
  

 

Towards Individualised Model-based 

Monitoring: From Biology to Technology 

 

 

 

Tim TAMBUYZER 

 

 

 

 

 

 

 

 

 

 

Supervisors: 

Prof. dr. ir. J.M. Aerts (KU Leuven), promoter  

Prof. dr. D. Balschun (KU Leuven), co-promotor 

Members of the examination committee: 

Prof. dr. ir. D. Berckmans (KU Leuven) 

Prof. dr. ir. H. Ramon (KU Leuven) 

Prof. dr, ir. E. Schrevens (KU Leuven), chairman 

Prof. dr. B. Nuttin (KU Leuven) 

PD. dr. S. Zenker (University of Bonn, Germany) 

 

 

 

 

January 2018 

Dissertation presented in partial  

fulfilment of the requirements for the  

degree of Doctor in Bioscience 

Engineering 



ii 

 

Doctoraatsproefschrift nr.1488 aan de faculteit Bio-ingenieurswetenschappen van de KU Leuven 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

© 2018 KU Leuven, Science, Engineering & Technology 

Uitgegeven in eigen beheer, TIM TAMBUYZER, B-3001 HEVERLEE (BELGIUM) 

 

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden 

door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaandelijke 

schriftelijke toestemming van de uitgever. 

 

 

 

 



iii 

 

 

 

 

 

 

 

 

 

“If there is man, then that is because a technology has made him evolve  

out of the prehumen.” 

 

─   Peter Sloterdijk  ─ 

 

 (From: Sloterdijk, Peter, “Anthropo-Technology” in New Perspectives Quarterly (2004), p. 43)  
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Summary 

iological systems and their underlying processes (i.e. bio-processes) are 

continuously exposed to a wide range of perturbations in their micro-

environment. Moreover, each individual biological process is unique and 

will respond in a different way to these perturbations. The two main reasons for this 

individual diversity are widely accepted: i) differences due to gene effects (i.e. 

nature) and ii) differences due to environmental effects (i.e. nurture). However, 

dealing with the inter- and intra-individual variations remains one of the main 

obstacles in applying engineering approaches to biological processes and, therefore, 

it is highly challenging to accurately monitor their individual state (e.g. individual 

response to infection, personalised medicine). The focus of this PhD is on 

individualised model-based monitoring of biological processes.  

 

The general objective of this PhD was to develop a framework for individualised 

model-based monitoring for biological processes, as inspired by control engineering 

concepts. The presented approach addresses four main topics: i) the biological 

process itself (i.e. bio-process), ii) the process model, iii) model-based features and 

iv) individualised change detection.  To explore the validity of the formulated sub-

objectives, six different case studies (cell, embryo, animal, human) were examined: i) 

Individualised monitoring of activity and body weight in the activity-based anorexia 

rat model, ii) Individualised model-based monitoring of interleukin-6 for early 

detection of infection in pigs, iii) Model-based monitoring of heart rate and blood 

cytokine time series for early detection of infections in critically ill patients, iv) 

Model-based monitoring of mGluR-dependent synaptic plasticity in hippocampal 

brain slices of rat, v) Individualised monitoring of hippocampal theta oscillations and 

individualised electrical stimulation in the mesencephalic reticular formation for 
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real-time closed-loop suppression of locomotion in rat and vi) Individualised model-

based monitoring of chicken embryo status during incubation based on eggshell 

temperature and micro-environmental air temperature. In case study ii  and iii  

similar methods are applied to obtain a monitor for infection in animals and humans 

respectively. This example shows how it is possible to make the step from animal to 

human health engineering. 

Overall, this thesis has led to some innovative individualised monitoring applications 

based on the six specific case studies. Since the case studies are very different, the 

developed individualised model-based approach could potentially be used in a wide 

range of application domains (e.g. human health engineering, precision livestock 

farming, bio-technological processes,...).  

 

The first sub-objective focuses on the biological process:  Individual biological 

processes (individual system structure, individual system dynamics, and individual 

bio-signals) will be interpreted as the biological equivalents of control engineering 

components by defining actuator and homeostatic variables for each of the six case 

studies. 

The results of the case studies showed that the involved bio-processes can be 

considered as the biological equivalents of clever-designed control engineering 

components such as sensors, actuators, feedback loops and controllers. This allows 

them to preserve homeostasis and stable internal conditions, to adapt (e.g. learning 

by brain plasticity) and to grow (e.g. chicken embryo development) in spite of 

uncertain environmental conditions. When one of the components of a homeostatic 

control system fails, this can lead to  dangerous states  (e.g. dysfunction of the control 

system for energy homeostasis  in animals or patients with anorexia nervosa; cfr. 

case study i). 

By starting from the individual details of the biological processes, we could define 

actuator and homeostatic variables for the different bio-processes of each case study. 

Therefore, as the first step in the development of an individualised model-based 

monitoring system for bio-signals, we suggested combining insights from biology 

and control engineering to interpret measured bio-signals (i.e. developing 

monitoring systems “from biology to technology”). 
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The second sub-objective was formulated as: Although biological processes are 

known to contain many nonlinearities, we will use compact individual linear models 

(general Box-Jenkins models) for the specific individualised monitoring applications 

of the case studies (cfr. case studies ii, iii, iv and v). By using these models we aim to 

obtain a good approximation of the individual bio-process dynamics and/or to 

uncover information about the underlying mechanisms/state by applying data-based 

mechanistic modelling approaches (case study iv and vi).  

Several examples, spread across the various case studies, confirmed that we can use 

compact individual linear models (i.e. Box-Jenkins (BJ) models) for monitoring 

individual non-linear bio-processes. These models allow accurate descriptions of the 

dynamic, time-varying and individual character of bio-processes. The fact that we 

can use such compact BJ models to describe such bio-processes is, at first-sight, 

highly unexpected because bio-processes are, without any exception, very complex 

(e.g. nonlinearities). However, as mentioned before, bio-processes can be considered 

robustly controlled engineering systems. In light of this, such systems often show 

relatively simple responses (expressing the crucial dominant processes that 

ascertain healthy internal homeostatic or homeodynamic conditions) when exposed 

to perturbations as illustrated by the bio-processes of the case studies.  

Consequently, these systems can be modelled successfully using compact models 

such as BJ models. Moreover, for two case studies (case study iv and vi), links were 

shown between the models and physiological mechanisms (i.e. data-based modelling 

of synaptic plasticity; monitoring chicken embryo state during incubation)  and 

therefore the models can be considered as data-based mechanistic models, since 

they are both data-based and able to give insight in the individual state of the bio-

processes. 

 

In the third sub-objective we stated: We will identify generic metrics from the fields 

of complex systems science, change detection and control engineering that can be 

used while analysing individual time series. This list of metrics can be used for all 

individual bio-processes in the design of model-based monitoring applications and 

will be generated based on the specific case studies (case studies i-vi).  
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Based on the results, we suggested three different model-based features that can be 

used to detect individual state changes in bio-processes: model parameter changes, 

changes in model order and changes in model noise characteristics.  In addition, 

more than 20 other generic metrics from the fields of complex systems science, 

change detection and control engineering were identified that can be used while 

analysing individual time series.  

  

Finally, the last sub-objective introduced the use of individual thresholds: By 

integrating insights from control engineering and change detection, we will develop 

a general framework for individualised model-based monitoring of biological 

processes based on individual thresholds. This general approach could potentially be 

implemented in a wide range of applications and could improve the generally 

accepted population-based approaches (case study i, ii, v and vi).  

Examples from the chapters (cfr. case studies i, ii, iii, v and vi) showed the presence 

of inter- and intra-individual differences in most monitoring applications, indicating 

the need for a monitoring approach based on individualised thresholds in order to 

capture the individual state changes. Methods of online change detection are 

typically characterised by the use of threshold methods. Here, we combined insights 

from  change detection and control engineering and developed a framework for 

individualised model-based monitoring with individual thresholds based on the 

specific case studies.  In addition to the general, more traditional change detection 

methods (e.g. CUSUM algorithms), three possible approaches were proposed: 1) 

Individual thresholds based on (sub-)population information, 2) Individual 

thresholds based on universal laws and insights from control engineering, complex 

systems science and biology and 3) Individual thresholds based on individual serial 

baseline measurements, which can be considered as the most individualised way.   

The way forward in the monitoring of individuals is using serial baseline 

measurements of normal  system behaviour (e.g. healthy state) to detect individual 

changes (e.g. state of illness such as infection). Such an individualized approach 

allows us to define individual thresholds (cfr. case studies v and vi) purely based on 

data generated from the same individual process, which can lead to higher detection 

accuracies in comparison with population-based methods. 
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Until now the existence of general frameworks for individualised model-based monitoring 

of biological processes is limited. In this thesis, each specific case (i.e. animal and human 

health engineering applications) contributed to the development of such general 

framework inspired by control engineering concepts. The presented general approach 

could be used in a broad range of application domains, thus stressing the generic 

power of the suggested framework for individualized model-based monitoring of 

bio-processes. All the elements and methods handled in this PhD are summarised in 

one flow chart for individualised model-based monitoring of biological processes 

that combines methodologies from the fields of statistics, control engineering, 

complex systems science and change detection. In the future, population-based 

threshold approaches should be merged with methods at an individual level so as to 

optimise the performance of the monitoring systems (e.g. mixed-effect models). 

Moreover, the list of used methods could be further expanded (e.g. non-linear 

models, validation methods, etc.). Finally, the individualised model-based monitoring 

approach could also be integrated in a broader framework, which, additionally, 

includes methods for defining individualised interventions and individualised 

control applications (e.g. closed-loop deep brain stimulation systems for reduction of 

pathological symptoms). 
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Samenvatting 

iologische systemen en hun onderliggende processen (i.e. bio-processen) 

worden voortdurend blootgesteld aan een groot aantal verstoringen in hun 

micro-omgeving. Bovendien is elk individueel biologisch proces uniek en zal 

het op een andere manier reageren op deze storingen. De belangrijkste twee redenen 

voor deze individuele diversiteit zijn algemeen bekend: i) verschillen ten gevolge van 

gen-effecten (i.e. “nature”) en ii) verschillen door omgevingseffecten (i.e. “nurture”). 

Het omgaan met de inter- en intra-individuele variaties blijft echter een van de 

belangrijkste obstakels bij het toepassen van modelgebaseerde 

ingenieurstechnieken op biologische processen en daarom is het zeer uitdagend om 

de individuele toestand van biologische processen nauwkeurig te volgen 

(bijvoorbeeld de individuele respons op infectie, gepersonaliseerde geneeskunde). 

De focus van dit doctoraat ligt op de geïndividualiseerde modelgebaseerde 

monitoring van biologische processen. 

 

De algemene doelstelling van dit doctoraat was  een algemeen kader te ontwikkelen 

voor geïndividualiseerde modelgebaseerde monitoring van biologische processen, 

geïnspireerd door ingenieurstechnieken voor controle van dynamische systemen. De 

voorgestelde benadering heeft betrekking op vier hoofdonderwerpen: i) het 

biologische proces zelf, ii) het procesmodel, iii) modelgebaseerde kenmerken en iv) 

geïndividualiseerde veranderingsdetectie. Om de validiteit van de geformuleerde 

sub-objectieven te onderzoeken, werden zes verschillende casestudies (cel, embryo, 

dier, mens) verricht: i) Geïndividualiseerd monitoren van activiteit en 

lichaamsgewicht in het activiteitsgerelateerde anorexia-ratmodel, ii) 

Geïndividualiseerd en modelgebaseerd monitoren van interleukine-6 voor vroege 

detectie van infectie bij varkens, iii) Modelgebaseerd monitoren van 

hartslagfrequentie en cytokinetijdreeksen voor vroege detectie van infecties bij 

B 
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kritisch zieke patiënten, iv) Modelgebaseerd monitoren van mGluR-afhankelijke 

synaptische plasticiteit in hippocampale hersensneden van de rat, v) 

Geïndividualiseerd monitoren van hippocampale theta-oscillaties en 

geïndividualiseerde elektrische stimulatie in de mesencefalic reticular formation 

voor real-time closed-loop onderdrukking van voortbeweging van de rat en vi) 

Geïndividualiseerd en modelgebaseerd monitoren van de status van kippenembryo’s 

tijdens incubatie op basis van eierschaaltemperatuur en micro-omgevings-

temperatuur. In casestudies ii en iii worden vergelijkbare methoden toegepast om 

een monitor voor infectie bij dieren en mensen te ontwikkelen. Dit voorbeeld laat 

zien hoe het mogelijk is om de overstap te maken van animal naar human health 

engineering. Over het algemeen heeft dit doctoraat geleid tot verschillende 

innovatieve geïndividualiseerde monitoringtoepassingen op basis van de zes 

specifieke casestudies. Aangezien de topics van de casestudies heel uiteenlopend 

zijn, zou de ontwikkelde geïndividualiseerde modelgebaseerde aanpak mogelijk 

kunnen worden gebruikt in een brede waaier van toepassingsdomeinen 

(bijvoorbeeld human health engineering, precisie veeteelt, biotechnologische 

processen, ...). 

 

Het eerste sub-objectief van dit doctoraat is gericht op het biologisch proces: 

Individuele biologische processen (individuele systeemstructuur, individuele 

systeemdynamica, individuele bio-signalen) worden geïnterpreteerd als de 

biologische equivalenten van componenten uit het domein van controle engineering. 

Dit zal verwezenlijkt worden via het definiëren van actuator- en homeostatische 

variabelen voor elk van de zes casestudies. 

Uit de resultaten van de casestudies bleek dat de betrokken bio-processen kunnen 

worden beschouwd als de biologische equivalenten van slimme engineerings- 

componenten zoals sensoren, actuatoren, feedbacklussen en controllers. Dit stelt hen 

in staat om homeostase en stabiele interne condities te behouden, om te adapteren 

(bijv. Nieuwe dingen aanleren door hersenplasticiteit) en te groeien (bijv. Embryo 

ontwikkeling bij kippen) ondanks onzekere condities in de (micro-)omgeving. 

Wanneer één van de componenten van een homeostatisch controlesysteem faalt, kan 
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dit leiden tot gevaarlijke toestanden (bijv. Dysfunctie van het controlesysteem voor 

energiehomeostase bij dieren of patiënten met anorexia nervosa). 

Door te starten vanuit de individuele details van de biologische processen, kunnen 

we actuator- en homeostatische variabelen definiëren voor de verschillende bio-

processen van elke casestudy. Daarom suggereerden we op basis van de resultaten 

dat de ontwikkeling van een geïndividualiseerd modelgebaseerd monitorings-

systeem voor bio-processen  initieel zou moeten starten met de combinatie van 

inzichten uit biologie en inzichten vanuit ingenieurstechnieken voor controle van 

dynamische systemen. (i.e. het ontwikkelen van monitoring systemen "van biologie 

naar technologie"). 

 

Het tweede sub-objectief werd geformuleerd als volgt: Hoewel het bekend is dat 

biologische processen veel niet-lineariteiten bevatten, zullen we compacte 

individuele lineaire modellen (algemene Box-Jenkins-modellen) gebruiken voor de 

specifieke geïndividualiseerde monitoringstoepassingen van de casestudies (zie 

casestudies ii, iii, iv en v). Door deze modellen te gebruiken, proberen we een goede 

benadering te verkrijgen van de individuele bio-procesdynamiek en/of informatie 

over de onderliggende mechanismen/toestand bloot te leggen door data-gebaseerde 

mechanistische modelleringstechnieken toe te passen (casestudy iv en vi).  

De voorbeelden, verspreid over de verschillende casestudies, bevestigden dat we 

compacte individuele lineaire modellen (i.e. BJ modellen) kunnen gebruiken om 

individuele niet-lineaire bio-processen op te volgen. De modellen waren in staat 

nauwkeurige beschrijvingen te maken van het dynamische, tijdvariabele en 

individuele karakter van bio-processen. Het feit dat we dergelijke compacte BJ-

modellen kunnen gebruiken om bio-processen te beschrijven is op het eerste gezicht 

zeer onverwacht, omdat bio-processen zonder twijfel zeer complex zijn (bijv. o.w.v. 

niet-lineariteiten). Echter, zoals eerder vermeld, kunnen bio-processen worden 

beschouwd als robuuste gecontroleerde systemen. Daarom reageren dergelijke 

systemen vaak op een relatief eenvoudige manier op verstoringen (waarbij vaak de 

effecten tot uiting komen van slechts een beperkt aantal cruciale dominante 

processen, die zorgen voor gezonde interne homeostatische of homeodynamische 

condities). Dit werd geïllustreerd voor de verschillende bio-processen van de 
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casestudies. Bijgevolg kunnen deze systemen succesvol gemodelleerd worden met 

behulp van compacte modellen zoals BJ-modellen. Bovendien werden in twee 

casestudies links getoond tussen de modellen en fysiologische mechanismen (bijv. 

Data-gebaseerde modellering van synaptische plasticiteit, ontwikkelingsstatus van 

kippenembryo’s tijdens de incubatie) en daarom kunnen de modellen beschouwd 

worden als data-gebaseerde mechanistische modellen. Zij zijn immers zowel data-

gebaseerd als in staat inzicht te kunnen geven over de individuele staat van de bio-

processen. 

 

In het derde sub-objectief hebben we verklaard: We zullen generische technieken 

identificeren vanuit het domein van complexe systemen, change detection en control 

engineering, die kunnen worden gebruikt bij het analyseren van individuele 

tijdreeksen. Deze lijst van technieken kan worden gebruikt voor alle individuele bio-

processen in het ontwerp van modelgebaseerde monitoringstoepassingen en zal 

worden gegenereerd op basis van de specifieke casestudies (casestudies i-vi). 

Op basis van de resultaten werden drie verschillende modelgebaseerde variabelen 

voorgesteld, die kunnen worden gebruikt om individuele toestandsveranderingen in 

bio-processen te detecteren: i) veranderingen in modelparameters, ii) veranderingen 

in modelorde en iii) veranderingen in modelruiskarakteristieken. Daarnaast zijn er 

op basis van de specifieke geïndividualiseerde modelgebaseerde monitorings-

toepassingen van dit doctoraat meer dan 20 andere generische methodes 

geïdentificeerd vanuit het domein van complexe systeemwetenschappen, change 

detection en controle engineering, die kunnen gebruikt worden voor 

tijdreeksanalyses. 

 

Ten slotte introduceerde het laatste sub-objectief het gebruik van individuele 

drempelwaarden: Door inzichten uit controle engineering en change detection te 

integreren, zullen we een algemeen kader ontwikkelen voor geïndividualiseerde 

modelgebaseerde monitoring van biologische processen op basis van individuele 

drempelwaardes. Deze algemene benadering kan mogelijk worden geïmplementeerd 

in een breed scala van toepassingen en zou de algemeen aanvaarde populatie-

gebaseerde benaderingen kunnen verbeteren (casestudies i, ii, v en vi). 
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Voorbeelden uit de hoofdstukken (cfr. casestudies i, ii, iii, v and vi) toonden de 

aanwezigheid aan van inter- en intra-individuele verschillen in de meeste 

monitoringstoepassingen en bevestigden op die manier de nood aan 

geïndividualiseerde monitoring met individuele drempelwaardes om een 

toestandsverandering te detecteren. Methoden uit het domein van change detection 

worden typisch gekenmerkt door het gebruik van drempelwaardes. Hier 

combineerden we inzichten uit change detection en controle engineering en 

ontwikkelden we een algemeen framework voor geïndividualiseerde 

modelgebaseerde monitoring met individuele drempelwaardes op basis van de 

specifieke casestudies. Naast de algemene, meer traditionele methodes uit het 

domein van change detection (bijv. CUSUM-algoritmes) werden drie mogelijke 

benaderingen voorgesteld: 1) Individuele drempelwaardes op basis van  

(sub-)populatie informatie, 2) Individuele drempelwaardes gebaseerd op universele 

wetten en inzichten van control engineering, complexe systemen en biologie en  

3) individuele drempelwaardes gebaseerd op individuele seriële referentiemetingen. 

Deze laatste kan beschouwd worden als de meest geïndividualiseerde methode. 

Het is daarom dat monitoren van individuen optimaal gezien gebruik maakt van 

seriële ‘baseline’-metingen van normaal systeemgedrag (bijv. gezonde toestand) om 

individuele veranderingen te detecteren (bijv. ziekte zoals infectie). Een dergelijke 

geïndividualiseerde aanpak stelt ons in staat om individuele drempelwaardes te 

definiëren (zie casestudies v en vi), wat kan leiden tot hogere 

detectienauwkeurigheden in vergelijking met populatie-gebaseerde methoden. 

 

Tot op heden is het bestaan van algemene kaders voor geïndividualiseerde 

modelgebaseerde monitoring van biologische processen beperkt. In dit doctoraat 

heeft elk specifiek geval (dat wil zeggen monitoringstoepassingen voor zowel dier als 

mens) bijgedragen tot de ontwikkeling van een dergelijk algemeen kader, 

geïnspireerd door concepten van controle engineering. In het algemeen zou de 

voorgestelde aanpak kunnen worden gebruikt in uiteenlopende 

toepassingsdomeinen, waardoor de generische waarde van het voorgestelde kader 

duidelijk wordt. Alle elementen en methoden die in dit doctoraat werden behandeld, 

werden samengevat in een flowchart voor geïndividualiseerd modelgebaseerd 



Samenvatting 

18 

 

monitoren van biologische processen. De flowchart combineert methodologieën van 

statistiek, control engineering, het domein dat complexe systemen bestudeert en het 

domein van change detection. In de toekomst moeten populatie-gebaseerde 

methodes worden samengevoegd met meer geïndividualiseerde methoden om de 

prestaties van de monitoringssystemen te optimaliseren (e.g. mixed-effect models). 

Bovendien kan de lijst van gebruikte methoden verder worden uitgebreid (bijv. niet-

lineaire modellen, validatiemethodes, etc.). Tenslotte kan de geïndividualiseerde 

modelgebaseerde benadering voor het monitoren van biologische processen ook 

geïntegreerd worden in een bredere context, die methoden omvat voor het 

definiëren van geïndividualiseerde interventies en geïndividualiseerde controle 

toepassingen (bijv. controle systemen voor diepe hersenstimulatie ter vermindering 

van pathologische symptomen). 
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ABA 

Activity-based anorexia  

 

AIC  

Akaike information criterion 
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custom amplifier 

 

AN 

anorexia nervosa 
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BJ 
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Body Mass Index 
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Part 1 Introduction and objectives 

Figure 1.1  Overview of different drugs which are ineffective for a specific 
subpopulation of patients. 

Figure 1.2  Patient monitoring and management environment elements (Mora et 
al, 1993). 

Figure 1.3. The human body at different spatial levels (From: Premkumar, 2004).  
Figure 1.4  Differences in the amount of grey matter at each region of cortex are 

represented for identical and fraternal twins. The results are  compared 
with the average differences that would be found between pairs of 
unrelated individuals (Thompson et al., 2001). 

Figure 1.5 Illustration of an action potential after exceeding the threshold 
potential (Retrieved from: Psychlopedia, 2017). 

Figure 1.6  Pain tolerance distributions for men and women (Woodrow et al., 1972). 
Figure 1.7 Visual representation of individual and group variations of bio- signals 

over time.  
Figure 1.8 Block diagram representing the individualized model-based monitoring 

approach used in this PhD, including the following main blocks: (1) bio-
process, (2) process model, (3) model-based features, (4) individual 
change detection. The green dashed line emphasises how models can be 
used to monitor biological processes based on individual thresholds. 

Figure B.1.2. Groups of animals show often cooperating behaviour which exceeds the 
organism level. Top right: group of fireflies; top left: flock of birds; bottom 
right: group of ants; bottom left: schooling fish. 

Figure B.1.3  Drawing representing human evolution. 

 
Part 2 Chapters 
Figure I.1.  Evolution of RWA of different groups (1a) and during different periods of 

time (1b), and evolution of food intake (1c). (1a): Increases in daily RWA 
were observed in all three groups of rats (most noticeable in the HS 
group). Daily RWA started to decline in the HS group after day 8, probably 
related to the increasing weakness of rats nearing the 70% criterion, and 
early dropouts of the more hyperactive rats. (1b): RWA of all rats during 
different periods of time, showing a trend of increase in FAA, PPA and NA 
over time. (1c): Daily food intake was highest in the NS group and lowest 
in the HS group in general, which confirmed insufficient food intake as a 
factor of body weight loss in this model. The average daily food intake in 
HS group (8.06 6 0.27 g) was significantly lower than in the MS (9.94 6 
0.23 g) and NS groups (12.16 6 0.32 g). RWA: running wheel activity, NS: 
non-susceptible group, MS: moderately-susceptible  group, HS: highly-
susceptible group, PPA: postprandial activity, NA: nocturnal activity, FAA: 
food anticipatory activity, FA: feeding activity. 
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Figure I.2.  Evolution of number of wheel rotations over time in the NS (a), MS (b), 
and HS (c) groups.   indicates peaks in RWA, which correspond to FAA;   
indicates peaks in RWA, which span from PPA and NA. The level of PPA-
NA peaks was the lowest in the NS group (a), becoming more distinct in 
the MS group (b), and reached its maximum height and width in the HS 
group, surpassing the FAA peaks starting on day 5 (c). RWA: running 
wheel activity, NS: non-susceptible group, MS: moderately-susceptible 
group, HS: highly-susceptible group, PPA: postprandial activity, NA: 
nocturnal activity, FAA: food anticipatory activity. 

Figure I.3. Comparison of FAA, PPA, NA and FA between NS, MS, and HS groups 
(mean 6 standard error of the mean in the top graph and individual raw 
data of each group (spaghetti graph) in the bottom three graphs). (a): 
Increases in FAA were shown in all three groups in the first 8 days of the 
ABA procedure (difference of sample mean not significant), but FAA was 
significantly  lower in the HS group than the rest on day 9 and 10. (b): PPA 
in the HS group was significantly higher than the rest on day 3, 4, 5, 6, 8 
and 9. (c): NA was significantly higher in the HS group on day 7 and day 8. 
(d): Change of FA over time was less clear, though it was significantly 
lower in the HS group on day 9 (than the MS group) and day 10 (than both 
the MS and the HS groups.). NS: non-susceptible group, MS: moderately-
susceptible group, HS: highly-susceptible group, PPA: postprandial 
activity, NA: nocturnal activity, FAA: food anticipatory activity; *: p , 0.05, 
**: p , 0.01 (analysis of variance, Tukey’s post-hoc tests). 

Figure I.4. Total percentage body weight loss in relation to average daily running 
wheel activity during different periods (individual data with linear 
regression line). Pearson correlation of FAA, PPA, NA, and FA were20.27 
(p<0.05), 0.49 (p<0.001), 0.35 (p<0.01), and 20.07 (p<0.1), respectively. 
PPA: postprandial activity, NA: nocturnal activity, FAA: food anticipatory 
activity, FA: feeding activity; *: p<0.05, **: p<0.01. 

Figure I.5. Change in ROC AUC of PPA and FAA over time. The PPA ROC AUC were 
higher than the FAA ROC AUC in the first five days in the ABA model 
(significant on day 5, * 5 p , 0.01). ROC AUC: the area under the receiver 
operating characteristic curve, FAA: food anticipatory activity, PPA: 
postprandial activity. 

Figure I.6. Comparison of FAA, PPA, NA and FA between groups on different days (in 
terms of before dropout). (a): FAA was lower in the HS group than the rest 
on the second last and the last day in the ABA cage/model (significant on 
the last day (p<0.01)). (b): PPA was higher in the HS group than the rest 
on the second last and the last day in the ABA cage (second last day: HS 
significantly higher than MS (p<0.05) but not NS; last day: HS significantly 
higher than both MS and NS (p<0.01). (c): NA was higher in the HS group 
on the second last day than the NS group and the MS group (p<0.01), and 
was not the highest in the HS group on the last day (sample mean 
difference insignificant). (d): FA was the lowest in the HS group on the last 
day in the ABA cage (significantly lower than the MS group, p<0.01). For 
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more detailed graphical representation of the overall data, two data points 
were not shown (but included in the statistical analysis) in figure I.5D 
(one in second last day of NS and one in last day of NS, valued 814 and 
704, respectively). NS: non-susceptible group, MS: moderately-susceptible 
group, HS: highly-susceptible group, PPA: postprandial activity, NA: 
nocturnal activity, FAA: food anticipatory activity, FA: feeding activity; *: 
p<0.05, **: p<0.01 (analysis of variance, Tukey’s post-hoc tests). 

Figure I.7. Composition of daily running wheel activities of different groups of rats. 
The percentage of FAA increased and stabilized at approximately one 
quarter of daily running wheel activities in the NS and the MS groups. 
Despite the decreasing trend of FAA percentage in the HS group (day 5: 
19%, day 10: 1%), PPA was showing a clear increase, accounting for 49% 
of daily running wheel activity on day 10, nearly double of the PPA 
percentages in the NS (26%) and the MS groups (22%) on the same day. 

Figure I.8. Change in body weight in relation to individual pre- and postprandial 
hyperactivity in rats in the activity-based anorexia (ABA) model. (a): Rats 
in the ABA model (scheduled feeding and access to running wheel) 
manifest hyperactivity 2–3 hours prior to feeding (food anticipatory 
activity). This is a general phenomenon. (b): Scheduled feeding. (c1): Rats 
with a tendency to run more after the feeding period (higher postprandial 
activity) are subjected to severe weight loss in the ABA model. (c2): Rats 
running less after the feeding period (lower postprandial activity) are less 
likely to lose a substantial amount of body weight. Drawing by Stephany 
Peiyen Hsiao. 

Figure II.1.   Comparison of IL-6 concentrations. Boxplots of IL-6 concentrations with 
the median, interquartile range (box), 1.5 times the interquartile range 
(whiskers) and outliers (crosses). Left:  comparison of infected (dataset 1, 
n = 20) and control (dataset 3, n = 5) pigs at the pig group level. Right:  
comparison of individual IL-6 changes from 2 h before to 14 h after 
infection. 

Figure II.2.   IL-6 fluctuation patterns. Top left:  Example of a standardised IL-6 
response (blue) of an infected pig whereas 0 h corresponds to the moment 
of infection. The red curve is the IRW model, which was used to remove 
the slow trend. Top right:  plot of the residual time series after detrending 
for the infected pigs (red) and the control pigs (blue). Bottom left:  
Boxplots (median, interquartile range, 1.5 times the interquartile range, 
outliers) of the quantified IL-6 dynamics (fast fluctuation component) for 
the control group (dataset 3) and for the infected group (dataset 1). Right:  
Dataset 2 (n = 5): Individual shifts in IL-6 fluctuation pattern from the pre-
infection state (circles) to the state at the end of each experiment. The 
circle with two arrows refers to two pigs with the same initial state. For 
interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article. 

Figure II.3.  Individual IL-6 responses. Examples of IL-6 time series (blue) for 3 
individual pigs whereas 0 h corresponds to the moment of infection. 
Although these 3 pigs have a similar IL-6 concentration at 14 h after 
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infection, the time courses of the IL-6 values are strongly diverging (e.g. 
each pig reaches its peak value of IL-6 at a different time point). 

Figure III.1. Scatter plot of results for the HR model (a decision tree based on mean of 
the raw heart rate and the mean of the high frequent heart rate 
component). Circles represent the infected patients, whereas stars 
indicate non-infected patients. All stars/circles within the white area will 
be classified by the decision tree model as infected. Stars/ circles within 
the grey area will be classified as non-infected. 

Figure III.2.  Raw heart rate signal, standardised heart rate signal and fast dynamics 
of heart rate signal (i.e. standardized and detrended time series) for an 
infected (left) and a non-infected (right) patient. In the middle plots, the 
trend model is represented by a black line. 

Figure IV.1. Block diagram for single-input, single-output (SISO) discrete-time  TF 
models. (Top) A general diagram with an input,  and an output, yt. 
(Bottom) The general block diagram applied to the experimental setup of 
this study. 

Figure IV.2.  Possible configurations of two first-order models. (A) Serial coupling. 
(B) Parallel coupling. (C) Feedback coupling. 

Figure IV.3. Measured mean LTD response curve + / -std (grey) with corresponding 
best first-order model (dashed line) and best second-order model (solid 
line) for data sets with sampling frequency of 0.0033 Hz. (A) Data set 1 (5 
minutes application of 15 AM DHPG). (B) Data set 2 (15 minutes 
application of 15 µM DHPG). (C) Data set 3 (25 minutes application of 30 
µM DHPG). 

Figure IV.4. Measured mean LTD response curve +/-std (grey) with corresponding 
best first-order model (dashed line) and best second-order model (solid 
line) for data set with sampling frequency of 0.033 Hz: data set 4 (2 hours 
application of 30 μM DHPG). 

Figure V.1. One bipolar and two monopolar electrodes were implanted in the right 
hippocampus (recording) and bilateral mesencephalic reticular formation 
(stimulation), respectively. Drawing by Stephany Pei-Yen Hsiao. 
Figure V.2. Schematic illustration of the open source, closed-loop deep 
brain stimulation system in rats.   indicates hippocampal local field 
potentials, recorded through amplifier, filter and data acquisition device, 
and analysed in the PC. Based on real-time theta power analysis, electrical 
stimulation (indicated by) sent to the rat brain (mesencephalic reticular 
formation) is controlled via the Arduino board. AMP: custom amplifier, 
ARD: Arduino Uno board, DAQ: data acquisition card, MOC: mechanism 
operated cell, Stim: stimulator. Drawing by Stephany Pei-Yen Hsiao. 

Figure V.3. Measured hippocampal LFPs and theta power during closed-loop 
stimulation. 3a and b: Rat hippocampal LFP and power spectrogram, 
showing a clear peak in theta band during locomotion. 3c and d: 
Hippocampal LFP and power spectrums when the rat was resting. No peak 
in theta range was observed. 3e: Real-time theta power during closed-loop 
stimulation. --- indicates the predetermined individual theta threshold. 
Each black dot represents real-time hippocampal theta power. If theta 
power exceeded the threshold (black dot above ---), bilateral stimulation 
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in the mesencephalic reticular formation was switched on (until theta 
power dropped below threshold). LFP: local field potential. 

Figure V.4.  Effects of OFF, OL, RANDOM, and CL stimulations on locomotion (mean 
+/- S.E.M., scatter plot), and corresponding percentage of stimulation-on 
time (mean, red columns). Repeated-measure analysis of variance showed 
that the main effect of different intervention on percentage of movement 
detected via automated video analysis was significant (p = 0.012). Post 
hoc pairwise comparisons (Bonferroni correction) indicated that the 
percentage of movement during CL was significantly lower than during 
OFF (p = 0.042). Percentages of stimulation-on time during RANDOM and 
CL were 43.86 +/- 0.80% and 55.57 +/- 4.56%, respectively. OFF: no 
stimulation, OL: open-loop stimulation, RANDOM: randomly-applied, CL: 
closed-loop. *: p<0.05; 

Figure V.5. Graphical illustrations of hippocampal-mRt closed-loop deep brain 
stimulation. Locomotion (e.g. exploratory walking) in rat (5a) and 
corresponding hippocampal theta activity (5b, local field potential sample 
of 1 second), which triggers bipolar electrical stimulation in the mRt (5c), 
and induces freezing and suppresses locomotion (5d). Drawing by 
Stephany Pei-Yen Hsiao (5a, c, and d). 

Figure VI.1. Time-series of the calculated steady-state gain (SSG) for sampled Egg 
number 27, showing the identified five milestones based on the dynamic 
changes in the SSG signals, which reflect the relationship between TEgg and 
TAir. 

Figure VI.2. The distribution of the detected Milestone M1 over incubation days. 
Figure VI.3. The steady-state gain (SSG) threshold distribution for all the examined    

eggs. 
Figure VI.4 The distribution of the detected Milestone M2 (top left), M3 (top right), 

M4 (bottom left) and M5 (bottom right) over incubation days. 
Figure VI.5 The standard deviations of the histograms (see also figure 3 and 5) are 

shown for each milestone. 
Figure VI.6  Linear relation between timing of milestone 3 (Internal pipping) and 

milestone 5 (Hatch time).  
Figure VI.7 ROC curve of hatch day classification based on individual SSG increase 

between the start of incubation and milestone M2 (AUC = 0.91). The ROC 
point that corresponds with the optimal classification results is shown by 
the red circle.  

 

 
Part 3 General discussion 

Figure 3.1 Block diagram representing the individualized model-based monitoring 
approach used in this PhD, including the following main blocks: (1) bio-
process, (2) process model, (3) model-based features, (4) individual 
change detection. 

Figure 3.2  The infection response of the hormones IL-13 and SAA are depicted for 
two different pigs (unpublished results). Time point 0 corresponds with 
the moment of infection (see methods section in Chapter II of Part 2). For 
Il-13, pig 1 shows a clear infection response, whereas no increase of IL-13 
was detected for pig 2.  For SAA, it was pig 2 that responded the most 
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pronounced to infection. These results illustrate that each individual pig 
can have different individual variables which optimally respond to state 
changes (e.g. infection). 

Figure 3.3 General block diagrams of biological processes.  (A) Input-output 
representation of bio-process (B) Representation of controlled bio-
process according to a general control system. (C) Input-output 
representation of a controlled bio-process with an environmental variable 
as input and an actuator variable as output. 

Figure 3.4  General block diagrams of a process model.  (A) Input-output 
representation of process model; (B) Equation of Box-Jenkins model with 
system model and noise model. 

Figure 3.5  General block diagram of the feature generation with the three model 
based features: model parameters, model order and model noise.  

Figure 3.6. Boxplots are given showing the steady state gain on the y-axis and the 
lactate threshold group on the x-axis. Cyclists of group 1 (group with bad 
physical fitness) have a power level lower than 200 W at the lactate 
threshold. Cyclists of group 2 have a power higher than 200 W at the 
lactate thresholds and thus a better physical fitness. The SSG values of 
both groups are significantly different (p < 0.01). 

Figure 3.7 Visual representation of time constant and steady-state gain. 
Figure 3.8 The insulin pathway (www.cellsignet.com) 
Figure 3.9  (A) Insulin-dependent LTD responses without application of inhibitor. 

For this response, a second order model was found  (red). (B) Insulin 
responses with application of  an inhibitor of one of the main  underlying 
pathways. For this response, a first order model was found as optimal 
model (red).   

Figure 3.10  Graphical representation of an input (upper left) -output (upper right) 
BJ model. The BJ model can be used to split the output data into the BJ 
system model component (down left) and the BJ noise term (down right). 
For this example, we used data of an unpublished study (Results from 
internship at Control and Dynamical Systems, Caltech, Pasadena). The 
input variable is the power of a cyclist during a cycling test, whereas the 
output is the measured heart rate response.  

Figure 3.11 Proposed methods for individual change detection: i) Change detection 
based on sub-population information,  ii) Change detection based on 
universal laws and insights from control engineering, complex systems 
science and biology, iii) Change detection based on individual serial 
baseline measurements. Each of these methods can be used to calculate 
individual monitoring thresholds.  

Figure 3.12  Illustration of CUSUM algorithm for detection of chicken embryo death 
during incubation. (Figure top) Example of a time series of temperature 
differences (Tegg- Tair) for on individual egg. (Figure bottom) CUSUM 
values according to the CUSUM equation. The red dotted line indicates the 
threshold value used for detection of embryo death.  

Figure 3.13 Top: Time courses of the daily measured blood urea concentration 
values (left) and the stability criterion (-1 < a1 < 1) for a survivor (patient 
3) (right). Bottom: Time courses of the daily measured urea concentration 
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values (left) and the stability criterion (-1 < a1 <1) for a non-survivor 
(patient 12)(right). The vertical dashed line in the right graphs indicate 
the end of the period of the first 14 data points (days) that are needed for 
reliable parameter estimation. The horizontal line indicates the threshold 
of a1 = -1. 

Figure 3.14 Flow chart with essential steps and methods for the design of a system 
for individualised model-based monitoring of bio-signals. 

Figure B.3.1. Examples of architectural system characteristics related with system 

function (Scheffer et al, 2012). 
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Part 1 Introduction and objectives 

Table 1.1  Examples of current applications of PLF  (adapted from Banhazi,  2012). 
Table 1.2.  Schematic overview of the six different individualised model-based 

monitoring applications (Chapter I-VI). The complexity and amount of 
methods used to obtain an individualised model-based monitoring approach  
increases from Chapter I to Chapter VI (blue parts in table). 

