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Abstract— This paper reports a three degree-of-
freedom (3DoF) microelectromechanical systems (MEMS)
resonant sensing device consisting of three weakly coupled
resonators with enhanced sensitivity to stiffness change. If one
resonator of the system is perturbed by an external stimulus,
mode localization occurs, which can be detected by a change of
modal amplitude ratio. The perturbation can be, for example,
a change in stiffness of one resonator. A detailed theoretical
investigation revealed that a mode aliasing effect, along with the
thermal noise floor of the sensor and the associated electrical
system ultimately limit the dynamic range of the sensor. The
nonlinearity of the 3DoF sensor was also analyzed theoretically.
The 3DoF resonator device was fabricated using a silicon on
insulator process. Measurement results from a prototype device
agreed well with the predictions of the analytical model. A
significant, namely 49 times, improvement in sensitivity to
stiffness change was evident from the fabricated 3DoF resonator
sensor compared with the existing state-of-the-art 2DoF resonator
sensors, while the typical nonlinearity was smaller than ±2%
for a wide span of stiffness change. In addition, measurements
indicate that a dynamic range of at least 39.1 dB is achievable,
which could be further extended by decreasing the noise of the
device and the interface electronics. [2015-0020]

Index Terms— Microelectromechanical systems (MEMS) res-
onator, stiffness change sensor, dynamic range, nonlinearity, three
degree-of-freedom.

I. INTRODUCTION

OVER THE last couple of decades, micro- and nanofab-
ricated resonant devices have been widely used to sense

small changes in the properties of the resonator [1], namely
the stiffness [2] and mass [3] of the resonator. Among these,
sensing devices that detect stiffness change have been
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employed for many applications, including accelerometers [4],
strain sensors [5], pressure sensors [6] and force gradient
sensors for imaging microscopy [7], [8]. So far, practically
all of these resonant sensors utilize a frequency shift, caused
by stiffness change due to the quantity to be measured, as the
output signal, which has the advantage that it is a quasi-digital
signal [4].

Recently, an alternative sensing approach has been
proposed [9]–[11]. By adding an identical resonator and
a weak coupling element between to form a 2 degree-of-
freedom (DoF) resonator system, it has been shown that the
sensitivity can be improved by orders of magnitude compared
to the conventional frequency modulation approach in a device
of similar size and fundamental resonant frequency [9], [10].
The principle of operation of these devices is based on a
well-known phenomenon called mode localization, which was
first described in solid-state physics by Anderson [12]. When
a structural perturbation (e.g. mass or stiffness change) is
introduced into a coupled resonator system, the propagation
of the vibration is disrupted, leading to an alteration in the
linear mode shapes of the system.

Due to the enhanced sensitivity, 2DoF devices have been
used in various sensing applications such as mass sensing [9]
and stiffness change sensing, including but not limited to
an electrometer [13] and a displacement sensor [14]. Similar
concept has also been used for a novel capacitive readout [15].
The coupling element between the resonators can be divided
into two categories, mechanical coupling [9] and electrostatic
coupling [16]. The electrostatic coupling has the advantage of
being controllable by tuning the electrical potential difference
across the coupling element [16].

Attempts have also been made to extend the number
of identical coupled resonators even further, to a number
of 15 [17]. The intended application of the device is analyte
mass sensing and to identify on which resonator the analyte
has docked. In terms of sensitivity, it demonstrated an order
of magnitude improvement in mass sensitivity comparing to
the 2DoF resonator system.

In the work presented in the following, we use a dif-
ferent approach based on three weakly coupled resonators
(i.e. a 3DoF system), in which the stiffness of the resonator
in the middle is at least twice the value compared to the other
two identical resonators. A schematic drawing of the prototype
device to be investigated in this work is shown in Fig. 1.
Each resonator consists of four suspension beams and a proof
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Fig. 1. Schematic drawing of the prototype 3DoF resonator sensing device
used in this work.

mass, while the outer resonators (i.e. resonators 1 and 3) have
tethers attached to facilitate axial force sensing [18], [19].
However, the tethers were designed to be stiff in the x-axis.
Because of this, in conjunction with the high stiffnesses of
the suspension beams in the y-axis, it can be assumed that
the suspension beams are anchored at the tethers when the
vibration displacement of the proof masses are small (less
than 1μm in our study). The device is intended for sensing
a change in stiffness in this work. With the 3DoF resonator
sensing device, an order of magnitude improvement in the
stiffness sensitivity could be demonstrated.

Furthermore, previous studies concentrated on the sensitiv-
ity for a change in mass or stiffness only within a narrow
range; therefore other characteristics of coupled resonator
sensors such as linearity and dynamic range have not yet been
investigated. In the work presented in the following, by adopt-
ing an alternative analytical approach using transfer function
models [19], we analyze the nonlinearity and dynamic range
of a sensing device consisting of three coupled resonators.

The paper begins with a theoretical analysis of the 3DoF
resonator sensor based on the transfer function model in
section II. The theoretical sensitivity and dynamic range of
the sensor are also analyzed in this section. Then, a descrip-
tion of the device, including fabrication process and device
design, is given in section III, followed by a description
of the experimental set up and methodology in section IV.
The measurement results and their discussion are presented
in section V and finally the paper ends with conclusions
in section VI.

