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Abstract

Objective: To evaluate limitations of common statistical modeling approaches in deriving 

clinical prediction models and explore alternative strategies. 

Study Design and Setting: A previously published model predicted the likelihood of having a 

mutation at the time of diagnosis of colorectal cancer. This model was based on a cohort 

where 38 mutations were found among 870 participants, with validation in an independent 

cohort with 35 mutations. The modeling strategy included stepwise selection of predictors 

from a pool of 37 candidate predictors and dichotomization of continuous predictors. We 

simulated this strategy in small subsets of a large contemporary cohort (2,051 mutations 

among 19,866 participants) and made comparisons to other modeling approaches. All 

models were evaluated according to discriminative ability (concordance index, c) in 

independent data. 

Results: We found over 50% bias for 5 out of 6 originally selected predictors, unstable 

model specification, and poor performance at validation (median c=0.74). A small 

validation sample hampered stable assessment of performance. Model pre-specification 

based on external knowledge and using continuous predictors led to better performance 

(c=0.836 and c=0.852 with 38 and 2,051 events respectively).

Conclusion: Prediction models perform poorly if based on small numbers and developed 

with common but suboptimal statistical approaches. Alternative modeling strategies to best 

exploit available predictive information need wider implementation, with collaborative 

research to increase sample sizes.

Key words: validation; prediction model; regression analysis; simulation; sample size; 
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Introduction

Prediction models are increasingly important in the current era of precision medicine [1]. 

Such models may inform patients on their individualized risk of developing disease, assist 

physicians in diagnostic work-up, and provide a personalized prognosis by predicting 

outcomes of disease. The scientific research to develop and validate clinical prediction 

models has been criticized, with recent guidelines providing advice on transparent 

reporting and good practice [2].

Several systematic reviews have been performed with a focus on methodological 

biases in the development of prediction models [3] [4] [5] [6] [7] [8]. Three problematic 

modeling aspects stood out in these reviews: 1) selection of predictors based on statistical 

significance (in 56% to 86% of models reviewed); 2) categorization of predictors (in 62% 

to 97% of models reviewed); 3) inadequate sample size at model development (17% to 

50% of models reviewed, Table S1). These approaches have been criticized in many 

theoretical and applied studies (Table S2). Nevertheless, they are still quite common. The 

developed models show spuriously promising results. Often, some external validation is 

performed, but this is based again on small sample size and this perpetuates the 

misinterpretation about the performance of the model [9] [10] [11] [12]. This problem of 

small validation size is also common (46% in a recent review) [13]. Whenever external 

independent validation is subsequently performed with a large, rigorous study, this often 

shows disappointing performance [14] [15]. This may be attributable to poor practice at 

model development rather than genuine differences between validation and development 

settings. 

Indeed, these problematic approaches were used in the development and validation 

of a model that aimed to predict the likelihood of having a mutation in germ-line DNA 

mismatch-repair genes at the time of diagnosis of colorectal cancer (“MMRpredict”) [16]. 

This model was published in a prestigious journal (the New England Journal of Medicine). 

This may reflect that some problematic statistical procedures, such as stepwise selection of 

predictors from a wide set of candidate predictors, may be seen as good practice or 

unavoidable in developing prediction models. Furthermore, the model was developed with 

only 38 patients having the event of interest and validation was done in an independent 

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168



4

data set with only 35 events. Eventually, many years later, the MMRpredict model 

performed poorest compared to two competing prediction models in a recent validation 

study that included 5,755 CRC patients from 11 North American, European, and Australian 

cohorts [17]. This motivated the current methodological study, where we hypothesize that 

the rather standard modeling strategy that is exemplified by the case of MMRpredict causes 

poor interpretability, poor reproducibility, and poor performance of a prediction model. We 

aimed to evaluate the impact of key modeling steps on the accuracy of estimated predictor 

effects and risk predictions, and explore alternative modeling strategies.
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Patients & Methods

Clinical context

Hereditary nonpolyposis colorectal cancer (HNPCC, also called Lynch Syndrome) is caused 

by inactivating mutations of DNA mismatch-repair genes (including MSH2, MLH1, MSH6, 

and PMS2). Lynch Syndrome accounts for approximately 3% of colorectal cancers (CRC). If 

Lynch Syndrome is diagnosed in patients with CRC (‘probands’), they may benefit from 

more intensive post-treatment colonoscopic surveillance, more extensive surgery, and 

management of extracolonic cancer risks. Furthermore, family members of the proband 

who carry the same pathogenic gene mutation also benefit from cancer prevention 

strategies such as intensified surveillance to reduce the increased lifetime risk of 

developing CRC and other cancers [16]. Current clinical guidelines recommend the use of 

prediction models among patients with CRC to identify those at high risk of Lynch 

Syndrome [18] [19]. These prediction models quantify a proband’s risk of carrying a 

mismatch-repair gene mutation and intend to support decision-making regarding genetic 

evaluation, including germline testing or molecular tumor testing. One such prediction 

model was based on logistic regression analysis of 870 patients diagnosed with CRC below 

the age of 55 years [16]. There were 38 mutations identified (4%). This MMRpredict model 

was validated in an independent cohort with 35 mutations among 155 patients. 