 

Part 2 Chapters 

Table III.2. Overview of AUC values with bootstrapped confidence intervals (CI) for 
all cytokines at four different time points: 9:00 p.m., 0:00, 3:00 a.m. and 
6:00 a.m. 

Table III.3. Overview of AUC values with bootstrapped confidence intervals  
(CI) for the selected feature based on the cytokine time series. 

Table IV.1. Overview of all experiments 
Table IV.2. Best first order models for mean LTD responses of dataset 1, 2, 3 and 4. 

For each model, the parameters, a1 and b0, with corresponding standard 
errors, SE, the pole, the time delay, the time constant and the three model 
selection criteria, YIC, AIC and RT

2 , are shown. 
Table IV.3.  Best second order models for mean LTD responses of dataset 1, 2, 3 

and 4. For each model, the parameters, ai and bi, with corresponding 
standard errors, SE, the poles, the time delay and the three model 
selection criteria, YIC, AIC and RT

2 , are shown.  
Table IV.4.  Best third order models for mean LTD responses of dataset 1, 2, 3 and 4. 

For each model, the parameters, ai and bi, with corresponding standard 
errors, SE, the poles, the time delay and the three model selection criteria, 
YIC, AIC and RT

2 , are shown.  
Table IV.5. Best fourth order models for mean LTD responses of dataset 1, 2, 3 and 4. 

For each model, the parameters, ai and bi, with corresponding standard 
errors, SE, the poles, the time delay and the three model selection criteria, 
YIC, AIC and RT

2 , are shown. 
Table IV.6. Best fifth order models for mean LTD responses of dataset 1, 2, 3 and 4. 

For each model, the parameters, ai and bi, with corresponding standard 
errors, SE, the poles, the time delay and the three model selection criteria, 
YIC, AIC and RT

2 , are shown. 
Table IV.6. First order models, TF1 and TF2, obtained after decomposing the second 

order models for parallel and feedback configuration (see Figure IV.2). 
Table V.1. Theta threshold values (logarithmic) and corresponding theta frequencies, 

and stimulation parameters (amplitudes, band-  widths, and frequencies) 
of each rat during test sessions. 

Table VI.1. Incubation process times of individual labels based on visual checks.  
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Part 3 General discussion 

Table 3.1. Overview of the different bio-processes which are considered in the 
different chapters of this PhD 

Table 3.2. Overview of different model types used in the PhD chapters. 



INTRODUCTION 

 

34 

 

 

 
 

 

Part 1 

Introduction and objectives 
 

 

 

 
 

Scheme representing the etymology of the word “Technology” 

(Based on:  Liddell, H. G. (1894). A Greek-English Lexicon. Harper & brothers). 
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1.1 MONITORING SIGNALS FROM BIOLOGICAL PROCESSES 

 

he focus of this PhD is on the monitoring of signals from biological systems 

(cells, animals, humans,…) and their underlying biological processes. 

Whereas measuring can be defined as quantifying the (bio)signal of a 

biological process in a physical way (e.g. using sensors), monitoring refers to the 

observation and assessment of such measurements of a (biological) process, over a 

longer time, in order to effectively manage it. In this PhD dissertation, we pay 

particular attention to model-based monitoring applications, which, with the 

application of models, are used to extract relevant features of the measured data for 

monitoring purposes. From a more technical perspective, monitoring can be defined 

as checking measured variables or model-based features of process variables with 

regard to tolerances, whereas alarms are generated for the operator (Isermann, 

2005). Indeed, the first monitoring systems were mainly designed for the 

automation of (electromechanical or physical) industrial processes (Basseville and 

Nikiforov, 1993).  However, most features of (living) biological processes diverge 

strongly from those of industrial processes. Biological processes are Complex, 

Individually different, Time-varying and Dynamic processes (CITD; Quanten et al., 

2006). Essentially, therefore, it is challenging to develop monitoring systems for bio-

processes. 

Secondly, we place emphasis on the most essential difference between industrial and 

biological processes—the individual character of organisms—for such individual 

differences make it difficult to develop treatments for diseases, for example.  Figure 

1.1 shows visual representations of the percentages of the patient population for 

which a particular drug is, on average, ineffective. It’s clear that many of these drugs 

are only effective for a specific subpopulation of patients. This figure indicates, in a 

very convincing way, how individually different living organisms (e.g. patients) are 

from one another. As Lesko (2007) says:  

 

 

T 
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“The elusive dream is to eventually have a treatment custom matched for you, as a 

patient, based on your individual genetic profile, demographics, and environmental 

factors. The imminent reality is that we are not there yet.” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1  Overview of top ten highest-grossing drugs in the United States with 

visual representation of patient group for which the drugs are ineffective.  Every 

person in blue represents someone for whom the drugs do help.  However, these 

drugs fail to improve the conditions related with the specific illness for 75% up to 

94% of the patients (red) (Adapted from: Schork, 2015). 
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Finally, we elaborate on the extent to which individualised monitoring of biological 

processes can be applied. As part of this framework, we define the following 

important terms: living systems, bio-processes, bio-signals and homeostasis; 

describe the recent advances in the monitoring of such bio-processes; and, 

subsequently, discuss why organisms are individually different and how we could 

obtain an individualized monitoring approach.  

   

1.2 DEFINITIONS: LIVING SYSTEMS, BIO-PROCESSES, BIO-SIGNALS 

AND HOMEOSTASIS?  
 

1.2.1 Living systems 

For the optimal development of a monitor of a biological system, it is crucial to 

comprehend the main characteristics of the system (e.g. system architecture, system 

inputs and outputs, system dynamics, system limits,…; see e.g. Kitano, 2002). 

Therefore, it is essential to start from the available knowledge of the specific system. 

Evidently, biological systems are associated with the concept of life. To better 

understand the main properties of a living system, we must first define living 

systems in a more general way. Represented in BOX 1.1 are two possible definitions, 

from both a biological and thermodynamic point of view, for describing a living 

system.  

 

1.2.2 Bio-processes and Bio-signals 

Biological processes (i.e. bio-processes) can be described as all transformations (e.g. 

chemical reactions) that exist in biological systems and involve the consumption, 

alteration, production and/or constitution of entities (Mossio et al., 2016). To 

quantify the state of a particular biological process, one should find its relevant 

biological signals so they can be measured directly or indirectly by sensors. Most 

biological processes are manifested in the form of biochemical, electrical or physical 

signals (i.e. bio-signals). These bio-signals contain a lot of information and can be an 
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indication for the mental or physical (health) status of the organism (such as 

positive/negative stress, depression, fever, infection, general fitness, fatigue,…) and 

the occurrence/s of specific events within the organism (e.g. myocardial infarction of 

the heart, action potential of a neuron, falling asleep, decision making in the brain, 

movements,…). 

 

1.2.3 From homeostasis to homeodynamics 

Biological systems are in a state of permanent flux, continuously exchanging mass, 

energy and information with their environment (Walleczek, 2000). The human body, 

for example, is not only continuously measuring its environment, but also assessing 

the internal state of the sub-components for the preservation of healthy conditions.  

The sensory systems measure the state of the local environment, and sensors located 

near the body systems measure the internal state. At organism scale (or level), the 

central nervous system acts as controller of the many body systems. Based on 

sensory inputs, it calculates optimal actuator settings to preserve homeostasis. As 

mentioned in BOX 1.1, this is one of the key properties of a living system. 

Homeostasis was first described by Cannon (1932) as:  

 

“The coordinated physiological processes which maintain most of the steady states in 

the organism are so complex and so peculiar to living beings—involving, as they may, 

the brain and nerves, the heart, lungs, kidneys, and spleen, all working cooperatively— 

that I have suggested a special designation for these states, homeostasis. The word does 

not imply something set and immobile, a stagnation. It means a condition—a condition 

which may vary, but which is relatively constant (Cannon, 1932).”  

 

A widely familiar, unambiguous homeostatic variable is body temperature, which is 

relatively constant between 36.5°C - 37.5°C. Through neural control, blood vessels 

are forced into vasoconstriction or vasodilation (muscles in vessels as actuator), 

which directly influences the exchange of heat between the body and its 

environment. 
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   BOX 1.1 Definitions of living systems: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What makes a system ‘alive’? This is a central open question in the field of 

biology. Today, there is still no universally accepted definition of a living 

system (Macklem and Seely, 2010). Typically, a list of characteristics is 

proposed, which are shared by all living organisms. Raven et al. (2005) 

listed the following fundamental characteristics:  

- Cellular organization: Living systems are composed of one or more 

cells. 

- Order: Molecules in living systems are highly ordered in specific 

complex structures. 

- Sensitivity: Response to environmental stimuli 

- Growth, development and reproduction: Living systems are able to 

grow, develop and reproduce. 

- Energy utilization:  Living systems require to capture and use energy 

- Evolutionary adaptation: Living systems evolve adaptations to 

unique situations in their surroundings.  

- Homeostasis: Living systems maintain relatively constant internal 

conditions 

This unique combination of properties could be defined as life from a 

biological point of view (for more details see Raven et al., 2005).   

From a thermodynamic point of view, living organisms are dissipative 

systems or, in other words, open thermodynamic systems relatively far 

from equilibrium which are continuously perturbed by changes in the 

micro-environment (Prigogine, 1978). Based on their distance from 

equilibrium and complexity, we can order open thermodynamic systems.  

Living systems, which are neither linear nor chaotic, are considered as 

complex systems.  In a more complete thermodynamic definition 

(Macklem and Seely , 2010), a living system could be described as “a self-

contained, self-regulating, self-organizing, self-reproducing, 

interconnected, open thermodynamic network of component parts 

which performs work, existing in a complex regime which combines 

stability and adaptability in the phase transition between order and chaos, 

as a plant, animal, fungus, or microbe."  
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Other researchers claim that the definition of homeostasis is incomplete: “Instead of 

‘homeostasis’, the term ‘homeodynamics’ may be a more accurate definition that 

captures the nonlinear regulatory principles governing the dynamical stability of a 

living system (Walleczek, 2000).” This means that the body not only maintains a 

constancy among homeostatic variables, but also tries to ascertain system stability 

for itself and all of its sub-systems. The body’s failure to control dynamical stability 

in its subsystems can lead to dangerous states (illness). For example, a failure of the 

endocrine response to an infection can lead to sepsis, or a failure of the neuro-

endocrine response to an overload of stress and/or a lack of sleep can lead to 

psychosis.  

 

1.3 RECENT ADVANCES OF MONITORING BIOLOGICAL PROCESSES 

 

In the previous section, we described a number of key concepts relating to biological 

systems and their underlying bio-processes. To assess the state of a biological 

process, one can measure the relevant variables to quantify the homeostasis and/or 

homeodynamics of the body or of the specific subsystem. For example, by measuring 

body temperature one can determine whether someone has a fever or not. By 

measuring the heart rate dynamics one can quantify someone’s fitness. Today, there 

are already several monitoring systems which try to determine the state of living 

organisms or bio-processes. The field of bio-process monitoring is making progress 

in different application domains. This section gives an overview of important recent 

advances in this field.  

 

1.3.1 Precision livestock farming (PLF) 

Nowadays, people are more worried than ever about food safety and quality, 

sustainable animal farming, animal welfare and the environmental impact of 

livestock production. As a reverberation of these concerns, there is a growing 

demand for automated systems that allow monitoring of multiple variables during 

the entire production process (Berckmans, 2006).  However, the field of monitoring 
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within PLF is still in its infancy (see also Wathes, 2009). Compared to other 

industrial fields, monitoring in livestock production is still relatively undeveloped. 

This can be explained by the fact that animals are biological and, therefore, 

individually different— a factor which complicates the development of such systems 

(Frost, 1997).  However, due to the latest emerging technologies, such monitoring 

systems are becoming an increasingly vital part of the production process 

(Berckmans, 2006). Table 1.1 gives examples of current applications of PLF. There 

are many recent studies available on the development of such systems for cows 

(Viazzi et al., 2013; Schlageter-Tello et al., 2014;  Van Hertem et al. 2014), pigs 

(Oczak et al., 2013; Kashiha et al., 2014; Kashiha et al., 2014; Vandermeulen et al., 

2015), chickens (Exadaktylos et al., 2011; Kashiha et al., 2013; Romanini et al., 2013; 

Aydin et al., 2014; Youssef et al., 2014), horses (Jansen et al., 2008; Exadaktylos et al., 

2013; Nuyts et al., 2013) and fish (Viazzi et al., 2014). 

1.3.2 Human health 

In the field of human health monitoring, there are predominantly three general types 

of states of interest to be monitored: mental states, physical states and disease states. 

Most studies focus on the monitoring of disease states in patients: in hospitals, 

monitoring systems are omnipresent. Figure 1.2 gives an overview of the general 

elements in a patient monitoring system (Mora et al, 1993). In intensive care units, 

patients are surrounded by multiple devices for monitoring vital signs (Imhoff, 

2006). Continuous measurement of patient variables, such as heart rate and rhythm, 

respiratory rate, blood pressure, blood-oxygen saturation, and many other variables 

has become a common feature of the care of critically ill patients (Gardner et al., 

2001). Thus, as Bravi (2014) points out: “The future in ICU monitoring is therefore to 

translate ‘raw information’ into scores to support clinical decision” (Bravi, 2014). 
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     Table 1.1  Examples of current applications of PLF   (adapted from Banhazi,  2012). 
 

 

 

 

        Figure 1.2  Patient monitoring and management environment elements (Mora et 

      al, 1993). 

Technology /Tools 

Improved egg incubators via synchronisation of hatching (e.g. Exadaktylos et al., 2011; 

Romanini et al., 2013; Youssef et al., 2014) 

Monitoring systems for broiler houses (e.g. Kashiha et al., 2013; Aydin et al., 2014; ) 

Intelligent ventilation control in livestock buildings 

Weight estimation of pigs via machine vision tools (e.g. Kashiha et al., 2014) 

Monitoring pig locomotion (e.g. Kashiha et al., 2014) 

Dairy management to maximise profit 

Improving profitability via precision feeding for pigs 

Monitoring aggressive behaviours of pigs (e.g. Oczak et al., 2013 

Sensor placement robot for pigs 

Cattle monitoring system (e.g. Viazzi et al., 2013; Schlageter-Tello et al., 2014; Van 

Hertem et al., 2014) 

Udder health and hygiene monitoring in dairy cattle  

Automated egg counting and identification 

Improved thermal control for pigs via machine vision 

Cough recognition in pigs (e.g. Vandermeulen et al., 2015) 

Automated fish sizing and sortings (e.g. Viazzi et al., 2014) 
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However, Bravi also remarks: “To date there are only few systems that embodied 

these principles.” Two of the few of Bravi’s referenced systems are VisensiaTM and 

HeroTM (Bravi, 2014). The Visensia monitoring system calculates a score based on a 

combination of heart rate, respiratory rate, blood pressure, temperature, and oxygen 

saturation. This score is then used to detect deteriorations in the patient’s state 

(Tarassenko, 2005). The HERO monitoring system uses heart rate variability 

measures to predict neonatal sepsis (Moorman, 2011; Fairchild, 2012; Bravi, 2014).   

However, patient monitoring can also be extended to cover patients off-site (outside 

of medical institutions) for the detection of unexpected life-threatening conditions or 

to efficiently record routine, but required, data (Fotiadis et al.,2006; e.g. glucose 

monitors).   

 

The use of systems for the monitoring of physical states can be most accessibly 

observed in sport. Over the last 30 years, heart rate monitors (HRMs) have become a 

commonplace training aid in a variety of sports (Achten et al.,2003). Additionally, 

accelerometers have been widely accepted as useful, as have practical sensors in 

wearable technology, which measure and assess physical activity. Activity monitors 

or accelerometers can objectively capture body movement and provide information 

on the total amount, intensity, duration and frequency of physical activities 

performed (Plasqui et al., 2013; Mukhopadhyay, 2015).  

 

A limited number of studies can also be found concerning the monitoring of mental 

states of humans (e.g. Smets et al., 2013; Torous et al., 2014). Examples of mental 

states could be mental stress (e.g. Salahuddin et al., 2007; Choi et al, 2012), 

depression (e.g. Doryab et al., 2014; Manning et al., 2015; ; Topalovic et al., 2017), 

psychosis-related diseases (e.g. Tait et al., 2002; Yung et al., 2014), etc. 
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1.3.3 Bio-technological processes 

Biotechnological processes include a wide range of sectors, from 

pharmaceutical, agro-food and beverage production to bioreactors and to 

wastewater and bio-waste treatment (Lourenco et al., 2012). In this field, current 

monitoring (and control) systems are lagging behind compared with other 

engineering fields. There are two main reasons for this: i) living organisms are 

complex (e.g. due to their individual characteristics),  ii) an absence of cheap and 

reliable sensors that can be used for real-time monitoring (van Impe et al., 2013).  

That said, recently, an increasing number of examples can be found on the 

development of monitoring systems for bioreactors (Komives  et al. 2003; Junker et 

al., 2006; Baradez  et al., 2011; Kresnowati et al., 2011; Lourenço  et al., 2012; 

Csaszar  et al., 2014; Lambrechts et al., 2014), wastewater monitoring (Bourgeois et 

al., 2001; Vanrolleghem et al., 2003), bio-chemical batch processes (Vanlaer, 2013; 

Van den Kerkhof et al., 2012) and the pharmaceutical industry (Ündey et al., 2010). 

 

1.4 THE NEED FOR INDIVIDUALISED MONITORING OF 

BIOLOGICAL PROCESSES 

 

Thus far, we have defined biological processes and briefly listed recent advances in 

the field of monitoring biological processes. However, as stressed in the opening 

section (1.1), one of the main difficulties in monitoring biological processes is in 

dealing with individual differences. In this section, we will address why organisms 

are individually different and, thereafter, discuss the main characteristics of an 

individualized monitoring system compared with population-based monitoring 

systems.  
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1.4.1 Origin of individual differences  

There are different scales by which individual living systems can be defined (figure 

1.3 and BOX 1.2). However, independent of scales, we deem each biological 

individual as unique. Individual variation is a necessary characteristic of a living 

organism for evolutionary adaptation to new environmental conditions (BOX I.3). 

There are two main reasons for this individual diversity: i) differences due to gene 

effects (nature) and ii) differences due to environmental effects (nurture). Inherited 

influences include variations in DNA sequence, which are transmitted from 

generation to generation over an evolutionary time scale. Every individual (except 

for identical twins) has a unique genome, and, although a pair of genomes are 

approximately 99.9 % identical, there exists millions of differences among the 3.2 

billion base pairs. Thus, a substantial proportion of our individual differences are 

determined by our genetic profile. That said, our genetic profile alone does not 

comprehensively account for all the differences between individuals. Figure 1.4 

shows the average grey matter difference in the brains of identical twins. Their 

brains are presumed to contain an identical genome (Thompson et al., 2001), but 

despite this, substantial individual differences in the quantity of grey matter are 

found in each region of the cortex. This can be explained by the fact that the brain 

has the ability to change structure and function based on experiences (i.e. 

environmental effects), a function known as  brain plasticity.  

Environmental effects occur over developmental and physiological time scales, 

and the related anatomical brain changes cause individual behavioural differences in 

subjects (Kolb et al., 1998). 
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BOX 1.2 Biological individuals. 

 

   
 
 
 
 
 
 
 
 
 
 

 

In an organism-centred view, there are three different kinds of biological 

individuals (Wilson et al., 2014): 

- Organisms (e.g. humans, pigs, rats, chickens) 

- Parts of organisms (e.g. cardiovascular system, cells, organs)  

- Groups of organisms (e.g. group of fireflies, schooling fishes, flock of 

birds) 
 

Thus, cells, organs and tissues are also individual biological systems (Figure 

3.3). DNA can also be considered as individual, as suggested by Dawkins (i.e. 

the “selfish gene”; Dawkins 1976), whereas the body is only the survival 

machine of the genome.  On the other hand, in some cases we can also 

consider a group of individuals as an individual system which exhibits typical 

group behaviour. For example, a group a fireflies is known to flash light in 

synchrony (Figure B.1.2; Strogatz, 1994) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure B.1.2. Groups of animals often show cooperating behaviour which exceeds the organism 

level. Top right: group of fireflies; top left: flock of birds; bottom right: group of ants; bottom left: 

schooling fish. 
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Figure 1.3. The human body at different spatial levels (From: Premkumar, 2004).  
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Figure 1.4 Depicted are the differences in the volume of grey matter in each 
cortical region of 10 identical (monozygotic or MZ) and 10 fraternal (dizygotic or 
DZ) twin pairs. The results are compared with the average differences that would 
be found in pairs of unrelated individuals. The colours of the three-dimensional  
brain maps represent the percentage reduction in intra-pair variance for each 
region of the cortex (For more details: see Thompson et al., 2001). 

 
        BOX 1.3 Individual variation for evolutionary adaptation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I cannot doubt that during millions of generations individuals 
of a species will be occasionally born with some slight 
variation, profitable to some part of their economy. Such 
individuals will have a better chance of surviving, and of 
propagating their new and slightly different structure; and the 
modification may be slowly increased by the accumulative 
action of natural selection to any profitable extent” (Darwin, 
1858; Figure B.1.3). 

 
 

Figure B.1.3 Drawing representing human evolution 

 

 

 

 

 
 

. Figure X. Groups of animals show often cooperating behaviour which exceeds 

the organism level. 
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1.4.2 Individualised vs population-based monitoring 

To detect changes of events and states in biological processes, monitoring systems 

typically use thresholds—which characterise the changes. In some cases, threshold 

methods are used in combination with probabilistic approaches to deal, for example, 

with uncertainty of the bio-process state (Attia, 2003; Zenker et al., 2007; Meyfroidt 

et al., 2011).  

Many examples of thresholds can be found in living organisms. However, in 

developing monitoring systems for living organisms, it is not sufficient to assess—

based on population rules—thresholds relating to specific states or events, and 

therein lies the problem. Every living organism, organ and cell is unique, and each 

has its own individual thresholds.   

 

1.4.2.1 Individual and population thresholds 

The various methods by which we can determine individual thresholds are a focal 

point of this PhD. A well-known example of a population-based threshold is body 

temperature, which can indicate the presence of fever. As previously mentioned, 

body temperature is a homeostatic variable which should be more or less constant 

within a range. If someone’s body temperature is to exceed 37.5 degrees Celsius, we 

know they have a fever. 

We can also look to the action potential of a firing brain cell to observe another 

cellular-scale threshold (figure 1.5). Once the membrane potential exceeds a certain 

value, it will reach a point of no return and the neuron will start to fire (Hodgkin & 

Huxley, 1952). The resting potential at the axon hillock of a neuron is +/-  –70 

millivolts (mV).  The threshold potential is +/- –55 mV. Typically, synaptic inputs 

lead to the depolarisation or hyperpolarisation of the neuronal membrane. Action 

potentials are triggered when the depolarization increases and brings the membrane 

potential up to the threshold value. 
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Figure 1.5 Illustration of an action potential after exceeding the threshold potential 
(Retrieved from: Psychlopedia, 2017). 
 
 

There are also examples of well-known individual thresholds, such as the pain 

threshold of individuals, which can vary enormously. Figure 1.6 indicates that the 

average pain threshold is lower in women than it is in men. However, both 

histograms are very broad, demonstrating that there is a lot of individual variation 

with regards to pain thresholds. Let’s consider the lactate threshold, another sound 

example of an individual threshold, for good measure. The lactate threshold can be 

considered a measure of the physical fitness of athletes. It is defined as the exercise 

intensity at which lactate starts to accumulate in the blood. Often, this lactate 

threshold is defined with a fixed population-based threshold such as 2 or 4 mmol/L 

(Gavin et al., 2013). However, such fixed markers of the lactate threshold disregard 

individual lactate variability during rest and exercise. Therefore, several methods are 

necessary for determining the lactate threshold (i.e. onset of exponential 

accumulation of lactate in the blood) in an individualized way (e.g. deviation 

maximum (Dmax) method; Cheng et al., 1992).   

In addition, also in many other applications the use of individualised thresholds for 

identifying changes of the biological processes may be designated (e.g general health 

status: Schork and Goetz, 2017).  



INTRODUCTION 

 

51 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6 Pain tolerance distributions in men and women (Woodrow et al., 1972). 

 

 

1.4.2.2 Individualised model-based monitoring: schematic representation 

What the various examples in this section have shown is that the bio-signals of 

different individuals might contain significant individual differences. Such variation 

of bio-signals at both group and individual level is schematically represented in 

figure 1.7. To illustrate, when measuring the value of a bio-signal at time point X, for 

a range of different individuals, we get an idea of the inter-individual differences of 

the bio-signal. In other words, we garner an understanding of the distribution of the 

particular bio-signal at population level, which can be characterized by a mean: µ, 

and a variance: σ². That said, most bio-signals vary over time in a way that is unique 

in each individual and subject to the individual properties of the biological process 

(history of perturbations, architecture, etc.). Therefore, each bio-signal of an 

individual n must be characterised by its own mean, µn, and variance, σ²n. Because of 

such intra-individual differences, a biological system often responds differently to 

two similar perturbations. In accordance with the latter, some individuals show 

values that are above a population-based threshold and others have bio-signal 

fluctuations over time that may be biologically meaningful despite not reaching the 

population threshold (Schork and Goetz, 2017). 
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Figure 1.7 Visual representation of individual and group variations of bio- signals 
over time (see e.g. Berckmans and Aerts, 2015). 
 

 

Nowadays, individualised monitoring gets most attention in the field of personalised 

medicine. However, personalised medicine also faces various practical problems 

inhibiting the common use of individualised approaches (e.g.  lack of appropriate 

disease biomarkers, additional costs, slow implementation of the newest health-

monitoring devices, the need for a cultural shift on many levels even beyond the 
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hospital setting such as regulatory agencies and pharmaceutical companies, etc.) 

(Schork, 2015).  Nevertheless, individualised approaches and the use of personal 

thresholds to guide inferences about health status changes have been shown to be useful in 

an increasing number of monitoring studies for medical applications (e.g. Tait et al., 

2002; Van Loon et al., 2009; Drescher et al., 2013; Schork and Goetz, 2017). In 

addition, the use of individualised approaches has also been useful for other human 

health applications (e.g. Quanten et al., 2006) and animal health applications  (e.g. 

Romanini et al., 2013; Viazzi et al., 2013; Kashiha et al., 2014).  

 

For each individualised monitoring application, accurate and detailed bio-process 

(e.g. patient) information should be collected as frequent as possible and over a 

sufficiently long time (Schork, 2015).  However, to reveal the potential of such 

datasets, there is need for more frameworks in data analysis, in modelling and in 

interpretation of such complex, individual, time-varying, dynamic processes 

(Quanten et al. 2006; Colijn et al., 2017). In this PhD, we propose a model-based 

framework for the development of a monitor for bio-signals in individuals. The 

general model-based framework for monitoring bio-processes has been applied for a 

long time at M3-BIORES (e.g. Aerts et al., 2003; Berckmans, 2006), but in this PhD we 

focus on how to individualise this approach with individual threshold approaches. 

The  Figure 1.8 illustrates a general scheme of the proposed individualised 

monitoring approach based on individual thresholds. As shown, the applied 

approach focuses on model-based monitoring of individual biological processes. 

Such individual biological processes can be characterised by an interaction between 

input and output variables. An input variable can be seen as a controllable variable 

which perturbs the considered process (i.e. environmental variable). An output 

variable, on the other hand, is used to quantify the specific response (i.e. bio-signal) 

to the applied input. Moreover, bio-processes are continuously subject to a wide 

range of uncontrollable perturbations in their (internal and external) micro-

environment (e.g.  temperature, medications, social contact etc.). By use of a process 

model, and in applying specific model features—such as model parameters, model 

noise and/or model structure—relations between measured input and output 

variables of the individual bio-process can be captured. In comparing the model 
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features with features under baseline conditions (e.g. normal system behaviour), 

individual changes in features can be detected. Subsequently, the detected changes of 

such model features can be considered in relation to changes in system states (e.g. 

healthy vs ill). Features can be selected on group level, but should ideally be 

individually selected for the individual bio-process. Based on individual thresholds 

on these individual (or group) features, such state changes can be detected in an 

automated way and the operator (e.g. doctor in a hospital) can be informed.   

 

 

 

Figure 1.8 Introducing the use of individual thresholds in the general scheme of 

data-based mechanistic modelling for individuals (for more details on the general 

scheme: see Berckmans and Aerts, 2015). There are four main blocks:  

(1) bio-process, (2) process model, (3) model-based features, (4) individual change 

detection. The green dashed line emphasises how models can be used to monitor 

biological processes based on individual thresholds. 
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1.5 OBJECTIVES AND HYPOTHESES 

The general objective of this PhD thesis was to develop an individualised model-

based monitoring framework for biological processes, as inspired by control 

engineering concepts.  The general concept of this objective was examined in six 

different case-studies (cell, embryo, animal, human; see Part II; Chapter I to VI). In 

every chapter we will get one step closer to unravelling key elements for an 

individualised model-based monitoring approach. Each case study corresponds with 

one case-specific hypothesis. Therefore, all case-specific hypotheses of the chapters 

will be elucidated at the beginning of each chapter. An overview of all specific 

hypotheses is given in section 1.6.  

 

The complexity and amount of methods used to obtain an individualised model-

based monitoring approach increases from Chapter I to Chapter VI. In each 

successive chapter more elements of the general framework (Figure 1.8) will be 

addressed in line with the general objective of this PhD. Therefore, all chapters will 

be discussed in Part III starting from the four general blocks of figure 1.8. In addition 

to the general objective formulated above, each block corresponds with one general 

sub-objective (SO): 

 SO1: The biological process 

Individual biological processes (individual system structure, individual 

system dynamics, individual bio-signals) will be interpreted as the biological 

equivalents of control engineering components by defining actuator and 

homeostatic variables for each of the six case studies (Chapter I-VI). 

 SO2: The process model 

Although biological processes are known to contain many nonlinearities, we 

will use compact individual linear models (general Box-Jenkins models) for 

the specific individualised monitoring applications of the case studies 

(Chapter II, III, IV and VI). By using these models we aim to obtain a good 

approximation of the individual bio-process dynamics and/or to uncover 

information about the underlying mechanisms/state by applying data-based 

mechanistic modelling approaches (Chapter IV and VI). 
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 SO3: Model-based features 

We will identify generic metrics from the fields of complex systems science, 

change detection and control engineering that can be used while analysing 

individual time series. This list of metrics can be used for all individual bio-

processes in the design of model-based monitoring applications and will be 

generated based on the specific case studies (Chapter I-VI).  

 SO4: Individualised change detection 

By integrating insights from control engineering and change detection, we will 

develop a general framework for individualised model-based monitoring of 

biological processes based on individual thresholds. This general approach 

could potentially be implemented in a wide range of applications and could 

improve the generally accepted population-based approaches (Chapter I, II, V 

and VI).  

 

1.6   SPECIFIC HYPOTHESES FOR THE SIX CASE STUDIES 

Individualised monitoring of activity and body weight in the activity-based 

anorexia rat model (Chapter I) 

Hypothesis I: The activity-based anorexia (ABA) rat model is characterised by many 

inter- and intra-individual differences. Therefore, we hypothesise that a time series-

based monitoring approach, as opposed to other approaches focusing on more spread 

static measurements, can aid to obtain more individual information. Such time-series 

approach can be used to identify the key factors leading to the inter-individual 

differences and to determine individualised dynamic thresholds capturing time-varying 

aspects leading to the intra-individual differences. 

Individualised model-based monitoring of interleukin-6 for early detection of 

infection in pigs (Chapter II) 

Hypothesis II: Model-based time series analyses of interleukin-6 (IL-6) at the individual 

level offers a method in detecting infection with pleuropneumonia in individual pigs. 

Based on individual IL-6 baseline measurements, we can reveal individual changes of 

IL-6 dynamics (i.e. IL-6 fluctuations patterns) that can be used as early warning signs 
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for objective individualised early-warning monitoring of sepsis and inflammation 

processes in individual pigs.  

Model-based monitoring of heart rate and blood cytokine time series for early 

detection of infections in critically ill patients (Chapter III) 

Hypothesis III: We can apply 20 different generic metrics from the field of complex 

systems science, change detection, and control engineering, while analysing individual 

heart rate and blood cytokine time series for monitoring of infection in ICU patients. 

These generic metrics can be used for all individuals in order to distinguish infected 

from non-infected ICU patients. Afterwards, machine learning techniques (i.e. logistic 

regression, bootstrapping, and decision tree analysis) can be used for selection of 

metrics  and determination of multivariate monitoring thresholds for detection of 

infection at ICU.   

Model-based monitoring of mGluR-dependent synaptic plasticity in 

hippocampal brain slices of rats (Chapter IV) 

Hypothesis IV: Long-term synaptic modifications play a key role in the plasticity of 

behaviour, learning, and memory. Reverse engineering using data-based input-output 

linear transfer function (TF) models, can be used to quantify dynamics and gain more 

insight in the underlying physiological processes of drug-induced synaptic plasticity 

responses in the hippocampus of rodents. Thus, it is possible to obtain data-based 

mechanistic models for monitoring of synaptic plasticity responses in hippocampal 

brain slices of rodents. 

Individualised monitoring of hippocampal theta oscillations and 

individualised electrical stimulation in the mesencephalic reticular formation 

for real-time closed-loop suppression of locomotion in rat (Chapter V) 

Hypothesis V:  Control of the central nervous system by deep brain stimulation (DBS) is 

a promising example of how control engineering concepts can be applied to adapt 

(pathological) behaviour of organisms. We hypothesise that it is possible to develop a 

real-time individualised closed-loop DBS system for suppression of locomotion of rats. 

The input source of the system is real-time recorded local field potentials (LFPs) from 

the hippocampus, which are highly related to locomotion. The output electrical 

stimulation is delivered in the mesencephalic reticular formation (mRt), which induces 

freezing. Based on baseline measurements, effective individual thresholds for 
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monitoring the hippocampal LFPs and optimal individual stimulation parameters can 

be determined. 

Individualised model-based monitoring of chicken embryo status during 

incubation based on eggshell temperature and micro-environmental air 

temperature (chapter VI) 

Hypothesis VI: We hypothesise that we can develop a non-invasive  individualised 

model-based monitoring approach which is able to detect or even predict online the 

individual progress of embryo development during the incubation of chicken eggs 

based on egg shell temperature and micro-environmental air temperature. By using a 

linear data-based mechanistic modelling approach, we can  monitor five different 

stages of embryo development and gain insight in the individual embryo status. 

 

 

1.7   MAIN STRUCTURE OF THIS THESIS 

As indicated in Part 1, there is need for methodologies in data collection,  data 

analysis, in modelling and in interpretation of complex, individual, time-varying, 

dynamic processes that can be used for individualised monitoring (e.g. Quanten et al. 

2006; Schork, 2015; Colijn et al., 2017).  Despite all inter- and intra-individual 

differences, such methods should ideally be working for all individuals.  This thesis 

has led to some innovative individualised monitoring applications based on the six 

specific case studies of Part 2 (i.e. Chapters I-VI; cell – embryo – animal – human).  

Each chapter in Part 2 highlights specific aspects in the process of designing an 

individualised model-based monitoring application based on combining available 

biological information with control engineering concepts. Table 1.2 shows how the 

complexity and amount of methods used to obtain an individualised model-based 

monitoring approach increases from chapter I to VI. 

In Chapter I, individualised monitoring is obtained by determining dynamic 

thresholds for simple features based on raw variables (i.e. rat activity and body 

weight) quantifying the bio-process (i.e. activity-based anorexia rat model).  
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Thus, Chapter I indicated how raw variables could be used for individualised 

monitoring (Table 1.2). However, Chapter II shows how compact linear models can 

be used to extract more individual information of the specific bio-process dynamics 

(i.e. infection responses of pigs). Moreover, also by using baseline measurements of 

only one process variable (i.e. interleukin-6) a more individualised approach was  

obtained. 

Whereas Chapter II focuses mainly on a limited amount of model-based bio-signal 

features, in Chapter III 20 specific bio-signal features are determined by applying 

generic metrics on the process variables (i.e. heart rate and blood cytokine times 

series; Table 1.2). Afterwards, multivariate analysis methods were applied to define 

multivariate thresholds that could be used for model-based monitoring of the bio-

process (i.e. infection monitoring of ICU patients). 

In Chapters II and III, model-features were determined by applying compact linear 

models to single variables. On the contrary, the model-based monitoring application 

of Chapter IV  (i.e. mGluR-dependent synaptic plasticity in rat brain slices) is based 

on data-based mechanistic modelling of input-output variables (Table 1.2).   The 

results of this chapter show how such models could be used to gain physiological 

insight in highly nonlinear biological processes. 

Although each of the previous emphasised different important aspects to obtain 

individualised monitoring applications, the thresholds were calculated on 

(sub)population level.  Chapter V illustrates how individual thresholds  can be 

obtained by using individual serial baseline measurements of the relevant bio-

process variables (i.e. hippocampal theta oscillations in rat brain). In addition, 

individual intervention parameters (i.e. electrical stimulation in mRt) were acquired 

making it possible to individually control the biological system (i.e. closed-loop deep 

brain stimulation for locomotion control).    

Chapter I to V address some elements of the general block diagram for individualised 

model-based monitoring (Figure 1.8). Finally, Chapter VI tackles all blocks of the 

general diagram (i.e. individualised model-based monitoring of chicken embryo 

status). Besides the use of data-based mechanistic models with physiological insight, 

individual baselines, individual thresholds, also individual predictions were obtained 

(Table 1.2).  Moreover, whereas the previous chapters described specific 



HYPOTHESES AND OBJECTIVES 

 

60 

 

monitoring approaches for detecting only one specific state change of the biological 

process, here we developed an approach for monitoring five different specific state 

changes (embryo development) of the bio-process. 

Until now the existence of general frameworks for individualised model-based 

monitoring of biological processes are limited (e.g. Colijn et al, 2017). In this thesis, 

each specific case (i.e. animal and human health engineering applications) 

contributed to the development of such general framework inspired by control 

engineering concepts (see discussion, Part 3, and conclusions, Part 4).  

 

Table 1.2. Schematic overview of the six different individualised model-based 

monitoring applications (Chapter I-VI). The complexity and amount of methods used to 

obtain an individualised model-based monitoring approach  increases from Chapter I to 

Chapter VI (blue parts in table). 
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Illustration based on the case study of chapter IV. 

Simplified overview of mechanisms involved in mGLuR-dependent LTD made based on two 

comprehensive review articles: Gladding et al., 2009 and Lüscher and Hüber, 2010. 
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CHAPTER I        
 

Rethinking Food Anticipatory Activity in the 

Activity-Based Anorexia Rat Model 

Adapted from: Wu, H., Van Kuyck, K., Tambuyzer, T., Luyten, L., Aerts, J. M., & Nuttin, 

B. (2014). Rethinking food anticipatory activity in the activity-based anorexia rat 

model. Scientific reports, 4. 
 

BROADER PERSPECTIVE 

According to figure 1.8, this chapter focuses mainly on the first block of the general 

scheme which is “The individual bio-process”.  The chapter describes the 

behaviour of individual rats, which are conditioned according to the Activity-Based 

Anorexia (ABA) rat model. Questions that arise automatically are: What do we know 

of the specific biological process (link to Hypothesis 1 in Part 1)?  Which variables 

should be measured? How frequent and for how long should these variables be 

measured? The main measurable variables are selected based on available 

biological knowledge of previous studies: body weight, food intake and running 

wheel activity (RWA). All variables were measured at the level of individual rats and 

therefore, the spatial level of interest can be considered as the whole organism by 

itself. Whereas most studies focus primarily on the running activity prior to the 

scheduled feeding of the animals (Food Anticipatory Activity or FAA), this study also 

investigated activities during other periods and their correlations with body weight. 

This was possible since RWA was monitored continuously and body weight/food 

intake were measured daily resulting in three time series for each individual rat.   

