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ABSTRACT
Markov modeling presents an attractive analytical framework for researchers who are interested in
state-switching processes occurring within a person, dyad, family, group, or other system over time.
Markov modeling is flexible and can be used with various types of data to study observed or latent
state-switchingprocesses, and can include subject-specific randomeffects to account for heterogene-
ity. We focus on the application of mixed Markov models to intensive longitudinal data sets in psy-
chology, which are becoming ever more common and provide a rich description of each subject’s
process. We examine how specifications of a Markov model change when continuous random effect
distributions are included, and how mixed Markov models can be used in the intensive longitudinal
research context. Advantages of Bayesian estimation are discussed and the approach is illustrated by
two empirical applications.

Psychological researchers from various fields have used
longitudinal research to study within-person processes
that are characterized by switches between different states.
Examples involve research into bipolar disorder, char-
acterized by switches between manic and depressive
states (Hamaker, Grasman, & Kamphuis, 2016); recov-
ery and relapse as seen in addiction (Warren, Hawkins,
& Sprott, 2003; Shirley, Small, Lynch, Maisto, & Oslin,
2010; Prisciandaro et al. 2012; DeSantis & Bandyopad-
hyay, 2011); state-dependent affect regulation (de Haan-
Rietdijk, Gottman, Bergeman, & Hamaker, 2016) and
various other approaches in modeling affect dynamics
(Hamaker, Ceulemans, Grasman, & Tuerlinckx, 2015);
catastrophe theory applied to stagewise cognitive devel-
opment (Van der Maas & Molenaar, 1992); and switches
in strategy use during cognitive task performance, with
the speed-accuracy trade-off as a well-known example
(Wagenmakers, Farrell, & Ratcliff, 2004).

One analysis approach that can be valuable and that has
sometimes beenused for suchprocesses isMarkovmodel-
ing, which can be used when a person alternates between
discrete states. These states can be directly observed,
but there are also latent Markov models (LMMs) in
which a latent state variable is related to observed data.
Since individual differences are to be expected in many
psychological applications, a particularly promising
framework is offered by the mixed Markov model, which

CONTACT S. de Haan-Rietdijk silvia.dehaan@cito.nl Methodology and Statistics, Faculty of Social and Behavioural Sciences, Utrecht University ,
Utrecht  TC, the Netherlands.
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/hmbr.

includes continuous random effects (Altman, 2007; also
see Seltman, 2002; Humphreys, 1998; Rijmen, Ip, Rapp,
& Shaw, 2008a), and potentially covariates. This model
is very suitable for the increasingly common intensive
longitudinal data type (ILD; cf. Walls & Schafer, 2006),
where 20 or more repeated measurements are obtained
per individual, because such data offer a rich description
of each individual process. In this paper, we focus on
models with time-constant parameters and predictors,
but note that ILD also lend themselves well to models
involving time-varying parameters.

Markovmodels, includingmixedMarkovmodels, have
been applied in various scientific fields, but there are rel-
atively few examples of mixed Markov models in the psy-
chological literature. This scarcity of applications may
have to do with the models not being well-known to
researchers in this field, or perhaps with perceived lim-
itations or challenges in the implementation of mixed
Markov models. We note that ILD are unique in the
sense that they contain much information about each
individual, so that models including individual differ-
ences in temporal dynamics not only become viable, but
of prime interest. While ILD is also suitable for separate
(N = 1) modeling of each individual person’s data, dis-
tinct advantages of themixedMarkovmodeling approach
are that we can borrow strength across persons, obtain
estimates of the average population parameters, and

©  S. de Haan-Rietdijk, P. Kuppens, C. S. Bergeman, L. B. Sheeber, N. B. Allen, and E. L. Hamaker. Published with license by Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-
nd/./), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon
in any way.
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748 S. DE HAAN-RIETDIJK ET AL.

include predictors to investigate their relationship with
the individual differences. In this paper, we show how
mixed Markov models can be specified and implemented
with Bayesian estimation, and we illustrate the value of
this approach for ILD in psychology by two empirical
examples, one involving daily affect experience and the
other family interactions. We also discuss the various
ways that individual differences have been addressed in
the Markov literature.

This paper is structured as follows: First, we present the
observed and latent Markov models, and the inclusion of
continuous random effects. This is followed by consider-
ations about the implementation, particularly the reasons
why Bayesian estimation seems promising in this context.
Thenwe turn to the literature anddiscuss the variousways
that researchers have approached between-person differ-
ences in the Markov modeling framework. After that, we
analyze two empirical data sets for which Markov model-
ing can address unique hypotheses and complement other
analysis approaches.We conclude the paper with a discus-
sion of limitations and recommendations for researchers.

TheMarkovmodels

In this first section, we present a brief introduction of
Markovmodels, in which we distinguish between two sit-
uations: Either researchers know the states of the system
over time, or these states are assumed to underlie the data.
In the first case, we can use what we call the observed
Markov model (OMM), whereas in the latter, we need to
use an LMM. In our discussion, we assume that themodel
is concerned with the states a person is in, but keep in
mind that the unit of analysis could also be a dyad, family,
company, group, or something else.

The observedMarkovmodel (OMM)

When researchers know the state that a person is in at each
occasion, they can use an OMM to investigate the tem-
poral dynamics of the state-switching process. The states
may correspond to the categories of a discrete observed
variable, or they may be created by discretizing contin-
uous (or multivariate) data, as our empirical application
will illustrate. TheOMMis also referred to as amanifest or
simple Markov model or Markov chain (cf. Kaplan, 2008;
Langeheine & Van De Pol, 2002).

With an OMM, we analyze the observed state transi-
tions over time and estimate the transition probabilities.
Figure 1 provides a graphical representation of an OMM,
with on the right-hand side, a hypothetical example based
on alcohol use with two states. It can be seen that there are
four possible transitions (including not switching). The
transition probabilities of a Markov model are denoted as

Figure . Graphical representation of an OMM with two states. If
a person is in a given state i at time t , the parameters next to the
arrows running from that state represent the average probabilities
of being in each state j at time t + 1. The right part portrays fic-
tional parameter values concerning alcohol use.

a matrix in which the element πi j represents the probabil-
ity of transitioning from state i to j between consecutive
measurements (with i ∈ [1, 2, . . . S] and j ∈ [1, 2, . . . S]).
We can write πi j = p(stn = j|s(t−1)n = i), where stn rep-
resents the state of person n at occasion t . The probability
of being in this state is conditioned on the state at the pre-
vious occasion. The likelihood for the data (s) from time
t = 2 onwards is then given by

f (s|π) =
T∏

t=2

N∏

n=1

f (stn|π), (1)

which is the product over all persons and all time points
(starting at t = 2) of the categorical distribution for each
individual observation, which is given by

f (stn|π) =
S∏

i=1

S∏

j=1

(πi j)
[stn= j]·[s(t−1)=i]. (2)

Here, the expressions within square brackets evaluate
to 0 or 1 when they are false or true, respectively, and∑S

j=1 πi j = 1 for every i. Due to this logical restriction,we
only need to estimate S − 1 probabilities of each row, for
a total of S(S − 1) probabilities. Note that the number of
probabilities to be estimated increases exponentially with
the number of states.

The latentMarkovmodel (LMM)

Sometimes the state-switching process that researchers
are interested in is not directly observed, or is observed
with methods that are expected to involve substantial
measurement error. In these situations, researchers can
use the LMM, also known as the Hidden Markov model
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MULTIVARIATE BEHAVIORAL RESEARCH 749

(HMM). For quite a long time, there have been two largely
separate literatures for HMMs and LMMs, originating
from different disciplines, but the two names refer to the
same model type (Visser, 2011; Zhang, Jones, Rijmen, &
Ip, 2010).

Because an LMM is used to study a latent state-
switching process, this model always needs to have amea-
surement (or conditional) model part, which links the
unobserved states of the system to the observed outcome
variable(s). We can distinguish between two broad sce-
narios for why and how this is done, which we will dis-
cuss inmore detail below. In the first scenario, researchers
have the option of applying an OMM directly to their
observed categorical outcome (i.e., the state variable), but
they prefer using an LMM to takemeasurement error into
account. In contrast, in the second scenario, the LMM
is the only one of the two models that can be applied to
address the research questions at hand.

The first type of LMM is used when a state variable
has been observed, but there is reason to expect sub-
stantial measurement error, which may cause bias in the
estimated transition probabilities in an OMM (Vermunt,
Langeheine, & Böckenholt, 1999). It may also be the case
that multiple indicators of the state are available, in which
case an OMMwould have to be applied separately to each
indicator. In an LMMapplication of this type, the number
of latent states is given by the number of observed cate-
gories (per indicator), and the measurement model con-
cerns the probabilities of correct classification versus mis-
classification for each true state and indicator. An example
is found in Humphreys (1998), who analyzed three indi-
cators of labor market status (employed or not employed)
with a two-state LMM.