We here perform an in-depth evaluation of the modeling strategy employed for the 

MMRpredict model. We analyze data from 19,866 patients with CRC who were tested for 

Lynch syndrome related mismatch repair genes  (MLH1, MSH2, MSH6) at Myriad Genetics 

Laboratories [20] [21] [22]. Candidate predictors were defined following the Appendix of 

the original publication, where no specific rationale for the list was given [23]. Candidate 

predictors included age at diagnosis, sex, presence of other synchronous or metachronous 

CRC, endometrial cancer or other Lynch associated cancers (including gastric, kidney, and 

other cancers such as brain, melanoma, breast, ovarian, cervix, leukaemia, lymphoma or 

testis cancer). Family history included the number and youngest age at diagnosis of first 

degree relatives (FDR), and second-degree relatives (SDR) with CRC, endometrial, or other 

cancers. We could examine all candidate predictors for the MMRpredict model except three 

characteristics of the proband’s CRC which were not available in our cohort: differentiation; 
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histology; and location of the tumor. A full model with all available candidate predictors 

required the estimation of 37 logistic regression coefficients (37 degrees of freedom, Table 

S3). Some of the age variables had missing values (<5%), which were imputed based on 

correlation with other variables in a single imputation procedure. Among the participants, 

2,051 mutations were found in the MSH2, MLH1, or MSH6 genes. We performed simulation 

studies within this large cohort to assess the impact of choices in the modeling strategy 

underlying the MMRpredict model. 

Modeling strategies

The original strategy for the development of MMRPredict included three elements that can 

affect model validity substantially [16].

1. Predictors for the model were selected in a stepwise manner based on statistical 

significance (p<0.05) from the set of candidate predictors, as specified in the Appendix 

of the original publication. A univariate screening of candidate predictors was followed 

by further selection from a multivariable logistic regression model. This practice is 

known to lead to chance findings [24] [25], exaggeration of true predictor effects [26], 

and optimistic expectations on model performance [27] [28] [29]. 

2. Continuous predictors were categorized (age at cancer below or above age 50 years). 

Such categorization of predictors causes a loss in information [30] [31].

3. Model development was based on data from 870 patients with 38 mutations (events) 

and validated in an independent cohort with 35 mutation carriers detected among 155 

patients. The small cohorts and limited total events aggravate various problems at 

model development (events per variable, EPV, close to 1) and lead to large variability in 

statistical summary measures for performance [11] [27] [28] [29] [32] [33] [34].

We evaluated alternative modeling strategies including:

1. Pre-specification of model structure 
We summarize family history as a sum of the number of FDR (0, 1, 2+) and the number 

of SDR (0, 1, 2+), where SDR are weighted as half of the FDR for family history, reflecting 

the genetic distance between FDR and SDR. Hence, the family history can be 
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summarized in a variable which ranges between 0 (FDR=0, SDR=0) and 3 (FDR >=2, 

SDR >=2). For family history, the degrees of freedom (df) decrease from 4 (for coding of 

FDR with 2 df and SDR with 2 df) to 1. We may also force the effect of the youngest age 

of CRC diagnosis in the proband, FDR, and SDR to be identical. The decrease in df is from 

3 (for 3 age effects) to 1 df (for a summary effect). Such simplification can also be done 

for endometrial cancer, and other Lynch Syndrome - associated cancers. Modeling the 

family history and age effect for CRC, endometrial, and other Lynch Syndrome cancers 

could hence be achieved with 6 df rather than 21 df (for a model with 12 df for family 

history and 9 df for age effects) [20] [35]. 

2. Avoidance of categorization 

We may keep all continuous variables by default as linear terms in the prediction model 

[30] [31]. Non-linearity in effects may be evaluated in several ways, but was not 

considered here to prevent overfitting in relatively small development samples [9] [36] 

[37].

3. Increase in the number of outcome events 

A first alternative to a fixed split in a development and validation cohort is to base the 

final model on their combination, leading to 38+35=73 events for statistical modeling, 

with stratification by study [38]. We also simulate the situation that larger development 

and validation cohorts would be available. Following the principle of having at least 10 

to 20 events per variable in the modeling process, we consider situations with 370 and 

740 events at model development [39]. 

Simulation design

We draw 1,000 random samples for model development from our cohort with 19,866 

patients, stratified by mutation status and hence fixing the event rate. The number of events 

ranged from 38 to 740. We validated the developed models in the remaining independent 

patients, not used for model development. We also examined small validation samples with 

35 events, which were drawn at random from the independent patients. Different modeling 

strategies were followed, as outlined above. We evaluated bias in predictor effects on the 

logistic scale (i.e. with estimated regression coefficients, i.e. b=log(odds ratio)). Bias was 
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defined as the difference between an estimated coefficient following a modeling strategy in 

a simulated sample and the coefficient in a model with the predictors in the full data set: 

(bsimulated – bfull)/ bfull. We also evaluated model stability (selection of predictors and 

variability between models), and predictive performance. Performance measures included 

measures for discrimination (separation provided by risk predictions, indicated by a 

concordance statistic, c) and calibration (reliability of risk predictions, indicated by the 

calibration slope, i.e. the regression coefficient of the linear predictor when used as the 

single predictor in a logistic regression model) [40] [41]. The c statistic is equivalent to the 

area under the ROC curve. It ranges between 0 and 1.0, and is over 0.5 if higher predictions 

are associated with higher risk of the event of interest [36]. The calibration slope is 1 at 

model development, and values below 1 reflect statistical overfitting: low predictions are 

too low and high predictions are too high [42].