After a decade of experience with the ABA model, it was expected to find significant 

inter-individual differences (environmental effects and gene effects; e.g. 

susceptibility to ABA) and intra-individual differences (major component: disease 

progress during conditioning period), which could confirm the need for 

individualised monitoring approaches. 
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1. ABSTRACT 

When a rat is on a limited fixed-time food schedule with full access to a running 

wheel (activity-based anorexia model, ABA), its activity level will increase hours 

prior to the feeding period. This activity, called food-anticipatory activity (FAA), is a 

hypothesized parallel to the hyperactivity symptom in human anorexia nervosa. To 

investigate in depth the characteristics of FAA, we retrospectively analysed the level 

of FAA and activities during other periods in ABA rats. To our surprise, rats with 

the most body weight loss have the lowest level of FAA, which contradicts the 

previously established link between FAA and the severity of ABA symptoms. On the 

contrary, our study shows that postprandial activities are more directly related to 

weight loss. We conclude that FAA alone may not be sufficient to reflect model 

severity, and activities during other periods may be of potential value in studies 

using ABA model. 

 

2. INTRODUCTION 

Routtenberg  and Kuznesof first described the relationship between an increase in 

running  activity and a decrease in food intake in rats in 1967. They discovered that 

when rats were on a restricted feeding schedule (1 hour  per day in their  

experiment)  and had  free access to a running  wheel, their  food intake was 

significantly lower than in control rats, which were on the same feeding schedule 

but without access to a running wheel. This discrepancy between increased 

running activity and decreased food intake caused substantial body weight loss, 

and if rats were not removed from the experimental setup timely, they would 

eventually die of starvation. This model, later named the activity-based anorexia 

(ABA) model, is one of the most widely used animal models for the study of 

anorexia nervosa (AN)(Gutierrez, 2013). 

 

AN is a serious psychiatric disorder most prevalent in adolescent and young females 

(Bulik et al., 2006). It is multifactorial, the etiology behind is complicated to say the 

least, and it includes various clinical symptoms, but two of the most noticeable 

physiological manifestations are self-induced pathological body weight loss and 
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excessive exercising, and  the ABA model exhibits both  of these features (Epling et 

al. 1983; Gutierrez, 2013). Unlike other  psychiatric disorders  in which specific 

psychiatric evaluations are the main measures of disease progress (e.g. the Yale–

Brown Obsessive Compulsive Scale for obsessive-compulsive disorder), the Body 

Mass Index (body mass (kg) divided by the square of height (m)) is viewed as the 

main clinical indicator of disease progress and treatment efficacy (Epling et al., 1983; 

Gutierrez, 2013). Correspondingly, the rat’s body weight is the key measure in the 

ABA model, but besides body weight, the running  wheel activity (RWA, or 

hyperactivity, quantified in number of wheel rotations) is another important  

measure to assess in this animal model of AN. 

 

The excessive running activity causes calorie depletion in rats, and the logical idea 

behind treating rats in the ABA model is: if one could reduce running activity, rats 

could conserve energy better, which may lead to body weight increase and higher 

survival rate. Moreover, animal and clinical studies have indicated that the hyper- 

activity in anorectic patients is more than a method to lose weight; it may be a core 

element and a psychological drive involved in the evolution of the disease (Gutierrez, 

2013). The hyperactivity in the ABA model peaks 2–3 hours before the scheduled 

feeding (Mistlberger, 1994). This specific peak in running activity prior to the 

scheduled feeding, called food-anticipatory activity (FAA), is an important feature of 

the ABA model. The FAA peak increases over time as rats are re-exposed to 

scheduled feeding, and it is generally argued that it is an indicator of disease 

progress and treatment  effect besides body weight and survival rate: a decrease in 

FAA is often interpreted as a sign related to an improvement of the anorectic state, 

though not always correlated with body weight increase and higher survival rate 

(Lambert & Porter, 1992; Hillebrand et al., 2005; Atchley & Eckel, 2006; Verhagen et 

al., 2009; Klenotich et al;, 2012). 

 

After a decade of experience with the ABA model, we have observed considerable 

inter-subject variability. Using the exact same ABA protocol, different rats exhibit 

different levels of susceptibility to the model. In other words, after 10 consecutive 

days of whole-day access to a running wheel and scheduled food restriction, the 
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weight loss varies in a relatively wide range. Given this variability and the variability 

in FAA - a complex circadian behaviour - we speculated that characteristics of FAA 

(e.g. level and pattern) may be correlated with the extent of body weight loss. 

 

Based on a general consensus in previous studies (decrease in FAA indicates positive 

effect of treatment)(Lambert & Porter, 1992; Hillebrand et al., 2005; Atchley & Eckel, 

2006; Verhagen et al., 2009; Klenotich et al;, 2012), our main hypothesis is as 

follows: the higher the amount of FAA a rat demonstrates, the more likely it will lose 

substantial  body weight in the ABA model. We further hypothesize that certain 

characteristics of FAA could be used as a prognostic indicator, which could predict 

the percentage of body weight loss in the ABA model. In this study, we investigated 

the characteristics of FAA and activities during other periods, and their correlations 

with body weight in 56 ABA rats. 

 

3. MATERIALS AND METHODS 

 

56 female Wistar rats were included in our study. The body weight of each rat upon 

arrival was 200–250 g. All rats were housed individually on a 12:12 hour light:dark 

cycle (light onset=07:00) and ambient temperature was maintained at +/-20 degrees 

Celsius. Rats were given one week of acclimatization (food and water ad libitum) in a 

standard home cage, prior to the start of the ABA procedure. The research projects 

were approved by the university ethics committee for laboratory experimentation 

(project numbers: 045/2006 and 046/2007), and were in accordance with the 

Belgian and European laws, guidelines and policies for animal experimentation, 

housing and care (Belgian Royal Decree of 29 May 2013 and European Directive 

2010/63/EU on the protection of animals used for scientific purposes of 20 October 

2010). 

Starting on Day 0, each rat was introduced in/moved to an individual ABA cage (36 

x 36 cm; custom-made) with a running wheel (35 cm in diameter, one rotation 

corresponds to a distance of approximately 110 cm; Campden Instruments, 

Loughborough, UK) at 11AM after baseline body weight was measured. Water was 
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available ad libitum in the cage, but each rat was under food restriction: 50 g of food 

was introduced at 9:30AM and the remainders removed at 11AM, starting from Day 

1 for a period of 10 consecutive days (1.5 hours of food access per day). Food intake 

and body weight of each rat were measured daily at 11AM after the feeding period 

ended. If body weight dropped below 70% of baseline, the rat would be removed 

from the model for ethics reasons and experiments ended prematurely in these rats. 

Running wheel activity (RWA) was monitored in LabView 7.0 (National Instruments, 

Austin, TX, USA) via position registration of an electro-magnetic rotary encoder 

(TWK- Elektronik GmbH, Dusseldorf, Germany) attached to the running wheel. After 

10 consecutive days, all rats were removed from the ABA model. 

The daily RWA was divided into 4 periods: FAA (2.5 hours, from 7:00AM to 

9:30AM), feeding activity (FA, 1.5 hours, from 9:30AM to 11AM), postprandial 

activity (PPA, 8 hours, from 11AM to 7PM), and nocturnal activity (NA, 12 hours, 

from 7PM to 7AM next day). 

Based on the percentage of baseline body weight at the end of the experiment, rats 

were categorized into three different groups: highly susceptible to ABA (HS, body 

weight reached below 70% of baseline within 10 days), moderately susceptible to 

ABA (MS, body weight between 70% and 85% of baseline after 10 days), and not 

susceptible to ABA (NS, body weight above 85% of baseline after 10 days) (85% and 

70% of baseline body weight were predefined values based on previous studies) 

(Pierce & Epling, 1994;  Hebebrand et al., 2000; Luyten et al., 2009). 

An independent Mann-Whitney U Test (U test) or one-way analysis of variance 

(ANOVA) and post-hoc Tukey-Kramer test was performed to investigate the 

difference between groups. To explore the relationships between body weight loss 

and hyperactivity, Pearson correlation coefficients (total percentage body weight 

loss and average daily RWA) were calculated. To test how well RWA during different 

periods could distinguish between two diagnostic groups (non-responders (NS 

group) and responders (MS and HS groups)), the area under the receiver operating 

characteristic curve (ROC AUC) was calculated and compared. All statistical analyses 

were performed using Statistica (StatSoft, Oklahoma, U.S.A.), significance level  

p < 0.05.  
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4. RESULTS 

Based upon  their  final percentage  body weight (last day of ABA procedure),  rats  

were  categorized  into  3  groups:  NS: 88.80  +/-0.75% (mean +/- standard error of 

the mean), n=13; MS: 81.07 +/-0.55%, n= 26; HS: 66.91 +/- 0.87%, n=17. 

The evolution of daily RWA is plotted in figure I.1A. Rats suffering from the highest 

percentage weight loss (HS group) manifested the highest level of RWA, which 

resonates the hypothesis that hyperactivity is playing a major role in pathological 

weight loss in this model. There was a decrease in daily RWA after day 8 in the HS 

group, probably  related  to  the  increasing  weakness of rats  nearing  the 70% 

criterion and early dropouts of the more hyperactive rats. On average, the RWA 

increased by four-fold after 10 days in the ABA model (from 1025 on day 1 (n= 56) 

to 4221 on day 10 (n=45), U test, p<0.01). Figure I.1B shows the change in RWA 

during different periods. Despite food restriction, there was a clear trend of increase 

in FAA, PPA, and NA over time (day 1 compared to day 10, U test, p<0.01  for  all  

parameters),   in  alignment  with  previous  findings. Figure I.1C indicates the change 

in food intake over time. The average daily food intake in the HS group (8.06 +/- 0.27 

g) was significantly lower than in the MS (9.94 +/- 0.23 g) and NS groups (12.16 +/- 

0.32 g) (ANOVA, p < 0.01, post-hoc: HS:MS, p< 0.01, HS:NS, p <0.01, MS:NS, p <0.01). 

Figure I.2 shows the average 10-day RWA evolution of NS, MS, and HS groups. FAA 

peaks (red arrows) formed distinctively in all three groups of rats at similar levels. 

Secondary peaks (orange arrows) were present between FAA, spanning from PPA to 

NA, but they were the lowest and  the  narrowest  in  the  NS group  by visual 

inspection, becoming higher and wider in the MS group, and reached maximal height 

and width in the HS group (peak surpassing level of FAA starting on day 5 in the HS 

group). 

Comparison of RWA of different groups during different periods is made in figure I.3. 

FAA, PPA and NA in all three groups were increasing consistently during the first 8 

days. FAA in the HS group was not significantly  different  from  FAA in  the  MS and  

the  NS  group (ANOVA). However, PPA was significantly higher in the HS group on  
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Figure I.1.  Evolution of RWA of 

different groups (1a) and during 

different periods of time (1b), and 

evolution of food intake (1c). (1a): 

Increases in daily RWA were 

observed in all three groups of rats 

(most noticeable in the HS group). 

Daily RWA started to decline in 

the HS group after day 8, probably 

related to the increasing weakness 

of rats nearing the 70% criterion, 

and early dropouts of the more 

hyperactive rats. (1b): RWA of all 

rats during different periods of 

time, showing a trend of increase 

in FAA, PPA and NA over time. 

(1c): Daily food intake was highest 

in the NS group and lowest in the 

HS group in general, which 

confirmed insufficient food intake 

as a factor of body weight loss in 

this model. The average daily food 

intake in HS group (8.06 6 0.27 g) 

was significantly lower than in the 

MS (9.94 6 0.23 g) and NS groups 

(12.16 6 0.32 g). RWA: running 

wheel activity, NS: non-susceptible 

group, MS: moderately-susceptible  

group, HS: highly-susceptible 

group, PPA: postprandial activity, 

NA: nocturnal activity, FAA: food 

anticipatory activity, FA: feeding 

               activity. 
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Figure I.2.  Evolution of number of wheel 

rotations over time in the NS (a), MS (b), and 

HS (c) groups   indicates peaks in RWA, 

which correspond to FAA;   indicates peaks in 

RWA, which span from PPA and NA. The 

level of PPA-NA peaks was the lowest in the 

NS group (a), becoming more distinct in the 

MS group (b), and reached its maximum 

height and width in the HS group, surpassing 

the FAA peaks starting on day 5 (c). RWA: 

running wheel activity, NS: non-susceptible 

group, MS: moderately-susceptible group, HS: 

highly-susceptible group, PPA: postprandial 

activity, NA: nocturnal activity, FAA: food 

anticipatory activity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

day 3, 4, 5, 6, 8 and 9 compared to the two other groups (ANOVA: day 3, 5, 6, 9: 

p< 0.01, post-hoc, HS:MS and HS:NS, p<0.01; day 4: p<0.01, post-hoc, HS:MS, p<0.01, 

HS:NS, p<0.05; day 8: p<0.05; post-hoc, HS:MS, p<0.01). NA was also significantly 

higher in the HS group on day 7 and 8 (ANOVA: day 7, p<0.01; post-hoc, HS:NS, 

p<0.05, HS:MS, p<0.01, day 8, p<0.01; post-hoc, HS:NS, p<0.01, HS:MS, p=0.01). FA  
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was significantly lower in the HS group on day 9 and 10 (ANOVA, day 9, p<0.05, post-

hoc, HS:MS, p<0.01; day 10, p<0.05, post-hoc, HS: MS and HS:NS, p<0.01). Individual 

RWA of each rat from each group was plotted to illustrate the distribution of raw 

data, and despite deviations, its general impression further confirms our results 

based on group averages. 

The daily averages of running wheel activity during different periods in relation to 

total percentage body weight loss were plotted in figure I.4. Pearson correlation of 

FAA, PPA, NA, and FA were -0.27 (p<0.05), 0.49 (p<0.001), 0.35 (p<0.01), and -0.07 

(p>0.1), respectively. 

The changes in ROC AUC values of PPA and FAA are shown in figure I.5. ROC AUC of 

PPA was significantly higher (p<0.01) than that of FAA on day 5, indicating better 

predicting value in the PPA in terms of distinguishing the responders (MS and HS) 

from the non- responders (NS) group. ROC AUC of FA and NA were not significantly 

higher than that of FAA, and were not shown in this figure. 

Since early dropouts may induce bias in the HS group, we made a direct between-

group comparison of FAA, PPA, NA and FA based on the rats data on the first day, the 

second last day, and the last day of the ABA procedure (for instance, if a rat was 

dropped out on day 8, day 8 would be the last day, and day 7 would be the second 

last day for this rat) (figure I.6). The results were similar to the findings in figure I.3. 

The mean FAA values were the lowest in the HS group compared to NS and MS, on 

the second last day (not significant, ANOVA, p>0.1) and the last day in the ABA cage 

(ANOVA, p<0.01, post-hoc: HS lower than both MS and NS (p<0.01)) (figure I.6A). On 

the contrary, the mean PPA values in the HS group were the highest among all three  

groups (ANOVA: second last day, p<0.05, post-hoc:  HS significantly higher than MS 

(p<0.05) but not NS; last day, p<0.01, post-hoc: HS significantly higher than both MS and 

NS (p<0.01) (figure I.6B). NA was significantly higher in the HS group than the rest on 

the second last day (p<0.01), but not  significantly different on the last day (figure I.6C); 

FA was significantly lower (p<0.01) in the HS group than the MS group on the last day on 

the last day of conditioning (figure I.6D). 
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Figure I.3. Comparison of FAA, PPA, NA and FA between NS, MS, and HS groups 

(mean 6 standard error of the mean in the top graph and individual raw data of each 

group (spaghetti graph) in the bottom three graphs). (a): Increases in FAA were 

shown in all three groups in the first 8 days of the ABA procedure (difference of 

sample mean not significant), but FAA was significantly  lower in the HS group than 

the rest on day 9 and 10. (b): PPA in the HS group was significantly higher than the 

rest on day 3, 4, 5, 6, 8 and 9. (c): NA was significantly higher in the HS group on day 

7 and day 8. (d): Change of FA over time was less clear, though it was significantly 

lower in the HS group on day 9 (than the MS group) and day 10 (than both the MS 

and the HS groups.). NS: non-susceptible group, MS: moderately-susceptible group, 

HS: highly-susceptible group, PPA: postprandial activity, NA: nocturnal activity, FAA: 

food anticipatory activity; *: p , 0.05, **: p , 0.01 (analysis of variance, Tukey’s post-

hoc tests). 

 

 

 

 

 

 

 

 

 

 

 

Figure I.4. Total percentage body weight loss in relation to average daily running 

wheel activity during different periods (individual data with linear regression line). 

Pearson correlation of FAA, PPA, NA, and FA were -0.27 (p<0.05), 0.49 (p<0.001), 

0.35 (p<0.01), and -0.07 (p<0.1), respectively. PPA: postprandial activity, NA: 

nocturnal activity, FAA: food anticipatory activity, FA: feeding activity; *: p<0.05, **: 

p<0.01.
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Figure I.5. Change in ROC AUC of PPA and FAA over time. The PPA ROC AUC were 

higher than the FAA ROC AUC in the first five days in the ABA model (significant on 

day 5, * 5 p , 0.01). ROC AUC: the area under the receiver operating characteristic 

curve, FAA: food anticipatory activity, PPA: postprandial activity. 

 

 

Figure I.7 illustrates  the  compositions  of RWA across different groups. The percentage 

of FAA increased and stabilized in the NS (day 1: 9%, day 5: 27%, day 10: 29%) and the 

MS groups (day 1: 7%, day 5: 22%, day 10: 25%), but started to decrease in the HS group 

after day 5 (day 1: 4%, day 5: 19%, day 10: 1%). Percentage of PPA, on the other hand, 

was increasing in the HS group, constituting 49% of the total daily RWA on day 10 (26% 

and 22% in the NS and the MS groups, respectively). 
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Figure I.6. Comparison of FAA, PPA, NA and FA between groups on different days (in 

terms of before dropout). (a): FAA was lower in the HS group than the rest on the 

second last and the last day in the ABA cage/model (significant on the last day 

(p<0.01)). (b): PPA was higher in the HS group than the rest on the second last and 

the last day in the ABA cage (second last day: HS significantly higher than MS 

(p<0.05) but not NS; last day: HS significantly higher than both MS and NS (p<0.01). 

(c): NA was higher in the HS group on the second last day than the NS group and the 

MS group (p<0.01), and was not the highest in the HS group on the last day (sample 

mean difference insignificant). (d): FA was the lowest in the HS group on the last day 

in the ABA cage (significantly lower than the MS group, p<0.01). For more detailed 

graphical representation of the overall data, two data points were not shown (but 

included in the statistical analysis) in figure I.5D (one in second last day of NS and 

one in last day of NS, valued 814 and 704, respectively). NS: non-susceptible group, 

MS: moderately-susceptible group, HS: highly-susceptible group, PPA: postprandial 

activity, NA: nocturnal activity, FAA: food anticipatory activity, FA: feeding activity; *: 

p<0.05, **: p<0.01 (analysis of variance, Tukey’s post-hoc tests). 
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Figure I.7. Composition of daily 

running wheel activities of 

different groups of rats. The 

percentage of FAA increased and 

stabilized at approximately one 

quarter of daily running wheel 

activities in the NS and the MS 

groups. Despite the decreasing 

trend of FAA percentage in the HS 

group (day 5: 19%, day 10: 1%), 

PPA was showing a clear increase, 

accounting for 49% of daily 

running wheel activity on day 10, 

nearly double of the PPA 

percentages in the NS (26%) and 

the MS groups (22%) on the same 

day. 
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5. DISCUSSION 

To our knowledge, this paper is the first to relate percentage body weight loss and 

different RWA (FAA, PPA, NA and FA) in a relatively large cohort of 56 ABA rats. The 

original aim was to find a predictor  among  RWA during  different periods, which 

may prognosticate percentage of body weight loss in advance. Total daily RWA was 

higher in the HS group, supporting the previously described correlation between 

body weight loss and hyperactivity (Adan et al., 2011). We were expecting FAA, a 

behavioural phenomenon frequently used to evaluate hyperactivity in the ABA 

model, to be directly proportional to, and the most discriminating predictor of 

percentage body weight loss (Verhagen et al., 2009). However, our results did not 

support this. 

 

Though rats in the HS group were manifesting the most severe and rapid degree of 

percentage body weight loss, FAA in the HS group was not  significantly higher  than  

FAA in  the  other  two groups throughout  the entire ABA procedure. There was even 

a sharp drop of FAA in the HS group on the last two days. One may argue that this 

was caused by emaciation, but this cannot explain why PPA remains at a relatively 

high level among the same group of rats on the same days (figure I.3 and I.6). Similar 

to FAA, PPA was increasing over time in all rats undergoing restricted feeding, but 

unlike FAA, PPA in the HS group was increasing at a faster speed than those in the 

MS and the NS group, showing significantly higher RWA during this period of time 

than  rats with less percentage body weight loss. Pearson correlations between total 

percentage body weight loss and average daily RWA during different periods showed 

a surprisingly negative correlation (-0.27, p < 0.05) between percentage body weight 

loss and FAA (figure I.4). We believed this negative correlation was partially caused 

by bias (e.g. FAA decreased in rats with most body weight loss because of energy 

depletion, total percentage body weight loss versus average daily RWA of each 

individual rat was a rough estimation  of the relation between weight loss and 

hyperactivity). Nonetheless, Pearson  correlations  between total percentage  body 

weight loss and  PPA and  NA remained  positive (0.49 and  0.35, respectively, p < 

0.01 in both cases). ROC AUC analysis reconfirmed its superior predicting capacity  
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Figure I.8. Change in body weight in relation to individual pre- and postprandial 

hyperactivity in rats in the activity-based anorexia (ABA) model. (a): Rats in the ABA 

model (scheduled feeding and access to running wheel) manifest hyperactivity 2–3 

hours prior to feeding (food anticipatory activity). This is a general phenomenon. 

(b): Scheduled feeding. (c1): Rats with a tendency to run more after the feeding 

period (higher postprandial activity) are subjected to severe weight loss in the ABA 

model. (c2): Rats running less after the feeding period (lower postprandial activity) 

are less likely to lose a substantial amount of body weight. Drawing by Stephany 

Peiyen Hsiao. 

 

 

on body weight loss over FAA. A drop in daily RWA occurred on day 9 in the HS 

group, and while FAA, NA, and  FA were all decreasing, PPA was the only RWA 

component  that was still elevated (figure I.2 and I.3). Figure I.6 further refutes the 

possibility that this result was due to distortion of raw data during dropouts: PPA on 

the last day in the ABA cage (the day before dropout)  in the HS group remained  

significantly higher than  the other groups, but FAA was significantly lower in the HS 

group than the rest. These results challenge the present theory that decreased FAA 

implied symptom improvement in the rat ABA model. 
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We concluded the following based on our experimental results: 1) rats in the NS 

group (refractory, or able to maintain above 85% body weight, after 10 days in the 

ABA model) did not run significantly less than rats in the HS group (rats suffering 

from the most severe level of body weight loss) 2.5 hours before feeding (FAA); 2) 

rats in the HS group ran more than rats in the NS group during the 8-hour period 

after feeding (PPA); 3) body weight loss in rats in the ABA model was more directly 

proportional to raises in PPA, or failure to ‘‘rest’’ after scheduled feeding. If excessive 

RWA was related to body weight loss, we discovered that it was not FAA but PPA (or 

NA) that was playing a vital role in the weight loss in the ABA model; FAA was a 

more ‘‘common’’ behavioural phenomenon,  exhibited by most rats under scheduled 

feeding, whereas PPA was a more ‘‘distinctive’’ feature, causing higher percentage 

weight loss if postprandial  hyperactivity was manifested. Figure I.8 summarizes our 

conclusions. 

Numerous studies have been conducted to unravel the underlying mechanisms  of 

FAA (Adan et al., 2011). Leptin and  ghrelin, for example, are hormones believed to 

have certain influences on FAA. While manipulations of these hormones  in animal 

models proved their effects on FAA and  RWA in general, PPA was excluded from  

assessment. Moreover, psychopharmacological studies aiming at relieving hyper- 

activity in the ABA model rarely take PPA into account. 

Both insufficient food intake and increase in RWA contribute  to drastic weight loss 

in the ABA model. Our observation that PPA, not FAA, is the key RWA reflecting body 

weight loss, contradicts previous theories. FAA increased in virtually all rats 

undergoing food restriction, and it remains  a main feature of hyperactivity in this 

rodent model of anorexia nervosa. But whether it is the key factor leading to 

individual  differences in  terms  of body weight loss, and  whether decreased FAA 

indicates symptom  alleviation in this animal model of anorexia nervosa, seems 

debatable at this moment. Our analysis on RWA data suggests PPA to be more 

positively correlated to percentage body weight loss than FAA. It may be worthwhile 

in future studies with the ABA model to include PPA and RWA during other periods 

in addition to FAA as a behavioural measure, during investigation of underlying 

mechanism and/or treatment of hyperactivity. 
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GENERAL CONCLUSIONS  

Individual biological process: 

This chapter interpreted the individual biological process itself, mainly referring 

to the first hypothesis of this PhD dissertation.  Starting from available biological 

knowledge (selection of measurable variables, spatial and temporal aspects, …; see 

Hypothesis 1 in part I), we could define the experimental setup and hypotheses  

specific for this case study. The study showed the added value of using complete 

time series, which enable the researcher to obtain more individual information per 

animal and to differentiate between different time periods relative to the scheduled 

moments of feeding. The study indicated that activities during periods other than 

FAA may be of potential value in studies using ABA model. 

Interpreting this case study from a control engineering perspective,  we can 

consider anorexia nervosa is a dysfunction of the control system for energy 

homeostasis in the body.  Hereby, food intake could be defined as actuator variable 

and body weight as homeostatic variable.  

 

Individualised change detection: 

Considerable inter-individual differences were shown in the raw data plots (figure 

I.3). Since also intra-individual differences were expected due to the disease 

progress,  dynamic ROC curves were used to calculate thresholds values for 

distinguishing between responders and non-responders (rats not susceptible to 

ABA)  and AUC values for each day of the ABA conditioning period.  By specifying the 

AUC for different days of the conditioning period, the discriminatory power could be 

improved (figure I.5). 

To conclude, by monitoring measurable variables related to the ABA model, we could 

determine a significant amount of individual variation. These findings suggest the 

need for individualised monitoring approaches  and also raises the question: how  

could we obtain such individualised approach? 
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CHAPTER II        

Interleukin-6 dynamics as a basis for an 

early-warning monitor for sepsis and 

inflammation in individual pigs  

Adapted from: Tambuyzer, T., De Waele, T., Chiers, K., Berckmans, D., Goddeeris, B. 

M., & Aerts, J. M. (2014). Interleukin-6 dynamics as a basis for an early-warning 

monitor for sepsis and inflammation in individual pigs. Research in veterinary 

science, 96(3), 460-463. 
 
 

BROADER PERSPECTIVE  

Whereas the previous chapter focused mainly on the individual bio-process, this 

chapter presents a first approach for individualised monitoring including the three 

other blocks of the general scheme: process model, feature extraction and 

individualised change detection. Based on blood cytokine measurements of pigs, 

we aimed to quantify the cytokine response dynamics and reveal critical information  

to monitor the infection status of individual pigs.  

In this study, the temporal scale of the blood sampling (time series, sampling 

interval, experiment duration, dynamics) was based on practical feasibility of the 

experiments and major requirements for the dynamic analysis to minimize 

information loss in the measured cytokine responses. Again the whole animal (i.e. 

immune system) is considered as spatial level of interest, since we focus on the 

infection state of the pigs.  

Based on the previous chapter but also other studies (e.g. Introduction), it was 

hypothesised that an individualised monitoring approach would improve the 

classification results (infection vs no infection) compared with a population-based 

approach. However, the main question is still: How can we obtain an individualised 

approach (link to Hypothesis 4 in Part 1)? Ideally, we could calculate individual 

indicators of change representing the quantification of cytokine time series that 

could be used as early warning signs for critical changes in the individual infection 

status.   
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1. ABSTRACT 

Static interleukin-6 (IL-6) levels of pigs contain considerable individual differences, 

which obstruct the practical use of IL-6 for disease monitoring purposes. It was 

hypothesised that interleukin-6 (IL-6) dynamics could be used to quantify these 

individual differences and carries critical information of the individual pig infection 

status. Time series of IL-6 responses in 25 pigs were analysed before and after 

infection by Actinobacillus pleuropneumoniae.  The results indicated that amplitude 

increases of IL-6 fluctuations of individual pigs rather than static IL-6 values should 

be used as indicator of the infection state. This study shows the added value for IL-6 

time series analyses of individual pigs. These results are a first step towards the 

development of objective individualised methods for monitoring and early detection 

of sepsis and inflammation processes in pigs by integrating animal response 

dynamics. 

 

2. INTRODUCTION 

IL-6 is often suggested as a key player in the immune response to infection 

(Borghetti et al., 2009;  Kopf et al., 1994). It is well established that the expressions 

of IL-6 are up-regulated in inflammatory responses to microbial infections. However, 

previous studies show considerable individual variations in static blood 

concentrations of IL-6 (Hulten et al., 2003) and other acute phase proteins 

(Heegaard et al., 2011) in response to infection, which complicate the  use of these 

biomarkers  for real-time  health monitoring purposes. 

 

Many complex biological processes are involved in sepsis and inflammation (Cinel 

and Opal, 2009), making it a challenging task to quantify infection and inflammation 

processes in real-time.  In a recent study (Scheffer et al., 2009), an approach was 

presented to detect sudden changes in complex dynamical systems based on time 

series data obtained from these systems. These authors suggested the existence of 

generic early-warning signals in time series which may indicate approaching 

thresholds for critical changes in complex dynamical systems (Scheffer et al., 20 09).  
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More specifically,  the pattern of fluctuations in detrended time series was proposed 

as possible indicator  of sudden dynamical transitions.  Therefore, we hypothesised 

that changes of IL-6 fluctuation patterns contain critical information related with the 

infection state of individual pigs. Accordingly, we aimed at applying data-based 

modelling methods to quantify the dynamic properties (slow trends and fast fluctua- 

tions) of interleukin-6 time series in individual pigs before and after infection by 

Actinobacillus pleuropneumoniae as a first step in developing an early warning 

monitor for sepsis and inflammation processes. Based on earlier work, it might be 

expected that the dynamics of biomarkers are related with disease outcome and 

well-being (e.g. Jansen et al., 2009;  Van Loon et al., 2010). 

 

3. MATERIALS AND METHODS 

Experiments were approved by the ethical commission of Ghent University 

(EC2009/029–30/03/2009). Thirty early-weaned outbred pigs were obtained from 

Rattlerow Seghers Holding N.V. (Lokeren, Belgium). The pigs were catheterised three 

days before infection. At challenge, 25 animals were endobronchially inoculated with 

1 × 107  CFU A. pleuropneumoniae (biotype 1-serotype  9 strain,  no. 13261; Van 

Overbeke et al., 2001) under anaesthesia (Table II.1, dataset 1 and 2). Five pigs 

received sterile medium and were used as control group (Table II.1, dataset 3).  Pigs 

of dataset 3 received sterile medium, since, for instance, catheterisation itself can 

also influence the animal responses. Based on the blood sampling protocol, the 25 

infected pigs were divided into two groups, whereas more samples were collected 

before inoculation with bacteria for the pigs of dataset 2. For the control pig group, 

the blood samples were collected according to the sampling protocol of dataset 1. 

For every blood sample the IL-6 value was measured by commercially available 

ELISA kits (Porcine IL-6 Duoset, R&D Systems), resulting in an IL-6 time series for 

every pig. In addition, all pigs were clinically score d by a veterinarian.  
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Table II.1.  Overview of the pig experiments with corresponding blood sampling protocols. 
 

Dataset 
 
 

Number  
of pigs 
 

Blood sampling before 
inoculation with bacteria or 
with sterile medium (h before 
inoculation) 
 

Blood sampling starting from 
moment of inoculation 
(h after infection) 

Infection 
 

 

1 
 

20 
 

4 samples (-72, -48, -24, -2) 
 

≥ 8 samples (0, 2, 4, …, until 

max. 76 hours after infection 

for surviving pigs) 

 

Yes 

 

2 
 

5 
 

12 samples (-32,-30, -28, -26,  

-24, -22, -20, -18, -8, -6, -4, -2) 

 

≥ 8 samples (0, 2, 4, …, until 

max. 24 hours after infection 

for surviving pigs) 

 

Yes 

 

3 
 

5 
 

4 samples (-72, -48, -24, -2) 
 

≥ 8 samples (0, 2, 4, …, until 

max. 76 hours) 

 

No (sterile 

medium) 

 
 

For each pig, changes of IL-6 time series characteristics were quantified by means of 

static blood IL-6 values and IL-6 fluctuation patterns. All calculations were 

performed in Matlab using the Statistics Toolbox for the statistical comparisons and  

the Captain Toolbox for the time series analysis (Taylor et al., 2007). To calculate the 

fluctuation patterns, the IL-6 time series were first standardised and afterwards 

detrended using an Integrated Random Walk Model (IRW) with Noise Variance Ratio 

(NVR) of 0.1 (Taylor et al., 2007). For each individual pig, the IL-6 residuals (fast IL-6 

dynamics) were determined by subtracting the slow trend from each raw IL-6 time 

series. According to Scheffer et al. (2009), an increase in the amplitude of 

fluctuations in the residuals is expected in a time series containing a dynamical 

transition. Therefore, the obtained residuals of the IL-6 times series were 

standardised and the area under the cumulative sum function was quantified as 

measure of changes in the fast IL-6 fluctuation patterns (fast component of IL-6 

dynamics; for more details on change detection with the cumulative sum function, 

see Basseville and Nikiforov, 1993). In a time series with increasing fluctuations, this 

value is expected to be lower compared to a time series with random fluctuations. 

Afterwards, these values were rescaled (by the factorial n!, where n is the number of 

samples in the analysed time window and the factorial of the positive integer n, 

denoted n!, is the product of all positive integers less than or equal to n) to enable 

correct comparisons. For dataset 1, data of a short period after inoculation with 
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bacteria (2 h before until 14 h after inoculation) were used for the development of 

the IRW-models. For dataset 2, the data generated at the day of catheterisation (14 

hours) were compared with the data of the last 14 hours (dead or end experiment 

for surviving pigs). The area under the ROC curve (AUC) was calculated for each 

variable in order to determine the discriminating power for distinguishing between 

infected and non-infected pigs (Delong et al., 1988). When a high AUC was obtained 

for one of the variables, the optimal thresh- old was calculated with corresponding 

true positive rate (TPR) and true negative rate (TNR). 

 

4. RESULTS 

Figure II.1 (left) shows the boxplot of the static blood IL-6 values at 14 h after 

inoculation with bacteria for the infected pig group and the control group, which 

received sterile medium. Since it is expected that IL-6 levels increase in response to 

the infection, a one-tail two-sample t-test  was used for comparison. The IL-6 

concentrations of the infected pig group (dataset 1) were not significantly different 

from the control group (one-tail two-sample t-test:  P > 0.5; meanInf = 5.5 ng/ ml; 

meanCon = 8.8 ng/ml). This result suggests that it was not possible to use single IL-6 

blood values for infection monitoring at pig group level, which was also confirmed by 

the low AUC value (AUC = 0.54, SEAUC = 0.19). Afterwards, individual changes of IL-6 

were calculated (difference between the IL-6 value at 14 h after inoculation and the 

value at 2 h before inoculation of the same pig). No significant difference was found 

between the infected group and the control group (one-tail Wilcoxon rank sum test: 

P = 0.14; Fig. II.1, right). At individual level, a small improvement of the 

discriminating power was found (AUC = 0.66, SEAUC = 0.17), but both results show 

that IL-6 increases measured by one or two IL-6 blood values were insufficient for 

accurate infection monitoring. Therefore, the IL-6 responses were also dynamically 

analysed based on the measured time series data. For every IL-6 time series, the 

slow trend was removed using the IRW models (Fig. II.2, top left;  Taylor et al., 2007;  

Scheffer et al., 2009). The obtained residuals of the infected pigs (dataset 1) and the 

control pigs (dataset 3) are illustrated in Fig. II.2 (top, right). For the infected pigs,  
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Figure II.1.   Comparison of IL-6 concentrations. Boxplots of IL-6 concentrations 

with the median, interquartile range (box), 1.5 times the interquartile range 

(whiskers) and outliers (crosses). Left:  comparison of infected (dataset 1, n = 20) 

and control (dataset 3, n = 5) pigs at the pig group level. Right:  comparison of 

individual IL-6 changes from 2 h before to 14 h after  inoculation with bacteria or 

with sterile medium . 
 

 

the residuals increased  starting from 4 to 6 h after inoculation, whereas the 

residuals of the control pigs behaved like random noise. These results are in line 

with the study of Scheffer et al. (2009), since they suggested that an increase in the 

amplitude of fluctuations in the residuals can be an early sign of a dynamical system  

undergoing a sudden transition. A significant difference was found by comparing this 

fast fluctuation component of both pig groups (one-tail two-sample t-test: P = 0.001; 

Fig. II.2, left bottom). In addition, ROC curve analysis showed a high discriminative   

power   for   this   fast   IL-6   component   (AUC  = 0.88, SEAUC = 0.11). The 

misclassification error of the corresponding optimal threshold was 2/25 (Thopt = 

0.80; TPR = 95%; TNR = 80%), indicating that this variable could be a valuable 

candidate for infection monitoring. Based on dataset 2, the fast dynamic component 

could be quantified before and after infection of the same pig, since more blood 

samples were taken before infection for this pig group. By using the same threshold 

value (Thopt = 0.80) as was found at the pig group level,  only  one  pig  would  be  

misclassified  before  infection (TNR = 80%) and  all  pigs  would  be  correctly  

classified  after infection  (TPR = 10 0%). The fast  dynamic  component  decreased 
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significantly for all pigs (one-tail paired t-test:  P = 0.001;  Fig. II.2, right bottom). For 

each pig, the shift in the fast fluctuation component was different, stressing the need 

for individualised infection monitoring.  

 

 

Figure II.2.   IL-6 fluctuation patterns. Top left:  Example of a standardised IL-6 

response (blue) of an infected pig whereas 0 h corresponds to the moment of 

inoculation. The red curve is the IRW model, which was used to remove the slow 

trend. Top right:  plot of the residual time series after detrending for the infected 

pigs (red) and the control pigs (blue). Bottom left:  Boxplots (median, interquartile 

range, 1.5 times the interquartile range, outliers) of the quantified IL-6 dynamics 

(fast fluctuation component) for the control group (dataset 3) and for the infected 

group (dataset 1). Right:  Dataset 2 (n = 5): Individual shifts in IL-6 fluctuation 

pattern from the pre-infection state (circles) to the state at the end of each 

experiment. The circle that is connected with two black lines refers to two pigs with 

the same initial state.  
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5. DISCUSSION 

In outbred animals, IL-6 values of fixed time points after infection show a large 

individual variation (Fig. II.3;  Hulten et al., 2003), as dynamic immune responses are 

controlled on an individual level. In this study, it was shown that individual changes 

of fast IL-6 fluctuation patterns reveal critical information about the infection state of 

the animals (Fig. II.2), whereas no significant differences were found based on the 

static absolute IL-6 concentrations (Figs. II.1 and II.3). The results indicate the 

advantages and added value for time series analyses of IL-6 responses for 

individualised infection monitoring. These results are supported by other studies in 

which shifts in dynamics are suggested as generic early-warning signals for a 

changing state in complex biological dynamical systems (e.g. Scheffer et al., 2009; 

Van Loon et al., 2010). However, as long as there exists no method to measure the IL-

6 blood concentrations in a non-invasive and cost-efficient way, this time series 

approach is not convenient under practical conditions and should be mainly applied 

in scientific research models. We expect that such time series analyses could 

contribute to studies which try to define cut-off levels for IL-6 for detecting the 

infection state (e.g. Celik et al., 2010). In addition, a measure for the pig’s well-being  

could be valuable for other research purposes such as herd health monitoring  

(Fossum, 1998), vaccine potency testing (Cox et al., 2011), treatment efficacy testing 

(Hulten et al., 2003) and measuring stress induced by road transport (Piñeiro et al., 

2007). 

 

The individual models as developed in our study are a first step towards the 

development of an objective individualised method for an early  detection  of sepsis 

and inflammation in scientific  research models. However, in production pigs with a 

wide genetic variation, great respect has to be paid to the different IL6 responses of 

different pigs. 
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Figure II.3.  Individual IL-6 responses. Examples of IL-6 time series (blue) for 3 

individual pigs whereas 0 h corresponds to the moment of inoculation with bacteria. 