In the second type of LMM, the measurement model
part does not servemerely to filter outmeasurement error
from observed states, but instead it is used to relate the
observed data to an underlying state-switching process
with a different meaning. For example, Altman (2007)
used a two-state LMM to study the observed lesion counts
in multiple sclerosis patients during (latent) recovery and
relapse states. In these kinds of LMMs, the number of
latent states is chosen based on theory, or based on the fit
of models with differing numbers of states. Furthermore,
the exact specification of themodel in these cases depends
on the measurement level of the observed variable(s) and
on how the states are assumed to influence them.

When it comes to differences between the interpre-
tation of LMMs and OMMs, the study by Shirley et al.
(2010) provides a nice example. As these researchers
explain, applying an LMM to their alcoholism treat-
ment trial data corresponds to a different and less rigid
clinical understanding of what constitutes a “relapse” in
alcoholism recovery, because the latent state in an LMM

is differentiated from the observed categorical variable
(drinking behavior). In contrast, an OMM would reflect
the assumption that a change in the observed categories is
what matters and what is relevant for clinical practice.

Apart from the fact that the number of states in an
LMM does not always follow from the data, as it does in
theOMM, the specification of the transitionmodel is very
similar, except that an LMM includes additional parame-
tersπ1 representing the probabilities of starting out in the
different states at the first occasion. There is no fixed for-
mat for the measurement part of an LMM, because it is a
flexible model that can be applied to univariate or multi-
variate, and continuous or discrete data. Its interpretation
depends on how the underlying states and their relation-
ship with the observed data are conceptualized.

Including random effects inMarkovmodels

If we want to account for individual differences in dynam-
ics, this can be done by including subject-specific ran-
dom effects. Here, we followAltman’s (2007)mixed LMM
specification, modeling the logits (log-odds of the proba-
bilities) instead of estimating the probabilities directly as
described above. This makes it possible to use regression
to predict the logits.

In a mixed LMM, the latent state at the first time point
is still modeled using fixed probabilities. But the states
from occasion t = 2 onwards are modeled, in both an
OMM and LMM, using a categorical distribution where
the transition probabilities depend on the individual n, so
we get

f (s|π) =
T∏

t=2

N∏

n=1

S∏

i=1

S∏

j=1

(πi jn)
[stn= j]·[s(t−1)=i]. (3)

The individual’s transition probabilities are derived from
their logits αisn, using

πi jn = exp(αi jn)
∑S

s=1 exp(αisn)
, (4)

where

αi jn = μi j + εi jn (5)

for each person n and each i, j ∈ [1, . . . S], such that μi j
is the average logit for transitioning from state i to state j,
and εi jn is person n’s deviation from that average. The ran-
dom deviations have a multivariate normal distribution
with a zero mean vector of length S(S − 1) and a covari-
ance matrix �(ε) with S(S − 1) rows and columns. For
identification, we set both μi j and εi j equal to 0 when-
ever i = j, making stability the reference transition for the
logits.
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750 S. DE HAAN-RIETDIJK ET AL.

To predict some of the individual differences in switch-
ing probabilities, we can add one or more predictor vari-
ables to Equation (5). If we have one predictor, this gives
us

αi jn = μi j + βi j · xn + εi jn. (6)

For identification purposes, we also constrain βi j to be
0 whenever i = j. The logit specification above, which
uses a reference category, can be used for ordinal and
non-ordinal state variables, but for ordinal state variables,
other alternatives including local, global, and continua-
tion logit specifications, may be more parsimonious and
powerful (cf. Bartolucci, Farcomeni, & Pennoni, 2013).
Note that the measurement model part in an LMM
can also be specified to include random effect(s). The
second empirical application in this paper illustrates a
mixed LMM.

Model estimation: A Bayesian approach

We now discuss the implementation of (mixed) Markov
models, focusing on a few general considerations about
Bayesian estimation, which is our preferred approach in
this context.

Why Bayesian?

The literature contains many successful applications of
Markov models implemented using classical (frequentist)
estimation methods, and some of these involve LMMs
with covariates, latent subgroups, or random effects to
account for individual differences.1 However, there have
been conflicting opinions on the robustness of frequentist
estimation for mixed LMMs, and in practice, many appli-
cations have usedmixture LMMs (whichwill be discussed
in the next section), rather than mixed LMMs. Seltman
(2002) implemented a Bayesian mixed LMM with one
random effect, and stated that the frequentist approach
was intractable. Altman (2007) countered this claim by
showing that classical estimation of several mixed LMMs,
while computationally intensive, was feasible even with
multiple random effects. However, she concluded that the
computational burden may become prohibitive with four
or more random effects. Regardless of the exact possibil-
ities and limitations within the classical framework, we
know that Bayesian estimation presents a highly flexible
alternative approach.

 For an extensive discussion of classical estimation of Markov models, read-
ers are referred to the textbooks by Bartolucci et al. () and MacDonald
and Zucchini (), and examples of LMM applications involving various
types of random effects, and their computational details, can also be found
inMaruotti and Rocci (), Altman (), Jackson, Albert and Zhang (),
and Crayen, Eid, Lischetzke, Courvoisier and Vermunt ().

Besides its robustness, three additional advantages of
Bayesian estimation seem relevant for the use of mixed
Markov models in psychology. First, it does not rely on
asymptotic distributions, making it more appropriate for
small samples. Importantly, in a multilevel model, the
sample size at the second level is a separate issue (Hox,
2010). For instance, if there are only 30 persons in a data
set, the sample size for estimating an average transition
probability, a random effects variance or a covariate effect
on the transition logits is small, regardless of the length of
the time series. A third feature of Bayesian methods that
we believe is especially valuable for psychological research
is Bayesian multiple imputation, which is a state of the
art technique for handling incomplete data without los-
ing information or introducing bias (assuming, as most
common approaches do, that the data points are missing
at random; cf. Schafer & Graham, 2002). Fourth, we note
that it is possible to extract the latent states from a fit-
ted LMM without separate state decoding, as well as 95%
credible intervals for various quantities, such as for the
transition probabilities in a mixed Markov model, where
the original parameters are the less easily interpretable
logits.

One key characteristic of Bayesianmethods is that they
require the specification of prior distributions for model
parameters, indicating the range of plausible values that
they can take. This feature can be used to incorporate
prior information (from research) or beliefs into an anal-
ysis, but it is also possible to choose vague (low infor-
mative) prior distributions so that the model estimates
reflect the information in the current data and not prior
beliefs (cf. Lynch, 2007). While it is sometimes desirable
to conduct sensitivity analyses to compare different priors
and to evaluate whether a prior is undesirably informa-
tive about the model parameters, one can also consult the
literature for known characteristics of different prior dis-
tributions and base the choice of priors on expert advice.
In the empirical applications in this paper, we choose pri-
ors that are recommended in the literature and that are as
vague as possible.

Bayesian LMMs

While OMMs are quite straightforward to implement,
there are a two points to consider about Bayesian LMMs,
which could limit their usefulness in specific cases. First,
there is no straightforward criterion for model fit or
model selection that can be used to choose the number
of latent states when that number is not known a priori.
Researchers working in the frequentist framework often
use theAkaike InformationCriterion (AIC; Akaike, 1974)
or Bayesian Information Criterion (BIC; Schwarz, 1978)
for model comparison and for choosing the number of
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MULTIVARIATE BEHAVIORAL RESEARCH 751

latent states (see e.g., Bauer & Curran, 2003; MacDon-
ald & Zucchini, 2009; Nylund, Asparouhov, & Muthén,
2007; Bacci, Pandolfi, & Pennoni, 2014). In the Bayesian
framework, the exact Bayes factor for model comparison
is difficult to implement, and both exact and approximate
Bayes Factors (such as the BIC approximation, cf. Kass
& Raftery, 1995) yield results that depend on a specific
prior distribution (Frühwirth-Schnatter, 2006). Another
commonly used criterion is the Deviance Information
Criterion (DIC; Spiegelhalter, Best, Carlin, & Van Der
Linde, 2002), but there is no consensus on the right way
to define the DIC for multilevel models (Celeux, Forbes,
Robert, & Titterington, 2006) or for models including
discrete variables (Lunn, Spiegelhalter, Thomas, & Best,
2009). A formal approach, and one that is highly consis-
tent with Bayesian philosophy, is to estimate the number
of latent states by using Reversible Jump Markov Chain
Monte Carlo estimation (RJMCMC; Green, 1995; also
confer Bartolucci et al., 2013). A downside of RJMCMC
is that it requires custom programming and fine-tuning of
algorithms.