We used R software for all analyses (version 3.3.2), after data preparation was done with 

SAS software (version 9.2). A single imputation procedure was performed with the 

aregImpute function. Logistic regression models were fit with the lrm function, fastbw 

for backward stepwise selection with p<0.05 from a multivariable model that included all 

candidate predictors with p<0.05 at univariable analysis, unique.matrix for counting 

the frequency of different models, and val.prob for model validation in independent data 

[36].
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Results

Bias in predictor effects

Several characteristics of the proband were associated with the presence of mutations in 

the cohort of 19,866 patients with CRC (univariable analyses, Table 1). A history or 

presence of another CRC, endometrial cancer, or another Lynch-associated cancer each had 

odds ratios around 3. Among relatives, a CRC at young age was strongly predictive for 

Lynch Syndrome. In MMRpredict, the multivariable odds ratios were considerably larger for 

all predictors included in that model, e.g. an odds ratio of 9.5 for presence of another CRC in 

the proband, and an odds ratio of 46 for a FDR with CRC under 50 years [16]. The most 

remarkable finding was a multivariable odds ratio of 59 for a FDR with endometrial cancer, 

where we found a multivariable odds ratios of 2.8 in our cohort [95% confidence interval 

2.5 – 3.2] (Table 1). 

Our simulations illustrate that the large and clinically implausible estimates of predictor 

effects in MMRpredict might be partly attributed to stepwise selection as a modeling 

strategy (Figure 1). In samples of 870 probands with 38 mutation carriers we simulate the 

selection of predictors from the MMRpredict model. For male sex, we find that the effect 

was statistically non-significant in 79% of the simulated samples. In the 21% instances 

where the effect was statistically significant, we estimate an average odds ratio of 3. This 

estimate is substantially higher than the multivariable odds ratio of 1.7 that we found if the 

selected model was estimated in the full data set with 19,866 probands: a bias over 100% 

for this predictor at the log scale. Similarly, large bias was found for 4 other predictors 

(presence of more than one CRC, CRC < 50, FDR with CRC >50, endometrial cancer in FDR). 

Low bias (6%) was found for the predictor age of CRC diagnosis < 50 years in a first degree 

relative. This is explained by the 88% frequency of selection (predictor not statistically 

significant in only 12% of the simulated samples).
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Model instability

Stepwise selection led not only to bias in predictor effects (Figure 1), but also to a wide 

variability in selected predictors (Figure 2). Typically, 3 or 4 predictors were selected per 

model (range: 1 to 11, Figure 2A). The most often included predictor was “FDR CRC<50” 

(88%, Figures 1 and 2B). Other predictors were less often selected (Figure 2B). Among the 

5000 simulations with 38 events, 2174 different models were selected among 4601 with 

model convergence. The most frequently selected model (70 times, 1.5% of the simulations) 

contained two predictors: “FDR CRC<50” and “SDR CRC<50”. These were also the top two 

predictors over all selected models, where 1562 models were selected only once (34% of 

the simulations). 

Model performance

The c statistic was 0.77 [0.76 – 0.78] for the refitted MMRpredict model in our large cohort 

(n=19,866) while it was 0.85 [0.77 – 0.93] in the original development cohort (n=870) and 

0.82 [0.72 – 0.91] in the original validation cohort (n=155) [16]. The apparent performance 

was very optimistic for models developed with stepwise selection in simulated data sets 

with 870 patients and 38 events: median c=0.81 at development versus median c=0.74 at 

validation (Figure 3). The predictions were too extreme, with a calibration slope of 0.75 

(ideal: 1.0, so 25% overfitting). Better performance was obtained if continuous predictors 

were used for the age of CRC in the proband and age of CRC in a FDR, rather than 

dichotomized versions. In the full data set, the discrimination for the refitted model 

increased from c=0.77 to c=0.82 [0.81 – 0.83] with continuous rather than dichotomized 

predictors. 

Impact of number of events

With 38 events at model development, performance was estimated optimistically and with 

considerable uncertainty (Figure 3). Validation with 35 events led to large uncertainty in 

the performance estimates: the 95% range for the c statistic was 0.63 to 0.84 (median 

c=0.74), and 0.40 to 1.31 for the calibration slope (median c=0.75, Figure 3). The validation 

performance reported in the NEJM paper (c=0.82) is quite favorably placed within this 

expected range: 93% of the simulated models with 38 events would be expected to show a 
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worse performance. If a large validation sample size were analyzed (over 2000 events), 

more stable performance estimates would be obtained, although the 95% range for the c 

statistic was still wide (e.g. 0.69 to 0.78). 

Larger sample sizes for development led to substantially better performance. An 

analysis with 73 events, based on the hypothetical combination of development and 

validation cohorts (38+35 events) led to a median c statistic of 0.82 at development and 

0.78 at validation (Figure 4). An even larger development set (370 events, for 10 events per 

candidate variable) would further improve model performance: c=0.830 at development 

and c=0.826 at validation(optimism in c statistic 0.004), and a calibration slope close to 1 

(slope=0.96, Figure 4).

