
Online motion planning for autonomous vehicles in vast
environments*

Tim Mercy1, Erik Hostens2 and Goele Pipeleers1

Abstract—Nowadays, the potential of autonomous vehicles for
order picking and material transport in vast environments with
large amounts of obstacles is only exploited to a limited extent. In
order to realize free, time-optimal motion of autonomous vehicles
through such complex environments, this paper presents a novel
motion planning approach. The approach combines a global path
planner with a local trajectory generator. The global planner
finds a path through the complete environment, taking only the
stationary obstacles into account. The local trajectory generator
computes a detailed trajectory in a local frame around the global
path, accounting for both stationary and moving obstacles. This
trajectory is parameterized as a spline, and is obtained by solving
an optimal control problem. In order to always include the latest
information about the environment, the optimal control problem
is solved online with a receding horizon. The paper demonstrates
the potential of the proposed method with extensive numerical
simulations. In addition, it presents an experimental validation in
which a KUKA youBot moves through an obstructed environment.
To facilitate the numerical and experimental validation of the
presented method, it is embodied in a user-friendly open-source
software toolbox.

I. INTRODUCTION

Vast, complex and uncertain environments are common in
modern industry: docks, workshops and eCommerce ware-
houses contain large amounts of stationary obstacles like racks
or walls, and moving obstacles like (human-operated) vehicles
or humans walking around. While autonomous vehicles are
becoming increasingly important for order picking and mate-
rial transport in such environments, they are currently strongly
restricted in their operation. To ensure safe operation, the
vehicles are constrained to move over tracks that are separated
from humans, and their velocity is limited. The selected
vehicle tracks mainly consist of connections of straight lines,
and generally, only one-way traffic is allowed in corridors. In
addition, when there is a collision risk, the vehicle is stopped
immediately. These restrictions severely restrain the potential
of autonomous vehicles. Nowadays, the interest in a more
flexible navigation approach is growing, in order to increase
the performance of these systems. This poses challenges to
the vehicle localization, safety, and in particular, to the motion
planning.

*This work benefits from KU Leuven-BOF PFV/10/002 Centre of Excel-
lence: Optimization in Engineering (OPTEC), from the project G0C4515N
of the Research Foundation-Flanders (FWO-Flanders), from the KU Leuven
Research project C14/15/067: B-spline based certificates of positivity with
applications in engineering, and from the IWT ICON project ‘Sitcontrol’ of
the Institute for the Promotion of Innovation through Science and Technology
in Flanders (IWT-Vlaanderen) and Flanders Make.

1These authors are members of DMMS lab, Flanders Make - the strategic
research centre for the manufacturing industry and of the MECO Research
Team, Department of Mechanical Engineering, KU Leuven, BE-3001 Leuven,
Belgium. 2Flanders Make, Celestijnenlaan 300D Bus 4027, BE-3001 Leuven,
Belgium. tim.mercy@kuleuven.be

Motion planning deals with the computation of collision-
free trajectories that steer a vehicle from its current position
to its destination, while taking into account the vehicle’s
motion model and its kinematic limits. This problem naturally
translates into an optimal control problem (OCP). Solving this
problem in one step returns the optimal motion trajectory
and the corresponding controls to steer the vehicle over the
trajectory. This is called a coupled motion planning approach,
and is generally only feasible for simple environments. There-
fore, a decoupled approach is often adopted, splitting the
complicated problem in a path planning and a path following
phase [1]. The path planning first computes a collision-free
path as a collection of position setpoints (without any timing
information), herein largely ignoring the system kinematics
and dynamics. Afterwards, a path following method computes
the controls to steer the vehicle along the computed path,
taking the system limitations into account. Various techniques
have been developed to solve the path planning, including
graph based methods such as A* [2] and D*-lite [3], random
sampling based methods like Rapidly exploring Random Trees
(RRT) [4] and Probabilistic Road Maps (PRM) [5], methods
based on artificial potential fields [6] and [7], and optimization
based methods such as Trajopt [8] and ITOMP [9]. The
path following phase often uses Model Predictive Control
(MPC) [10] to steer the system along the computed path, as
MPC can explicitly account for the system limitations.