Second, a potential issue that may arise during
Bayesian estimation of LMMs (or other mixture mod-
els) is what has been referred to as label switching
(Celeux, Hurn, & Robert, 2000; Frühwirth-Schnatter,
2006). Because the labels of the latent states (state “1,” “2,”
and so on) are arbitrary, and because Bayesian estima-
tion typically relies on iterative sampling from the pos-
terior parameter distributions, it may happen that the
labels are switched during the course of estimation. If this
occurs, it can often (but not always) be seen from the out-
put because the posterior distributions of the parameters
will then be multimodal mixtures. For instance, if there
are two states, the posterior distributions for the average
transition logits μ12 and μ21 will each have the same two
peaks, with (usually) one peak higher for one parameter
and the other for the other parameter. As a result, the
obtained posterior means, medians and 95% CIs of the
parameters will be meaningless.2 In principle, the modes
that are visible in the plotted posterior densities could be
used as (approximate) point estimates of the parameters
(Frühwirth-Schnatter, 2006), but this only gives us a point
estimate, and we typically want to have some measure of
the uncertainty about the parameter value.

A common strategy to prevent label switching, in prac-
tice, is to impose order restrictions on the parameters for
different states to enforce a unique labeling. (cf. Albert
& Chib, 1993; Richardson & Green, 1997). However, this
strategy has been criticized on various accounts (Celeux,
1998; Celeux et al., 2000; Stephens, 2000; Jasra, Holmes, &

 The reason that classical maximum likelihood estimation methods do not
present this problem is that they search for amode of the likelihood function
conditional on a given labeling (Frühwirth-Schnatter, ).

Stephens, 2005), themost important of which is that it can
cause bias and inflate state differences. In fact, when the
data provide little or no support for a distinction between
two states, the posterior densities for those states’ param-
eters logically should overlap, but an order restriction will
effectively obscure this “null” result bymodifying the pos-
terior and enforcing a difference between the two param-
eters. Thus, this approach is not recommended. It is better
to allow the possibility of label switching, and if it occurs,
to consider whether the cause may be overparameteriza-
tion, which can result in highly similar parameters with
overlapping posterior densities, or to consider whether
frequentist estimation of that particular model is feasible.

In some LMM applications, label switching is unlikely
to occur. Jasra et al. (2005) have argued that label switch-
ing is actually a necessary condition for model conver-
gence, because a lack of label switching can be taken as
a sign that the sampler has not covered the whole poste-
rior distribution. However, when the parameters associ-
ated with the different latent states are clearly separated,
label switching is very unlikely to occur even after many
iterations, and in this case, the absence of label switch-
ing need not indicate failed convergence. In other words,
only if the uncertainty about the different states’ parame-
ters causes substantial overlap in their posterior densities,
is label switching expected to happen predictably within
a realistic number of sampling iterations. In practice, this
means that LMMs which are used to filter out measure-
ment error are very unlikely to present with label switch-
ing, since each latent state in such a model corresponds
closely to an observed category, making for clearly distin-
guishable states. It is more of a risk for LMMs of the sec-
ond type that we discussed, where there is no guarantee
that all the latent states will be clearly separated.

Software implementations

Bayesian Markov models can be implemented in the
easily accessible open-source programs OpenBUGS
(Bayesian inference Using Gibbs Sampling; Lunn et al.,
2009) and JAGS (Just Another Gibbs Sampler; Plummer,
2013a). Using Bayesian estimation with these programs
is relatively straightforward. The user can focus on
specifying the desired model and choosing the prior
distributions, and the convergence of the model can be
assessed using the plots and other output provided by the
program. For the analyses in this paper, we use JAGS 4.0.0
in combination with R 3.2.2 (R Development Core Team,
2012) and the rjags package (Plummer, 2013b). By using
this package, R can be used as the overarching program to
prepare the data, run the analyses, check the convergence,
and to store and further process the model results. Our
JAGS model syntax is provided online as supplementary
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752 S. DE HAAN-RIETDIJK ET AL.

material. A detailed discussion of Bayesian methods is
beyond the scope of this paper, but the interested reader
is referred to the books by Kruschke (2014) and Lynch
(2007).

Approaches to individual differences in the
Markov literature

In this section, we will look at the ways thatMarkovmod-
els have been used in the literature, specifically, at the dif-
ferent ways that researchers have accounted for individual
differences in process dynamics. In psychological research
with ILD, we expect individual differences in the pro-
cess parameters, and the data contains enough informa-
tion to allow these differences to be modeled. Therefore,
from a substantive viewpoint, it is attractive to specify a
mixed Markov model, as discussed in a previous section.
However, as we will see, researchers have used a number
of approaches for dealing with interpersonal variation in
model parameters.

The first way that researchers have dealt with between-
person differences is to include one or more covariates
in the model, without allowing for residual unexplained
individual variation. This approach allows researchers
to specify a deterministic relationship between model
parameters and a covariate (which may or may not be
time varying). For example, Vermunt et al. (1999) applied
LMMS and OMMs to analyze educational panel data
concerning pupils’ interest in physics. They included the
variables sex and school grades as covariates to account
for gender differences and differences between high- and
low-performing pupils in the probability of starting to
take an interest in physics (or losing interest). Since the
model did not include person-specific random effects or
unexplained interpersonal differences, it only accounted
for group differences between the specified groups but
not for any other sources of variation between pupils.
Some other examples of LMMs that include covariates
but not random effects are found in Rijmen, Vansteelandt
and De Boeck (2008b), Prisciandaro et al. (2012), and
Wall and Li (2009).

The second approach to taking individual variation
into account is to use a mixture Markov model (some-
times also called a mixed Markov model), which tends to
be computationally easier, in the frequentist framework,
than the mixed Markov model. A mixture Markov model
distinguishes between a number of latent classes that dif-
fer from each other with regard to the model param-
eters, while within each class no individual differences
between persons are allowed. For instance, Crayen et al.
(2012), analyzing ambulatory assessment data, identified
two latent classes that differed in their mood regulation
pattern during the day. This approach is also used in
Maruotti (2011), who provides an illustration of amixture

LMMapplied to data concerning the relationship between
patent counts and research and development expendi-
tures, and in various examples in Bartolucci et al. (2013).
What may be considered a disadvantage of the mixture
Markov modeling approach, is the assumption that there
are a limited number of homogeneous latent classes, when
many psychological differences between people are prob-
ably dimensional rather than categorical (Haslam, Hol-
land, & Kuppens, 2012). It has been argued that mixture
models need not reflect theoretical assumptions about
discrete groups, but can serve as flexible non-parametric
approximations of underlying continuous random effects
(cf. Maruotti & Rydén, 2009; Maruotti & Rocci, 2012).
Such an approach involves choosing the number of latent
subgroups empirically, and in the frequentist framework,
this can be done by using criteria such as the AIC or BIC
(cf. Maruotti & Rocci, 2012). In the Bayesian framework,
this approach would present a difficulty similar to choos-
ing the number of latent states in an LMM, and it is not
clear that a Bayesian mixture model is computationally
easier than a mixed model.

The third approach, and the one that we focus on
in this paper, is the inclusion of a continuous random
effects distribution, by specifying a mixed Markov model
as described in a previous section. We want a multilevel
model that encapsulates a unique description of each per-
son’s process, which, in the case of ILD, contains enough
information that it could have been analyzed with an
N = 1 model. It should be noted that a mixed Markov
model with a normal distribution for the random tran-
sition logits is not the same as modeling each person’s
data separately (and independently), because it involves
a distributional assumption for the random effects.
A normal distribution on log-odds parameters can cor-
respond to various distributional shapes for the implied
transition probabilities (due to the non-linear relationship
between log-odds and probabilities), so that it is less
restrictive an assumption than it may seem at first glance.
Still, it is an assumption and it is worth pointing out that
there are alternative, semi-parametric or non-parametric,
approaches that involve less restrictive and more general-
izable model specifications (cf. Maruotti & Rydén, 2009;
Maruotti, 2011). Some examples of mixed LMM applica-
tions using continuous random effects are found in the
studies by Altman (2007), Humphreys (1998), Rijmen
et al. (2008a), DeSantis and Bandyopadhyay (2011), and
Shirley et al. (2010). Of these, only Humphreys (1998)
and Altman (2007) included random effects in both parts
of the LMM. Rijmen and colleagues (2008) and DeSantis
and Bandyopadhyay (2011) included random effects
only in the measurement model. In contrast, Shirley and
colleagues (2010) used random effects only in the
transition model.
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MULTIVARIATE BEHAVIORAL RESEARCH 753

It is possible to allow for interpersonal variation in both
parts of an LMM. Bartolucci et al. (2013), in their book
about LMMs, focus only on models with random effects
in either model part, and they warn readers that having
random effects in bothmodel parts would likely make the
model difficult to estimate and to interpret. We do not
entirely agree with this advice; the studies of Humphreys
(1998) and Altman (2007) are both convincing examples
where mixed LMMs with random effects in both model
parts were theoretically sensible as well as practically fea-
sible. And in some psychological applications, it makes a
lot of sense to expect individual differences both in the
measurement part of the model and in the latent state-
switching process. Although there may be limitations on
the complexity of models that can realistically be esti-
mated for a given data set, we think researchers should not
exclude a priori the possibility of including randomeffects
in both model parts of a mixed LMM. In our application
of a mixed LMM in the next section, we fit a model with
random transition logits as well as a random effect in the
measurement model part.

