is essential to make intermodal rail

23



2.3. A case study of SSCP

economically viable. The shipper needs to decide the constant volume consigned

on intermodal rail transportation on a daily base.

For the shipper, it is not feasible to put all its freight orders on intermodal

rail. Given the rigidity of rail transportation, such a level strategy with constant

deliveries equal to the average demand each period, leads to an unstable inventory

process which increases in variability over time (Boute et al., 2007; Boute and

Van Mieghem, 2015). To limit the resulting inventory increase at the distribution

center D, the shipper therefore only consigns the stable part of its freight volumes

onto intermodal rail, and the volatile part of its freight volumes on trucks to

satisfy the service levels. The stable part coincides with the lower bound of the

demand volumes (see Figure 2.4). The share of freight moved by intermodal rail

is thus calculated as:

Share of intermodal rail transportation =
minimum replenishment order

mean replenishment order
(2.1)

Figure 2.4: In the current practice, only the stable part of the replenishment or-
der is shifted to the more sustainable intermodal rail transportation. The majority
of the volume remains on trucks.

This approach is standard practice in industry (see, e.g., Groothedde et al.,

2005). However, when the replenishment orders are volatile, as in Figure 2.4,

the stable part of the replenishment order is often minimal, which discourages
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a high usage of intermodal rail transportation. In our case study, the ratio of

intermodal rail is about 30% of total freight movement on the particular route, i.e.,
minimum replenishment order
mean replenishment order = 0.3, which indicates that as much as 70% of total

volume still needs to be transported via road transportation. We acknowledge

that in practice, companies can move the current modal split line slightly above

to gain more opportunities in intermodal rail transportation. Nevertheless, the

intermodal rail ratio remains at roughly 30%.

Obviously, this ratio varies widely among companies. The chemical industry

for example traditionally faces a more stable demand, where the ratio in expression

(2.1) is much higher. This is a major reason why the chemical industry has a much

higher utilization of intermodal rail, e.g., BASF (2012).

2.3.2 Increasing the share of intermodal rail transportation

by applying SSCP

The operational inflexibility of intermodal rail transportation, in terms of volume,

delivery frequency and schedule, etc., does not fit the volatile nature of freight

volume, and hence discourages a high ratio of modal split in intermodal rail trans-

portation in the current baseline situation. The SSCP approach allows companies

to have more flexibility by exploiting a flexible usage of different transportation

modes, as well as capturing the wider trade-off inside the supply chain.

The current modal split ratio as described above is based on the assumption

learnt from standard industry practice (Groothedde et al., 2005) that only the

stable part of the replenishment order (defined by its minimum) is transported

by intermodal rail, because managers tend to perceive that a straight shift from

trucks to trains and barges is likely to have a negative impact on the supply

chain, especially an increase of inventory in both ends of the journey. No account

is taken of shipper’s total logistics costs. Instead, it is presumed that the use of

intermodal services will incur higher inventory costs thereby discouraging the use

of these services by all but stable, predictable flows.

We argue that a proportion of the less stable flows can also be transported

by intermodal rail, if the modal split ratio is optimized concerning the shipper’s

transportation and inventory costs. When the transportation cost reduction re-

sulting from the increased share of intermodal rail exceeds the corresponding

inventory costs increase, it makes sense to do so from a total supply chain cost

perspective. SSCP therefore looks at the synchromodal decision from the total

supply chain perspective, rather than only looking at it in transportation terms.
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Notation

t Time period index, t = 1 . . . T
cTR Unit transportation cost via truck
cRA Unit transshipment cost via intermodal rail
eTR Unit carbon emission via truck
eRA Unit carbon emission via intermodal rail
lTR Lead time of truck
lRA Lead time of intermodal rail
h Unit inventory holding cost
k Unit cost of capital
b Unit inventory backorder cost
ξt Demand in period t, following a non-negative i.i.d. distribution
µ Mean of demand
xt Starting inventory position at the beginning of period t
q The constant delivery quantity via intermodal rail, decision variable
S The order-up-to level of the inventory policy, decision variable
zt The delivery quantity via truck placed in period t
Ct The total logistics costs in period t
C̄ The average of Ct. This is the objective to be minimized
ē The average emissions per period

Model

A company ships its replenishment orders from P to D by a simultaneous usage of

two transportation modes: intermodal rail, and truck. From a modeling point of

view, “intermodal rail” can be read as “rail transportation” and this change will

not affect the setting and analysis of the model. We use “intermodal rail” because

in our specific case study, the connection is an intermodal rail instead of a direct

train. Similar to the standard approach described in Groothedde et al. (2005), our

model assumes that intermodal rail always delivers a constant shipment quantity

q from P to D for every period. This quantity q is a decision variable. Because a

constant quantity is shipped and delivered during every period, the lead time of

intermodal rail transportation can be ignored (Baumol and Vinod, 1970). How-

ever, the pipeline inventory incurs a financial cost, i.e., the opportunity cost of

the capital invested in inventory within the transportation system.

Another decision is the volume simultaneously shipped by truck zt in period

t linked to the inventory replenishment policy. The current mainstream freight

transportation models linked to inventory management are formed on the basis

of the classical Economic Order Quantity (EOQ) model (e.g., Combes, 2013).

However, EOQ models are built on a strong assumption that the demand of
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the model is deterministic, i.e., the demand remains the same in all periods. In

order to analyze the volatile demand, we implement the base-stock inventory

replenishment policy as suggested widely in the inventory literature, e.g., Arrow

et al. (1958), Zipkin (2000), and Porteus (2002).

The base-stock policy works as follows: At the beginning of t the company

has xt inventory in D, then the truck transportation delivers zt−lTR (Truck trans-

portation has a lead time of lTR periods so that the replenishment orders from

t − lTR period arrives in period t) and intermodal rail transportation delivers q,

and the company thus has an inventory level of xt + zt−lTR + q. If this inventory

level is below the base-stock level S, then zt = (S − q − zt−lTR − xt) units are

to be replenished and delivered via truck. Otherwise no delivery is made. Hence,

zt = (S− q− zt−lTR −xt)+, with ( )+ defined as the positive part of a real-valued

function in the brackets. After that, demand ξt is realized. Note, ξt is a non-

deterministic variable. Because of the uncertainty in ξt, at the end of every period

two mismatch-scenarios could happen: 1) If the on-hand inventory in D, denoted

as xt + zt−lTR + q, is larger than ξt, the remaining inventory will be stored to the

next period at a unit holding cost h. 2) If the on-hand inventory is less than ξt,

the unmet demand will be back-ordered to the next period with a unit penalty

cost b. Denote cRA the unit transportation cost with intermodal rail and cTR the

unit transportation cost with truck, the total costs in period t is then:

Ct =cRAq + cTRzt−lTR + h(xt + q + zt−lTR − ξt)+

+ b(ξt − xt − q − zt−lTR)+ + k(lRAq + zt−1 + . . .+ zt−lTR),
(2.2)

where cRAq represents the transportation cost of the freight volume received by

intermodal rail, cTRzt−lTR the transportation cost of the volumes received by

truck, h(xt + q+ zt−lTR − ξt)+ the inventory holding cost in period t, b(ξt − xt −
q − zt−lTR)+ the inventory backorder cost which is incurred in case the demand

exceeds the total supply, and k(lRAq + zt−1 + . . . + zt−lTR) the cost of capital

linked to the in-pipeline inventory on both transportation modes at a rate of k.

Although we acknowledge that the cost structure of an intermodal rail operator

is typically lumpy (we refer to European Intermodal Association (2012) for the

detailed cost structure of rail operation), we use a linear approximation because

the cost structure for a shipper, i.e., the transportation cost paid by the shipper

to the carrier, is close to a linear function.

The decision variables are q and S and the objective is to minimize the

average total logistics costs per period, including transportation (intermodal rail
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+ truck) and inventory mismatch (holding + backorder) costs:

C̄ =
1

T

T∑
t=1

Ct. (2.3)

Parameters (normalized)

The inventory holding costs from companies’ perspective do not only consist of

warehouse storage and handling cost, but also include the cost of capital linked to

the inventory. It is usually assumed that, the annual rate of cost of capital is 10%

and the annual inventory holding cost of a product is equivalent to 25% of its value.

The average value of the cargo in an FCL is assumed to be 100, 000 EUR. The

average cost of capital per day: k = 100, 000 10%
365 = 27, and the average inventory

holding cost per FCL per day is therefore calculated as: h = 100, 000 25%
365 =

68. The inventory backorder penalty cost b can be calculated indirectly via the

customer service level, which is assumed to be 95%. In a base-stock inventory

setting, the customer service level is given by the critical fractile b/(b+h)(Zipkin,

2000, p.215). As a result, we obtain b = 1292. To transport one FCL from P to

D via road transportation is assumed to cost 600 EUR, i.e., cTR = 600, and to

transport the same FCL via intermodal rail costs cRA = 550. The lead time of

road transportation is one day, i.e., lTR = 1, and the lead time of intermodal rail

is two days, i.e., lRA = 2. Table 2.3 summarizes the parameters values.

Table 2.3: The parameters used in the SSCP model (normalized)

Notation Description Value Unit

µ Mean of demand 100 Full container load
(FCL)

σ Standard deviation of demand 60 FCL
cTR Unit transportation cost by truck 600 EUR per FCL
cRA Unit transportation cost by intermodal rail 550 EUR per FCL
lTR Lead time of truck 1 Day
lRA Lead time of intermodal rail 2 Day
h Unit inventory holding cost per period 68 EUR per FCL per day
k Unit cost of capital per period 27 EUR per FCL per day
b Unit inventory backorder cost per period 1292 EUR per FCL per day

Results

Although the problem structure is straightforward, the model is unfortunately

analytically intractable. The characterization of the inventory process as a result

of the dual-sourcing inventory policy (a simultaneous usage of both transporta-

28



Synchromodality from a supply chain perspective

tion modes) makes it impossible to solve the model analytically: because the

intermodal rail transportation always delivers a constant quantity into the dis-

tribution center, it is possible that it delivers more than needed and shoots the

inventory over the base stock control level, and this excessive inventory cannot

be obtained in explicit form. We refer to Rosenshine and Obee (1976), Allon and

Van Mieghem (2010), and Janakiraman et al. (2014) for more detailed analysis

on the characterizations of the inventory process. To the best of our knowledge,

Combes (2011) and Dong et al. (2017a) are the only studies that solve similar

transportation problems with inventory considerations. However, they both use

an approximation approach and do not show the optimal solutions. Our simula-

tion approach is straightforward and obtains optimal solutions.

We solve the model optimally via simulation-based optimization through a

search for all possible combinations of q and S over a simulation time horizon T .

Because both q and S are integers, the computing effort is moderate.

The ratio q
µ represents the share of the intermodal rail transportation. As de-

scribed in Section 2.3.1, the company currently operates with intermodal rail share

of 30%, given by expression (2.1). The company wants to reduce the environmen-

tal impact by shifting more volume from trucks to intermodal rail (i.e., increasing

the value of q), without increasing its total supply chains costs. We examine how

the expected total cost per period behaves as a function of the intermodal rail

share, i.e., we observe how C̄ changes when q varies from its lower-bound zero (in-

termodal rail share of 0%) to its upper-bound 1 (100% intermodal rail share), and

depict the results in Figure 2.5. The solid curve represents C̄, the expected total

logistics costs per period, and the two dotted curves represent the breakdown of

the total cost C̄ into transportation and inventory costs. For confidentiality rea-

sons, the exact numbers in the y-axis are not reported. In fact, we are interested

in increasing the share of intermodal rail transportation and the exact value of

C̄ is out of scope of this research. Figure 2.5 shows that as the intermodal rail

share goes up, the total transportation costs go down linearly, but inventory costs

increase in a convex manner. Specifically, when the share of the intermodal rail

approaches to 100% (point F), almost all volumes are shipped via intermodal rail,

the SSCP model loses all flexibility, resulting in excessive inventory holding costs.

As a comparison, at point E the company has all volume transported via road

and the inventory is minimized.

In Figure 2.5, point A represents the current baseline situation, where about

1 q should not exceed µ, otherwise the expected supply will be larger than the expected demand
and the inventory will continuously build up.
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Figure 2.5: By applying SSCP, the company incurs higher inventory cost and
lower transportation cost. The total logistics costs is minimized at point B, where
about 70% of the total volume is shifted to intermodal rail.

30% of the volume is shipped by intermodal rail in the specific corridor from P to

D. When optimizing the modal split taking its impact on both transportation and

inventory costs into account, we find that the total logistics costs can be further

reduced by increasing the intermodal rail share to point B, where about 70% of the

freight is shipped using intermodal rail on this specific intermodal rail corridor.

This is a considerably higher modal share than in the current situation and is

achieved without increasing the total logistics costs or reducing the customer

service level. The move from point A to point B represents a redefinition of the

synchromodality problem. Point A corresponds to the current practice of modal

split as defined among others by Groothedde et al. (2005), in which the company

optimizes its mode choice as a pure transportation problem, and ships the stable,

well-predictable flow using intermodal rail and accommodates the unpredictable

flow by direct trucking. Using this approach intermodal rail is assigned 30% of the

freight. Moving the optimum to Point B effectively extends the boundary of the

optimization problem into the supply chain realm. This can raise the intermodal

rail share to 70% and shows how combined modeling transportation and inventory

variables allows synchromodality to achieve a more radical reallocation of freight
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between modes. Point A can be considered a sub-optimal modal split based on

transportation parameters only while point B a new global supply chain optimum.

From point A to B, the company obtains more transportation cost savings

than extra inventory cost spending. From point B to point F, the total logis-

tics costs increase mainly due to an excessive increase in inventory holding costs.

Point C is another interesting point. It represents a cost indifference point where

the shipper remains at the same total logistics costs as its current situation, which

is represented by point A. It indicates that the company could theoretically shift

about 90% of its volume on a particular corridor onto intermodal rail, without

compromising total logistics costs. Although this would indicate a major reduc-

tion in its environmental impact, this point will in practice be hard to attain

because, without external stimulations from governmental policy or customer re-

quirements, most companies will prioritize costs over emissions, and therefore

stay at Point B. Still, Point C indicates that SSCP still offers further theoretical

potential for environmental improvement at a supply chain level.

2.3.3 The environmental impact of SSCP

In this section we illustrate the environmental impact of SSCP by analyzing the

corresponding savings in carbon dioxide (CO2). We use the standard emission fac-

tor from European Environment Agency (2013): road transportation discharges

in average 75 grams CO2 per tonne-kilometer (TKM), and rail transportation in

average 21 grams CO2 per TKM. An FCL has an average payload of 24 tons so

that to ship one FCL from P to D (distance of 500kms) by road transportation

emits on average 75× 24× 500 = 900, 000 grams, or 0.9 tons of CO2. We obtain

eTR = 0.9. The intermodal journey has a rail trunk haul of about 500 kilometers

with combined road feeder distances of 50 kilometers. To transport one FCL from

P to D using the intermodal service emits (75×24×50)+(21×24×500) = 342, 000

grams, or 0.342 tons of CO2. We set eRA = 0.342. The average CO2 emission per

period is then presented as:

ē =
1

T

T∑
t=1

(eRAq + eTRzt−lTR). (2.4)

We do not consider GHG emissions caused by holding inventory. According

to the World Economic Forum (2009), “logistics buildings”, comprising freight

terminals, warehouses and depots, account for approximately 10% of total GHG

emissions from logistics. The storage-related emissions would represent only a
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fraction of this 10% and be relatively fixed in the short- to medium-term regard-

less of the amount of inventory. A further reason for excluding inventory-related

emissions from the analysis is that the products did not require temperature con-

trol. No refrigerant gases were emitted from this supply chain nor CO2 emissions

associated with the cooling of warehousing or vehicles.

Because the unit emission from intermodal rail transportation is smaller than

that from road transportation, i.e., eRA < eTR, to shift freight from road to

intermodal rail transportation linearly decreases total emission ē. In theory, the

company could minimize ē in (4) by maximizing q, i.e., shifting all freight to

intermodal rail transportation. This is not a feasible solution, however, because

the company would then incur a significant increase in inventory costs as shown

in point F in Figure 2.5.

We illustrate in Figure 2.6 the trade-off between total logistics costs and emis-

sions when the company increases its dependence on intermodal transportation.

The current situation is denoted as Point A as the basis for comparison (30%

intermodal rail share). Point E indicates total reliance on road transportation,

which causes emissions and costs to be, respectively, 9% and 5% higher than at

present. Point F corresponds to a scenario in which the share in intermodal rail

transportation approaches to 100%. Although F is the “greenest” solution in this

plot with about 45% CO2 emission savings compared to the baseline situation, it

would inflate total logistics costs by roughly 40% as a result of higher inventories

accumulating in the distribution center. Points B and C remain the same as in

Figure 2.5. At point C, the company can save about 40% of total CO2 emission

without incurring extra costs. The most realistic result of SSCP is point B, where

the company could obtain logistics cost savings of about 6% as well as emissions

savings of about 30%, compared to the current situation at point A. This would

represent a win-win option yielding economic and environmental benefit.

Hoen et al. (2013) have discussed a trade-off between cost and emissions.

They find that “intermodal transportation, which is typically less carbon emitting,

is more expensive (in terms of total logistic cost) than road transportation for

63% of the customer lanes”. On the basis of this observation, they demonstrate

that companies in general need to trade higher cost for an emission reduction. In

contrast to their study, our model assumes that the greener intermodal alternative

is also cheaper compared to road transportation (see, e.g., EUROSTAT, 2015;

Floden and Williamsson, 2015). Greater use of intermodal transportation can

therefore lead to both cost and emission reductions.

If the current choice is to regard the choice of transportation mode as purely
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Figure 2.6: By applying SSCP in the specific corridor, the company is able to
jointly reduce cost and emissions by moving from point A to B. When it moves
from B to F, it has to trade higher cost for additional emissions reductions.

a transportation problem, companies stay at point A. The analysis indicates that

by applying SSCP and optimizing modal choice at a supply chain rather than

transportation level, companies will be able to further exploit both the economic

and environmental benefits of intermodal rail transportation. From points B to F,

the company would have to trade-off higher logistics costs for emission reductions.

It would have to be incentivized to make such a trade-off by exogenous pressures,

such as the imposition of a carbon tax, greater willingness of customers to pay

for low-carbon products, or steep increases in fossil fuel prices.

The introduction of a carbon tax would encourage companies to shift freight

to lower carbon modes. We have used our SSCP model to assess the impact on

carbon emissions and logistics costs of setting carbon taxes at different levels.

Denoting β as the carbon tax per ton, the company needs to minimize the

total costs of transportation, inventory, and carbon tax payments. The total costs

per period in the presence of a carbon tax is then:
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Ĉt =cRAq + cTRzt−lTR + h(xt + q + zt−lTR − ξt)+ + b(ξt − xt − q − zt−lTR)+

+ k(lRAq + zt−1 + . . .+ zt−lTR) + β(eRAq + eTRzt−lTR).

(2.5)

The objective is to minimize the average of Ĉt.

We follow Fahimnia et al. (2015) and set the value of β to 0, 21, 42, 104 and

208 EUR per ton2. The resulting cost and emission trade-off curves are plotted

in Figure 2.7.

The curve with β = 0, i.e., no carbon tax, is equivalent to the single curve

shown in Figure 2.6. However, now the benchmark is changed from point A to B,

because the impact of the carbon tax is evaluated against the optimum. When

the value of β increases, the trade-off curve moves to the right, indicating that

the total costs are inflated by the addition of the carbon tax payments.

Point B in Figure 2.7 minimizes the average total costs Ĉt when there is no

carbon tax, and point H minimizes the total costs in the high carbon tax scenario

of β = 208 EUR per ton. In the high carbon tax scenario (point H), the company

needs to trade 17% more total logistics costs for 9% fewer emissions. The cost

increase is significantly larger than the emission reduction. In the absence of

carbon tax, the use of SSCP allows the company to optimize synchromodality in

a broader supply chain context and obtain a 42% emission reduction (from A to

B). However, when the supply chain of the company is optimized by using SSCP

(at point B), the incremental effect of a carbon tax on CO2 emission reductions is

relatively small (only 9% represented by the move from B to H). This suggests that

the application of SSCP has the potential to substantially reduce CO2 emissions

(from point A to B) through optimization of the company’s “internal” supply

chain, whereas the “external” interventions such as a carbon tax imposed by the

government have only a minor incremental effect (moving from point B to H),

unless they are set at very high levels.

2.3.4 Discussion

Although this case study is analyzed on the basis of one set of parameters, several

general insights can be found to support companies reduce their environmental

impact in freight movement in any industry. This case study shows that when

2 The prices are originally quoted in USD in Fahimnia et al. (2015), and in our case study
changed into EUR on the basis of the exchange rate on July, 1st, 2015: 1 USD = 0.9054
EUR.
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Figure 2.7: An installment of carbon tax inflates the total logistics costs and
enforces companies to reduce emissions. However, when companies already im-
plements SSCP, the incremental carbon reduction driven by carbon tax is modest.

current standard practice in industry is applied, with only the stable freight vol-

umes transported by intermodal rail transportation (Groothedde et al., 2005),

the share of intermodal rail is only moderate in case freight volumes are highly

volatile. In order to increase the ratio in intermodal rail transportation, more

flexibility can be introduced into the freight system by the following two aspects:

i) the simultaneous usage of two transportation modes and, ii) the incorporation

of the consequential transportation-inventory trade-off of the supply chain. These

two aspects are the major features that we exploit in our SSCP concept discussed

in Section 2.2. By following the SSCP approach, we show that it is possible to

substantially reduce the total logistics costs and emissions at the same time.

We are aware that the case study does not fully reflect all attributes of SSCP

as discussed in Section 2.2. Additionally, synchromodality allows switching freely

between transportation modes at particular times while a consignment is in transit

Verweij (2011). In the case study presented in this chapter, freight can practically

not be shifted from road to intermodal rail during the journey, and vice versa. The
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lack of this flexibility might prevent our models from obtaining even higher costs

savings and emission reductions. Nevertheless, even without this extra flexibility,

our model has already demonstrated substantial improvement of the economic

and environmental impact of the transportation system.

As this case study is specific, it would clearly be unwise to apply the same

modal split ratios for any practical scenarios. Our results are illustrative for this

case study, which should not necessarily be representative of all industries as a

whole. Depending on the company’s freight volume volatility, unit transportation

cost of intermodal rail versus road, and the cost of holding excess inventories,

the optimal modal split ratio and its corresponding cost savings and emission

reductions may be different.

We have subjected our results to a sensitivity analysis to test its robustness

in different environments. In the current case study, intermodal rail costs about

eight percent less per unit than trucking and captures about 70% of the freight.

If the cost differential between both transportation modes goes down, intermodal

rail’s share will be reduced. However, even if intermodal rail is only one percent

cheaper than trucking, it retains around 60% of the traffic. We also tested the

impact of the demand variability: when the demand is more volatile, trucking

services that can handle variable delivery quantities will be favored. A numerical

test shows that when the demand standard deviation increases from 60 to 200, the

optimal modal share for intermodal rail drops from 70% to about 30%. Although

this is a substantial reduction, 30% is still significantly higher than the baseline

share, where the lower-bound of the demand and the corresponding modal split

were close to zero.

Finally, when the shipper applies our concept of SSCP, the LSP will have

a different use of its transportation modes, and most likely more freight shipped

via (intermodal) rail and less volume via road transportation. This is not per se

negative for the LSP, even on the contrary. By increasing the volume in its rail

freight transportation, it could enable a higher asset utilization of its rail infras-

tructure. However, that relies on many assumptions - a detailed quantification of

its impact is therefore beyond the scope of this chapter, but it is an interesting

future research avenue.

2.4 Conclusion

Despite the efforts of policy-makers, particularly in Europe, to shift freight traffic

from road to rail and waterborne transportation, the road-rail modal split has
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changed little over the past two decades. Innovations are urgently required in

order to promote a substantial modal shift to alternative, more-environmental

modes. This chapter suggests that Synchromodality from a Supply Chain Per-

spective (SSCP) is such an innovation. It extends the original concept of syn-

chromodality into the wider realm of supply chain management and shows how

by adjusting their “internal” inventory management shippers can more effectively

exploit the greater modal flexibility which the “external” synchromodality offers.

A case study has been used to illustrate this approach and show how a shipper

can increase the modal share of intermodal rail and road from 30% to 70% in one

intermodal rail corridor, resulting in a 6% total logistics costs saving and 30%

emissions saving.

This study shows how the scope of the conventional multimodal transporta-

tion can be enlarged by including inventory management into the modeling of

freight modal options. Further extensions of this work could incorporate other

supply chain decisions relating production scheduling and service level constraints,

or across the bounds of a single company’s supply chain to a wider network involv-

ing more parties, e.g., under vertical collaboration, shippers and LSPs could co-

ordinate their separate synchromodality decisions and achieve win-win solutions.

The growth of horizontal collaboration among groups of companies is “bundling”

freight along particular corridors to more viable train loads (Sanchez-Rodrigues

et al., 2015). If these companies collectively apply the SSCP principle, the poten-

tial impact of synchromodality on the freight modal split would be substantially

reinforced. For example, if one shipper had a slump in demand, the others might

still have sufficient volume to maintain adequate capacity utilization of the train.

The aggregated demand of all the collaborating shippers drives a pooling effect

and therefore reduces the risk to system viability posed by the variability of any

single shipper’s freight demand. This stabilization of total demand should fur-

ther increase of intermodal rail’s share and improve the environmental impact of

freight transportation.
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Chapter 3

An inventory control model for

synchromodality: A tailored

base-surge approximation

approach

Wer immer strebend sich bemüht, den können wir erlösen. 1

– Johann Wolfgang von Goethe (1749-1831), German writer.

Abstract

This chapter aims to support companies implement synchromodality by pro-

viding a quantitative analysis on its relevant challenges and opportunities.

We develop a stochastic modal split transportation model with two trans-

portation modes: the fast mode (e.g., direct trucking) with flexible delivery

quantity, high delivery frequency, short lead time but high transportation

cost, and a slow mode (e.g., intermodal rail) with fixed delivery quantity,

low delivery frequency, long lead time but low transportation cost. Follow-

ing the supply chain perspective of synchromodality proposed in Chapter 2,

1 Whoever exerts himself in constant striving, Him we can save. in Fraust Part II.
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the objective of the model is to minimize the long-run expected total costs

of transportation, inventory holding, and backlogging. The model is a gen-

eralization of the classical tailored base-surge (TBS) policy known from the

dual-sourcing literature with non-identical delivery frequencies of the two

transportation modes. By analyzing the model, we find that a major chal-

lenge to implement synchromodality and shift volume from the fast to the

slow mode lies in determining companies’ inventory level at the delivery des-

tination: A special phenomenon called inventory “overshoot” is observed,

which is analytically not tractable.