Pre-specification and continuous predictors

An previously proposed model included 9 predictors: male sex; synchronous or 

metachronous CRC; presence of endometrial, or other cancer; three summary variables for 

family history of CRC, endometrial, or other cancer; and two continuous summary variables 

for the age effects of CRC and endometrial cancer [21]  [35]. If this model was estimated 

with 38 events, the median validated c was 0.836 (95% range 0.800-0.848, Figure 4). 

Predictions would be too extreme, as reflected in a calibration slope of 0.83 (95% range 

0.59-1.14). With larger sample size, the validated performance increased rapidly to a 

median c statistic of 0.852 and perfect calibration (Figure 4).
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Discussion

This study highlights problems with a number of key elements in prediction modeling 

strategies: selection of predictor variables based on statistical significance, dichotomization 

of predictors, and modeling in relatively small data sets. These elements are quite common 

in current scientific practice (Table S1), and lead to prediction models that cannot be 

trusted. The effects of predictors are exaggerated, while others are unduly discarded, and 

predictions are too extreme, invalidating reliable decision support. We hence call for 

immediate improvements in the practice of model development and validation. 

Our study showed that small development and small validation samples lead to poor 

performance in terms of discrimination and calibration, and rather unstable estimates. The 

problems of small development samples also have been recognized in previous studies [7] 

[29] [32] [43] [44]. We add that the uncertainty of the validated performance estimates 

may be huge, since this uncertainty is determined by the combination of the variance in the 

development and validation sets. For MMRpredict, the original finding of a validated 

performance (c=0.82) close to the development performance (c=0.85) should not be 

interpreted as evidence for the validity of the prediction model [16]. We learn from Figure 3 

that the validated performance has enormous uncertainty if only 35 events are present, 

with a c statistic ranging roughly between 0.6 and 0.9. Indeed, the 95% confidence interval 

was 0.72–0.91 for the reported validated c statistic of MMRPredict (c=0.82) when validated 

with 35 events [16]. Second, stepwise selection leads to biased regression coefficients with 

exaggerated prognostic effects for the predictors included in the prediction model 

(Winner’s curse, illustrated with Figure 1) [26]. Claims on the relevance of some 

characteristics and the irrelevance of other characteristics are misleading, unless the 

sample size are huge [27]. The selection of predictors was highly unstable, and any claims 

on independent effects of a specific set of predictors cannot be trusted [32] [45] [46] [47]. 

These issues are becoming better recognized by recent debates on the use and misuse of p-

values in scientific research [48] [49] [50]. Third, dichotomization of continuous predictors 

for age at diagnosis led to a substantial loss of information, in line with theoretical 

expectations [30] [31] [51] [52] [53] [54]. The commonly used cut-off for an age at 

diagnosis below age 50 years as suspect for hereditary cancer should be reconsidered. It is 
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unscientific to consider a patient with CRC at age 49 very different from a patient with CRC 

at age 51, but similar in risk as a patient with CRC at age 30 years. 

Potential solutions

Various solutions to the development of more trustworthy prediction models have been 

proposed [9] [36] [39] [37] [42] [55]. Methodologists will agree that a sensible modeling 

strategy is especially needed if only a relatively small data set is available, commonly 

defined as a situation with less than 10 to 20 events per variable [39] [56]. Note that the 

number of candidate predictors needs to be considered here, with the corresponding 

effective degrees of freedom, rather than the degrees of freedom of predictors included in 

the final model [57]. The effective degrees of freedom increase by detailed model building, 

such as choosing optimal cut-offs, and examining various non-linear transformations for 

continuous predictors or statistical interactions. Pre-specification of a model may be 

attempted to save degrees of freedom, based on literature review and subject knowledge 

from clinical experts, with statistical testing for model specification limited as much as 

possible [39]. Some candidate predictors may be combined in summary variables, as 

illustrated for the case study with the effects of first and second degree family history, and 

the effect of age of cancer diagnosis [35]. Also, continuous predictors might best be 

considered as linear terms without testing for non-linearity, and potential statistical 

interaction terms ignored, if sample size is relatively small. 

The benefits of reducing effective degrees of freedom need to be balanced against 

the loss of information by summarizing variables and other model simplifications [9] [36] 

[39] [58]. Far worse is the loss of information caused by stepwise selection where 

insufficient statistical power may easily lead to the exclusion of in fact relevant predictors 

[27] [32] [46] [56]. Application of a more lenient criterion for selection increases the 

statistical power for selection of relevant predictors, such as p<0.2 [26] or p<0.50 [29]. 

Similarly, models will be more informative with continuous rather than dichotomized 

predictors [30] [31] [51] [52] [53] [54] (Table S2). We note that the effects of continuous 

predictors can well be interpreted if appropriately scaled. For example, age may be coded 

per decade [9]. If a non-linear effect is modeled, a graphical display may be informative 
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relatively easy to interpret [36] [59]. An example of such an attractive visual presentation 

was included in the prediction model derived from the GUSTO trial, where prognostic 

effects were plotted for 7 continuous predictors with spline transformations and effects 

summarized by comparing 75th to 25th percentiles [60].