II. THEORY

A. 3DoF Resonator System Model

In order to understand the physics of the 3DoF res-
onator system shown in Fig. 1, consider the lumped para-
meter block diagram of a three coupled resonator system

Fig. 2. Mass-damper-spring lumped parameter model of a 3DoF resonator
sensing device.

as shown in Fig. 2. Each resonator consists of a mass,
spring and damper, and is coupled to its neighboring resonator
through springs (Kc1 and Kc2). Since the device operated in
vacuum in our study, damping of each individual resonator
is dominated by energy loss mechanisms such as anchor loss
over gas damping [20]; whereas damping between the masses
is dominated by the gas damping between the parallel plates,
which becomes negligible under vacuum ambient pressure
compared to that of each individual resonator, and thus is not
included.

Suppose the masses of all resonators and their correspond-
ing coupling spring stiffnesses are identical, i.e., M1 = M2 =
M3 = M and Kc1 = Kc2 = Kc, while the spring stiffnesses
of the outer resonators are asymmetrical with K1 = K ,
K3 = K +�K (�K is the stiffness perturbation due to a phys-
ical quantity to be measured), and the stiffness of the resonator
in the middle is different from the other two resonators. The
damping coefficients are neglected for much of the analysis
that follows, but are included in Fig. 2 for reference in later
sections. Further, assuming linear springs, no movement in
the y and z-axis, and the system is driven from only one
side, namely with F1(s) = F(s) and F2(s) = F3(s) = 0,
the displacement responses X1(s), X3(s) can be derived with
respect to F(s), from the equations of motion given by [19]:

X1(s)

F(s)
= H2(s)H3(s) − K 2

c

H1(s)H2(s)H3(s) − [H1(s) + H3(s)]K 2
c

(1)

X3(s)

F(s)
= K 2

c

H1(s)H2(s)H3(s) − [H1(s) + H3(s)]K 2
c

(2)

where the particular transfer functions, Hi(s), i = 1, 2 and 3,
are defined as [19]:

H1(s) ≡ Ms2 + c1s + (K + Kc) (3)

H2(s) ≡ Ms2 + c2s + (K2 + 2Kc) (4)

H3(s) ≡ Ms2 + c3s + (K + Kc + �K ) (5)

Ideally, with negligible damping and �K = 0, there
are three distinctive modes of the system: in the first
mode with the lowest frequency, the three resonators vibrate
in-phase; in the second mode, the resonator in the middle
remains stationary while the resonators on either sides vibrate
out-of-phase, with a phase difference of 180◦; in the third
mode having the highest resonant frequency, each resonator
is out-of-phase with its neighboring resonator, so the left
and right resonators are in phase, but out-of-phase with the
resonator in the center [21]. When a perturbation occurs
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in stiffness with �K �= 0, all three modes are disturbed;
i.e. both the mode shapes and frequencies change (the order of
the modes in the frequency domain remains unchanged due to
frequency veering [22]). Due to the stiffness perturbation, the
vibrational energy within the system becomes locally confined;
hence the mode amplitude pattern of the system changes, and
mode localization occurs [22]. The modes of interest for the
purpose of this work are the first two modes, which we will
refer to as the in-phase and out-of-phase modes, respectively.

B. Analysis Without Damping

1) Amplitude Ratio Without Damping: A recent compara-
tive study [23] showed that amplitude ratio can be the optimum
way of measuring the effect of mode localization in terms
of linear sensitivity and linearity, compared to eigenstates
shift [9], [10]. Hence we shall use amplitude ratio as the output
quantity, given by:

Output =
∣
∣
∣
∣

X1(s)

X3(s)

∣
∣
∣
∣

(6)

Assuming a weak coupling stiffness, Kc < K/10 and the
stiffness of the resonator in the middle being more than twice
that of resonators 1 and 3, K2 > 2K , the following condition
is satisfied:

Kc <
K

10
<

K2 − K

10
(7)

Furthermore, assuming no damping is present in the system,
so the quality factor Q → ∞, and �K � K , let s = jω,
the frequencies of the in-phase and out-of-phase modes can
be derived as [24]:

ωip ≈

√
√
√
√
√

1

M

⎡

⎣K + Kc + 1

2
(�K − 2K

γ
−

√

�K 2 +
(

2K

γ

)2

)

⎤

⎦

(8)

ωop ≈

√
√
√
√
√

1

M

⎡

⎣K + Kc + 1

2
(�K − 2K

γ
+

√

�K 2 +
(

2K

γ

)2

)

⎤

⎦

(9)

where ωip and ωop denote the frequencies of the in-phase and
out-of-phase modes, respectively, and

γ = K (K2 − K + Kc)

K 2
c

(10)

Substituting (8) and (9) into (1) and (2), the amplitude ratios
for the in-phase and out-of-phase modes, |X1( jωip)/X3( jωip)|
and |X1( jωop)/X3( jωop)|, respectively, can be estimated
as [24]:

∣
∣
∣
∣

X1( jωip)

X3( jωip)

∣
∣
∣
∣
Q→∞

≈
∣
∣
∣
∣
∣

√

γ 2(�K/K )2 + 4 + γ (�K/K )

2

∣
∣
∣
∣
∣

(11)
∣
∣
∣
∣

X1( jωop)

X3( jωop)

∣
∣
∣
∣
Q→∞

≈
∣
∣
∣
∣
∣
−

√

γ 2(�K/K )2 + 4 − γ (�K/K )

2

∣
∣
∣
∣
∣

(12)

TABLE I

VALUES USED IN THE SIMULATION (WITHOUT DAMPING)

To verify the results, since damping is neglected, the mode
frequencies and amplitude ratios can be obtained using Matlab
by solving the eigenvalue problem [25] of the 3DoF system,
which can be expressed in the form of (13). The mode
frequencies are the square roots of the eigenvalues of the mass
normalized stiffness matrix (i.e. ω = √

λ), while the amplitude
ratios can be obtained from the eigenstates ([x1 x2 x3]T).
The γ value was 11325 for the frequency simulation. The
values of other stiffnesses and the mass chosen for the simu-
lation are listed in Tab. I. All values have been chosen to be
close to the actual fabricated device.