We propose a novel approach to analytically approximate overshoot and

obtain closed-form solutions of the modal split decision. The solution pro-

vides an easy-to-implement solution tool for practitioners. The results pro-

vide structural insights regarding the trade-off between transportation cost

savings and holding cost spending and reveal a high utilization of the slow

mode. A numerical performance study shows that our approximation is

reasonably accurate, with an error of less than 3% compared to the opti-

mal results. The result indicates the potential opportunity of implementing

synchromodality: As much as 85% of the expected volume of a pilot, fast-

moving SKU could be split into the slow mode.

3.1 Introduction

An operationalization of the synchromodality concept proposed in Chapter 2 can

be described as a modal split transportation (MST) problem: to optimize the

allocation of cargo into more than one transportation mode. Rather than shipping

all the cargo by truck, there is an increasing interest in moving transportation

volumes to trains or barges. There are numerous reasons for this prospective

paradigm shift. First, road transportation is generally more expensive per unit of

cargo shipped, and its cost is still forced upward by factors such as congestion and

empty running (American Transportation Research Institute, 2014; McKinnon

and Ge, 2006). Second, the shortage of truck drivers is limiting the supply of

truck capacity and causing structural fleet management issues (Boston Consulting

Group, 2015; Sheffi, 2015). Third, companies’ sustainability agendas and carbon

reduction targets facilitate the shift to “greener” transportation modes that favor

trains or ships over trucks (Dey et al., 2011; Dekker et al., 2012).

Despite the increasing emphasis that MST receives, shifting volume away

from the road remains challenging. Statistics demonstrate that since 1995, there

has been no significant change in modal split ratios among road, rail, and water-
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way in the EU-28 zone (EUROSTAT, 2015). In contrast, rail transportation on

certain routes had to be closed after several years of operation because the rigid

schedule could not cope with the practical demand changes (Lammg̊ard, 2012).

Shippers hesitate to implement train transportation due to the concern that there

will not be sufficient volume to secure a cheap price (Pallme et al., 2014). The

timetable of rail or barge is rigid, and it is therefore almost impossible to send

an extra train when demand surges (Reis et al., 2013). Compared to other trans-

portation modes, truck transportation is still the most flexible mode in terms of

delivery time, routes, and quantity.

To obtain further insights into the challenges of MST, we partnered with

companies that further inspired our research. The companies currently consign

almost all of the transportation volume into trucks. On a daily basis, the distri-

bution centers (DC) order inventory from the plant and expect instant deliveries

within a short lead time. Such a “pull” inventory system allows the DCs’ to eas-

ily adapt their orders from day to day in line with demand; however, this creates

high fluctuations in shipment volume. The company is interested in shifting more

transportation volume from trucks to trains or barges with the intent of saving

cost and operating more sustainably. From interviews with managers, a practical

challenge with the implementation of MST is to synchronize the more rigid slow

transportation modes with the more flexible fast transportation mode without

harming service levels or increasing inventories.

More specifically, train or barge operations are subject to restrained schedules

and often have lower delivery frequencies than trucks. These schedules generally

remain fixed over a long period (e.g., half of a year to one year), and companies are

required to commit a fixed loading quantity over the period in advance to obtain

a low transportation cost. For example, a shipper needs to fix ten containers on

the train from Antwerp (Belgium) to Hamburg (Germany) every Monday for the

entire calendar year. Therefore moving from truck transportation to MST also

implies a change in the inventory control policy from a pure “pull” strategy to a

hybrid “push-pull” strategy. Due to the long-term commitment, the slow mode

shipments can be viewed as the inventory that is pushed to the DCs, while the

more flexible fast mode shipments contain inventory that is pulled by the DCs.

Against this background, we develop an MST policy that should consider the

simultaneous usage of both modes, i.e., trucks and trains/barges in a single trans-

portation corridor, and incorporate the costs of inventory management. Although

transportation and inventory decisions require an integrated approach, practition-

ers often struggle to holistically implement the required policies. The fundamental
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objective of this research is to develop an insightful and easy-to-implement modal

split policy to guide practitioners in real-world MST problems.

In this chapter, we develop a single-product-single-corridor stochastic MST

model with two transportation modes considering a hybrid push-pull inventory

policy. The model covers the following setting. A company delivers a product

from a plant to a DC and has to decide how to split the delivery quantity into

two transportation modes: a slow mode that is rather rigid in terms of time

and delivery quantity, i.e., the company has to commit to a fixed quantity to be

shipped at specific time points, and a fast mode that operates every period and has

full flexibility in terms of delivery quantity but also at higher transportation cost

than the slow mode. Whereas the “fast mode” in our research clearly indicates

truck, the “slow mode” is not necessarily a certain mode but can also mean a

mixed strategy using trucks and trains/barges. The company aims to minimize

the expected transportation- and inventory-related costs by optimizing the fixed

slow mode quantity that is committed in advance (push) and the delivery policy

for the more flexible fast mode (pull).

Our MST model has a structural form comparable to the tailored base-surge

(TBS) model studied in the dual-sourcing literature where companies split their

orders into a fixed “base” quantity ordered from a cheap oversea supply source

and a flexible “surge” quantity ordered from a more expensive but fast supply

source (Allon and Van Mieghem, 2010).

The primary difference between our MST model and the classical TBS model

is that the TBS model assumes that both slow mode and fast mode orders have

identical delivery frequencies. Our MST model considers different delivery fre-

quencies of the two modes based on the fact that trains/barges operate less fre-

quently than trucks. Therefore, our MST model is a generalization of the classical

TBS model. To the best of our knowledge, this is the first study that makes this

generalizing assumption.

However, previous studies have shown that the TBS model is not amenable

to exact analysis, mainly due to the tractability of the expected overshoot analysis

(e.g., Janssen and de Kok, 1999; Allon and Van Mieghem, 2010; Janakiraman et

al., 2014; Boute and Van Mieghem, 2015). The authors exclusively rely on a

“heavy traffic” analysis in a GI/G/1 queue to derive a closed-form expression for

the expected overshoot. Unfortunately, this “heavy traffic” phenomenon cannot

be guaranteed in our MST model since slow mode deliveries are less frequent than

fast mode deliveries. The different delivery frequencies result in all periods within

a cycle (the time between two slow mode deliveries) being structurally different
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in a steady state. Therefore, the approximations of the classical TBS problem do

not successfully work for the more general MST problem.

To obtain an analytical solution that is applicable in a practical environment,

we use the deterministic benchmark (i.e., demand is perfectly known) as a starting

point to identify key drivers and determinants of the volume allocation between

the two transportation modes. Based on these findings, we propose different

tailored approximations of the cost function for different ranges of cost parameters

(mainly with respect to transportation cost savings and inventory holding cost).

These approximations allow us to derive closed-form expressions for the modal

split policy, i.e., a fixed shipment quantity allocated to the slow mode and a base

stock policy for the fast mode, which is an easy-to-implement tool for supply chain

managers.

A numerical performance study with a wide range of parameters reveals that

our approximation has sufficient accuracy compared to optimal solutions calcu-

lated using a complete enumeration. On the test bed, the approximation error is

less than 3%, and the computing time is only a fraction of the complete enumer-

ation.

The analytic characterizations of our results capture the key trade-off of the

MST problem: a commitment effect and a cycle stock effect. The commitment

effect refers to the long-term commitment of the constant quantity in the slow

mode enabling the reduction of transportation cost compared to the fast made.

The cycle stock effect refers to the higher shipping quantity in the slow mode

that potentially increases the inventory holding cost. Interestingly, the marginal

effects can be simply determined by two parameters that frame the solution for

the MST problems. We characterize these key drivers of volume allocation in

the slow mode as follows: (i) the unit transportation cost savings of the slow

mode compared to the fast mode and (ii) the volatility of the stochastic demand.

This appears counterintuitive to many supply chain managers’ beliefs: they often

assume that the size of this fixed volume should not exceed the lower bound of

the demand over the entire period when committing a constant volume in the

slow mode in the long run. The presumption is that the volume that is delivered

in the slow mode should always be consumed before the next slow mode delivery

arrives. This is a major disadvantage of the practitioners who only treat MST as

a pure transportation problem.

Further insights from the numerical study reveal that for typical fast-moving

products with high expected demand and low demand variability (Relph and Mil-

ner, 2015), the optimal volume allocated to the slow mode could be as high as 85%
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of the expected demand. This surprisingly high ratio supports our findings and in-

dicates that a holistic approach to jointly decide on inventory and transportation

mode is essential.

The remainder of this chapter is organized as follows. In Section 3.2, we

review the relevant literature. Next, we formulate the MST model in Section

3.3. In Section 3.4, we analyze the MST policy and derive approximate analytic

solutions. In Section 3.5, we provide numerical results that highlight the error

of our approximation and the potential volume split for both modes. We also

present a model extension that considers volume-dependent transportation cost.

In Section 3.6, we summarize our research and discuss further avenues of MST.

3.2 Relevant literature

Our research is built on two streams of literature: (i) the freight mode choice litera-

ture, which studies problems in a context similar to ours, and (ii) the dual-sourcing

literature, which studies a different sourcing model with multiple suppliers but

has a similar mathematical structure as ours.

The freight mode choice literature analyzes the selection and usage of different

transportation modes in certain freight corridors or networks. It can be charac-

terized in two categories: freight mode choice with multimodal transportation,

which focuses on the trade-off of the characteristics of different transportation

modes, e.g., cost, capacity, and lead time, and decides on how to simultaneously

use them in a given freight network, and freight mode choice of alternative single

transportation mode, which studies the trade-off between inventory and trans-

portation costs and proposes alternative decisions in fast or slow mode.

Studies involving multimodal transportation generally focus on transporta-

tion issues only and disregard stochastic inventory decisions. For example, Verma

and Verter (2010) study how to choose between road and rail transportation

modes in a certain transportation network by minimizing the total transporta-

tion costs of the two modes and subject to a set of pre-specified lead time con-

straints. Interested readers are referred to Bontekoning et al. (2004), Crainic and

Kim (2007), and most recently, SteadieSeifi et al. (2014), for an extend literature

review.

Studies that incorporate inventory decisions focus mainly on alternative sin-

gle transportation modes. Baumol and Vinod (1970) are one of the first to raise

the idea that the transportation mode choice needs to be made with inventory

considerations. They develop a so-called “inventory-theoretic” model, and illus-
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trate that a change in usage from a fast to a slow transportation mode will the-

oretically increase a company’s inventory costs. Larson (1988) studies the same

model and determines the optimal delivery quantity by minimizing the joint cost

of transportation and inventory. Speranza and Ukovich (1994) consider how to

minimize the sum of transportation and inventory costs in a multi-product set-

ting with the freight mode choice between full and partial truckload. They find

that when multiple products are consolidated, companies might take advantage of

economies of scale and change from partial truckload to full truckload. Kutanoglu

and Lohiya (2008) study a model with freight mode choice, inventory decisions,

and service-level constraints with the objective of minimizing total inventory and

transportation costs. They find that this problem is an NP-hard problem and

develop feasible heuristics. They show that the company can save total costs

by making alternative decisions in fast, medium, and slow modes. Lloret–Battle

and Combes (2013) empirically examine companies’ freight mode choice decisions

based on a French shipper survey dataset including more than 10, 000 shipments,

and they find that by incorporating inventory costs, companies improve their

decisions in freight mode choice.

Our research differs from this stream of literature by studying a freight trans-

portation problem with a simultaneous use of two modes (multimodal) and in-

corporating inventory decisions with stochastic demand. We consider a model

that minimizes the long-run average total costs, including transportation cost, in-

ventory holding, and backorder cost under stochastic demand, by jointly making

decisions on the inventory policy and optimal split between the two transporta-

tion modes. This setting is mathematically similar to the classical dual-sourcing

inventory model, where a company simultaneously orders from two sources (e.g.,

suppliers) in which one source provides a cheaper product with a longer lead time

and the other source offers a higher price but with a shorter lead time. Previous

studies in this field are numerous.

The first dual-sourcing model dates back to Barankin (1961), who analyzes

this problem in a single-period case. Whittemore and Saunders (1977) find that

the optimal policy is complex and that analytic solutions can only be found when

the lead time difference is one. A detailed review of dual-sourcing is summa-

rized by Minner (2003). Recent dual-sourcing research mainly focuses on approx-

imations or heuristics of practical policies, e.g., the dual index policy (DIP) and

tailored base-surge (TBS) policy. In both policies, a special phenomenon of “over-

shoot” is observed, which leads to a complication of the problems. An overshoot

occurs when the inventory position exceeds the base stock levels. DIP policies
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allow both sources to replenish following base stock policies and typically obtain

overshoots via simulations. We refer to Veeraraghavan and Scheller–Wolf (2008),

Sheopuri et al. (2010), Arts et al. (2011), and Arts and Kiesmüller (2013).

In the TBS model, a company periodically orders a fixed quantity from the

cheap but slow source, whereas the fast but expensive source orders follow a base

stock policy. Janssen and de Kok (1999) study a similar policy by modeling the

inventory system in a GI/G/1 queue. They solve the model using simulations.

Allon and Van Mieghem (2010) optimize the TBS analytically and find that “the

economic optimization naturally brings the system into a parameter regime called

heavy traffic”, where the GI/G/1 queue is always busy with waiting customers.

This key finding allows for the utilization of Kingman’s bound (Kingman, 1970) in

heavy traffic analysis and further obtains an approximate analytic solution of the

“base” volume. Klosterhalfen et al. (2011) use the term “constant order policy”

rather than TBS to describe the same inventory control policy. They compare the

policy with DIP numerically and find that either can outperform the other under

some parameter settings. Boute and Van Mieghem (2015) make use of linear

control theory for analytic solutions without relying on heavy traffic analysis.

They find that TBS and other dual-sourcing policies smooth orders when capacity

cost, inflexibility, or longer lead time difference is considered. Janakiraman et al.

(2014) analyze TBS in a discrete-time model and approximate the “base” volume

in a closed form by using an upper bound for the cost function. They further

numerically examine the accuracy of their approximation with different parameter

settings.

Our study differs from the existing dual-sourcing literature by incorporating

different delivery frequencies of the two sources/modes. Our model reflects the

practical characteristics that in the transportation world, trains or barges deliver

less frequently than trucks. To the best of our knowledge, our model is the

first dual-sourcing model that considers different delivery frequencies of the two

modes/sources.

3.3 Model formulation

In this section, we formulate the model that is used for our analysis. The notation

is summarized in Table 3.1.

We consider a distribution center D of a company that periodically orders

from its manufacturing plant P with unlimited capacity. The demand per period

at D is denoted by the random variable ξ and is independently and identically
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Table 3.1: A list of the parameters in the model.

ξ Demand per period (an i.i.d random variable)
µ Mean of ξ
σ Standard deviation of ξ
Φ(·)/φ(·) CDF/PDF of ξ
cs Shipment cost per unit of the slow mode
cf Shipment cost per unit of the fast mode
∆ Cost savings per unit of the modal shift, ∆ = cf − cs
h Holding cost per unit per period
b Penalty cost per unit per period
SB Optimal base stock level when only the fast mode is utilized
t Index of time, t = 1, 2, ...T
i Index of period in a steady state cycle, i = 1, 2
B Symbol of the optimal base stock policy with fast mode only
D Symbol of the model split policy with both modes
CB Expected total cost of two periods (a cycle) following policy B
CD Expected total cost of two periods (a cycle) following policy D
Π Cost savings of policy D over B, i.e., Π = CB − CD
Ot Overshoot in period t
O∞,i Steady state overshoot in period i of a cycle
L Expected mismatch cost
q Fixed delivery quantity of slow mode in each cycle (decision vari-

able)
Si Base stock level in period i of a steady state cycle (decision vari-

able)

distributed (i.i.d.) with mean µ and standard deviation σ. The cumulative distri-

bution function (CDF) and probability density function (PDF) of ξ are Φ(·) and

φ(·) respectively.

We consider a baseline model in which every period D places an order at P

and ships this order via the fast mode at a unit delivery cost cf . The plant P has

sufficient capacity to fulfill every order with an overnight shipment, which implies

a zero lead time with the fast mode transportation. The inventory level at the

end of each period is charged a holding cost of h per unit, and any unmet demand

is backlogged at a unit cost of b. Furthermore, we assume that b > cf , indicating

that a pure accumulation of backorders without any deliveries is not the optimal

solution. The distribution center needs to decide on the order/delivery quantities

that minimize the expected total cost in transportation and inventory mismatch.

It is already proven by Karlin (1960) that a base stock policy with an order-
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up-to level of SB = Φ−1
(

b
b+h

)
is optimal for such a system. We denote the

optimal fast-mode-only policy as baseline policy B. The expected total cost for a

cycle of two periods is then

CB = 2(cfµ+ L(SB)), (3.1)

where 2cfµ represents the expected transportation cost and 2L(SB) represents the

expected inventory mismatch cost for the two periods of the cycle with L(SB) =

h
∫ SB

0
(SB − ξ)φ(ξ)dξ + b

∫∞
SB

(ξ − SB)φ(ξ)dξ. Note that CB remains constant in

the baseline model.

Given that an additional slow mode option exists, companies wants to imple-

ment a modal split transportation (MST) policy (denoted as D) in the following

way: the company has an offer from a logistics service provider (LSP) to regularly

ship a constant quantity of q items via the slow mode at a unit delivery cost cs

with a cost savings ∆ = cf − cs > 0 per unit shipped. The parameter cs includes

transportation cost and all other incremental costs associated with slow mode

shipment, e.g., higher working capital costs for additional in-transit inventories

or higher handling costs. Although the slow mode has a lower total landed unit

cost, it is not available every period and only operates at a lower delivery fre-

quency. Whereas the fast mode can be used every period, we assume that the

slow mode is only available every other period. We define the time interval be-

tween two consecutive slow mode shipments as a delivery cycle. The slow mode

shipment can be viewed as a form of a commitment for the company in a way

that every other period, the company ships a constant quantity of q units from

P to D via the slow mode. Because a constant q is shipped and also received at

a fixed delivery frequency, the lead time of the slow mode can be neglected. In

addition to the slow mode shipments, D can still place flexible orders via the fast

mode in every period following a base stock policy. The company’s objective is to

determine the optimal slow mode quantity and the optimal base stock policy to

minimize the expected total costs, consisting of the expected transportation cost

(slow mode and fast mode) and inventory mismatch cost. The difference in terms

of the fast-mode-only policy is that we have to consider the expected cost during

a cycle because the two periods within a cycle are not identical.

The aforementioned problem is structurally similar to the TBS policy in

the dual-sourcing literature (see, e.g., Janssen and de Kok, 1999; Allon and Van

Mieghem, 2010; Klosterhalfen et al., 2011; Janakiraman et al., 2014). The TBS

policy is specified by two parameters: a constant order quantity q that is placed
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with a cheap supplier with a long lead time (comparable to our slow mode) and a

base stock level S that determines the flexible order policy from a more expensive

supplier with a lower lead time (comparable to our fast mode). In all the TBS

models discussed thus far, the order frequencies of the two source modes are

assumed to be identical, i.e., the fast mode and the slow mode are available every

period, which is not the case in our problem. In the MST problem, the slow mode

deliveries are available less frequently compared to the fast mode. Therefore, we

cannot simply minimize the expected cost per period but have to consider a cycle

structure where for every period in that cycle, the base stock levels for using the

fast mode could be different. In the following, the index i denotes the period of

a cycle, i.e., i = 1 is the first period of the cycle where the slow mode delivery

arrives, and i = 2 defines the second period of a cycle where only the fast mode

ordering is available. With an ongoing numbering, every “odd” period is a period

with a slow mode delivery, while in every “even” period, only the fast mode is

available. Since fast mode orders are available every period following a base stock

policy, we denote Si, i ∈ {1, 2} as the base stock levels in period i of a steady

state cycle. Thus, our MST policy is addressed by three parameters: q, S1, and

S2.

Similar to the classical TBS policy, a special phenomenon of our MST policy

is the overshoot. The overshoot in an inventory system is defined as the amount

by which the inventory position exceeds the base stock levels (Allon and Van

Mieghem, 2010). We use Ot, (t = 1, 2, ...,∞), to denote the overshoot in t,

which describes a stochastic process. It is well known that in an inventory system

following a base stock policy, orders are placed to bring the current inventory

positions up to the predefined base stock levels. This is why a base stock policy

is also called an “order-up-to” policy. In an MST system, however, a constant

quantity q is cyclically pushed into the system regardless of the levels of the

inventory positions and might shoot the inventory position “over” the base stock

levels. Figure 3.1 shows an example of how overshoots behave depending on the

pre-assumed q, S1, S2, and the starting inventory I1 in period 1. In periods 1

and 2, orders are placed in the fast mode, z1 > 0, z2 > 0, to bring the inventory

positions up to S1 and S2, respectively, which is similar to the situation in the

baseline models. However, in period 3, the arrival of q shoots the inventory

position over S1, and overshoot O3 > 0 is observed. Although q only arrives in

the odd periods, it might also indirectly drive the overshoot in the even periods,

as shown in period 4 of the example. Still, the overshoots in odd and even periods

are structurally different from each other because q only arrives in the odd periods
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and its impact on the even periods is indirect.

Figure 3.1: An example of the overshoots

If t is an odd period (i.e., period t = 1, 3, 5, ...), then the inventory position

at the end of this period can be written as a function of Ot, S1 + Ot − ξ; if t

is an even period (i.e., period t = 2, 4, 6, ...), then the inventory position at the

end of t is S2 + Ot − ξ. Therefore, the overshoot in period t + 1, Ot+1, is the

excessive amount (if any) over S2 (when t is odd) or S1 (when t is even) and can

be recursively written as:

Ot+1 =

(Ot + S1 − ξ − S2)
+

when t is odd,

(Ot + S2 + q − ξ − S1)
+

when t is even,
(3.2)

where ()+ denotes the positive part of a real number. As a comparison, the

classical TBS policy from the dual-sourcing literature does not consider different

delivery frequencies of the two modes, and it therefore only optimizes a single base

stock level. Consequently, the recursion of the overshoot in a TBS policy has a

simpler form as described in (1) of Janakiraman et al. (2014), and its calculation

should be reasonably easier compared to the overshoot in our MST problem.

We assume that q < 2µ, indicating that the supply from the slow mode

should not exceed the expected demand2. Because the company will adjust fast

mode deliveries based on overshoots, it will not accumulate overshoots infinitely,

2 If q > 2µ, the system diverges with infinite inventory because there is more supply than
demand. If q = 2µ, the system is in the state of “unstable equilibrium”, where any deviation
from the uncertainty of random demand will bring the system into a state of chaos.
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and the magnitudes of the overshoots are therefore bounded. Denote O∞,1 and

O∞,2 as the overshoots in periods one and two of a steady state cycle, and both

E[O∞,1] and E[O∞,2] are hence non-negative and finite. Let i denote the index

of the period within a cycle, i.e., i = 1 is the first period of the cycle where the

slow mode delivery arrives and i = 2 is the second period of the cycle with fast

mode order only. In period i, i ∈ {1, 2} of the steady state cycle, the expected

inventory position before demand realization is Si + E[O∞,i]. Note that because

of the overshoots, the expected inventory positions are “over” Si. Given the

stochastic demand ξ, the expected mismatch cost Li is:

Li(Si+E[O∞,i]) = hE
[
(Si + E[O∞,i]− ξ)+

]
+bE

[
(ξ − Si − E[O∞,i])

+
]
. (3.3)

The company aims to find the optimal combination of (q∗, S∗1 , S
∗
2 ) to minimize

the total expected cost of a steady state cycle, formalized as:

CD = csq + cf (2µ− q) +

2∑
i=1

Li(Si + E[O∞,i]), (3.4)

where csq is the (expected) transportation cost via the slow mode, cf (2µ − q) is

the expected transportation cost via the fast mode, and
∑2
i=1 Li(Si + E[O∞,i])

is the expected total mismatch cost over the entire cycle. Comparing the cost

savings of the MST policy to the baseline policy, i.e., Π = CB − CD, optimizing

the MST policy is equivalent to maximizing the cost savings:

Π = CB − CD = ∆q + 2L(SB)−
2∑
i=1

Li(Si + E[O∞,i]). (3.5)

Equation (3.5) captures the trade-off of the MST problem: ∆q is the trans-

portation cost savings from the slow mode, and 2L(SB)−
∑2
i=1 Li(Si +E[O∞,i])

is the expected net effect from the inventory cost. The holistic supply chain is

optimized by trading off transportation and inventory decisions.

3.4 Model analysis

The difficulty in the model analysis lies in finding analytic expressions for the

stationary expected overshoot E[O∞,i] for i = 1, 2. Analyzing the overshoot is

already challenging in the classical TBS policy where slow mode and fast mode

orders have the same delivery frequency. Janssen and de Kok (1999) use an
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approximation based on the equivalence of the overshoot to the waiting time in a

GI/G/1 queuing model. Allon and Van Mieghem (2010) evaluate the system using

a GI/G/1 queue and find that the optimization of the TBS policy naturally brings

the queue into a “heavy traffic” state, where the slow mode is heavily utilized (q

close to its upper bound µ). The authors further show that analytic closed-form

expressions are not tractable. To solve the problem, the authors perform an

asymptotic analysis and use one of Kingman’s bounds (Kingman, 1970) to bound

the expected steady state overshoot. Klosterhalfen et al. (2011) pursue an exact

approach by modeling the overshoot as a Markov chain with an infinite state

space. Boute and Van Mieghem (2015) state that the evaluation of a GI/G/1

queue in TBS is required; otherwise, a simulation analysis needs to be used.

Janakiraman et al. (2014) also use Kingman’s bound to bound the expected steady

state overshoot and thus the average cost per period to analyze the effectiveness

of the best TBS policy relative to the optimal policy over all feasible policies. To

the best of our knowledge, the heavy traffic analysis is currently the only method

mentioned in the literature for approximating and characterizing an exact TBS

analysis.

As a generalized TBS problem, the MST system unfortunately cannot guar-

antee the heavy traffic phenomenon. First, because the slow mode delivery q

arrives only once every two periods due to the different delivery frequencies, it

may induce a “cycle inventory”, i.e., inventory that is stocked to exploit lower

transportation costs at the beginning of the first period. It is difficult to ana-

lytically distinguish between the cycle stock and overshoot. Second, the steady

state overshoot in the even periods is structurally different from the overshoot in

odd periods and thus requires different treatments. Third, if the transportation

cost savings ∆ are much smaller than the additional holding cost h, the company

tends to commit a smaller q for the slow mode to reduce the overshoot risk in

the second period in (3.2) and the consequential inventory holding cost in (3.5);

therefore, a slow mode cannot be heavily utilized. From a practical perspective, a

small ∆ is not a rare event. Many sites do not have a direct connection with trains

or barges and thus require a multimodal transportation mode, e.g., truck-train-

truck, which requires additional costs for extra handling, waiting, and detour,

among others, and offsets or sometimes even outweigh the cost savings from the

utilization of a slow mode. Macharis et al. (2010) support this observation based

on academic research. Therefore, a new methodology is required to characterize

the generalized TBS problem.
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3.4.1 Deterministic demand

We first restrict our attention to MST under deterministic demand, i.e., σ = 0,

and capture the trade-off effects. The optimal solution clearly has a bang-bang

structure. If the savings by using slow mode transportation cost are greater than

the additional holding cost during a cycle, i.e., ∆ > h, then the company ships

the demand of both periods via the slow mode, i.e., q∗ = 2µ. The consequence

is an additional holding cost for an inventory level of µ at the end of the first

period (cycle inventory). If the transportation cost savings are less than the

additional holding cost, i.e., ∆ < h, then the company only ships the demand

of the first period via the slow mode, i.e., q∗ = µ, and the fast mode shipment

at the beginning of the second period equals the demand of the second period

µ. If ∆ = h, the company is indifferent in terms of the two options. Figure 3.2

illustrates the optimal slow mode order q∗ and the profit Π∗. The question arises

as to how q∗ changes when the demand is stochastic and additional inventory is

required to buffer uncertainty.