Although these 3 pigs have a similar IL-6 concentration at 14 h, the time courses of 

the IL-6 values are strongly diverging (e.g. each pig reaches its peak value of IL-6 at a 

different time point). 
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GENERAL CONCLUSIONS 

Individual biological process: 

The individual biological process of this case study was part of the immune system 

in pigs. The measured variable was interleukin-6 which is one of the cytokines, that 

plays a key role in the infection response.  

Concerning the  optimal sampling interval this study was a special case. The sample 

frequency should be high enough to prevent information loss of the dynamics of the 

biomarker responses to infection.  However, experiments with long duration and 

high sample frequency are not feasible in practice, because too much blood would be 

extracted from the animals possibly inducing unwanted effects on the health status 

of the pigs. This example confirms again that one should start from biological 

insights of the individual biological structure itself to obtain meaningful and reliable 

measurements (see Hypothesis 1 in Part 1).  

 

Process model and model-based features: 

By applying model-based methods (Integrated Random Walk Models), we were 

able to quantify the dynamic properties of the Il-6 time series.  The time series 

analyses showed significant added value in comparison with analyses based on static 

absolute  Il-6 concentrations (see Hypothesis 3 in Part 1).  

 

Individualised change detection: 

The results confirmed other studies suggesting that shifts in dynamics can be 

considered as generic early warning signs for a changing state in complex 

biological dynamical systems.  

Similarly to the previous chapter ROC-analysis was used to calculate specific 

threshold values on the population level. 

This study also showed how serial baseline measurements of the same individual 

organism make it possible to detect changes at the individual level.   

This study suggested three important elements for obtaining an individualised 

monitoring approach (see Hypothesis 4 in Part 1).:  
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1.  Change detection based on (sub-)population information (e.g. thresholds 

                 from ROC curve analysis). 

2. Change detection based universal laws and insights from control 

                 engineering, complex systems science and biology (e.g. early warning 

                 signs for critical transitions). 

3.   Change detection based on individual serial baseline measurements. 
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CHAPTER III        

Heart rate time series characteristics for 

early detection of infections in critically ill 

patients 
 

Adapted from: Tambuyzer, T., Guiza, F., Boonen, E., Meersseman, P., Vervenne, H., 

Hansen, T. K., Bjerre, M., Berckmans, D., Aerts, J.M. & Meyfroidt, G. (2017). Heart rate 

time series characteristics for early detection of infections in critically ill 

patients. Journal of clinical monitoring and computing, 31(2), 407-415. 
 

 

BROADER PERSPECTIVE 

Whereas the previous chapter showed a first approach for individualised monitoring 

of biological processes, this chapter will zoom in on the two middle blocks of the 

general scheme: the process model and feature extraction.  

Corresponding with Hypothesis 3 of Part 1, we investigate the following question: 

Can individual model-based features add supplementary information to monitors 

which would be purely based on measurable variables? More specifically, this 

chapter studies features derived from heart rate and cytokine time series for early 

detection of infection in ICU patients.  

Since chapter 2 discussed the results of an animal model for infection, some of the 

techniques of the previous chapter can be translated towards the patient setting of 

this case study.  Similar to the analyses applied in chapter 2, Integrated Random 

Walk Models will be used to differentiate between slow trends and fast dynamics of 

the bio-signals. In addition to the generic early warning signs applied in Chapter 2, a 

wide list of other generic signal features will be used here for detailed 

quantification of the measured bio-signals.  

By implementing several methods of chapter 2, we make here the step from animal 

to human health engineering. 
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1. ABSTRACT 

It is difficult to make a distinction between inflammation and infection. Therefore, 

new strategies are required to allow accurate detection of infection. Here, we 

hypothesize that we can distinguish infected from non-infected ICU patients based 

on dynamic features of serum cytokine concentrations and heart rate time series. 

Serum cytokine profiles and heart rate time series of 39 patients were available for 

this study. The serum concentration of ten cytokines were measured using blood 

sampled every 10 min between 21:00 and 06:00 hours. Heart rate was recorded 

every minute. Ten metrics were used to extract features from these time series to 

obtain an accurate classification of infected patients. The predictive power of the 

metrics derived from the heart rate time series was investigated using decision tree 

analysis. Finally, logistic regression methods were used to examine whether 

classification performance improved with inclusion of features derived from the 

cytokine time series. The AUC of a decision tree based on two heart rate features 

was 0.88. The model had good calibration with 0.09 Hosmer–Lemeshow p value. 

There was no significant additional value of adding static cytokine levels or cytokine 

time series information to the generated decision tree model. The results suggest 

that heart rate is a better marker for infection than information captured by 

cytokine time series when the exact stage of infection is not known. The predictive 

value of (expensive) biomarkers should always be weighed against the routinely 

monitored data, and such biomarkers have to demonstrate added value. 

 

2. INTRODUCTION 

The risk for a hospital acquired infection for patients admitted to the intensive care 

unit (ICU) is 5–10 times higher than for other hospital patients (Weber et al., 1999). 

At the ICU, infection is a common cause of morbidity and mortality (Sax et al., 2013). 

Infection leads to the release of both inflammatory and anti-inflammatory cytokines 

(Hotchkiss et al., 2009). An imbalance between both responses can contribute to a 

potentially lethal course of this condition in critically ill patients (Hotchkiss et al., 

2009; Hotchkiss et al., 2010). Early detection of infection could have a major impact 
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on infection management and disease outcome in acute care settings (Suprin et al., 

2000). It is often difficult to differentiate between infection and inflammation as 

symptoms overlap (Mitaka, 2005). In addition, it is a challenge to diagnose a new 

infection in a patient with ongoing inflammation (e.g. due to surgery or an earlier 

infection). 

 

The clinical suspicion of an infection is based on sensitive but non-specific vital 

signs such as tachycardia, or fever. In addition to tachycardia, several studies 

proposed that other heart rate characteristics such as signal complexity, signal 

variability and signal asymmetry could also be used as early markers for infection 

(Lake et al., 2002; Kovatchev et al. 2003; Griffin et al., 2005; Ahmad et al., 2009). 

Most of these studies found a satisfactory sensitivity, but a rather low specificity 

(Lake et al. 2002). 

 

During the last decade many studies focused on the search for accurate laboratory 

markers of infection. Two potential markers that received much attention are C 

reactive protein (CRP) and procalcitonin (PCT) (Assicot et al., 1993; Castelli et al., 

2004). However, several studies indicate that both parameters can also be increased 

in non-infectious conditions suggesting the need for other markers which are more 

specific or for tests which could be used in combination with these parameters. 

 

In this study, we hypothesized that we can differentiate between infected patients 

and non-infected subjects (patients with inflammation and healthy subjects) based 

on dynamic features of heart rate and serum cytokine time series. The main 

objective was to use simple metrics to quantify these time series to obtain an 

accurate classification of infected patients. First we studied the predictive power of 

the metrics derived from the heart rate time series, and second whether 

classification performance improved with inclusion of information derived from 

static cytokine values or cytokine time series. 
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3. MATERIALS AND METHODS 

3.1 Patients and healthy subjects 

A prospective observational study was performed at the surgical and medical 

intensive care units (ICU) of the University Hospitals Leuven, Belgium. The study 

was approved by the Institutional Ethical Review Board of the University Hospitals 

Leuven (ML6625). The clinical trial was registered at the International Standard 

Randomized Controlled Trial Number Register (ISRCTN49306926). Written 

informed consent was obtained from the patients’ next of kin and from the healthy 

volunteers. 

 

Consecutive mechanically ventilated adult (age ≥ 18 years) patients, who had an 

arterial line in place, were eligible for inclusion in the study. In addition, age, gender, 

and BMI matched healthy volunteers were selected, and were admitted in a room 

adjacent to the ICU for 1 night, where an arterial line in the left or right radial artery 

was inserted. 

 

In all subjects, night-time serial blood sampling, over 9 h, from 9 p.m. until 6 a.m. on 

the next morning, was performed. Undiluted 2 ml arterial blood samples were 

drawn every 10 min. A blood management protection system (Edwards 

Lifesciences, Irvine, CA, USA) was used to minimize unnecessary blood waste. Total 

blood loss per subject did not exceed 110 ml. 

 

Blood was collected in prechilled EDTA tubes that were placed immediately on ice. 

They were cold-centrifuged, frozen at -20 °C, before they were stored at -80 °C. In 

the serum of each sample, the concentration of the following 10 cytokines were 

determined with an immunoassay (Bio-Plex Precision ProTM, BioRad Laboratories, 

CA, USA): interleukin-1 beta (IL-1b), interleukin-2 (IL-2), interleukin-4 (IL-4), 

interleukin-5 (IL-5), interleukin-6 (IL-6), interleukin-10 (IL-10), interleukin-12 (IL-

12), interleukin-13 (IL-13), interferon gamma (IFNc) and tumor necrosis factor-

alpha (TNFa). This immunoassay has a reliable performance as supported by 

independent studies (e.g. Fu et al., 2009). 
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During the same period of 9 h, also heart rate measurements were recorded from 

the patients via surface electrodes and a patient monitor (IntelliVue MX800; Philips , 

Eindhoven, The Netherlands) and stored with a sampling rate of 1 sample/1 min 

using a patient data management system (MetaVision ; iMD-Soft , Needham, MA, 

USA). For the healthy volunteers (N = 5), no heart rate measurements were 

available. 

 

All patients were scored for infection, by retrospective review of their computerized 

medical charts, by two independent clinicians (P.M., G.M.). The CDC criteria for 

infections in the ICU setting were used (Horan et al., 2008). Infection scoring was 

done in an electronic CRF, in Filemaker Pro (Filemaker, Inc., Santa Clara, CA, USA). 

Patients were categorized as not-infected when no signs of infection were present, 

active infection when there were signs of infection, and non-active infection when 

patients were still treated with antibiotics for an earlier infection, but had no active 

signs of infection any longer. The volunteers were examined by a medical doctor to 

confirm that they were healthy and not suffering from infection, at the time of 

sampling. 

 

3.2 Pre-processing and feature extraction 

The hypothesis of this study was that infected patients can be distinguished from 

non-infected patients based on features of the heart rate and cytokine time series. 

Therefore, ten different methods were used to derive descriptive features from 

these time series: mean, variance, minimum, maximum, maximum–minimum, 

autoregressive coefficient of a first order autoregressive [AR(1)] model, skewness, 

kurtosis, sample entropy and the cumulative sum (for details on the calculation of 

the cumulative sum: see Tambuyzer et al., 2014). The selection of these features is 

supported by other studies, which indicate that such generic features may be used 

for a detailed quantification of time series in a wide range of fields (e.g. Richman & 

Moorman, 2000; Dakos et al., 2012)). Most of these metrics are measures for signal 

complexity (sample entropy), signal variability (variance, kurtosis, cumulative sum, 
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autoregressive coefficient of AR(1) model) or signal asymmetry (skewness, mean of 

detrended time series) (Bassevillie & Nikiforov, 1993; Richman et al, 2000; Aboy et 

al. 2007; Dakos et al., 2012). The same ten features were calculated for the 

detrended time series. Each time series was first standardised (subtraction of mean 

and divided by standard deviation) and afterwards detrended using an integrated 

random walk model (IRW) with noise variance ratio (NVR) of 0.001 for the heart 

rate time series and a NVR of 0.01 for the cytokine time series (CAPTAIN toolbox in 

Matlab; Taylor et al., 2006). In this study, these detrended time series are also called 

the fast dynamics of the time series, because by subtracting the IRW model form the 

original data, the slow trend was removed. 

 

3.3 Feature selection and classification models 

Decision tree analysis was applied to determine appropriate classification models 

for infection based on these features (Statistics Toolbox in Matlab). First, a decision 

tree model was developed based only on the features of the heart rate time series 

(i.e. heart rate model or HR model). To obtain a robust HR model, a bootstrapping 

procedure (n = 1000 bootstrap samples) was used for the selection of the heart rate 

based features (Steyerberg, 2008). For each bootstrap sample, a new pruned 

decision tree was calculated resulting in a total of 1000 decision trees. Afterwards, 

the frequency of features selected as tree nodes across bootstrap replicas was used 

to rank them for predictive performance. Features with the highest count were 

selected for the final decision tree model. Afterwards, receiver operating 

characteristic (ROC) analysis was used to evaluate the performance of a diagnostic 

test based on this final decision tree model. The area under the ROC curve (AUC) 

was calculated to quantify the discriminatory power of the HR model (Fan et al., 

2006). Since bootstrapping provides accurate and unbiased estimates of model 

performance in small datasets, bootstrapping (based on 1000 bootstrap samples) 

was used to calculate confidence intervals for the used performance metrics 

(sensitivity, specificity, AUC) (Steyerberg, 2008). Hosmer–Lemeshow p value was 

used to evaluate the model calibration. 
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After development of the HR model, the discriminatory power of single blood 

cytokine levels was investigated. Therefore, the AUC values were calculated for four 

different time points per cytokine: 9:00 p.m., 0:00, 3:00 a.m. and 6:00 a.m. 

Afterwards, logistic regression (Statistics toolbox in Matlab) was used to investigate 

whether the HR model could be improved by adding values of single blood cytokine 

levels or in more practical terms it was tested whether it is clinically relevant to 

measure blood cytokine levels in addition to available heart rate recordings for 

obtaining a more accurate classification of infected patients. The HR model was 

extended with the most significant cytokines (p < 0.1). Finally, the added value of 

features based on the blood cytokine time series was examined. First, the most 

predictive features of the cytokine time series were selected based on a bootstrap 

procedure (see bootstrapping procedure described above for feature selection of 

heart rate based features). Afterwards, again logistic regression (Statistics toolbox in 

Matlab) was used to investigate whether the HR model could be ameliorated by 

adding features of the blood cytokine time series. 

 

4. RESULTS 

4.1 Patients 

39 subjects, of whom serum from the night-time serial blood sampling was available 

for cytokine quantification, were included in this study [age (mean ± SD): 59 ± 17; 

BMI (mean ± SD): 26 ± 5; sex: 26 M and 13 F]. According to the CDC criteria, 16 

patients were defined as infected and the other 23 subjects were defined as non-

infected (see Table  III.1). Five of the non-infected subjects were healthy volunteers. 

 

4.2 Classification of patients based on heart rate time series 

As described in the methods section, decision trees were calculated based on all the 

heart rate based features for each of the 1000 bootstrap samples. Two parameters 

were present in more than 40 % of the calculated trees: the mean of the fast 

dynamics of the heart rate and the mean of the raw heart rate time series. Therefore, 

a decision tree was determined for a combination of these two parameters (i.e. the 

HR model). Figure  III.1 shows the scatter plot of the HR model. The sensitivity and 
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Subject Age Sex BMI ICU Hospital Length of Length of stay Day of stay at the Infection at Infection at APACHE Type of infection at 
no.    survival? survival? stay at ICU at hospital ICU at the time of admission day of blood II score the time of blood 
      (days) (days) blood profile ICU? profile?  profile 
             

1 30.0 V 24.2 Yes Yes 9 9 4 Yes Yes 42 PL 
2a 61.4 M 21.8 Yes Yes – – – No No – – 
3a 57.7 M 24.7 Yes Yes – – – No No – – 
4a 55.2 M 22.9 Yes Yes – – – No No – – 
5 72.6 M 18.7 Yes Yes 16 32 9 No Yes 38 PL 
6 52.8 V 27.6 Yes Yes 12 25 7 Yes Yes 34 BS, PL, GI 
7 27.1 M 24.2 Yes Yes 7 32 4 Yes Yes 29 SS, BS, PL, GI 
8 52.4 M 19.6 No No 10 10 6 Yes No 46 – 
9 85.9 M 23.4 Yes No 15 60 5 Yes No 45 – 
10 52.7 M 24.9 Yes Yes 396 424 5 Yes No 35 – 
11 45.8 M 25.7 Yes Yes 21 33 3 Yes Yes 32 SS 
12 84.4 M 24.1 Yes Yes 31 53 3 No No 40 – 
13 46.4 M 31.0 Yes Yes 15 26 4 No No 32 – 
14 48.4 V 27.6 Yes Yes 12 43 5 No Yes 39 BS 
15 69.1 M 22.9 Yes No 12 32 3 Yes No 39 – 
16 44.4 V 20.8 Yes Yes 8 33 2 Yes No 38 – 
17 29.6 V 19.6 Yes Yes 22 34 2 Yes Yes 37 GI 
18 30.6 M 23.1 Yes Yes 10 64 2 Yes Yes 33 BS, CV 
19 58.6 M 23.4 Yes Yes 17 45 5 Yes No 36 – 
20 67.7 M 29.0 Yes Yes 14 60 3 No Yes 43 BS 
21a 53.8 V 26.4 Yes Yes – – – No No – – 
22a 59.0 V 21.8 Yes Yes – – – No No – – 
23 60.1 V 35.2 Yes Yes 59 59 4 Yes No 34 – 
24 85.5 M 24.7 Yes Yes 7 67 3 Yes No 44 – 
25 54.1 M 20.8 Yes Yes 6 6 1 No No 34 – 
26 79.8 V 31.6 Yes Yes 17 73 2 Yes Yes 37 GI 
27 78.4 V 25.0 Yes Yes 8 35 3 Yes Yes 32 CV 
28 35.3 V 30.5 Yes Yes 10 19 5 No No 31 – 
29 56.4 M 27.8 Yes Yes 19 27 8 No No 35 – 
30 60.9 M 37.0 Yes Yes 32 54 7 Yes Yes 33 PL, GI 
31 73.5 M 24.8 Yes Yes 9 27 1 No No 36 – 
32 78.1 M 27.8 Yes No 11 30 5 Yes No 39 – 
33 64.6 M 21.0 Yes Yes 23 131 3 No No 37 – 
34 59.3 M 18.0 Yes Yes 3 22 1 Yes Yes 36 PL 
35 36.5 V 30.4 Yes Yes 11 44 2 Yes Yes  29 PL 
36 79.8 V 40.0 Yes Yes 8 37 1 Yes Yes 41 PL 
37 88.3 M 34.4 Yes Yes 26 50 4 No Yes 37 PL 
38 60.5 M 24.9 No No 17 17 2 No No 32 – 
39 54.9 M 25.1 No No 16 16 5 Yes No 38 – 
a
 Healthy control group;

 b
 PL= Pneumonia or other lower respiratory tract infection; GI = Gastrointestinal infection; CV= Cardiovascular syst. infection; BS = Bloodstream infection; SS = Surgical site infection

Table III.1.  Detailed overview of patient information.  
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specificity of the HR model were 88 % (95 % confidence interval of bootstrap 

samples: [0.69–1.00]) and 88 % (95 % confidence interval based on bootstrap 

samples: [0.68–1.00]), respectively. The corresponding AUC was 0.88 (95 % 

confidence interval based on bootstrap samples: (0.77–1.00)]. The model had good 

calibration with 0.09 Hosmer–Lemeshow p value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III.1. Scatter plot of results for the HR model (a decision tree based on mean 

of the raw heart rate and the mean of the high frequent heart rate component). 

Circles represent the infected patients, whereas stars indicate non-infected patients. 

All stars/circles within the white area will be classified by the decision tree model as 

infected. Stars/ circles within the grey area will be classified as non-infected.
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4.3 Added value of static blood cytokine levels 

First, the discriminatory power of single blood cytokine levels was assessed. 

Therefore, the AUC values were calculated for four different time points per 

cytokine: 9:00 p.m., 0:00, 3:00 a.m. and 6:00 a.m. All the AUC values are listed in 

Table  III.2. None of the cytokines has an AUC value which is significantly higher than 

0.5, showing very weak discriminatory power for classification of infected patients 

based on single cytokines. Afterwards, we tested whether the accuracy of the 

decision tree based on the two heart rate parameters could be improved by adding 

single cytokine blood level values. In a multivariate logistic regression model for 

infection, in addition to the two selected heart rate features, four cytokines had a p 

value below 0.1: IL-1b, IL-4, IL-10 and IL-12. Bootstrapping was applied to quantify 

the added value of a decision tree based on all these features (four cytokines + two 

heart rate features) compared with the HR model (the tree based on only the two 

heart rate parameters). Therefore, we calculated for each bootstrap sample, the AUC 

value of a tree based on only the two heart rate measures (AUCHR) and the AUC value 

of a tree based on the two heart rate measures with the four selected cytokines 

(AUCHR+cyto). The difference between both AUC values (AUCHR - AUCHR+cyto) was 

calculated for all bootstrap samples. The 95 % confidence interval based on the 

differences for all bootstrap samples is [-0.0881 to 0.0883]. Zero is part of this 

interval showing that there is no significant additional value of adding the cytokines 

to the generated decision tree model. 

 

Table III.2. Overview of AUC values with bootstrapped confidence intervals (CI) for 

all cytokines at four different time points: 9:00 p.m., 0:00, 3:00 a.m. and 6:00 a.m. 
 

Time 9:00 p.m. 0:00  3:00 a.m.  6:00 a.m. 
            

 AUC CI AUC CI AUC CI AUC CI 
         

IL-1b 0.54 [0.35–0.72] 0.57 [0.33–0.70] 0.52 [0.32–0.71] 0.49 [0.31–0.70] 
IL-2 0.52 [0.34–0.72] 0.54 [0.35–0.74] 0.48 [0.30–0.67] 0.58 [0.32–0.72] 
IL-4 0.64 [0.40–0.77] 0.58 [0.40–0.77] 0.49 [0.31–0.69] 0.55 [0.32–0.70] 
IL-5 0.52 [0.33–0.71] 0.52 [0.32–0.73] 0.54 [0.34–0.73] 0.59 [0.40–0.78] 
IL-6 0.49 [0.30–0.70] 0.47 [0.28–0.67] 0.44 [0.26–0.64] 0.44 [0.25–0.64] 
IL-10 0.48 [0.29–0.67] 0.48 [0.27–0.69] 0.51 [0.31–0.69] 0.61 [0.35–0.74] 
IL-12 0.58 [0.40–0.77] 0.58 [0.40–0.76] 0.50 [0.31–0.70] 0.54 [0.33–0.72] 
IL-13 0.58 [0.33–0.70] 0.53 [0.35–0.73] 0.58 [0.39–0.78] 0.51 [0.32–0.71] 
IFNg 0.52 [0.32–0.71] 0.55 [0.37–0.74] 0.49 [0.30–0.69] 0.52 [0.33–0.70] 
TNFa 0.54 [0.36–0.74] 0.64 [0.41–0.78] 0.54 [0.32–0.70] 0.59 [0.33–0.72] 
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4.4 Added value of blood cytokine time series 

In comparison with the single blood cytokine levels, more detailed information can 

be obtained by quantification of the complete blood cytokine time series. Figures 

showing the median time series of all subjects for each cytokine with the 

corresponding lower detection limit of the used immunoassay are given in Online 

Resource 1. To investigate the added value of using blood cytokine time series, all the 

metrics as described in the methods section were calculated based on these time 

series. Again bootstrapping was used to find the most predictive features. Five 

parameters were present in more than 10 % of the 1000 calculated trees: the 

minimum of IL-1B of the raw time series, the sample entropy of IL-2 of the raw time 

series, the cumulative sum of IL-2 of the detrended time series, the cumulative sum 

of IL-10 of the detrended time series and the cumulative sum of IL-12 of the 

detrended time series. The AUC values of these features are summarized in Table  

III.3. The cumulative sum of the detrended time series was the marker with the 

highest discriminatory power (AUC [0.70 for IL-10, IL-2 and IL-12). This is a marker 

for amplitude increases in time series fluctuations (Tambuyzer et al., 2014). 

However, logistic regression showed that none of these five markers had a 

significant added value, when they were added to the heart rate model (p < 0.1 for all 

five features). This result confirmed that the decision tree based on the heart rate 

time series could not be improved by information of the cytokine time series. 

 

 

Table III.3. Overview of AUC values with bootstrapped confidence intervals  

(CI) for the selected feature based on the cytokine time series. 
 

Feature of the cytokine time series AUC CI 
The minimum of IL-1B of the raw time series 0.63 [0.44–0.82] 
The sample entropy of IL-2 of the raw time series 0.59 [0.39–0.79] 
The cumulative sum of IL-2 of the detrended time series 0.76 [0.60–0.93] 
The cumulative sum of IL-10 of the detrended time series 0.72 [0.53–0.90] 
The cumulative sum of IL-12 of the detrended time series 0.71 [0.52–0.91] 
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5. DISCUSSION 

In this study we investigated the discriminatory power of information captured by 

cytokine and heart rate time series to distinguish infected ICU patients from non-

infected ICU patients and/or healthy control subjects. We found that among the ICU 

patients, heart rate was a better marker for infection than information captured by 

the cytokine time series. Heart rate characteristics appeared to be non-specific but 

sensitive markers for infection. Based on the bootstrap procedure, two features 

were selected for the decision tree model: the mean of the raw heart rate signal and 

the mean of the fast dynamics of the heart rate time series. Infected patients 

revealed higher values for both parameters (Fig.  III.2). The mean of the detrended 

heart rate time series (or fast dynamics) can be seen as a measure for signal 

asymmetry. When the fast fluctuations of the time series are symmetrical, this 

marker is expected to be zero. When this marker is higher than zero, the fast 

fluctuations tend to higher heart rate values. Figure  III.2 shows an example of 

standardised time series for an infected and a non-infected patient. These plots 

illustrate that the fast fluctuations are more symmetrical distributed for the non-

infected patients. So far, only a limited number of studies quantified asymmetry in 

physiological signals (Karmakar et al., 2009). This study indicates that this feature 

deserves more attention in future studies. Interestingly, this decision tree model 

could not be improved by including information of single cytokine blood levels nor 

cytokine time series. These results suggest that the determination of cytokine blood 

levels with a high sample frequency will not lead to a more accurate detection of 

infection in the ICU setting. This result is unexpected since cytokines are key players 

in the regulation of the body’s response to infection (Cinel & Opal, 2009). However, 

it is known that cytokine blood levels can also be induced by non-infectious 

conditions (Turnbull & Rivier, 1999; Opp, 2005; Dimopoulou et al., 2008; Reinhart 

et al., 2012), which complicates the use of cytokines for infection monitoring 

purposes. Moreover, depending on the kind of pathogen, the stage of infection and 

the site of infection the individual responses can be very different (Imanishi, 2000). 

The results of this study suggest that the predictive value of (expensive) biomarkers 
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should always be weighed against the routinely monitored data, and such 

biomarkers have to demonstrate added value. 

Several limitations of this study should be noticed. First, a small dataset was used 

and therefore the obtained results should be confirmed by larger studies. Secondly, 

short time series were used for which the stage of the infection was not known. This 

is an inherent limitation of this clinical setting in practice, since the exact onset of 

infection cannot be measured. Therefore, it was impossible to identify markers 

related with the start of infection. Longer time series with samples before and after 

the infection would allow to analyse the initial phase and the different stages of the 

infection. A third remark is that heart rate can never be a very specific marker, since 

it is known that heart rate increases in response to a wide range of other stimuli of 

the body. 

 

Several studies advocate the use of a dynamic system approach, which focuses on 

the simultaneous dynamic analysis of many parameters and their interactions 

(Brown et al., 2007; Namas et al., 2012). In this study, we found no added value in 

the combination of the specific heart rate characteristics (i.e. the mean of the raw 

heart rate signal and the mean of the fast dynamics of the heart rate time series) and 

cytokine time series characteristics. In future studies, these parameters should be 

investigated in combination with dynamic analyses of other markers such as blood 

temperature, white blood cells, PCT, CRP, etc. Such a dynamic system approach 

would potentially allow determining the individual dynamic infection state in a 

more detailed way and could be used to guide interventions for early treatment of 

infection (e.g. administering antibiotics). 
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Figure III.2.  Raw heart rate signal, standardised heart rate signal and fast dynamics 

of heart rate signal (i.e. standardized and detrended time series) for an infected (left) 

and a non-infected (right) patient. In the middle plots, the trend model is 

represented by a black line 
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GENERAL CONCLUSIONS 

Process models and model-based features: 

In this chapter a compact linear model was used before the steps of the feature 

extraction. The heart rate model showed that the best results were obtained for a 

combination of the raw heart rate signal and the fast dynamics of the heart rate time 

series. Corresponding with Hypothesis 3 of Part 1, this result proves how model-

based features can be an added value to monitors which are purely based on 

measured variables (e.g. ICU heart rate monitor only based on raw heart rate signal 

used in an).  

 

Individualised change detection: 

However, the analysis of the cytokine data suggested that the heart rate model could 

not be improved by including information of cytokine times series. Since cytokine 

measurements are also much more expensive (and invasive), it is suggested to 

develop a model-based monitor for infection using only heart rate measurements. 

However, heart rate characteristics are sensitive, but non-specific markers for 

infection and should be used in combination with other markers. 

Whereas ROC curve analysis was used to calculate the thresholds in the previous 

chapters, here we used decision tree analysis to obtain ‘monitoring thresholds’ for 

classification based on multiple variables. If more variables are measured, we obtain 

more individual information of the patient, potentially allowing a more 

individualised approach. Ideally, future individualised monitors should implement 

dynamic analyses of different biomarkers for infection and their interactions, which 

allow the operator to determine the individual dynamic infection state of the patient. 

In this study, a list of different methods for detecting early warning signs was 

used inspired by complex systems science. These methods can be added to the 

approach for individualised model-based monitoring discussed at the end of 

chapter 2. 
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CHAPTER    IV     

System identification of mGluR-dependent 

long-term depression 
 

Adapted from: Tambuyzer, T., Ahmed, T., Taylor, C. J., Berckmans, D., Balschun, D., & 

Aerts, J. M. (2013). System identification of mGluR-dependent long-term 

depression. Neural computation, 25(3), 650-670. 

 

BROADER PERSPECTIVE 

This chapter will focus on the blocks process model and model-based features of 

the general scheme.  In contrast to chapter 2 and 3 where compact linear single-

output models were used to calculate features based on the model noise (detrended 

time series or fast dynamics), here linear input-output models were applied.   

This study focused on the analysis of physiological brain slice recordings of synaptic 

plasticity responses after the application of a drug. The administration of the drug 

was used as input variable, whereas the recorded synaptic strength was used as 

output variable for the model. 

Although we believe that building an individualised model-based monitor should 

start from biological knowledge, we investigated in this chapter whether it is also 

possible to have a dual interaction where the models can aid to gain new biological 

insights (i.e. reverse biological engineering).   

However, it is known that neural processes contain many nonlinearities. Therefore, 

we believe that this chapter could give an answer to the main question that arises 

from Hypothesis 2 of Part 1: Is it possible to use linear models to gain insight in 

highly nonlinear biological processes? 
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1. ABSTRACT 

Recent advances have started to uncover the underlying mechanisms of 

metabotropic glutamate receptor (mGluR)-dependent long-term depression 

(LTD). However, it is not completely clear how these mechanisms are 

linked, and it is believed that several crucial mechanisms remain to be 

revealed. In this study, we investigated whether system identification (SI) 

methods can be used to gain insight into the mechanisms of synaptic 

plasticity. SI methods have been shown to be an objective and powerful 

approach for describing how sensory neurons encode information about 

stimuli. However, to our knowledge, it is the first time that SI methods have 

been applied to electrophysiological brain slice recordings of synaptic 

plasticity responses. The results indicate that the SI approach is a 

valuable tool for reverse-engineering of mGluR-LTD responses. We 

suggest that such SI methods can aid in unravelling the complexities 

of synaptic function. 

 

2. INTRODUCTION 

Synaptic plasticity in general terms is the change in strength of synaptic 

connections between neurons. Long-term potentiation (LTP) and long-term 

depression (LTD), two extensively studied forms of synaptic plasticity, are 

characterized by a persistent increase and decrease of synaptic efficacy, 

respectively. Long-term synaptic modifications play a key role in the plasticity 

of behaviour, learning, and memory (Martin, Grimwood, & Morris, 2000; 

Kandel, 2001; Lamprecht & LeDoux, 2004; Malenka & Bear, 2004; Neves, 

Cooke, & Bliss, 2008; Richter & Klann, 2009; Collingridge, Peineau, Howland, & 

Wang, 2010). 
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This work focuses on metabotropic glutamate receptor (mGluR)- dependent 

long-term depression. mGluR-LTD initially received less attention than N-

methyl-D-aspartic acid receptor (NMDAR)-dependent LTD, but is now the 

focus of great interest (Bellone, Liischer, & Mameli, 2008). Typically mGluR-

dependent LTD is induced in rodent brain slices by paired pulse low-frequency 

stimulation (PP-LFS) or by application of the group 1 mGluR agonist 

dihydroxyphenylglycine (DHPG) (Fitzjohn, Kingston, Lodge, & Collingridge, 

1999; Kemp, McQueen, Faulkes, & Bashir, 2000; Zho, You, Huang, & Hsu, 2002). 

During the last decade, multifarious mechanisms have been uncovered to 

underlie mGluR-LTD. mGluR-LTD was shown to involve endocytosis of AMPA 

receptor subunits (G1uR -1 and -2), a process that is contingent on tyrosine 

dephosphorylation and activation of the tyrosine phosphatase striatal-

enriched tyrosine phosphatase (STEP) (Moult et al., 2006; Snyder et al., 2001). 

In contrast to NMDA receptor-dependent LTD, mGluR-LTD does not require 

postsynaptic increases, LP3-sensitive Ca2+ stores, PLC, or PKC activity (Fitzjohn 

et al., 2001; Kleppisch, Voigt, Allmann, & Offermanns, 2001; Moult et al., 2006; 

own unpublished data). Among many other mechanisms that have been 

suggested to be involved (Gladding, Fitzjohn, & Molnar, 2009; Liischer & 

Huber, 2010), the rapid translation of proteins that regulates AMPA receptor 

(AMPAR) trafficking such as activity-regulated cytoskeletal associated protein 

(Arc), microtubule-associated protein lb (MAP1b), and STEP seems to be of 

central importance (Davidkova & Carroll, 2007; Zhang et al., 2008).   

                                                                                                                                       

In spite of these advances (reviewed in Massey & Bashir, 2007; Bellone et al., 

2008; Collingridge et al., 2010; Liischer & Huber, 2010), it is not completely 

clear how these mechanisms are linked, and most likely several crucial 

mechanisms still remain to be revealed. For example, experimental findings 

supported mGluR-LTD being independent of postsynaptic calcium (Fitzjohn et 

al., 2001; Kleppisch et al., 2001; Moult et at., 2006), but recent data indicate a 

role of calcium increases within spines for mGluR-LTD (Holbro, Grunditz, & 

Oertner, 2009). Furthermore, several studies described that mGluR-LTD is 

contingent on a rapid protein synthesis (Huber, Kayser, & Bear, 2000;                                                                                                                                                                                                                                                                               
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Karachot, Shirai, Vigot, Yamamori, & Ito, 2000; Mameli, Balland, Lujan, & 

Luscher, 2007), but others failed to confirm this (Hou et al., 2006; Nosyreva & 

Huber, 2006; Moult, Collingridge, Fitzjohn, & Bashir, 2008; own data). The 

reasons for these apparent discrepancies are far from being understood. 

Notably, many of these studies have emphasized the biological and 

pathological significance of mGluR-LTD, underlining the importance of further 

investigations to understand and characterize the mechanisms of mGluR-

dependent LTD and their dynamics. 

 

The majority of the models describing long-term synaptic plasticity focus on  

the NMDAR-dependent forms of LTD and LTP. Moreover, most models are 

dynamical mechanistic models describing the system based on a priori 

knowledge of it (Shouval, Bear, & Cooper, 2002; Hardy & Robillard, 2005; 

Nieus et al., 2006; Graupner & Brunel, 2010; Manninen, Hituri, Kotaleski, 

Blackwell, & Linne, 2010). In recent years, more and more researchers have 

been advocating the use of a top-down (data-based) modelling approach in 

addition to a mechanistic (or bottom-up) approach for improving the 

knowledge of biological systems (Jarvis, Stauch, Schulz, & Young, 2004; Tomlin 

& Axelrod, 2005; Tambuyzer, Ahmed, Berckmans, Balschun, & Aerts, 2011). 

This is particularly useful when not much knowledge about the interactions of 

the elements involved in the considered biological system is available. 

Although more and more publications are addressing the topic, the field is still 

in its infancy, and there is a pressing need for mathematical tools to help 

understand, quantify, and conceptualize information processing and the 

dynamic properties of biological systems (Sontag, 2004). The power of the 

dynamical systems approach to neuroscience, as well as to many other 

sciences, is that we gain insight into a system without knowing all the details 

that govern the system evolution (Izhikevich, 2007). System identification (SI) 

methods have been shown to be an objective and powerful approach for 

describing how sensory neurons encode information about stimuli (Wu, David, 

& Gallant, 2006; Pedoto et al., 2010; Kim, Lazar, & Slutskiy, 2011). 
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The SI approach is not limited to sensory systems (Wu et at, 2006). In this 

study, we hypothesize that it is possible to uncover the underlying dominant 

processes of mGluR-LTD by applying mathematical system identification 

methods. This hypothesis resulted in two main objectives: 

 

1. To quantify the dynamics of LTD responses for different experimental  

conditions using a discrete-time transfer function (TF) approach. The models 

describe the relation between the DHPG application (input) and the long-term 

depression responses (output). 

 2. To investigate whether system identification methods can be valuable for 

gaining insight into the mechanisms of synaptic plasticity. Therefore, we 

examined whether the estimated TF models allowed us to identify and 

quantify the major subprocesses involved in mGluR dependent long-term 

depression. 

 

3. MATERIALS AND METHODS 

3.1 Animals and Brain Slice Preparation 

Wistar rats were killed by cervical dislocation, and the hippocampus was 

rapidly dissected out into ice-cold (4°C) artificial cerebrospinal fluid (ACSF), 

oxygen saturated with carbogen (95% 02/5% CO2). ACSF consisted of (in mM) 

124 NaCl, 4.9 KO, 24.6 NaHCO3, 1.20, KH2PO4, 2.0 CaC12, 2.0 MgC12, 10.0 

glucose, and pH 7.4. Transverse hippocampal slices (400 μm thick) were 

prepared and placed into a submerged-type chamber, maintained at 33'C with 

carbogen-saturated ACSF perfused at 2.4 ml/ min by a peristaltic pump. The 

animals were maintained, and experiments were conducted in accordance 

with institutional (KU Leuven), state, and government regulations. 
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3.2 Electrophysiological Recording 

 Synaptic responses were elicited by stimulation of the Schaffer collateral 

afferents using a Teflon-coated tungsten electrode. A glass electrode (filled 

with aCSF, 1-4 MΩ) was used to record the evoked extracellular field excitatory 

postsynaptic potentials (fEPSPs) in the CA1 region of the hippocampal slices. 

The slope of the fEPSP curves (mV/ms) was used as an indicator for the 

synaptic strength as described previously (Balschun et al., 2003). The stimulus 

intensity (µA) was adjusted to elicit an fEPSP response with a slope 35% of the 

fEPSP slope maximum, determined by input-output curves. 

 

Column 4 in Table IV.1 shows the different stimulation frequencies used in the 

experiments. For data sets 1, 2, and 3, a stimulation frequency of 0.0033 Hz 

was used during the experiments. Supported by the modelling results of these 

three data sets, a fourth data set was generated with a stimulation frequency of 

0.033 Hz (see section 3). For a stimulation frequency of 0.0033 Hz, the 

stimulating electrode delivered every 5 minutes three stimuli (with 10 s 

intervals) to the brain slice. These three input stimuli were averaged to obtain 

one data point (fEPSP) every 5 minutes. For a sampling rate of 0.033 Hz, every 

generated data point corresponded to a single stimulus. Since the fEPSPs were 

not averaged for the high-sampled experiments, they were expected to contain 

more noise compared to the low-sampled experiments. 

 

3.3 Drug Application 

After the brain slice preparation and the tuning of the electrode settings, the 

experiments started. First, there was a period of baseline recording (50 

minutes) during which no drug was applied. After the baseline recording, 

metabotropic (mGluR)-LTD was induced in the rat brain slices by bath 

application of dihyclroxyphenylglycine (DHPG). For each data set, the drug was 

applied for different durations (5, 15, and 25 minutes and 2 hours) and in 
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different concentrations (15 µM, 30 µM) by the peristaltic pump. Table IV.1 

gives an overview of the experiments with corresponding experimental 

conditions. 