λ

⎡

⎣

x1
x2
x3

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

K + Kc

M
− Kc

M
0

− Kc

M

K2 + 2Kc

M
− Kc

M

0 − Kc

M

K + �K + Kc

M

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣

x1
x2
x3

⎤

⎦

(13)

Fig. 3a verifies the expression of frequencies of each mode,
i.e. (8) and (9), as the simulated mode frequencies match
very well with theoretical calculations, with error smaller
than 10ppm, thus justifying the simplifying assumptions.
Fig. 3b shows the simulated and theoretically calculated
values of the mode frequency difference as a function of
normalized stiffness perturbation. It can be seen from Fig. 3b
that the frequency difference first decreases with increasing
(negative) stiffness perturbation, then increases symmetrically
with increasing (positive) stiffness perturbation. As expected,
the frequency difference is always positive, indicating that the
out-of-phase mode always has a higher frequency than the
in-phase mode regardless of the stiffness perturbation.

Fig. 4 shows the amplitude ratios as a function of normal-
ized stiffness perturbation. It is found from Fig. 4 that the
theoretical estimations match well with the simulated results
(less than 1% error), indicating that (11) and (12) are good
approximations of the amplitude ratios.

It is further noticed that when �K/K < 0, the amplitude
ratio of the out-of-phase mode has a much stronger depen-
dency on the normalized stiffness perturbation than that of the
in-phase mode; vice versa, when �K/K > 0, the in-phase
mode amplitude ratio provides a more significant response.
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Fig. 3. Matlab calculation results with γ = 11325 showing: a) the in-phase (black) and out-of-phase (red) mode frequencies as a function of a normalized
stiffness perturbation �K/K comparing simulated and theoretically calculated values using (8) and (9); b) simulated and calculated mode frequency difference,
�ω = ωop − ωip. The theoretically calculated mode frequencies match well with the simulated values.

Fig. 4. Simulated (dots) with γ = 11325 and theoretically estimated (lines)
amplitude ratio (using (11) and (12)) for: in-phase (black) and out-of-phase
(red) modes. The theoretically calculated amplitude ratios match well with
simulated values.

Therefore, to obtain a higher sensitivity, for negative stiffness
perturbations, the amplitude ratio of the out-of-phase mode
should be chosen as the output; whereas for positive stiffness
perturbations, the amplitude ratio of the in-phase mode is a
better choice. Without loss of generality, the amplitude ratio
of the out-of-phase mode for �K/K < 0 is chosen for the
following analysis.

2) Linear Sensitivity to Stiffness Change: It can be seen
from Fig. 4 that for negative stiffness perturbations, the
amplitude ratio is approximately a linear function of stiff-
ness perturbation. Assuming |γ�K/K | > 10, the amplitude
ratio (12) can be linearized as [19]:

∣
∣
∣
∣

X1( jωop)

X3( jωop)

∣
∣
∣
∣
Q→∞

≈ −γ�K

K
(14)

Thus −γ is the linear sensitivity of the device with respect
to normalized stiffness perturbation �K/K . Because of this,
and its significance in the performance characteristics of the
device as we shall see later, γ is one of the most important
parameters in our device. It is also worth noting from (10) that

the linear sensitivity is determined by only the stiffness of the
resonators and the coupling stiffness between them.

3) Nonlinearity of Amplitude Ratio Without Damping:
Despite the fact that the amplitude ratio can be approximated
as a linear function of the stiffness change, from (12) it
can be seen that the amplitude ratio is a non-linear function
of the normalized stiffness perturbation �K/K . From the
Taylor expansion, the nonlinearity error ε1 can be estimated
as [19]:

ε1 ≈
(

K

γ�K

)2

(15)

It can be seen from (15) that the nonlinearity error ε1
increases with decreasing value of (γ�K/K )2. To demon-
strate the influence of the nonlinearity, the same Matlab
simulation as in the previous section is run, with varying Kc

in the model, thus resulting in different K/Kc and γ values.
The Kc values, along with the resulting K/Kc and γ values
are listed in Table I. The results are presented in Fig. 5.

It can be seen from Fig. 5 that the amplitude ratio under the
assumption of infinite quality factor can be approximated using
the linearized scale function (14), with negligible nonlinearity
errors (less than 1%) for amplitude ratio larger than 10;
however, the nonlinearity error increases as the stiffness pertur-
bation approaches zero. Fig. 5a and 5b show the results for two
exemplary values of γ; it can be seen that for the same stiffness
perturbation, a larger γ results in better linearity. Fig. 5 also
indicates that (15) can be regarded as an accurate estimation
of the nonlinearity error.