Empirical applications

In this section, we apply mixed Markov models to two
empirical data sets from intensive longitudinal research,
for which it makes sense to focus on the dynamics of a
process, and where between-person differences in those
dynamics are expected and may be linked to other per-
son characteristics. These analyses provide an illustration
of how mixed Markov models can be applied in psychol-
ogy, and how they can be implemented using Bayesian
estimation. We use JAGS 4.0.0 (Plummer, 2013), R 3.2.2
(R Development Core Team, 2012) and the rjags package
(Plummer, 2013).

AnOMM for daily negative affect

The first data set involves daily self-report measures of
negative affect (NA) obtained from the older cohort (ages
50 and higher) of the Notre Dame Study of Health &
Well-Being (see Bergeman & DeBoeck, 2014; Whitehead
& Bergeman, 2014). We are interested in the NA subscale
of the PANAS (Watson, Clark, & Tellegen, 1988), which
the participants filled out on 56 consecutive days. For our
analysis, we select the N = 224 persons who had at most
six missing values on this composite variable (the mean
of the 10 specific NA items). Specifically, we want to study
the regulation of NA and how it is related to trait neu-
roticism, which was also measured. The daily scores on
the NA scale ranged from 1 (very little or no NA) to 5
(very intense NA) in 0.1 increments, but as noted before
by Wang, Hamaker, and Bergeman (2012), some persons’

scores exhibited a floor effect because they repeatedly
reported experiencing no NA (i.e., for each of the NA
items on the scale they chose 1, the lowest possible value
with the label “very slightly or not at all”). This indicates
that, at least at the level of conscious experience, NA is
often absent or barely noticeable for a substantial number
of people.

If we want to account for this, modeling approaches
that focus on the intensity of NA as a continuous vari-
able may not be optimal, both from a substantive and a
statistical point of view. Rather than focusing immedi-
ately on questions of affect intensity, we can distinguish
between the propensity to experience any NA on the one
hand, and the intensity of the affect, once it is experienced,
on the other. A Markov model is appropriate for this data
because it can be used to investigate the frequency of tran-
sitions between episodes with and without consciously
experienced NA. We will specify a mixed OMM, which
allows us to investigate individual differences in the tran-
sition probabilities, and to study their relationship with
neuroticism.

Model
From the original continuous NA variable, we create a
dichotomous variable indicating whether or not a person
experienced NA at a given time point (i.e., the state is 1
when NA was the lowest possible value of 1, and the state
is 2 when the NA value was larger than 1). This dichoto-
mous variable is then used as the data for the OMM, so
that we can investigate the transitions between experienc-
ing and not experiencing NA. There was approximately
2.2% missingness, which is dealt with automatically
in JAGS through multiple imputation. This modern
approach to missing data amounts to imputing many dif-
ferent plausible values for themissing datapoints (namely,
a new value in each iteration of the estimation procedure,
conditional on themodel parameter estimates in that iter-
ation), such that the model estimates for the parameters
end up accounting for the uncertainty about the missing
values in the data (cf. Schafer & Graham, 2002). The
variable neuroticism is centered and rescaled prior to the
analysis, for computational reasons discussed below. The
likelihood for the observed states starting at time point
t = 2 is given by Equations 3, 4, and 6, with i, j taking on
the values 1 and 2 and with neuroticism as the predictor
x. Combining this all gives us the following equation:

f (s|P) =
56∏

t=2

224∏

n=1

2∏

i=1

2∏

j=1

× exp(μi j + βi j · xn + εi jn)
([stn= j]·[s(t−1)=i])

exp(μi1 + βi1 · xn + εi1n + μi2 + βi2 · xn + εi2n)
,

(7)
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754 S. DE HAAN-RIETDIJK ET AL.

where the expressions within square brackets form the
exponent of the numerator and evaluate to 1 if they are
true, and to 0 otherwise. The model parameters denoted
by P are μ12, μ21, β12, β21, and the three unique elements
of the random effects covariance matrix �(ε).

Priors
For the intercepts μ12 and μ21 and for the regression
coefficients β12 and β21, we follow the approach for logit
parameters recommended by Gelman, Jakulin, Pittau and
Su (2008), by specifying independent Cauchy prior distri-
butions (or, equivalently, Student’s t distributionswith one
degree of freedom) with scale parameter 10 for the inter-
cepts and 2.5 for the regression coefficients, and location
parameter 0 in all cases. In accordancewith this advice, we
rescaled neuroticism to have a mean of 0 and a variance
of 0.25.

To determine whether there are non-negligible indi-
vidual differences in the transition probabilities, we
needed to ensure that the prior distribution for the two
random logit variances is suitably uninformative. The
common choice of a multivariate prior for a covariance
matrix is the Inverse-Wishart (IW) distribution with an
identity matrix and degrees of freedom equal to the num-
ber of random effects, but this prior can be undesirably
informative and cause overestimationwhen the true value
of a variance is smaller than approximately 0.1 (Schu-
urman, Grasman, & Hamaker, 2016). Therefore, we first
specified a model with separate random effects, that is,
a model in which the random effects are not correlated,
but come from univariate normal distributions. This way,
we could follow Gelman’s (2006) recommendation for a
variance term in a hierarchical model, by specifying uni-
form prior distributions over the interval from 0 to 100
for each of the standard deviations σ12 and σ21. These pri-
ors cannot bias small variance estimates upwards, so we
can detect it if one of the random effects variances is very
close to zero, indicating that the model is overspecified.
After finding that both of the variance estimates were well
over 0.1, we switched to a model specification using the
IWprior formultivariate random effects, which takes into
account that the random effects will be correlated to some
extent. Our JAGS model syntax for the final model with
the multivariate random effects is part of the supplemen-
tary material accompanying this paper.

Results
After 10,000 burnin iterations, we ran 50,000 additional
iterations, using a thinning parameter of 10 so that only
every 10th was stored for inference (a common approach
to reduce autocorrelation in the samples without increas-
ing the demands on computer memory). We inspected

Table . Results for the level- parameters of the OMM.We use the
posterior medians as point estimates, and the SD and % central
credible intervals (CCIs) represent the uncertainty. Note that the
parameters �(ε)11 and �(ε)22 are the variances of the random
logit deviations ε12 and ε21, respectively, and �(ε)12 is the covari-
ance between these two random effects.

Empirical OMM estimates

Median SD % CCI

μ12 − . . [−.,−.]
�(ε)11 . . [., .]
β12 . . [., .]
μ21 − . . [−., .]
�(ε)22 . . [., .]
β21 − . . [−.,−.]
�(ε)12 − . . [−.,−.]

the trace plots, which showed no trend, and the den-
sity plots, which looked unimodal, both indicating ade-
quate convergence. Most importantly, we ran a separate
chain with different (randomly generated) starting val-
ues, which arrived at the same estimates. This provides a
stronger reassurance about convergence, because it shows
that the estimates are independent of the starting values
and are unlikely to reflect only a local maximum.3 The
results below are based on the 5,000 stored samples of the
first chain.

Table 1 contains the estimates for the level-2 model
parameters.We use the medians of the Bayesian posterior
distributions as point estimates, and the SDs and 95% cen-
tral credible intervals (CCIs) as indications for the uncer-
tainty about the parameters (Lynch, 2007).

The means for the transition logits, estimated at−0.92
and −0.17, correspond to transition probabilities of 0.28
and 0.46, respectively. This implies that a person with
average neuroticism has a 0.28 chance of transitioning
from the non-negative to the negative state from one
day to the next, and a (1 − 0.46 =) 0.54 chance of stay-
ing in the negative state. The β parameters reflect the
effect of trait neuroticism on the transition logits, and
because we scaled neuroticism to have an SD of 0.5, each
β represents the effect of a two-SD increase in neuroti-
cism. Since the 95% CCIs for both parameters exclude
zero, we can be fairly certain that higher scores on neu-
roticism predict a higher chance of starting to experi-
ence NA, as well as a higher change of continuing to

 Note that randomly generating all the starting values is not effective in all sit-
uations, because depending on themodel complexity and on howwrong the
starting values are, the sampling algorithmmayget stuck and fail to converge
to the posterior distribution. Convergence can be aided by choosing realistic
starting values (for some parameters) based, for instance, on ML estimation
of (a part of) the model, or a reasonable order of magnitude. In that case,
to check that the results are independent of the starting values, one can still
use different sets of starting values that reflect a range of possible values; for
instance, amedium-sized positive regression effect and amedium-sized neg-
ative one both have a realistic order of magnitude, but are different enough
in their interpretation.
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MULTIVARIATE BEHAVIORAL RESEARCH 755