Figure 3.2: q∗ and Π∗ for deterministic demand

An additional insight from the deterministic case is that the profit function

is not continuously differentiable in the decision variable q, which needs to be

considered in the stochastic case when σ −→ 0.
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3.4.2 Stochastic demand

When demand is stochastic, i.e., σ > 0, there is an additional uncertainty of not

meeting the demand in a period. Hence, inventory at the end of a period can

have two functions: (i) it may serve as safety stock to buffer against demand

uncertainty, and (ii) it serves as cycle stock to exploit lower transportation cost

from the slow mode, which runs every other period. We will utilize the results

of the deterministic case to solve the stochastic version of the problem. For the

solution, we distinguish three scenarios A, B, and C that differ based on the

relationship between h and ∆.

Scenario A: ∆ > h

If ∆ > h, i.e., the unit savings in the transportation cost from the slow mode are

higher than the unit holding cost per period. Intuitively, the company is inclined

to commit to a larger q shipped via the slow mode. “Large” here means that

after the delivery of q, the inventory on hand is expected to satisfy not only the

demand in the first period but also part3 of the demand in the second period

of the cycle despite extra inventory holding costs at the end of the first period.

Hence, the probability of using the fast mode transportation and/or running out

of stock at the end of the first period of a cycle tends to be zero. Consequently,

we eliminate the decision variable S1 and assume no fast mode ordering in period

one. We replace the expected mismatch cost at the end of the first period by

h (S2 + E[O∞,2] + q − 2µ) (no backorders occur at the end of the first period).

The expected mismatch cost at the end of the first period is approximated as

L1(S1 +E[O∞,1]) = h(I1 + q − µ), where I1 is the expected starting inventory in

period one and I1 = S2 + E[O∞,2] − µ. Thus, the cost savings of CD over CB
∗
,

derived from (3.5), can be approximated as:

Π̂ = ∆q + 2L(SB)− h (S2 + E[O∞,2] + q − 2µ)− L2 (S2 + E[O∞,2]) , (3.6)

and the long-run policy can be reduced to two decision variables, q and S2.

Because we do not consider fast mode ordering in the first period and thus

no S1 and E[O∞,1], S2 only depends on the slow mode quantity q, such that S2(q)

3 The constant delivery quantity q via the slow mode is not expected to satisfy the demand in
both periods, i.e., q < 2µ. If q > 2µ, the system diverges because there is more supply than
demand; if q = 2µ, the system is in the state of “unstable equilibrium”, where any deviation
from the uncertainty of random demand will bring the system into a state of chaos.
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is the solution to the newsvendor formula of
dL2(S2+E[O∞,2])

dS2
= 0, which yields:

S2 = Φ−1

(
b

b+ h

)
− E[O∞,2], (3.7)

where E[O∞,2] is a function of q. Modeling the cyclic inventory system as a

GI/D/1 queue, we can show that the expected overshoot E[O∞,2] does not de-

pend on S2 and can be approximated with Proposition 3.4.1 (the proofs of all

propositions can be found in the appendix).

Proposition 3.4.1. The expected overshoot in the second period of a steady state

cycle is independent of the base stock level S2 and can be bounded by:

E[O∞,2] 6
σ2

2µ− q
. (3.8)

To determine the optimal slow mode level q, we use the upper bound ap-

proximation by Janakiraman et al. (2014): For any (x, y) for which y > 0, it

follows that (x+y)+ 6 x+ +y and (x+y)− 6 x−. Therefore, we obtain an upper

bound for the expected mismatch cost of the second period as L2(S2 +E[O∞,2]) =

hE [(S2 + E[O∞,2]− ξ)+]+bE [(S2 + E[O∞,2]− ξ)−] 6 hE [(S2 − ξ)+]+hE[O∞,2]+

bE [(S2 − ξ)−] = L2(S2) + hE[O∞,2], which implies a lower bound for the cost

savings as follows:

Π̂ ≥ ∆q + 2L(SB)− h (S2 + q − 2µ)− 2hE[O∞,2]

− hE (S2 − ξ)+ − bE (S2 − ξ)− .
(3.9)

Taking the first-order derivative of this lower bound with respect to (w.r.t.) q,

we obtain ∆−h−2h
∂E[O∞,2]

∂q = 0 with
∂E[O∞,2]

∂q = σ2

(2µ−q)2 . Thus, the approximate

optimal slow mode shipment q̂ is:

q̂ = 2µ− σ
√

2h

∆− h
, (3.10)

and in combination with (3.7), we obtain the approximate optimal base stock

level:

Ŝ2 = Φ−1

(
b

b+ h

)
− σ

√
∆− h

2h
. (3.11)

The slow mode is advantageous in terms of cost savings. When the cost

difference ∆ increases, it is intuitively beneficial to ship more volume in the slow

mode. The disadvantage of the slow mode is a lack of flexibility due to operational
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constraints. When the demand is more volatile, the company needs to decrease

the share in the slow mode to tackle the flexibility of the fast mode. This explains

why q̂ decreases in σ, as shown by (3.10).

Practitioners tend to believe that if they must commit a constant slow mode

volume over a long period, this size of the volume should not exceed the lower

bound of the demand during the cycle. Otherwise, the slow mode will not be fully

loaded, and consequently, penalties might occur. Because demand is stochastic,

the lower bound over a period could be rather small and approach zero. Our

finding in (3.10) reveals that the size of the commitment in the slow mode is

actually independent of the lower bound of demand, and it could surprisingly

take a larger value close to 2µ.

We find that the base stock level in even periods Ŝ2 is less than that of

the baseline model SB . When managers already know that in the next period a

constant quantity of q will be committed to arrive, they would order fewer units in

the current period to maintain a relatively lower inventory level compared to the

baseline model. Ŝ2 decreases in ∆, indicating an increasing effect when the slow

mode is economically more attractive. The disadvantage of this approximation is

that when ∆ approaches h from the right side, q̂ drops to −∞ in (3.10). Later

in the chapter, we provide a lower bound of q̂ for this scenario to prevent this

divergence and denote this as Scenario C.

Scenario B: ∆ < h

If ∆ < h, i.e., the marginal savings in transportation cost from using the slow

mode are lower than the unit holding cost per period, the company is inclined to

commit to a lower q shipped via the slow mode. By this logic, it is more likely that

the fast mode order will be utilized in the second period of the cycle, diminishing

the occurrence of an overshoot. We approximate this scenario by eliminating

the overshoot at the beginning of the second period of the cycle. Therefore, the

expected cyclic cost function can be approximated as CD = csq + cf (2µ − q) +

L1(S1 +E[O∞,1]) +L2(S2), and the cost savings function of (3.5) is estimated as:

Π̂ = ∆q + 2L(SB)− L1(S1 + E[O∞,1])− L2(S2). (3.12)

By assuming no overshoot in the second period, the expected overshoot in
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the first period can be approximated as:

E[Ô∞,1] = E[S2 + q − S1 − ξ]+ =

∫ S2+q−S1

0

(S2 + q − S1 − ξ)φ(ξ)dξ, (3.13)

i.e., the non-negative expected difference of the inventory position of the first

period (I1 = S2 − ξ + q) and the base stock level S1. Plugging (3.13) into (3.12)

and taking the first-order condition of Π̂ with respect to q, S1 and S2 separately,

we derive the approximated expressions of (q̂, Ŝ1, Ŝ2). The result of Scenario B is

concluded using the following proposition:

Proposition 3.4.2. When ∆ < h, the optimal decision variables of the MST

policy can be approximated as:

Ŝ1 = Φ−1

(
b+ ∆

b+ h

)
,

Ŝ2 = Φ−1

(
b−∆

b+ h

)
,

q̂ = Φ−1

(
b+ ∆

b+ h

)
− Φ−1

(
b−∆

b+ h

)
+ Φ−1

(
∆

h

)
.

(3.14)

Similar to Scenario A, q̂ increases in ∆, indicating a positive relationship

between cost savings and the utilization of the slow mode. Moreover, a decrease

of Ŝ2 in ∆ is also consistent with the results from Scenario A. Similar to the

situation of Scenario A, the approximation deteriorates when ∆ is close to h.

Specifically, when ∆ approaches h from the left side, q̂ spikes to ∞ in (3.14).

Therefore, we next provide an upper bound of q̂ for Scenario B based on Scenario

C.

Scenario C: ∆ = h and revised Scenarios A’ and B’

The previous methods in Scenarios A and B rely on the trade-off of commitment

and cycle stock effects. By comparing their relative sizes, two different approx-

imations, based on eliminating expected overshoot terms, are implemented, and

the analytic expressions are obtained. When ∆ = h, both effects break even, and

none of the analytic expressions in Scenarios A or B provide an answer at this

point. A separate method is required for Scenario C. Furthermore, the results of

the previous two scenarios already deteriorate when ∆ approaches h from either

the left or right side. Accordingly, we revise the range over which the expressions
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from A and B are applied and refer to Scenarios A’ and B’. Figure 3.3 shows

an example of this divergence, where as ∆ approaches h, i.e., the ratio ∆ over h

approaches one, the approximation error tends toward infinity.

Figure 3.3: The approximation error of CD in %

Additionally, when σ increases, the company needs to cope with the increased

volatile demand with more flexibility in transportation decisions. This requires

a higher utilization of the fast mode. However, the approximation in Scenario

A forbids the utilization of the fast mode in the first period, and this leads to a

larger approximation error in σ. A more volatile demand ξ increases the chance

of overshoot, as indicated in the overshoot recursion function (3.2). Ignoring

overshoot in period two therefore gives rise to more error in the approximation,

as described in Scenario B. This explains the increase in approximation error for

this scenario when σ increases. The results obtained from Scenario C are then

used as a correction for Scenarios A and B to improve the approximation accuracy

in this region.

Managerially, ∆ = h is a break–even point at which managers are indifferent

in terms of choosing the solutions from either Scenario A or B. Comparing (3.10)

and (3.14), only the approximation of S2 is tractable. We take Ŝ2 = Φ−1
(
b−∆
b+h

)
from (3.14) of Scenario B. (Note that the solution from Scenario A, i.e., Ŝ2 =

Φ−1
(

b
b+h

)
from (3.10), can also be applied, and it offers a similar accuracy in

our numerical tests.) The base stock level obtained in Scenario B is slightly

smaller than that in Scenario A because in Scenario B, the overshoot term O∞,2

is assumed to be zero. If overshoot is not eliminated, the order-up-to level in
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period two should be S2 +O∞,2. The advantage of using the result from Scenario

B is that in this Scenario, O∞,2 can be assumed to be zero.

An indifferent choice of S1 is also expected. In other words, whether or not

we order via the fast mode in the first period does not affect the expected cost

of the modal split policy. We use Ŝ1 = Ŝ2 for the following reason: a free choice

of Ŝ1 also indicates the independence of the overshoot O∞,1 with respect to Ŝ1

or Ŝ2. The set of Ŝ1 = Ŝ2 eliminates this dependency in the definition of O∞,1

in (3.2), where the overshoot is shown to be a function of the difference between

two base stock levels. Given Ŝ1 and Ŝ2, we further obtain q̂ as follows.

In the deterministic case, regardless of the value that q∗ takes in the range

of [µ, 2µ], the value of the objective function remains the same because both

commitment and cycle stock effect break even. q∗ cannot be any value outside of

this range: if q is smaller than µ, an extra backorder cost exists at the end of period

one; if q is larger than 2µ, an extra spending on holding cost at the end of period

two is expected. When the demand is stochastic, these two costs are brought into

the system with certain probabilities. We denote the sum of these two costs C̄,

and q is set to minimize these costs. Denote Î1 as the expected starting inventory

position at the beginning of a steady state cycle, where Î1 = Ŝ2 − µ,

C̄(q) = b

∫ ∞
Î1+q

(ξ − Î1 − q)φξ(ξ)dξ + h

∫ Î1+q

0

(Î1 + q − η)φη(η)dη, (3.15)

where η = 2ξ denotes the accumulated demand in the steady state cycle with

two periods, φη is the pdf of η, and φξ is the pdf of ξ. By taking the first-order

condition of C̄ with respect to q, the optimal volume in the slow mode q̂ can be

approximated by solving the following transcendental equation:

hΦη

(
Ŝ2 − µ+ q̂

)
+ bΦξ

(
Ŝ2 − µ+ q̂

)
= b. (3.16)

In summary, the result of Scenario C is:

Ŝ1 = Φ−1

(
b− h
b+ h

)
,

Ŝ2 = Φ−1

(
b− h
b+ h

)
,

hΦη

(
Ŝ2 − µ+ q̂

)
+ bΦξ

(
Ŝ2 − µ+ q̂

)
= b.

(3.17)

The policy in (3.17) can further be used as an alternative result for Scenarios
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A and B when the analytic approximations deteriorate. Because q̂ increases in ∆

as shown in (3.10) and (3.14), q̂ obtained from Scenario C can be set as the lower

bound of Scenario A and upper bound of Scenario B (Figure 3.4), and therefore,

the ill-measured q̂ in the two Scenarios when ∆ is close to h (the dotted line) is

then discarded. This leads to revised ranges for Scenarios A and B, which we

refer to as A’ and B’, as indicated in Figure 3.4. More specifically, we denote q̂A,

q̂B , and q̂C as the approximated q from Scenarios A’, B’ and C, respectively. If

q̂A < q̂C , we then use (3.17) to replace the result from (3.10); if q̂B > q̂C , we use

(3.17) to replace the result from (3.14). We set the range for Scenario C according

to how we apply the bounded q̂C .

Figure 3.4: Approximation of q̂C and combined Scenarios A’, B’ and C

3.5 Numerical analysis

In this section, we perform a numerical study to obtain further insights into the

MST policy. Specifically, we analyze the approximation accuracy relative to the

optimal solution. We therefore determine the optimal solution using a complete

enumeration. In addition, we use various parameters to understand the expected

modal split and the cost savings induced by the MST policy. We also show an

analysis when the unit delivery cost of the fast mode cf depends on its delivery

quantity.
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The following assumptions are used in this section. The distribution cen-

ter serves a large region; thus, the accumulated demand from all customers is

pooled and can be assumed to follow a gamma distribution. The mean of the

demand is standardized to 100 units. A unit could be an item, a carton, or a

pallet in practice. Three different standard deviation values, 10, 20, and 30, are

separately tested. This type of demand with high mean and low variability is of

particular interest for the company because it focuses on high volume products,

which maximize the impact on the company’s supply chain innovation projects.

The gamma distribution with mean 100 and standard deviation 30 represents a

typical fast-moving product. Recall that the objective of the numerical analysis

is to understand the accuracy of the approximation, and the ratio of modal split,

the exact magnitude of the demand does not affect the percentage findings.

The unit holding cost h is generally measured as a percentage of the product

value and is endogenously fixed. It is normalized to 1 in the numerical analysis.

The unit backorder cost b is used to indirectly secure the company’s non-stockout

probability (α-service level) at 95%, which gives by using the newsvendor ratio
b

b+h a backorder cost b = 19. The unit transportation cost saving of the slow

mode over the fast mode, ∆, is an exogenous variable because it depends not only

on the LSP’s transportation cost offers but also on the packaging and loading

method of the company. According to the company’s experience and discarding

the negative values it could take, ∆ could be as high as 500% of h. A range of

∆/h from 0 to 5 is tested.

3.5.1 Approximation accuracy

To understand the quality of the approximations, we conduct three different anal-

yses. Our solution in Scenario A’ is built on the assumption that no fast mode

is utilized in the first period of the steady state cycle. We validate this ap-

proximation by calculating the share of fast mode orders in period one as an

expected percentage of the total demand during a cycle for the unconstrained

model. Similarly, we examine the practicability of the approximation in Scenario

B’ by analyzing the expected percentage of overshoot over demand. Finally, we

validate the overall accuracy of our MST solution against the optimal solution.

To understand the approximation in Scenario A (and A’), we test the ex-

pected ordering quantity via the fast mode in period one as a percentage of the

expected cyclic demand 2µ. Figure 3.5 shows that the expected fast mode orders

in period one decrease in ∆/h. The values in the region of ∆ > h are all signifi-
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Figure 3.5: Expected fast mode order in period one as a % of the total demand
of a cycle

cantly smaller than those in the region of ∆ < h. More specifically, for σ = 10, 20,

fast mode ordering in the first period drops to zero for ∆ < h. Recall that the

parameter regime ∆ > h is our Scenario A, where we approximate the problem

using a TBS model that assumes zero utilization of the fast mode. Accordingly,

the approximation appears to be reasonable.

To understand the approximation in Scenario B (and B’), we numerically

test the average overshoot in period two as a percentage of the expected cyclic

demand 2µ. The results are shown in Figure 3.6. When ∆ < h, the curves are

flat and close to zero. This behavior provides numerical support for our Scenario

B, where we approximate the MST problem with a TBS policy that has zero

overshoot in the second period. When ∆ > h, the curves increase substantially,

and the overshoot values cannot be eliminated. This effect becomes stronger as

σ increases.

To validate the overall accuracy of the tool outlined in Section 4.2.4, we

calculate the percentage error in the average total cost per steady state cycle,

i.e., %CD = CD
∗
−ĈD

CD∗
. The optimal result CD

∗
is calculated using a complete

enumeration. The approximation errors are shown in Figure 3.7.

In general, our method provides a robust estimation. When ∆ < h, our ap-

proximated analytical expressions (3.14) in Scenario B provide very good results,

and the approximation error is almost zero. When ∆ > h, the approximate result
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Figure 3.6: Expected overshoot in period two as % of the total demand of a cycle

in (3.10) is less accurate than that in Scenario B but still provides robust results

with an approximation error less than 3%. We have to distinguish between two

different types of errors in our overall solution: the approximation error when the

TBS approach is implemented to solve MST problems and the endogenous error

of the TBS policy itself. The first type of error is prominent around ∆ = h under

the assumption that the fast mode is not utilized in Scenario A and the overshoot

is neglected in Scenario B. By introducing a separate solution in Scenario C, the

error shown in Figure 3.3 is smoothed, as shown in Figure 3.7. The second type

of error occurs when ∆ > h and a TBS approach with heavy traffic analysis is

applied. Allon and Van Mieghem (2010) and Janakiraman et al. (2014) observe

this error in their TBS studies. They find that the error of the TBS policy in-

creases when the cost difference between the two modes increases. Our solutions

are aligned with their findings, showing an increase in error in ∆ in Figure 3.7.

3.5.2 The results of the modal split transportation model

Next, we aim to obtain detailed insights into the results of the MST policy. We are

particularly interested in the expected volume that is shipped in the slow mode at

the optimum cost. This is particularly important as it provides an indication of

the practical feasibility of the MST policy: the slow mode can only be organized

for sufficiently large volumes. Next, we study the overall cost savings induced
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Figure 3.7: The approximation error of CD as a % compared to the optimal
results

by the MST policy. Finally, we would like to understand the expected volume

shipped in the slow mode in case the company aims to implement the MST with

the objective of zero cost savings. This case is important if a company aims to

apply the slow mode in line with her sustainability agenda rather than for cost

minimization.

Figure 3.8 shows the optimal slow mode volume expressed as a percentage

of the mean demand per cycle. The solid line characterizes (as shown in Section

3.4.1) the deterministic benchmark scenario where either 50% of the cyclic demand

(if ∆ < h) or 100% of the cyclic demand (if ∆ > h) is shipped via the slow mode.

When ∆ increases, i.e., the slow mode shipment becomes cheaper, the ex-

pected optimal volume in the slow mode increases. Interestingly, the expected ra-

tio in the slow mode is surprisingly high: for a typical SKU with (µ, σ) = (100, 30),

even when the ratio of transportation cost savings to holding cost is rather low,

i.e., ∆/h = 0.01, approximately 22% of the expected transportation volume per

cycle can be shifted to the slow mode; when ∆/h = 5, this ratio increases to ap-

proximately 85%. These ratios do not depend on the lower bound of the stochastic

demand but are a function of its mean and the cost savings of the slow mode.

Supply chain managers could work more aggressively on modal split projects with

larger consignments on slow modes.

A further observation is that the slow mode split has different behaviors
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Figure 3.8: Expected slow mode volume in % of the expected demand per cycle
under profit maximization

in σ at different ∆/h -ratios. When the demand is more volatile (σ increases),

the policy prefers more flexibility in MST and favors a larger volume in the fast

mode. This is the intuitive reason why q decreases in σ. Interestingly, we find that

there is a certain area, when ∆ is close to h from the left side, where q increases

in σ. This is mainly due to the existence of a third effect: the safety stock

effect. When the demand is more volatile, more safety stock is required to buffer

uncertainty. Because of the cost advantage, the company would prefer to use the

slow mode to replenish the safety stock. When ∆ is close to h, both commitment

and cycle stock effect almost cancel each other out and the safety stock effect

dominates, increasing the size of q when σ increases. This phenomenon occurs

in an area where ∆ approaches h from the left side because of the following: 1).

the commitment effect and the overstocking effect almost cancel out (close to the

break-even point ∆ = h), so that the safety stock effect is left alone, and 2). the

commitment effect is still small (∆ < h), so that an increase in the slow mode

volume does not lead to too much inflexibility in the system.

The expected total cost savings of MST compared to the baseline fast-mode-

only model are shown in Figure 3.9. In the region ∆ > h, the curves are sensitive

to σ, indicating a cost advantage of MST when the demand is less volatile and

the commitment effect dominates. In the region ∆ < h, however, the cost savings

of MST are rather insensitive to demand volatility. This result is mainly because
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Figure 3.9: Expected total cost savings using the MST policy

of the existence of the safety stock effect, as also observed in Figure 3.8. When

demand is more volatile, the increasing safety stock drives to a larger share in the

low-cost slow mode and further leads to a cost reduction. This safety stock effect

offsets the commitment effect, and therefore, the total cost savings of MST are

not sensitive to σ. Practitioners generally believe that the slow transportation

mode is always favorable for products with more stable demand patterns. Our

numerical results reveal that this is only part of the story - if the commitment

effect dominates, we find this to be the case; if the cycle stock effect dominates,

the volatility of the demand is indeed insensitive to the total cost savings of MST.

Again, the measurement of the sizes of the two effects can be simply achieved by

a comparison of the two parameters ∆ and h.

Thus far, we have assumed that companies intend to minimize the total ex-

pected costs using the MST policy. However, companies could have an alternative

objective: rather than minimizing the cost, they could intend to improve their sus-

tainability or carbon agenda by minimizing the use of fast transportation modes.

In this case, the MST policy could be applied to cost-neutrally shift volumes to

the slow transportation mode. Figure 3.10 shows the resulting cost savings from

shifting volume to the slow transportation mode for σ = 20 at different trans-

portation cost savings ∆. The slow mode maximizing volume is reached for the

zero-cost case with Π = 0. The numerical results highlight that a large fraction of

the total volume can be shipped using the slow mode if no cost decrease compared
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Figure 3.10: Cost savings based on the expected slow mode volume in % of mean
demand.

to the baseline setting is required: even for low transportation cost savings com-

pared to holding costs ∆ = 0.1h, almost 60% of the volume is shipped in the slow

mode. For higher ∆, the overall cost savings decrease with the slow mode volume

but only become negative as the slow mode volume approaches 100%. Here, the

full reliance on the slow mode leads to a complete loss of flexibility.
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3.5.3 The implications of the modal split transportation

model

Similar to previous literature on dual-sourcing, e.g., Veeraraghavan and Scheller–

Wolf (2008), Allon and Van Mieghem (2010), and Janakiraman et al. (2014), our

model thus far assumes that the unit transportation cost of the fast mode, cf ,

is constant and does not depend on other external factors such as volume or

variability changes. However, many LSPs offer freight rates that depend on the

volume shipped (Coyle et al., 2015): The more volume an LSP receives from a

shipper, the cheaper is the unit transportation cost. Likewise, an LSP could also

raise the unit transportation cost as the variability of the freight volume increases.

We next analyze the volume and variability implications of the MST policy.

Volume implication. Figure 3.11 shows the mean usage of the fast mode,

separately illustrated for the first and second periods of a steady state cycle, as

well as for a general period without distinguishing between the cycle periods. It

can be observed that when q is rather low and is increased, the average fast mode

delivery in the first period of a cycle is immediately affected due to the slow mode

order arriving in that period. In contrast, the expected fast mode quantity of

the second period of the cycle remains almost the same if q is rather low. It only

increases for higher q as slow mode quantities are carried over to the second period

of the cycle. For an arbitrary period (generally, the average implication of the first

and second periods) we find that the average fast mode delivery almost linearly

decreases in q. As q reaches the mean demand of the full cycle, the expected fast

mode delivery in both periods tends to zero.

Suppose the fast mode LSP installs a volume-dependent freight rate tariff

with an m+1 -tier structure depending on the expected fast mode usage per cycle.

More specifically, the LSP charges a unit transportation cost cfj if the expected

fast mode shipment per cycle, denoted as qf , exceeds or is equal to a threshold

q̄fm−j , for j = 0, ...,m. The fast mode transportation cost per unit is then:

cf =



cf0 if q̄fm 6 qf 6 2µ,

cf1 if q̄fm−1 6 qf < q̄fm,
...

...

cfm if 0 6 qf < q̄f1 ,

(3.18)

where cf0 < cf1 < ... < cfm, indicating that the less expected volume qf the fast
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Figure 3.11: Expected fast mode delivery in the first and second periods of a
cycle and for an arbitrary period.

mode LSP receives from the shipper, the higher is the unit fast transportation

mode cost cf . The above volume-dependent tariff is richly studied in the literature

(see, e.g., Swenseth and Godfrey, 2002; Ventura et al., 2013).