While the decoupled approach is an adequate way of
addressing the complexity of the motion planning problem
in vast environments, it involves two major drawbacks. The
first drawback is that it leads to suboptimal results, since
not all information is combined into a single problem. The
second drawback is that the majority of path planning methods
can either only handle stationary obstacles, or require the
trajectories of the obstacles in the environment to be fully
known a priori. In the latter case, a complete replanning is
needed when an obstacle deviates from its predicted trajectory,
an obstacle leaves the environment, or a new obstacle shows
up. Therefore, current decoupled approaches are suboptimal
and inflexible.

In order to mitigate these drawbacks, this paper presents
a novel optimization based approach to efficiently compute
motion trajectories through vast, complex and uncertain en-
vironments. It combines a global path planner with a local
trajectory optimizer: the global planner uses a path planning
method (e.g. the A*-algorithm) to find a rough path through
the environment, taking only the stationary obstacles into
account. The local planner computes a trajectory through
local frames around the global path, taking into account both



stationary and moving obstacles, as well as the vehicle’s
motion model and its kinematic limits. To this end it solves
an OCP, in which only the locally relevant obstacles are
included. Uncertainties in the environment require solving this
problem online with a receding horizon. To efficiently solve
the OCP at every time sample, the spline-based approach
of [11] and [12] is adopted. The resulting trajectory generation
method outperforms current decoupled approaches in both
optimality, since it allows (substantial) deviation from the
global path, and flexibility, since it can account for uncertain
obstacle motions.

The potential of the presented method is demonstrated
by extensive numerical simulations, in combination with an
experimental validation on a KUKA youBot moving through
an obstructed environment. To facilitate modeling, simulating
and exporting motion planning problems to practical setups,
the method is embodied in OMG-tools, a user-friendly open-
source Python toolbox [13].

Section II describes the general OCP and its online im-
plementation. Section III shows how the scheduler combines
a global planner and a local trajectory generator to reduce
the complexity of the optimization problems. In addition, it
explains how to keep these optimization problems small-scale,
by using a spline parameterization. Afterwards, Section IV val-
idates the presented method by showing numerical simulation
examples together with an experimental validation. Finally,
Section V concludes the paper.

II. PROBLEM FORMULATION

The presented motion planning approach aims at solving
a global optimal control problem to obtain the collision-free
trajectory that moves the vehicle as fast or as energy efficient
as possible through an environment, while taking into account
the vehicle’s motion model and its kinematic limits. This OCP
is described more in detail below. For the sake of clarity, the
paper focuses on a holonomic vehicle with a fixed orientation.
However, the presented approach, can also handle vehicles
with a varying orientation, as well as alternative kinematic
models such as a differential drive or a bicycle (see example
in Section IV-A).

Considering a holonomic vehicle with a fixed orientation
and perfect velocity control on its wheels, the motion trajectory
is given by:

q(t) =

[
x(t)
y(t)

]
,

in which x(t) and y(t) are the position as a function of time.
The inputs u(t), being the setpoints for the wheel velocity
controllers are given by the corresponding velocities q̇(t).

The computed trajectory must steer the system from its
current position q0 to its destination qT . In addition, it is often
desired to impose specific initial and final inputs. Hence, the
following boundary conditions are included in the OCP:

q(0) = q0 q(T ) = qT ,

u(0) = u0 u(T ) = uT .

In this equation T represents the total motion time that is
required to reach the goal state. In addition, the holonomic
vehicle’s velocity and acceleration bounds must be respected
at all times:

q̇min ≤q̇(t) ≤ q̇max, ∀t ∈ [0, T ],

q̈min ≤q̈(t) ≤ q̈max, ∀t ∈ [0, T ].