Figure . Predicted transition probabilities for individuals with
varying levels of trait neuroticism (M = 24.45, SD = 5.42 in the
sample), based on the point estimates (posterior medians) of the
model parameters given in Table . It can be seen that individuals
with higher trait neuroticism are more likely to start experiencing
negative affect (i.e., theirπ12 is larger) and, once this happens, they
are also less likely to stop experiencing it (i.e., their π21 is smaller).

experience it. To gauge the relevance of these effects, we
fill in different values for neuroticism (x) in Equation
(4) and calculate the corresponding predicted transition
probabilities. The result of this is presented in Figure 2,
showing that the model implies substantial differences
between more and less neurotic individuals, with more
neurotic individuals having a higher propensity to expe-
rience (continued) NA. In addition, there are substantial
unexplained personal differences in the transition prob-
abilities, as indicated by the estimates for the variances
of the logit deviation terms, given in Table 1. The distri-
bution of the model-implied transition probabilities for
the individual persons is presented in Figure 3, show-
ing that π12 ranges from 0.01 to 0.96 and π21 ranges
from 0.004 to 0.99, and that there is a negative correla-
tion between the two probabilities. This shows that some
individuals rarely started to experience NA, while others
rarely stopped experiencing it. The dots in the middle of
the plot represent persons who switch more frequently
between episodes in which they do and do not report
experiencing NA.

Model fit
As we discussed in a previous section, the fit of a Bayesian
Markov model cannot be assessed by a standard fit crite-
rion. However, we can use posterior predictive checks to
evaluate how well the model captures specific aspects of
the data. Shirley et al. (2010) demonstrated several such
procedures for assessing the fit of Markov models, and

Figure . Scatterplot of the transition probabilities for the individ-
ual persons in the data, obtained by using Equations () and ()
with the estimated model parameters. The plot shows that there
is substantial interpersonal variance, and that those persons with
a higher probability of transitioning into the negative state (π12)
usually also had a lower probability of transitioning out of it (π21).

here we use a very similar approach. The general idea of
a posterior predictive check is that the sampled param-
eter values can be used to simulate new data under the
assumption that the model is true, and then the distri-
bution of a certain statistic for the simulated data can be
compared with the same statistic for the actual, empirical
data. If the empirical data is “extreme” compared to the
model-generated data sets, this indicates that the model
does not adequately capture an aspect of the empirical
data, or in other words, that there is misfit. A nice fea-
ture of this procedure is that uncertainty about the model
parameters is taken into account, because different sam-
ples from the posterior distribution of the parameters are
used to generate the simulated data.

In a first check, we assessed the model fit with regard
to the proportion of days on which participants experi-
enced NA, that is, the proportion of days spent in state
2. We used the posterior samples of the fixed parameters
together with the empirical neuroticism scores and start-
ing states (onwhich themodel estimates are conditioned),
to simulate random transition logits and “observed” time
series for a new “sample” of participants in each of the
5,000 replications. For each simulated time series, we cal-
culated the proportion of days spent in state 2, and then
for each replication, we calculated the mean and stan-
dard deviation of this proportion over persons. The mean
and standard deviation for the empirical dataset were then
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756 S. DE HAAN-RIETDIJK ET AL.

Figure . Results of posterior predictive check  for the OMM. The
red lines represent the empirical mean and SD of the proportion of
days that participants experienced NA. The histograms represent
the model predictions, which take into account the uncertainty
about the estimated model parameters.

compared with the posterior predictive distributions of
these statistics.

The results of the first check are illustrated in Figures 4
and 5. The predictive distribution of themean proportion
of days spent in state 2 ranges approximately from 0.35
to 0.55 and it can be seen in Figure 4 that the mean
for the empirical data falls in the middle part of the
distribution. Similarly, the SD of the proportion of days
spent in state 2 for the empirical data falls in the middle
part of the posterior predictive distribution, which ranges
approximately from 0.28 to 0.36. Together these two
graphs indicate that the model fit, in terms of capturing
this aspect of the empirical data, is adequate, because the
empirical data is not at all “extreme” under the posterior
predictive distribution. Figure 5 shows the posterior
predictive distribution of the proportion of days spent
in state 2 for individual persons, instead of focusing on
the between-persons mean or SD. This figure shows that
the posterior predictive distribution closely corresponds
to the observed distribution in the empirical data. The
model underestimates the occurrence of (nearly) constant

Figure . Distribution of the proportion of days spent in state 
for the empirical (in red) or model-predicted (in gray) time series
for the participants. The close overlap indicates adequate model
fit. The model slightly underestimates the occurrence of (nearly)
constant NA experience, as evidenced by the larger red bar at the
extreme right of the graph.

Figure . Results of posterior predictive check  for the OMM. The
red lines represent the empirical mean and SD of the number of
state switches in  days. The histograms represent themodel pre-
dictions, which take into account the uncertainty about the esti-
mated model parameters.

NA experience, but overall it captures the diversity in how
often participants reported experiencing NA quite well.

In a second check, we used the same simulated data,
but we focused on the number of state switches during 56
days. As can be seen in Figures 6 and 7, the mean and
SD of the empirical sample again fall near the middle of
the posterior predictive distributions, and the distribu-
tions for individual persons also overlap closely between
the model prediction and the empirical data. All of this
indicates that the model fit is also adequate with regard
to this statistic. Note that the empirical distribution has
a high peak representing people who switched states 0–
2 times, and the model’s posterior predictive distribution
captures this closely.

A way to illustrate (more than evaluate) the fit of
the model, again following the example of Shirley and
colleagues (2010), is to look at model-generated state tra-
jectories for a few persons and compare them with their
actual observed state trajectory. Figure 8 shows observed
and predicted data for three persons characterized by
high, low, and average state switching, respectively. The
predicted time series in each case was generated using

Figure . Distributionof thenumber of state switches in the empir-
ical (in red) or model-predicted (in gray) time series for the partic-
ipants. The close overlap shows that the model adequately cap-
tures the diversity among the study participants in how often they
switched states.
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MULTIVARIATE BEHAVIORAL RESEARCH 757

Figure . Observed (left) and predicted (right) states for three per-
sons with widely differing switching rates. In generating the pre-
dicted data, the posteriormedians were used as point estimates of
the transition logits. Note that the specific day at which a person
is predicted to switch states is not indicative of model fit, since no
time-varying predictors were used; it is the overall pattern (switch-
ing frequency, time spent in specific states) that should match
between the observed and predicted data.

the median of the posterior samples for that person’s
transition logits, together with their observed starting
state and their neuroticism score. Because our model did
not include time-varying predictors, a person’s predicted
state at a specific day is not particularly meaningful or
indicative of model fit, but rather the overall pattern of
the predicted data (e.g., the switching frequency and the
length of time spent in a particular state) should match
that of the observed time series. If themodel had included
one or more time-varying predictors or if the transition
logits were non-constant over time, then it would have
been appropriate to check whether the predicted states
matched the observed states at (roughly) the same day.
From the three examples in Figure 8, it is clear that our
model fits varying data patterns well: It can account for
people who never switched states in the 56 days of the
study, as well as for people who switched occasionally or
almost constantly (or who were more likely to make one
transition than the opposite one). For the first person, the
model predicts that they are always in state 2 (experienc-
ing NA) and this matches their observed data. The model
predicts that the second and third person spend 59% and
25% of the days in state 2, respectively, which is close to
the observed values of 57% and 27%. And the number
of state switches in the predicted data for the second
and third person is 34 or 17, respectively, versus 32 or
13 observed switches. We can also see that the model
correctly predicts that the third person goes through long
stretches of time in state 1, while rarely staying in state 2
for more than one or two days. The fact that the overall
patterns in these predicted time series look similar to

the observed data patterns illustrates that the model is
flexible and that it fits the empirical data well.

Conclusion
By using the OMM with a covariate and random effect,
we had a simple and intuitive way of analyzing these
data that accounted for the meaningful zero inflation and
addressed the question of whether trait neuroticism is
related to affect experience over time, as reflected in the
propensity of an individual to report experiencing NA at
all. As expected, we found that more neurotic persons
are more likely to start experiencing NA, and less likely
to stop experiencing it. The additional unexplained indi-
vidual differences we found illustrate the importance of
allowing for random effects in the model. Posterior pre-
dictive checks of the model fit indicated that the random
effects enabled the model to adequately capture the wide
range of diversity inNAexperience among individual per-
sons.