Since the expected fast mode shipment per cycle is a linear function of the

slow mode shipment, i.e., qf = 2µ − q, the fast mode cost per unit is cfj if the

slow mode shipment q 6 2µ − q̄fm−j . Therefore, the expected cost function of

an MST policy with a volume-dependent tariff is multi-fold with CD = csq +

cfj (2µ − q) +
∑2
i=1 Li(Si + E[O∞,i]), for q 6 2µ − q̄fm−j and j from 0, ...,m. We

assume in the baseline situation where all volume are shipped in the fast mode,

a lowest unit cost cf0 is charged by the fast mode LSP, such that the expected

cost is CB = cf02µ+ 2L(SB). The functional form of the expected cost savings of

the MST policy D over the baseline policy B depends on the fast mode tariff and

changes to:

Πj(q, S1, S2) = (cfj −c
s)q+(2L(SB)−

2∑
i=1

Li(Si+E[O∞,i]))−(cfj −c
f
0 )2µ. (3.19)

Compared to the case without the volume-dependent tariff, there is an addi-

tional term −(cfj − c
f
0 )2µ that reduces the total cost savings, which characterizes

the additional fast mode cost that the company faces due to the higher price

caused by the lower expected fast mode volume.

This problem can be solved by using a modified version of the classical al-
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gorithm for the standard economic order quantity (EOQ) problem with quantity

discount, illustrated in (Silver et al., 1998, p. 162). For all cost levels cfj , we cal-

culate the transportation cost savings ∆j = cfj − cs and the resulting q̂j , Ŝj1, Ŝj2.

The problem is that this solution may be infeasible if q̂j > 2µ − q̄fm−j since this

cost savings function is only valid for q̂j 6 2µ − q̄fm−j . In such a case, the slow

mode volume for this cost level is set to q̂j = 2µ − q̄fm−j and Ŝj1, Ŝj2 are calcu-

lated accordingly based on the previously discussed scenarios A, B, and C. The

cost savings, Πj , for cost level cfj are then determined by (3.19), and the optimal

approximate solution is:

(q̂, Ŝ1, Ŝ2) = arg max{Πj(q̂j , Ŝj1, Ŝj2)|j = 0, ...,m}. (3.20)

Installing a volume-dependent tariff by the fast mode LSP may lead to both

a higher or lower volume shift to the slow mode depending on the specific cost

tariff. The explanation is the following: Given the unit transportation cost in

the baseline model is cf0 , the total expected fast mode volume is 2µ. Once the

shipper implements MST and ships q units via the slow mode, the expected fast

mode shipments during a two-period cycle would decrease to qf = 2µ− q, which

may have negative consequences to the fast mode LSP. By installing the volume-

dependent tariff, the fast mode LSP charges higher prices, if the expected fast

mode shipments fall below certain thresholds. Depending on the magnitude of

these price increases, the shipper may either shift even more volume to the slow

mode, if the relative cost savings between the two transportation modes is even

more beneficial; or the shipper may shift volume back from the slow mode to the

fast mode in order to utilize the better fast mode price due to a larger volume.

The following numerical example will illustrate these two effects. We use the

same data as in Section 5, i.e. the mean demand per period follows a Gamma

distribution with µ = 100 and σ = 30. Suppose the unit fast mode cost in

the baseline model is cf0 = 10. As the shipper implements MST, the optimal

volume shifted to the slow mode LSP is A = 179 as illustrated in Figure 3.12.

We now assume that the fast mode LSP installs a two-fold tariff as such cf0 = 10

only if qf > 100 (equivalently, if the slow mode volume q 6 100). If qf < 100

(equivalently, q > 100), we distinguish two alternative unit cost scenarios (i) cf1 =

12 and (ii) cf1 = 20. The volume-dependent tariff can be formalized as follows:

cf =

c
f
0 = 10 if 100 6 qf 6 2µ,

cf1 ∈ {12, 20} if 0 6 qf < 100.
(3.21)
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Figure 3.12 illustrates the expected total cost per cycle as a function of slow

mode volume q for the different unit fast mode costs. The solid line represents

the region in which this cost function is feasible, hence the dotted line represents

the region in which this cost function is infeasible. For q 6 100, the expected

fast mode volume qf exceeds the threshold of 100, therefore, the lowest unit cost

cf0 = 10 is feasible and the lowest total cost is reached at q = 100 (point D). For

q > 100, the expected fast mode volume qf would be less than the threshold of

100 such that the higher price cf1 ∈ {12, 20} is charged. If cf1 = 12, one can see

that the cost-minimal slow mode quantity is at B, i.e., q = 183, whose cost is

lower than the expected cost at D. Therefore, if cf1 = 12, the shipper would shift

even more volume to the slow mode LSP (from A to B) with the consequence

that the expected volume for the fast mode LSP decreases. However, if cf1 = 20,

the cost-minimal expected cost is at q = 192 (point C), which is larger than the

expected cost at the threshold q = 100 where the lower cost cf0 = 10 is still feasible

(point D). In this case, the shipper would move volume back from the slow mode

to the fast mode (from A to D) to benefit from the lower price.

Figure 3.12: Expected total cost per period with a volume-dependent tariff of the
fast mode

In short, the volume-dependent tariff can lead to both more and less usage

of the slow mode. The impact depends on the specific design of the tariff.

Variability implication. Besides the volume implication, implementing an
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MST policy also affects the variability of the fast mode shipments. When fast

mode shipments become more volatile, the fast mode LSP must put more effort in

capacity management, e.g., for empty truck reposition and truck driver retention

(Jonathon et al., 2002), and might consequently raise the freight rate.

Suppose the fast mode LSP needs to plan its fleet capacity based on more

volatile orders from the shipper. The expected fast mode shipment during a two-

period cycle is qf with qf = 2µ− q, and the standard deviation of the shipment

is σf . Assuming that the fast mode LSP plans its capacity, denoted as Cf , via a

simple newsvendor-style model: Cf = qf + zσf . The parameter z is linked to the

safety capacity factor to be met by the fast mode LSP. If c̄ is the cost to install

one unit of fleet capacity, then the fast mode LSP’s average capacity cost for one

unit shipped is: c̄f = c̄ ·Cf/qf . We can simplify the equation by substituting the

capacity Cf = qf +zσf and the coefficient of variation of the fast model shipment

CV f = σf/qf . Therefore, the average capacity cost for one unit shipped can be

written as: c̄f = c̄(1 + z · CV f ), which shows the importance of the coefficient of

variation of the fast mode shipment.

Figure 3.13 shows CV f , separately illustrated for the first and second period

of a steady state cycle, as well as for a general period without distinguishing

between the cycle periods. It can be observed that all three curves increase

monotonously, indicating that the fast mode shipment is more volatile when more

volume is shifted to the slow mode. In addition, the CV f of the first period of

a cycle is larger than that of the second period, because the mean fast mode

shipment in the first period is smaller (shown in Figure 3.13), provided that a

substantial part of demand is already satisfied by the slow mode in this period.

To consider the variability implication in the MST policy, an approach similar

to the one implemented for the volume implication analysis can be applied. To

be more specific, the fast mode LSP could install the following CV f -dependent

tariff with the unit transportation cost cfj :

cf =



cf0 if 0 6 CV f < C̄V
f
1 ,

cf1 if C̄V
f
1 6 CV f < C̄V

f
2 ,

...
...

cfm if C̄V
f
m 6 CV f ,

(3.22)

where cf0 < cf1 < ... < cfm, indicating that the more volatile the fast mode ship-

ment, the higher the unit fast mode transportation cost cf .
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Figure 3.13: Coefficient of variation of fast mode delivery in the first and second
periods of a cycle and for an arbitrary period.

The implication of the variability-dependent tariff is similar to that of the

volume-dependent tariff. Suppose the fast mode LSP observes a higher variability

in its shipment due to the shipper’s MST implementation, and wants to raise

the freight rate according to the tariff (3.22). Similar to the volume-dependent

implication, the shipper may either increase or decreases the volume shifted to

the slow mode LSP, depending on the freight rate increase (see Figure 3.12). If

the unit transportation cost increase (due to the variability-dependent tariff) is

not too large, the shipper will shift even more volume to the slow mode LSP since

it minimizes its total cost. If the unit transportation cost increase (due to the

variability-dependent tariff) is large, then the shipper would shift the volume back

to the last threshold where he still obtains a lower fast mode freight rate. Similar

to the case with the volume-dependent tariff, the final decision of the shipper

depends on the specific parameters of the variability-dependent tariff (3.22). Note,

an LSP could combine the volume-dependent and variability-dependent tariffs to

account for both slow mode implications. Since both implications lead to either

more or less usage of the slow mode, a combination of both tariffs will hence be

expected to have a similar impact.

In summary, due to the slow mode shipment, the LSP observes lower freight

volumes and higher variability in the fast mode. Consequently, he might raise the

freight rate under a specified tariff. We find that the specific design of the freight

tariff can lead to either an increase or a decrease of the shipper’s slow mode usage.
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3.6 Summary

The main contribution of this chapter is the development of a modal split trans-

portation (MST) policy that enables volume allocation into two transportation

modes and that integrates inventory controls. An attractive feature of the MST

policy is the cost-efficient slow mode shipment in the first period of each two-

period cycle. This constant slow mode volume is complemented by flexible vol-

umes that can be shipped via the more costly fast mode every period. Accordingly,

the MST model needs to consider different delivery frequencies of the two modes

and therefore has an extended mathematical structure compared to the classical

tailored base-surge problem, which assumes that the cheap and the expensive

supplier deliver in every period. However, a “heavy traffic” phenomenon, shown

in the TBS problem, is not guaranteed in the MST model and requires new so-

lution procedures. We approximate the steady state cost function of the MST

problem and derive closed-form expressions for the modal split policy using three

distinct scenarios. This solution provides a simple and easy-to-implement tool for

practitioners. We find that the trade-off between the commitment effect and the

cycle stock effect drives the optimal level for the slow mode quantity. When a

constant quantity is committed in the slow mode, the company on one side gains

a transportation cost savings every cycle, but on the other side incurs extra cycle

stock cost in the first period of the cycle. Using a numerical study with practi-

cally based data from a company, we find that the solution approach provides an

approximation error of less than 3%. We also analyze the cost reductions and find

that they can be significant based on the relationship between the transportation

cost savings in the slow mode and inventory holding costs.

The proposed MST policy has important managerial implications as it bridges

a key dilemma that MST has been facing in practice over the years: despite

receiving increasing attention from the industry, government, and academia, real-

world implementations have ground to a halt. Based on our discussions with the

company, we found that practitioners were particularly challenged by integrating

multimodal transportation decisions with inventory controls. The proposed model

can provide practitioners with the confidence that these decisions can be well

integrated and handled. The numerical results are encouraging with respect to

the practical feasibility of the slow mode. The supply chain managers that we

interviewed were concerned about the volume split between the fast and the slow

transportation modes in the cost-optimal solution. Managers tend to believe that

if they need to commit a constant volume in the slow mode cyclically in the
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long run, the size of this fixed volume should not exceed the lower bound of the

demand over the entire period. In contrast to their expectations, we found that

the volumes on the slow mode are sufficiently large to justify the implementation of

new slow mode transportation routes. For fast-moving products with high demand

and relatively low demand variation, the volume for the slow mode can be as high

as 85% of the total volume. Our insights are also relevant for companies that apply

the MST policy to reduce carbon emissions via the slow transportation mode

rather than costs. If the objective is to implement MST in a cost-neutral way,

the numerical results indicate that large volumes are shipped in the slow mode

even if the transportation cost savings are relatively small. This is encouraging

because it provides the potential to trigger an even larger demand for the slow

mode that is required to facilitate the MST approach.

Multiple extensions of the MST study could be considered in future research.

Our model is limited because it assumes a slow mode delivery frequency that is

half of that of the fast mode and a cycle has two periods, i.e., the steady state cost

function of the MST policy has at most three decision variables, the slow mode

volume q and the base stock levels S1 and S2 of the fast mode policy. Our ap-

proximated analytic solution builds on the fact that under certain circumstances

(the relationship between transportation cost savings and holding cost) specific

elements of the cost function (in particular expected overshoot terms) can be

omitted, which allows us to derive closed-form expressions for the relevant deci-

sion variables. When n > 2, the trade-off between transportation cost savings and

inventory costs still exists and a similar approximation method could be applied.

However, the number of decision variables increases linearly, i.e., the number of

decision variables is n+ 1, which makes the analytical tractability more difficult.

To keep the model analytically tractable and to derive closed-form expressions,

more terms of the cost functions have to be eliminated, which is theoretically

possible but would increase the approximation error. Therefore, this type of

approximation would not be appropriate for larger cycle lengths. Numerical solu-

tions are recommended for more accurate results. Theoretically, our analysis can

be extended to any arbitrary n; however, when n increases, in the absence of any

other relevant adjustments, the stochasticity of the cyclic demand will increase,

and this might deteriorate the performance of the approximations.

Thus far, n is only studied as an exogenous parameter. Occasionally, larger

shippers with substantial volume could have strong bargaining power in the trans-

portation market and can negotiate the delivery frequencies of the slow mode with

LSPs. The delivery frequency will then be an endogenous decision variable to be
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optimized, rather than an exogenous parameter. This entails further changes of

the MST model, e.g., the cost structure of the slow mode, and optimality deci-

sions of the fast mode. The approximation used in this article might not work,

and further solution methods are required. In Chapter 3 of the dissertation, we

discuss this type of MST model and propose an algorithm to solve it numerically.

The algorithm is established based on stochastic dynamic programming.

The scope of MST could be further broadened by incorporating multiple

products. The solution of the single–product model can be applied as a first

approximation for the multi–product problem by optimizing the modal split for

each individual product separately. However, this procedure does not fully capture

the advantages of multi–product management, e.g., when the demand for one

product drops, that of the others might still be adequate to fill in the slow mode.

The aggregated demand might have a lower coefficient of variation and drives

a pooling effect. The company could then reserve a pooled capacity in the slow

mode for all products, rather than booking capacities for each product separately.

The pooling effect might foster a larger modal split into the slow mode. Still, the

downside of the multi–product management is that the company needs to make

extra decisions in the allocation of products to the pool. Extra handling costs

will occur in the allocation operations, e.g., to pack, transit, declare, and load the

products with different sizes, weights and safety instructions. Additional data

and parameters are needed to further analyze the trade-off and profitability of

the multi–product problem.
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3.7 Appendix

3.7.1 Appendix A: Proof of Proposition 3.4.1

We take one cycle of two periods as the inventory review time unit. Because there

are no fast mode orders in the first period of a cycle, both the fast and slow modes

are utilized only once in a cycle, and S2 is the only order-up-to level in this model.

The demand of one cycle follows an i.i.d distribution with mean 2µ and standard

deviation
√

2σ. The dynamics of this inventory model are shown in Figure 3.14.

Figure 3.14: The overshoot in a cyclic inventory model

The overshoot of the cycle is explained as follows: denote as Ok,(Ok > 0)

the overshoot in cycle k, and the inventory position after the deliveries from both

modes and before the realization of demand is S2 + Ok. During the cycle, a

demand of 2ξ is realized, and the inventory is S2 +Ok−2ξ at the end of the cycle.

At the beginning of the next cycle, q arrives and the overshoot in the next cycle

is calculated in (3.23). Note that the overshoot recursion does not depend on any

inventory base stock levels.

Ok+1 = (Ok + q − 2ξ)
+
. (3.23)

As a comparison of the inventory system, we consider a GI/D/1 queue in

Figure 3.15, where the customer inter-arrival time t follows an i.i.d distribution

with mean µt and standard deviation σt, and the service time q is deterministic.

Assume that at time 0, customer k arrives and that her waiting time is wk

with wk > 0. The queue will be busy in the next time interval q + wk. In period

t, customer k+ 1 arrives. If t > q+wk, the next customer has zero waiting time;

if t 6 q + wk, he has to wait for a time interval of q + wk − t. Consequently, the
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Figure 3.15: The waiting time in a GI/D/1 queue

waiting time of this customer is:

wk+1 = (wk + q − t)+
. (3.24)

Comparing (3.23) with (3.24), the stochastic variables Ok and wk have analo-

gous recursion functions. Consequently, we can model the cyclic inventory model

as a GI/D/1 queue, where the demand 2ξ represents the inter-arrival time of cus-

tomers, the constant delivery q represents the service time, and most importantly,

the overshoot is the waiting time of the queue.

Kingman (1970) provides a bound for the expected waiting time of a general

GI/G/1 queue: E[w] 6 σ2
t

2(2µt−q) . The GI/D/1 queue and the cyclic inventory

model are connected by σ2
t = 2σ2 and µt = 2µ, and the expected overshoot at

the end of a cycle is then E[O∞,2] 6 σ2

2µ−q .

Substituting S̄2 = S2 + E[O∞,2] within (3.6) and calculating the first-order

derivative with respect to S̄2 gives h+hΦ(S̄2)− b(1−Φ(S̄2)), which implies S̄2 as

follows: S̄2 = Φ−1
(
b−h
b+h

)
. Therefore, the base stock level is S2 = Φ−1

(
b−h
b+h

)
−

E[O∞,2].

3.7.2 Appendix B: Proof of Proposition 3.4.2

Implement the following rule: for any (x, y) such that y > 0, (x + y)+ 6 x+ + y

and (x+ y)− 6 x−:

L1(S1 + E[O∞,1]) = hE [(S1 + E[O∞,1]− ξ)+] + bE [(S1 + E[O∞,1]− ξ)−]

6 hE [(S1 − ξ)+] + hE[O∞,1] + bE [(S1 − ξ)−] = L1(S1) + hE[O∞,1].

The parameter Π̂ in (3.12) can be approximated as:

Π̂ = ∆q + 2L(SB)− L1(S1)− hE[O∞,1]− L2(S2). (3.25)
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E[O∞,1] is approximated in (3.13): E[Ô∞,1] =
∫ S2+q−S1

0
(S2 + q − S1 −

ξ)φ(ξ)dξ, with
dE[Ô∞,1]

dq =
dE[Ô∞,1]
dS2

= −dE[Ô∞,1]
dS1

= Φ(S2 − S1 + q).

The first-order condition of (3.25) w.r.t. q is: dΠ̂
dq = ∆−hΦ(S2−S1 + q) = 0.

The first-order condition of (3.25) w.r.t. S2 is: dΠ̂
dS2

= −hΦ(S2 − S1 + q) −
(b+ h)Φ(S2) + b = 0.

The first-order condition of (3.25) w.r.t. S1 is: dΠ̂
dS1

= hΦ(S2−S1 + q)− (b+

h)Φ(S1) + b = 0.

Combine the conditions dΠ̂
dq and dΠ̂

dS2
: Ŝ2 = Φ−1

(
b−∆
b+h

)
.

Combine the conditions dΠ̂
dq and dΠ̂

dS1
: Ŝ1 = Φ−1

(
b+∆
b+h

)
.

Plug in Ŝ1 and Ŝ2 into the equation dΠ̂
dq = 0: q̂ = Φ−1

(
b+∆
b+h

)
−Φ−1

(
b−∆
b+h

)
+

Φ−1
(

∆
h

)
.
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Chapter 4

An inventory control model for

synchromodality: Structural

properties and optimal solution

Die Philosophen haben die Welt nur verschieden interpretiert; es

kommt aber darauf an, sie zu verändern. 1

– Karl Marx (1818-1883), German philosopher.

Abstract

In this chapter, we generalize the modal split transportation policy discussed

in Chapter 2 to provide additional support for companies to implement

synchromodality. The generalization is inspired by the practical insights of

synchromodality problems: 1) Rail transportation (the slow mode) gener-

ally exhibits economies of scale. We therefore incorporate the fixed cost

of the slow mode as an additional parameter and its delivery frequency an

additional decision variable in the model. 2) The inventory control at the

distribution center must not be fixed to a base stock policy and we hence

release this assumption. We obtain structural properties of the generalized

1 The philosophers have only interpreted the world in various ways. The point, however, is to
change it.
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model and design an algorithm to calculate the optimal decisions with mi-

nor computing effort using stochastic dynamic programming. In a numerical

study, we validate our solution algorithm, and analyze the sensitivity and

robustness of our modal split transportation model.

4.1 Introduction

In Chapter 3, we have discussed a Modal Split Transportation (MST) model

where the slow transportation mode (e.g., intermodal rail) delivers only half as

frequent as the fast transportation mode (e.g., direct trucking). This model could

fit for the practical case, e.g., fast mode delivers every workday of a week (except

Sundays) and the slow mode only delivers in Monday, Wednesday, and Friday. An

extension of the model is to allow the company to decide the delivery frequency of

the slow mode. In addition, the MST model studied in Chapter 3 imposes a strong

assumption of a base stock control at the distribution center, while in practice the

company could have more flexibilities in inventory management. Finally, it always

remains interesting to obtain optimal solutions rather than approximations.

In this chapter, we extend the model from Chapter 3 to support a company’s

modal split optimization. Our extension is tailored for transportation problems

by incorporating the following two practical aspects: 1) First, our MST policy

considers economies of scale of rail transportation. The fixed cost of rail trans-

portation is included as an additional parameter, and the delivery frequency of rail

transportation is incorporated as an additional decision variable. 2) Second, our

MST policy allows the company to exploit more flexibility of road transportation

by releasing the base stock control assumption.

The practical story behind our model is as follows: A company partners with

a rail carrier to operate a dedicated train connecting its plant with its distribution

center (DC). The main reason for the “in-house” transportation management

(instead of a complete outsourcing to third-party logistics service providers) is

that, this way the company has better controls of its transportation cost and

service level, and alignments between its transportation decisions and its holistic

supply chain management (CapGemini, 2016). A survey by Boston Consulting

Group (2015) reveals that up to 59% of the participated companies manage in-

house transportation. Whereas the cost of road transportation is almost linear in

the distance (Reis et al., 2013), the cost of rail transportation involves a substantial

fixed part associated with, e.g., locomotive and infrastructure spendings (The

World Bank, 2011; European Intermodal Association, 2012). On the other hand,
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the company has the freedom to decide the delivery quantity and frequency of

the train. The essential advantage of operating a train connection is the low

unit cost to transport a container (provided that the train has a high fill rate),

whereas the major disadvantages are its long lead time, and inflexibility in delivery

quantity and frequency, as a result of the scale required to fill the train and

make rail transportation cost-competitive. In order to foster the strengths and

circumvent weaknesses of rail transportation, the company wants to commit a

constant delivery quantity every time the dedicated train operates over a mid-

term time horizon. For example, every Monday in the year 2017, the train delivers

30 containers from the plant to the DC. In fact, to ship a stable freight using rail

transportation is already a well-accepted principle in industry (Groothedde et

al., 2005). Besides its cost advantage, other benefits from the fixed quantity

commitment are: 1) When a batch is shipped out cyclically from the plant, a

batch with the same quantity will arrive in the DC cyclically. The company

can, therefore, eliminate the need to consider the lead time of the train (see, e.g.,

Baumol and Vinod, 1970; Allon and Van Mieghem, 2010). 2) A fixed flow of the

shipment allows the company to level and smooth its production, and therefore

acquires savings from stabilized material flow and labor requirements.

Whereas the model in Chapter 3 extends the classical tailored base-surge

(TBS) policy in the dual-sourcing literature by incorporating different delivery

frequencies of the two modes, the model in this chapter further extends the TBS

policy by allowing any arbitrary delivery frequency of the slow mode and any ar-

bitrary inventory control at the distribution center. However, even a simple TBS

policy is not amendable to exact analysis (Allon and Van Mieghem, 2010; Xin

and Goldberg, 2016). Previous relevant studies, e.g., Janssen and de Kok (1999),

Allon and Van Mieghem (2010), Janakiraman et al. (2014), and Chapter 2 of the

dissertation, exclusively rely on approximations. We obtain the exact optimal

solution with minor computing effort for MST, an extended TBS problem with

additional parameter and decision variable. The solution process is established

on managerial insights and structural properties of the MST problem. The MST

problem (and also, as a special case of MST, the TBS problems) is a two-stage

optimization problem, where the company first tactically commits the delivery

quantity and frequency of rail transportation over a mid-term time horizon, and

then adjusts its operational decisions in road transportation every period. As

a consequence, the solution process of the MST problem consists of two stages,

but in an inverse order, first road then rail. Traditionally, dual-sourcing models

are known to be complex due to the simultaneous usage of two sources/modes.
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We find that “dual-sourcing” models with MST (or TBS) settings can be decou-

pled into two “single sourcing” problems, that can be solved sequentially and the

problem complexity is hence substantially reduced. We then show that, although

the assumption of the base stock control of the road transportation is released,

its optimal policy indeed has a base stock structure. An infinite-horizon stochas-

tic dynamic programming (SDP) problem is then used to obtain the base stock

levels in the steady state. We find that, if the MST model is studied as a periodic-

review inventory system, the base stock levels in the steady state do not converge

to a single value. This is because the cost-per-period function in the SDP model

depends on whether or not rail transportation delivers in that specific period,

and the period-review system is hence not stationary. Nevertheless, if the MST

model is studied as a cyclic-review inventory system, with a cycle being the peri-

ods between two rail transportation deliveries, the “base stock vector” consisting

the base stock levels in a cycle converges in the steady state. After obtaining

the optimal base stock control of road transportation in the steady state, the

SDP algorithm can be replaced with simulation-based optimization to calculate

the optimal rail transportation decisions, and the computing effort is significantly

reduced.

Supported with the aforementioned solution technique, we then contribute

to the dual-sourcing TBS (MST) literature by offering a detailed numerical study

using the numbers suggested by a company. We find that the fixed cost of the

rail transportation is the main driver of its delivery frequency, which further

impacts its constant delivery quantity per delivery cycle. The optimal delivery

frequency and quantity of the rail transportation then impact the company’s daily

adjustment in road transportation deliveries. The sensitivity and robustness of

the MST model are also presented.

The rest of this chapter is structured as follows: Section 4.2 reviews the lit-

erature. Section 4.3 formulates the model and Section 4.4 analyzes the optimal

solution of the MST policy. Section 4.5 reports the numerical validation. Sec-

tion 4.6 discusses possible extensions of the model and Section 4.7 concludes the

chapter.

4.2 Relevant literature

Over the years, an extensive body of literature (see, e.g., Bontekoning et al.,

2004; McKinnon, 2015) has discussed the shift of freight volume from road to rail

transportation, and its corresponding economic and environmental importance.
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These discussions establish the basis of our study. Furthermore, two streams of

literature are of immediate relevance to our study: the transportation literature

that studies freight mode choice based on the total logistics (transportation and

inventory) costs approach, and the inventory literature on dual-sourcing. The

first stream of literature aligns with that discussed in Section 3.2.