C. Analysis With Damping

1) Dynamic Range: In reality, the quality factor will be a
finite value due to damping in the system, hence leading to
a finite bandwidth of each mode [26]. When one mode is
in close vicinity to the other, the modes will interfere with
each other, therefore mode aliasing occurs. The difficulty in
identifying the mode of interest, i.e. the out-of-phase mode,
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Fig. 5. Simulated amplitude ratios for a) γ = 5050 and b) γ = 11325 showing the linearized scale function given by (14), as well as the nonlinearity error.
The nonlinearity error of the simulated amplitude ratio is calculated by comparing the simulated amplitude ratio to the linearized scale function, whereas the
theoretical nonlinearity error is calculated using (15). The dashed lines at the bottom of the diagram mark a nonlinearity error of 1%, which was regarded
as negligible. The nonlinearity increases when the stiffness perturbation approaches zero. For the same stiffness perturbation, a larger γ value results in a
smaller nonlinearity error.

Fig. 6. Schematic of an equivalent electrical RLC model of a 3DoF resonator
sensing device.

(in case of severe mode aliasing, modes could emerge) can
lead to the sensor being unable to operate as intended [19].
To avoid severe mode aliasing, an anti-aliasing condition
should be satisfied [19]:

�ω > 2 × �ω3dB (16)

As shown in Fig. 3b, the frequency difference between
the in-phase and out-of-phase mode is dependent on �K/K .
Therefore, for a given quality factor and γ value, the anti-
aliasing condition (16) sets a boundary for the maximum stiff-
ness perturbation. Perturbation values beyond the boundary
potentially result in severe mode aliasing effects.

To estimate this analytically, a simulation using an equiva-
lent electrical RLC model [21] was run. Assuming the system
is driven only by a force on resonator 1 as in previous sections,
the schematic of the equivalent electrical RLC model is shown
in Fig. 6. A quality factor of the modes of Q = 5000
in vacuum was assumed; this is a conservative estimation
compared to similar resonant devices [10], [27]. For this
simulation, Cc = 19.07fF; other values for the simulations
are also listed in Table II.

As demonstrated in Fig. 7, (8) and (9) can still be
regarded as accurate estimations of mode frequencies for
�ω ≥ 2 × �ω3dB, with relative errors less than 25ppm.

TABLE II

VALUES USED IN THE SIMULATION (WITH DAMPING)

In addition, the 3-dB bandwidth, for a given finite quality
factor Q, is given as:

�ω3dB = 1

Q

√

K

M
(17)

From (8), (9), (16) and (17), for �K/K < 0 and γ > Q/2,
we can derive that the following condition should be satisfied:

�K

K
< −2

√
(

2

Q

)2

−
(

1

γ

)2

(18)

Furthermore, the noise floor of the device and the interface
circuitry sets the minimum detectable amplitude of the res-
onators; consequently a limitation of the maximum measurable
amplitude ratio can be introduced. Thus, the lower boundary
of the dynamic range of the device is determined as:

�K

K
> −Max Amplitude Ratio

γ
(19)

Therefore, it can be seen that the value of γ should not be
arbitrarily large due to its influence on the dynamic range of
the sensor.
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Fig. 7. Simulation results with γ = 11325 showing the in-phase and out-of-phase mode frequencies as a function of normalized stiffness: a) simulated with a
quality factor of 5000, and theoretically calculated mode frequencies using (8) and (9); b) simulated and calculated mode frequency difference, �ω = ωop−ωip.
The blue lines in both figures mark the boundary of �ω = 2 ×�ω3dB. Regions where the anti-aliasing condition is satisfied are marked in both figures. The
blue shaded area in a) shows the region where mode aliasing is so severe that the in-phase and out-of-phase modes cannot be differentiated. The theoretically
calculated mode frequencies match well with simulated values, however, the error tends to grow when the frequency difference decreases in value.

Fig. 8. Simulated (dots) and theoretically estimated (lines) amplitude ratio
using (20) with Q = 5000 but different coupling conditions and γ values:
K/Kc = 50, γ = 5050 (red); and K/Kc = 75, γ = 11325 (black). The
simulated results matched well with theoretical predictions.

2) Amplitude Ratio Analysis With Damping: Within the
dynamic range, the mode frequencies with finite damping can
still be approximated by (8) and (9) if the condition of (7) is
fulfilled. Hence, the amplitude ratio of the out-of-phase mode
becomes:
∣
∣
∣
∣

X1( jωop)

X3( jωop)

∣
∣
∣
∣
≈

∣
∣
∣
∣
∣
−

√

γ 2(�K/K )2 + 4 − γ (�K/K )

2
+ j

γ

Q

∣
∣
∣
∣
∣

(20)

where Q is the quality factor of the out-of-phase mode.
To verify (20), the same simulation was run using the values

listed in Table II. The stiffness perturbations are chosen so
that they are within the theoretical dynamic range, with the
condition of (16) fulfilled.

It can be seen from Fig. 8 that the simulated results agree
well with (20). Therefore, (20) can be considered as an

accurate estimation of amplitude ratio with damping within
the dynamic range.

3) Nonlinearity Analysis With Damping: Under the assump-
tion that the nonlinear effects of the undamped and damped
cases are uncoupled, the total nonlinearity error ε can be
approximated as [19]:

ε ≈ ε1 + ε2 =
(

K

γ�K

)2

+ 1

2

(
1

Q

K

�K

)2

(21)

where ε1 is the nonlinearity term given by (15) and ε2 is a
second nonlinearity term introduced by damping.

Simulated nonlinearity values in [19] showed good agree-
ment to the theoretical values; however, it was not verified
through measurement results. The measured nonlinear results
will be compared to theoretical results in Section V-E.