 

Table IV.1. Overview of all experiments 

Dataset DHPG Duration of Sampling rate Age rats Number of 

 concentration DHPG   repetitions 

 (¹M) application    
      

1 15 5 min 0.0033 Hz 7-8 weeks 4 

2 15 15 min 0.0033 Hz 7-8 weeks 32 

3 30 25 min 0.0033 Hz 7-8 weeks 10 

4 30 2 h 0.033 Hz 10-14 months 9 

   Total number of experiments: 55 

 

 

3.4 Modelling 

For the modelling, discrete-time transfer functions (TF) models were used. The 

models were single-input, single-output (SIS0) models. For this work, brain 

slices were exposed to a specific DHPG concentration to induce synaptic 

plasticity in the brain slices. The DHPG concentration (µM) was used as input, 

and the synaptic strength was the output (measured fEPSP slopes as a 

percentage of the initial fEPSP slopes before drug application; see Figure IV.1). 

Every data set (see Table IV.1) consisted of a number of repetitions for the 

same experimental conditions. 

 

For each data set, the obtained responses (time series of FEPSP slopes) were 

averaged, and the resulting mean response curves were used to estimate the 

TF models. A SISO discrete-time TF model can be described by the following 

general equation (Young, 1984): 

 

𝑦𝑡 =  
𝐵(𝑧−1)

𝐴(𝑧−1)
𝑢𝑡−𝛿 +  𝜉𝑡 ,                                          (3.1) 
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where yt, is the output (synaptic strength), ut-δ the input (DHPG concentration), 

t is the time for discrete time steps, δ is the time delay (δ > 0), and ξ is additive 

noise, a serially uncorrelated sequence of random variables with variance that 

accounts for measurement noise, modelling errors, and the effects of 

unmeasured inputs to the process. Although the details are beyond the scope 

of this letter, the noise term has been introduced for statistical estimation 

purposes. The first term on the right-hand side of equation 3.1 is also referred 

to as xt, the noise-free output. A(z-1) and B(z-1) are polynomials of model 

parameters that can be written as 

 

𝐴(𝑧−1) = 1 + 𝑎1𝑧−1 + … + 𝑎𝑛𝑧−𝑛 ,                       (3.2) 

𝐵(𝑧−1) = 𝑏0 + 𝑏1𝑧−1 + … + 𝑏𝑚𝑧−𝑚 ,                    (3.3) 

 

Every polynomial is a function of z-1, a backward shift operator that is  defined 

as z-1yt = yt-1. Finally, a, and b, are the model parameters. Here, n represents the 

order of the system. Simplified refined instrumental variable (SRIV) algorithms 

were used for identifying and estimating the model parameters (Young, 1984). 

All calculations were performed in Matlab using the Captain Toolbox (Taylor,  

 

 

Figure IV.1. Block diagram for single-input, single-output (SISO) discrete-time  

TF models. (Top) A general diagram with an input,  and an output, yt. 

(Bottom) The general block diagram applied to the experimental setup of this 

study. 
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Pedregal, Young, & Tych, 2007). Different numbers of denominator and 

numerator parameters (n and m ranging from 1 to 5) and different time delays 

(0 to 10) were investigated, resulting in 275 (5 x 5 x 11) model structures. For 

each of these model structures, TF models were estimated. Three criteria were 

used to select the best models:  values (Young, 1984), the Akaike information 

criterion (AIC; Akaike, 1974), and the Young identification criterion (YIC; 

Young, 1984). In addition to these three statistical criteria, each candidate 

model was evaluated by visual inspection (Ljung, 1987). The three statistical 

criteria are described below: 

 

𝑅𝑇
2 = 1 −

�̂�𝑒
2

𝜎𝑦
2 ;  

1

𝑁
∑ [𝑦𝑡 − 𝑦]2𝑡=𝑁

𝑡=1 ;  𝑦 =
1

𝑁
∑ [𝑦𝑡]2𝑡=𝑁

𝑡=1 ,                (3.4) 

𝐴𝐼𝐶 = log(𝜎𝑒
2) + 2 −

ℎ

𝑁
 ,                                                               (3.5) 

𝑌𝐼𝐶 = log (
�̂�𝑒

2

𝜎𝑦
2) + 𝑙𝑜𝑔𝑒{𝑁𝐸𝑉𝑁}; 𝑁𝐸𝑉𝑁 =

1

ℎ
∑

�̂�𝑒
2𝑝𝑖𝑖

�̂�𝑖
2

𝑖=ℎ
𝑖=1   .      (3.6) 

 

In these equations, �̂�𝑒
2 refers to the variance of the residuals, 𝜎𝑦

2 is the variance 

of the output, and h is the number of estimated parameters (i.e., n+m+1) in the 

parameter vector 𝐩 (i.e.  𝐩 = [a1,…, an, b0,…, bm]). N is the number of samples. �̂�𝑖𝑖  

is the ith diagonal element of the covariance matrix generated by the estimation 

algorithm, and �̂�𝑖
2 is the square of the ith parameter in the 𝐩 vector. 

 

𝑅𝑇
2 is a statistical measure for the goodness of fit of the simulation response. 

AIC is partly dependent on the fit of the simulation, but there is also a second 

component that takes into account the number of parameters, penalizing the 

AIC value for relatively high-order models. The YIC criterion is more complex 

and uses log terms so that improved models are indicated by increasingly 

negative values. The first term is a relative measure of how well the model 

explains the data. The second term relates to the conditioning of the 

instrumental variable cross-product matrix and is a measure of potential 

overparameterization in the model. In particular �̂�𝑒
2�̂�𝑖𝑖  in equation 3.6 are the 
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standard errors of the parameter estimates, with larger standard errors 

implying poorer YIC values. 

 

Based on the physiological knowledge of the considered system, we might 

assume that the expected responses will be stable. Therefore, for every model, 

we also tested whether the poles were inside the unit circle, a requirement for 

model stability. The TF models were validated by an autocorrelation test for 

the residuals and a cross-correlation test between the residuals and the inputs 

(Ljung, 1987). 

 

3.5 Identification and Quantification of Subprocesses 

Higher-order TF models (n > 1) can be described as a configuration of first-

order models (n = 1), which represent the dynamics of the subsystems. For 

example, a second-order model can he decomposed into two such first-order 

TF models corresponding to three important types of coupling: a serial 

coupling, a parallel coupling, or a feedback coupling (see Figure IV.2). Models 

with a model order higher than two result in more complex configurations but 

are not required for the analysis in this letter. Based on such first-order 

models, the dynamics of the subsystems could be quantified by means of their 

time constants. The time constant (TC) of a first-order model can be 

determined as (Young, 1984) 

 

 

𝑇𝐶 =  
−Δ𝑡

ln (−𝑎1)
                                                           (3.7) 

 

where At is the sampling interval and al the denominator parameter. Equation 

3.7 is the discrete-time equivalent of the classical continuous-time definition of 

the time constant for a first-order differential equation. In practical terms, 

assuming zero initial conditions, it is the time taken for the output to reach 

63% of its steady-state value in response to a step input. 
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Figure IV.2.  Possible configurations of two first-order models. (A) Serial 

coupling. (B) Parallel coupling. (C) Feedback coupling. 

 

 

4. RESULTS 

4.1 Dynamic Analysis for Different Sampling Rates 

TF models were calculated and compared for two sampling rates: 0.0033 Hz 

and 0.033 Hz (see Table IV.1). 

 

4.1.1 Models for Low Sampling Rate (0.0033 Hz) 

For data sets 1, 2, and 3 (see Table IV.1), the sampling rate was 0.0033 Hz, 

which is frequently used for plasticity experiments (Denayer et al., 2008; 

Ahmed, Sabanov, D'hooge, & Balschun, 2011; Popkirov & Manahan-Vaughan, 

2011). In Figure IV.3, the results of the first- and second-order models are 

graphically represented for these data sets. Considering the three statistical 

model selection criteria (YIC, AIC, 𝑅𝑇
2), visual inspection of the response, and 

analysis of the residuals, no better models were obtained for a model order 

higher than two. First-order models with n = m = I (see Table IV.2) and second-

order models with n = m = 2 (see Table IV.3) were found. 
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All first-order models had an 𝑅𝑇
2 higher than 0.81. For the second-order 

models, the 𝑅𝑇
2 was minimally 0.90, which indicated that the second-order 

models fit the data more accurately (see Figure IV.3). The best fourth- and 

fifth-order models were overparameterized, which was shown by higher YIC 

and AIC values and was confirmed by visual inspection (see Tables IV.5 and 

IV.6). Since the YIC and AIC values showed less consistent results for the third-

order models, a more detailed visual examination was required (see Table 

IV.4). After visual inspection, the third-order models must be excluded as well: 

data set 1: overparameterization (AIC, YIC); data set 2: significant overshoot; 

data set 3: overparameterization (AIC) and model residuals with positive 

correlation in time. 

 

These results confirm that the models of order 2 account for the data. 

Interestingly, for all the second-order models, one pole was close to unity, 

which suggests the presence of a fast initial component and a slow long-term 

component. The latter indicates that the models approximate an integrator, 

but not quite since the system is stable. This means the system (nearly) 

integrated the input effect, and thus, the brief DHPG pulse of 5, 15, or 25 

minutes (input; see Figure IV.3) will change the synaptic efficacy (output), and 

this effect will remain for a long time (hours) after the pulse. 

 

 

4.1.2 Models for High Sampling Rate (0.033 Hz) 

Since discrete measurements of continuous signals cause information loss, it is 

important to choose an optimal sampling rate. Only for an optimal sampling 

rate will the model's parameters correctly represent the real underlying 

system (e.g., mechanisms of mGluR-LTD). The measurement interval between 

two data points should maximally be half of the value of the time constant 

(Nyquist-Shannon sampling theorem; Nyquist, 1928). For this reason,  
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Figure IV.3. Measured mean LTD response curve + / -std (grey) with 

corresponding best first-order model (dashed line) and best second-order 

model (solid line) for data sets with sampling frequency of 0.0033 Hz. (A) Data 

set 1 (5 minutes application of 15 µM DHPG). (B) Data set 2 (15 minutes 

application of 15 µM DHPG). (C) Data set 3 (25 minutes application of 30 µM 

DHPG). 
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additional experiments were carried out with a sampling frequency of 0.033 

Hz (see data set 4 in Table IV.1). 

 

For this data set, a first-order model was calculated with an 𝑅𝑇
2 of 0.90 (see 

Table IV.2 and Figure IV.4). Since the magnitude of the pole is smaller than one, 

the model is stable. The corresponding time constant was 65 s (see equation 

3.7), which strongly suggested the need for a sample rate higher than 0.0033 

Hz. Indeed, by applying the Nyquist-Shannon sampling theorem, we find that  

TC/2 = 65 s/2 = 33s ≈ 30s. 

 

This result supported that the use of a sample frequency of 0.033 Hz  

(or 1/30 s-I) was more appropriate for modelling the dynamics of the mGluR-

LTD responses. The small TC implies a very fast response of the synaptic 

mechanisms induced by the mGlu-receptors' activation after exposure to 

DHPG. 

 

The best third-, fourth-, and fifth-order models were excluded because of 

overparameterization (YIC and AIC; see Tables IV.4-6). Therefore, the best 

higher-order model for the fast sampled data set was once more a second-

order model with n = m = 2 (see Table IV.3). For this model, the 𝑅𝑇
2- value was 

0.89, and the fit was similar to the one of the first-order model (see Figure 

IV.4). Again, one pole was close to unity, which confirms the previous 

suggestion of an integrator effect. In addition, the sum of the numerator 

parameters of the second-order TF model was almost equal to zero (b0 + b1 = -

0.0013; see Table IV.3), which could imply a switch-like effect of the DHPG 

input on the synaptic efficacy (cf. t = 0 in Figure IV.4). This effect can be shown 

starting from x, the noise-free output of the general TF model equation (see 

equation 3.1 and Table IV.3): 

𝑥𝑡  =  1.6023𝑥𝑡−1 −  0.6037𝑥𝑡−2  −  0.3957𝑢𝑡 +  0.3944𝑢𝑡−1         (4.1) 
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The synapses react especially at the start of the drug application for which ut ≠ 

ut-1 (e.g., for t = 0 in Figure IV.4). When the applied drug concentration is 

steady, the effect of the drug will saturate, and there will be a neglible effect on 

the synaptic outputs since 0.3957𝑢𝑡  ≈ 0.3944𝑢𝑡−1 for 𝑢𝑡  = 𝑢𝑡−1. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure IV.4. Measured mean LTD response curve +/-std (grey) with corresponding 

best first-order model (dashed line) and best second-order model (solid line) for 

data set with sampling frequency of 0.033 Hz: data set 4 (2 hours application of 30 

μM DHPG). 

  

 

Table IV.2. Best first order models for mean LTD responses of dataset 1, 2, 3 and 4. 

For each model, the parameters, a1 and b0, with corresponding standard errors, SE, 

the pole, the time delay, the time constant and the three model selection criteria, YIC, 

AIC and RT
2 , are shown. 

 

Dataset 1 2 3 4 

a1 -0.9876 -0.9947 -0.9809 -0.6299 
SE (a1) 0.0034 0.0012 0.0025 0.0683 
b0 -1.5411 -0.6895 -0.3221 -0.3733 
SE (b0) 0.0944 0.0159 0.0129 0.0684 
Pole 1 0.9876 0.9947 0.9809 0.6299 
Time delay 0 0 0 5 
YIC -7.277 -11.168 -8.979 -5.352 
AIC -14.246 -18.391 -15.769 -13.357 
RT2 0.82 0.97 0.92 0.90 
Time constant 401 min 941 min 259 min 65 sec 
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Table IV.3.  Best second order models for mean LTD responses of dataset 1, 2, 

3 and 4. For each model, the parameters, ai and bi, with corresponding 

standard errors, SE, the poles, the time delay and the three model selection 

criteria, YIC, AIC and RT
2 , are shown.  

Dataset  1 2 3 4 

a1 -1.6460 -1.2649 -1.6797 -1.6023 

a2 0.6462 0.2664 0.6802 0.6037 

SE (a1) 0.0980 0.1526 0.0668 0.0661 

SE (a2) 0.0968 0.1517 0.0657 0.0644 

b0 -2.5036 -1.2348 -0.5586 -0.3957 

b1 2.0891 0.7643 0.4888 0.3944 

SE (b0) 0.1861 0.1016 0.0394 0.0636 

SE (b1) 0.1830 0.0861 0.0300 0.0655 

Pole 1 0.9993 0.9979 0.9985 0.9965 

Pole 2 0.6467 0.2670 0.6812 0.6058 

Time delay 1 1 1 5 

YIC -5.491 -4.461 -7.051 -5.075 

AIC -17.452 -18.559 -19.349 -20.824 

RT
2 0.90 0.97 0.96 0.89 

 

 

Table IV.4.  Best third order models for mean LTD responses of dataset 1, 2, 3 

and 4. For each model, the parameters, ai and bi, with corresponding standard 

errors, SE, the poles, the time delay and the three model selection criteria, YIC, 

AIC and RT
2 , are shown.  

Dataset 1 2 3 4 

a1 -1.6419 -1.6488 -1.6287 -0.4663 

a2 1.0978 1.0505 1.6518 -0.7413 

a3 -0.4469 -0.3988 -0.9983 0.5155 

SE (a1) 0.1264 0.0992 0.0485 0.1190 

SE (a2) 0.2042 0.1562 0.0754 0.0333 

SE (a3) 0.0916 0.0634 0.0447 0.0965 

b0 -1.2057 -0.5003 -0.4316 -0.3078 

SE (b0) 0.1304 0.0391 0.0229 0.0597 

Pole 1 0.9887 0.9961 0.9820 -0.9290 

Pole 2 0.3266 + 0.5876i 0.3264 + 0.5421i 0.3234 + 0.9550i 0.6976 + 0.2611i 

Pole 3 0.3266 - 0.5876i 0.3264 - 0.5421i 0.3234 - 0.9550i 0.6976 - 0.2611i 

Time delay 0 0 1 5 

YIC -4.517 -6.819 -7.798 -4.202 

AIC -15.627 -19.610 -15.983 -13.956 

RT
2 0.88 0.98 0.95 0.90 
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Table IV.5. Best fourth order models for mean LTD responses of dataset 1, 2, 3 

and 4. For each model, the parameters, ai and bi, with corresponding standard 

errors, SE, the poles, the time delay and the three model selection criteria, YIC, 

AIC and RT
2 , are shown. 

Dataset 1 2 3 4 

a1 -1.0083 -0.8915 -0.7273 -0.6963 

a2 0.5637 -0.7150 0.1873 0.3348 

a3 -1.2373 1.1301 0.4901 -0.9508 

a4 0.6825 -0.5208 -0.9026 0.6290 

SE (a1) 0.1305 0.3462 0.9933 0.0963 

SE (a2) 0.1446 0.7833 1.6126 0.0152 

SE (a3) 0.1322 0.6521 1.5920 0.0401 

SE (a4) 0.0953 0.2132 0.9492 0.0813 

b0 -2.5547 -0.6667 -0.4100 -0.3164 

b1 0.6144 / -0.4143 / 

b2 -1.0944 / / / 

b3 2.0306 / / / 

SE (b0) 0.1730 0.1310 0.0981 0.0610 

SE (b1) 0.3733 / 0.4034 / 

SE (b2) 0.3892 / / / 

SE (b3) 0.2788 / / / 

Pole 1 -0.3343 + 0.9466i -1.0963 -0.9012 -0.4188 + 0.8930i 

Pole 2 -0.3343 - 0.9466i 0.9972 0.3234 + 0.9568i -0.4188 - 0.8930i 

Pole 3 0.9993 0.4953 + 0.4807i 0.3234 - 0.9568i 0.7669 + 0.2416i 

Pole 4 0.6776 0.4953 - 0.4807i 0.9818 0.7669 - 0.2416i 

Time delay 1 0 1 5 

YIC -2.912 -0.626 1.551 -4.845 

AIC -16.121 -16.562 -14.685 -13.751 

R2 0.91 0.92 0.95 0.90 
T     
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Table IV.6. Best fifth order models for mean LTD responses of dataset 1, 2, 3 

and 4. For each model, the parameters, ai and bi, with corresponding standard 

errors, SE, the poles, the time delay and the three model selection criteria, YIC, 

AIC and RT
2 , are shown. 

Dataset 1 2 3 4 

a1 -1.6929 -1.6448 -2.8434 -2.1691 

a2 1.4738 1.2572 4.2018 2.7489 

a3 -1.3863 -1.0204 -3.9144 -2.5458 

a4 1.0345 0.6737 2.1179 1.4222 

a5 -0.4212 -0.2635 -0.5550 -0.3166 

SE (a1) 0.0989 0.3856 0.1297 0.3362 

SE (a2) 0.1997 0.9554 0.3402 0.6293 

SE (a3) 0.2200 1.0285 0.4133 0.7053 

SE (a4) 0.1830 0.6094 0.2802 0.6170 

SE (a5) 0.0753 0.1600 0.0824 0.2516 

b0 -1.2739 -0.5325 -0.1454 -0.1396 

SE (b0) 0.1112 0.0877 0.0165 0.0487 

Pole 1 -0.2314 + 0.8360i -0.2010 + 0.7271i 0.3383 + 0.9512i 0.0979 + 0.9914i 

Pole 2 -0.2314 - 0.8360i   -0.2010 - 0.7271i   0.3383 - 0.9512i   0.0979 - 0.9914i 

Pole 3 0.9911 0.9973 0.9864 0.7283 + 0.2949i 

Pole 4 0.5823 + 0.4751i 0.5247 + 0.4347i 0.5902 + 0.4513i 0.7283 - 0.2949i 

Pole 5 0.5823 - 0.4751i 0.5247 - 0.4347i 0.5902 - 0.4513i 0.5167 

Time delay 0 0 0 5 

YIC -4.611 -2.554 -5.859 -2.187 

AIC -16.097 -17.239 -18.641 -15.344 

R2 0.92 0.95 0.96 0.90 
T     

 

 

 

Table IV.6. First order models, TF1 and TF2, obtained after decomposing the 

second order models for parallel and feedback configuration (see Figure IV.2). 

  TF1    TF2  

Configuration a1 b0 Pole Time  a1 b0 Pole Time 

    constant     constant 

Parallel -0.9965 0.0002 0.9965 24 hrs -0.6058 -0.3959 0.6058 59.9 sec 

Feedback -0.6058 -0.3958 0.6058 59.8 sec -0.9967 -0.0006 0.9967 25.2 hrs 
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4.2 Model-Based Identification of Dominant Subprocesses 

Interestingly, since for all data sets consequently, accurate second-order 

models were found (see Table IV.3), it is suggested that two coupled dominant 

processes underlie mGluR-LTD. From a mathematical point of view, two 

possible configurations of first-order models were suggested: a parallel circuit 

and a feedback circuit (see Figure IV.2). The serial configuration was 

mathematically impossible for this model structure (n = m = 2; see Table IV.3) 

and could be excluded. The model characteristics of the first-order models for 

the feedback and parallel solution are shown in Table IV.7. For both 

configurations, the time constants indicate one slow and one fast subprocess. 

Future experiments are suggested in which several inhibitors or agonists of 

specific underlying pathways would be applied in order to further identify the 

most appropriate configuration and link the identified parameter values of the 

submodules with specific clusters of physiological pathways obtaining a data-

based mechanistic model for mGluR-LTD. 

 

5. DISCUSSION 

Synapses are extremely dynamic structures. The effect of a signal transmitted 

synaptically from one neuron to another can vary enormously, depending on 

the recent history of activity at either or both sides of the synapse, and such 

variations can last from milliseconds to months (Abbott & Regehr, 2004). On a 

timescale of a few minutes, neuronal plasticity is mediated by local protein 

trafficking, while in order to sustain modifications beyond 2 to 3 hours, 

changes of gene expression are required (Martin et al., 2000; Groc & Choquet, 

2006; Broccard, Pegoraro, Ruaro, Altafini, & Torre, 2009). Recent advances of 

imaging techniques have made it possible to visualize and quantify synaptic 

changes on a timescale of months or years. These studies have shown that 

synapses have many dynamic properties that appear (and disappear) 

repeatedly over time (Hou et al., 2006; Kondo & Okabe, 2011). Therefore, 
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dynamical analyses of synaptic plasticity can highly contribute to fully 

comprehending the underlying synaptic mechanisms. 

 

In many studies, electrophysiological brain slice recordings are used to 

measure the synaptic strength and analyse the different forms of synaptic 

plasticity. However, in most studies, the fEPSP recordings are only statically 

analysed and the fEPSP slopes are compared for only one time point or a 

limited number of time points after the induction of LTD or LIP. To our 

knowledge, it is the first time that fEPSP slopes of mGluR-LTD responses are 

dynamically described using TF models. To quantify the dynamics of the 

responses, the sampling frequency of the fEPSP recordings has to be high 

enough (Nyquist, 1928). From the literature, it can be derived that a wide 

variety of sampling frequencies is used for electrophysiological brain slice 

recordings ranging from 0.05 Hz (Xu, Chen, Zhang, & Chen, 2010; Li, Kuhn, 

Wilson, & Lewis, 2007) to 0.0033 Hz (Ahmed et al., 2011; Popkirov & 

Manahan-Vaughan, 2011) and that there is no consensus about an optimal 

sampling frequency. The modelling results have shown that a sampling 

frequency of 0.0033 Hz is not sufficient to completely capture the dynamics. A 

sampling frequency of 0.033 Hz would be optimal from a mathematical point 

of view; however, several studies suggest that higher sampling frequencies 

(e.g., 0.033 Hz) can influence the strength and time course of synaptic plasticity 

responses (Villarreal, Do, Haddad, & Derrick, 2001; Volianskis & Jensen, 2003). 

Therefore, it is expected that the optimal sampling frequency has to find a 

balance between both effects and will lie in the interval between both sampling 

frequencies. 

 

For all TF models, the sum of the denominator parameters was nearly -1 (see 

Table IV.3), suggesting an integrator effect. Integration of information across 

time is a neural computation of critical importance to a variety of higher 

cognitive brain functions (Goldman, Compte, & Wang, 2009). Interestingly, for 

all data sets, the same model structure was also found (with n = m = 2; see 

Table IV.3). These second-order models could be decomposed into two first-
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order models and suggest that two major subprocesses underlie mGluR-LTD: 

one slow and one fast subprocess (see Table IV.7). A parallel circuit and a 

feedback circuit were suggested as candidate configurations of these two 

subprocesses. The next step is to link the first-order models and the candidate 

configurations with knowledge of the underlying mechanisms. Recently a 

number of articles have been published reviewing the mechanisms of mGluR-

dependent LTD, including Collingridge et al. (2010) and Lüscher and Huber 

(2010). Given the multiple signalling cascades that have been reported to be 

involved in mGluR-LTD, it is difficult to allocate the slow and fast time 

constants to particular molecular processes. This is complicated by the fact 

that there is obviously not a single type of mGluR-LTD but rather a family of 

related forms that differ in the degree to which certain signalling cascades are 

involved, depending on such parameters as developmental stage, species, 

strain, brain regions, and measuring conditions, to mention just a few. 

However, we think that the fast time constants describe the fast processes 

immediately after induction mediated by activation of the ERK/MAPK pathway 

and tyrosine dephosphorylation (e.g., of GluR2) with the tyrosine phosphatase 

striatal-enriched tyrosine phosphatase (STEP) as a main player. This will 

initiate AMPAR endocytosis and a reduction of surface AMPA receptors, 

resulting in a net depression of synaptic transmission. We doubt that rapid 

dendritic protein synthesis is of major importance under our conditions 

because in pilot experiments, we did not see significant effects when 

translation inhibitors were bath-applied during the induction of mGluR-LTD. 

Thus, we predict that the fast time constant does not involve translation-

dependent mechanisms. Rather, we anticipate that application of inhibitors of 

ERK1 /2 or MEK (e.g., SL327), (Ajay & Bhalla, 2004; see Sweatt, 2004, for 

review) and of tyrosine phosphatases (Gladding et al., 2009) will interfere with 

the fast time constants. A complementary role for a Rap1-induced activation of 

p38 mitogen-activated protein kinase (p38 MAPK) in this short time range can 

be tested with inhibitors such as SB203580 (Huang, You, Wu, & Hsu, 2004; 

Moult et al., 2008). The slow time constant, in contrast, is likely to reflect 

structural changes, for example, in spine number and morphology, that were 
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demonstrated in other models of synaptic plasticity to be protein-synthesis-

dependent and to occur on a timescale of hours (Fifkova & Van, 1977; 

Fukazawa et al., 2003; Lamprecht & LeDoux, 2004; Raymond, 2007). Thus, we 

expect that long-term application of translation inhibitors will affect the slow 

time constant. 

 

Many studies show the presence of feedback loops in cellular control systems 

(Mitrophanov & Groisman, 2008). Moreover, to achieve integrators, typically 

positive feedback loops are incorporated in neural models (Goldman et al., 

2009). Further investigations are required to link the sub- processes with 

existing a priori knowledge about mechanisms underlying mGluR-LTD and to 

eliminate unlikely configurations. 

 

Although neural mechanisms are known to contain many nonlinearities, the 

linear TF models were able to describe the dynamics of the mGluR-responses 

and uncover information about the underlying mechanisms without knowing 

all details of this form of LTD (for more detailed explanations on the use of 

local linear approximations of  non-linear processes: see  3.2 The dynamic 

process model). These modelling results confirm other studies in which 

discrete-time linear TF models and linear system identification techniques 

were used for modelling different kinds of brain signals (Liu, Birch, & Allen, 

2003; Westwick, Pohlmeyer, Solla, Miller, & Perreault, 2006; Behrend et al., 

2009). 

 

Thus, the models can help identify the data structures and algorithms that are 

used in mammalian cortex to support successive acts of the basic cognitive 

tasks of memorization, a central open question of computational neuroscience 

(Valiant, 2005). The discrete-time TF models are interesting to investigate 

mGlu receptor-dependent LTD because of their computational and 

conceptional simplicity and since they are able to combine the advantages of a 

data-based approach (accurate models) with a mechanistic approach 

(meaningful parameters). 
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This study suggests that the dynamic data-based modelling approach can be a 

valuable tool for reverse engineering of mGluR-dependent LTD responses. 

Moreover, this approach can be extended to other forms of LTD and LTP using 

other induction protocols as input for the TF models. It is expected that such 

system identification methods can aid in unravelling the complexities of 

synaptic function and its role in disease. 
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GENERAL CONCLUSIONS 

Individual biological process: 

In this chapter we described electrophysiological brain slice recordings of synaptic 

plasticity responses to unravel part of the underlying physiological mechanisms.   

As shown in this study, it is a challenge to find the optimal sampling frequency for 

the measurements, since higher sampling frequencies can influence the strength 

and  time course of the synaptic plasticity responses. Similarly to chapter 2 and 3, 

this case suggests that for some biological processes the sampling frequency itself 

can induce the activation of physiological mechanisms which affect the time course 

of the measured bio-responses and their underlying processes.  In contrast with the 

other chapter, the biological mechanisms were at cellular level (spatial scale).  To 

obtain reliable and clear synaptic plasticity responses, the specific positioning and 

optimal stimulation parameters of the electrodes are of utmost importance.  

Therefore, available biological knowledge on the hippocampal structure and the 

cellular connections are essential for accurate experiments.  

 

Process models and model-based features: 

Whereas the previous chapters focused mainly on the model noise of single-output 

models (detrended time series), this study aimed at quantifying the model 

structure and time constants of the responses based on the input-output models. 

Accurate models were obtained and the model structure suggested the presence of 

two major underlying subprocesses. Based on the estimated times constants, links 

with existing pathways were suggested.  Since the calculated models were data-

based and the fact that we could link the models with underlying physiology, the 

obtained models are data-based mechanistic models. Thus, although neural 

mechanisms are known to contain many nonlinearities, the linear models were 

able to describe the dynamics and uncover information about the underlying 

mechanisms without knowing all details of this form of synaptic plasticity (see 

hypothesis 3 in Part 1). 
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Individualised change detection: 

In future drug experiments, such models could be used to detect changes in model 

structures reflecting activation or inhibition of underlying mechanisms. Thus, the 

results suggest that model structure could be used for individualised model-based 

monitoring of biological processes. 
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CHAPTER V        

Conceptualization and validation of an open-

source closed-loop deep brain stimulation 

system in rat 
 

Adapted from: Wu, H., Ghekiere, H., Beeckmans, D., Tambuyzer, T., Van Kuyck, K., 

Aerts, J. M., & Nuttin, B. (2015). Conceptualization and validation of an open-source 

closed-loop deep brain stimulation system in rat. Scientific reports, 4, srep09921. 

 

BROADER PERSPECTIVE 

This chapter describes another example of individualised monitoring. The main 

objective was to develop an individualised closed-loop deep brain stimulation 

system that can suppress locomotion in rats.  Theta oscillations in the hippocampus 

(output variable) are highly related with locomotion, while electrical stimulation in 

the mesencephalic reticular formation (input variable) induces freezing. Starting 

from these two biological insights we hypothesised that it is possible to develop a 

control system for suppression of locomotion in rodents. However, since there are 

many factors leading to inter-individual differences (electrode location, size and 

shape of brain region, activity of brain cells, animal behaviour, …) an individualised 

approach is necessary. Other than the previous case studies, this chapter focused on 

frequency analysis instead of time series analysis, but the following steps 

correspond with the general scheme of the PhD. Features (i.e. power spectral 

densities at specific theta frequencies) will be extracted from the bio-signals and 

individualised thresholds will be calculated based on a fixed period of individual 

baseline measurements (See hypothesis 4 in Part 1).  

To conclude, this chapter will present an approach for individualised monitoring of 

brain signals (i.e. local field potentials) in rodents. In fact, this chapter will go one 

step further by also implementing the monitoring approach in a control system 

allowing individualised interventions (individual stimulation parameters for deep 

brain stimulation; link to hypothesis 3 in Part 1). 
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1. ABSTRACT 

Conventional deep brain stimulation (DBS) applies constant electrical stimulation 

to specific brain regions to treat neurological disorders. Closed-loop DBS with real-

time feedback is gaining attention in recent years, after proved more effective than 

conventional DBS in terms of pathological symptom control clinically. 

Here we demonstrate the conceptualization and validation of a closed-loop DBS 

system using open-source hardware. We used hippocampal theta oscillations as 

system input, and electrical stimulation in the mesencephalic reticular formation 

(mRt) as controller output. It is well documented that hippocampal theta 

oscillations are highly related to locomotion, while electrical stimulation in the mRt 

induces freezing. We used an Arduino open-source microcontroller between input 

and output sources. This allowed us to use hippocampal local field potentials (LFPs) 

to steer electrical stimulation in the mRt. Our results showed that closed-loop DBS 

significantly suppressed locomotion compared to no stimulation, and required on 

average only 56% of the stimulation used in open-loop DBS to reach similar effects. 

The main advantages of open-source hardware include wide selection and 

availability, high customizability, and affordability. Our open-source closed-loop 

DBS system is effective, and warrants further research using open-source hardware 

for closed-loop neuromodulation. 

 

2. INTRODUCTION 

Deep brain stimulation (DBS) is a neurosurgical technique in which electrodes are 

implanted stereotactically in specific parts of the brain, and by applying electric 

currents, symptoms of various neurological disorders can be controlled. Because it 

is an invasive neurosurgical treatment with inherent surgical risk, it is mainly used 

to treat severe and otherwise-refractory diseases. Current clinical applications of 

DBS include movement disorders (e.g. Parkinson’s disease), epilepsy, pain, and 

psychiatric disorders (e.g. obsessive-compulsive disorder and major depressive 

disorder). 
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The conventional DBS system is unidirectional: it delivers electrical stimulation 

without receiving any neural feedback. Recent technological breakthroughs make it 

possible to not only stimulate, but also record brain signals from relevant brain 

regions (Rosin et al., 2011; Little et al., 2013). Based on neural inputs, stimulation 

can be adjusted in real-time, creating a closed-loop system. Closed-loop DBS has 

already proved to be more effective than conventional DBS in Parkinsonian 

symptom in animal research and clinical trials (Rosin et al., 2011; Little et al., 2013). 

However, the availability of closed-loop DBS systems for research use is rather 

limited. An ideal closed-loop DBS system for research purposes is robust, reliable, 

affordable, and easily customizable. The recent emergence of open-source hardware 

introduced affordable and highly customizable hardware for various applications. 

Open-source closed-loop multichannel system for single-neuron manipulation has 

been investigated previously (Newman et al., 2012). Here we describe 

conceptualization and validation of an open-source closed-loop DBS system for 

preclinical research purposes. 

 

We used Arduino Uno (manufactured by Smart Projects, Italy), an open-source 

microcontroller, to control DBS system output (electrical stimulation) based on 

real-time input (neural signals). The input source is local field potentials (LFPs) 

from the hippocampus, and the output electrical stimulation is delivered in the 

mesencephalic reticular formation (mRt) in rats. Theta oscillations in the 

hippocampus are highly related to locomotion (Kramis et al. 1975), while electrical 

stimulation in the mRt induces freezing5. We hypothesize that our open-source 

closed-loop DBS system can suppress locomotion by stimulating the mRt based on 

real-time hippocampal theta power. To test our hypothesis, we measured the level 

of locomotion in rats under 4 different circumstances: no stimulation (OFF), open-

loop stimulation (OL), random stimulation (RANDOM), and closed-loop stimulation 

(CL). 
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3. MATERIALS AND METHODS 

Study overview. 12 male Wistar rats weighing 200–250 g were used in our 

study. One twisted bipolar electrode and 2 monopolar electrodes were 

implanted in the hippocampus and the mRt in each rat, respectively. After one 

week of recovery, all rats underwent 1 day of baseline measurement followed 

by 4 days of testing sessions. The level of locomotion of every rat during each 

testing session was analysed and compared statistically (see text below for 

more details). 

 

This research project and the experimental protocol were approved by the KU 

Leuven ethics committee for laboratory experimentation (project number: 

P093/2012), and was in accordance with the Belgian and European laws, 

guidelines and policies for animal experimentation, housing and care (Belgian 

Royal Decree of 29 May 2013 and European Directive 2010/63/EU on the 

protection of animals use for scientific purposes of 20 October 2010). 

 

Surgical procedures. Rat was anesthetized (Anesketin (0.06 mL/100 g body 

weight) and Domitor (0.04 mL/100 g body weight)), put on a heating pad 

with anal probe to keep the body temperature at approximately 37.5°C, and 

properly fixed in a stereotactic frame. Midline incision and three burr holes 

were made based on implantation trajectory (1 for hippocampus and 2 for 

mRt; coordinates of mRt: 5.76 mm posterior to bregma, 3.4 mm lateral to 

midline, 6 mm deep relative to dura, 14° to sagittal insertion angle; 

coordinates of hippocampus: 4 mm posterior to bregma, 2.8 mm lateral to 

midline, 2.7 mm deep relative to dura, 20° to sagittal insertion angle). Three 

surrounding burr holes were made (1 for reference screw (E363/20, 

PlasticsOne), 2 for anchoring screws) before 2 monopolar electrodes 

(E363/8, PlasticsOne) and 1 bipolar electrode (E363/8-2TW, PlasticsOne) 
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were implanted in the mRt and the hippocampus, respectively. After 

mounting reference screw and anchoring screws, dental cement was applied 

and a plastic pedestal (MS363, PlasticsOne) was fixed on top of rat’s head, 

with sockets of implanted electrodes placed inside. Antisedan (0.03 mL/100 g 

body weight) was administered after operation was completed, and each rat 

was given one week of recovery. 

 

Experimental setup. The test cage was 34334334 cm. Each rat was placed 

individually in the test cage for 15 minutes (Slawinska & Kasicki, 1995; 

Sinnamon, 2005; Chen et al., 2011) each day during baseline and testing 

sessions. When rat was placed in test cage, the pedestal was connected to a 

swivel (swivel: SL6C, PlasticsOne; wire: 363-363 (CS), PlasticsOne). LFP was 

recorded in every rat during baseline and test sessions via a custom filter 

device (Rossi et al., 2007) to filter out stimulation artifact, a preamplifier (66 

dB) to increase signal-to-noise ratio, and a data acquisition card (NI USB-

6341, National Instruments, Texas, USA; software environment: MatLab, 

MathWorks, Natick, MA, USA). Hippocampal LFPs were recorded at 10 kHz. 

To extract relevant information, two filters were applied: one Butterworth 

bandpass (1–300 Hz) and one notch (49–51 Hz). An Arduino Uno board was 

connected between processed input and stimulator output, to steer 

stimulation based on hippocampal LFPs. A webcam (Logitech HD Webcam 

Pro C910) was fixed on top of the cage to record behaviour of rat. In total 15 

hours of LFPs and videos were recorded. 

 

After one week of recovery from surgery, each rat underwent 1 day of 

baseline measurement and 4 days of testing period. During baseline 

measurement, hippo-campal theta threshold and optimal stimulation 

parameters were determined. During the 4-day testing period, each rat 
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underwent one of the 4 following intervention each day (random, non-

repetitive): no stimulation (OFF), open-loop stimulation (OL), random 

stimulation (RANDOM) and closed-loop stimulation (CL). During OFF, no 

electrical stimulation was applied in the mRt; during OL, stimulation was 

constantly applied in the mRt; during RANDOM, certain percentage 

(determined during baseline measurement, see text below for details) of 

‘‘stimulation-on time’’ was applied randomly; during CL, stimulation was 

applied only when real-time hippocampal theta power exceeded the 

threshold. 

 

The percentage of movement during each 15-minute test session of each rat 

was then evaluated by automated video analysis (see text below for more 

details). We used cresyl violet staining method to examine the three 

implanted locations (one in right hippocampus, and two in left and right mRt). 

Rats with misplaced electrodes were excluded from statistical analysis. 

 

Automated video analysis. To perform automated video analysis, an 

algorithm to detect movement in a video recording of a rat was developed. 