The second stream of literature that is most closely related to our MST

problem have a tailored base-surge (TBS) setting, where the slow supplier always

delivers a constant “Base” quantity, and the fast supplier responds to the demand

“Surge” and delivers variable quantities following a base stock policy. The main

reason for the constant “Base” delivery is that it allows focusing on the cost ef-

ficiency of the slow supplier with a stable flow. Allon and Van Mieghem (2010)

find that TBS policy is not amendable for simple analysis and the major complex-

ity arises from the assessment of “overshoot”: Because the slow supplier always

pushes a constant quantity to the company, it is possible that the inventory posi-

tion, after the delivery from the slow supplier, exceeds the base stock control level

of the fast supplier. The excessive inventory is defined as overshoot. An early

dual-sourcing model with TBS settings from Rosenshine and Obee (1976) allows

the company to sell part of the excessive inventory back to the supplier to avoid

the overshoot. They propose a heuristic approach to solve the model. Chiang

(2007) studies the same model and obtains the optimal solution using dynamic

programming. Later studies on TBS models release the inventory sell-off assump-

tion and focus on overshoot assessment. Janssen and de Kok (1999) find that the

overshoot is analogous to the waiting time of a GI/G/1 queue, and estimate it

numerically. Combes (2011) uses simulations to estimate the mean and standard

deviation of overshoot, which further result in approximate numerical solutions of

the model. Allon and Van Mieghem (2010) and Janakiraman et al. (2014) obtain

approximate analytic expressions of overshoot in continuous- and discrete-time

models respectively, and find approximate solutions of their TBS models with

simple formulae. Dong et al. (2017a) study an extended TBS policy with the fast

supplier delivering two times more frequent than the slow supplier, and obtain ap-

proximate solutions. Arts et al. (2011) and Klosterhalfen et al. (2011) use Markov

chain to simulate the overshoot. Boute and Van Mieghem (2015) circumvent the

determination of the overshoot by using a linear control policy to replenish both

the slow and fast mode, which is analytically tractable under normally distributed

demand.

Our model generalizes the TBS policy (without inventory sell-off) by intro-

ducing a fixed cost in the slow supplier, adding an extra decision in its delivery
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frequency, and releasing the assumption of the base stock control of the fast sup-

plier. Furthermore, we obtain the optimal solution with minor computing effort.

Our approach does not require a characterization of overshoot.

4.3 Model formulation

A distribution center (D) periodically orders from a manufacturing plant (P)

with unlimited capacity. The demand at D is denoted as ξ and is assumed to

follow i.i.d. distribution with mean µ and standard deviation σ. The cumulative

distribution function (CDF) Φ(·) and probability density function (PDF) φ(·)
are both known. We focus on the steady state by analyzing an infinite-horizon

problem. The reasons are: 1) The decision in delivery quantity and frequency of

rail transportation is a commitment enduring over a long period, so that there

is indeed a large number of periods in the model. 2) The analysis of an infinite-

horizon problem often leads to simple and insightful decision policies that are

favored by practitioners (Bertsekas, 2005). Time is discrete, represented as t =

1, 2, ..., T .

Two transportation modes are available: a fast mode (road transportation)

with short delivery notice and a slow mode (rail transportation) that requires

a longer lead time. We restrict the lead time of the fast mode to be zero be-

cause of model tractability. Transportation using the fast mode incurs a variable

cost cf per delivery unit. When the same unit is shipped via the slow mode, a

lower variable cost cs with cs 6 cf is incurred, with an additional fixed cost K

per delivery which is independent of the delivery volume. Note, both cf and cs

represent not only the traditional transportation fee paid to the relevant logistic

service providers, but also account for all costs incurred in the end-to-end delivery

process, such as customs, duties, cost of capital due to pipeline inventory, etc.

While the fast mode has the flexibility to deliver any unit zt as required in t,

the slow mode delivers a fixed quantity q every n periods over the entire horizon.

Because a constant quantity q is always shipped from P to D every n periods, the

lead time of the slow mode can then be ignored (see, e.g., Allon and Van Mieghem,

2010). To cope with the frequency of the slow mode, we define a delivery cycle as

follows: a cycle consists of n periods with q arriving in the first period. Without

loss of generality, we assume that the first slow mode shipment arrives in period

t = 1 and T is a multiple of n.

Denote xt the net starting inventory at the beginning of period t. After the

deliveries from the fast and slow modes (if t is the starting period of a cycle),
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demand is realized. At the end of the period, excessive inventory is kept at a

unit holding cost h, and unmet demand is backordered to the next period at a

unit backorder cost b. Denote ft(xt) the optimal value function in t with starting

inventory xt, i.e., the minimal expected total costs from period t until T . When

the slow mode controls (q, n) are committed over the entire time horizon, the

Bellman equation solving for the optimal fast mode control zt can be expressed

as follows:

ft(xt|q, n) =
min
zt>0

{
cfzt + csq +K + L(xt + zt + q) + E [ft+1 (xt+1|q, n)]

}
q arrives in t,

min
zt>0

{
cfzt + L(xt + zt) + E [ft+1 (xt+1|q, n)]

}
otherwise,

(4.1)

where L(y) = h
∫ y

0
(y− ξ)φ(ξ)dξ+ b

∫∞
y

(ξ− y)φ(ξ)dξ, the one period expected in-

ventory mismatch cost. The infinite-horizon problem is studied by truncating the

number of periods to T and subsequently letting T →∞. For simplicity reasons

it is assumed that at the end of the horizon, any excessive/backorder inventory in

period T +1 is discarded, i.e., fT+1 = 0. This is a reasonable assumption because

the terminal value function fT+1 only has a diminishing influence on the system

in the long run (Karlin et al., 1958). Given fT+1, the optimal value function in

period T is:

fT (xT |q, n) =


min
zT>0

{
cfzT + csq +K + L(xT + zT + q)

}
q arrives in T ,

min
zT>0

{
cfzT + L(xT + zT )

}
otherwise.

(4.2)

Obviously, the formation and value of ft depend on whether or not the slow

mode delivers in t. This indicates that the optimal delivery quantity of the fast

mode z∗t might be period-dependent. In addition, z∗t might also depend on the

starting inventory position xt in period t: With a minor inventory position at the

beginning of period t, for example, the company tends to respond with larger fast

mode shipment in order to avoid unmet demand. Considering that T → ∞ and

xt is a stochastic variable, the total computing effort spent on obtaining z∗t (xt)

might be substantial. Previous literature studying models with a TBS setting,

such as Janssen and de Kok (1999), Allon and Van Mieghem (2010), Janakiraman

et al. (2014), and Dong et al. (2017a), exclusively focus on approximations instead

of exact optimal solutions.

After solving for z∗t (xt) and f1(x1) by recursively iterating (4.1) and (4.2),
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the company then decides the optimal q and n that minimizes the average total

costs per period in the steady state. The objective function of MST policy is:

Cq,n(x1) = lim
T→∞

1

T
f1 (x1|q, n) . (4.3)

The optimal decision variables are the optimal delivery quantity q∗ and fre-

quency 1/n∗ (or the optimal delivery cycle n∗) of the slow mode, and the optimal

delivery quantities z∗t of the fast mode in t.

The problem setting of MST (and also the TBS policy) reveals a two-stage

optimization problem: The company first makes the tactical decision by com-

mitting the delivery quantity and frequency of the slow mode over a mid-term

horizon, then it makes operational decisions and determines the optimal delivery

quantity in the fast mode every period.

4.4 Analysis on the optimal policy

It is not cost-efficient for the company to use the slow mode only. Given its

inflexibility in delivery quantity and schedule, the optimal decision in the slow

mode is to ship the average demand each cycle, i.e., q = nµ. In order to satisfy

stochastic demand using deterministic supply, significant inventory is needed to

secure a required service level. The inventory required grows to infinite when t

approaches to infinite. If cs > cf , it is optimal for the company to use the fast

mode only because the slow mode is neither cheaper nor more flexible in delivery

quantity and frequency. This problem is then degenerated to a single-sourcing

problem and it is already known that a base stock policy is optimal with the

order-up-to level SB = Φ−1( b
b+h ) (Arrow et al., 1958).

When both the fast and the slow modes are simultaneously used, the MST

is a two-stage decision problem: the tactical decision stage in which the delivery

quantity and frequency of rail transportation are committed over a mid-term time

horizon, and the operational decision stage in which the delivery quantity of road

transportation is adjusted on a daily basis. Consequently, the solution process of

the MST problem can then be decoupled into the following three steps:

(i) Given the fixed delivery cycle n and quantity q of the slow mode, obtain

the corresponding optimal delivery quantities z∗1(q, n), z∗2(q, n), ..., z∗T (q, n)

of the fast mode by minimizing f1(x1|q, n).

(ii) Given the fixed delivery cycle n of the slow mode, obtain the corresponding

optimal delivery quantity q∗(n) of the slow mode by minimizing f1(x1|q).
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(iii) Find the optimal delivery cycle n∗ of the slow mode so as to minimize f1(x1).

Step 1 represents the operational decision stage and steps 2 and 3 solve for

the optimal controls of the tactical decision stage. Traditionally, dual-sourcing

inventory models are known to be complex because it involves a simultaneous de-

cision making of two trade-off supply sources. We show, however, in the MST (as

well as TBS) dual-sourcing model, the decisions on two different supply sources

(transportation modes) are separately planned in different levels: one tactical and

the other operational. The solution process can then be divided into a sequen-

tial optimization of three subproblems. We next illustrate the solutions of the

subproblems separately.

4.4.1 The optimal operational decision of the fast mode

The operational decision stage solves for the optimal policy of the fast mode

deliveries, given fixed delivery quantity q and delivery cycle n of the slow mode.

Theorem 4.4.1. (PROPERTIES OF THE OPERATIONAL DECISION STAGE)

For any given delivery quantity q and delivery cycle n of the slow mode, the op-

timal controls of the fast mode have the following properties:

(a). (BASE STOCK STRUCTURE) A base stock policy is optimal in each

period t.

(b). (BOUNDS ON BASE STOCK LEVELS) The base stock level in period

t, denoted as Yt, is upper–bounded by SB = b
b+h , the classical order-up-to level in

the fast-mode-only single sourcing problem.

(c). (PROPERTY ACROSS CYCLES) If the delivery cycle of the slow mode

has more than one period and t is the last period of a cycle, the base stock level

in the first period of the next cycle satisfies the inequality: Yt+1 6 Yt + q.

(d). (PROPERTY INSIDE A CYCLE) if the delivery cycle of the slow mode

has more than one period and t is the last period of a cycle, the base stock levels

of the other periods of the same cycle satisfy the following inequalities: Yt−n+1 >

... > Yt−1 > Yt.

The Appendix provides detailed proofs to the theorem. Here we offer first

explanations of the theorem. When q and n are both fixed, the MST model

is analogous to the classical single sourcing (with the fast mode only), dynamic

inventory model with deterministic changes every cycle as follows: In the first

period of each cycle, a fixed term of (cf −cs)q−K (the transportation cost saving

from using the slow mode) is subtracted from the objective function, and a fixed
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term of q (because the slow mode already delivers q units of the product, the use of

the fast mode is aimed to satisfy a smaller demand) is subtracted from the random

demand ξ. These two deterministic changes are not relevant for the optimal fast

mode controls. The optimality of a base stock policy remains valid in the case of

a general distribution of demand (Arrow et al., 1958, p. 110). As a result, the

optimal policy should remain a base stock type. This explains (a) of Theorem

4.4.1. The size of the base stock level is a direct reflection of the uncertainty of the

demand in an inventory system. In an MST problem with a simultaneous usage

of two modes, this uncertainty is shared between two transportation modes and

the base stock levels of the fast mode, being one of the two models, is therefore

smaller than SB . This explains (b) of Theorem 4.4.1.

The cyclic delivery of q acts as cycle stock of the inventory system. When

the cycle stock arrives in t + 1, the probability of replenishing extra inventory

from the fast mode is low. This is the reason why the base stock control Yt+1 of

the fast mode should be upper-bounded by a value positively related to q, which

is illustrated in (c). If the company is at the end of a cycle (period t) and knows

that q will arrive in the next period, it prefers to place a small order in the fast

mode because any excessive inventory at the end of a cycle tops up the cycle stock

of the next cycle, and possibly increases the holding cost of all periods of the next

cycle. An excessive inventory at the end of the previous period t − 1 could also

increase the cycle stock in the next cycle, but not so directly as that in period t.

This clarifies why Yt−1 should be no less than Yt, and thereafter, (d) of Theorem

4.4.1.

Theorem 4.4.1 demonstrates that, although a base stock policy is not im-

posed, the optimal control of the fast mode in MST (fast source in TBS), given

that the optimal control of the slow mode (slow source) is fixed, indeed follows

a base stock control. The existence of an optimal base stock policy allows for a

solution of the SDP from “value iteration”, i.e., solving for z∗t (xt), to “policy it-

eration”, i.e., solving for Yt. Recall the Bellman equation (4.1), the state space of

the SDP problem in period t consists of all possible values of inventory position xt

at the beginning of t, and the action space includes all possible fast mode delivery

quantities zt in t. The solution of the SDP requires a search for z∗t (xt) for all xt,

with t ranging from 1 till T . Significant computing effort is needed. With the

results from Theorem 4.4.1, the solution of the SDP problem shifts from finding

numerous values of z∗t (xt) to a single target: the base stock level Yt in t. Yt is

independent on the starting inventory xt. The more general notation indicating
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this policy iteration of the SDP problem is then:

ft(xt|(q, n)) = inf
Yt
{rt (xt, Yt) + E [ft+1 (xt+1|q, n)]} , (4.4)

where rt(xt, Yt), the cost-per-stage function, represents the total transportation

and inventory costs in period t when applying policy Yt and the later term is the

value-to-go function.

One stage of the SDP problem is now equivalent to one period. Comparing

(4.1) with (4.4), the cost-per-stage function is then:

rt(xt, Yt) ={
cf (Yt − xt − q)+ + csq +K + L(xt + (Yt − xt − q)+ + q) q arrives in t,

cf (Yt − xt)+ + L(xt + (Yt − xt)+) otherwise,

(4.5)

where (Yt−xt−q)+ and (Yt−xt)+ indicate the fast mode delivery quantities by fol-

lowing the base stock decision policy Yt. Apparently, depending on whether or not

the slow mode delivers in t, rt does change from stage to stage. This violates the

condition mentioned in (Bertsekas, 2005, p. 402), and the corresponding infinite-

horizon periodic review inventory system is therefore not stationary. In pursuit

of a stage-independent cost-per-stage function, we study the same MST model as

a cyclic review inventory system. Denote τ the starting period of a cycle, and Ỹτ

the decision policy of the cycle with n periods, i.e., Ỹτ = (Yτ , Yτ+1, ..., Yτ+n−1),

(4.4) can then be rewritten as:

fτ (xτ |(q, n)) = inf
Ỹτ

{
r̃τ

(
xτ , Ỹτ

)
+ E [fτ+n (xτ+n|q, n)]

}
. (4.6)

One stage of the SDP problem is then one cycle with n periods, and the

corresponding cost-per-stage function is:

r̃τ (xτ , Ỹτ ) = cf (Yτ − xτ − q)+ + csq +K + L(xτ + (Yτ − xτ − q)+ + q)

+ E

n−1∑
j=1

[
cf (Yτ+j − xτ+j)

+ + L(xτ+j + (Yτ+j − xτ+j)
+)
] ,

(4.7)

where xτ+1 = xτ + (Yτ − xτ − q)+ + q − ξ, xτ+2 = xτ+1 + (Yτ+1 − xτ+1)+ − ξ,
and so on. According to Bellman’s “Principle of Optimality”, an optimization

of the SDP problem over the entire time horizon can be broken down into a

sequential optimization of subproblems. In equation (4.4), a subproblem is a
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periodic problem, whereas in (4.6), a subproblem represents a cyclical problem.

The solution of the SDP will then focus on cyclic rather than periodic results.

Now the system equation (4.6), the cost-per-stage function (4.7), and the

random disturbance, represented by the i.i.d. demand ξ, do not change from one

stage (cycle) to the next. According to (Bertsekas, 2005, p. 402), the cyclic-

review inventory system is stationary. We denote the “base stock vector” in the

steady state of the infinite-horizon problem S = (S1, S2, ..., Sn). The optimal MST

decision in the operational decision stage is then simplified to find the optimal S,

for any given (n, q).

Until now, the analysis in this section only secures the existence of a base

stock policy of the fast mode. In order to obtain the exact values, stochastic

dynamic programming (SDP) is required. The state space of the SDP is defined

as all possible values of inventory position xt at the beginning of period t and the

action space is defined as all possible fast mode order quantity zt in this period.

The objective of the SDP is to obtain the optimal decision rule in the steady state

cycle, denoted as the base stock vector S(S1, S2, ..., Sn).

4.4.2 The optimal tactical decision of the slow mode

In order to calculate the optimal decisions of the slow mode, the objective function

(4.3) requires an evaluation of 1
T f1(x1|n, q) with T → ∞. Although the conver-

gence of the optimal policy of an infinite-horizon SDP problem, i.e., in our case

S(S1, S2, ..., Sn), is often “surprisingly short”(Veinott, 2008), the convergence of

the optimal value 1
T f1(x1|n, q) requires more iterations. The computing effort of

the SDP increases exponentially in the number of iteration, and leads to “curse

of dimensionally”.

We propose a simulation-based optimization to solve for the optimal decisions

of the slow mode efficiently. The algorithm works as follows: After we backwards

iterate the inventory system using SDP and obtain the optimal decision policy

of the fast mode S(S1, S2, ..., Sn) with a given (n, q), we forwards simulate the

inventory system from period 1 till T and calculate f1(x1|n, q). Comparing the

value of f1(x1|n, q), the optimal n∗ and q∗ can be obtained. This simulation-

based optimization involves two steps: first to obtain q∗(n) by a given n, and

then to obtain n∗. For simplicity reasons, we assume the system starts with zero

inventory, i.e., x1 = 0. For the relationship between f1(x1|n, q) and q, we obtain

the following theorem:

Theorem 4.4.2. (PROPERTY OF THE TACTICAL DECISION STAGE): For
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any given delivery cycle of the slow mode n, the average total cost per period in

the steady state, stated in (4.3), is convex in the delivery quantity of the slow

mode q.

The utilization of the slow mode has two trade-off impacts. On the one hand,

it reduces the total transportation cost for each unit of product shifted to the slow

mode; on the other hand, the fixed delivery quantity weakens the flexibility of the

MST policy and brings extra inventory cost into the system. This trade-off drives

the convexity of f in q. Based on this theorem, a bisection search over q (q

is upper-bounded by nµ because the slow mode can not supply more than the

expected demand in a cycle) is possible to reduce the computing effort of the

numerical solution.

The last step of the optimal MST policy is to search for the optimal delivery

cycle of the slow mode. This is the final outer loop of the entire MST algorithm,

outside of the middle loop (bisectional search for the delivery quantity of the slow

mode), and the inner SDP (searching for the optimal base stock levels of the fast

mode). Because the delivery cycle of a rail transportation is practically a small

integer, e.g., the rail transportation delivers once every two days (n = 2), or at

least once per week (n = 7), an enumeration of all possible integers is sufficient

to search for the optimal delivery cycle.

4.5 Numerical analysis

In this section, we conduct a numerical study to illustrate the modal split trans-

portation problem based on our solution algorithm discussed before. The objec-

tive of this numerical study is to answer two questions: 1) How can our model and

algorithm be implemented to support companies’ modal split transportation op-

timizations? 2) How sensitive/robust is our MST policy against the uncertainties

of parameters?

4.5.1 Numerical design

In order to preserve commercial confidentiality, we do not use real data from any

specific company. Instead, we use realistic industry-level values in the model. We

then appoint uncertainties of the different parameters in a sensitivity analysis.

Since the volume of freight transportation is measured and the corresponding

transportation cost is paid at the standard unit of a full container load (FCL),

we set FCL as the basic unit of our model. One FCL is equivalent to the volume
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loaded in a standard 45-foot container, a full truck load, or a full railcar load. The

demand in the model is assumed to follow a gamma distribution with µ = 30 and

σ = 10. The company pays cf = 550 EUR to transport one FCL from plant (P)

to distribution center (D) via road transportation. Based on data from European

Intermodal Association (2012), to transport one FCL using rail transportation

incurs a variable cost of cs = 224 EUR, and the fixed cost of the train operation,

regardless of the volume delivered, is K = 8170 EUR. The inventory holding cost

includes the storage and handling spending incurred in the warehouse, as well

as the cost of capital, i.e., by holding the inventory on hand, the company loses

the opportunity to use the capital linked to the inventory for other investments.

The general “rule of thumb” is that the annual inventory holding cost is 25% of

the stock value. Given that the average value of an FCL cargo is assumed to

be about 100,000 EUR, h = 100000/365 · 25% = 68 EUR. The company keeps

a non-stockout probability of 98%. The unit backorder cost b is hence set to

be 49h = 3332 EUR, indicating the non-stockout probability calculated by the

newsvendor ratio is b/(b + h) = 98%. The company operates the train with the

least frequency of once per week, i.e., n should not exceed seven. A list of the

parameters is shown in Table 4.1.

Table 4.1: A list of the parameters used in the model with normalized values.

Notation Description Value Unit

µ Mean of demand 30 FCL

σ Standard deviation of demand 10 FCL

α Service level 98% pct

h Unit holding cost at the DC 68 EUR per FCL per day

b Unit backorder cost at the DC 3332 EUR per FCL per day

cf Unit transportation cost via the fast mode 500 EUR per FCL

cs Unit transportation cost via the slow
mode

224 EUR per FCL

K Fixed transportation cost via the slow
mode

8170 EUR per train

On the basis of the calibrated parameters, we validate our algorithm and

illustrate the drivers of the optimal road and rail transportation decisions. Our

efficient algorithm allows applying a sensitivity analysis of the MST policy, in

which the impact of demand volatility, service level, cargo value, and transporta-

tion cost savings are analyzed. Finally, we show if the MST policy is already

being applied, how robust is the whole system against exogenous noises. The

noises are categorized into two types: 1) on the operational level, the misspec-
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ifications of base stock controls of road transportation. 2) on the tactical level,

the mismatch of fixed rail transportation decisions over time and the fluctuating

demand volatility.

4.5.2 Numerical results

On the basis of the benchmark parameters, our algorithm finds that the optimal

modal split transportation operates as follows: A train delivers a fixed quantity

of q∗ = 81 FCLs every n∗ = 3 days, and trucks deliver to bring the inventory level

to S1 = 54, S2 = 54 and S3 = 45 in the three periods of a cycle. Note, the base

stock levels are also measured in the unit of FCL, representing the corresponding

amount of inventory that can be loaded into the containers. Under this policy,

the optimal volume split in rail transportation is 90%. The ratio aligns with the

findings in Chapter 3 that the volume shifted to the slow mode is high. The

total computing effort using a laptop with i5-3320 CPU, 4GB RAM, and 64-bit

Windows 7 Professional, is 39 seconds.

Figure 4.1 shows the values of S1, S2, and S3 calculated by the SDP algorithm

in the first six cycles of iteration, when the optimal delivery quantity q and delivery

cycle n of the rail transportation are fixed. The optimal policy, i.e., the base stock

vector (S1, S2, S3), converges and the convergence process is surprisingly short.

Figure 4.1: The convergence of the base stock controls of road transportation

The impact of the rail transportation delivery quantity q on the base stock

controls of the road transportation is shown in Figure 4.2. When more volume is

shifted into rail transportation, the road transportation will be less utilized via
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reduced base stock control levels. Nevertheless, the base stock level in the last

period of a cycle, in this case S3, is more sensitive to q compared to the previous

periods. This is because of the cyclical arrival of q acts as cycle stock for the

inventory system. Any excessive inventory at the last period of a previous cycle

(in this case period 3) will top up the cycle stock of the next cycle, and possibly

leads to higher inventory holding costs for every period of the next cycle.

Figure 4.2: The impact of delivery quantity of rail transportation on the base
stock controls of road transportation

The delivery cycle n of rail transportation impacts the base stock controls

of road transportation indirectly via its delivery quantity q. The curve in Figure

4.3 shows that q increases in n: when the size of the cycle increases, the company

could order a larger q via the rail transportation to satisfy the demand of more

periods of a cycle. Nevertheless, the curve indicates that q increases in n with a

decreasing margin. This is because the larger the cycle stock linked to q is, the

more inventory holding cost will be generated in the cycle, which will offset the

transportation cost savings from the use of rail transportation.

Thus far, we have validated the impact of the rail transportation decisions

on the road transportation controls. Figure 4.4 shows that the main driver of the

optimal rail transportation decision is its fixed cost K. The larger the fixed cost

is, the less frequent the company wants to use rail transportation. The three-stage

optimization problem addressed in Section 4.4 is therefore numerically validated:

The fixed cost of rail transportation drives its delivery cycle and quantity, and the

delivery cycle and quantity of rail transportation impact the base stock controls

of road transportation. In practice the company could collaborate with other

shippers to fill in the empty wagons of the train on the same corridor, the fixed
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Figure 4.3: The impact of rail transportation delivery cycle n on its delivery
quantity q

cost of the slow mode is shared and K in the MST model is reduced. On the

other hand, the company could also expect an increase in K due to e.g., extra

maintenance or toll charges of railway infrastructures. Our analysis reveals that

the change in K is particularly important because they will tactically impact the

entire decision of both rail and road transportation controls.

Figure 4.4: The impact of the fixed cost of rail transportation to the delivery
cycle of rail transportation

In the classical inventory theory with one single supplier, the introduction of

a fixed cost changes the optimal base stock policy to an (s, S) policy (see, e.g.,

Arrow et al., 1958). In the dual-sourcing MST problem, the fixed cost of rail

transportation impacts its optimal delivery frequency. Nevertheless, the impact

of the fixed cost in both cases is similar: the fixed cost encourages economies of
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scale so that the company will decrease the number of orders placed, and increase

the average ordering quantity. Previous literature in TBS models, e.g., Allon and

Van Mieghem (2010), Janakiraman et al. (2014), and Dong et al. (2017b), did not

address the impact of the fixed cost K, partly because the introduction of the

fixed cost term will make the model intractable via analytic approximation. Our

study, however, fills this gap by proposing an algorithm to calculate the optimal

numerical solutions with minor computing effort.

4.5.3 Sensitivity analysis

We conduct four different analyses to understand how sensitive the MST results

are against the coefficient of variation (CV) of demand, the service level of the

inventory system (represented by the unit backorder cost b), the value of the cargo

shipped (associated with the unit holding cost h), and the variable transportation

cost saving of rail over road (cf − cs). The performance measurement is twofold:

1) The optimal delivery cycle n∗ of rail transportation, because it is already shown

in Section 4.5.2 that the delivery cycle of rail transportation is the major driver of

its delivery quantity, and consequentially impacts the base stock controls of road

transportation. 2) The modal split ratio in rail transportation, i.e., q∗/(n∗µ), be-

cause shifting volume from road to rail transportation is companies’ key objective

of implementing MST.

The previous baseline model was based on the demand with CV 0.3, which is

a typical ratio of a fast-moving SKU in the industry. A transfer of the knowledge

in MST requires analyses for other classes of SKUs, and the SKUs are typically

classified under the criteria of CV (see, e.g., Van Kampen et al., 2012). Figure

4.5 shows that when the demand is more volatile, the modal split ratio in rail

transportation decreases because the company needs to increase the flexibility of

the MST system by a higher usage of road transportation. Figure 4.6 shows that

the optimal delivery cycle increases in CV, indicating that rail transportation is

less frequently used.