D. Theoretical Comparison to Other Resonant
Sensors Based on Stiffness Change

From the previous analysis, the linear sensitivity of the
3DoF resonant sensor, for negative �K/K, is:

S3DoF = ∂(Amplitude ratio)

∂(�K/K )
= − γ

= − K (K2 − K + Kc)

K 2
c

(22)

In the same way as in [9] and [10], we can compare the
amplitude ratio sensitivity of a 3DoF device to the reso-
nant frequency sensitivity of a conventional resonant sensor
(e.g. 1DoF) device. The sensitivity to normalized stiffness
change of a 1DoF resonant sensor with frequency shift output
is given by (23) [28].

S1DoF = ∂(Relative frequency shift)

∂(�K/K )
= 1

2
(23)
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Fig. 9. The process flow of the single mask SOI process: a) deposition
and patterning of photoresist, b) DRIE etching, c) overetching, d) photoresist
removal and dicing, e) HF solution release.

With the assumptions stated in (7), the value for γ is at
least 100, thus the improvement in sensitivity is at least two
orders of magnitude.

For a 2DoF resonator sensor for stiffness change sensing
applications, the sensitivity to a stiffness change can be
approximated by [10]:

S2DoF = ∂(Eigenstates shift)

∂(�K/K )
≈ K

4Kc
(24)

Given identical K and Kc values, and with the assumption
stated in (7), comparing (22) and (24), it is noticed that
the sensitivity of a 3DoF resonator sensor is improved by
4(K2 − K + Kc)/Kc, which is found to be at least 40 times.

III. DEVICE DESCRIPTION

A. Fabrication Process

To demonstrate the concept, a 3DoF resonator device was
fabricated using a single mask silicon on insulator (SOI)
process with a structural layer of 30μm thickness. The process
flow is briefly summarized here (a more detailed description
is provided in [29]), it comprised the following main steps:

1) Spin coating of photoresist on the front side of the
SOI wafer, and patterning of the photoresist using a
photomask, Fig. 9a.

2) Deep reactive ion etch (DRIE) to define the device layer
structure, Fig. 9b,

3) Overetch step by DRIE, utilizing the notching
effect [30], [31], Fig. 9c.

The notching only occurred when the trenches were
narrower than a critical width, which was experimentally
determined to be 16μm. The bottom of all trenches
narrower than 16μm, including those between comb
fingers, parallel plates and the majority of proof masses
(due to release holes), were thus deliberately overetched
and released. Structures with a larger area, such as the
proof masses, were not completely released during this
step; a small part on the edge of the proof masses

was intentionally designed so that the proof masses and
suspension beams were protected from shocks occurring
during the dicing step.

To avoid the suspension beams from being overetched,
the beams were placed well apart, much further away
than the critical gap width of 16μm, from any other
structures. Therefore, negligible notching occurred at the
bottom of these beams, and thus were not released in this
step.

Due to the overetch step, stiction of the proof mass and
other structures to the handle wafer was avoided during
a final wet release step removing the buried oxide (BOX)
layer [32], [33].

4) Removing the photoresist, followed by dicing, Fig. 9d.
The BOX layer is retained in this step, so the fragile
resonators structures will not be damaged during the
dicing process.

5) Wet etching using HF solution to release the moving
structures, including suspension beams and the edge of
the proof masses, Fig. 9e.

B. Device Design

The designed system as shown in Fig. 1 consists of
three resonators, coupled to its neighboring resonator through
electrostatic springs [34]. To realize the electrostatic spring
between the resonators, each resonator is placed next to its
neighbor with a nominal air gap of 4.5μm in between. When
a voltage difference is applied across the air gap between
the resonators, an attractive electrostatic force is generated.
If the displacement is small compared to the air gap, the
electrostatic force is a linear function of the displacement,
resulting in a behavior similar to a linear mechanical spring.
If ε0, A, V , d are the permittivity of vacuum, cross-sectional
area of the parallel plates, voltage difference and the gap
between two proof masses, respectively, assuming a displace-
ment much smaller than the air gap, and neglecting nonlinear
terms, the stiffness of the electrostatic springs Kc can be
approximated by [34]:

Kc ≈ −ε0 AV 2

d3 (25)

A larger air gap d gives a smaller nonlinearity for a
given displacement [35], thus a larger air gap is preferred
for increasing the displacement range for linear electrostatic
spring. However, a larger gap also means that a higher voltage
is required to obtain the same coupling strength. For a gap
of 4.5μm chosen here, the resulting linear coupling spring
constant Kc ranges from 0.69 to 1.24N/m with the coupling
voltage varying from 30-45V.

For each resonator, four suspension beams were used so
that out of plane tilting is minimized. The beams form the
suspension system of each resonator and can be treated as
linear mechanical springs for small deflections. The suspen-
sion beams have one end fixed, while the other end moves
perpendicular with respect to the beam length. Given the
displacement functions along the axis of the beam for these
boundary conditions [36], and with four beams in parallel for
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each resonator, the equivalent mechanical stiffness, Km (where
m denotes “mechanical”) of each resonator can be derived as:

Km = 4 × Ew3t

L3 (26)

where E, w, t, L are Young’s modulus, width, thickness and
length of each supporting beam, respectively.

A low mechanical stiffness of the resonator was desired in
our design, as a smaller Km gives a lower resonant frequency
(in the kHz range), simplifying the interface circuitry while
retaining high sensitivity. The smallest beam width achievable
with an acceptable yield in the fabrication process used was
5μm, the minimum aspect ratio was 1:70, resulting in a beam
length of 350μm. The width of the suspension beams of the
middle resonator, should be wider, resulting in a larger K2,
hence a larger γ and thus higher sensitivity. However, as
mentioned in the previous section, a too large γ can limit
the dynamic range of the device. A width of 7.5μm for the
suspension beams of resonator 2 was regarded as adequate.