Finally, large sample sizes, i.e. studies with many events, are needed to develop 

better models. Our case study illustrates that problems with model specification are less 

prominent if data sets with over 20 events per candidate predictor are available for 

analysis: relevant predictors will be identified, and performance stabilizes without signs of 

statistical overfitting. Validation sample sizes need to be large as well to give a reliable 

impression of performance. Our study confirms that less than 100 events at validation leads 

to rather unreliable estimates of performance, and that ideally at least 250 events should be 

present in a validation data set [9] [10] [11]. In the case study, the final MMRpredict model 

should have been based on the stratified combination of the development and validation 

data sets (38+35=73 events) [38]. This would have alleviated some of the unreliability and 

overfitting of the current MMRPredict model, but still be far too few events for reliable and 

accurate predictions [29]. A bootstrap validation might then have been performed 

repeating the full model specification strategy, producing a shrinkage factor that should be 

applied to prevent too extreme predictions in new patients [36] [38] [61] [62]. Ideally, 

cross-validation in multiple, large cohorts should be performed before a model is presented 

for clinical application, so as to get a better sense of what might be expected upon clinical 

application in different settings [38]. Rather than stepwise selection, a Lasso modeling or 

similar statistical penalization procedure should have been applied for a better balance 

between a small, clinically applicable model, while providing reliable predictions [29] [43] 

[44] [63] [64] [65]. Our recommendation is to use modern modeling approaches with 

penalization of estimated regression coefficients when model developers are confronted 

with sparse data with relatively few events. Moreover, honest internal validation 

approaches should be followed, that include all model specification steps. For example, if 

stepwise selection were used for the development of a model, e.g. with p<0.20 for selection 

of main effects of predictors [26] [29], a bootstrap cross-validation procedure should repeat 

this procedure in every bootstrap sample [61]. These model selection and estimation 

strategies require further study.
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Increasing sample size, meta-analysis, and validation

A larger sample size for model development and validation may be obtained from 

prospective multicenter studies, or by combining individual patient data from different 

studies. Indeed, individual patient data meta-analysis (IPD MA) has become more common 

for prediction models, and opportunities will increase with the availability of “Big Data”, 

including routinely collected data in electronic health records [66]. Our confirmations of 

minimum sample size requirements have implications for the design of multicenter studies 

and IPD MA of prediction models. Rather than expanding a single cohort, it may be more 

worthwhile to collect data from other cohorts once over 20 events per variable are 

available. For example, with 10 candidate predictors, it is more valuable to cross-validate a 

model in 5 cohorts with 200 events than analyzing a single cohort with 1,000 events [38].

The benefits of extending absolute numbers in IPD MA have to be balanced against 

possible sources of heterogeneity with respect to the clinical context, the definition of 

predictors, and the definition of the outcome event [67]. Heterogeneity will often be 

reflected in differences in baseline risk, even when accounting for different distributions of 

the predictors that are included in the model [66]. The advantages of IPD MA for prediction 

research are however numerous, such as the drive towards a consensus model rather than 

having a myriad of locally developed models with unclear qualities [68] [69]. Moreover, 

some differences between studies are needed to assess the generalizability of predictions 

rather than reproducibility, as examined in our simulations, where validation samples were 

drawn at random [67]. If model performance is consistently good in a variety of settings, 

this is strong evidence for the generalizability of a model [70] [13]. The possibility to 

perform cross-validations between studies is an important strength of IPD MA compared to 

development and validation of models in large single study settings [38] [71]. 

This cross-validation by cohort or other meaningful grouping, such by calender time 

[72], could not be performed in the current study, in contrast to earlier evaluations within 

the GUSTO trial [29] [56]. Substantial heterogeneity in baseline risk was observed among 

11 cohorts included in another large external validation study of the MMRpredict model 

[17]. Here MMRPredict was compared to two competing models, PREMM1,2,6 and MMRPro. 

The intention of these models is to support decision making on diagnostic work-up, 

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840



16

including the ordering of tests for mutations in the mismatch repair genes in those 

classified as at relatively high risk. Such decision-support requires some degree of 

discrimination, while calibration is even more essential: poor calibration may lead to 

poorer decision making when guided by individualized predictions compared to a simple 

reference strategy such as testing all patients [73]. A model may have no clinical utility due 

to poor calibration [41]. Further study is needed on the extent that this problem can be 

prevented by applying shrinkage and penalization approaches in small data sets.

Conclusions

We conclude that prediction models have biased effect estimates and run a high risk of 

providing inaccurate predictions if developed with common but suboptimal statistical 

approaches: selection from a large set of candidate predictors based on statistical 

significance; dichotomization of continuous predictors; and development and validation in 

relatively small data sets. Improvements may come from better statistical approaches, such 

as pre-specification of a limited set of predictors based on external knowledge, more 

refined statistical analysis, and from increased sample sizes, specifically in the context of 

collaborative IPD meta-analyses.
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What’s new

Key findings

 Simulations of the modeling strategy for a well-published prediction model showed 

severely biased effect estimates and poor predictive performance in independent data. 

The poor performance was caused by common but suboptimal statistical approaches: 

selection from a large set of candidate predictors based on statistical significance; 

dichotomization of continuous predictors; and development and validation in relatively 

small data sets.

What this adds to what is known

 The impact of stepwise selection in small sample sizes is more detrimental than many 

may anticipate, while validation in small samples leads to unreliable assessment of 

model performance.

What is the implication, what should change now

 The poor discrimination and poor calibration that is expected from models developed 

with rather standard statistical approaches in small data sets implies that we should 

have limited trust in many prediction models to support precision medicine. 

 Modeling practices in small data sets need to improve immediately, including the pre-

specification of a limited set of (preferably continuous) predictors based on external 

knowledge, use of penalization techniques for regression models, and honest internal 

validation. 