The service level of the inventory system might vary across industries, and

hence impacts companies’ decision in MST. The service level in our model is

measured as the in-stock probability, presented by the newsvendor ratio b
b+h .

Table 4.2 shows the optimal MST decisions when the service level changes from

60% to 99.5%. Interestingly, the optimal delivery cycle and delivery quantity of

rail transportation remain unchanged, and the company merely needs to increase

its optimal base stock controls of road transportation facing a higher service level.
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Figure 4.5: The impact of CV on the
optimal modal split ratio in rail trans-
portation

Figure 4.6: The impact of CV on the
optimal delivery cycle of rail transporta-
tion

The results again address the advantage of the setup of our MST policy: It allows

comopanies to capture the responsiveness of the transportation system by using

road transportation, and to focus on cost savings of the transportation system by

using rail transportation. A change of the service level therefore only impacts the

decisions on the road transportation.

Table 4.2: The impact of service level on the optimal controls of rail and road
transportation

Service Level n∗ q∗ S1 S2 S3 C

60% 3 81 30 29 8 12023
70% 3 81 34 33 14 12430
80% 3 81 38 37 22 12736
90% 3 81 43 43 32 13339
95% 3 81 48 48 38 13681
98% 3 81 54 54 45 14082
99% 3 81 58 58 49 14317
99.5% 3 81 62 62 54 14544

The product value might influence the companies’ MST decisions. In our

model, the product value indirectly impacts the MST decisions via its unit hold-

ing cost h, i.e., the annual average holding cost is measured as 25% of the prod-

uct value. Figure 4.7 shows that when the product value increases, the company

prefers to use more road transportation compared to rail transportation. A trans-

portation mode with a higher service level (in this case, road transportation), is

favored for deliveries of high-value products. Figure 4.8 shows that the higher

the product value, the less frequent the usage of the “low service” transportation

99



4.5. Numerical analysis

mode (in this case, rail transportation).

Figure 4.7: The impact of the product
value on the optimal modal split ratio in
rail transportation

Figure 4.8: The impact of the product
value on the optimal delivery cycle of rail
transportation

Whereas the cost of road transportation is rather straightforward, the cost of

rail transportation is often lumpy and highly dependent on the specific corridors

(European Intermodal Association, 2012). We therefore fix the unit cost of road

transportation cf , and observe how the MST decisions will behave when the unit

cost of rail transportation cs changes. Figure 4.9 shows that when cs approaches

zero, the optimal ratio in rail transportation is close to 100%; when cs = 0, the

corresponding ratio is zero; and the curve decreases in cs. However, the curve

is flat until a certain threshold and then quickly drops to zero. In this specific

example, this interesting threshold is around cs being approximately 70% of cf . To

the left of this point, even if the cost savings increase substantially, the incremental

modal split into rail transportation is moderate; to the right of this point, the

modal split ratio will decrease significantly when cs increases. The identification

of this point could help companies better utilize the MST policy and promote the

modal shift into rail transportation. Figure 4.10 shows that the optimal delivery

cycle of rail transportation remains stable until approximately cs = 70% of cf ,

and then surges to infinite: when the cost savings of rail transportation is subtle,

the company needs to have a very large (approaches to∞) delivery cycle to secure

the economies of scale of rail transportation.

4.5.4 The robustness of the modal split transportation model

When the MST policy is already implemented by the company, exogenous noises

might impact its performance. We distinguish between two types of noise: 1) On
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Figure 4.9: The impact of transporta-
tion cost savings on the optimal modal
split ratio in rail transportation

Figure 4.10: The impact of transporta-
tion cost savings on the optimal delivery
cycle of rail transportation

the operational level, managers might misspecify the base stock controls of road

transportation. 2) On the tactical level, the pre-fixed delivery cycle and quantity

of rail transportation over a mid-term period might not be able to match the

posterior changes in demand uncertainties. These noises impact the robustness of

the MST policy. The performance measure of the robustness is the error in the

average total cost of a steady state period.

Since the base stock controls in a steady state cycle differ from each other, it

is reasonable to presume that the exact position of the base stock misspecification

in a cycle will impact the performance of the MST policy. In order to better un-

derstand the impact of the position, we consider a large cycle with seven periods,

i.e., n = 7. Figure 4.11 illustrates how the misspecifications of the seven base

stock levels lead to errors in average total costs per period. When a misspecifica-

tion of 100% happens in the first period of a delivery cycle, the inventory system

is hardly affected. However, if the misspecification happens in the seventh period

of a cycle, the cost error could be close to 10%.

After the delivery of quantity q from the rail transportation in the first period

of a cycle, the company is less likely to replenish its inventory via the fast mode to

satisfy the demand in this period. This is the reason that a misspecification of the

base stock control of the road transportation hardly impacts the total costs of the

MST system. The fixed delivery quantity of the rail transportation q acts as cycle

stock in the inventory system. In the later periods of a cycle when the cycle stock

is depleted, more and more volume is hence needed from road transportation

to satisfy the demand. This explains the finding that when a misspecification

happens in later periods, the consequence is more severe. Operational managers
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Figure 4.11: The impact of base stock level misspecifications on the average total
costs per period

can practically “be lazy” and do not place any order via the road transportation

in the periods when the train delivers, and only work with the fast mode in the

period without train deliveries.

This result also provides additional help in the technical solution of the MST

problem. One of the reasons for the considerable computing effort of the model is

that there are n different base stock targets to be solved. If we already know that

the base stock targets from the first few periods (in this example, the first three

periods) only have little impact on the results of the MST policy, the solution

algorithm can drop them and focus on fewer decision variables. This way the

entire computing effort of the problem will be reduced.

Thus far, the analysis on the MST has been based on the assumption that

the demand can be described by a probability distribution function with definite

mean and standard deviation. In a practical problem, the two parameters will be

forecasted on the basis of historical data. It is reasonable to suspect, however, that

future demand will be described with different parameters. Even if a company

can closely forecast the mean of the demand over a certain time horizon, which is

relatively simple, the forecasting error in the variance of the demand could be un-

avoidably high. Considering that the optimal control of the rail transportation in

MST is a commitment fixed over a future mid-term horizon, it is very likely that

the coefficient of variation of the demand will fluctuate during this time horizon

and the pre-defined MST policy will deviate from optimality. Nevertheless, the
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company is still able to make daily adjustments of the shipment volume via the

flexible road transportation deliveries. Figure 4.12 shows that by allowing adjust-

ments from road transportation deliveries, the commitment in rail transportation

is rather robust against CV changes. For example, if the original MST policy is

decided based on a forecast CV of 0.6 and in reality the CV deviates from the

forecast value with an error of 50%, the average cost per period is only affected

by about 1%.

Figure 4.12: The impact of CV on the average total costs per period

Managers, especially from the industries with high competitions, tend to have

the concern that the fixed mid-term commitment on rail transportation controls

lacks the flexibility to respond to demand fluctuations. We show that by the

simultaneous usage of the flexible road transportation, the commitment of rail

transportation decisions is robust. This result supports the long term viability of

MST policy against demand uncertainties.

4.6 Discussion

4.6.1 Alternative (non-i.i.d.) demand patterns

Thus far, our model assumes that the demand is an i.i.d. random variable. In

practice, however, the demand process may be non-i.i.d.: Demand in one period

might be dependent on the value of other periods, and/or demand in different
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periods might follow different distribution functions. Since the classical TBS

policy and our MST policy are both distribution-independent, our model can still

hold for non-i.i.d. demand patterns. Indeed the Bellman equations (4.1) and

(4.2) can still be used to model the MST problem. And the MST problem can

be solved by numerically iterating the equations over the finite time horizon (a

brute-force solution). However, the structural properties obtained in Section 4.4

will not hold. To be more specific, Theorem 4.4.1 does not hold and the converged

steady state will not exist due to non-stationary demand. As a result, the model

with non-i.i.d. demand will not be solved efficiently with the structural properties

obtained in the i.i.d. demand case, and the brute-force solution will result in the

“curse of dimensionality” which requires tremendous, and sometimes unrealistic

computing effort.

In Section 6.2.3 of the dissertation, we discuss a special type of non-i.i.d. de-

mand that is often observed in practice: The demand can be considered seasonal,

which follows different distributions in different periods of time. We propose a tai-

lored transportation strategy, which involves three different transportation modes,

each with its own cost and flexibility, to match and serve different demand cat-

egories. When more generalized non-stationary demand is faced, advanced data

analytics methodologies will be needed.

4.6.2 Capacity constraint on the slow mode

Our model assumes an unlimited capacity of the slow mode. However, the slow

mode (rail transportation) is typically subject to the maximum number of full

container loads (FCLs) a train can carry, which varies across countries. For ex-

ample, the maximum length of a train in France is 740 meters (European Court

of Auditors, 2016), which is equivalent to about only 50 FCLs. The numerical

study in Section 4.5.2 suggests to ship q = 81 FCLs via a train, which exceeds the

capacity and is practically not feasible.

If the company can only book one train, then the MST model needs to be

solved with a capacity constraint on q. Recall from Section 4.4.2 that the optimal

q is calculated via a bisection search with q lower-bounded by one and upper-

bounded by nµ, the MST model with capacity constraint can still apply the same

bisection search, but with an updated upper-bound. If there are sufficient freight

trains in the market, a more practical solution is to use more trains to provide

adequate capacity for the containers shipped to the slow mode. However, the

fixed cost might increase depending on the number of trains ordered. This then
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requires running the MST algorithm multiple times with updated information on

the upper-bound of the slow mode volume q and fixed cost K, so that the optimal

volume shipped to the slow mode q will satisfy the capacity constraint.

4.6.3 Analysis on the slow mode delivery cycle

In Section 4.5.2 we have optimized the slow mode delivery cycle n by a straightfor-

ward enumeration. Now we present a first attempt to offer some tractable analysis

on the optimization of the slow mode delivery cycle n. The analysis is presented

as follows: We first show the different types of costs of the MST problem (fixed

cost, inventory mismatch cost, etc.) as a function of n, and then discuss how

these cost terms will change when n increases.

The average total costs in a steady state cycle with n periods can be written

as:

csq + cf (nµ− q) +K +

n∑
i=1

Li, (4.8)

where csq denotes the variable transportation cost via the slow mode, K the fixed

transportation cost via the slow mode, cf (nµ−q) the variable transportation cost

via the fast mode, and
∑n
i=1 Li the sum of the expected mismatch cost of all n

periods of the cycle. The objective of the modal split transportation policy is to

minimize the average total costs per period by dividing (4.8) by n, generating:

cfµ− (cf − cs) q
n

+
K

n
+

∑n
i=1 Li
n

. (4.9)

When the delivery cycle n increases, the average fixed cost per cycle, denoted

as K
n , decreases. The ratio q

n , denoting the average slow mode freight volume per

period, will decrease because of the following reason: The constant delivery via the

slow mode q acts as cycle stock and will result in extra holding cost in potentially

every period of the cycle. The extra holding cost from using the slow mode will

offset the cost savings and prevent q from increasing. Figure 4.3 in Section 4.5.2

shows a numerical example that q increases in n with decreasing margin, i.e., q/n

decreases. The term cfµ− (cf − cs) qn in (4.9), the average variable transportation

cost per period, will then increase in n. The last term
∑n
i=1 Li
n in (4.9), the average

inventory mismatch cost per period, is not analytically tractable because of the

intractability of the inventory levels in the model. Even if in a simplified special

case with n = 1, in which the model is then equivalent to the classical TBS

policy, the relevant inventory is considered not tractable in the literature (Allon
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and Van Mieghem, 2010). When n > 1, inventory levels in more than one period

of a steady state cycle need to be calculated, which makes the model even more

complex. We conjecture that the average mismatch cost per period
∑n
i=1 Li
n will

decrease in n. The reason is as follows: If n→∞, the problem can be seen as the

classical base stock problem with some starting inventory q. It is known that the

expected mismatch cost will be minimized in all periods with L = L(SB), where

SB is the base stock target. As a result, when n increases,
∑n
i=1 Li
n will decrease

and approach its lower-bound, i.e., limn→∞

∑n
i=1 Li
n = L(SB).

Adding all the terms together, the average total cost per period shown in

(4.9) is analytically not tractable, and numerical analysis has to be relied on.

4.7 Summary

In this chapter, we contribute a dual-sourcing inventory model to support com-

panies’ modal split transportation (MST) decisions, i.e., how to optimally split

freight volume between road and rail transportation. Our MST model is an exten-

sion of the classical TBS dual-sourcing model, by 1) incorporating economies of

scale of rail transportation, i.e., adding a fixed term into its cost structure and an

extra decision in its delivery frequency, and 2) releasing the base stock control of

road transportation so that companies could have higher flexibility in its delivery

quantity. These extensions are closely related to the nature of rail and road oper-

ations. TBS models are traditionally regarded as complex and previous literature

focused on approximations. We contribute an efficient algorithm to solve the

MST (and also any general TBS) problem optimally based on stochastic dynamic

programming. On the basis of the efficient algorithm, we further contribute to

the MST/TBS models by proposing a detailed sensitivity and robustness analysis

using numbers suggested by a multinational company.

Several extensions could be applied to further support companies’ modal

split transportation decisions. First, our model assumes that rail transportation

always delivers a constant quantity. In reality, companies could have other options

to manage the freight in trains. Other inventory replenishment policies, besides

TBS, can also be applied to MST decisions. Second, our model is only based

on a single product and multi-product analysis will be more realistic in practice.

Third, the company might want to share the capacity of the train with other

shippers, and collaborative modal split transportation needs to be studied.
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4.8 Appendix

4.8.1 Appendix A: Proof of Theorem 4.4.1

We borrow the idea from Porteus (2002) and introduce decision variables yt and

functions Gt(yt) to illustrate the proof. yt is defined as the net inventory position

after deliveries from the two modes and before demand realization, i.e., if q arrives

in t, yt = xt + zt + q ; if not, yt = xt + zt. The Bellman equation (4.1) and (4.2)

can then be rewritten as:

ft(xt|q, n) =


min

yt>xt+q

{
−cfxt + cfyt − cfq + csq +K + L(yt)

+E [ft+1 (yt − ξ|q, n)]} q arrives in t,

min
yt>xt

{
−cfxt + cfyt + L(yt) + E [ft+1 (yt − ξ|q, n)]

}
otherwise,

(4.10)

and

fT (xT |(q, n)) =


min

yT>xT+q

{
−cfxT + cfyT − cfq + csq +K + L(yT )

}
q arrives in T ,

min
yT>xT

{
−cfxT + cfyT + L(yT )

}
otherwise.

(4.11)

We define Gt as a function of yt:

Gt(yy) =

{
cfyT + L(yT ) t = T,

cfyt + L(yt) + E [ft+1 (yt − ξ|q, n)] otherwise.
(4.12)

Note, Gt(yt) is independent on whether or not q arrives in t.

Proof of (a) of Theorem 4.4.1 using mathematical induction:

Period T: L(yT ) is convex in yT , GT in (4.12) is also convex in yT . Because

lim|yT |→∞GT = ∞ (based on the assumption cf < b), there exists a unique YT

that minimizes GT . Therefore, the optimality of a base stock policy in T exists.

By setting G
′

T (YT ) = 0, we can obtain the base stock level:

YT = Φ−1

(
b− cf

b+ h

)
. (4.13)

Given the optimality of a base stock policy, fT and f
′

T can be written as:

107



4.8. Appendix

If q arrives in T :

fT (xT |q, n) =

{
cf (YT − xT − q) + csq +K + L(YT ) xT 6 YT − q,

csq +K + L(xT + q) xT > YT − q,
(4.14)

and

f
′

T (xT |q, n) =

{
− cf xT 6 YT − q,

L
′
(xT + q) xT > YT − q.

(4.15)

If q does not arrive in T :

fT (xT |q, n) =

{
cf (Yt − xT ) + L(YT ) xT 6 YT ,

L(xT ) xT > YT ,
(4.16)

and

f
′

T (xT |q, n) =

{
− cf xT 6 YT ,

L
′
(xT ) xT > YT .

(4.17)

fT (xT |q, n) is convex in xT and lim|xT |→∞ fT = ∞, and f
′

T is no less than −cf

and converges to a positive number when xT → ∞. These two properties are

independent of the arrival of q in T .

Period T − 1: According to (4.12), GT−1(yT−1) = cfyT−1 + L(yT−1) +

E[fT (yT−1 − ξ|q, n)]. Combining (4.14) and (4.16), we can derive that GT−1 is

convex in yT−1 with lim|yT−1|→∞ = ∞. There must exist a unique YT−1 with

G
′

T−1(YT−1) = 0, that minimizes GT−1, i.e., the optimal delivery policy of the

fast mode in T − 1 is a base stock policy.

Given the optimality of a base stock policy in T − 1, it can be further shown

that fT−1(xT−1|q, n) is convex in xT−1, lim|xT−1|→∞ fT−1 = ∞, and f
′

T−1 is

no less than −cf and converges to a positive number when xT−1 → ∞. Both

properties are independent of the arrival of q in T − 1.

From any arbitrary period k to period k − 1. We now suppose that the

optimal fast mode policy in k is a base stock policy, the base stock level is Yk

with G
′

k(Yk) = 0, and fk(xk|q, n) and f
′

k(xk|q, n) are:

If q arrives in k:

fk(xk|q, n) =


cf (Yk − ck − q) + csq +K + L(Yk)

+ E [fk+1(Yk − ξ|q, n)] xk 6 Yk − q,

csq +K + L(xk + q) + E [fk+1(xk + q − ξ|q, n)] xk > Yk − q,
(4.18)
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and

f
′

k(xk|q, n) =

{
− cf xk 6 Yk − q,

L
′
(xk + q) + E

′
[fk+1(xk + q − ξ|q, n)] xk > Yk − q.

(4.19)

If q does not arrive in k:

fk(xk|q, n) =

{
cf (Yk − xk) + L(Yk) + E [fk+1(Yk − ξ|q, n)] xk 6 Yk,

L(xk) + E [fk+1(xk − ξ|q, n)] xk > Yk,
(4.20)

and

f
′

k(xk|q, n) =

{
− cf xk 6 Yk,

L
′
(xk) + E

′
[fk+1(xk − ξ|q, n)] xk > Yk.

(4.21)

fk(xk|q, n) is convex in xk with lim|xk|→∞ fk =∞, and f
′

k is no less than −cf and

converges to a positive number when xk → ∞. Both properties are independent

of the arrival of q in k.

In period k − 1, according to (4.12), Gk−1(yk−1) = cfyk−1 + L(yk−1) +

E[fk(yk−1 − ξ|q, n)]. Given (4.18) and (4.20), Gk−1 is convex in yk−1 with

lim|yk−1|→∞ =∞. As a result, there must exist a unique Yk−1 with G
′

k−1(Yk−1) =

0 that minimizes Gk−1, and the fast mode shipment in k− 1 follows a base stock

policy with base stock level Yk−1.

With the knowledge of a base stock policy in k − 1, it can be further shown

that fk−1(xk−1|q, n) is convex in xk−1, with lim|xk−1|→∞ fk−1 = ∞, and f
′

k−1 is

no less than −cf and converges to a positive number when xk−1 → ∞. Both

properties independent of the arrival of q in k − 1.

Equations (4.18), (4.19), (4.20), and (4.21) can be iterated to k − 1, and

furthermore, any arbitrary period t.

Allowing T approaching infinity, the proof could be inducted to the infinite-

horizon problem.

Proof of (b) of Theorem 4.4.1 using mathematical induction:

Period T: (4.13) secures YT < SB = Φ−1
(

b
b+h

)
.

Period T-1: We already know from the proof of (a) of Theorem 4.4.1 that,

GT−1 in is convex in yT−1 with G
′

T−1(YT−1) = 0. In order to prove YT−1 < SB ,

we only need to show that G
′

T−1(SB) > 0 in the following:
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If q arrives in T :

G
′

T−1(SB) = cf + L
′
(SB)︸ ︷︷ ︸
=0

+E
′
[fT (SB − ξ|q, n)]

= cf +

∫ SB−YT+q

0

f
′

T (SB − ξ|q, n)︸ ︷︷ ︸
>−cf , refer to (4.15)

φ(ξ)dξ

+

∫ ∞
SB−YT+q

f
′

T (SB − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.15)

φ(ξ)dξ

=

∫ SB−YT+q

0

cf + f
′

T (SB − ξ|q, n)︸ ︷︷ ︸
>0

φ(ξ)dξ > 0.

(4.22)

If q does not arrive in T :

G
′

T−1(SB) = cf + L
′
(SB)︸ ︷︷ ︸
=0

+E
′
[fT (SB − ξ|q, n)]

= cf +

∫ SB−YT

0

f
′

T (SB − ξ|q, n)︸ ︷︷ ︸
>−cf , refer to (4.17)

φ(ξ)dξ

+

∫ ∞
SB−YT

f
′

T (SB − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.17)

φ(ξ)dξ

=

∫ SB−YT

0

cf + f
′

T (SB − ξ|q, n)︸ ︷︷ ︸
>0

φ(ξ)dξ > 0.

(4.23)

From any arbitrary period k to k − 1: Assume that Yk < SB and fk is

illustrated in (4.18) and (4.20), we want to derive that Yk+1 < SB . We already

know from the proof of (a) of Theorem 4.4.1 that, Gk−1 is convex in yk−1 with

G
′

k−1(Yk−1) = 0. In order to prove Yk−1 < SB , we need to show that G
′

k−1(SB) >

0 in the following:
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If q arrives in k:

G
′

k−1(SB) = cf + L
′
(SB)︸ ︷︷ ︸
=0

+E
′
[fk(SB − ξ|q, n)]

= cf +

∫ SB−Yk+q

0

f
′

k(SB − ξ|q, n)︸ ︷︷ ︸
>−cf , refer to (4.19)

φ(ξ)dξ

+

∫ ∞
SB−Yk+q

f
′

k(SB − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.19)

φ(ξ)dξ

=

∫ SB−Yk+q

0

cf + f
′

k(SB − ξ|q, n)︸ ︷︷ ︸
>0

φ(ξ)dξ > 0.

(4.24)

If q does not arrive in k:

G
′

k−1(SB) = cf + L
′
(SB)︸ ︷︷ ︸
=0

+E
′
[fk(SB − ξ|q, n)]

= cf +

∫ SB−Yk

0

f
′

k(SB − ξ|q, n)︸ ︷︷ ︸
>−cf , refer to (4.21)

φ(ξ)dξ

+

∫ ∞
SB−Yk

f
′

k(SB − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.21)

φ(ξ)dξ

=

∫ SB−Yk

0

cf + f
′

k(SB − ξ|q, n)︸ ︷︷ ︸
>0

φ(ξ)dξ > 0.

(4.25)

Allowing T to tend to infinity, the proof could be inducted to the infinite-horizon

problem.

Proof of (c) of Theorem 4.4.1:

Similar to the approach used in proving (b) of Theorem 4.4.1, in order to

prove Yt > Yt+1 − q and given Gt(yt) is convex in yt with G
′

t(Yt) = 0, we need to

show G
′

t(Yt+1 − q) < 0 as follows:

G
′

t(Yt+1−q) = cf+L
′
(Yt+1−q)+

∫ ∞
0

f
′

t+1(Yt+1 − q − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.19)

φ(ξ)dξ = L
′
(Yt+1−q).

(4.26)

Because L is convex with L(SB) = 0 and Yt+1−q < SB (from (b) of Theorem
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4.4.1), L
′
(Yt+1 − q) < 0.

End of proof of (c) of Theorem 4.4.1.

Proof of (d) of Theorem 4.4.1:

We fist show that in the last cycle, YT−1 > YT , and in any arbitrary cycle

with t being the last period of the cycle, Yt−1 > Yt. After that we iterate the

inequalities in the following way: suppose that k − 1, k, and k + 1 are three se-

quential periods of the same cycle, and Yk > Yk+1, we then derive the inequality

that Yk−1 > Yk.

Recall from (a) that GT−1(yT−1) is convex in yT−1 with G
′

T−1(yT−1) = 0,

we prove YT−1 > YT by showing G
′

T−1(YT ) < 0 as follows:

G
′

T−1(YT ) = cf + L
′
(YT )︸ ︷︷ ︸

=0

+

∫ ∞
0

f
′

T (YT − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.17)

φ(ξ)dξ < 0. (4.27)

If t is the last period of any arbitrary cycle (note, q arrives in t+ 1), we then

need to prove Yt−1 > Yt by showing G
′

t−1(Yt) 6 0 as follows:

G
′

t−1(Yt) = cf + L
′
(Yt) +

∫ ∞
0

f
′

t (Yt − ξ|q, n)φ(ξ)dξ

= cf + L
′
(Yt) +

∫ ∞
0

f
′

t+1(Yt − ξ|q, n)φ(ξ)dξ︸ ︷︷ ︸
=G
′
t(Yt)=0

+

∫ ∞
0

f
′

t (Yt − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.21)

φ(ξ)dξ −
∫ ∞

0

f
′

t+1(Yt − ξ|q, n)φ(ξ)dξ

= −cf −
∫ Yt+q−Yt+1

0

f
′

t+1(Yt − ξ|q, n)︸ ︷︷ ︸
>−cf , refer to (4.19)

φ(ξ)dξ

−
∫ ∞
Yt+q−Yt+1

f
′

t+1(Yt − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.19)

φ(ξ)dξ

= −
∫ Yt+q−Yt+1

0

[cf + f
′

k+1(Yk − ξ|q, n)︸ ︷︷ ︸
>−cf refer to (4.19)

]φ(ξ)dξ.

(4.28)

Because Yt + q−Yt+1 > 0 is already proved in (c) of Theorem 4.4.1, (4.28) is non

positive.

Then we want to show that, suppose k − 1, k, k + 1 are three sequential
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periods in a same cycle, and Yk−1, Yk, and Yk+1 are the optimal base stock levels

in the three periods. If Yk > Yk+1, then Yk−1 > Yk. Given the results from (a) of

Theorem 4.4.1 that Gk−1(yk−1) is convex in yk−1 with G
′

k−1(Yk−1) = 0, we want

to prove Yk−1 > Yk by showing that G
′

k−1(Yk) 6 0 as follows:

G
′

k−1(Yk) = cf + L
′
(Yk) +

∫ ∞
0

f
′

k(Yk − ξ|q, n)φ(ξ)dξ

= cf + L
′
(Yk) +

∫ ∞
0

f
′

k+1(Yk − ξ|q, n)φ(ξ)dξ︸ ︷︷ ︸
=G
′
k(Yk)=0

+

∫ ∞
0

f
′

k(Yt − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.21)

φ(ξ)dξ −
∫ ∞

0

f
′

k+1(Yk − ξ|q, n)φ(ξ)dξ

= −cf −
∫ Yk−Yk+1

0

f
′

k+1(Yk − ξ|q, n)︸ ︷︷ ︸
>−cf , refer to (4.19)

φ(ξ)dξ

−
∫ ∞
Yk−Yk+1

f
′

k+1(Yk − ξ|q, n)︸ ︷︷ ︸
=−cf , refer to (4.19)

φ(ξ)dξ

= −
∫ Yk−Yk+1

0

[cf + f
′

k+1(Yk − ξ|q, n)︸ ︷︷ ︸
>−cf , refer to (4.19)

]φ(ξ)dξ.