Relatively large proof masses were used to obtain low
resonant frequencies (in the kHz range), and to make the
proof masses less prone to random fabrication variations, as
an important assumption is that all masses are equal. The
dimensions of the proof masses of 360 × 360μm2 were
considered to be sufficient, resulting in a resonant frequency
of approximately 15kHz (calculated using E = 169GPa and
ρ = 2.33g/cm3).

An AC voltage, with a small amplitude compared to the
fixed bias voltage on resonators, was applied to the electrode
next to the left resonator. This created an alternating electro-
static force on resonator 1, driving the 3DoF resonator sensor
with only one actuation force. An actuation gap of 4.5μm
was chosen to avoid significant nonlinear actuation force for
a given displacement [37] while ensuring sufficient force to
drive the resonators.

To sense the motions of resonators 1 and 3, two sets
of comb fingers were attached to the resonators on either
side. Differential capacitive sensing was realized through the
arrangements of the comb fingers. The length of the comb
fingers were 90μm; this ensures that the comb fingers will
not vibrate. The overlap length was designed to be 70μm
to get sufficient current to be measured with a standard
transimpedance amplifier (TIA).

The design values are summarized in Table III.

C. Perturbation Design

When DC voltages were applied to resonators 1 and 3,
electrostatic springs were also created between the resonators
and the driving electrodes, as well as the sensing electrodes.
Neglecting the higher order terms of the electrical spring
stiffness, the effective stiffness of the outer resonator can be
approximated as:

Keff = Km + Ke ≈ 4Ew3t

L3 − ε0(AV 2
e + 6 × Acf V 2

c f )

d3 (27)

where Km is the mechanical stiffness of the suspension beams,
Ke is the electrical spring stiffness arising when a bias voltage

TABLE III

DIMENSIONS OF THE DEVICE

is applied on the resonator proof mass, Acf is the cross-
sectional area of the comb finger overlap, Ve is the voltage
difference between resonator proof mass and neighboring elec-
trode, and Vcf is the voltage difference between the resonator
proof mass and stationary comb fingers.

It is noticed from (27) that by altering the voltage on the
electrode on the right, hence changing Ve, we can modify the
effective stiffness of the resonator. Therefore, we are able to
perturb the coupled resonator system with a stiffness change
by altering Ve. Neglecting higher order terms, the perturbation
in stiffness can be approximated as:

�K ≈ −ε0 A

d3

[

(Ve + �Ve)
2 − V 2

e

]

(28)

It should be pointed out that in presence of the perturbation
voltage, the proof mass moves out of its rest position due to
the electrostatic force, resulting in a small change in capacitive
gap d . However, due to the relatively small perturbation
voltages (less than 12V) applied in the experiments, the
calculated resultant displacement was below 40nm, which was
less than 1% compared to the designed air gap of 4.5μm.
Therefore (28) serves as a good first order approximation of
the introduced stiffness perturbations.

Random fabrication variations in dimensions led to an
intrinsic imbalance in the system. Because of the proof masses
design, the mass variations were supposed to be negligible
compared to the proof masses, therefore ignored in the analy-
sis; only the effect of variations in stiffness is considered. The
variations in dimensions led to an offset in stiffness; neglecting
higher order terms, the normalized stiffness perturbation is
deduced as:

�K

K
≈ −ε0 A

d3

[

(Ve + �Ve)
2 − V 2

e

]

/Keff − Offset (29)

where Keff is the effective stiffness of the resonator given
by (27).
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Fig. 10. Test configuration of the prototype 3DoF resonator sensing device
along with the optical image of the 3DoF sensing device tested.

IV. EXPERIMENTAL METHODOLOGY

A. Device Configuration

A prototype 3DoF resonator sensor was fabricated and
configured as shown in Fig. 10 for characterization. The
same DC voltage was applied to both proof masses of res-
onators 1 and 3, to ensure identical coupling, thus Kc1 = Kc2.

An AC drive voltage was applied to the actuation electrodes
on the left, so only F1 was applied to the system, thus
satisfying F2 = F3 = 0.

A DC voltage was applied to the driving electrodes on the
right. This created a DC voltage change in Ve, equivalent to
the �Ve term in (28).

Differential sense currents were obtained from the comb
fingers dedicated for motion sensing, and then fed to the
interface circuitry for further processing.

B. Electrical Test Set-Up

To electrically test the chip, the chip was mounted on
a chip carrier and wire bonded to the contacts. The chip
carrier was then inserted into a socket on a printed circuit
board. The circuit board was placed into a customized vacuum
chamber with electrical feedthroughs. The ambient pressure
was 20μTorr ensuring minimum air damping loss, so a high
quality factor could be obtained.

In four different sets of experiments, different coupling
voltages were used. As discussed in section II-C.1, a too
large γ is not desired as it can limit the dynamic range of the
device. To ensure the assumption in (7) is valid, the coupling
voltage was set to be 30V, 34.5V, 40V and 45V, respectively.
The K/Kc and γ values were calculated using the design
parameters and (10), and are listed in Table IV.