 Available prediction models require validation across different settings with hundreds 

of events, in addition to careful review of statistical methodology, prior to their 

dissemination and implementation in routine clinical practice. 
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Table 1 Associations of predictors of mutations in the MLH1, MSH2, or MSH6 genes among 19,866 probands with CRC. Univariable and 
multivariable odds ratios (OR) are shown with 95% confidence intervals after single imputation of missing values. The final column 
shows the odds ratios from univariate and multivariable analyses for the MMRPredict model.

Predictor Missings Non-carriers
n              %
17,815   89.7

Carriers
n               %
2051       10.3

ORunivariable ORmultivariable* ORMMRPredict
uni / multivariable

Proband
  Male 0 6491 86.9 977 13.1 1.59 [1.45 - 1.74] 1.54 [1.40 - 1.71] 2.24 / 2.57
  Age CRC<50 yr 635 (3%) 11,141 88.0 1514 12.0 1.71 [1.54 - 1.89] 2.80 [2.49 - 3.14]
 Other cancers
    CRC 0 868 76.2 271 23.8 2.97 [2.57 - 3.44] 2.93 [2.48 - 3.45] 8.02 / 9.53
    Endometrial cancer 0 1009 77.4 295 22.6 2.80 [2.44 - 3.21]
    Other Lynch cancer 0 832 75.4 272 24.6 3.12 [2.7 - 3.61]

First degree relatives
 CRC 0 5616 80.6 1349 19.4 2.12 [2.02 - 2.22] 2.26 [1.97 - 2.59] 4.24 / 7.04
   Age CRC<50 yr 382 (2%) 2042 67.9 964 32.1 6.87 [6.23 - 7.58] 10.0 [8.96 - 11.3] 36.0 / 46.26
 Endometrial cancer 0 1058 76.6 323 23.4 2.56 [2.28 - 2.88] 2.83 [2.48 - 3.23] - / 59.36
   Age endometrial <50 yr 112 (1%) 582 74.2 202 25.8 3.22 [2.73 - 3.81]
 Other Lynch cancer 0 2738 85.3 471 14.7 1.48 [1.36 - 1.61]
   Age of other <50 yr 555 (3%) 962 78.9 257 21.1 2.54 [2.17 - 2.97]

Second degree relatives
 CRC 0 5080 85.2 885 14.8 1.52 [1.45 - 1.59] 1.91 / -
   Age CRC<50 yr 775 (4%) 1528 73.1 563 26.9 4.02 [3.60 - 4.49] 8.07 / -
 Endometrial cancer 0 722 83.8 140 16.2 1.57 [1.35 - 1.82]
   Age endometrial <50 yr 119 (1%) 356 79.8 90 20.2 2.24 [1.77 - 2.83]
 Other Lynch cancer 0 2724 90.0 304 10.0 0.98 [0.89 - 1.08] 4.71**
   Age of other <50 yr 710 (4%) 744 85.4 127 14.6 1.58 [1.28 - 1.96] 9.42***



* The multivariable logistic regression model was based on the selection in the MMRpredict model, with age at CRC in the proband coded as 
less than 50 years. The c statistic of this multivariable model, indicating discriminative ability, was 0.77 [95% confidence interval 0.76 – 0.78].
 ** Univariate odds ratio for gastric cancer at age over 50 years**, and less than 50 years ***, as provided in Supplementary Table 3A of the 
MMRPredict study.



Figure 1 Estimated odds ratios for 6 categorized predictors based on the 
MMRpredict model among 5,000 samples of 870 probands with 38 
mutation carriers. The fraction of models without the predictor is 
indicated with an odds ratio of 1, e.g. 79% for males vs females. The 
average effect in models where the predictor was included is indicated 
with a solid vertical line, e.g. around 3 for males vs females. The 
average effect in the full data set of 19,866 probands is shown with a 
dotted vertical line, e.g. 1.7 for males vs females. The bias is 121% 
when calculated on the logistic scale (i.e. with log(odds ratio)).



Figure 2 Number of predictors (panel A) and top 10 predictors (panel B) 
selected in models among 5,000 samples of 870 probands with 38 
mutation carriers. FDR and SDR: First and second degree relatives; 
CRC: colorectal cancer; Endo: Endometrial cancer. 



Figure 3 Estimated discriminative ability (C statistic) and calibration (slope) for 
models developed with stepwise selection in 5,000 samples of 870 
probands with 38 mutation carriers (‘events’). Samples were drawn for 
model development from a cohort with 19,866 probands with 2,051 
events. Validation with 35 independent events (among 155 probands) 
led to far more variability in performance than validation with 2,013 
independent events.

  
 
 



Figure 4 Impact of number of events in the development sample on estimates of 
model performance. Two modeling strategies were compared: 
stepwise selection with dichotomization versus pre-specification with 
continuous predictors. A total of 740 events corresponds to 20 events 
per variable (EPV=740/37) for the strategy with stepwise selection 
and dichotomization, and to 82 (EPV=740/9) for the strategy with pre-
specified, continuous variables. A total of 185 events corresponds to 
EPV=5 and EPV=21 respectively.