(4.29)

Because Yk > Yk+1, (4.29) is non positive.

4.8.2 Appendix B: Proof of Theorem 4.4.2:

The idea of the proof is inspired by Theorem 1 from Janakiraman et al. (2014).

We drop n in the proof because it remains unchanged. Denote Cq,∗ the average

total cost per period of an optimal MST policy with cyclical slow mode delivery

q, we will prove the theorem by demonstrating the following inequality:

Cq1,∗ + Cq2,∗

2
> C(q1+q2)/2,∗ for all q1 and q2. (4.30)

Denote θ1 = θ1(qθ1 ; zθ11 , ..., z
θ1
T ) and θ2 = θ2(qθ2 ; zθ21 , ..., z

θ2
T ) the two optimal

MST policies, and let Cθ1 = Cq1,∗ and Cθ2 = Cq2,∗. That is, for example, under

the optimal MST policy θ1, the company ships a fixed amount qθ1 in the slow

mode cyclically and zθ1t , t = 1, ..., T in the the fast mode every period following the

base stock controls. Let us now consider a third policy θ3: The slow mode delivers
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a fixed amount qθ3 = qθ1+qθ2

2 cyclically, and the fast mode ships zθ3t =
z
θ1
t +z

θ2
t

2

in t. Note, θ3 is not necessarily the optimal policy of MST with a cyclical slow

mode order qθ1+qθ2

2 , because the fast mode order zθ3t might not fit the base stock

controls. As a result, Cθ3 > C(q1+q2)/2,∗.

Since qθ3 = qθ1+qθ2

2 and zθ3t =
z
θ1
t +z

θ2
t

2 , the transportation cost under θ3 in

any period t is the average of the transportation cost under θ1 and θ2. Let us now

consider the realized mismatch cost every period under θ3. Assuming that all three

policies start with the same inventory level in period 1, i.e., xθ11 = xθ21 = xθ31 , it is

easy to see that xθ3t = (xθ1t + xθ2t )/2 for any t. The realized one-period inventory

mismatch cost is:

Lt =

{
h(xt + zt + q − ξ)+ + b(ξ − xt − zt − q)+ q arrives in t,

h(xt + zt − ξ)+ + b(ξ − xt − zt)+ otherwise.
(4.31)

It is convex in xt for any t, independent on wether or not the slow mode

delivers in that period. Considering the convexity of mismatch cost and the

equality of the transportation cost explained before, the average total (mismatch

and transportation combined) costs per period satisfies: (Cθ1 + Cθ2)/2 > Cθ3 .

Therefore we obtain: (Cq1,∗ + Cq2,∗)/2 = (Cθ1 + Cθ2)/2 > Cθ3 > C(q1+q2)/2,∗.

This completes the proof.
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Chapter 5

Implementing synchromodality

from a supply chain perspective

学而时习之，不亦乐乎？ 1

– 孔子。

Abstract

In this chapter, we present a practical tool to support the implementation of

synchromodality and validate our findings presented in the previous chap-

ters. The tool considers the flows between a plant and a distribution center

(DC) of a manufacturer. The tool allows obtaining the optimal modal split

per SKU between road transportation (the fast but expensive mode) and

rail transportation (the slow but cheap mode), as well as the inventory re-

quirements at the distribution center, that minimizes the total supply chain

costs. We have used the tool to validate the research problems discussed in

the earlier chapters on a real dataset. It indicates how the use of synchro-

modality impacts the various supply chain costs. As the synchromodality

tool addresses individual SKUs, we provide a solution to aggregate the vol-

ume shifted to the slow mode from multiple SKUs to full container loads,

such that the resulting total costs are minimized.

1 Isn’t it a pleasure to study and practice what you have learned? Confucius, ancient Chinese
philosopher.
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5.1 Introduction

We have applied our synchromodality model under a tailored base-surge (TBS)

policy to companies, which address the challenge of improving the sustainability

of its transportation and logistics. The products are manufactured in a plant and

then shipped to distribution centers. Currently, direct trucking is the dominant

means of transportation mode.

Synchromodality, where freight flow is synchronized between different trans-

portation modes, is regarded as an innovative approach to increase the sustain-

ability of freight transportation and one of the fundamental building stones to the

Physical Internet (Verweij, 2011; ALICE, 2014). In this chapter, we present how

synchromodality using a tailored base-surge (TBS) policy can be implemented

by managers that are not familiar with the mathematics behind a TBS policy.

Based on historical data, we validate the use of our policy. The backbone of

the tool is an optimization model covering the shipper’s supply chain including

plant, distribution center (DC), transportation mode choices, and stochastic cus-

tomer demand at the DC. The tool can be used to support shippers determine

the optimal modal split policy for any given stock keeping unit (SKU). The use

of the tool enables a holistic understanding of the impact of synchromodality on

the shipper’s supply chain performance, such as production smoothing, inventory

management, bullwhip dampening, etc.

Whereas Chapter 2 focuses on the conceptual framework of synchromodality

using a TBS policy and Chapters 3 & 4 capture its solution methodologies, the

main objective of this chapter is to demonstrate its implementation. In addition,

during the implementation of the tool, the impact of TBS synchromodality on

other activities of the supply chain, such as production and inventory manage-

ment, are also discussed on the basis of real data. The main contributions of this

chapter can be summarized as follows:

� We present an easy-to-use tool to implement synchromodality using a TBS

policy and shift freight from a flexible and fast transportation mode to a

“greener” slow transportation mode on an SKU level;

� We use the tool to evaluate the impact of synchromodality on other supply

chain metrics, such as the impact on inventory levels in the downstream

DC, as well as the production smoothing impact in the upstream plant;

� We conduct sensitivity analyses on the input parameters such as the demand

variability and lead time and provide guidance on the use of synchromodality
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for different SKUs;

� We present an LP model to aggregate the freight shipments via the slow

mode across multiple SKUs into full container loads.

5.2 Model formulation

We consider a two-stage supply chain, consisting of a plant (P) and a distribution

center (D) facing stochastic customer demand. Figure 5.1 illustrates the supply

chain under consideration.

Distribution and production are triggered by customer demand, denoted as

ξ, which is assumed to follow an i.i.d. distribution with mean µ and standard

deviation σ. Demand ξ is a non-negative integer, measured in units of a case.

Similar to the other chapters, we assume demand to be stationary over time.

The companies classifies its SKUs into different categories based on the demand

distribution, which in turn determines the order (and shipment) frequency from

P to D : whereas fast movers are shipped on a daily basis, slow movers may

have a lower shipment frequency (e.g., weekly or bi-weekly). The replenishment

frequency of the SKUs is captured in the model by considering a periodic-review

inventory model with a review length of r periods. The shipment frequency,

which is identical to the review frequency, is then 1
r for both the slow and fast

transportation mode. For example, if a slow mover is shipped on average once

per week from P to D, and the base period in the model is one day, then r = 7.

Time is discrete and the horizon is finite, with t = 1, ..., T . We denote the set

T = {1, r + 1, 2r + 1, ...} consisting of the “shipment” periods at which the SKU

is shipped from P to D.

Figure 5.1: Two-stage supply chain with parallel usage of fast and slow trans-
portation modes
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The distribution center keeps an inventory to satisfy the stochastic demand ξ

subject to a service level α. At the end of any period t, after the realization of de-

mand ξ, excessive inventory incurs a unit holding cost h, and unmet demand will

be backordered to the next period at a unit penalty cost b. The classical newsven-

dor ratio b
b+h is equal to the service level α, which is an exogenous parameter to

the model.

In every review period, D can replenish its inventory from P via a simul-

taneous usage of two transportation modes: a slow mode with a cheaper unit

transportation cost cs but a longer lead time ls, and a fast mode incurring a

higher unit transportation cost cf but a shorter lead time lf . In our setting, the

slow mode is intermodal rail transportation, and the fast mode is direct trucking.

The companies need to decide how much to ship using each transportation mode.

In this model, we use the classical tailored base-surge (TBS) policy and adopt

the same delivery frequency for both transportation modes. This assumption is

valid when the fixed cost of the slow mode is negligible (Section 4.5.2 shows that

when the fixed cost is zero, the slow mode has the same delivery frequency as the

fast mode). This may be the case when the company does not operate a dedicated

train connection, but outsources the operation of rail transportation to a logistics

service provider (LSP), in which case it pays a fixed rate cs per unit shipped.

Clearly, when companies (co-)operate a dedicated train and hence needs to cover

a significant set-up cost linked to locomotive, infrastructure, etc., the delivery

frequency of the slow mode will be lower than the fast mode. However, this leads

to additional complexity, as it requires the optimization of multiple inventory

reorder points within a slow mode delivery cycle with significant computing effort

as a result (see Section 4.4).

Under a TBS policy, the slow mode ships a constant quantity q in each period

t ∈ T, and nothing in other periods. Hence, the number of units shipped using

the slow mode in period t, and delivered at D in period t+ ls, is given by zst :

zst =

{
0 if t /∈ T,

q if t ∈ T.
(5.1)

Unlike the slow mode, the fast mode ships a flexible quantity controlled by

a base-stock policy. Denote zft the number of units shipped using the fast mode

in period t (and delivered at D in period t + lf ), then zft = 0 if t /∈ T; when

t ∈ T, the order placed raises the inventory position IPt to the base-stock level

S. The inventory position IPt is defined as the net inventory xt plus the pipeline
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inventory that will arrive within the next lf periods:

IPt = xt +

i=t−1∑
t−lf

(
zfi + zsi

)
. (5.2)

The shipment quantity via the fast mode, zft , placed in period t and delivered

in period t+ lf , is then:

zft =


0 if t /∈ T,

0 if t ∈ T and IPt > S,

S − IPt if t ∈ T and IPt ≤ S.

(5.3)

The company produces (zst +zft ) units upon receipt of the order. As sufficient

capacity is available to accomplish any production run within a time window of 24

hours, each production order can be produced before the start of the subsequent

period. The total logistics costs in period t are then given by:

Ct =



h(xt + zst−ls + zf
t−lf − ξ)

+

+ b(ξ − xt − zft−lf − z
s
t−ls)

+ + kIt
if t /∈ T,

csq + cfzt + h(xt + zst−ls + zf
t−lf − ξ)

+

+ b(ξ − xt − zft−lf − z
s
t−ls)

+ + kIt
if t ∈ T,

(5.4)

where csq represents the transportation costs of the units shipped via the slow

mode, cfzt the transportation costs of the units shipped via the fast mode, h(xt+

zst−ls + zf
t−lf − ξ)

+ + b(ξ − xt − zft−lf − z
s
t−ls)

+ the inventory mismatch costs at

D in period t, and kIt the cost of capital linked to the pipeline inventory, defined

by It =
∑i=t
i=t−lf+1 z

f
i +

∑i=t
i=t−ls+1 z

s
i .

The decision variables of the companies are the constant slow mode delivery

quantity q, and the base stock level S to control the fast mode shipments. The

objective of the companies is to minimize the average total costs per period over

the horizon T :

C̄ =
1

T

∑
t

Ct. (5.5)

We optimize the decision variables q and S using simulation-based optimiza-

tion, i.e., searching over all possible values of q and S that minimize C̄. In order to

have a stationary system (where supply exceeds demand), the value of q is upper-

bounded by the expected demand in the review interval rµ. The base stock level

119



5.3. The synchromodality tool

S is upper-bounded by Φ−1( b
b+h ), with Φ the CDF of the demand in (lf +r) peri-

ods and (lf +r) the exposure period in the periodic review base-stock model. The

optimal synchromodality policy is then characterized by the parameters (q∗, S∗).

Note that the tool uses the simulation-based optimization introduced in

Chapter 2 as the solution method, instead of the other methodologies discussed in

Chapters 3 and 4. The main reason is the trade-off between accuracy and effort:

The approximation in Chapter 3 does not provide the optimal results, and the

algorithm in Chapter 4 requires substantial computing effort. Practitioners prefer

good and fast solutions and simulation-based optimization is practically favored.

5.3 The synchromodality tool

We developed a VBA-based Excel tool to support companies in implementing

synchromodality under the TBS policy. The tool allows the optimization of the

parameters of the TBS policy based on historical data. Once these parameters

are determined, it enables to determine the shipment quantities on both fast and

slow modes on a periodic basis (for instance, daily, weekly, bi-weekly, etc.), as

well as the parameters of the inventory policy at the DC and the production

quantities at the plant. The tool can be used by supply chain managers without

understanding the mathematics in the model. In this section, we first explain the

in- and outputs of the tool and then describe the three core modules of it.

5.3.1 The in- and outputs of the tool

Figure 5.2 shows an overview of the inputs that are needed to run the tool, as

well as the outputs that result from the use of it.

The input data required to run the tool are the following:

� Demand of the SKU: The historical daily demand of an SKU. It is

measured in cases, which is the standard measurement of customer orders.

� Loading factors of the SKU: The loading factors of an SKU refer to

how many SKU items are packed into a case, a pallet, and a full container

load (FCL) respectively. Suppose 100 cases of an SKU are packed into

one pallet and a full container load (FCL) contains 33 pallets2, then as

many as 100× 33 = 3300 cases of the SKU can be loaded in one FCL. The

introduction of the loading factor adjusts parameters on the same unit base

2 One FTL in Western Europe except the UK contains at most 33 pallets.
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Figure 5.2: The VBA-based Excel tool determines the shipment quantities for
each transportation mode, as well as the safety stock targets at the DC.

across multiple SKUs. For example, if it costs cf to ship one FCL from P

to D, then the shipment of one case of the aforementioned SKU incurs cf

3300 .

� Review interval of the SKU: Depending on the type of the SKU, the

review interval r at which orders are placed can differ. Fast moving SKUs

are typically shipped on a daily basis, in which case r = 1 day. Slow moving

SKUs can be shipped for instance semi-weekly (r = 3 days) or weekly (r = 7

days). The value of r is an exogenous variable decided by the managers.

� Value of the SKU: The unit value of one SKU, measured in EUR per

case, which is required to calculate its inventory holding cost (see next).

� Cost of capital, cost of inventory: The inputs are used to calculate

the unit holding cost of the SKU in the transportation pipeline as well

as in the DC. For example, if the “rule of thumb” cost of capital in the

market is assumed to be 8%, then the daily unit cost of inventory in the

transportation pipeline is k = 8%
365×Value of the SKU. Under the same logic,

the daily unit inventory holding cost at the DC is then h = cost of inventory
365 ×

Value of the SKU. Note however that these cost parameters can be easily

adjusted.

� Service level of the SKU: This is the minimal in-stock probability of

the inventory at the DC, which will be used to indirectly calculate the unit

backlog cost b through the critical fractile b
b+h = the service level.

� Transportation cost, fast & slow mode: The unit transportation cost
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incurred from the Plant to the DC. It is measured per FTL and needs to be

adjusted to the case level using the loading factors.

� Transportation lead time, fast & slow mode: The delivery lead times

of the two transportation modes from the Plant to the DC. It is practically

measured per day.

5.3.2 The modules of the tool

Fed with the data above, the tool works by a sequential execution of three modules

(Figure 5.3): (1) The historical dataset is cleaned; (2) The optimal parameters

of the synchromodality policy are calculated based on historical demand data;

(3) Based on this optimal policy, the tool allows a real time implementation of

synchromodality decisions and suggests shipment volumes on both transportation

modes. The latter two modules are explained in details as follows.

Figure 5.3: The VBA-based Excel tool consists of three modules, which are exe-
cuted sequentially

Module: Optimal policy calculation This module determines the opti-

mal TBS synchromodality policy, characterized by the optimal shipment quantity

via the slow mode q∗ and the optimal base stock control with order-up-to level S∗.

The optimal policy is obtained by simulation-based-optimization, i.e., searching

for all possible (q, S) to minimize the objective function 5.5.

The model calculates the average total costs per period (Equation 5.5) over

a period of length T . In Chapters 2 and 3 we have demonstrated that the average

cost per period converges in the steady state, which requires a large T . However,

as the products of the companies often have a short life cycle, the limited number
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of demand data might not drive the model to the steady state. To cope with this,

we employ a parametric bootstrapping approach to expand the demand time series

“artificially”.

The parametric bootstrapping works as follows: First, the current demand

sample is used to estimate the distribution function of the demand population.

After that, the estimated demand population is re-sampled to retrieve more de-

mand observations. For example, Figure 5.4 shows the histogram of a series of

demand data of a reference SKU and the estimated probability distribution func-

tion (PDF) of the demand population based on the demand sample. The fitting is

based on maximum likelihood estimation given the series of demand sample data.

A new data series with T = 1000 suffices for a proper working of the tool. Note,

for confidentiality reasons, the demand data is normalized: The demand mean is

normalized to 100, and all demand observations are rescaled accordingly.

Figure 5.4: The demand distribution (the red curve) is estimated based on the
demand sample (characterized by its histogram)

Real-time implementation Based on the optimal parameters of the TBS

policy, this module supports companies make real-time synchromodality decisions

based on real-time demand and inventory data. Every review period r it provides

recommendations how much to ship using the fast and slow transportation mode,

and how much should be produced to satisfy these shipments.
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5.4 Implementation of the tool

In this section, we first validate the use of the tool with a reference SKU. We then

extend the results of this specific SKU to the other SKUs that are shipped on the

same lane to estimate the potential of synchromodality on that corridor. Finally,

we discuss how the output of the tool can be used to aggregate the shipments of

multiple SKUs into full container loads.

5.4.1 Validation of the tool

Table 5.1 summarizes the parameters of the reference SKU, that are used as

inputs to the tool. For confidentiality reasons, all the parameters are rescaled:

The demand mean is normalized to 100, and all other parameters are then rescaled

according to the same ratio.

Table 5.1: A reference fast-moving SKU with the following parameters are used
to validate the synchromodality tool (rescaled numbers)

Notation Description Value Unit

µ Mean of customer demand 100 case

σ Standard deviation of customer demand 69 case

α Service level 99% pct

lf Lead time of the fast mode 5 day

ls Lead time of the slow mode 7 day

h Unit holding cost at the DC 0.109 EUR per case per day

b Unit backorder cost at the DC 10.791 EUR per case per day

k Cost of capital 0.032 EUR per case per day

cf Transportation cost via the fast mode 0.999 EUR per case

cs Transportation cost via the slow mode 0.874 EUR per case

Figure 5.5 depicts the logistics costs resulting from the use of the tool in

function of the volume that is shipped by rail service (slow mode). When more

freight is shifted to the slow mode, the company saves transportation costs, but

incurs additional inventory costs. The optimal synchromodality policy is given by

(q∗, S∗) = (67, 997), indicating that the slow mode delivers 67 cases every day and

the base stock target at the distribution center is 997 cases. The share of the slow

mode for this SKU is 67/100 = 67%, indicating that 67% of the freight volume

can be shifted to the slow but “greener” transportation mode, without increasing

total logistics cost or reducing the service level. In fact, the total logistics costs

is expected to decrease by 5% for this specific reference SKU.
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Once the optimal synchromodality policy (q∗, S∗) is determined based on

the historical data, the tool can be used to implement synchromodality on a daily

basis: for this SKU, the tool recommends to ship every day q∗ = 67 cases of the

reference SKU via the slow mode, and an additional shipment is carried out via

the fast mode based on its daily inventory position, which takes into account the

current inventory levels and the inventory pipeline to be delivered within the next

lf days. The plant then produces the total shipment volume immediately.

Figure 5.5: The tool shows how the transportation and inventory are impacted
by the volume shifted to the slow mode. For the reference SKU, the average total
costs are minimized when the company ships 67 cases per day, which is about 67%
of the total freight volume of that SKU on this specific corridor. This modal shift
will lead to a 5% reduction of total logistics costs without sacrificing the service
level.

The tool can be used for each SKU. Clearly, as each SKU has specific param-

eters, the optimal synchromodality policy and the corresponding modal split will

be different for each SKU. In order to estimate the potential of synchromodality

for all SKUs that are shipped on the corridor between Northern and Southern Eu-

rope, we analyzed the coefficient of variation (CV) of demand of all these SKUs.

In Figure 5.6 we show the histogram of the CV for all the SKUs that are shipped

in this lane (classified per values of 0.5). The histogram is right-skewed with a

long tail. In Figure 5.7 we display how much of the total volume these SKUs
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represent (per CV range of 0.5). Then we estimate for each CV range how much

volume can be shipped using the slow mode (assuming all other parameters equal

to our reference SKU), which is represented by the curve in Figure 5.7.

Figure 5.6: The number of SKUs
shipped on this lane classified per range
of coefficient of variation (CV) of de-
mand.

Figure 5.7: The relative volume of the
SKUs for each CV range (bars), and the
corresponding optimal modal split to the
slow mode (curve).

The curve in Figure 5.7 shows that the percentage of freight shifted to the slow

mode approaches to zero when the CV of the demand is large. This observation

raises the question whether this rapid drop could be driven by other factors, such

as the mean of demand. In other words, is it possible that the marginal modal

split is due to the low volume of the SKU rather than its high variability? We

test this hypothesis using a similar approach presented in the previous paragraph:

First we classify all the SKUs into a number of ranges (per value of 500 cases per

day), and then calculate the average modal split for each of the ranges. Figure 5.8

shows that even for the SKUs in the lowest mean range (0-500), as much as 18%

of the total volume can be shifted to the slow mode in average. We additionally

plot a dotted curve describing the average CV of the SKUs in each of the ranges

and observe the same CV implication shown in Figure 5.7: The higher the CV,

the lower the percentage shifted to the slow mode.

In summary, the validation has demonstrated that the CV is a major driver

of the synchromodality modal split, whereas the impact of the mean demand is

relatively minor. This result coincides with the analysis from previous chapters,

e.g., Section 3.5, that the higher the demand volatility, the lower the use of the

slow mode, because the slow transportation mode (e.g., rail) lacks the flexibility

to cope with demand fluctuations.
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Figure 5.8: Even for the SKUs with the lowest mean of demand, as much as
18% of the total volume can be shifted to the slow mode (the solid curve). The
higher the CV, the lower the percentage shifted to the slow mode (both curves).

Finally, we obtain an estimation of the consolidated total volume that can

be shifted to the slow mode in this lane by aggregating the volumes from all SKU

groups. This analysis yields that across all SKUs, about 32% of the total volume

can be shifted to the slow mode on this lane. In other words, if the company

would have implemented the tool over the past year for all freight transporta-

tion from the plant to the DC, it could have shifted approximately 32% of the

total freight volume to the slow mode in this lane. In addition, there are sig-

nificant savings in the ecological footprint when the freight volume is shifted to

a “greener” transportation mode. With direct trucking emitting 75g CO2 per

tonne-kilometer of freight, and rail service 21g CO2 per tonne-kilometer of freight

(both numbers are generalized industry average values, provided by the European

Environment Agency (2013)), a 32% freight shift on this lane would have entailed

a
(

1− 32%×21+(1−32%)×75
100%×75

)
= 23% CO2 emission reduction.

These results from real data once more reveal the huge opportunities of imple-

menting synchromodality in both economic and environmental aspects. Especially

considering that the company operates worldwide with many more corridors, the

potential cost savings and emissions reductions will be significant.

The current industry practice reported in Groothedde et al. (2005) suggests

to shift the stable and well-predictable volume to the slow mode. In the presence
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of the stochastic demand, this is equivalent to ship the lower-bound of the demand

every day. In order to compare their method to ours, we have replicated their

approach on our dataset. Surprisingly, this only results in a total modal shift

of merely 3% to the slow mode in this lane, much less than the 32% obtained

using our model. A plausible reason for this low ratio is that the demand for

many of the SKUs are highly volatile and the lower-bounds are therefore almost

zero. This comparison demonstrates that by implementing synchromodality from

a supply chain perspective, companies could significantly outperform the current

industry practice described in Groothedde et al. (2005), and shift more volume

to the sustainable intermodal rail transportation without trading higher cost or

lower service level.

The aforementioned validation is based on the assumption that all the SKUs

are reviewed once per day. In practice, however, the review interval of the slow

moving SKUs may be extended. Indeed, Figure 5.7 reveals that for slow moving

SKUs with a high demand variability, the optimal split of the slow mode is only

modest. When the CV of demand increases, the volume shifted to the slow mode

drops rapidly. When CV > 1, only a minor portion of the freight can be shifted

to the slow mode, and it even drops to zero when CV > 2, as the slow mode

cannot cope with the demand fluctuations at all. However, extending the review

interval aggregates the demand during this review period and hence dampens its

variability.

Figure 5.9 illustrates the impact of extending the review interval to r = 3

(semi-weekly review) and r = 7 (weekly review). For the medium or slow moving

SKUs with CV > 1, we notice that a longer review period fosters more volume

to the slow mode. The accumulated demand in each review interval results in

a lower CV, which enables a higher use of the slow mode. Notice that this is

not the case for fast movers with CV ≤ 1, in which case the volume shifted to

the slow mode goes down when we extend the review interval. This is due to

the increased cycle stocks, which dominates the (modest) reduction in demand

variance. Among others, this result supports the common practice of the supply

chain managers to apply daily production and shipment for fast movers, and semi-

weekly or weekly approaches for the medium or slow movers. Note that for the

SKUs with extremely volatile demand (CV > 3.5), even a longer review period

will not cause a higher use of the slow mode. A possible reason could be that these

are highly promoted or customized SKUs with non-stationary demand patterns.

Our synchromodality model is not advised for these SKUs.

The discussion above reveals the trade-offs impacting the optimal review
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Figure 5.9: When the review interval r is extended, the volume shifted to the
slow mode changes.

interval r∗. Although the length of the review period is currently used as an

exogenous “rule of thumb”, a quantitative analysis remains interesting for further

research.

5.4.2 The impact of synchromodality on other supply chain

metrics

The tool also allows evaluating the impact of synchromodality on other related

supply chain metrics. For instance, Figure 5.10 shows the impact of synchromodal-

ity on the inventory parameters for our reference SKU. The base stock target for

the fast mode steadily decreases when more freight is shifted to the slow mode

(left panel). Interestingly, the average inventory remains rather stable as more

freight is shifted to the slow mode until approximately 85% of the total volume

is shifted to the slow mode. However, when more volume is shifted to the slow

mode, the company will lose the flexibility to cope with the stochastic demand

and tremendous inventories are required.

Supply chain managers often presume that sustainability comes at a cost. To

be more specific, a modal shift from road to the more sustainable rail transporta-

tion will lead to higher inventory at the destination or lower service level, due to
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Figure 5.10: When the freight shifted to the slow mode increases, the base stock
target at the DC for the fast mode control will decrease (left). The average in-
ventory at the plant and the DC will remain stable, unless almost all volume are
shifted to the slow mode (right).

the inflexibility of rail operations. The validation of our synchromodality model

using real data demonstrates that the modal shift will indeed increase inventory

at the distribution center. However, the incremental inventory cost per period

is surprisingly minor (Figure 5.10). On the other hand, the transportation cost

savings obtained from synchromodality will not only offset the extra spending in

inventory, but also reduce the total logistics costs without sacrificing the service

level (Figure 5.5).