To drive the resonators, a sinusoidal AC voltage with
adjustable frequency was generated from the signal generator.
The peak to peak value was set to be 15mV to drive the
resonators in the linear region. A real-time measurement
method was employed in this work to measure the motion
of resonators 1 and 3. Motional currents were amplified by
standard TIAs (AD8065, Analog Devices Inc) and subse-
quent instrumentation amplifiers (INAs) (AD8421, Analog
Devices Inc), and measured by a two-channel oscilloscope
(DSO6032A from Agilent Technologies). The experimental
method is described in detail elsewhere [19].

TABLE IV

CALCULATED AND EXPERIMENTALLY EXTRACTED VALUES
FOR DIFFERENT COUPLING VOLTAGES

V. RESULTS AND DISCUSSION

A. γ Value and Offset Extraction

Before proceeding to illustrate of the functionality of the
sensor, it is important to quantify the γ values, since the
performance of the sensor depends critically on this parameter.
In addition, the offset values in stiffness perturbations �K/K
were characterized due to its importance in analyzing the
measurement results.

To approximate the γ and offset values from the measure-
ment data, the linearized scale function (14) was utilized.
The reason for this is that the γ values were different to
the designed values due to the fabrication tolerances, as will
be discussed in Section V-D. Both the γ and offset values
were estimated by fitting the measured data for amplitude
ratios larger than 20 to a linear function. The slope of the
line was expected to be a good approximation of −γ and the
intersection of the line to the horizontal axis was regarded as
a good estimation of the offset value. The estimated γ values
and offset values are listed in Table IV. The �K/K values in
the following sections were deduced using (29) including the
experimentally estimated offset values.

B. Frequency Response

By using the experimental set up and method described
in the previous section, we measured the frequency response
of the 3DoF resonator sensing device as shown in Fig. 11.
For 4.85V perturbation voltage, the corresponding stiffness
perturbation �K/K was calculated as −0.23×10−3 according
to (29). Two modes were close to each other, thus a strong
mode aliasing effect was observed, as shown in Fig. 11a. When
we changed the perturbation voltage to 4.15V, hence decreas-
ing the value of �K/K to −0.69 × 10−3, the frequency dif-
ference between the in-phase and out-of-phase modes became
larger, as predicted by [19], the mode aliasing effect became
weaker, and the in-phase and out-of-phase modes could be
identified, as shown in Fig. 11b.

The frequencies of the in-phase and the out-of-phase modes
were found to be 14925.42Hz and 14930.41Hz, respec-
tively; while the calculated corresponding mode frequen-
cies were 14414.76Hz and 14419.90Hz, respectively; hence
there is good agreement between measured and theoretical
values.

The measured 3dB bandwidth of the out-of-phase mode
was 2.4Hz; from this, the quality factor could be calcu-
lated as approximately 6221, which was sufficiently close
to the assumed quality factor of 5000 in the analytical
derivations.
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Fig. 11. Measured frequency response of resonators 1 and 3, with 30V coupling voltage, corresponding to K/Kc = 83.5 and γ = 17073. a) For a perturbation
voltage of 4.85V, equivalent to �K/K = −0.23 × 10−3, strong mode aliasing occurs and therefore the out-of-phase mode was difficult to identify; b) for a
perturbation voltage of 4.15V, equivalent to �K/K = −0.69 × 10−3, weak mode aliasing occurred and the out-of-phase mode could be identified.

Fig. 12. Measured and theoretically calculated frequency differences with different coupling voltages: a) 30V coupling voltage, b) 34.5V coupling voltage,
c) 40V coupling voltage, d) 45V coupling voltage. The measured frequency differences matched well with the theoretical calculations.

C. Dynamic Range
To avoid strong mode aliasing as shown in Fig. 11a, the

anti-aliasing condition given by (16) should be satisfied. For
the bandwidth measured in the experiment, the minimum
frequency difference required was 2 × �ω3dB = 4.8Hz.

Mode frequency measurements were carried out to find the
boundary of the perturbation values to satisfy a minimum
frequency difference of 4.8Hz. The frequency differences

versus stiffness perturbations are plotted in Fig. 12, together
with the theoretically calculated frequency differences using
extracted γ and offset values from the previous sections.
The measured frequencies matched well with the theoretical
calculations.

The lower boundary of the dynamic range was limited by
the noise of the resonator and the associated circuitry interface,
as discussed in section II-C1. In our experiment, for decreasing
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TABLE V

DYNAMIC RANGE IN TERMS OF NORMALIZED CHANGE IN STIFFNESS

perturbations, the amplitude of resonator 3 became smaller,
consequently limiting the maximum amplitude ratio that could
be detected. The measured output noise for resonator 3 without
driving signal was approximately 3mVrms, after 500 cycles
of averages. The noise was attributed to the electrical and
mechanical noise from the circuit and the MEMS device
respectively [19]. According to the theory in [19] and [26],
the output signal-to-noise ratio (SNR) is limited by the SNR
of the resonator with smaller amplitudes. Therefore, to ensure
an output SNR of at least 10dB, the minimum peak-peak
amplitude of resonator 3 was 30mV, resulting in maximum
amplitude ratios between approximately 50 to 52 in four
different measurement sets.

The boundaries of the dynamic range of the sensor, due
to these limitations from the mode aliasing effect and the
maximum amplitude ratio, for different coupling voltages are
listed in Table V.

As demonstrated here, a higher γ value narrowed the
dynamic range of the sensor. This is because the lower limit of
the dynamic range is inversely proportional to γ, as predicted
by (19), with a given maximum obtainable amplitude ratio, as
shown in the Table V. Moreover, as implied by (18), the upper
boundary increases as γ decreases, which confirms the trends
seen in Table V. Combining these two observations, it can be
concluded that the dynamic range decreases with increasing γ
values.