The two main measurements of automated video analysis were: percentage of 

movement, and the exact time of movement. The algorithm was based upon a 

Matlab script developed by Tambuyzer et al. (2012) to measure travelled 

distance in an experiment with rats on compulsive behavior. This algorithm 

was used for both baseline measurements and for movement analysis on the 

video recordings during testing period. In brief, the major steps of video 

analysis are as follows: each frame of all 15-minute videos (15 frames per 

second) was first converted to black & white image, and the border of the test 

cage was automatically detected. A specific grey-scale value was used to 

separate the rat (white) from background (dark), and the centroid point of 
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the rat was obtained for each frame. A binary value representing movement 

(yes/no) between frames was then calculated. Definition of movement: when 

the total change in centroid position over 3 consecutive frames exceeded 5 

pixels (approximately 0.5 cm), the rat was considered to be moving. Lastly, 

percentage of movement (percentage of time during the recording that the rat 

spent moving), and the exact time of movement were obtained. 

 

Baseline measurement. Two main goals were achieved during baseline 

measurement: calculation of hippocampal theta power threshold and 

optimization of mRt stimulation parameters. 

 

The hippocampal theta power threshold was obtained during baseline 

measurement, and served as a real-time neurophysiological indicator of 

locomotion. The rat was placed in the test cage for 15 minutes during baseline 

measurement. 

Hippocampal LFP and behaviour (video) were measured and analysed offline. 

Percentage of movement and exact moments of movements (time points) 

were extracted from behavioural measurement based on automated video 

analysis. Medians and standard deviations of power spectral density at 

specific theta frequencies (7.8 Hz and 9.8 Hz) were obtained from LFPs 

(window size: 500 ms, 250 ms overlap). The hippocampal theta power 

threshold (Threshold) was defined in the following equation: 

 

Threshold = Median + threshold factor * standard deviation 
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A set of threshold factors (0.1–0.5 in 0.05 increment) was tested in both sets 

of median and standard deviation against behavioural data, and the 

combination of frequency and threshold factor with the highest accuracy to 

predict movement was chosen as the hippocampal theta power threshold for 

a rat. The time delay between the exceeding of threshold value in the LFP data 

and the actual start of movement seen in the video and vice versa was also 

taken into account, e.g. if the theta power exceeded threshold value 200 ms 

before the movement was detected on video, this was still considered a true 

positive (maximum allowed time delay: 250 ms). Stimulation was switched 

on for 500 ms once the real-time theta power exceeded Threshold. 

 

Optimization of mRt stimulation parameters was done after LFP and 

behavioural measurements. Electrical stimulations with different frequencies, 

pulsewidths, and amplitudes were tested in each rat to achieve maximal 

freezing without observable side effects (e.g. epileptic behaviours). 

 

After baseline measurements, a set of hippocampal theta power threshold 

and mRt stimulation parameters in each individual rat was obtained, and 

would be used in the following testing period. 

 

Besides hippocampal theta power threshold and optimal stimulation 

parameters, the percentage time of locomotion would be used as the 

percentage of ‘‘stimulation on’’ time during RANDOM testing, with stimulation 

applied in random time points without regards to the rat’s behavioural state. 

 

Statistical analysis. The percentages of ‘‘stimulation-on time’’ during 

RANDOM and CL were compared to examine the level of significance of the 

difference of sample means (paired t-test). One-way repeated measures 
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analysis of variance (RM-ANOVA) was used to examine if the main effect of 

different intervention between groups on percentage of locomotion was 

significant. We used Statistica (StatSoft Inc., Tulsa, OK, USA) to perform 

statistical analysis (the level of significance was set at 0.05 for all statistical 

tests). 

 

4. RESULTS 

The overview of hippocampal theta power threshold and mRt stimulation 

parameters of each individual rat is shown in Table V.1. Figure V.1 is the 

illustration of two monopolar and one bipolar electrodes implanted in the 

bilateral mRt and right hippocampus, respectively. In total 7 rats were 

included in the final analysis (5 dropouts: 4 misplaced electrodes, 1 

premature death). The closed-loop hardware scheme is summarized in Figure 

V.2. Figure V.3 shows examples of hippocampal theta oscillations, and theta 

threshold during CL. The system delay time (from receiving input to actual 

output) was tested and estimated to be less than 100 milliseconds. 

 

Stimulation-on time in RANDOM and CL groups. The percentage of 

‘‘stimulation-on time’’ during RANDOM and CL test sessions were 43.86 +/- 

0.80% and 55.57 +/- 4.56%, respectively (mean +/- standard error of the 

mean; paired t-test: p>0.05). 

 

Effects of Different Stimulation Schemes on Movement. The percentages 

of movement detected by automated video analysis during the 15-minute test 

sessions of OFF, OL, RANDOM, and CL were 62.40 +/-  6.28%, 45.73 +/-  

5.38%, 67.80 +/-  6.03%, and 44.60 +/-  5.15%, respectively. Mauchly’s test 

indicated that the assumption of sphericity had not been violated. RM-ANOVA 

showed that the effect of different interventions on percentage of movement 
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was significant (p = 0.012). Post hoc pairwise comparisons (with Bonferroni 

corrections) indicated that the mean difference between OFF and CL was 

significant (p = 0.042). 

 

Figure V.4 summarizes the percentage of stimulation-on time and effect on 

movement during each stimulation scheme. 

 

 

Table V.1. Theta threshold values (logarithmic) and corresponding theta 

frequencies, and stimulation parameters (amplitudes, band-  widths, and 

frequencies) of each rat during test sessions. 

 Theta threshold Stimulation parameters 
Rat 1 –13.61@7.8 Hz 300 uA, 60 us, 130 Hz 
Rat 2 –13.20@9.8 Hz 220 uA, 50 us, 130 Hz 
Rat 3 –13.19@9.8 Hz 400 uA, 60 us, 130 Hz 
Rat 4 –13.19@9.8 Hz 210 uA, 50 us, 130 Hz 
Rat 5 –13.70@7.8 Hz 210 uA, 60 us, 130 Hz 

Rat 6  –13.64@7.8 Hz 200 uA, 60 us, 130 Hz 

Rat 7  –13.30@7.8 Hz 160 uA, 50 us, 130 Hz 

 

 

 

 

 

 

 

 

Figure V.1. One bipolar and two monopolar electrodes were implanted in the 

right hippocampus (recording) and bilateral mesencephalic reticular 

formation (stimulation), respectively. Drawing by Stephany Pei-Yen Hsiao. 
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Figure V.2. Schematic illustration of the open source, closed-loop deep brain 

stimulation system in rats. The blue arrow indicates hippocampal local field 

potentials, recorded through amplifier, filter and data acquisition device, and 

analysed in the PC. Based on real-time theta power analysis, electrical 

stimulation (indicated by the red arrow) sent to the rat brain (mesencephalic 

reticular formation) is controlled via the Arduino board. AMP: custom 

amplifier, ARD: Arduino Uno board, DAQ: data acquisition card, MOC: 

mechanism operated cell, Stim: stimulator. Drawing by Stephany Pei-Yen 

Hsiao. 

 

 

5. DISCUSSION 

Our results showed that hippocampal-mRt closed-loop DBS significantly 

reduced locomotion compared to no stimulation. Open-loop mRt DBS also 

reduced locomotion compared to no stimulation (insignificantly in this study 

due to small sample size), in alignment with the results from previous study 

(Robinson, 1978). But with closed-loop DBS, only 55.57% of electrical 

stimulation was used compared to open-loop DBS to achieve similar effects. 

Electrical stimulation applied at random interval did not suppress 

locomotion, indicating that only electrical stimulation in the mRt given at the 

right moment can effectively suppress locomotion. Figure V.5 summarizes the 

key steps of our closed-loop DBS. 
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A dynamic system is a system whose behaviour changes over time, mostly in 

response to external stimulation/disturbances. A closed-loop system then, 

refers to a situation in which two or more dynamic systems are 

interconnected to each other in a cycle, such that each system influences the 

other and the dynamics of each system are strongly coupled. When there are 

two systems for instance, the first system influences the second system which 

in turn influences the first system by giving feedback, this feedback from the 

second to the first system makes the whole system a closed-loop (Aström & 

Murray, 2010). Based on the measured output compared to a set of reference 

values, the error on the system output is measured. When this error reaches a 

predefined threshold value, the system input is changed by a controller in 

order to adapt the system output, hence decreasing the error on the output to 

an acceptable value (Romagnoli & Palazoglu, 2012). 

 

The advantage of a closed-loop control system lies in the fact that feedback 

control algorithms are designed to acquire the desired performance by 

altering the inputs immediately once deviations are observed regardless of 

what caused the disturbance (Marlin & Marlin, 1995). In the case of closed-

loop neuromodulation, the central nervous system acts as controller of many 

body systems at organism scale (e.g. control of movement), and control of the 

central nervous system by DBS is a promising example of how control theory 

can be applied to adapt (pathological) behaviour of organisms. 
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Figure V.3. Measured hippocampal LFPs and theta power during closed-loop 

stimulation. 3a and b: Rat hippocampal LFP and power spectrogram, showing 

a clear peak in theta band during locomotion. 3c and d: Hippocampal LFP and 

power spectrums when the rat was resting. No peak in theta range was 

observed. 3e: Real-time theta power during closed-loop stimulation. --- 

indicates the predetermined individual theta threshold. Each black dot 

represents real-time hippocampal theta power. If theta power exceeded the 

threshold (black dot above ---), bilateral stimulation in the mesencephalic 

reticular formation was switched on (until theta power dropped below 

threshold). LFP: local field potential. 

 

 

In our study, we have shown that closed-loop DBS is effective in suppressing 

locomotion with less electrical stimulation used compared to open-loop DBS. 

This implicates the advantages of less stimulation-induced side effects and 

more efficient use of energy of closed-loop DBS during clinical application. To 

the best of our knowledge, this is the first attempt to use hippocampal-LFP-

based neuromodulation to manipulate behaviour of rodents. In principle, 

 

 



 CHAPTER 5 

163 

 

 

 

 

 

 

 

 

 

Figure V.4.  Effects of OFF, OL, RANDOM, and CL stimulations on locomotion 

(mean +/- S.E.M., scatter plot), and corresponding percentage of stimulation-

on time (mean, red columns). Repeated-measure analysis of variance showed 

that the main effect of different intervention on percentage of movement 

detected via automated video analysis was significant (p = 0.012). Post hoc 

pairwise comparisons (Bonferroni correction) indicated that the percentage 

of movement during CL was significantly lower than during OFF (p = 0.042). 

Percentages of stimulation-on time during RANDOM and CL were 43.86 +/- 

0.80% and 55.57 +/- 4.56%, respectively. OFF: no stimulation, OL: open-loop 

stimulation, RANDOM: randomly-applied, CL: closed-loop. *: p<0.05. 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure V.5. Graphical illustrations of hippocampal-mRt closed-loop deep 

brain stimulation. Locomotion (e.g. exploratory walking) in rat (5a) and 

corresponding hippocampal theta activity (5b, local field potential sample of 

1 second), which triggers bipolar electrical stimulation in the mRt (5c), and 

induces freezing and suppresses locomotion (5d). Drawing by Stephany Pei-

Yen Hsiao (5a, c, and d). 
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we’ve proven that open-source hardware is capable of effectively intervening 

neural circuits in a closed-loop fashion. The system delay time (from 

receiving input to actual output) of less than 100 milliseconds seemed 

acceptable in our model, and was comparable to other closed-loop neural 

stimulation systems (Rosin et al., 2011; Little et al., 2013). The main 

component of the delay came from the processing of the LFP data in Matlab. 

We also have delay from the Arduino microcontroller (in the order of msec) 

and the mechanism operated cell (also in the order of msec) for on- and off-

switching. The DAQ card is another source of delay, in the range of a few 

milliseconds maximally. Optimization of hardware (with more powerful 

chipsets) and software setup (enhanced algorithms) may further reduce delay 

and improve system efficacy. With our current setup, the open source 

hardware component is only acting as a controller of output based on input. 

This is related to limitations of Arduino Uno, but with more advanced open 

source hardware systems (e.g. open source mini pc and data acquisition 

system), it is possible to build a complete open source closed-loop neural 

stimulation system. 

 

The main advantages of open source hardware include wide range of 

selection and availability, high customizability, and affordability. Our results 

suggest open source hardware as an effective component for closed-loop DBS 

system, and warrant future research of closed-loop neural stimulation using 

open source hardware. 
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GENERAL CONCLUSIONS 

Individual biological process: 

Starting from biological insights of the process, we were able to develop a control 

system for suppression of locomotion in rats (Hypothesis 1 in Part 1).  

In the case of closed-loop neuromodulation, the central nervous systems acts as 

controller of many body systems at organisms scale (e.g. control of movement), and 

control of the central nervous system by DBS is a promising example of how 

control engineering concepts can be applied to adapt (pathological) behaviour of 

organisms. Since the closed-loop system was effective in suppressing the 

locomotion, this implicates less stimulation-induced side effects compared with 

continuous stimulation based on open-loop DBS systems during clinical 

applications. Often pathological symptoms are not constant and therefore 

continuous stimulation of the brain with open-loop DBS systems is not the most 

efficient treatment. Closed-loop systems can adjust to symptoms and may be able to 

avoid stimulation-induced side effects. 

 

Feature generation: 

This chapter showed  how we can extract features from biological responses (i.e. 

theta frequencies) in a way that allows us to effectively manage the biological 

process (i.e. deep brain stimulation; See hypothesis 3 in Part 1).  

 

Individualised change detection: 

Moreover, by using individual baseline measurements the control system can be 

individualised based on individual monitoring thresholds and individualised 

interventions (Hypothesis 4 in Part 1). As shown by the analyses, the threshold 

values and stimulation parameters were individually different confirming the 

need for an individualised approach. 
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CHAPTER VI        

Individualised model-based monitoring of 

chicken embryo status during incubation 

based on eggshell temperature  
 

Tim Tambuyzer*, Carlos Eduardo Bites Romanini*, et al.  

(In preparation for submission)   

*Shared first authors 

 
BROADER PERSPECTIVE 

The last chapter of part 2 presents a monitoring application that includes all blocks 

of the general scheme for model-based individualised monitoring of biological 

processes (see figure 1.8). The main idea of this chapter is to develop an 

individualised model-based monitoring approach for detection of the different 

developmental stages of chicken embryos during incubation. Different from the 

other chapters, here we are not just monitoring a single status (e.g. infection or not), 

but rather the growth and developmental stages, which is a completely different 

temporal level relative to the lifetime of the organism. The spatial level is the full 

organism: the chicken embryo. Since there is a very clear boundary between the 

embryo and the surrounding environment (i.e. the eggshell), this case study is ideal 

for monitoring or control purposes and interpreting the results. 

Therefore, in this chapter we will apply most elements of the individualised 

model-based monitoring approach that were used in the previous chapters: bio-

process (i.e. chicken embryo), models (i.e. input-output models), feature generation 

(i.e. model parameters derived metrics) and individualised change detection 

based on individual thresholds. Moreover, in this chapter we even go one step 

further by also predicting future states of the chicken embryos. 
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1. ABSTRACT 

Many incubation variables interact with embryonic development. Often such 

incubation variables (e.g. eggshell and micro-environmental temperature) have 

major influences and are associated with, for example, hatchability results and chick 

quality on group level. However, little is known on the interaction of such variables 

at individual level (e.g. Romanini et al., 2013). We hypothesise in this study that it is 

possible to develop an individualised model-based monitoring approach which is 

able to detect and even predict the individual progress of embryo development 

during the incubation of chicken eggs based on eggshell temperature (TEgg) and 

micro-environmental air temperature (TAir). The three main objectives of this study 

were: i) to quantify the relation between eggshell temperature and the local 

environmental temperature based on individual first order discrete-time transfer 

function models. ii) To detect (i.e. monitor) different model-based milestones that 

can be related with the biological processes of the individual embryo development. 

iii) To use the individual information obtained by the detected embryo 

development milestones to make predictions of hatch time.  

The results showed that five different milestones in the development of individual 

broiler embryos can be detected based on dynamic models of the local environment 

temperature and the individually measured eggshell temperature: i) transition from 

endothermic to exothermic; ii) plateau phase of embryonic metabolic heat 

production; iii) the start of pulmonary respiration from the breaking of the internal 

egg air cell by the beak (internal pipping); iv) the completion of the diffusive 

respiration via the chorioallantoic membrane with embryos pipping the egg 

shell externally (external pipping) and; v) the completion of breaking the egg and 

the emergency from the shell (hatch). In addition, we could make individualised 

prediction of the hatch day after detection of milestone ii, the plateau phase on 

embryo heat production (ROC AUC = 0.91). This result can be interpreted as an 
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early biological sign of the  embryo preparing itself in terms of metabolic energy 

saving to progress towards the hatching phase.    

This individualised monitoring approach could be an added value for individualised 

prediction of hatching and for other  experimental designs and studies, where the 

developmental stage of the embryo is relevant. Moreover, this individualised 

model-based monitoring approach could also open possibilities in future studies for 

the development of more precise control systems for synchronised embryo 

development and uniform hatching.  

 

2. INTRODUCTION 

Commercial incubators should capable of providing optimal conditions for embryo 

development inside the egg by imitating realistic natural conditions and by trying  

to regulate variables, such as air temperature, air humidity, air speed, gases 

concentrations, light and egg turning (French 2007, Boleli et al. 2013). Nowadays, a 

key aspect is the progress from a natural incubation of few eggs in the nest to the 

large capacities of the latest incubators, which incubate more than a hundred 

thousand eggs at once. Therefore, spatiotemporal gradients in air temperature, air 

speed, and 3-dimensional airflow patterns increase significantly (Van Brecht et al., 

2003) and thus, the rate of development is modified at the level of individual eggs. 

Although an embryo inside an egg seems isolated from the external environment, 

research recognised the critical role played by heat, gases and water vapour 

exchanges between an egg and its surrounding microenvironment (Meijerhof, 2000; 

Hammond et al., 2007; Leksrisompong et al., 2007; Ipek, 2014). TAir is a major 

influencing variable (Freeman & Vince, 1974; Decuypere & Michels, 1992; 

Meijerhof, 2009) as it can cause variance in TEgg beyond the optimal range of  37.5 – 

37.8 °C and thus affect total incubation length, embryonic metabolic heat 

production, organ and body sizes, skeletal growth, hatchability results and chick 
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quality at the day of hatch (Wittow and Tawaza 1991; Decuypere and Mitchels, 

1992; Yalcın and Siegel, 2003; Tazawa et al., 2004). 

So far, eggshell temperature has been vastly used as a practical measurement of 

embryo temperature (French, 1997; Lourens et al., 2005; Joseph et al., 2006; Hulet 

et al., 2007, Molenaar et al., 2010; Walstra et al., 2010; Romanini et al., 2013, Boleli, 

2016). It has been demonstrated that eggshell temperature remains low from 0 to 

10 days of incubation, since embryonic metabolic heat production is minimal, thus 

indicating that eggs need to gain heat from external source (Tullett & Deeming, 

1987). During the second week of incubation, mainly after 12 to 13 days of 

incubation, there is an exponential increase in heat production by the embryo 

related to the growth phase of embryo development  (Sotherland et al., 1987; 

Lourens et al. 2006, 2007). At this stage, internal egg temperature can increase by  

1.5 °C above the temperature at the surface of the eggshell (Gualhanone, 2012) and 

thus heat needs to be lost by the eggs. Around 14 to 16 days of incubation 

embryonic heat production reaches a plateau phase (French, 2007) as the embryo is 

saving energy and preparing itself to move towards hatching stages with further 

increases in TEgg (Sgavioli et al., 2015; De Morita et al., 2016).  

 

In addition to heat, both gas and water vapour exchanges during incubation are also 

changing in time. The demand for O2 increases at 10 – 12 days of incubation as a 

result of increasing embryo metabolism (Hamburger & Hamilton, 1951; Tazawa, 

1980; Deeming, 2002; Boleli et al., 2016), resulting in larger exchanges of O2 and 

CO2 with atmospheric air by diffusion through the chorioallantoic membrane 

(CAM). During the last stages of  incubation, embryos begin to clap their beaks and 

break the internal egg air cell (internal pipping, IP) (Khandoker, 2003). After IP, 

gases gradually begin to be exchanged via the pulmonary respiratory system 

(Decuypere & Bruggeman, 2006; Mortola, 2009) until the embryos pip the 

eggshell externally (external pipping, EP) and subsequently progress towards hatch. 
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However, individual differences through the course of embryonic development are 

not sufficiently taken into account. Individual variations due to genetic origin 

(Chawalibog, 2004), 3-dimensional physical incubation conditions (French, 1997; 

Nichelmann and Tzschentke, 2002; Van Brecht et al. 2005), egg variables such as 

size, composition, and shape, eggshell thickness, porosity, heat and water vapour 

conductance (Boleli, 2003) and pre-incubation conditions (Janke, 2004) may cause 

deviations from expected results at the level of individual embryos. Therefore, 

trying to individually monitor and predict the embryo development is a crucial step 

towards the synchronization of embryo development among eggs and more 

uniform hatching time among individuals. However, little is known on the 

interaction of the aforementioned variables at an individual level (e.g. Romanini et 

al., 2013).  

 

Since TAir and TEgg are major influencing variables during the embryo development, 

we hypothesise in this study that it is possible to develop an individualised model-

based monitoring approach which is able to detect or even predict the individual 

progress of embryo development based on eggshell temperature and micro-

environmental air temperature. The three main objectives of this study were: i) to 

quantify the relation between eggshell temperature and the local environmental 

temperature based on individual first order discrete-time transfer function models. 

ii) To detect different milestones of the individual embryo development based on 

the calculated models. iii) To use the individual information obtained by detection 

of the milestones to make predictions of hatch time.  
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3. MATERIALS AND METHODS 

Experiments 

Dataset 1 

In total, six batches of Ross 308 eggs (600 eggs/batch) were collected from 

breeders aged between 35 and 57 weeks (Henry Stewart & Co. Ltd., Lincolnshire, 

United Kingdom). All eggs were incubated and hatched in two small-scale (capacity 

for 300 eggs each) custom-built ‘BioStreamer’ incubators (Petersime NV, Zulte, 

Belgium) using a standard 21-days incubation program.  Eggshell temperature was 

continuously controlled at 37.8 ⁰C and relative humidity at 60%.   

Twenty out of six hundred eggs were randomly picked and individually labelled as 

‘focal eggs’ in each incubation trial to serve as samples for the current study. In 

total, 120 focal eggs from six repetitions were analysed. 

Standard low-cost thermocouples type T sensors were attached to the equator of 

the shells of the focal egg (Romanini et al., 2013). Another temperature sensor was 

positioned 1 cm away from each focal egg to record the corresponding micro-

environmental air temperature , TAir. The eggshell temperature, TEgg of each focal 

egg and TAir were recorded every minute throughout the entire incubation. 

Out of the 120 focal eggs monitored, the temperature measurement of 54 eggs were 

included in this study. Remaining focal eggs were detected as infertile (n=15) or did 

not succeed to hatch because of early (n=3), middle (n=12), or late (n=11) mortality 

(Tong et al., 2016). Cracked or contaminated eggs (n=15) were excluded from the 

analyses, as well as eggs with noisy measurements of  TEgg or TAir (n=10). 

 

Dataset 2 

Supported by the results based on the first dataset, a second dataset was generated 

with the purpose to further investigate embryonic status during the last phase of 

the incubation period. The same type of eggs were used.  This time, a custom-built 

small scale incubator model ‘GVH 2000’ (Petersime NV, Zulte, Belgium) with same 
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capacity of 300 eggs was used (Van Brecht et al. 2005b). The same standard 21-days 

incubation program was used; in addition, also the same approach was used for the 

temperature measurements. The number of focal eggs monitored and hatched was 

20. In addition, the status of the embryo was assessed by visual checks during six 

different time points (see Table VI.1). 

 

Table VI.1. Incubation process times of individual labels based on visual checks. 

Number of visual check 

in chronological order 

Incubation process time 

1 18 days and 17 hours 

2   19 days and 10 hours 

3   19 days and 14 hours 

4   19 days and 19 hours 

5   20 days and 11 hours 

6        20 days and 17 hours 

 

 

During each visual check, all eggs were individually labelled into one of the 

following four categories as verified by candling method (Crossley and Altimiras, 

2000) or direct visual inspection:  

i) Pre-internal pipping (pre-IP) 

ii) Internal pipping (IP): Internal pipping is when the chick breaks through 

the air cell inside the egg. Internal pipping cannot be seen from the 

outside of the egg, but it can be detected by candling an individual egg 

with a torch. 
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iii) External pipping (EP): The embryo is completely filling the egg and the 

beak is poised to start pecking through the shell and to make a hole in the 

eggshell. 

iv) Hatching (H): The chick starts making some regular pipping movements 

and eventually breaks through the shell circumference until it creates a 

hole that is large enough to emerge the body completely from the shell. 

  

Modelling 

Dynamic data-based models 

First order discrete-time transfer function (TF) models were used. The models were 

single-input, single-output (SISO) models. The micro-environmental air 

temperature was used as model input, and the eggshell temperature, measured at 

the equator of the eggs, was used as model output. A first order SISO discrete-time 

TF model can be described by the following equation (Young, 1984): 

𝑦𝑡 =
𝑏0

1+𝑎1𝑧−1
 𝑢𝑡−𝛿 +  𝜉𝑡 

 

Where yt  is the model output (TEgg),  ut-δ is the model input (TAir), t is the time for 

discrete time steps, δ is the time delay (δ≥0), and ξ is additive noise, a serially 

uncorrelated sequence of random variables with variance that accounts for 

measurement noise, modelling errors, and the effects of unmeasured inputs to the 

process. b0 and a1 are the model parameters. Finally, z-1 represents the backward 

shift operator that is defined as z-1yt = yt-1. All model calculations were performed in 

Matlab using the Captain Toolbox (Taylor et al., 2007). 

 

Quantification of steady state gain 

Based on the model parameters, the steady state gain can be determined to quantify 

the relation between TAir and TEgg (see equation 2). The steady state gain can be 

defined as the steady state change of output (i.e. TAir) per unit change of input (i.e. 

TEgg) (Young, 1984): 

(1) 
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𝑆𝑆𝐺 =
𝑏0

1+𝑎1
 

 

Online model identification and moving window approach 

A moving window approach was applied with a window length of 120 minutes and 

a window overlap of 60 minutes. For each window, one first order TF model was 

calculated. Afterwards, the corresponding SSG could be determined for each 

window based on the model parameters estimated for each window. Using this 

moving window approach, a new time series of SSG values was obtained, which was 

used to detect changes of the relative relation between input and output (TAir and 

TEgg, respectively). 

 

Statistics  

Decision tree analysis was applied to calculate prediction models for the day of 

hatch based on features of the obtained SSG time series. Afterwards, the Area under 

the ROC curve (AUC) was calculated to evaluate the discriminatory power of the 

model-based features (Fan et al., 2006). Linear regression was applied to quantify 

linear relations between the generated data. Matlab was used for all statistical 

analyses (i.e. Neural Networks Toolbox and Statistics Toolbox).   

 

4. RESULTS AND DISCUSSION 

Detection of the embryo development milestones 

The fertile incubated egg, which contains a living organism (chicken embryo), can 

be considered as Complex, Individually different, Time varying and Dynamic (CITD) 

systems as introduced by Berckmans et al. (e.g. Quanten et al., 2006). Hence, the 

dynamic relationship between the eggshell temperature (TEgg) and its surrounding 

micro-environmental air temperature (TAir) is different from one day to another 

during the entire incubation cycle of embryo development (Youssef et al. 2014). The 

dynamic evolution of this relationship is reflected in the time-series of the 

(2) 
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Figure VI.1. Time-series of the calculated steady-state gain (SSG) for sampled Egg 

number 27, showing the identified five milestones based on the dynamic changes in 

the SSG signals, which reflect the relationship between TEgg and TAir. 

calculated steady-state gain (SSG). The analysis of the dynamic variation of the SSG 

(oC/oC).) could indicate different phases (Milestones, M) along the course of embryo 

development during the 21 days of incubation.  The analysis of the dynamic changes 

in the SSG  slope, 𝑆 =
𝑑[𝑆𝑆𝐺]

𝑑𝑡
, have shown that five milestones could be identified 

along the SSG time-series of an incubated egg. Figure VI.1 is showing the identified 

five milestones (i.e., M1, M2, …, M5) for the sampled Egg number 27 in this present 

study. 

 

 

Based on the documented knowledge of the incubation process of chicken eggs and 

embryos, the five milestones are labelled and defined as follows: 

Milestone M1  

Heat transfer occurs when there is a temperature difference between two regions 

or media, and always on the thermal gradient. Eggs present four mechanisms for 

heat transfer: conduction, radiation, convection, and evaporation (French 1997; 
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Meijerhof & van Beek 1993). However, in chicken eggs, eggshell temperature 

remains low (in relation to surrounding air temperature) during the first week of 

incubation (i.e., until day 6-7 of the incubation period) due to the low metabolic rate 

(Tazawa et al. 1988; French 1997) and starts to increase in the second week. More 

specifically, eggshell temperature remains lower than the incubation temperature 

during the first week, and it is higher than the incubation temperature during the 

last week of incubation (Sgavioli et al. 2016; French 1997; Hiebert & Noveral 2007).  

According to the laws of thermodynamics, heat is transferred between the eggs and 

the incubation environment down a thermal gradient, i.e., always from the warmer 

to the colder region. Eggs gain or lose heat only when there is a temperature 

difference (∆𝑇) between the environment (𝑇𝐴𝑖𝑟) and the eggshell (𝑇𝐸𝑔𝑔) until 

equilibrium is reached. This indicates that eggs incubated under those 

temperatures need to gain heat in the beginning (i.e. endothermic phase) and to 

lose it during the last week of incubation (i.e. exothermic phase), respectively. By 

analysing Figure VI.1, it is noticed that the average SSG values for all eggs is 

maintained close to 1 oC/oC during the first 8 days of incubation. Furthermore, 

starting from incubation day 6 the SSG gains have shown deviation from the mean 

value (baseline), which is indicating the first milestone (M1) along the embryonic 

development (see figure VI.1). Milestone M1 is then interpreted as a physical 

indication of the transition moment  in heat flow, at which the incubated eggs starts 

to lose heat down a thermal gradient (𝑇𝐸𝑔𝑔> 𝑇𝐴𝑖𝑟). An individualized approach is 

developed to detect this milestone M1. First, the mean (�̅�) and standard deviation 

(𝑆𝑡𝑑) of the SSG were calculated during baseline conditions (first five days of 

incubation) by knowing that metabolic heat generated by the embryos is 

insignificant during that period. Afterwards, milestone M1 was defined as the first 

SSG value which exceeded the following individual threshold: 

�̅�𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 + 3. 𝑆𝑡𝑑𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒                                                    (3) 
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Assuming that the data are normally distributed, this would mean that about 99.7% 

of the SSG values measured during the first five days of incubation are within 3 

standard deviations of the mean measured during baseline.  

For most embryos (i.e. 42), milestone M1 was detected between day 7 and day 11 of 

the incubation period (see figure VI.2; mean M1 = 8.2 days, standard deviationM1 = 

1.7 days).  

   

 

Figure VI.2. The distribution of the detected Milestone M1 over incubation days. 

 

According to the equation of the SSG (equation 3), it would be expected that the SSG 

is smaller than 1 when the embryo is endothermic (i.e., the difference in TEgg is 

smaller than the difference in TAir, or, in other words, the egg gains heat). On the 

other hand, it is expected to be  larger than 1 when it is exothermic (i.e., the 

difference in TEgg is larger than the difference in TAir, or, in other words, the egg 

dissipates heat). An average SSG of 1 was found (standard deviation = 0.005; see 

figure VI.3). This finding corresponds with the expected value correlated with the 

transition from an endothermic status (heat is transferred via convection mode 

from surrounding air to the egg)  to an exothermic status (the metabolic heat 

generated by the growing embryo is dissipated to the air stream passing through 

the eggs by forced convection). 
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Figure VI.3. The steady-state gain (SSG) threshold distribution for all the examined 

eggs. 

Milestone M2  

Based on the changing slope of the SSG signals, along the incubation days, milestone 

M2, could be detected (see figure VI.4). It is noticed, that after the detected 

milestone M1, the calculated slope (𝑆) is equal or higher than the slope calculated at 

the moment of milestone M1. After several days of incubation the slope decreases 

again and tends to have a stagnation phase. Therefore, an S-shaped curve was 

detected in the SSG signals between incubation day 8 and 15. Hence, milestone M2 

is defined as the first SSG value after incubation day 14 at which the slope value is 

less than the slope value calculated at M1 (or, in other words: since we expect to see 

an S-shape, the slope increases starting from M1 and decreases again at the end of 

the S-shape. Therefore, M2 is defined as the time point where the slope decreases 

again till the slope value measured at M1).  

Based on the aforementioned approach, milestone M2 is detected between day 15 

and day 18 of the incubation period (see figure VI.4; meanM2 = 16.1 days, standard 

deviationM2 = 0.8 days). This finding corresponds with other studies which indicate 

that the eggshell temperature increases during the second week as a reflection of 
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increased embryonic heat production during embryonic growth, and reaches a 

temperature plateau around incubation day 15 (Nichelmann & Tzschentke 2003; 

French 1997; Dietz et al., 1998; Boleli et al. 2016). However, only 23 of the 54 

sampled eggs showed a clear S-shape of the SSG curve. In future studies, the study 

design should be optimised by analysing the possible sources of noise in the 

recorded temperature measurements and by considering other potential embryo 

measurements (i.e., embryonic motility, vasodilatation and vasoconstrictions 

activity, heart rate) to have a more accurate mathematical modelling of heat 

production/dissipation in incubated eggs (Youssef et al., 2014). 

Milestone M3  

The stagnation phase of the SSG signal ends with an increase of the SSG slope lasting 

approximately 24 hours (see M3 in figure VI.1), which can be compared with the 

rise at the end of the heat production plateau phase that occurs when the embryo 

penetrates the internal air cell with its beak (i.e. IP; Visschedijk 1968).  

In order to detect this change in the SSG signals, milestone M3 was defined as the 

first SSG value for which the slope was greater than 0.0003. The selected threshold 

value was defined based on visual inspection of the SSG signals of all eggs. Using this 

method, M3 was detected around day 20 of the incubation period (see figure VI.4; 

meanM3 = 19.3 days, standard deviation M3 = 0.3 days) as supported by other studies 

reporting that internal pipping occurs between incubation day 19 and 20 

(Decuypere et al. 2001, Tong et al., 2012; Maatjens et al. 2014; Boleli et al., 2016).   

 

Milestone M4 

Milestone M4 corresponds with the moment where the SSG signals show a high 

peak value (i.e. local maximum) in the final phase of the incubation period (see 

figure VI.1). The peak was defined as the last SSG value for which the slope was 

greater than -0.0004. This threshold value was determined based on visual 
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assessments of the SSG signals. Milestone 4 was detected between incubation days 20 

and 21 (see figure VI.4; meanM4 = 20.04 days, standard deviationM4 = 0.3 days).   

 

This finding is associated with the so-called external pipping (EP), which is also 

expected around  incubation day 20 (e.g. Tong et al., 2012). During EP, the embryo 

starts tapping the eggshell repeatedly, causing the shell to weaken and eventually 

break. From the outside of the egg, a small crack or hole in the eggshell can be 

observed, sometimes with the tip of a beak puncturing through. This is the first time 

during the incubation period that the chick penetrates the eggshell with its beak as 

a natural progress towards hatching (Tong et al., 2012). Since the eggshell gains 

access to atmospheric air at that moment, heat transfer from the egg to the 

environment is facilitated (Romanini et al. 2015). Therefore, it is expected that 

external pipping is followed by a drop of the eggshell temperature.   

 

Milestone M5 

Milestone M5 was defined as the lowest SSG value after Milestone 4 (see figure 

VI.1). Based on this detection method, milestone M5 was detected between  day 20 

and day 21 of the incubation period (see figure VI.4; meanM3 = 20.1 days, standard 

deviationM3 = 0.3 days).  

As previously discussed,  external pipping is soon followed by hatching. Most 

studies suggest that hatching occurs around day 20-21 (e.g. Tong et al., 2012; 

Romanini et al., 2013), which corresponds with the detected milestone M5. In order 

to prepare for the hatching, the embryo starts cutting the eggshell circumference in 

very small pieces with the egg tooth in regular up-and-down motion gradually 

creating a neat "zip"-shaped cutting profile while turning around inside the egg. 

Once approximately ¾ of the shell circumference at the blunt end of the egg has 

been cut, the embryo pushes itself out of the egg by forcefully stretching its legs 

causing the last bit of the shell cap to break loose. This allows the embryo to push 

itself free and to completely emerge itself out of the egg. Since the eggshell 
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temperature sensors are still attached to the eggshells just after hatching, a sudden 

temperature drop is expected.  There are two main reasons for this drop: i) the 

embryonic heat source is no longer present since the chick has emerged and ii) any 

remaining embryonic fluid at the internal eggshell membrane evaporates 

(Romanini et al., 2013; Romanini et al., 2015). 

 

 

 

 

Figure VI.4 The distribution of the detected Milestone M2 (top left), M3 (top right), 

M4 (bottom left) and M5 (bottom right) over incubation days. 
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Link between milestones and embryo development based on individual labelling. 

The model-based milestones M1 and M2 were linked with the embryo status by 

comparing them with the timing of developmental stages reported in other studies 

and by interpreting the parameters of the calculated models. The timing of M1 was 

correlated with the change in direction of the heat flows during the first period of 

embryonic growth (i.e. transition from endothermic to exothermic status). The 

timing of M2 was linked with the timing of the stagnation of embryonic heat 

production after the second week of incubation (i.e. plateau phase).   

Similarly, the model-based milestones M3,  M4, and M5 could be related with the 

main biological transitions reported in literature for the hatching phase: internal 

pipping, external pipping and hatch.  In addition, the onset timings of milestones 

M3, M4, and M5 were experimentally confirmed by the individual labels obtained 

for  dataset 2 (n=20, see materials and methods). 

A number of visual checks at specific times during the hatching process confirmed 

whether an embryo was internally pipped, externally pipped, or hatched. However, 

since the incubators had to be opened from time to time to obtain the visual checks 

and individual labels, there was some extra measurement noise in dataset 2. 

Therefore, the start of the acute increase of SSG (i.e. milestone M3),  the upwards 

peak of SSG in the final phase of the incubation process (i.e. milestone M4), and the 

drop of SSG in the final phase of the incubation process (i.e. milestone M5) were 

determined by manually analysing the SSG signals instead of using fixed threshold 

values in an automated way. 

Afterwards the timing of these milestones could be compared with the 

corresponding labels. For 12/20 eggs, milestone M3 occurred before internal 

pipping.  For 6/20 eggs, milestone M3 appeared at approximately the same time as 

internal pipping, and, for 2/20 eggs, it was impossible to detect M3 because of data 

noise.  Vleck et al. (1980) and Hoyt (1987) indicated that there is an increase in heat 

production just before internal pipping occurs. This could explain why milestone 
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M3 is often detected before the actual moment of internal pipping, since the 

determination of M3 is purely based on the start of the acute increase of SSG, which 

corresponds with an increase in heat production that ultimately triggers IP.   

Similarly, milestone 4 occurred after external pipping for 12/20 eggs. For 6/20 

eggs, milestone 4 took place at approximately the same time as labelled external 

pipping and for 2/20 eggs, milestone 4 could not be detected because of noise in the 

data. Since the chick penetrates the eggshell with its beak during external pipping 

(Tong et al., 2012 and 2013), it is expected that the drop of the eggshell 

temperature comes a little after external pipping. Therefore, milestone M4 occurs in 

most cases after external pipping.  The fact that  M4 occurs in most cases after 

external pipping can be explained by elementary principles. Heat from embryo 

metabolism is no longer completely enclosed by the eggshell and from EP onwards 

the hole in the eggshell represents an extra pathway of heat loss to the environment 

beside the natural permeability of eggshell pores. 

Lastly, milestone M5 took place after labelled hatching for 11/20 eggs. For 6/20 

eggs, milestone 5 occurred at approximately the same time as hatching, and, for 

3/20 eggs, milestone 5 could not be found because of noisy data. Since the sudden 

temperature drop of milestone M5 is caused by the chick completely emerging from 

the shell, the TEgg drops appear just after hatch. 

Thus, TEgg drop during hatching is explained by the fact that existing heat source 

(e.g. embryo) is supressed (Romanini et al., 2013). Furthermore, the magnitude of 

TEgg drop is also partially explained by an evaporative cooling effect at the eggshell 

that,  after drying out, reaches an equilibrium with air temperature (i.e. no heat 

exchange; Romanini et al., 2015). 