An LMM for observed family interactions

We now turn to our second data set, which comes from
Kuppens, Allen and Sheeber (2010), who observed ado-
lescents (N = 141; 94 females, 47 males; mean age =
16 years) and their parents while they participated in
various 9-minute discussion tasks designed to elicit dif-
ferent interactions and emotions. The conversation task
that we focus on here involved discussing positive and
negative elements in the upbringing of the adolescent,
and therefore it was expected to evoke both positive and
negative interactions. The researchers used the Living in
Family Environments coding system (LIFE; Hops, Biglan,
Tolman, Arthur, & Longoria, 1995) to code the behav-
ior of each individual during the conversation in real-
time. The codes were then summarized in a time series
variable, categorizing the behavior of each family mem-
ber during each second (T = 539) as either angry, dys-
phoric, happy, or neutral (for more details, see Kuppens
et al., 2010). We approach the resulting data set as a
trivariate categorical time series, where the behavior of
the mother, the father, and the adolescent are treated as
indicators that reflect the family’s state at each time point.
As such, in the transition model, we have at level 1 the
time points, and at level 2 the family. In addition to the
observational behavior data, the researchers measured
whether the adolescents met criteria for clinical depres-
sion (there were 72 depressed and 69 non-depressed
adolescents).

For our analysis, we used a mixed LMM that allows us
to study the temporal dynamics of the family interaction
and the between-family differences therein, as well as
look at stable differences in observed behavior between
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758 S. DE HAAN-RIETDIJK ET AL.

individual adolescents, specifically between depressed
and non-depressed adolescents.

Sheeber et al. (2009) and Kuppens et al. (2010) ana-
lyzed these datawith a focus on the adolescents, using var-
ious specialized multilevel regression techniques to study,
for example, the relationship between depression and
emotional reactivity of the adolescents. However, as an
alternative and supplementary approach, here we model
the behavior of the family, considering the interaction
between family members and analyzing them as a system;
this is where the LMMcomes in as a suitablemodel.When
a family is participating in an interaction task designed to
evoke some difficult emotions, it makes sense to expect
that the family will switch between positive and negative
(and neutral) interaction states. We expect that families
differ in this regard, with some families being more prone
to conflict than others, and we want to use a model that
can take this into account through random effects in the
transitionmodel part. At the same time,we expect that the
specific behavior of depressed adolescentsmay differ from
that of non-depressed adolescents. A mixed LMM can
incorporate both of these expectations, if it has random
effects in the transition model part and random effects
plus the predictor depression in the measurement model
equations for the adolescent’s behavior. We would expect
that depressed adolescents are more likely to behave dys-
phorically or angrily and less likely to behave happily, con-
trolling for family states. In other words, we expect to find
stable differences in behavior between depressed andnon-
depressed adolescents, that cannot be explained away by
differences in family dynamics.

Some of the adolescents participated in the task with
only one parent (42 participated with only their mother,
and 4 with only their father). In our analyses, we only
use the data for those families (N = 95) where two par-
ents participated in the task, because it seems reason-
able to expect that interactions between an adolescent
and one parent may differ qualitatively from interactions
between an adolescent and two parents, especially given
the focus of the discussion task (namely, the upbring-
ing of the adolescent). Furthermore, there may be differ-
ences between single-parent and two-parent families that
wouldmake it inappropriate to treat them as interchange-
able “units” within the same multilevel model.4 The pro-
portion of missing values for the selected families was
0.01%, 0.10%, and 0.32% for the adolescents, mothers,
and fathers, respectively. These few missing values were

 Results for an analysis including all  families are available on request from
the corresponding author. There were small differences in the results (with
one behavior probability differing by ., but most by less than .–.)
which could, however, simply result from sampling variation and loss of data.
Overall, the conclusions from the two analyses are similar.

handled in JAGS using Bayesian multiple imputation, in
the same way as in the OMM discussed above.

Model
First, we compared LMMs with two and three states, in
both cases with random effects in the transition model,
but only fixed effects in the measurement model. As we
discussed earlier, there is no straightforward statistical
criterion to decide on the number of latent states in a
Bayesian LMM, so we compared the estimates for the
two models to determine which one offered the most
useful substantive description of the data. We concluded
that the three-state model made more sense, because the
three states could be clearly interpreted as correspond-
ing to positive, negative, and neutral family interactions,
whereas the two-state model seemed to lump together
neutral and negative interactions, making it less insight-
ful. Hence, we focus here on the specifications and results
for the three-state LMM.5

After deciding on the number of latent states, we added
random effects in the measurement model for the ado-
lescent’s behavior, to allow for differences in the behav-
ior of the adolescents. These random effects are state-
independent, implying that some adolescents are always
more likely to act angrily than others, or that some are
always more likely to act happily than others, and so on.
We also included depression as a binary predictor in the
measurement model for the adolescents, to reflect our
hypothesis about stable differences in behavior between
depressed and non-depressed adolescents.

Conditional on the latent states (s), the distribution for
the observed data is given by

f (Mo, Fa, Ad|M, F,A, s) =
4∏

b=1

N∏

n=1

T∏

t=1

(Msb)
[Motn=b] ·

(Fsb)[Fatn=b] · (Asbn)
[Adtn=b],

(8)

where b stands for the behavior category, and N and T
are the number of families and time points, respectively.
The parametersMsb, Fsb, andAsbn refer to the probabilities
of behavior b given the current family state s; note that
the probabilitiesAsbn are person-specific. The expressions
within square brackets evaluate to 0 or 1 depending on
whether they are true. The full likelihood of the data and
the latent family states together is given by

f (Mo, Fa, Ad, s|M, F,A, π, π1)
= f (Mo, Fa, Ad|M, F,A, s) · f (s|π, π1), (9)

 Results for the two-statemodel are available on request from the correspond-
ing author.
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MULTIVARIATE BEHAVIORAL RESEARCH 759

where the distribution of the latent states, conditional on
the transition probabilities, and the starting state proba-
bilities (π1), is specified as

f (s|π, π1) =
N∏

n=1

3∏

i=1

3∏

j=1

(π1 j)
[s1n= j]

T∏

t=2

(πi jn)
[stn= j]·[s(t−1)=i]

(10)
with

πi jn = exp( αi jn)∑3
s=1 exp( αisn)

(11)

and

αi jn = μi j + εi jn (12)

for each family n and each i, j ∈ [1, . . . 3], such that μi j
is the average logit for the transition from state i to state
j, and εi jn is family n’s deviation. For identification, we set
μi j = εi jn = 0 whenever i = j, with the result that staying
in the same state is always the reference transition for the
logits. Thus, only 3 · 2 = 6means and deviations need to
be estimated, and the six deviations have a multivariate
normal distribution with a zero mean vector of length 6,
and a 6 × 6 covariance matrix �(ε).

In the measurement model part, the behaviors (b) 1,
2, 3, and 4 represent angry, dysphoric, happy, and neu-
tral behavior, respectively. The probabilities Asbn for the
adolescents’ observed behavior are derived from person-
specific logits, that is,

Asbn = exp(αsbn)∑4
c=1 exp(αscn)

. (13)

These logit parameters are modeled as

αsbn = μsb + βb · xn + εbn, (14)

for each state s and for each behavior b, where μsb
represents the logit intercept and βb is the coefficient
of the centered binary predictor depression, which is
independent of the state, and εbn represents the stable
(state-independent) individual deviation in the logits for
behavior b. To identify the measurement model part, we
specify ε4n = μs4 = β4 = 0 for each family state s, mak-
ing neutral behavior the reference category for the (log)
odds. The three random deviations have a multivariate
normal distribution with zero means and a 3 × 3 covari-
ance matrix �(beh).

Priors
AnuninformativeDirichlet prior distributionwith hyper-
parameters [1, 1, 1] was used for the initial state proba-
bilities, and similarly, uninformative Dirichlet priors with
hyperparameters [1, 1, 1, 1] were used for the mothers’
and fathers’ probabilities of exhibiting the four behav-
iors conditional on each latent family state. Similar to our

specifications for the OMM, for the intercepts and regres-
sion coefficients (in both model parts), we specified inde-
pendent Cauchy prior distributions with scale parameter
(σ ) 10 for the intercepts and 2.5 for the regression coeffi-
cients, and with location parameter 0 in all cases. We cen-
tered the predictor depression to have amean of 0, but did
not rescale it, in line with the advice of Gelman and col-
leagues (2008) concerning binary predictors. As we did
in the OMM application, we first fitted a model with uni-
variate random effects to avoid the risk of overestimating
very small variances, andwhenwe found that the variance
estimates were all well over 0.1, we switched to a multi-
variate specification that allows the random effects within
each model part to be correlated. The JAGS model syn-
tax for the final model, that is, for the three-state mixed
LMMwithmultivariate random effects, is provided in the
Appendix.

Results
After a burnin period of 10,000 iterations, we used 50,000
additional iterations and a thinning parameter of 5 (stor-
ing every fifth value). Based on the trace plots, unimodal
density plots and a second chain using different (random)
starting values which arrived at a different state labeling
but the samemodel results, we concluded that the conver-
gence of themodelwas adequate. The labeling of the states
appeared to remain constant over all iterations within a
chain,whichmakes sense as the stateswerewell separated.
The results presented below are based on the 10,000 stored
samples of the first chain.