D. Amplitude Ratio and Sensitivity Analysis

The estimated theoretical amplitude ratios using extracted
γ values, measured quality factor and (20) are depicted
in Fig. 13. From Fig. 13, it can be seen that the measured
results matched well with the theoretical predictions, with a
relative error smaller than 5% in all cases.

The measurement result also showed that a smaller coupling
voltage led to a higher amplitude ratio for a given perturbation
stiffness, thus a higher sensitivity. The linear sensitivity of
the sensor, extracted from the measurement data, together
with the sensitivity calculated using design values are listed
in Table VI.

The discrepancies (relative error shown in Table VI)
between measured and ideal sensitivity were attributed to
fabrication variations, and due to the high sensitivity of the
device, small parameter variations were also amplified. This
should be improved in the future.

E. Nonlinearity

To calculate the total nonlinearity errors, the measured data
was compared to the linearized scale function (14). The results
are plotted in Fig. 14.

Fig. 13. Measured (dots) and theoretically estimated (lines) amplitude ratio
using (20) with different coupling voltages: 30V coupling voltage (black),
34.5V coupling voltage (red), 40V coupling voltage (blue), 45V coupling
voltage (green). The measurement results matched well with theoretical
predictions.

TABLE VI

SENSITIVITY ANALYSIS

From Fig. 14, it is found that the theoretically estimated
nonlinearity errors matched well with the measured errors.
Also, as predicted by theory, the nonlinearity error tended
to increase as the stiffness perturbation approached zero; and
with decreasing γ value, the maximum nonlinearity error in
the dynamic range increased. Nonetheless, for a wide span of
stiffness perturbations, the sensor provides good linearity, with
a typical nonlinearity error smaller than ±2%.

F. Discussion

From the measurement results, we obtained the linear sen-
sitivity of the sensor. Comparing the measured linear sensi-
tivity to the state-of-the-art resonator sensors reported in the
literature, a significant improvement in sensitivity is noticed.
A brief comparison of the sensitivity is shown in Table VII.

It is seen from Table VII that the improvement in sensitivity
was significant: compared to the conventional single resonator
sensor with frequency shift output, the improvement was
over four orders of magnitude; whereas the improvement
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Fig. 14. Comparison of measured amplitude ratio to linearized scale function (14) with different coupling voltages: a) 30V coupling voltage, b) 34.5V
coupling voltage, c) 40V coupling voltage, d) 45V coupling voltage. The nonlinearity error was calculated by comparing the measured amplitude ratio to
linearized scale function given by (14) and displayed in blue. The theoretical nonlinearity error was calculated using, ε1 + ε2 given by (21). The theoretically
estimated nonlinearity errors matched well with measured errors with tolerable discrepancies, which was mainly due to the error in measurement and extraction
of γ and offset values.

TABLE VII

SENSITIVITY COMPARISON WITH THE STATE-OF-THE-ART

RESONATOR SENSORS FOR STIFFNESS CHANGE

in sensitivity compared to the 2DoF sensor utilizing mode
localization was over 49 times.

It can be found from the measurement results that the
dynamic range was not large (Table V). This was due to a
relatively high value of minimum detectable stiffness change,
i.e. the upper boundary of the stiffness perturbation as shown
in Table V. One way to enhance the dynamic range is to add a
perturbation bias �Kbias < �Kupper intentionally, and it was
successfully used in [19] to improve the dynamic range.

For a coupling voltage of 30V, based on the results shown
in Table V, if the sensor was biased at the upper boundary,
i.e. �K/K = −0.654 × 10−3, the full range of the sensor
would be 3.12 × 10−3. We estimate the noise floor as the
minimum step of �K/K in the experiment, which was
approximately 3.4 × 10−5. A conservative estimation of the
dynamic range was therefore 39.1dB, which is acceptable for
a prototype device.

The dynamic range can further be extended by decreasing
the noise of the interface electronics, hence improving the
limits of the maximum amplitude ratio that can be detected, as
indicated by (19), consequently increasing the dynamic range
of the sensor.

A property of the sensor is that the linearity of sensor is
not trivial for a stiffness perturbation approaching zero, hence
limiting the measurement range and increasing the burden
of calibration in the meantime. However, as demonstrated
from the theory and measurement results, increasing stiffness
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perturbation (negative) results in a smaller nonlinearity error.
Hence, the linearity can be improved by adding a stiffness per-
turbation bias intentionally to a point above which nonlinearity
error is tolerable for the intended applications.

VI. CONCLUSIONS

In this paper, we have reported a 3DoF resonator sensor
device for stiffness change sensing applications. The measured
sensitivity of a prototype sensor represents an improvement by
over 49 times compared to the state-of-the-art stiffness change
sensors consisting of two weakly coupled resonators. Also in
this paper, the dynamic range of this type of sensor is analyzed
in detail for the first time. It is demonstrated by theory and
experiment that there is a trade-off between the sensitivity and
the dynamic range of the sensor. In the future, this constraint
can be loosened by limiting the noise of both the sensor and
interface circuit, while improving the quality factor of the
resonator. One disadvantage of the current prototype is that
it requires the user to adjust the drive signal frequency to find
the resonant frequency, which is time consuming, thus limiting
the use of the sensor for real time measuring applications. With
a self-oscillating loop design, combined with an enhanced, as
well as tunable sensitivity, the 3DoF resonator sensor can be
a potentially attractive alternative to the more conventional
resonator sensors.
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