To conclude, these results confirm the added value of the individualised model-

based monitoring approach presented in this study, since strong links between the 

model-based milestones and the developmental stages of embryos during 

incubation are found. Revealing individual information of the embryo status  by 
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measuring and modelling air and eggshell temperature continuously may open new 

horizons on the understanding of energy-related metabolic changes and pathways 

before hatch (De Oliveira et al., 2008). The developed models can be considered as 

data-based mechanistic models, since they are both data-based and able to give 

insight in the embryo status.  

 

 

Inter-individual differences per milestone 

Many studies have emphasized the urgent need for deeper biological understanding 

of embryo development during the incubation period (Christensen et al., 2007; 

Leksrisompong et al., 2007; De Oliveira et al., 2008; Ipek and Sozcu, 2016). 

Individualised non-invasive monitoring of embryo status allows uncovering 

individual relations between environmental variables (i.e. micro-environmental air 

temperature) and  variables which are more directly related with embryo 

physiology (i.e. metabolic heat). In fact, eggshell temperature (TEgg) is well known 

as the most important variable to be controlled during incubation as it impacts 

directly on the hatchability results, chick quality and post-hatch performance (Ipek 

and Sozcu, 2016). TEgg depends mainly on the combination of three factors: 1) air 

temperature around the eggs; 2) the exchange of heat between eggs and its micro-

environment; and 3) the time-variable heat production of an incubated embryo 

(Van Brecht et al., 2005); and will then naturally show a small gradient inside the 

incubators (Van Brecht et al., 2003). 

 

Moreover, differences in the micro-environment of individual eggs during 

incubation can also affect the post-hatch status, such as the welfare or gait score of 

broilers (Ipek and Sozcu, 2016). Revealing such individual relations are not only 

essential to gain biological understanding, but could also play a vital role in, for 

example, effective synchronised hatching based on individualised control systems 

(Tong et al., 2012). In addition, a more uniform embryo development in general 
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could be an interesting and innovative product development concept for the future 

of poultry industry (Romanini et al, 2012). Inter-individual differences during 

embryo development can potentially be quantified based on the individualised 

monitoring approach used for detecting the five milestones in this study (see 

previous paragraphs). 

 

Figure VI.5 shows the standard deviations of the timing of each milestone for all 

individual embryos. Thus, it is can be used as direct measure for their inter-

individual differences during embryo development. While the spread of the first 

milestone is large, the inter-individual differences decrease over time, and the last 

three milestones show significantly less inter-individual variation suggesting more 

uniform stages of embryo development during the final period of incubation.  

 
 

 

 

 

 

 

 

 

Figure VI.5 The calculated standard deviations of the histograms (see also figure 3 

and 5) are shown for each milestone: milestone 1 (i.e. transition from endothermic 

to exothermic status), milestone 2 (i.e. plateau phase), milestone 3 (i.e. internal 

pipping), milestone 4 (external pipping) and milestone 5 (i.e. hatch). 
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This is especially relevant for an improved application of individual stimuli (i.e. 

temperature, CO2 levels, sound, light, etc.) at the right magnitude and timing 

according to the developmental stage of the embryo, seen as an attempt to have a 

more uniform embryos and narrower spread of hatch among individuals (Qin Tong 

et al., 2015, 2016). Furthermore, adjustments on the incubation profiles can be 

optimised by taking into consideration the individual embryo development status 

rather than fixed modifications according to population-based measures of embryo 

development. 

 

Individualised prediction of hatch time  

While monitoring often refers to the detection of the status of the embryo at that 

specific moment in time, another possible approach would be to predict the status 

of an embryo based on previously measured individual information (i.e. the onset 

timing of each measured milestone).  

A linear relation was found between milestone M5 and  milestone M3  (R² = 0.63; 

p<0.00001) (figure VI.6). These results suggest that we can make a rough prediction 

of hatch time when milestone M3 (i.e. internal pipping) is detected.  On average 

milestone M3 occurs +/- 20 hours before milestone M5 (mean = 19.7 hours; 

standard deviation = 4.8 hours). This result is in line with other studies (e.g. Tong et 

al. 2012), since they also suggest that hatching occurs around 24 hours after 

internal pipping.  

 

Since the prediction window of the previous relation (i.e. M3 vs M5) is rather small 

(+/- 20 hours), other properties of the SSG signal during earlier stages of the 

incubation period were investigated and related with the moment of hatching.  

Based in the SSG signal properties between the start of incubation and milestone 

M2, a prediction method with a larger prediction window could be obtained.  
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Figure VI.6  Linear relation between timing of milestone 3 (Internal pipping) and 

milestone 5 (Hatch time).  

 

First, the difference between the SSG at the start of the incubation period and the 

SSG at milestone 2 was calculated. Since milestone M2 could be detected for 23 

sampled eggs of dataset 1 (see Milestone M2), all predictions were only calculated 

for these eggs. When we try to predict the hatch day (day 20 or day 21; defined 

based on milestone 5) of the embryos  based  on this individual SSG difference, 

accurate classification results are found based on decision tree analysis (figure 

VI.7). 93% (13/14) of the embryos that hatched at day 21 were correctly classified.  

In addition, 78% (7/9) of the embryos that hatched at day 20 were correctly 

classified. For this variable (i.e. value of SSG difference between start of incubation 

and M2 with best classification results), the area under the ROC curve was 0.91, 

confirming a high discriminatory power. Thus, these results suggest that we can 

already make a prediction of hatch day after detection of milestone 2. Obtaining 

such individual information in advance gives, already early in the process, an idea of 

the final spread of hatching. Thus, such early individualised predictions could 

advance synchronisation of hatching (Romanini et al, 2012). 
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Figure VI.7 ROC curve of hatch day classification based on individual SSG increase 

between the start of incubation and milestone M2 (AUC = 0.91). The ROC point that 

corresponds with the optimal classification results is shown by the red circle.  

 

5. CONCLUSIONS 

In this study we showed that we can detect, based on dynamic models of the local 

environment temperature and the individually measured eggshell temperature, five 

different milestones in the development of individual broiler embryos. Moreover, 

links were shown with physiological mechanisms and, therefore, the models can be 

considered as data-based mechanistic models since they are both data-based and 

able to give insight in the embryo status. This individualised monitoring approach 

could be an added value for individualised prediction of hatching and for other  

experimental designs and studies where the developmental stage of the embryo is 

relevant. Moreover, this individualised model-based monitoring approach could 

also open possibilities in future studies for the development of more precise control 

systems for synchronised embryo development and uniform hatching.  
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GENERAL CONCLUSIONS 

Individual biological process: 

The biological process discussed in this chapter was the thermoregulatory system 

of chicken embryos. Based on the relation between the micro-environmental air 

temperature (input variable) and the eggshell temperature (output variable) of 

individual eggs, we aimed at finding critical information about the embryo status. 

Again, significant inter-individual differences were found.    

 

Process models and feature generation: 

Based on an online input-output modelling approach, it was possible to 

determine the time series of steady state gain (SSG) values during the incubation 

period.   SSG was selected it this case since it could be related with the embryo 

status based on available biological/physical  knowledge about the heat transfer 

processes. Therefore, the models were data-based mechanistic. 

 

Individualised change detection: 

Changes in the SSG time series could be used to detect five different milestones in 

the development of individual embryos. 

This chapter confirms the three different approaches we defined before to obtain 

individualised monitoring systems:  

1) Individualised  change detection based on serial baseline measurements and 

individual thresholds  (Milestone M1 and M2) 

2) Individualised  change detection based on universal laws and insights from 

control engineering, biology, etc. (Most clear example here was SSG = 1 for M1).  

3) Individualised  change detection based on (sub)population statistics 

(Histograms of all milestones and thresholds from ROC curve analyses for 

predictions). 
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General Discussion 
 

 

 
 

 

“The whole is more than the sum of its parts.” 

─   Aristotle  ─ 

 

 (From: Aristotle, Metaphysics, Book VIII, 1045a.8–10) 

 
 



 GENERAL DISCUSSION 

                                                                                                

200 

 

 

 

epicted in figure 3.1 is the general scheme of the individualised monitoring 

approach, as initially proposed in the introduction. In the forthcoming parts of 

this section, we expand upon the various elements of figure 3.1, which 

underpin the discussion throughout. With the general scheme in mind, the following 

four main topics will be addressed: 

 

1) The bio-process 

2) The process model 

3) The model-based features  

4) Individual change detection 

In the final paragraph of this section, we present a methodological approach for 

individualised change detection that can be used for individualised model-based 

monitoring of biological processes in a wide range of applications.   

 

3.1 THE BIO-PROCESS 
 

We herein consider the first box of figure 3.1: the individual bio-process. Table 3.1, 

on the other hand, is, essentially, an overview of all bio-processes (and their 

corresponding experiments) that were addressed in this PhD. Four different species 

were studied in connection with the different monitoring applications: rats (chapter 

I, IV, V), pigs (chapter II), humans (chapter III) and broiler embryos (chapter VI).  

 

3.1.1 Measuring individual details of the process (variables, spatial and temporal 

scale) 
 

Figure 3.2A depicts a simple schematic representation of a biological process.  

Depending on the relevant spatial level, this biological process could either be a 

group of cells (e.g. Chapter IV) or a whole organism (e.g. Chapter VI; Table 3.1).  As 

D 
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mentioned in the introduction, most bio-processes can be considered as input-

output systems. Accordingly, the block diagram includes input variables, which are 

measured from the bio-process environment (environmental variables), and output 

variables, which represent the responses of the bio-process to its environmental 

inputs (bio-signals). Moreover, bio-processes are continuously subject to a wide 

range of perturbations in their (internal and external) micro-environment (e.g.  

temperature, medications, social contact etc.). The inputs and perturbations are 

environmental variables, but with regards to inputs, we consider variables that 

 

 

 
 

Figure 3.1 Block diagram representing the individualised model-based monitoring 

approach used in this PhD, including the following main blocks: (1) bio-process, (2) 

process model, (3) model-based features, (4) individual change detection. 
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are known or measured and might be actively changed during the monitoring, 

whereas the perturbations can be known or measured, but not controlled. For 

example, in chapter IV, we explain that by applying a drug (input variable) we could 

alter the measured brain cell responses (output variable). It can be assumed that 

temperature also has an effect on the measured brain cell response and, therefore, 

temperature could be considered as a perturbing variable. For each chapter of this 

PhD, the environmental variables and measured bio-responses are listed in table 

3.1. In many cases, the input-output relation of the measured variables is known 

based on biological knowledge. If it’s unclear as to whether a variable should be 

considered either an input or output variable, it is possible to use statistical 

approaches to determine causal relationships between variables (e.g. granger 

causality test, see e.g. Eichler, 2012). 

Thus, for the analysis of a specific biological process, it is essential to have an 

overview of all relevant measurable variables that is based on available biological 

knowledge.  In chapter V, we referred to starting from available biological insights 

when developing an individualised closed-loop deep brain stimulation system for 

rats. Since previous studies showed that theta oscillations in the hippocampus are 

highly related with locomotion, and that electrical stimulation in the mesencephalic 

reticular formation induces freezing, it was possible to develop a control system for 

suppression of locomotion.  

Intuitively, one might assume that measuring more variables of the individual 

biological process automatically results in a more individualised and more accurate 

approach for monitoring, however, not all quantified individual information leads to 

an improvement in the performance of monitoring systems. Some variables might 

be irrelevant when monitoring a specific status of the biological process. Equally, 

some variables might strongly correlate with other measured variables, leading to 

redundant information. In such cases, the number of variables can be reduced by 

applying mathematical methods for dimensionality reduction (e.g. principal 
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component analyses, factor analysis or linear discriminant analysis; for more details 

on this topic see: Padmaja and Vishnuvardhan, 2016). In chapter III, the primary 

objective is the development of a model for accurate classification of infected 

patients based on heart rate characteristics and time series of cytokine. In this case, 

variables were included in the final model based on improvements of the 

discriminatory power (i.e. AUC). If the information extracted from an additional 

variable could not improve the classification results, the variable was removed, not 

to be included in the final classification model. The principal results of chapter III 

suggested that there was no significant additional value in adding cytokine time 

series information to the generated decision tree model based on heart rate 

characteristics. Thus, herein, another method for reducing the number of relevant 

variables was identified. 

In some biological cases, the same physiological state can be characterised by 

different variables across different individuals. In other words, when detecting a 

change in state, one relevant variable found in individual A might be irrelevant in 

individual B, and vice-versa. We know from medicine that many diseases can lead to 

a number of signs and symptoms, which can vary from person to person. In many 

cases, a wide range of individual symptoms are involved, illustrating the 

interdependence of homeostatic mechanisms, whose perturbations lead to the 

individual manifestation of a disease (Zhou et al., 2014). For instance, the 

individual response of the body to an infection depends on many individual factors 

(e.g. susceptibility). This point is illustrated in figure 3.2, wherein it is shown that 

individual pigs can have different individual variables that reflect a change in 

infection state. Thus, for each pig the optimal individual variables should be 

selected. The individual selection of variables is one method of obtaining an 

individualised monitoring approach. 
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When all required variables are determined, it is also essential that the relevant 

temporal scale is known. In table 3.1, all used sampling frequencies of the measured 

variables are listed. Once again, we started from the available biological knowledge, 

since, for some biological processes, the sampling frequency can itself trigger the 

activation of physiological mechanisms that affect the time course of measured bio-

responses and their underlying processes. In chapter IV, we show that the sampling 

frequency can influence the strength and time course of the synaptic plasticity 

responses. Similarly, in chapter II, we state that the number of blood samples affects 

the health status of the pigs, as extracting too much blood can result in unwanted 

health effects. However, from a modelling perspective, it should be noted that the 

sampling frequency should be high enough to prevent information loss (we expand 

upon this point in parts 3.2 The dynamic process model & 3.3 Model-based 

features).  

 

To conclude, every physiological process is characterised by an exchange of mass, 

energy and/or information with its environment. Therefore, the individual state of 

the process can be assessed by measuring variables related to these exchanges.  

Ideally, we start from the available biological knowledge when selecting the 

relevant measurable (individual) variables for each biological process and their 

corresponding sampling frequencies. In addition to this, if possible, we define input-

output relations between the selected variables. 
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Figure 3.2  The infection response of the hormones IL-13 and SAA are depicted 

in relation to two different pigs (unpublished results). Time point 0 corresponds 

with the moment of infection (see methods section in Chapter II of Part 2). For 

Il-13, pig 1 shows a clear infection response, whereas no increase of IL-13 was 

detected for pig 2.  For SAA, it was pig 2 that had the most pronounced response 

to infection. These results illustrate that each individual pig can have different 

individual variables which optimally respond to state changes (e.g. infection). 
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Table 3.1. Overview of the different bio-processes which are considered in the 

different chapters of this PhD 

 

 

3.1.2 Biological systems as control engineering components 
 

Since we can consider biological systems as highly controlled systems, the 

individual bio-process can be interpreted from a control engineering point of view 

(see Figure 3.3). So as to ascertain system stability when subject to continuous 

perturbations, bio-processes are designed in a highly optimised way (See BOX 3.1). 

Therefore, measurements of the system architecture can also be relevant for the 

monitoring of biological processes. For example, when monitoring diseases in an 

individualised way, it might be necessary to obtain ‘architectural’ information of the 

biological process at different spatial levels (DNA profile, biopsy, CT scan of organ). 

Concepts of robustness, organisation and architecture (e.g. modularity) are 

essential to understanding complex networks (Doyle and Csete, 2011).  Each 

biological system is composed of different components, which are the biological 

equivalents of engineering control systems, such as biological sensors, actuators, 

controllers and layers of feedback regulation (Csete and Doyle, 2002). Therefore, 

the first block diagram (figure 3.3A) could also be refined, as represented in figure 

 Spatial 
level 

Sampling  
Frequency 

Environmental 
variables (inputs) 

Measured bio-
signals (output)  

Species Number of 
experiments 

Chapter I Organism 
scale 

1/ day Food availability Food intake, 
Running wheel 
activity, Body 
weight 

Rat 56 

Chapter II Organism 
scale 

1/2 hrs Endobronchial 
inoculation with 
bacteria (infection) 

Blood hormone 
levels 

Pig 30 

Chapter III Organism 
scale 

1/ 10 min  Infection Heart rate, Blood 
hormone levels 

Human 39 

Chapter IV  Cellular 
scale 

1/ 5 min Application of drug 
(e.g. DHPG) 

fEPSP slope Rat 55 

Chapter V Organism 
scale 

10000/sec Deep brain 
stimulation 

Locomotion, 
Hippocampal theta 
oscillations 

Rat 12 

Chapter VI Organism 
scale 

1/min Temperature of 
local egg 
environment 

Eggshell 
temperature 
 

Chicken 
embryo 

74 
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3.3B. In the block diagram, the biological controller (e.g. a brain region) calculates 

the required process input so that the process can be modified and, therein, 

homeostasis can be maintained. Typically, the controller determines the actuator 

action (e.g. pumping of the heart) needed to influence the process state 

(homeostatic variable). A biological sensor is needed to measure the actual state of 

the bio-process (e.g. eye, proprioceptor), which can then be compared with the 

desired state of the bio-process (i.e. target). 

Together, these components ascertain robustness for uncertain environmental 

conditions. Robustness makes it possible for the complex biological system to 

preserve its functionalities against external and internal perturbations (Kitano, 

2004; Stelling, 2004; Kitano, 2007). That said, biological systems can be robust in 

some environmental conditions, yet fragile in others (Doyle et al, 2011).  

 

For example, in neuroscience, dopamine is part of a robust and flexible reward 

system, however, that same system is susceptible to hijacking by addiction. Within a 

fragile biological system, smart architecture can allow hiding and protecting these 

fragilities. For example, our skull protects our fragile brain from trauma and, 

similarly, the blood-brain barrier is very effective in protecting the brain from 

pathogens (Doyle et al, 2011). 
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Figure 3.3 General block diagrams of biological processes.  (A) Input-output 

representation of bio-process (B) Representation of controlled bio-process 

according to a general control system. (C) Input-output representation of a 

controlled bio-process with an environmental variable as input and an actuator 

variable as output. 
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BOX 3.1 Complex biological networks design 
 

Every biological system can be considered as a complex network of many 

interacting individual dynamical systems (Strogatz, 2000). The field of 

complex systems science tries to decompose such complex systems into 

their main components and relates specific system architectures with typical 

dynamic system properties. Recent studies advocate that there are two 

major architectural system features which characterize such complex 

systems: i) the homo- or heterogeneity of the components and ii) their 

connectivity (Levin et al, 2000; Scheffer et al.,  2012). The homogeneity and 

connectivity of the components determines the way such systems respond 

to changing conditions (Figure B.3.1; Scheffer et al., 2012). For example, 

many brain regions are characterised by a huge amount of similar, highly 

interconnected components (e.g. brain cells). When many individual neurons 

are connected, each of which having their own individual dynamics, a new, 

more complex system arises and dynamic system properties can originate 

such as, for example, synchrony. The dynamic properties of such networks 

can be a marker for disease (e.g. increased synchrony of brain activity in 

epilepsy, decreased synchrony in Parkinson’s disease; Scheffer 2012; Stanley 

2013) or health (EEG signals for detection of sleep stages; Bulckaert et al., 

2010). 
 

   
Figure B.3.1. Examples of architectural system characteristics related with 

system function (Scheffer et al, 2012) 
.  
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Finally, the block diagram of Figure 3.3B can again be modulated to obtain an input-

output system representation (Figure 3.3C), similar to those illustrated in Fig. 3.1 

and Fig. 3.3A.  Depending on the measured output variable, the scheme could have 

different configurations. In the represented configuration, the measured output 

variable is an actuator variable, but it could also be a homeostatic variable. Making 

this distinction is important, since a variable of a biological actuator has different 

properties compared with a homeostatic variable (Cannon, 1929; Li et al., 2014). 

Actuator variables typically show fast fluctuations (e.g. small time constants), since 

actuators should respond as quickly as possible to changing conditions, whereas 

homeostatic variables show less variations, because constancy is their key aspect of 

preserving healthy internal body conditions. A sensor should be able to react to fast 

fluctuations and with a minimal delay so as to ascertain fast responses in the 

controller component of the system (see e.g. Chapter V). In the following 

paragraphs, this approach is applied to the bio-processes considered in this PhD 

research. 

 

In chapter I, body weight and food intake were two of the measured variables 

during the rat conditioning period of the activity-based anorexia rat model. Both 

variables are involved in the process of energy homeostasis, which is controlled by 

the central nervous system (Dhillon et al., 2006; Morton, et al; 2006). Food intake is 

known to be modified over time in order to regulate stability in the amount of body 

fuel stored as fat (e.g. body weight homeostasis; Morton, et al; 2006). In light of this, 

we can consider food intake as an actuator variable in that it is the result of food-

seeking behaviour, whereas body weight can be considered as a homeostatic 

variable. It is expected that anorexia nervosa and obesity result from dysfunction of 

any, or several, of the components of this homeostatic control system. 

In chapter II and III, the pro-inflammatory (and anti-inflammatory) cytokine 

response was described during infection conditions. Cytokines are released, at the 

cellular level, in response to invading pathogens. They can be considered as 
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actuator variables, which are regulated by the sympathetic/parasympathetic neural 

control of the infection response (Czura et al., 2005). In normal conditions of 

homeostasis, the inflammatory response reinstalls the body to healthy function 

following the clearance of the invading agents, and promotes appropriate tissue 

repair (Vodovodtz et al., 2006; Namas et al., 2012). On the other hand, a deregulated 

inflammatory response can lead to organ dysfunction or even death.  

As explained in chapter IV, brain signals are measured at cellular level. 

Communication through brain cells is much faster compared with hormone 

signalling through the blood (e.g. less time delay in the system). Typically, the 

central nervous system, at organism scale, acts as controller of the many body 

systems (Chapter V). More specifically, in chapter IV, we looked at synaptic 

plasticity of the brain. Long-term potentiation (LTP) and long-term depression 

(LTD), two forms of synaptic plasticity, provide the basis for most learning and 

memory models.  Neuronal circuits must be able to adapt their properties (read: to 

learn) in order to allow animals and humans to function in a robust way, within a 

dynamic environment, with many different types of perturbations (Desai, 2003). 

Several studies indicate that neural activity is itself dependent on homeostatic 

regulation for prohibiting neural circuits from becoming hyper- or hypoactive. 

There is evidence for the presence of “stabilizing mechanisms” operating at the level 

of neural circuits. These mechanisms prevent forms of plasticity, such as long-term 

potentiation (LTP) and long-term depression (LTD),  drive neural activity towards 

runaway excitation or quiescence (e.g. “homeostatic synaptic plasticity”) (Desai, 

2003, Turrigiano et al., 2004). From this perspective, the postsynaptic neural 

activity can be considered a homeostatic variable, whereas variables related with 

the processes leading to LTD or LTP can be considered as actuator variables, which 

are controlled by these stabilizing mechanisms.  
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In chapter VI, we recorded our analysis of the individual eggshell temperature of 

embryos during incubation.  The body temperature of homeothermic organisms can 

be considered as a homeostatic variable, which, for healthy conditions, is more or 

less stable between narrow boundaries (Grahn et al., 1997). However, the 

development of the thermoregulatory system initiates with non-specific and non-

coordinated reactions without any adaptive effect (Youssef et al., 2014). Only later 

in the embryo development, the thermoregulatory system turns into a coordinated 

system with adaptive reactions. Afterwards the thermoregulatory system develops 

from an open loop system into a closed loop control system with feedback 

mechanisms to ascertain homeostasis (Tzschentke, 2010; Youssef et al., 2014).  To 

obtain such internal thermal homeostasis, each individual organism (i.e. embryo) 

must be able to balance heat losses and heat gains. 

 

In this section, we discussed the individual bio-process according to the general 

scheme (Figure 3.1). The featured examples show that the process of designing  a 

model-based monitoring application can begin with combining biological 

knowledge of the individual bio-process (e.g. for defining homeostatic variables) 

with insights from control engineering (e.g. use of typical feedback control loop 

diagram; figure 3.3B and 3.3C). 

 

 

3.2 THE DYNAMIC PROCESS MODEL 
 

In the previous section, the considered bio-processes are discussed from a control 

engineering point of view. We show that bio-processes can be considered as input-

output systems (figure 3.3A & 3.3C), and further indicate the need to distinguish 

between actuator and homeostatic bio-signals (outputs). Classical process change 

detection methods (e.g. Basseville  and  Nikiforov,  1993)  are  restricted  to   limit   

or  trend  checking  of  some directly measurable output variables. In order to 
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extract more process information, model-based methods of change detection were 

developed and subsequently used to extract (non-directly measurable) biological 

state information by using input and output signals and applying dynamic process 

models (see figure 3.1 and figure 3.4A; Isermann, 2005).  

The chosen modelling approaches in this PhD can be linked with a general family of 

dynamic process models for modelling linear, dynamic, discrete-time, input-output 

relationships, as described by Box-Jenkins (BJ)  (see figure 3.4B; Ljung, 1987; Box et 

al., 1994). 

 

 

 

Figure 3.4 General block diagrams of a process model.  (A) Input-output 

representation of process model; (B) Equation of Box-Jenkins model with system 

model and noise model. 
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As shown, the boxed equation on the left-hand side of figure 3.4B represents the 

system model; the right-hand sided boxed equation represents the noise model 

(defined according to Ljung et al, 1984; Box  et al., 1994 and Young et al, 2011). The 

noise model represents the total uncertainty in the model, including measurement 

noise, modelling errors, and the effects of unmeasured (uncontrollable) inputs to 

the process (Ljung et al, 1987 and Young et al, 2011). Where y(k) and u(k) are the 

sampled values of the output(s) and input(s), respectively; k represents discrete 

time steps; δ is the time delay between system input and output; e(k) represents 

white noise, which is identically distributed and independent with zero mean value; 

and variance σ²; A(z-1), B(z-1), C(z-1) and D(z-1) are the polynomials of model 

parameters (for more details on the Box-Jenkins model see e.g. Young, 2011). The 

polynomials are defined as follows: 

 

                                 𝐴(𝑧−1) = 1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑧−𝑛 

                                 𝐵(𝑧−1) = 𝑏0 + 𝑏1𝑧−1 + ⋯ + 𝑏𝑚𝑧−𝑚 

                                 𝐶(𝑧−1) = 1 + 𝑐1𝑧−1 + ⋯ + 𝑐𝑝𝑧−𝑝 

                                 𝐷(𝑧−1) = 1 + 𝑑1𝑧−1 + ⋯ + 𝑑𝑞𝑧−𝑞 

 

 

Every polynomial is a function of z-1, a backward shift operator defined as z-1yk = yk-1; 

ai, bi, ci and di represent the model parameters; n, m, p and q represent the order of 

the polynomials A, B, C and D.  

 

The most suitable models for a specific dataset can be selected based on three 

criteria: RT
2 , AIC and YIC. They can be used as statistical measures for goodness of 

fit, overparameterisation, and how well the model explains the data. Additionally, 

the available biological knowledge can assist in defining criteria for optimal model 

selection. In the methods section of chapter IV, a more elaborate explanation of 

these criteria is given.  
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The final stage of model synthesis should ideally be model validation. For example, 

the three criteria mentioned above can be used to validate the goodness of fit. 

Secondly, a validation by analysing the model residuals can be obtained by an 

autocorrelation test for the residuals and a cross-correlation test between the 

residuals and the inputs (Ljung, 1987). However, even the definition of validation is 

controversial and, often, the two approaches described above are not considered as 

model validation (Young, 2011; Clermont and Zenker, 2015). Nevertheless, one type 

of validation, known as ‘predictive validation’ is widely accepted. In that case, the 

predictive potential of the model is evaluated by verifying whether a model can 

accurately predict an outcome or a time course in data other than used in the earlier 

stages of model identification and parameter estimation (Aerts et al., 2003; Young, 

2011; Clermont and Zenker, 2015).  However, even a BJ model that is poorly specified 

from a biological system point of view may, in some cases, be practically perfect from a 

monitoring point of view  (Clermont and Zenker, 2015). 

 

In addition to the linear BJ models, there exists a wide range of non-linear models 

that could be used for data-based modelling (e.g. Hammerstein-Wiener models and 

non-linear ARX models, neural networks, etc.). However, in this PhD we focused on 

exploring the possibilities of linear model types (Table 3.2). BJ models allow the  

individual, time-varying and dynamic natures of bio-processes to be captured, as 

shown in Chapter IV. The input was the application of a drug (e.g. DHPG), and the 

output was the electrical response of the brain slices (e.g. fEPSP) (see also figure 

IV.1, in Chapter IV). It’s been shown that linear models could describe significant 

non-linear phenomena in an accurate way (RT² of all models > 0.82). Also, in 

chapters II, III and VI, linear models were successfully applied to quantify the 

biological responses (Table 3.2). Furthermore, in chapters II and III, we detailed 

using integrated random walk (IRW) models in the removal of trends in the data so 

as to obtain the model residuals. The use of these IRW models can be considered the  
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Table 3.2. Overview of different model types used in the PhD chapters. 
 

 Model type Model equation(s) System or Noise 
Model 

Chapter II Integrated Random Walk 
Model 

yk= yk-1+sk-1 
              sk = sk-1+ek 

Equivalent of BJ noise 
model 

Chapter III Integrated Random Walk 
Model 

yk= yk-1+sk-1 
              sk = sk-1+ek 

Equivalent of BJ noise 
model 

Chapter IV Output-Error Model 
         yk = 

𝐵(𝑧−1)

𝐴(𝑧−1)
 . uk +ek 

Equivalent of BJ 
system model 

Chapter VI Output-Error Model 
yk = 

𝐵(𝑧−1)

𝐴(𝑧−1)
 . uk +ek 

Equivalent of BJ 
system model 

 

equivalent to determining the BJ noise model (Young et al, 2011). In chapters IV and 

VI, the a- and b- parameters of output error models were used to describe the 

individual relation between the input and output variable. Therefore, these models 

were considered as equivalents of the BJ system model. Each and every example 

presented in the preceding chapters showed that we can use compact linear models 

for monitoring individual non-linear bio-processes. These results support other 

studies that show we can use local linear approximations of non-linear systems to 

describe the local dynamics around equilibrium points (i.e. linear stability analysis; 

for more details: see May, 1974; Strogatz, 2001; Ives et al., 2012). Moreover, it is 

also possible to use linear modelling methods with time-varying parameters for 

monitoring non-linear biological processes (see for example Chowdhury, 2000 and 

section 3.4.4 further in the discussion).  

 

The fact that we can use such compact BJ models to describe such bio-processes is, 

at first-sight, highly unexpected because bio-processes are, without any exception, 

very complex. However, as mentioned in section 3.1, bio-processes can be 

considered robustly controlled engineering systems (as mentioned in section 1: the 

bio-process; figure 3.3). In light of this, such systems often show relatively simple 
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responses (expressing the crucial dominant processes that ascertain healthy 

internal homeostatic or homeodynamic conditions) when exposed to perturbations, 

as illustrated by the given examples in this PhD. Consequently, these systems can be 

modelled successfully using compact models such as BJ models.  

 

By describing individual relations between input and output variables with BJ 

models, individual models can be obtained for the specific biological process. 

However, some model characteristics can be fixed on group level. In chapter VI, for 

instance, first order models were used for all individuals (i.e. group level), but the 

parameter values reflected the inter- and intra-individual differences (i.e. individual 

level; figure VI.5).  This approach is partially in line with the use of mixed-effect 

models for description of an individual bio-process response (e.g. individual 

pharmacokinetics; Davidian and Giltinan, 2003; Pillai et al., 2005). Mixed-effect 

models try to capture information at group/population level and more individual 

information, characterised as random effects (for more details: e.g. Davidian and 

Giltinan, 2003; Clermont and Zenker, 2015). 

 

   

3.3 MODEL-BASED FEATURES 
 

Once the suitable process model is identified for use with an individual bio-process,  

model-based features can be generated (as in figure 3.1). Based on such features, 

state changes in the system can be detected. In this PhD, three different model-

based features were used for the developed model-based monitoring applications: 

model parameters, model order and model noise term (figure 3.5).  
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Figure 3.5 General block diagram of the feature generation with the three model-

based features: model parameters, model order and model noise term.  

 

3.3.1 Model parameters 

In this PhD, we developed a monitor based on model parameter changes (as shown 

is Chapter VI)—or, more specifically, system model parameters (e.g. ai and bi of the 

general BJ model)—so as to detect individual system changes.  

The most straightforward way to develop such a monitoring system would be to use 

the parameter values themselves as change detectors (e.g. Lefever et al., 2014).  An 

alternative to the aforementioned method is the use of parameter derived metrics, 

such as the steady state gain (see figure 3.7; Lambrechts et al., 2014). In chapter VI, 

we cover the use of dynamic data-based transfer function models, which detect 

changes in embryo status during the incubation period. In these models, the local 

environmental temperature was used as input, and the eggshell temperature was 

used as output. Based on changes of the steady state gain values, we could detect 

the developmental milestones of the embryos. 
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Figure 3.6 shows the results of another study (unpublished results from internship 

at Control and Dynamical Systems, Caltech, Pasadena; supervisor: Prof. John Doyle), 

wherein the steady state gain could be used to detect physiological differences. In 

this study, the main objective was to explore whether heart rate responses to 

training intensity contain information which can be linked with physical fitness, in 

this case, during road cycling (in field conditions.). As can be seen in the figure 

below, a bad physical fitness (lactate threshold group 1) is related with a high 

steady state gain, and vice versa.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Boxplots showing the steady state gain on the y-axis and the lactate 

threshold group on the x-axis. Cyclists of group 1 (group with bad physical fitness) 

have a power level lower than 200 W at the lactate threshold. Cyclists of group 2 

have a power higher than 200 W at the lactate thresholds and thus a better physical 

fitness. The SSG values of both groups are significantly different (p < 0.01). 
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The steady state gain can be calculated based on a function of the a- and the b- 

parameters (for more details on the definition and equations: see Methods section 

in chapter VI). Besides the steady state gain, it is also possible to use other 

parameter-derived metrics, such as the time constant (for definition and equation: 

see Eq. 2.7 in chapter IV; see figure 3.7).  The time constant gives a measure of the 

dynamics of a considered biological system. In practical terms, assuming zero initial 

conditions, it is the time taken for the output to reach 63% of its steady-state value 

in response to a step input (see chapter IV). To be able to quantify the dynamics of a 

biological response with a model, the sampling rate should be high enough. Discrete 

measurements of continuous signals cause information loss and, therefore, only for 

an optimal sampling rate can the model parameters correctly represent the real 

underlying system. The sampling interval between two data points should be, 

maximally, half of the value of the time constant (Nyquist-Shannon sampling 

theorem; Nyquist, 1928). In the first section of the discussion, we saw that there can 

also be biological arguments for lowering the sampling rate (see 3.1 The Bio-

process). In that case, it is essential to find an optimal balance between the 

modelling requirements and the biological requirements for the sampling rate.  

However, the dynamics of an individual system can be analysed at different 

temporal scales. Therefore, the dynamic range of interest should be specified for 

each individual monitoring application.  For example, if the person whose fitness we 

try to improve trains on a weekly basis, they will see gradual changes in their 

physical condition week-by-week. However, even in monitoring changes on a daily 

basis we notice many variables capable of impacting cardiovascular response, such 

as sleep pattern, reaction to environmental temperature, etc. Thus, for other 

monitoring applications much higher sampling rates would be indicated (e.g. heart 

rate monitor at intensive care). 
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Figure 3.7 Visual representation of time constant and steady-state gain. 
 
 

3.3.2 Model structure/order 

An alternative method for quantifying individual model-based changes, as applied 

in this PhD, is to use the model order of the system model. As mentioned in the 

previous section (3.2 The dynamic process model), the number of a-parameters 

represents the order of the BJ model. In chapter IV, we found that we can determine 

the number of dominant underlying processes by defining the model order of the 

input-output models (see also Boonen, 2005). In that study, we investigated the 

underlying mechanisms of mGluR-dependent synaptic plasticity. A drug was applied 

(i.e. DHPG; input) to induce mGluR-dependent long-term depression (LTD) (i.e. 

fESPS;  process output; see figure IV.1 in Chapter IV). Since we found a second order 

model as an optimal model, two major underlying processes were indicated by the 

modelling results. The second order models could be decomposed in two first order 

models, whereas each model corresponds with one of the two dominant processes. 

Based on these results, it is suggested to use several inhibitors or agonists of 

specific underlying pathways to link the obtained parameter values with specific 
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clusters of physiological pathways. It would be expected that blocking some of the 

underlying pathways could lead to a reduction in model order of the derived 

transfer function models. In an unpublished study, which was carried out to further 

explore the results described in chapter IV, we could confirm this hypothesis. In that 

study, insulin was used to induce long-term depression (LTD) responses. In 

baseline conditions (no inhibitor applied), an accurate second order model was 

obtained for the insulin dependent LTD responses (RT²= 96%), suggesting that two 

dominant processes underlie this type of synaptic plasticity. This result 

corresponds with other physiological studies, which suggest the presence of two 

main parallel signalling cascades: the extracellular signal-regulated kinase 

(ERK1/2) cascade and the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR cascade 

(see figure 3.8; Wada et al., 2005; van der Heide et al., 2006).  Afterwards, the 

PI3K/Akt/mTOR pathway was inhibited at a downstream signalling complex 

constituted by Glycogen synthase kinase 3 (GSK-3β). Following the application of 

the GSK-3β inhibitor, we found a first order model. Thus, by application of this 

inhibitor, one of the  two  dominant  processes  were  blocked  (Figure 3.9).  The 

results shown in figure 3.9, were based on LTD responses of young mice. 

Interestingly, we also found first order models without application of inhibitors in 

middle-aged mice. This could be explained by an alteration in the signalling 

pathway due to an age effect. Literature suggests GSK-3β plays a significant role in 

Alzheimer’s disease (Hooper et al., 2008; Hernandez et al., 2009), therefore it could 

be assumed that there is a connection between GSK-3β regulation and ageing. 

Moreover, more recent data show that during ageing insulin-LTD changes its 

properties due to desensitization of the insulin-signalling pathway downstream of 

the insulin-receptor. A major role in this process play lipid changes in the 

membrane due to loss of cholesterol (Martín-Segura et al. submitted).  Thus, this 

study shows how it is possible to obtain grey box models by linking the model 
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structure of data-based (black box) models with biological information from 

underlying pathways. 

 

In other studies, similar approaches showed that model order can be used to 

monitor the state of a system. For example, Silva et al. (2011) used autoregressive 

models to quantify sound signals of pigs. Sick cough signals were characterised by 

third order models, whereas ‘healthy’ coughs were characterised by lower order 

models. This difference could be explained by the presence of mucus in the 

respiratory tract of sick animals.  

In yet another study, Youssef et al. (2013) showed that differences in model order 

can be used to detect thermoregulatory state changes in organisms. More 

specifically, they developed dynamic models to describe the input-output relation of 

the incubation temperature (input) and the eggshell temperature (output) of broiler 

embryos during incubator-based embryo development. Interestingly, this study 

showed that a first-order model was optimal in describing the dynamic embryonic 

response of the egg shell temperature between days 9 and 13 of the embryonic 

development, whereas second order models were needed to describe this dynamic 

response after day 13 (day 14-19 of the embryonic development). Except for model 

parameters, the change in model order was attributed by the authors as a change in 

the complexity of the thermoregulatory system of the embryos.  
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Figure 3.8 The insulin pathway (www.cellsignet.com) 
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Figure 3.9 (A) Insulin-dependent LTD responses without application of 

inhibitor. For this response, a second order model was found  (red). (B) Insulin 

responses with application of  an inhibitor of one of the main  underlying 

pathways. For this response, a first order model was found as optimal model 

(red).   
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3.3.3 Model noise 

In addition to the model parameters and the model order of the system model, we 

demonstrated in this PhD that we can also use the noise term (as defined in Young, 

2011; see noise model of the BJ model equation in section 3.2) for the development 

of an individualised monitoring system. Figure 3.10 shows an example of an input-

output BJ model and how it can be used to decompose both the data in the system 

model component and the noise term component. Similarly, in chapter II, integrated 

random walk (IRW) models were shown to have been used in the removal of slow 

fluctuations (≈ system model) in the data (i.e. cytokine time series). The remaining 

residuals were used to determine the fast dynamics of the infection responses.  