Since the environment contains (moving) obstacles, collision
avoidance constraints are essential to obtain a collision-free
motion trajectory. To account for obstacle movement, the
constraints include a linear motion model for each obstacle.
This model uses the current estimate of the obstacle position
pi and velocity vi to predict the obstacle position ppredi as a
function of time:

ppredi (t) = pi + t · vi.

The collision avoidance constraints themselves express that the
shape of the vehicle must not overlap with the shape of any
of the N obstacles:

dist(veh(q(t)), obsi (ppredi (t))) ≥ ε, ∀t ∈ [0, T ],

where i ∈ [1, N ] and ε is a safety factor to ensure that the
vehicle keeps a safe distance from obstacles, if possible. In
general, these constraints are nonlinear and non-convex, which
highly complicates the OCP. A very similar constraint imposes
that the vehicle needs to stay within the boundaries of the
environment:

dist(veh(q(t)),border) ≥ ε, ∀t ∈ [0, T ].

Finally, the goal is to obtain time-optimal trajectories. To
be able to optimize the motion time T , the problem is
reformulated using a dimensionless time τ = t

T . Combining
all elements leads to the following OCP:

minimize
q(·),T

T

subject to q(0) = q0, q(1) = qT ,

u(0) = u0, u(1) = uT ,

umin · T ≤ u(τ) ≤ umax · T,
q̈min · T 2 ≤ q̈(τ) ≤ q̈max · T 2,

dist(veh(q(τ)), obsi (ppredi (τ))) ≥ ε,
dist(veh(q(τ)),border) ≥ ε
i ∈ [1, N ], ∀τ ∈ [0, 1].

(1)

Since the environment is uncertain, new obstacles may
appear and present obstacles may change their movement
direction or velocity. As a consequence, the prediction of the
obstacle behavior will differ from reality. To handle these
uncertainties, the proposed method solves (1) with a receding
horizon, like in MPC. At every time sample the vehicle
and environment states are measured, allowing insertion of
the most recent information in the problem. An important
consequence is that the complicated OCP must be solved
online during the vehicle movement, which requires a low
solution time. The following section describes how this can be



achieved by combining a global planner with a local trajectory
generator, in addition to using a B-spline parameterization for
the trajectories.

III. METHODOLOGY

In vast environments with numerous obstacles, problem (1)
becomes very hard to solve. This is due to the long time
horizon that must be considered in order to reach the destina-
tion, in combination with the non-convex collision avoidance
constraints, leading to many local minima. Furthermore, the
behavior of moving obstacles near the end of the trajectory
would influence the complete motion trajectory. Due to un-
certainties this is not beneficial, since the situation may have
changed completely when the vehicle approaches its goal
position. To deal with these problems, the presented approach
uses a scheduler to combine a local trajectory generator with
any global path planner that returns a path as a sequence of
accessible positions (waypoints).

Section III-A elaborates how the scheduler handles the
complex OCP, by combining the global planner and local
trajectory generator to split the problem over different frames.
Afterwards, Section III-B focuses on the computation of the
frames themselves. Finally, Section III-C explains how to
obtain a small-scale local trajectory generation problem inside
a frame, using a spline parameterization.

A. Scheduler

Algorithm 1 gives an overview of the procedure that the
scheduler follows to compute a motion trajectory through a
complex environment.

First, the user selects an overall goal and a frame type (Sec-
tion III-B). Afterwards, the scheduler computes a so-called
local frame, which comes down to selecting a smaller envi-
ronment inside the total environment. For this computation, the
scheduler first asks the global planner for a path, consisting
of a sequence of waypoints, that connects the vehicle position
at the time of frame creation, with its desired goal position.
The local frame is built around this global path, however,
the exact creation method depends on the selected frame type
(Section III-B). Inside the frame, the vehicle has a subgoal,
being the last reachable waypoint of the global path inside
the frame (taking into account the vehicle dimensions). Using
the part of the global path inside the frame, the scheduler
guesses the motion time that is required to reach the subgoal
and determines which moving obstacles will pass through
the frame during that time period, allowing to add only the
relevant moving obstacles. Finally, the frame is converted into
an OCP of the form (1) and is solved by the local trajectory
generator. The solution consists of the vehicle trajectories
q(t), inputs u(t) and motion time Tframe required to move
through the frame. The vehicle follows these trajectories over
a certain time period ∆t, after which the information about
the environment is updated. When a new obstacle crosses
the frame or a previously added obstacle left the frame, the
obstacles of the OCP are updated, keeping the same frame
borders.