To interpret the three family states, we look at the fixed
parameter estimates for the measurement model part,
which are given in Table 2. We see that the first state is
the only one where there is a high likelihood of observing
happy behavior (see the third column), so we refer to it
as the positive state. The second state we interpret as the
neutral state, because it is almost always characterized by
neutral behavior of the parents, although the adolescents’
behavior varies a bit more. The third state has the highest
probabilities of angry and dysphoric behavior of all three
states, so it can be interpreted as a state of negative family
interaction.

Looking at the average transition probabilities, given in
Table 3, it can be concluded that the probabilities of stay-
ing in the same state are quite high for all three states. This
makes sense when considering the short coding intervals,
because family interaction states will tend to last longer
than a single second. We also note that the average tran-
sition probabilities, unsurprisingly, indicate that families
are unlikely to switch directly between positive and neg-
ative interactions (states 1 and 3), that is, they are more

D
ow

nl
oa

de
d 

by
 [

K
U

 L
eu

ve
n 

L
ib

ra
ri

es
] 

at
 0

4:
21

 0
9 

Ja
nu

ar
y 

20
18

 



760 S. DE HAAN-RIETDIJK ET AL.

Table . Point estimates for the probabilities of different behavior
types of each familymember, conditional on the state the family is
in. The probabilities for the average depressed and non-depressed
adolescents are derived from the posteriormedians of the average
logits and the regression coefficients.

Behavior probabilities in state  (positive interaction)

Angry Dysphoric Happy Neutral

Average non-depressed adolescent . . . .
Average depressed adolescent . . . .
Mother . . . .
Father . . . .

Behavior probabilities in state  (neutral interaction)

Average non-depressed adolescent . . . .
Average depressed adolescent . . . .
Mother < . < . < . .
Father < . . < . .

Behavior probabilities in state  (negative interaction)

Average non-depressed adolescent . . . .
Average depressed adolescent . . . .
Mother . . < . .
Father . . < . .

likely to make this transition by moving through a neu-
tral interaction (state 2) first. In addition to the aver-
age transition probabilities, we have the estimated vari-
ance terms from �(ε) that provide a measure of how
much the individual families differ in their transition
probabilities. These estimates range from 0.28 (for the
transition from state 2 to 3) to 1.09 (for the transition from
state 3 to 2), but it is difficult to gauge the extent of the dif-
ferences in probabilities between families from these logit
variances. Therefore, it may be more insightful to derive
the transition probabilities for the individual families, for
the transitions with the smallest logit variance (the tran-
sition from state 2 to 3) and the largest logit variance (the
transition from state 3 to 2). For the first one, we find that
the minimum and maximum estimated probabilities for
a family to make this transition (i.e., for switching from
the neutral to the negative interaction state) are 0.014 and
0.102, respectively. For the second one, the smallest esti-
mated probability ofmaking this transition (i.e., of switch-
ing from a negative to a neutral interaction) is 0.004, while
the highest probability is 0.279. These numbers give an

Table. Point estimates for thefixedeffects in the transitionmodel
part. For the sake of interpretability, we present the implied prob-
abilities, not the logits themselves. The value in row i, column j
represents the probability, for an average family, of transitioning
from state i to j.

Average transition probabilities

Transition to: State  State  State 

State  . . .
State  . . .
State  . . .

indication of how the estimated random logit distribution
translates into varying transition probabilities across fam-
ilies. Clearly, there are non-negligible differences in inter-
action dynamics between the families.

To address our hypothesis about depressed and non-
depressed adolescents, we inspect the behavior probabil-
ities for the average adolescent in each group (based on
the parameters μsb and βb of Equation 14), which are
reported in Table 2. Although the differences in proba-
bilities are modest, we see that depressed adolescents are,
on average, more likely to act angrily or dysphorically
than non-depressed adolescents. Another way of inves-
tigating differences between the two groups is to inspect
the 95% CIs of the β regression coefficients. For exam-
ple, the 95% CI for β1 is [−0.32, 0.77], and since zero is
included in this interval, we cannot conclude that the odds
ratio of angry versus neutral behavior was different for
depressed adolescents. However, the conclusion is differ-
ent for the odds ratio of dysphoric versus neutral behav-
ior, because the 95% CI for β2 is [0.14, 0.94], indicating
that depressed adolescentsweremore likely to exhibit dys-
phoria than non-depressed adolescents. The odds ratio
of happy versus neutral behavior was not clearly differ-
ent between the two groups, with β3 having a 95% CI of
[−0.47, 0.33]. Note that depressed adolescents were less
likely to behave neutrally, based on the model-implied
probabilities given in Table 2, but we cannot use a 95% CI
to evaluate this difference directly, as neutral behavior was
the reference category for the odds. Furthermore, we note
that there was substantial variation of the behavior prob-
abilities across adolescents, on top of the differences that
were predicted by depression. The three variance parame-
ters of the measurement model logits were 2.21, 1.55, and
0.93, and these are quite large even in comparison to the
largest values contained in the 95% CIs for the three β

parameters described above. Therefore, our results indi-
cate that depression only explained a modest part of the
person-specific variability in behavior of the adolescents.

Model fit
To assess the fit of the model, we used posterior predic-
tive checks similar to the first two checks we used for
the OMM. Since the latent states in an LMM cannot be
directly compared to “true” states in the data (as we did
for the states in the OMM in Figure 8), the posterior pre-
dictive checks here focus on the observable outcomes pre-
dicted by the LMM and known for the empirical sample:
The affective behavior of family members.

We first checked whether the model adequately
describes the proportion of negative behavior for moth-
ers, fathers, and adolescents – distinguishing between
depressed and non-depressed adolescents. In a similar
way as we did for theOMM,we used the samples from the
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MULTIVARIATE BEHAVIORAL RESEARCH 761

posterior distribution of the fixed effects and the random
effects mean and covariance matrix to generate new ran-
dom effects from the model, and new “observed” behav-
ior for simulated families based on those random effects,
conditional on the depression (or non-depression) of the
observed adolescents. In other words, we generated data
that reflects what kind of behavior we would expect to
observe if the model is true and if we observed different
samples of families like the ones in the empirical study.

Figure 9 shows the results for the posterior check of
the mean and standard deviation (over persons) of the
proportion of negative behavior, for each family member
separately. Note that the distributions for the two groups
of adolescents are more spread out because the model
estimates for either group are based on less information
than the estimates concerning the parents’ behavior.
As the Figure shows, the mean proportion of negative
behavior for mothers, fathers, and for both groups of

Figure . Results of posterior predictive check  for the LMM. The
red lines represent the empirical mean and SD of the propor-
tion of negative affective behavior. The histograms represent the
model predictions, taking into account sampling variation as well
as uncertainty about estimates.

Figure . Distribution of the proportion of negative affective
behavior over persons, in the empirical data (in red) and in the
model-predicted data (in gray).

adolescents are captured well by the model, because
in each case the statistic for the empirical data falls in
the middle part of the posterior predictive distribution.
When it comes to the standard deviation, the model fit is
adequate for the adolescents, indicating that the random
effects allow the model to capture the individual differ-
ences between adolescents in how often they showed
angry or dysphoric (negative) behavior. The standard
deviation for the observed mothers and fathers was larger
than expected under the posterior predictive distribution,
indicating that the model underestimates the diversity
between individual parents in how often they behaved
negatively. This indicates that additional random effects
for the behavior of the parents’ might have improved
the model further, but note that this would make
the model very complicated and possibly empirically
underidentified.

Figure 10 shows the distribution of the proportion of
negative behavior for individual people in the empirical
sample (in red) and in the posterior predictive data (in
gray), and this makes clear that the misfit for the mothers
and fathers results from “extremes” in the empirical
sample: Parents who displayed negative behavior very
rarely (if at all), or very often, while the model predicts
more moderate proportions of negative parent behavior.
This misfit may occur because some families spent more
time in negative interaction states than expected under
the model, or because some individual parents deviated
from the expected behavior. Overall the fit of the model
is adequate, but we have to be cautious in interpreting the
results given that we know the model does not describe
all families equally well. In an in-depth empirical study, a
result like this could be a reason to look closer at the data,
and possibly other characteristics, of the individual fami-
lies who are not described as well by the model as others.
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762 S. DE HAAN-RIETDIJK ET AL.

Figure . Results of posterior predictive check  for the LMM.
The red lines represent the empirical mean and SD of the pro-
portion of happy family interactions (moments when at least two
family members behaved happily). The histograms represent the
model predictions, taking into account sampling variation as well
as uncertainty about estimates.

For a secondposterior predictive check of themodel fit,
we used the same posterior predictive data, but focused on
the proportion of “happy family interactions.” We define
these as interactions where at least two of the three fam-
ily members exhibited happy behavior. Figure 11 shows
the results for the mean and SD over families of the pro-
portion of happy interactions. It appears that neither the
mean nor the SD of the empirical sample are extreme
under the model prediction, indicating adequate fit with
regard to this data characteristic.