 



Supplementary material

Table S1 Frequency of methodological issues in the development and 
validation of clinical prediction models in some recent systematic 
reviews (2008 – 2016)

First author Year Field N 
models*

Significance 
testing for 
selection

Categorization EPV<10

Mushkudiani [1] 2008 TBI 31 61% 79%** NA
Altman [2] 2009 Breast 

cancer
53 57% 74% NA

Mallett [3] 2010 Cancer 43 86% 97% 30%
Collins [4] 2011 Diabetes 39 56% 63% 21%
Bouwmeester [5] 2012 High IF 

papers
48 66% 80% 50%

Collins [6] 2013 Chronic 
kidney 
disease

14 57% 62% 17%

EPV: Events per variable
NA: not applicable, not clear from the review
* Total models in review; percentages refer to studies with item evaluated
** 22/28 models categorized age



Table S2 Overview of a selection of methodological studies considering 
statistical testing for model specification, categorization of continuous 
variables, and general modeling strategies.

First author Year Field Key findings and conclusions

Statistical testing and stepwise selection
Altman [7] 1989 primary 

biliary 
cirrhosis

Using 100 bootstrap samples using 17 
candidate variables, the most frequently 
selected variables were those selected in the 
original analysis. Bootstrap confidence 
intervals were constructed for the estimated 
probability of surviving two years, which were 
markedly wider than those obtained from the 
original model.

Derksen [8] 1992 - A Monte Carlo study was reported on the 
frequency with which authentic and noise 
variables are selected by automated subset 
algorithms. Results indicated that: (1) the 
degree of correlation between the predictor 
variables affected the frequency with which 
authentic predictor variables found their way 
into the final model; (2) the number of 
candidate predictor variables affected the 
number of noise variables that gained entry to 
the model; (3) the size of the sample was of 
little practical importance in determining the 
number of authentic variables contained in the 
final model; and (4) the population multiple 
coefficient of determination could be faithfully 
estimated by adopting a statistic that is 
adjusted by the total number of candidate 
predictor variables rather than the number of 
variables in the final model.

Steyerberg [9] 1999 acute 
myocardial 
infarction

Bias by stepwise selection was studied with 
logistic regression in the GUSTO-I trial (40,830 
patients). Random samples were drawn that 
included 3, 5, 10, 20, or 40 events per variable 
(EPV). Considerable overestimation of 
regression coefficients of selected covariables 
was found.

Austin [10] 2004 acute 
myocardial 
infarction

Using 1,000 bootstrap samples, backward 
elimination identified 940 unique models from 
29 candidate variables for predicting 
mortality. 
Automated variable selection methods result 
in models that are unstable and not 
reproducible



Categorizing continuous variables 
MacCallum [11] 2002 - The consequences of dichotomization for 

measurement and statistical analyses are 
illustrated and discussed. Dichotomization is 
rarely defensible and often will yield 
misleading results.

Irwin [12] 2003 Marketing Marketing researchers frequently split 
(dichotomize) continuous predictor variables 
into two groups, as with a median split, before 
performing data analysis. The authors present 
the effect of dichotomizing continuous 
predictor variables with various nonnormal 
distributions and examine the effects of 
dichotomization on model specification and fit 
in multiple regression. The authors conclude 
that dichotomization has only negative 
consequences and should be avoided.

Altman [13] 2006 primary 
biliary 
cirrhosis

A prognostic model with bilirubin as a 
continuous explanatory variable explained 
31% more of the variability in the data than 
when bilirubin distribution was split at the 
median.

Royston [14] 2006 primary 
biliary 
cirrhosis

Dichotomization may create rather than avoid 
problems, notably a considerable loss of power 
and residual confounding. In addition, the use 
of a data-derived 'optimal' cutpoint leads to 
serious bias. Dichotomization of continuous 
data is unnecessary for statistical analysis and 
in particular should not be applied to 
explanatory variables in regression models.

Naggara [15] 2011 unruptured 
intracranial 
aneurysms

Dichotomization leads to a considerable loss of 
power and incomplete correction for 
confounding factors. The use of data-derived 
“optimal” cut-points can lead to serious bias 
and should at least be tested on independent 
observations to assess their validity. 
Categorization of continuous data, especially 
dichotomization, is unnecessary. Continuous 
explanatory variables should be left alone in 
statistical models.

Dawson [16] 2012 Medical 
decision 
making

Many decisions are discrete: to admit a patient 
or not, to apply treatment or not. But models 
for understanding these decision problems 
must reflect our best science about the world, 
in which most causes and effects are 
continuous and not discrete. Dichotomization 



of continuous variables is strongly 
discouraged. If authors choose to present 
research findings in which dichotomization 
has been used, the authors must present 
evidence that the approach is superior to using 
the original continuous variable in this 
particular instance.

Collins [17] 2016 Categorising continuous predictors produces 
models with poor predictive performance and 
poor clinical usefulness. Categorising 
continuous predictors is unnecessary, 
biologically implausible and inefficient and 
should not be used in prognostic model 
development.

Modeling strategy
Chatfield [18] 1995 - Model uncertainty is caused by formulating, 

fitting, and checking a model on data in an 
iterative and interactive way. Model 
uncertainty leads to too narrow confidence 
and prediction intervals and bias in parameter 
estimates.