Algorithm 1 Scheduler combining global path planner and
local trajectory generator

1: Input:
2: set frame type: square or max waypoints
3: set overall goal position
4: Repeat every ∆t
5: if frame is not valid or no frame
6: generate global path
7: create new frame + local goal position
8: else
9: update information from environment

10: solve local OCP: get new q(t), u(t) and Tframe

11: follow q(t) for ∆t, using u(t)

12: Until goal position reached

At each time step, the scheduler checks the progress of
the vehicle motion through the frame. As long as the vehi-
cle has not made enough progress, the frame remains valid
(Section III-B). When a new frame is required, the scheduler
first asks the global planner for a new path, starting at the
vehicle’s current position. This is necessary because moving
obstacles may have caused the vehicle to strongly deviate from
the originally computed path. This procedure is repeated until,
finally, the vehicle reaches its overall goal position.

B. Frame types

The way the scheduler computes a new frame and decides
upon its validity depends on the frame type. Currently, two
frame types are considered: (i) a square frame with a fixed
size; and (ii) a frame including as many waypoints as possi-
ble, without containing any stationary obstacle, as shown in
Figure 1.

When computing a square frame of fixed size, the square
is first centered around the current vehicle position, and is
afterwards shifted in the direction of the global path. This
frame stays valid until the vehicle traveled over a specified per-
centage of the initially computed local trajectory. Afterwards,
a new square frame is computed, using the same procedure,
until the vehicle can reach the goal position inside the current
frame.

(a) Fixed size square (b) Maximum number of way-
points, no stationary obstacles

Fig. 1: Illustration of frame types



When computing a frame of the second type, the sched-
uler first includes as many waypoints of the global path as
possible in a rectangle of minimal size, which contains no
stationary obstacles. Afterwards, it scales up this rectangle in
all directions, until it hits the borders of either an obstacle, or
the overall environment. In addition, the scheduler repeats this
procedure to calculate a second frame, using the goal position
inside the first frame as a starting position. Therefore, both
frames will always overlap in a certain region. The first frame
stays valid until the vehicle enters the region of overlap. At
that point, the scheduler switches to the second frame and
computes the subsequent frame.

Both frame types have their advantages and drawbacks.
When selecting a square frame of a fixed size (Figure 1a), in
some cases small parts of obstacles are included in the frame,
complicating the optimization problem, while being irrelevant
for the obtained motion trajectory. On the other hand, this
approach works well in unstructured environments, and obsta-
cles that are moving around the corner are easily taken into
account. When selecting the second frame type (Figure 1b),
easy local motion planning problems are obtained. This results
in lower average and maximum solving times in the receding
horizon implementation. Another advantage is that this type
of frame is well-suited in structured environments, since it
selects large corridors. The downside is that the average time
to compute a new frame is slightly higher compared to the
one for a frame with fixed size.

For both frame types, the local trajectory generation prob-
lem is solved with a receding horizon. As a consequence, the
resulting OCP needs to be solved online, during the vehicle
movement. This requires a low solving time. The following
section describes how this can be achieved by means of B-
splines.

C. Local trajectory generation using B-splines

In [11], the authors proposed a method to transform OCPs of
the form (1) into a small-scale nonlinear optimization problem
suitable for online optimization. There are two key aspects of
the method: (i) a B-spline parameterization is adopted for the
motion trajectory q(·); and (ii) the properties of B-splines are
exploited to replace constraints over the entire time horizon
by small finite, yet conservative, sets of constraints.