If we consider the distribution for the individual fami-
lies in Figure 12, we see that there is somemisfit due to an
underestimation of the number of families who rarely or
never displayed happy interactions according to our cri-
terion. Similar to the first check, we can interpret these
results as showing that the model does a good job of
describing the average family in the sample and of captur-
ing a large part of the inter-family differences, but it does
not do a perfect job of describing themost “extreme” fam-
ilies in the sample. Therefore, our results should be inter-
preted with caution, and in an empirical study, it would

Figure . Distribution of the proportion of happy interactions
for empirical (in red) or model-predicted (in gray) families. In the
empirical data, there were more families at the left end of the dis-
tribution, i.e., families where it rarely (or never) occurred that two
family members behaved happily at the same time.

make sense to further examinewhat other variablesmight
be related to such differences.

Conclusion
Our analysis has illustrated that by applying a mixed
LMM to this problem, we can investigate inter-family and
inter-individual differences in a single analysis, by allow-
ing for random effects in the transition model and in the
(adolescent’s) measurement model. In this analysis, we
used a predictor variable in one part of the model, but a
nice feature of the LMM is that predictors can potentially
be used in both model parts, to represent diverse psycho-
logical accounts of how other characteristics relate to the
process dynamics.

Substantively, our results indicated that depressed ado-
lescents are more likely to behave angrily or dysphori-
cally, compared with non-depressed adolescents. These
differences cannot simply be attributed to possible dif-
ferent family dynamics, as those were to a large extent
taken into account by the random effects in the transi-
tion part of our LMM. In conclusion, this example shows
that an LMM can be used to address various, quite spe-
cific hypotheses using ILD, by offering the chance to study
the temporal dynamics of a latent process while allowing
for between-person (or between-unit) variation of several
kinds. We also illustrated how posterior predictive checks
can be used in the Bayesianmodel fitting context to inves-
tigate how well the model captures particular aspects of
the empirical data, indicating where and how there ismis-
fit of the model to the data.

Label switching was not an issue for our LMM applica-
tion. The main practical challenges of the (mixed) LMM
framework that we encountered in this analysis were the
lack of an accessible, formal procedure for choosing the
number of latent states empirically in the Bayesian con-
text, and the computational intensity that made the anal-
ysis time consuming (i.e., taking several days), butwe note
that the latter issue is heavily dependent on the size of
the data set and on the complexity of a given model for-
mulation. It can be expected that further technological
developments will increase computing speed so that the
computational demand of Bayesian estimation of mixed
LMMs will become less relevant for future applications.
Furthermore, JAGS aswell as other software packages that
can implement (some) Bayesian models, such as Mplus
(Muthén & Muthén, 1998–2015), are constantly being
developed so that more efficient estimation algorithms
for Markov models, or even RJMCMC implementations
for determining the number of states in an LMM, are
expected to become available and easily accessible.6 There

 Stan (Carpenter et al., ) is another recently developed Bayesian language
that can be used with R, but it cannot fit models with discrete parameters,
such as latent Markov models or other mixture models.
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MULTIVARIATE BEHAVIORAL RESEARCH 763

is also ongoing research in the area of Bayesian model
evaluation and comparison which leads to promising new
approaches for assessing model fit from various perspec-
tives (e.g., Vehtari, Gelman, & Gabry, 2017).

Discussion

In this paper, we set out to introduce the relatively
unknown class of Markov models to psychological
researchers, and to provide an introduction to howmixed
Markov models may be used for the analysis of ILD. We
have discussed how mixed Markov models can be spec-
ified, and have argued that while frequentist estimation
has been used for these and similar models, Bayesian
estimation has several advantages that are relevant in
this research context. Two empirical applications demon-
strated how mixed Markov models can be applied in
a Bayesian framework and what kind of research ques-
tions they can address. Note that these analyses served as
basic illustrations of the modeling approach, and did not
involve in-depth or formal consideration of alternative
models, or follow-up analyses of individual time series.

Markov models appear to be very flexible and can suit
different types of data and research questions in the con-
text of studying temporal processes. MixedMarkov mod-
els are especially promising, in our view, because they
can be used to study individual differences in dynam-
ics through the inclusion of person-specific random
effects. In this paper, we discussed that the implementa-
tion of some Markov models, namely LMMs and espe-
cially mixed LMMs, can be computationally demanding
and that the Bayesian approach, while advantageous in
some regards, does not offer a straightforward way to
choose the number of latent states empirically. Despite
these limitations, this modeling framework provided use-
ful insights for both of our empirical data sets, and
we feel that it deserves more consideration in intensive
longitudinal research in psychology. We hope that this
paper contributes to (further) familiarizing psychologi-
cal researchers with the possibilities offered by Markov
modeling.

At this point, we consider a few limitations of the
presented framework along with possibilities for adapt-
ing the general approach to different research situations.
First, in the models that we presented, the state transi-
tion probabilities were constant over time. This assump-
tion makes sense in the context of ILD analysis, where
the focus is typically on short-term reversible variabil-
ity in stationary processes, rather than on an expected
pattern of growth or decline. Note, however, that it is
possible to relax this model assumption in situations
where the parameters describing the process are expected
to change over time, or where a continuous observed

variable shows a time trend above and beyond the fluc-
tuations explained by state switching. The specification
of time-varying parameters is covered in Bartolucci et al.
(2013), along with other possibilities such as specifying a
measurement model for ordinal observed categories, or
dealing with the scenario where a specific state transi-
tion is theoretically impossible. MacDonald and Zucchini
(2009) also present several variations of LMM applica-
tions. While allowing the same model parameter to be
different for each person ánd each time point necessar-
ily leads to an unidentified model, it should be possible to
combine some degree of time heterogeneity, which could
involve a time-varying predictor, with person-specific
random effects or with discrete components as in themix-
ture Markov model. As a more general matter, it should
be noted that the Markov models treated in this paper
represent but one instance of a broad and diverse class of
modeling approaches and thatMarkov state switching can
also be combined with other models, such as autoregres-
sive models for ILD, to allow for time-varying parameters
in those models. For example, Markov-switching vector-
autoregressive models are treated in detail in Fiorentini,
Planas andRossi (2016), and a Bayesian approach for such
models is discussed in Harris (1997). General overviews
of various Markov switching and state-space models are
given in Frühwirth-Schnatter (2006) and Kim andNelson
(1999).

A second consideration is that the Markov models
discussed in this paper come with the assumption of
equally spaced measurements. This assumption will be
violated when data is collected using the Experience Sam-
pling Method (ESM; Larson & Csikszentmihalyi, 1983),
where the time intervals between measurements have
varying lengths. If a discrete-time Markov model is fit-
ted to such a data set, it can be expected that the esti-
mates of the transition probabilities are somewhat more
noisy and that, consequently, there is less power to detect
covariate effects. A better alternative for unequally spaced
measurements may be to switch to a continuous-time for-
mulation of theMarkovmodel, where the temporal struc-
ture of the state-switching process is captured in a transi-
tion intensity matrix instead of a probability matrix (cf.
Karlin & Taylor, 1975). Continuous-time Markov mod-
els can be implemented in JAGS using the inbuilt dmstate
distribution (Plummer, 2013), or with classical estimation
using the R package msm (Jackson, 2013), but the lat-
ter cannot (yet) handle random effects in the transition
model.

An ongoing discussion in longitudinal research, more
generally, focuses on how to determine an optimal time
lag between measurements for modeling particular
relationships (for example, Reichardt, 2011; Dorman
& Griffin, 2015). When the time intervals between
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764 S. DE HAAN-RIETDIJK ET AL.

measurements are short, there could be relationships
between measurements farther apart, and this could be
investigated by using higher order models, where the cur-
rent state is modeled as depending on multiple preceding
states (MacDonald & Zucchini, 2009). When measure-
ment intervals are outside an optimal range (whether too
short or too long), relationships or lagged effects may
be obscured or spuriously induced, so it is important to
consider in the design phase of a study how quickly and
how often the state switches and effects of interest are
expected to occur. For instance, while mood fluctuations
may take place over hours or days, behavioral observa-
tion needs to use a suitably fine scale to capture real-time
interactions. In the context of the optimal lag problem, it
is again relevant to note that continuous-time modeling
has been proposed as a way to avoid the lag-dependency
inherent in all discrete-time modeling of equally spaced
data (Deboeck & Preacher, 2016).

In conclusion, although there are some unresolved
questions, we believe that intensive longitudinal meth-
ods combined with Markov modeling techniques can be
of great value for psychological research, as it enables
us to study the dynamics of state-switching processes
and to shed light on between-person differences in these
dynamics. We expect that further developments in soft-
ware and computing power, as well as in statistical
approaches to Bayesian model evaluation, will contribute
to solving current challenges in applying Bayesian mixed
LMMs and facilitate easier implementation of Markov
models.
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