Steyerberg [19] 2000 acute 
myocardial 
infarction

Stepwise selection with a low alpha (for 
example, 0.05) led to a relatively poor model 
performance, when evaluated on independent 
data. Substantially better performance was 
obtained with full models with a limited 
number of important predictors, where 
regression coefficients were reduced with a 
shrinkage method. Incorporation of external 
information for selection and estimation 
improved the stability and quality of the 
prognostic models. Shrinkage methods in full 
models including prespecified predictors are 
recommended with incorporation of external 
information.

Babyak [20] 2004 - Three common practices—automated variable 
selection, pretesting of candidate predictors, 
and dichotomization of continuous variables—
are shown to pose a considerable risk for 
spurious findings in models. Alternative means 
of guarding against overfitting are discussed, 
including variable aggregation and the fixing of 
coefficients a priori. Techniques that account 
and correct for complexity, including 
shrinkage and penalization, are important in 
model development.



Table S3 Multivariable logistic regression model for all candidate predictors as 
considered for the MMRpredict model fitted in 19,866 probands with 
CRC.

Predictors Coefficient SE p-value
Proband
male gender 0.73 0.06 <0.0001
synchronous CRC 0.97 0.09 <0.0001
synchronous Other 1.23 0.13 <0.0001
Endometrial cancer 2.25 0.12 <0.0001
CRC agelt50 1.28 0.06 <0.0001
Endo agelt50 1.04 0.17 <0.0001
Other agelt50 0.01 0.18 0.94
Family history
CRC
CRC FDR ageht50 0.34 0.10 0.0004
CRC FDR agelt50 1.72 0.10 <0.0001
N FDR with CRC 0.35 0.05 <0.0001
CRC SDR ageht50 -0.20 0.10 0.042
CRC SDR agelt50 0.90 0.10 <0.0001
N SDR with CRC 0.24 0.05 <0.0001
Endometrial cancer
Endo FDR ageht50 0.46 0.27 0.093
Endo FDR agelt50 0.59 0.29 0.040
N FDR with Endo 0.44 0.23 0.060
Endo SDR ageht50 0.21 0.35 0.54
Endo SDR agelt50 0.51 0.36 0.16
N SDR with Endo 0.12 0.28 0.66
Stomach cancer
Stomach FDR ageht50 0.13 0.44 0.76
Stomach FDR agelt50 0.67 0.50 0.18
N SDR with Stomach -0.13 0.38 0.73
Stomach SDR ageht50 0.61 0.47 0.19
Stomach SDR agelt50 1.35 0.53 0.011
N SDR with Stomach -0.62 0.43 0.15
Urigenital cancer
Urigenital FDR ageht50 2.22 0.81 0.006
Urigenital FDR agelt50 1.60 0.86 0.063
N FDR with Urigential -1.88 0.78 0.016
Urigenital SDR ageht50 -0.52 0.58 0.38
Urigenital SDR agelt50 -1.00 0.75 0.18
N SDR with Urigenital 0.67 0.51 0.19
Other cancers
Other FDR ageht50 -0.11 0.19 0.54
Other FDR agelt50 0.53 0.21 0.012
N FDR with Other 0.21 0.15 0.15
Other SDR ageht50 -0.06 0.20 0.78
Other SDR agelt50 0.22 0.26 0.40
N SDR with Other 0.06 0.16 0.69

FDR: First degree relative; SDR: Second degree relative; ageht50: age over 50; 
agelt50: age lower than 50.
The logistic regression model had 37 degrees of freedom. The c statistic was 
0.833 [95% CI 0.823 – 0.843] in the full development set with n=19,866 and 
2,051 events.



R code for key analyses

# draw random development samples
row.y1 <- sample(y1.rows, j)          # events, j==38
row.y0 <- sample(y0.rows, controls)   # non-events, controls ==870 – j

# Start univar screening in sel.x, varlist is list of candidate predictors
  for (p in (1:(length(varlist)))) {
      uni.fit <- lrm.fit(y=sel.y, x=sel.x[,p], tol=1e-2, maxit=20)
      p.cand[p] <- ifelse(uni.fit$fail,.99,uni.fit$stats[5])  } 
# End univar screen

# list of univar p < threshold; threshold == 0.05
list.cand.s <- ifelse(p.cand < p.threshold,T,F) 

# make full data and selected data set  
sel.data.full <- as.data.frame(cbind(fit.NEJM$y, xstart[,list.cand.s]))
sel.data      <- as.data.frame(cbind(sel.y, sel.x[,list.cand.s]))

sel.fit.full  <- lrm(V1~., data=sel.data.full, x=T, y=T, maxit=199)
sel.fit       <- lrm(V1~., data=sel.data, x=T, y=T, maxit=199)

# fastbw does the backward stepwise selection
selbw <- fastbw(sel.fit, type = "individual", rule = "p") # Stepwise, p<.05

# Fit stepwise selected models, from univariate selection
selbw.fit.full  <- lrm.fit(y=sel.fit.full$y, 
x=sel.fit.full$x[,selbw$factors.kept], maxit=199)

# this is the fit to be considered for validation performance, bw in small 
sample
selbw.fit       <- lrm.fit(y=sel.fit$y, x=sel.fit$x[,selbw$factors.kept], 
maxit=199)  
 

# Validate in independent data, j3 indicated rows of small subsample
pval = as.matrix(sel.fit.full$x[-j3, selbw$factors.kept]) %*% 
selbw.fit$coefficients[-1]
val.prob(y=sel.fit.full$y[-j3], logit=pval, pl=F)
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