Splines are piecewise polynomial functions, which can
describe complex trajectories, using few variables. A spline is
given by a linear combination of B-spline basis functions [14].
Therefore, the motion trajectory is parameterized as:

q(τ) =

n∑
i=1

cqi ·B
q
i (τ).

Here Bq
i (τ) are B-spline basis functions, cqi are the spline

coefficients and n follows from the spline degree and the
number of knots. When using this spline parameterization
in (1), the variables of the problem become the coefficients
cqi and motion time T . Since the motion trajectory q(τ) is a
spline, the velocities q̇(τ) and accelerations q̈(τ) are splines

as well. Their coefficients cq̇i and cq̈i are readily verified to
depend linearly on cqi , e.g.:

q̇(τ) =

n−1∑
i=1

cq̇i (cqi ) ·Bq̇
i (τ).

The main reason for adopting the B-spline parameterization
is the corresponding convex hull property, which states that a
spline is always contained in the convex hull of its B-spline
coefficients [14]. This way, spline constraints can be relaxed
to constraints on the B-spline coefficients. For instance, the
semi-infinite velocity constraints

q̇min ≤ q̇(τ) ≤ q̇max, ∀ τ ∈ [0, 1] (2)

are guaranteed to hold if

q̇min ≤ cq̇i ≤ q̇max, i = 1 . . . n. (3)

Replacing semi-infinite sets of constraints of the form (2),
by the finite, yet conservative sets (3) is called a B-spline
relaxation. The major advantage is that B-spline relaxations
avoid time gridding of the constraints, while they guarantee
constraint satisfaction at all times. The disadvantage is that
B-spline relaxations also introduce some conservatism. This
conservatism can be reduced by choosing a higher dimensional
basis, at the cost of introducing extra constraints [11]. The
collision avoidance constraints in (1) are implemented using
the separating hyperplane theorem [15] and use a spline
parameterization of the normal vector and offset of the hy-
perplane. Since these constraints also need to hold over the
complete motion time, they are relaxed as well. For a more
detailed explanation, see [12].

Using a spline parameterization for the OCP, in combination
with B-spline relaxations of semi-infinite constraints, leads
to a tractable nonlinear optimization problem, which can be
solved fast. To further reduce the solution time and allow a
swift reaction to changes in the environment, an initial guess
is provided. By the initialization of a new frame, the part of
the global path that lies inside the frame is used to guess a
trajectory. While the vehicle is moving through the frame, the
solution from the previous time step is used as an initial guess
to solve the current OCP.

IV. RESULTS

This section validates the presented motion planning method
using numerical simulations (Section IV-A), together with an
experimental validation (Section IV-B). In all validations, the
spline-based motion planning problem is formulated using
OMG-tools: a user-friendly open-source toolbox. The Github
page of this toolbox contains animations of all simulations,
and a video of the experimental validation [13]. OMG-tools is
written in Python and uses CasADi [16] as a symbolic frame-
work to formulate the motion planning problem, transform it
into a tractable optimization problem and pass it to the solver.
The default solver for all problems in this paper is Ipopt [17].
All simulations were done on a notebook with Intel Core i5-
4300M CPU @2.60GHz x 4 processor and 8GB of memory.



A. Simulations

Figure 1 shows two types of frames for an example in which
a holonomic vehicle (maximum velocity 1.2 m

s ) is crossing
an environment containing four stationary and one moving
circular obstacle (moving at 1 m

s ). For a square frame of
fixed size (Figure 1a), the average solving time (tavg) for the
example is 52 ms, the maximum solving time (tmax) is 324 ms.
When selecting a frame which includes as many waypoints
as possible without containing any stationary obstacles (Fig-
ure 1b), easy local motion planning problems are obtained,
resulting in a lower tavg (34 ms) and tmax (264 ms). The
downside is that the average time to compute a new frame
(7 ms) is slightly higher, compared to when using a frame of
fixed size (3 ms). In addition, there are only three frames of
fixed size, while four frames of variable size are required. Note
that for both frame types there is a bend in the beginning of
the trajectory. This apparent detour is necessary to avoid the
moving obstacle.