Based on a quantification of these residuals (≈ noise model), we could correctly 

classify infection in pigs. More specifically, amplitude increases in the IRW model 

residuals of the cytokine time series showed that the residuals were correlated and 

thus, the time series of residuals cannot be interpreted as white noise (e.g. Scheffer 

et al., 2009). These amplitude increases were used as an indicator of the infection 

state in individual pigs.  Recent studies suggested that increased variance in the 

pattern of fluctuations of the residuals can be an early indicator of approaching 

critical or non-critical transitions in complex dynamical systems (Scheffer et al., 

2009; Kefi et al., 2013).  Additionally, in chapter III, we covered a list of change 

indicators which can be used as early markers of transitions in time series (See also 

Dakos et al., 2012). So far, such time series approaches for quantification of early 

warning signs of changes in complex dynamical systems are, mostly, applied in 

ecological and climate studies. However, biological systems could be a particularly 

rich field of exploration for these methods (Scheffer, 2012; Trefois et al,. 2015). To 

the author’s knowledge, it is the first time that these approaches are applied for 

quantification of measured cytokine responses to infection. Nevertheless, these 

methods also have a number of limitations (For more details see for example Dakos 

et al., 2015). 
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The BJ model is outstandingly complementary of the time series approaches from 

the emerging field of research, for it is uncovering early warning signs (EWS) in the 

proximity of critical or non-critical changes in complex dynamical systems (Scheffer 

et al., 2009; Kefi et al., 2013). Whereas the BJ model is typically used to analyse the 

output variable in response to an applied input variable (focus on the  

system model:  input, u, output,  y,  and  the  corresponding  model  parameters   in  

the polynomials A and B),  the field of EWS analyses the system response on 

repeated small perturbations (focus on the noise model: model residuals, e, and its 

parameters reflected in C and D of the BJ model equation) (For further reading  see  

e.g. Scheffer et al., 2009  and  Kefi et al., 2013). Thus, removing the trends of a time 

series based on an integrated random walk, so as to obtain the residuals (fast 

dynamics), is equivalent to using the system BJ model based on input and output 

variables for the purpose of calculating the model residuals of the BJ model (See 

figure 3.10).  

Therefore, for the general monitoring of bio-signals, we advocate a combination of 

both approaches (BJ model & EWS) into one framework. To the author’s knowledge, 

it is the first time that both approaches are linked, which could lead to new insights 

in both scientific domains. 

 

Based on the information in the previous paragraphs, we suggest three different 

model-based markers for individual state changes in organism: parameter changes, 

changes in model order and changes in model noise characteristics. For every 

monitoring application, we need to define the model-based feature of individual 

change for monitoring individual processes. 
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3.4 INDIVIDUALISED CHANGE DETECTION 

3.4.1 Need for individualised change detection 

In the previous section, we discussed how model-based features were used in this 

PhD to detect state changes of bioprocesses. However, we have also shown that 

there is need for individualised change detection. This means that we have to follow 

changes of model-based features per each individual bio-process.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10  Graphical representation of an input (upper left) -output (upper right) 

BJ model. The BJ model can be used to split the output data into the BJ system 

model component (down left) and the BJ noise term (down right). For this example, 

we used data from an unpublished study (Results from internship at Control and 

Dynamical Systems, Caltech, Pasadena). The input variable is the power of a cyclist 

during a cycling test, whereas the output is the measured heart rate response.  
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In chapter I, food intake and activity of individual rodents were monitored during 

the conditioning period in an animal model for anorexia nervosa. All rats received 

the same conditioning procedure, but the measured responses were, in each 

individual, highly diverse (see figure I.3 chapter I).  Such individual diversity of 

organisms was also shown in chapter II. Moreover, in chapter II, we state that all 

pigs received the same infection induction protocol, but each pig had a different 

blood cytokine time course and, thus, each pig responded in a different way (See 

figure II.3 chapter II). In chapter VI, we demonstrated that chicken embryos, when 

subject to the same environmental conditions, show substantial individual variation 

in the timing of their developmental milestones during the incubation (See figure 

VI.5 in chapter VI). Each of these examples emphasises that individual organisms 

are highly diverse. Such inter-individual variation (within the same species) is 

omnipresent in biological systems. Depending on factors such as stress and 

environment, individual biological systems can also differ significantly from one day 

to another. Thus, individual biological systems also reveal a time varying character, 

leading to intra-individual variations. 

(Doyle, et al., 2011). However, the intra-individual variation is, typically, much 

smaller than the inter-individual variation (Fraser, 2009, see also figure 1.7).   

As a consequence, due to the present inter- and intra-individual differences, 

monitoring of biological processes requires an individualised approach to capturing 

the individual state changes. However, dealing with the inter- and intra-individual 

variations remains one of the main obstacles in applying engineering approaches to 

biological systems (Doyle et al., 2011). In the forthcoming paragraphs, we propose 

several methods to obtaining an individualised approach for change detection (see 

figure 3.11). First, we will start with a general discussion on change detection 

methods. Following that, we will address each block within the figure below. 
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Figure 3.11 Proposed methods for individual change detection: i) Change detection 

based on sub-population information,  ii) Change detection based on universal laws 

and insights from control engineering, complex systems science and biology, iii) 

Change detection based on individual serial baseline measurements. Each of these 

methods can be used to calculate individual monitoring thresholds.  
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3.4.2 Change detection and threshold methods 

Introducing the field of change detection 
 

In the field of change detection, there were two parallel directions of investigation: 

mathematical statistics and automatic control theory (Basseville and Nikiforov, 

1993; Gustafson, 2000; Isermann, 2005). Well-known statistical approaches 

relating to these fields are control charts, Bayes-type algorithms and CUSUM-type 

algorithms (Basseville and Nikiforov, 1993; Shewhart, 1931; Page, 1954a). The next 

paragraph, a case of change detection is discussed based on a CUSUM-type 

algorithm.  

 

Figure 3.12 gives an example of an unpublished study in which a CUSUM algorithm 

was used to automatically classify chicken embryo status in real-time, representing 

either a mortality or hatching situation. This application is particularly important 

for the immediate monitoring, management and control of incubation conditions 

used to improve the process outcomes. The time series of the individual egg 

temperature (Tegg) and the micro-environmental air temperature (Tair) were 

filtered using a median filter with a filtering window of 120 minutes. Afterwards, 

the Tair time series was subtracted from the Tegg time series resulting in a time 

series of temperature differences per individual egg. Page’s cumulative sum test 

(CUSUM test) was applied to detect abrupt changes (e.g. temperature drops) in 

these times series’ that related with embryo death or hatching (Page, 1954; 

Gustafsson, 2000). Below, the equation of this online change detection test is 

shown: 

𝑔𝑡  =  𝑚𝑖𝑛(𝑔𝑡−1  + 𝑠𝑡  −  𝜈𝑡 , 0) 𝑤𝑖𝑡ℎ 𝑎𝑛 𝑎𝑙𝑎𝑟𝑚 𝑖𝑓 𝑔𝑡  <  ℎ 

where g0 is 0; st is the temperature difference at time t; νt is the drift parameter, 

which is defined here as the mean value of st (for the last 10 hours) minus the 

standard deviation of st (for the last 10 hours). In this case study, the value of  
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Figure 3.12 Illustration of CUSUM algorithm for detection of chicken embryo death 

during incubation. (Figure top) Example of a time series of temperature differences 

(Tegg- Tair) for on individual egg. (Figure bottom) CUSUM values according to the 

CUSUM equation. The red dotted line indicates the threshold value used for 

detection of embryo death.  
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threshold h is equal to 5.  The upper plot of figure 3.12 shows an example of a time 

series of temperature differences of an individual egg.  At time t=20715 min we can 

see a temperature drop, which is, in this case, related with the death of the embryo. 

The lower plot shows the corresponding CUSUM values according to the CUSUM 

equation.  The CUSUM values cross the threshold line at the time of the drop. 

 

In addition to the statistical change detection methods, change detection problems 

in the field of automatic control are referred to as model-based change (or fault) 

detection (Gustafson, 2000; Isermann, 2005). In the early 1970s, new investigations 

started to merge both research areas (mathematical statistics and automatic control 

theory). Basically, these studies started combining model-based approaches with 

change detection decision rules (or stopping rules) based on mathematical 

statistics. 

In the framework of online monitoring, these stopping rules can usually be 

represented using the following form: 

 

𝑡𝑎 = inf {𝑛: 𝑔𝑛(𝑦1, … , 𝑦𝑛}  ≥  λ 

 

Here, λ is a threshold, and (gn)n≥1 is a family of functions of n coordinates. The alarm 

time ta is the time at which the change is detected (Basseville and Nikiforov, 1993). 

Ideally, for individualised monitoring purposes, the threshold is calculated based on 

characteristics of the individual bio-process so as to obtain an individual threshold 

(Figure 3.11). 

 

There are five performance indexes for evaluating change detection algorithms:  

1. Mean time between false alarms; 2. Probability of false detection; 3. Mean delay 

for detection; 4. Probability of non-detection; 5. Accuracy of the change time and 

magnitude estimates (Basseville and Nikiforov, 1993). Thus, it is important for each 

decision rule or threshold to determine the false positive rate (probability of false 

detection) and the false negative rate (probability of non-detection). The other 
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performance indexes are linked to the timing of detection relative to the timing of 

the event (change of state of biological process).  For example, whereas chapters II 

and III focused on detection of infection, in chapter VI, we defined rules to predict 

the hatching of chicken embryos. In the former two chapters, we try to detect the 

event (i.e. infection) as soon as possible after its occurrence, as opposed to 

prediction methods, which allow us to plan interventions before the event or 

change is happening.  

In chapter V, we developed a control system for locomotion suppression in rats. 

Here, we found that the system delay time (from receiving input to actual output: 

recording, detection, intervention) was less than 100 milliseconds. This result 

seemed acceptable in our model and comparable to other closed-loop neural 

stimulation systems.  Moreover, the closed-loop DBS showed to be effective in 

suppressing locomotion. 

 

Threshold methods 

In this section, we focus on threshold methods that were used during the course of 

this PhD for detection of status changes in biological processes. First, all threshold 

methods used in the PhD are briefly addressed. Second, the three approaches for 

individualised change detection are presented in more detail. 

 

Threshold methods tend to be based on the quantification of known patterns and 

differences of bio-signals that relate to a status change in a biological process. 

In other cases, thresholds can be calculated based on deviations from normal signal 

behaviour, when no prior information on a specific status changes is available. 

Receiver Operating Curve (ROC) graphs have long been used in signal detection 

theory to depict the thresholds of classifiers (Metz, 1978; Fawcett, 2006).  ROC 

curves rely on the existence of a gold standard that dichotomises all subjects of the 

dataset into the presence of status/condition or the absence of status/condition 
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(e.g. presence or absence of disease). A gold standard test can be referred to as the 

most reliable and accurate test available to determine the status of a biological 

process. For example, in chapter III, we used the CDC criteria for infections in the 

ICU setting as gold standard for determination of infection. 

Based on ROC curves we can extract true positive, true negative, false positive and 

false negative rates (see performance indices for change detection above). However, 

ROC curve analysis is less suitable when we want to evaluate performance in terms 

of detection time relative to timing of event and response dynamics. Moreover, it is 

more complicated to use ROC curves for individual approaches. 

In chapters I, II and III, AUC values of the ROC curves were calculated to quantify the 

discriminatory power of change indicators, but also to calculate thresholds (see 

chapter II).  

For calculation of thresholds for multivariate analyses we used decision tree 

analysis (see for example chapter III). In comparison to alternative methods, this 

classification method has the advantage that it only has a limited number of 

assumptions. Other traditional methods are linear discriminant analysis and logistic 

regression (Varmuza et al., 2008). In addition, many other classification methods 

exist for the determination of thresholds, but those methods are beyond the scope 

of this PhD. 

 

In the following sections, we discuss how to obtain individual thresholds based on 

sub-population information, generic laws/insights and individual baselines.  

 

3.4.3 Change detection based on sub-population 

information 

ROC curves are often used in medicine for the development of a diagnostic test for a 

disease or unhealthy condition. However, the clinical use of ROC curves is based on 

population measures (Attia, 2003). They measure the characteristics of a test over a 
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population, but how can we obtain results for an individual patient? How can we 

obtain correct results for subpopulations, such as for a 35-year-old female with 

diabetes—who will perform a sport exercise test? One way to get a more 

individualised approach is to use thresholds which are defined for subpopulations 

(Ellery et al., 2012). For example, the field of personalised medicine tries to identify 

information (e.g. disease susceptibility, specific treatment responses, disease 

etiology, development and prognosis) for and about (genetic) subpopulations 

(Epstein et al., 2010; Hoggatt, 2011; Evers et al., 2012). Thus, one option for 

obtaining more individual thresholds is to calculate ROC curves based on a dataset 

where only subjects corresponding with a specific list of common characteristics 

are included (i.e. sub-population).  

As mentioned earlier, ROC curves are based on true positive and false positive rates. 

Other studies state that we should rather use likelihood ratios, since they do not 

vary in different population settings and can be used directly at the level of the 

individual patient. For example, they allow the quantification of the probability of a 

disease for any individual patient based on the Bayes’ Theorem and the Bayes 

nomogram (for more details: see Attia, 2003; see also 3.4.6).  

Another way to improve the general ROC curve approach is to use dynamic ROC 

curve analysis. Figure I.5 of chapter I, showed the evolution of the ROC AUC for 

different days of the conditioning period in the ABA model. Thus, more accurate and 

more individual thresholds were obtained, partly capturing the time-varying 

character.  

 

Ideally, an individualised ROC curve should only be calculated based on 

measurements of the same individual. However, in that case, we need multiple 

measurements of the individual process under normal and change conditions, 

which is not always possible due to the invasive nature of the measurements or 

change conditions, for example. 
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3.4.4 Change detection based on universal laws and insights 

In this section, we consider examples illustrating individualised change detection 

based on universal laws and insights from control engineering, complex systems 

science and biology.  

 

In chapter VI, it was expected that the state of the embryo could be estimated by the 

relation between the input (local environmental temperature) and the output 

(eggshell temperature) variable. The steady state gain was selected as a model-

based feature for the monitoring of eggs. In this application, the equation of SSG can 

be written as: 

 

𝑆𝑆𝐺 =  
∆𝑦

∆𝑢
=  

∆𝑇𝐸𝑔𝑔

∆𝑇𝐿𝑜𝑐𝑎𝑙
=  

∑ 𝑏𝑖

1 + ∑ 𝑎𝑖
 

 

 

The decision to consider the steady state gain as a model-based feature was based 

upon a biological interpretation of this equation, since biological studies showed 

that chicken embryos have an endothermic phase and, afterwards, an exothermic 

phase. According to this equation, it would be expected that the SSG is smaller than 

1 when the embryo is endothermic (e.g. the difference in TEgg is smaller than the 

difference in TLocal or in other words the egg absorbs heat), and larger than 1 when it 

is exothermic (e.g. the difference in TEgg is larger than the difference in TLocal or in 

other words the egg dissipates heat). By analysing the data we found an average 

SSG of 1 for all individuals, which confirmed the expected threshold value.  Thus, it 

is shown how we can define threshold values based on insights from engineering 

and biology. 

 

Additionally in chapter IV, we identify connections between the modelling approach 

and insights from biology (see 3.3 Model-based features).  Based on a decreased 
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model order, it was possible to detect the inhibition of underlying physiological 

pathways. In this case, a specific model order can be used as a threshold for change 

detection. Both examples in chapters IV and VI show how we can combine insights 

from the modelling perspective with insights from biology to obtain data-based 

mechanistic models (DBM, for more details on the used DBM approaches: see e.g. 

Young, 1998) and individual threshold values. 

 

In another study (Van Loon et al., 2012), we investigated whether real-time 

modelling techniques could be valuable when continuously evaluating individual 

critically ill patients and, equally so, in helping medical staff with estimation of 

prognosis. This preliminary study examined the possibilities of distinguishing 

survivors from non-survivors on the basis of the dynamics of daily measured 

variables.  

A data set, containing 56 patients, was generated in the intensive care unit (ICU) of 

the university hospital of Leuven. We used daily measurements of three variables, 

namely:  maximum body temperature (Tmax, °C), white blood cell count (WBC, 

109/L) and blood urea concentration (Uconc, mg/dl). First order dynamic auto-

regression (DAR) models were used to quantify the dynamics of the time series: 

 

𝑦𝑡 =
1

𝐴(𝑧−1, 𝑡)
𝑒𝑡  

 

In which 𝐴(𝑧−1, 𝑡) = 1 + 𝑎1𝑡𝑧−1 is a time variable parameter polynomial in the 

backward shift operator 𝑧−1; yt is the considered physiological variable; et is zero 

mean white noise.  

ROC curve analysis was used to evaluate the performance of a diagnostic test based 

on the model parameter values. The best results were found for blood urea 

concentration with true negative fractions of 21/30 (70%), true positive fractions of 

19/26 (73%) and an AUC of 0.78. Based on the ROC curve, it was possible to 

calculate optimal thresholds in the parameter values. Interestingly, the optimal 
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parameter value was nearly equal to -1 (≈ -1.0085), which is a boundary for model 

stability. To have a stable model, it is required that all poles of the transfer function 

lie inside the unit circle.  For first order DAR models, the following criterion should 

be met for them to be stable (Box et al., 1994): 

 

−1 < 𝑎1 < 1 

 

Figure 3.13 shows the time course of the measured urea concentration values and 

the calculated stability criterion for a surviving and non-surviving patient.  The 

results indicate that critically ill patients’ instabilities in the dynamics of time series’ 

of urea concentration can be indicative of their clinical condition and outcome.  

There are studies that connect the proper workings of physiological systems with 

the stability of its dynamic response (Lipsitz, 2002). However, before the described 

methodology could be considered for future use as support to a physician in on-line 

monitoring and decision taking for individual patients, these findings need to be 

validated and subsequently confirmed in larger trials so as to evaluate the concept 

thoroughly. Moreover, at this stage, more information and evidence is needed to 

claim that the model instabilities are, in some way, linked with the stability of the 

involved physiological processes (e.g. are the physiological systems time invariant, 

linear, etc.?). 

To conclude, this study showed another example of how general concepts from 

control engineering could, potentially, be combined with biological insights so as to 

define meaningful thresholds for monitoring applications. 

 

As discussed in the Model-based features (3.3) section, several scientific fields 

(including complex systems science) suggest the existence of generic early-warning 

signs that may occur in a broad range of complex dynamical systems when a (non-

)critical threshold is approaching (for further reading  see  e.g. Scheffer et al., 2009  

and  Kefi et al., 2013). The occurrences of autocorrelation tending to one or a 

variance increase (i.e. tends to infinity) are examples of early warning signs close to 
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a critical point. For example, an increase in signal fluctuations was used in chapter II 

for the detection of infection.  

 

In conclusion, several examples (from chapters II, IV, VI and an unpublished study) 

were given to illustrate how theories and insights from control engineering, 

complex systems science and biology can be used to obtain thresholds values which, 

in turn, are used to monitor individual systems. 

 

Figure 3.13 Top: Time courses of the daily measured blood urea concentration 

values (left) and the stability criterion (-1 < a1 < 1) for a survivor (patient 3) (right). 

Bottom: Time courses of the daily measured urea concentration values (left) and 

the stability criterion (-1 < a1 <1) for a non-survivor (patient 12)(right). The vertical 

dashed line in the right graphs indicate the end of the period of the first 14 data 

points (days) that are needed for reliable parameter estimation. The horizontal line 

indicates the threshold of a1 = -1. 



GENERAL DISCUSSION 

241 

 

3.4.5 Change detection based on baseline measurements 

In the two previous approaches for change detection (sub-population information 

and general insights from different scientific domains), the determination of the 

more individualised threshold values is still partly population-based. Preferably, to 

detect an individual change, we can compare the values of the change indicators 

during ‘new state conditions’ with system behaviours under ‘old state conditions’. In 

others words, change can only be detected when there is a deviation of ‘normal 

system behaviour’ (See Figure 3.1, Isermann, 2005).  Very often, we use population 

baselines to define normal behaviour. For example, when we perform a classical 

blood analysis test, healthy levels for blood substances are defined by fixed 

population thresholds. The same holds for Body Mass Indexes (BMI). A BMI value 

higher than 25 is defined as overweight, whereas a BMI value lower than 20 is 

defined as underweight. However, such fixed thresholds do not work for all 

individuals. For example:  athletes have a high muscle weight and low fat weight 

(Jeukendrup et al., 2010). 

Therefore, it is crucial to be aware of the fact that every individual has its own 

normal state in a healthy condition. Thus, whenever possible, the evaluation of the 

current condition should be made against the value normally presented in that 

individual when in a healthy (or normal) state (Indrayan, 2012). In chapter II, we 

showed that it’s impossible to use single IL-6 blood levels for detection of infection at 

pig group level. However, when we compared the static blood levels—14hrs after 

infection—with the individual baseline level of the same pig (2 hrs before infection), 

a higher discriminatory power was obtained. Even better results were obtained 

when we analysed the hormone dynamics at group level, but again, these results 

were improved by comparing the dynamics after infection with the dynamics during 

baseline conditions in the same individual, resulting in an individualised approach.  

Thus, in comparison to population-based approaches, monitoring methods using 

individualised baselines can improve the discriminatory power. Therefore, the way 

forward in monitoring individuals is in using serial baseline measurements of 

normal (e.g. healthy) system behaviour to detect individual changes (Fraser et al 

2009; Anderson et al., 2016).  
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In chapter VI, individual thresholds were defined to detect when an embryo goes 

from the endotherm to the exothermic phase. The thresholds were calculated based 

on the mean and standard deviation of the same variable in the same individual 

during baseline conditions. On population level, an average SSG of 1 was found, 

which corresponds with the expected value that correlated with the transition from 

being endothermic to being ectothermic (see 3.4.4).   However, some embryos had 

baseline threshold values which were significantly different from 1, therefore 

stressing the need for an individualized approach (see figure VI.3 in chapter VI).    

In chapter V, individual thresholds were determined for optimal detection of 

locomotion based on hippocampal theta oscillations. In this study, median and 

standard deviations of power spectral densities at specific theta frequencies were 

used for the calculation of the most accurate individual threshold values. The results 

showed different individual thresholds for the rat, confirming the need for baseline 

measurements of each individual.  

 

In the previous part of the discussion (3.4 Individualised change detection), 

examples from the chapters showed the presence of inter- and intra-individual 

differences in the monitoring applications, indicating the need for an individualised 

approach in order to capture the individual state changes. In addition to the general, 

more traditional change detection methods (e.g. CUSUM algorithms), we presented 

three approaches for individualised change detection with individual thresholds: 1) 

Change detection based on (sub)-population information, 2) Change detection based 

on universal laws and insights from control engineering, complex systems science 

and biology and 3) Change detection based on individual serial baseline 

measurements, which can be considered is the most individualised way.  

 

 

 

 



 GENERAL DISCUSSION 

                                                                                                

243 

 

3.4.6 Change detection without thresholds 

The previous sections focused on approaches to determine individual thresholds 

(e.g. chapter V and VI). From a monitoring point of view, the use of thresholds can 

directly contribute to the decision-making of the operator for planning interventions 

to change the state of the biological process (i.e. bio-process control). By defining 

fixed (population/individual) thresholds to dichotomise measurements of 

continuous bio-process variables, one can categorise individuals, for instance, as 

being hypertensive (i.e. continuous variable: blood pressure) or obese (i.e. 

continuous variable: BMI) and start appropriate treatments (Ragland, 1992; Altman 

and Royston, 2006). Using thresholds to force all individuals in two groups (e.g. ill vs. 

healthy) can simplify interpretation and presentation of results for monitoring 

biological processes. However, from the perspective of the biological system itself, it 

can be important to answer the question of whether the specific threshold actually 

exists in biological terms (Aldridge, 1986). Dichotomising continuous variables to 

obtain binary outcomes can lead to a significant loss of relevant bio-process 

information (Altman and Royston, 2006). It could be more suitable, for instance,  to 

determine linear relations between continuous variables for monitoring the bio-

process without defining threshold values (e.g. prediction of hatch time; figure VI.6 

in chapter VI).  While some changes of bio-processes are more critical switch-like 

transitions from one state to another (e.g. activation of a mGluR receptors; see 

chapter IV), other changes should rather be characterised as gradual transitions (see 

BOX 3.1; Scheffer et al., 2012). In the latter case, it can be more suitable to use 

continuous outcome variables for monitoring the gradual changes of the biological 

processes. 

Another alternative for model-based monitoring purely on individual thresholds, is 

the use of a more probabilistic approach. This way one can move beyond binary 

statements about ‘change’ or ‘no change’ that are not considering uncertainties and 

variation under different circumstances (Leek et al., 2017). It can be an option, for 

example, to define risk factors and obtain prior and posterior probabilities of a 

specific state of biological processes (Attia, 2003; see also 3.4.3). Instead of assigning 

a specific state to a bio-process, the individual state of the bio-process could be 
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described by a multidimensional and multimodal probability distribution, using, for 

instance,  a combination of a deterministic model and a Bayesian likelihood approach 

(for more details: see e.g. Zenker et al., 2006 and 2007).  Such approaches would 

allow the operator of the specific monitoring application to quantify the uncertainty 

of the bio-process state (e.g. Meyfroidt et al., 2011) and could potentially contribute 

to the identification of additional bio-process characteristics that should be 

measured to decrease the uncertainty about the bio-process state (Zenker et al., 

2007). In addition, there are many other examples of probabilistic approaches, but 

those methods are beyond the scope of this thesis.  

 

 

3.4.7 Towards a methodological approach for individualised 

change detection 

In this PhD, several aspects of the general monitoring scheme (cfr. Figure 3.1) were 

investigated. All the elements and methods handled in the discussion are 

summarised in one flow chart for individualised model-based monitoring of 

biological processes (Figure 4.1). The four main blocks of figure 3.1—the bio-

process, the process model, feature generation and individualised change detection 

based on individual thresholds—are included. For each block, all the discussed 

elements and methods are listed. As indicated by the main results of this PhD, the 

researcher should start from all available biological knowledge at every step of this 

summarising scheme and aim to individualise the approach as much as possible. As 

shown by the results of each chapter, the presented approach could potentially be 

used in a wide range of applications stressing the generic power of the suggested 

model-based framework.  

 

 

 

 

 

 



 GENERAL DISCUSSION 

                                                                                                

245 

 

 

 

 

Figure 3.14 Flow chart with essential steps and methods for the design of a system 

for individualised model-based monitoring of bio-signals. 
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Part 4 

Conclusions 

 

“Imagination is more important than knowledge. Knowledge is limited.  

Imagination encircles the world.” 

 

─  Albert Einstein  ─ 

 

 (From: "What Life Means to Einstein: An Interview by George Sylvester Viereck" The Saturday 

Evening Post (26 October 1929), p. 17.) 
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4.1 GENERAL CONCLUSIONS 
 

Biological systems are continuously exposed to uncertain and variable conditions. In 

order to cope with these environmental uncertainties or disturbances, biological 

systems contain cleverly designed architectural components which allow them to 

remain stable, adapt to changing conditions (e.g. learning by brain plasticity, cfr. 

Chapter I) and grow (e.g. chicken embryo, cfr. Chapter V). To preserve homeostasis 

and stable internal conditions, biological systems contain components which can be 

compared with well-known control engineering components such as actuators (e.g. 

the heart), controllers (e.g. the central nervous system, cfr. Chapter IV), feedback 

loops, sensors, etc. Therefore, as the first step in the development of an 

individualised model-based monitoring system for bio-signals (i.e. developing 

monitoring systems “from biology to technology”), we suggested combining insights 

from biology and control engineering to interpret measured bio-signals (see general 

objective in 1.5). 

 

Dealing with the inter- and intra-individual variations remains one of the main 

obstacles in applying engineering approaches to biological processes. In the 

introduction, we emphasised the need to start from the available biological 

knowledge of an individual bio-process in order to develop an effective 

individualised monitor. Moreover, only after this step has been taken can all the 

available information be interpreted from a control engineering perspective. The 

individual details of the biological process can be assessed at four different levels: 

measurable variables, relevant spatial and temporal scale and a control engineering 

interpretation (i.e. individual system structure, individual system dynamics, and 

individual bio-signals; figure 3.14). The results of the case studies showed that we 

could indeed define actuator and homeostatic variables for a range of different 

biological processes (see sub-objective 1; cfr. Table 3.1). Such results might indicate 

that we can unravel some of the mysteries of biological functioning by combining 

biological insights with insights from control engineering. 
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However, many biological processes are characterized by a number of non-

linearities, which possibly complicate the design of monitors for bio-processes. In the 

second sub-objective, we suggested that we can use compact individual linear 

models (Box-Jenkins models) for the monitoring of such individual non-linear bio-

processes. Based on these models, it was possible to describe the dynamics of the 

biological process and/or uncover information about the underlying mechanisms 

state by applying data-based mechanistic approaches for the specific case studies 

(see sub-objective 2; cfr. Chapter IV and VI).  Several examples, spread across the 

various chapters, showed that we can use compact linear models for monitoring 

individual non-linear bio-processes (crf. Chapter II, III, IV and VI; figure 3.14). These 

models allow accurate descriptions of the dynamic, time-varying and individual 

character of bio-processes. 

 

For every monitoring application, we need to define the optimal model-based 

indicator of individual change. Based on the results of the specific case studies, we 

suggest three different, general model-based markers for individual state changes in 

organisms: model parameters, changes in model order and changes in model noise 

term characteristics (figure 3.14).  In addition, more than 20 other generic metrics 

from the fields of complex systems science, change detection and control engineering 

were identified that can be used while analysing individual time series. These 

features can be used for all individual bio-processes and were generated based on 

the specific individualised model-based monitoring applications of this PhD (See 

sub-objective 3; Chapter I-VI). 

 

Due to the present inter- and intra-individual differences (cfr. Chapter I, II, III, V & 

VI), monitoring of biological processes requires individual thresholds to capture the 

individual state changes. Methods of online change detection are typically 

characterised by the use of threshold methods. Here, we combined insights from  

change detection and control engineering and developed a framework for 

individualised model-based monitoring with individual thresholds based on the 

specific case studies.  Again, three possible approaches were proposed: 1) Individual 

thresholds based on (sub)-population information, 2) Individual thresholds based on 
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universal laws and insights from control engineering, complex systems science and 

biology and 3) Individual thresholds based on individual serial baseline 

measurements, which can be considered is the most individualised way (see sub-

objective 4; figure 3.14).  

 The way forward in the monitoring of individuals is using serial baseline 

measurements of normal (e.g. healthy) system behaviour to detect individual 

changes (cfr. Chapter II). Such an individualized approach allows us to define 

individual thresholds (cfr. Chapter V and VI) purely based on data generated from 

the same individual process, leading to higher detection accuracies in comparison 

with population-based methods.   

 

Overall, the presented approach could be used in a wide range of application 

domains (e.g. precision livestock farming, human health engineering, bio-

technological processes,…), thus stressing the generic power of the suggested 

framework for individualized model-based monitoring of bio-processes based on 

individual thresholds. In the future, population-based threshold approaches should 

be combined with information at an individual level so as to optimise the 

performance of the monitoring systems (e.g. Chapter IV; e.g. mixed-effect models). 

Moreover, the list of used methods could be further expanded (e.g. non-linear 

models, more methods for multivariate analysis, validation methods, etc.). Finally, 

the individualised model-based monitoring approach could also be integrated in a 

broader framework, which, additionally, includes methods for defining 

individualised interventions and individualised control applications. 

 

4.2 SPECIFIC CONCLUSIONS  

This thesis has led to some innovative individualised monitoring applications based 

on the six specific case studies (i.e. Chapters I-VI; cell – embryo – animal – human): 
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Chapter I:  

Individualised monitoring of activity and body weight in the activity-based 

anorexia rat model 

The activity-based anorexia (ABA) rat model is characterised by many inter- and 

intra-individual differences. Based on the available biological knowledge, we were 

expecting food-anticipatory activities (FAA), a behavioural phenomenon frequently 

used to evaluate hyperactivity in the activity-based anorexia (ABA) model, to be 

directly proportional to, and the most discriminating predictor of percentage body 

weight loss. However, our study shows that postprandial activities (PPA) are more 

directly related to weight loss than FAA. The study showed the added value of using 

complete time series, which enable the researcher to obtain more individual 

information per animal and differentiate between different time periods relative to 

the scheduled moments of feeding. 

In interpreting this case study from a control engineering perspective, we can 

consider anorexia nervosa as a dysfunction of the control system relating to energy 

homeostasis in the body.  Hereby, food intake could be defined as an actuator 

variable and body weight as a homeostatic variable.  

The results confirmed the presence of considerable inter- and intra-individual 

differences. Therefore, dynamic ROC curves were used to calculate dynamic 

thresholds for distinguishing between responders and non-responders (rats not 

susceptible to ABA). By recalculating the ROC curves for each day of the conditioning 

period the discriminatory power could be improved.   

To conclude, the applied time-series approach can be used to identify the key factors 

leading to the inter-individual differences and to determine individualised dynamic 

thresholds capturing time-varying aspects leading to the intra-individual differences 

in the ABA model. By monitoring measurable variables related to the ABA model, we 

could determine a significant amount of individual variation, suggesting the need for 

individualised monitoring approaches. 

 

Chapter II:  

Individualised model-based monitoring of interleukin-6 for early detection of 

infection in pigs 
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The individual biological process of this case study was part of the immune system in 

pigs. The measured variable was interleukin-6, which is one of the cytokines that 

plays a key role in the infection response. The results indicated that IL-6 values of 

fixed time points show, after infection, a large individual variation in outbred 

animals. We hypothesised that model-based time series analyses of interleukin-6 (IL-

6) at the individual level offers a method in detecting infection with 

pleuropneumonia in individual pigs. In applying model-based methods (Integrated 

Random Walk Models), we were able to quantify the dynamic properties of the Il-6 

time series. We found that amplitude increases of IL-6 fluctuations in individual pigs 

should be used as an indicator of the infection state, rather than static IL-6 values, 

therefore showing the added value of IL-6 time series analyses of individual pigs. 

These results are a first step towards the development of objective individualised 

methods for model-based monitoring, early detection of sepsis and inflammation 

processes in pigs through the integration of animal response dynamics.  

Based on all the methods used in this study, three important elements were 

suggested for obtaining an individualised monitoring approach:  

1.  Change detection based on (sub-)population information (e.g. thresholds 

                 from ROC curve analysis). 

2. Change detection based universal laws and insights from control 

                 engineering, complex systems science and biology (e.g. early warning 

                 signs for critical transitions). 

3.  Change detection based on individual serial baseline measurements.    

 

Chapter III:  

Model-based monitoring of heart rate and blood cytokine time series for early 

detection of infections in critically ill patients 

We applied  20 different generic metrics from the field of complex systems science, 

change detection, and control engineering, while analysing individual heart rate and 

blood cytokine time series for monitoring of infection in ICU patients. The main 

results suggest that two specific heart rate characteristics (i.e. the mean of the raw 

heart rate signals and the mean of the fast dynamics of the heart rate time series) are 

better markers for infection than information captured by the cytokine time series. 
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In this chapter, a compact linear model (Integrated Random Walk Model) was used 

before the feature extraction. The heart rate model showed that the best results were 

obtained by combining the raw heart rate signal and the fast dynamics of the heart 

rate time series. This result proves how model-based features can be an added value 

to monitors that purely focus on measured variables (e.g. ICU heart rate monitor 

only based on raw heart rate signal used in an).  

Whereas ROC curve analysis was used to calculate the thresholds in the previous 

chapters, here we used decision tree analysis to obtain ‘multivariate monitoring 

thresholds’ for classification based on multiple variables. If more variables are 

measured, we obtain more individual information of the patient, potentially allowing 

for a more individualised approach. Ideally, future individualised monitors should 

implement dynamic analyses of different biomarkers for infection and their 

interactions, allowing the operator to determine the individual dynamic infection 

state of the patient. 

In this study, the list of different metrics could be used for all individuals in order to 

distinguish infected from non-infected ICU patients. These methods could be added 

to the suggested approach for individualised model-based monitoring based on 

chapter II. 

 

Chapter IV:  

Model-based monitoring of mGluR-dependent synaptic plasticity in 

hippocampal brain slices of rats 

Long-term synaptic modifications play a key role in the plasticity of behaviour, 

learning, and memory. To the author’s knowledge, it is the first time that fEPSP 

slopes of mGluR-LTD responses are dynamically described using transfer function 

(TF) models.  Starting from available biological information (optimal sampling 

frequency, hippocampal structure, etc.) all measurement procedures were 

determined.   

Whereas the previous chapters focused mainly on the model noise of single-output 

models (integrated random walk models), this study aimed to quantify the model 

structure and time constants of the responses based on the input-output models. 

Accurate models were obtained, and the model structure suggested the presence of 
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two major underlying subprocesses. Based on the estimated times constants, links 

with existing pathways were suggested. Since the calculated models were data-

based, and the fact that we could link the models with underlying physiology, the 

obtained models are data-based mechanistic models. Thus, although neural 

mechanisms are known to contain many nonlinearities, the linear models were able 

to describe the dynamics and uncover information about the underlying mechanisms 

without knowing all details of this form of synaptic plasticity. 

This study suggests that the dynamic data-based modelling approach can be a 

valuable tool for reverse biological engineering of mGluR-dependent LTD responses. 

It is suggested that such system identification (SI) methods can aid in unravelling the 

complexities of synaptic function and its role in disease as also confirmed by the 

unpublished results of  the insulin-LTD data (Figure 3.9). 

 

 

Chapter V:   

Individualised monitoring of hippocampal theta oscillations and 

individualised electrical stimulation in the mesencephalic reticular formation 

for real-time closed-loop suppression of locomotion in rat 

Theta oscillations in the hippocampus (output variable) are highly related with 

locomotion, while electrical stimulation in the mesencephalic reticular formation 

(input variable) induces freezing. Starting from these two biological insights, we 

hypothesised that it is possible to develop a control system for suppression of 

locomotion in rodents.  Since the closed-loop system was effective in suppressing the 

locomotion, this implicates less stimulation induced side effects, during clinical 

application, in comparison to that of open-loop stimulation. 

In the case of closed-loop neuromodulation, the central nervous systems acts as 

controller of many body systems at organisms scale (e.g. control of movement). 

Furthermore, control of the central nervous system by DBS is a promising example of 

how control engineering concepts can be applied to adapt (pathological) behaviour 

of organisms.  

By using individual baseline measurements, the control system could be 

individualised based on individual monitoring thresholds and individualised 
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stimulation parameters. As shown by the analyses, the threshold values and 

stimulation parameters were individually different, confirming the need for an 

individualised approach. 

 

Chapter VI:  

Individualised model-based monitoring of chicken embryo status during 

incubation based on eggshell temperature and micro-environmental air 

temperature 

We hypothesise that we can develop a non-invasive  individualised model-based 

monitoring approach which is able to detect or even predict online the individual 

progress of embryo development during the incubation of chicken eggs based on egg 

shell temperature and micro-environmental air temperature. We showed that we 

can detect, based on dynamic models of the local environmental air temperature and 

the individually measured eggshell temperature, 5 different milestones in the 

development of broiler embryos (milestone 1: transition from endothermic to 

exothermic status, milestone 2: plateau phase, milestone 3: internal pipping, 

milestone 4: external pipping and milestone 5: hatch). Moreover, links were 

suggested with physiological mechanisms and therefore the models can be 

considered as data-based mechanistic models. This individual monitoring approach 

could be an added value to give more insight to farmers,  for individualised 

prediction of hatching and for other  experimental designs and studies, where the 

developmental stage of the embryo is relevant. 

 

Chapters I, II, IV and V present results of animal models for (medical) human 

applications. More specifically, chapter II shows how pigs are first used as animal 

models for the development of an early warning monitor for infection, whereas 

similar approaches are applied in chapter III to obtain a monitor for infection in 

intensive care units. In addition to the aforementioned step from biology to 

technology, this example illustrates how it is possible to make the step from animal 

to human health engineering. 
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