We have used the synchromodality tool to conduct some sensitivity analyses

on the transportation lead times. Table 5.2 lists how the optimal share of the

slow mode drops as the slow mode’s lead time increases. This is due to the

increased pipeline inventory costs, which reduce the advantage of using the slow

mode. Indeed, the cost difference between both transportation modes does not

only include the difference in unit transportation cost itself, but also the end-to-

end costs to ship one unit of freight from P to D including cost of capital, cost of

taxes, etc. (Allon and Van Mieghem, 2010). Similar to Boute and Van Mieghem

(2015), the cost difference between both modes is in our model given by:

cf −
(
cs + k(lf − ls)

)
. (5.6)

With cs = 0.874, cf = 0.999, and k = 0.032 (see Table 5.1), we find that if

ls = 9, the slow mode becomes more expensive than the fast mode according to

Eq. (5.6). Clearly, this threshold is dependent on the SKU and the transportation

mode. However, the synchromodality tool allows managers to distinguish whether
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or not an SKU is feasible for synchromodality in a specific corridor.

Table 5.2: When the lead time of the slow mode increases, the freight shifted to
the slow mode decreases.

Lead time of the slow mode Freight shifted to the slow mode

6 78%
7 67%
8 59%
9 0%
10 0%
11 0%

Finally, we observe how synchromodality results in a more smooth production

when more volume is shipped using the slow mode. Figure 5.11 compares the

histogram of the production quantities when only the fast mode is used with the

production quantities when the optimal synchromodality policy is implemented.

With synchromodality, the company will produce 67 cases per day more than half

of the time, which is exactly the optimal volume shifted to the slow mode, and

will produce much less frequently higher quantities. The result aligns with Boute

and Van Mieghem (2015), who also link a higher reliance on the slow mode with

more order smoothing. Figure 5.12 provides more evidence of this effect. As more

freight is shifted to the slow mode, the CV of the production quantities goes down,

indicating production smoothing when applying synchromodality under the TBS

policy. For our reference SKU, if the company sticks to the optimal slow mode

shipment of 67 cases every period, the CV of production will be 0.55, about 80%

of the CV of demand.

This smoothing effect could allow companies to level its production volume.

With production quantities varying every period, companies need to frequently

adjust the raw materials, labor forces, machines, etc., and hence suffer from higher

change-over costs or more working-in-process inventory. When production volume

is leveled, e.g., a stable volume is often produced every period, the companies can

better predict, plan, and manage the production schedule. Production efficiency

and flexibility will be enhanced by eliminating waste, minimizing differences in

workstation loads, avoiding workforce idles, smoothing raw material orders, etc.

(Disney et al., 2006; Boute et al., 2007; Hoberg et al., 2007a).
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Figure 5.11: Compared to the case with fast mode only (left), the implementation
of TBS synchromodality will lead to an over 50% probability to produce 67 cases
of the SKU, which is equivalent to the optimal volume shipped to the slow mode,
and fewer probabilities for other production quantities.

5.4.3 Aggregation of multiple stock keeping units into full

container loads

The results thus far illustrate how the tool can be used to implement synchro-

modality for one specific SKU. However, when the tool is used for multiple SKUs,

the question pops up how the resulting shipments can be aggregated into full

container loads (FCLs). Indeed, in order to reap the cost benefits of the slow

mode, companies should ship FCLs, which means that all containers need to be

fully loaded with 33 pallets. However, when the tool is used for each SKU indi-

vidually, it is likely that the aggregation across SKUs will not lead to fully loaded

containers. Currently, when a fraction is met, e.g., 45 pallets or 1.36 FCLs, the

managers generally rely on their experiences and drop or load extra pallets to

round the number to full container loads. As our synchromodality tool allows an

exact quantification of the total costs with respect to changes in pallet loads, it

can support managers load full containers on the slow mode with minimized total

costs.

We consider a simple example with five SKUs, which are to be shipped in

full container loads in the slow mode. This requires that q∗SKU1 + q∗SKU2 + q∗SKU3 +

q∗SKU4 + q∗SKU5 = 33m, where m is an integer and 33 is the number of pallets

loaded into a full container. Note that in this case, we measure the shipment

quantities in Euro-pallets to accommodate that different SKUs are packed in

different case sizes. Assume that the use of the synchromodality tool provides

the output generated in Table 5.3, which lists the total costs depending on the

132



Implementing synchromodality from a supply chain perspective

Figure 5.12: When more freight is shifted to the slow mode, the CV of the
shipment from the plant to the DC will decrease. The bullwhip of the supply chain
is therefore dampened.

volumes shipped via the slow service for each of the five SKUs (note that these

numbers are generated by changing the SKU parameters in Table 5.1, and then

rescaled). When we aggregate the optimal slow mode volumes for each SKU, we

find that q∗SKU1 + q∗SKU2 + q∗SKU3 + q∗SKU4 + q∗SKU5 = 41 pallets, which is equivalent

to 1.24. The question is now how to obtain full container loads with the five

SKUs, for which the total logistics costs of all five SKUs are minimized.

We propose a linear programming (LP) approach to solve the full container

loading problem. The rescaled results obtained from the synchromodality tool

(Table 5.3) are the input parameters of the LP and can be modeled as follows.

Denote I = {1, 2, ..., 21} the set consisting of all possible pallet loads for this

specific example and J = {1, 2, 3, 4, 5} the set of SKUs. Given i ∈ I and j ∈ J ,

the parameter vi,j denotes the average total costs per period for SKU j of which i

pallets are shipped via the slow mode every period. For example, v3,1 = 2444 euro

(see Table 5.3). We set the missing numbers in Table 5.3 equal to a sufficiently

large number in the LP model, e.g., v20,2 = 999999, indicating that it is impossible

to ship 20 pallets every period using the slow mode for SKU2, as this exceeds the

mean demand of the SKU. Denote the decision variable m the number of full
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Table 5.3: The total average costs per period for the different shipment quantities
on the slow mode (in pallets). All numbers are rescaled

Pallets SKU1 SKU2 SKU3 SKU4 SKU5

1 2449 1308 2438 1547 937
2 2447 1304 2433 1542 933
3 2444 1301 2428 1536 928
4 2442 1298 2425 1530 923
5 2440 1296∗ 2422 1530 920
6 2438 1300 2420 1519 919∗

7 2436 1310 2419 1514 935
8 2435 1339 2418∗ 1509 1169
9 2434 1460 2422 1506 −
10 2433 2471 2430 1504∗ −
11 2432 − 2443 1505 −
12 2431∗ − 2461 1515 −
13 2432 − 2486 1554 −
14 2435 − 2528 2341 −
15 2440 − 2582 − −
16 2449 − 2669 − −
17 2469 − 2880 − −
18 2499 − 3576 − −
19 2567 − − − −
20 2722 − − − −
21 3315 − − − −

∗ The minimal cost for this SKU

containers, and yi,j a binary decision variable defined as:

yi,j =

{
1 if i pallets of SKU j are loaded on the slow mode,

0 otherwise.
(5.7)

The full container load problem can then be modeled as the following binary

programming problem:

min
∑
i,j

(yi,jvi,j) (5.8)

subject to:

∀j ∈ J,
∑
i

yi,j = 1 (5.9)
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∀i ∈ I and j ∈ J,
∑
i

∑
j

iyi,j = 33m (5.10)

∀i ∈ I and j ∈ J, yi,j ∈ {0, 1}. m ∈ N. (5.11)

The objective function (5.8) minimizes the aggregated total logistics cost per

period for the five SKUs. Constraint (5.9) secures that for each SKU only one

shipment quantity is used. Constraint (5.10) assures that the total number of

pallets loaded onto the slow mode is an integer multiple of 33 pallets, ensuring

fully loaded containers. The problem can be solved using any linear programming

solver and can be easily extended to a larger number of SKUs.

When we use the LP model to solve our example, we find that it is optimal to

round down the number of containers by dropping five pallets of SKU1, two pallets

of SKU2, and one pallet of SKU5. These eight containers could be shifted back

to the fast mode, which offers more flexibility in shipment quantities. The impact

of this reduction leads to a minor increase of total costs for these five SKUs. In

general, we find that it is advised to round down the number of container loads,

as the total cost curve remains fairly flat at the left side of the optimal slow

mode volume, whereas it increases rapidly when the slow mode volume passes the

optimal point (see Figure 5.5).

The LP model can be easily extended to a larger number of SKUs. In that

case, the set J will consist of all SKUs that will be co-loaded to the full containers.

The set I will be extended to I = {1, 2, ..., imax}, where imax represents the

largest possible volume shifted to the slow mode for any SKU j ∈ J , i.e., imax =

maxj∈J{rjµj} with rjµj the upper-bound of the volume of SKU j. The LP model

can also be extended to support managers in making full container load decisions

with fixed number of containers. For example, if the companies commit to load

ten containers every time the slow mode operates, it then simply needs to set

m = 10 and reapply the aforementioned linear programming again.

5.5 Summary

In this chapter, we have presented a VBA-based Excel tool to implement synchro-

modality using a tailored base-surge (TBS) policy. With a number of explicitly

described inputs, the tool generates the optimal modal split of an SKU via one

mouse-click, i.e., how much volume should be shipped via a fast, flexible, and ex-

pensive transportation mode (e.g., direct trucking) and a slow mode, ”greener”,

and cheap transportation mode (e.g., intermodal rail). The tool also supports
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companies determine the corresponding inventory management at the DC and

the resulting production quantities at the plant.

The tool allows to evaluate a synchromodality implementation in a supply

chain realm and analyze the synergies among different activities of the supply

chain. The tool is developed in VBA, which can be simply used by supply chain

managers with Excel without knowledge of the mathematics of the synchromodal-

ity model. The presentation of the tool using real company data validates the syn-

chromodality models discussed in the previous chapters. As the logic of synchro-

modality using a TBS policy can be generally applied to a variety of industries,

the tool can be implemented at other companies as well.

The tool is developed on an SKU level, i.e., it provides the optimal modal split

for one SKU only. Managers who deal with multiple SKUs can simply aggregate

the optimal volume of each SKU and consolidate them into the transportation

modes. In Section 5.4.3, an algorithm is presented to manage such aggregation

into full container loads. The tool also gives managers the option to customize

the review period of different SKUs. Whereas a fast moving SKU is frequently

ordered by the customers, and its inventory level is typically reviewed daily, slow-

moving SKUs are not frequently ordered. Managers could then increase the review

period and decrease the corresponding shipment frequencies of the transportation

modes, e.g., from daily shipments to weekly shipments. The interface to this

optional extension is integrated in the tool.
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Chapter 6

Summary and future research

directions

不忘初心，方得始终。 1

- 孟子。

Although synchromodality is accepted as a promising approach to increase

the sustainability of logistics systems, it is until now largely defined in trans-

portation terms with logistics service providers being its principal agents. Despite

sparking interests from shippers (or manufacturing companies) on synchromodal-

ity, little is known about how shippers can implement it and shift freight volume

from road to the more sustainable transportation modes such as rail or waterway.

Supply chain managers tend to presume that the use of the more sustainable

transportation modes such as rail or waterway will result in higher inventory

and lower service level due to their inflexibility in delivery quantity and sched-

ule. This concern prevents them from using the “greener” transportation modes.

Statistics have demonstrated that the share of road transportation in terms of

tonne-kilometer remains about 70% over the last decades (EUROSTAT, 2015).

This dissertation aims to fill this research gap. The main goal is to support

1 Never forget the very beginning mind. Mencius, ancient Chinese philosopher. Many believe
that ”Stay hungry, stay foolish” from Steve Jobs (1955-2011) is the appropriate paraphrase.

137



6.1. Summary of the contributions

companies in implementing synchromodality and shifting freight volumes from the

fast and less sustainable transportation mode (e.g., direct trucking) to the cheaper

and “greener” transportation modes (e.g., intermodal rail). In this chapter, we

first briefly summarize the contributions of the dissertation and bring forward

ideas for future synchromodality research.

6.1 Summary of the contributions

The contributions of the dissertation can be briefly designated into three cate-

gories: concept, methodology and practical relevance.

6.1.1 Conceptual contribution

In this dissertation, we argue that one of the reasons for the modal split being so

difficult to implement is that many stakeholders have not been taking adequate

account of the impact of synchromodality on shippers’ supply chains. In the

absence of any associated adjustment to supply chain processes, a shift from

trucks to trains and barges often leads to increases in inventory or decreases in

service levels, which companies typically try to avoid.

We review the development of multimodal transportation to the recent evo-

lution of synchromodality, and find that the current synchromodality concept is

indeed largely defined in transportation terms. In order to evaluate and promote

synchromodality, we suggest extending the concept of synchromodality from a

transportation problem into a supply chain realm, where the transportation opti-

mization is integrated into shippers’ supply chain decision-making, such as inven-

tory management, service level control, and production planning, etc. We propose

the terminology Synchromodality from a Supply Chain Perspective (SSCP) to de-

scribe the new concept.

This concept allows shippers to make transportation decisions in a broader

supply chain optimization problem, which has the potential to obtain a better

“global optimum”. This way SSCP encourages shippers to re-think and re-

optimize their transportation strategies, and involves them more directly to put

the effort in accommodating changes in transportation modes. Even if they want

to outsource transportation to LSPs, they can still exert control over the mode

choice through a “control tower”.
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6.1.2 Methodological contribution

Unfortunately, little is known from the current literature, to the best of our knowl-

edge, on quantitative analysis of companies’ synchromodality decisions in the

supply chain realm. However, we find that the SSCP models share a similar

mathematical structure with the classical dual-sourcing inventory models, which

are, despite aiming for a completely different sourcing problem, richly studied in

the literature.

In an example dual-sourcing problem, a company located in Belgium pur-

chases from two suppliers, one of them located in Germany with a short lead

time but an expensive unit purchasing price (equivalent to the direct trucking in

the SSCP model) and the other in China with a long lead time but a lower unit

price (equivalent to the intermodal rail transportation in the SSCP model), and

seeks to minimize total purchasing and inventory costs (equivalent to the total

transportation and inventory costs in the SSCP model). Nevertheless, synchro-

modality models are mathematically more generalized: Whereas dual-sourcing

models always assume identical delivery frequencies from the both sources, syn-

chromodality models need to take into account that trains naturally deliver less

frequently than trucks. We propose two novel methodologies to solve the gen-

eralized dual-sourcing models. The approximate analytic solution reported in

Chapter 3 captures the key drivers and characteristics of the synchronized modal

split problem. The algorithm based on stochastic dynamic programming pre-

sented in Chapter 4 determines the optimal freight split between rail and road

transportation applying synchromodality, including the optimal delivery quantity

and frequency of rail transportation, and the optimal delivery quantity of road

transportation controlled by the corresponding optimal inventory policy at the

distribution center.

In short, this dissertation contributes 1) to the synchromodality literature

by offering new solution models inspired by dual-sourcing literature, and 2) to

the dual-sourcing literature by extending the models by considering the nature of

different transportation modes, and offering new structural insights and solution

techniques.

6.1.3 Practical contribution

The dissertation is inspired and established on practical problems from a multina-

tional company. Although the exact values of the numbers reported in the disser-

tation are rescaled due to confidentiality reasons, several practical contributions
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could be suggested to the supply chain managers to support their synchromodality

decisions.

In Chapter 2, our model demonstrates that companies could shift a sur-

prisingly large volume into the greener intermodal rail transportation, which is

significantly larger than the lower bound of the stochastic demand. As a compari-

son, the current industry practice, e.g., Groothedde et al. (2005), reports that only

the stable, well-predicable part of the stochastic demand (equivalent to its lower-

bound) can be tailored for the intermodal rail transportation. The greater use of

intermodal rail allows companies to jointly reduce supply chain costs and carbon

emissions, rather than to trade one for the other. In Chapter 3, we offer simple

approximate analytic solutions to a synchromodality model with a minor (< 3%)

approximation error, when the rail transportation delivers half as frequently as

the road transportation. The simple formula allows managers to easily make syn-

chromodality decisions without running complex simulations or algorithms. In

Chapter 4, we show the exact optimal solution of a synchromodality model using

stochastic dynamic programming (SDP), including the optimal delivery quantity

and frequency of rail transportation, the optimal delivery quantity of road trans-

portation, and the optimal inventory control policy at the distribution center.

SDP is in general a powerful method but it often suffers from the “curse of di-

mensionality”, which requires extremely long, exponentially-increasing computing

effort. We find structural properties of the problem, with which the computing

effort could be significantly reduced. In Chapter 5, we present a VBA-based Ex-

cel tool to support managers implementing synchromodality without necessarily

understanding the mathematical details of the models. We have used the tool to

validate the research problems discussed in the earlier chapters on a real dataset,

and have discussed how the use of synchromodality impacts the supply chain,

including production and inventory management. As the synchromodality study

has been so far based on the level of the SKU, we provide a solution to aggregate

the volume shifted to the slow mode from multiple SKUs to full container loads,

such that the resulting total costs are minimized.

6.2 Directions for future synchromodality research

The synchromodality concept was first introduced in the 2010s, and the relevant

research is still at an early stage in its development with extensive challenges

and opportunities. For example, synchromodality is regarded as one of the four

building blocks of the Physical Internet, of which the conceptual development is
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optimistically planned until the year 2050 and a large number of stakeholders are

actively involved (ALICE, 2014). This dissertation offers an early exploration of

the rich body of synchromodality covering both academic and industrial aspects.

The results could be extended to a number of different ways.

6.2.1 Scope of synchromodality problems

In this dissertation, synchromodality is studied in a shipper’s supply chain con-

sisting of plant, distribution center, and customer orders. Future research could

spread across the boundary of one shipper’s supply chain to a wider network in-

volving more stakeholders. For example, with vertical collaboration shippers and

LSPs could coordinate their synchromodality decisions under specific contracts so

that both can be better-off when they coordinate their synchromodality decisions.

One interesting research question, among others, might be, if the shipper allows

the LSP to pick-up from the plant and/or deliver at the DC within a time window

instead of on particular days, how both parties could re-synchronize their freight

flows and obtain additional benefits. Another potential extension of the current

synchromodality network is via horizontal collaboration, where multiple shippers

collaborate and co-load trucks or trains. If shippers collectively apply synchro-

modality along particular corridors, the potential impact of synchromodality on

the freight modal split would be substantially reinforced. For example, if one

shipper had a slump in demand, the others might still have sufficient volume to

maintain adequate capacity utilization of the train. Stefansson (2006), Creemers

et al. (2017), Gijsbrechts and Boute (2017), and Padilla Tinoco et al. (2017) could

be the first start to analyze such kinds of collaborative shipping.

The concept of synchromodality in this dissertation focuses on the simultane-

ous use of different transportation modes in a single corridor, but does not reflect

another attribute of synchromodality: the switch of transportation modes at par-

ticular times. This attribute needs to be acknowledged so that more flexibilities

will be introduced to the synchromodality problem. The transportation planning

algorithm proposed by Mes and Iacob (2016) and Zhang and Pel (2016) could be

the starting point.

Another perspective of synchromodality is mainly applied at big ports, e.g.,

Port of Rotterdam (2011). When a large container vessel calls at the port, one

of the inland transportation modes alone, e.g., truck, train, and inland barge, is

unlikely to have enough capacity to unload all the containers from the vessel and

deliver to the inland destinations. A feasible synchromodality approach is to split
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the volume among the three modes so that the containers can be unloaded from

the container vessels efficiently. The advantage of this synchromodality approach

is delivery smoothing at the destination. Since the three transportation modes

are subject to different lead times, the freight on the three modes will arrive at

the destination at different times, and hence avoid large inventory pile-ups at the

destination.

Extensions could also focus on managing multiple SKUs in the same lane. In

Section 5.4 a direct consolidation of the volumes from multiple products is pre-

sented, assuming that the same transportation and inventory policies are applied

to all products. However, inventory controls of the multiple products could be dif-

ferent considering their complementary or substitutable nature (Transchel, 2017),

or the dynamic pricing strategies driven by sales (Transchel and Minner, 2009).

The production schedules and batch sizes need to be additionally optimized if

multiple products are allocated in one line (Demeulemeester and Herroelen, 2006;

Van Nieuwenhuyse et al., 2007), which could impact the corresponding synchro-

modality decisions.

6.2.2 Solution methodologies of synchromodality studies

Thus far, the synchromodality models studied in this dissertation always minimize

monetary costs. This aligns with the practice that, in general, companies typically

prioritize cost minimization decisions over sustainability targets such as emission

reductions. However, as the climate change is becoming more critical, companies

might in the future confront tighter regulations on emissions. A possible ex-

tension is to minimize total emissions instead of cost, or to apply multi-objective

optimization approaches to balance the trade-off between cost and emission. Ben-

jaafar et al. (2013) study how companies minimizes the total supply chain costs

subject to carbon constraints and Cachon (2014) studies the connections between

a transportation network and emissions. Andersson et al. (2013) present a tool to

evaluate the total environmental and monetary costs. These are pioneer studies

in analyzing the cost and emission trade-off in supply chain management.

Synchromodality is a new field, and its research requires novel methodologies

and business models. A general approach to enhance a broad understanding of a

new concept is to choose one theory as the dominant explanatory theory and then

complement it with other theoretical perspectives (Halldórsson et al., 2007). In

this dissertation, the classical tailored base-surge (TBS) dual-sourcing inventory

models are used to as the major theory to solve synchromodality problems. One
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disadvantage of the TBS policy is the assumption of a fixed delivery quantity

of the slow transportation mode (e.g., intermodal rail), reflecting the fact that

trains often lack the flexibility in the delivery quantity compared to trucks. A

generalized synchromodality model could release this assumption, which makes

its mathematical structure similar to the most common dual-sourcing models de-

scribed in Barankin (1961). Although the most generalized dual-sourcing model is

intractable (Whittemore and Saunders, 1977), other dual-sourcing models besides

the TBS policy could be used to solve synchromodality problems. One example is

the so-called dual index policy (DIP) introduced by Veeraraghavan and Scheller–

Wolf (2008), which assumes that the delivery quantities of both transportation

modes are controlled by a separate base stock policy. The DIP allows flexibility in

the delivery quantity of the slow transportation mode, which is realistic in some

situations, e.g., the “slow mode” in the synchromodality problem is another truck

service with longer lead time. Interesting DIP results discussed in Veeraraghavan

and Scheller–Wolf (2008), Sheopuri et al. (2010), Arts et al. (2011), and Arts and

Kiesmüller (2013) could be extended to solve synchromodality problems. Another

untackled feature of the TBS policy is the capacity constraint on the transporta-

tion modes, especially the less flexible slow mode. Section 4.6.2 provides some

first analysis on it. Further research could investigate the impact of transporta-

tion capacity on companies’ synchromodality decisions. This could be even more

interesting when companies share the capacity of a train and dynamically adjust

their booking capacities based on daily demand patterns, or companies that have

booked the capacity have the option not to use that fully, with or without some

penalties (Gijsbrechts and Boute, 2017). The extensive literature review on dual-

sourcing models by Minner (2003) could be a starting point to find appropriate

mathematical models.

A recent study by Van Riessen et al. (2017) suggests using revenue manage-

ment models widely adopted in the airline industry for synchromodality research.

In the revenue management problem, an airline decides the number of seats in

each price category to maximize its revenue. Similarly, an LSP needs to decide

the capacity and price of different transportation modes in a certain corridor, and

maximize its profit. The extensive literature of revenue management could be a

rich source for synchromodality research.

Tavasszy et al. (2015) propose an “efficient frontier” approach to select appro-

priate transportation modes in synchromodality. Suppose there exists n different

transportation modes (quotes) in a certain corridor, all with different cost and

lead time trade-offs. Based on the n transportation modes, the decision maker
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will then calculate an efficient frontier of synchromodality mode choices. The

frontier allows stakeholders to determine the transportation modes dominating

the others, which will then be selected and used as a portfolio of transportation

modes for synchromodality. Interestingly, this logic is very close to the classical

portfolio theory in finance: Given a number of stocks in the market with different

risk and return trade-offs, how can one best select from them when forming an

investment portfolio. The methodologies in portfolio theory could then be used

for synchromodality problems.

Digitalization has generated big buzz and is regarded as the future of the

logistics industry. Currently, an increasing number of stakeholders are building

up digital platforms to accumulate data, exchange information, and encourage

collaboration. For example, Port of Antwerp is establishing a data platform to

collect data from various companies linked to it (NxtPort, 2017). The EU is

organizing the so-called AEOLIX project to build an online logistics information

exchange portal and support logistics decisions (European Commission, 2017). An

independent third-party data platform called CargoStream connects voluntary

shippers to share logistics data for collaborations (Nallian, 2017). These data

platforms could work as a first step to trigger algorithms in big data analysis,

deep learning, and artificial intelligence, which further promotes synchromodality

studies. Examples using smart goods for shipment control are presented by Arnäs

et al. (2013)

6.2.3 Practical relevance of synchromodality research

The synchromodality models studied in this dissertation are built upon assump-

tions of specific demand distribution functions. These well-designed assumptions,

on the one hand, help the stakeholders understand the insights of the models,

but on the other hand, hinder the advance of the practical implementation. For

example, the models assume i.i.d. stationary demand but real demand could be

non-stationary. For example, we have found from data that, sales are heavily

driven by seasonality, which can be well-predicted. Based on these observations,

transportation could be tailored as follows: 1) Well-predicated stable volume can

always be shipped via the cheapest and inflexible transportation mode (e.g., rail

with fixed volume commitment); 2) Well-predicted but non-stable sales volume

will be shipped via a different transportation mode at medium cost (e.g., rail

without fixed volume commitment); and 3) Non-predictable demand spikes will

be accommodated by direct trucking at the highest price. Solution methodol-
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ogy such as transfer functions can be used to deal with non-stationary demand

(Hoberg et al., 2007b).

For generalized non-stationary demand patterns, the models proposed in this

dissertation will be intractable for analytic analysis. The real data validation

in Section 5.4 also indicates that synchromodality under a tailored base-surge

policy might not be advised for SKUs with non-stationary demand. Advanced

numerical methods such as big data analysis and machine learning algorithms

could help companies better understand and forecast the demand patterns and

deploy suitable transportation modes accordingly.

Thus far, the dissertation mainly focuses on single-SKU models and an ap-

proach to load multiple SKUs in one container is only discussed in Section 5.4.3.

Synchromodality approaches to ship multiple SKUs are required. A possible re-

sult, among others, might be that the slow moving SKUs are shipped in the slow

transportation modes at a lower delivery frequency, whereas the fast moving SKUs

are shipped in the fast mode every period. The choice of transportation mode is

then tailored to the characteristics of the SKUs.
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