Figure 2 shows the simulated motion of a holonomic vehicle
(maximum velocity 1.2 m

s ) moving through a vast, structured
environment with two circular obstacles which move vertically
and one which moves horizontally (indicated by the arrows), at
a velocity of 1.5 m

s . All moving obstacles invert their move-
ment direction when hitting a wall. The figure indicates all
considered local frames without stationary obstacles, indicated
by the dashed rectangles and plotted in different colors. The
dotted red line shows the rough global path that is originally
computed by the global planner. The solid line is a connection
of the spline trajectories over all frames, computed by the local
planner. For each frame the initial vehicle position is plotted
(circle), together with its trajectory through the frame and its
goal position within the frame (cross), all in the corresponding
frame color. Figure 2 clearly shows that the local spline
trajectories traverse the warehouse in a more optimal way than
the grid path, since they are more flexible. Furthermore, it is
clear that the goal position differs from the end position of
the grid path. This is because the grid path can only connect
grid points, while the spline trajectory can reach any feasible
position. Note that the region near the goal position seems
to contain a detour, this is due to the obstacle which moves
horizontally, and bounces back off the wall at the moment
when the vehicle comes close. The local planner takes the new
movement direction of the obstacle into account and finds an
updated trajectory around it, keeping the motion collision-free.
While less clearly visible, a similar explanation holds for the
detour near center of Figure 2. For the complete example, tavg
is 34 ms, tmax is 260 ms and the average time to compute one
of the six local frames is 24 ms.

To demonstrate the potential of the presented method for
nonholonomic vehicles, Figure 3 shows how a differential
drive moves through the environment of Figure 1. Again, a
detour is required in the beginning of the trajectory to avoid
collision with the moving circular obstacle. For this example,
tavg is 120 ms and tmax is 419 ms. The approach to solve this
problem is very similar to one explained in Section III, only

Fig. 2: Holonomic vehicle moving through a vast environment

the local trajectory generator using B-splines requires changes.
For a detailed description on how to apply Section III-C to this
type of vehicle, the reader is referred to [18].

Fig. 3: Differential drive moving through an obstructed envi-
ronment

B. Experimental validation

For the experimental validation, the proposed combination
of a global and local planner is applied on a test set-up in
which a KUKA youBot moves through a vast environment. The
position of this holonomic vehicle is calculated using an on-
board Ultra Wideband (UWB) beacon and four UWB beacons
on known locations at the border of the environment. The
stationary obstacles are manually placed in the environment,
at a known location. A second holonomic vehicle serves as
a moving obstacle and is manually steered using a joystick.
The position of this vehicle is determined by an on-board
UWB beacon as well. In the optimization problem, both the
vehicle and the moving obstacle are represented as circles,
since they are nearly square, and their orientation is not taken
into account. During the experiment both the youBot and
obstacle velocities were limited to 0.4 m

s . All computations are
performed on an external desktop computer with Intel Core
Xeon E5-1603 v3 CPU @ 2.8GHz x 4 processor and 16GB
of memory.



(a) t = 2.5 s (b) t = 9 s

(c) t = 16 s (d) t = 17.5 s
Fig. 4: KUKA youBot moving through an environment with a
moving obstacle

The local trajectory planner returns both position and ve-
locity trajectories for the youBot. The vehicle has an on-
board PI position controller running at 25 Hz, using the
position trajectories in world coordinates as a reference, and
the velocity trajectories as feedforward signals. While the
vehicle orientation is not included in the optimization, it is still
controlled to the desired value, using a separate PI controller.

Figure 4 shows several snapshots of a youBot moving
through the environment. The top parts of the figure show
the scene, while the bottom parts show the corresponding
environment, including the trajectories that are computed
in OMG-tools. Figure 4b shows how the receding horizon
implementation of the local trajectory generation allows taking
the movement of the circular obstacle into account, such that
the vehicle can avoid it. The solving times for this example
are comparable to the ones for the examples from Figure 1b
and Figure 2.

V. CONCLUSION

To realize free motion of autonomous vehicles through vast
and uncertain environments, this paper presents a new ap-

proach to compute time-optimal motion trajectories. By com-
bining a global path planner with a local trajectory generator,
the complex total environment is divided over several smaller
environments, reducing the complexity of the resulting optimal
control problems. These problems are formulated efficiently
by using a spline parameterization of the trajectory, allowing
online solution of the problem in a receding horizon fashion.
As a consequence, the method can swiftly react to changes
in the environment. Numerical simulations, together with an
experimental validation, show that this approach allows the
efficient computation of collision-free trajectories at every time
instant. The presented approach is implemented in OMG-tools,
a user-friendly open-source Python toolbox.

REFERENCES

[1] F. Debrouwere, “Optimal Robot Path Following: Fast Solution Methods
for Practical Non-convex Applications,” Ph.D. dissertation, KU Leuven,
2015.

[2] P. Hart, N. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE Transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[3] S. Koenig and M. Likhachev, “D* Lite,” Proceedings of the Eighteenth
National Conference on Artificial Intelligence, pp. 476–483, 2002.

[4] S. M. Lavalle and J. J. Kuffner, “Randomized Kinodynamic Planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, 2001.

[5] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
Robotics and Automation, IEEE Transactions on, vol. 12, no. 4, pp. 566
– 580, 1996.

[6] S. Ge and Y. Cui, “Dynamic motion planning for mobile robots using
potential field method,” Autonomous Robots, vol. 13, no. 3, pp. 207–222,
2002.

[7] L.-C. Lai, C.-J. Wu, and Y.-L. Shiue, “A potential field method for robot
motion planning in unknown environments,” Journal of the Chinese
Institute of Engineers, vol. 30, no. 3, pp. 369–377, 2007.

[8] J. Schulman, J. Ho, A. Lee, I. Awwal, H. Bradlow, and P. Abbeel, “Find-
ing locally optimal, collision-free trajectories with sequential convex
optimization,” Robotics: Science and Systems, vol. 9, no. 1, pp. 1–10,
2013.

[9] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental trajectory
optimization for real-time replanning in dynamic environments,” Pro-
ceedings of the International Conference on Automated Planning and
Scheduling, pp. 207–215, 2012.

[10] E. Camacho and C. Bordons Alba, Model Predictive Control. London:
Springer-Verlag, 2007.

[11] W. Van Loock, G. Pipeleers, and J. Swevers, “B-spline parameterized
optimal motion trajectories for robotic systems with guaranteed con-
straint satisfaction,” Mechanical Sciences, vol. 6, no. 2, pp. 163–171,
2015.

[12] T. Mercy, W. Van Loock, and G. Pipeleers, “Real-time motion planning
in the presence of moving obstacles,” in European Control Conference
(ECC), 2016, pp. 1586–1591.

[13] R. Van Parys and T. Mercy, “OMG-tools,” https://github.com/meco-
group/omg-tools, 2016.

[14] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag,
1978.

[15] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, UK:
Cambridge University Press, 2004.

[16] J. Andersson, “A General-Purpose Software Framework for Dynamic
Optimization,” Ph.D. dissertation, KU Leuven, 2013.

[17] A. Wächter and L. T. Biegler, “On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear
Programming,” Mathematical Programming, vol. 106, no. 1, pp. 25–57,
2006.

[18] T. Mercy, R. Van Parys, and G. Pipeleers, “Spline-Based Motion
Planning for Autonomous Guided Vehicles in a Dynamic Environment,”
IEEE Transactions On Control Systems Technology, 2017.


