
A three-stage mixed integer programming approach for optimizing the
skill mix and training schedules for aircraft maintenance

Philippe De Bruecker

KU Leuven, Research Center for Operations Management, Faculty of Economics and Business (FEB),
Naamsestraat 69, 3000, Leuven (Belgium)

KU Leuven, Research Center for Economics and Corporate Sustainability, Faculty of Economics and Business

(FEB), Warmoesberg 26, 1000, Brussels (Belgium)

Jeroen Beliën∗
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Abstract

This paper presents a three-stage mixed integer programming approach for optimizing the skill

mix and training schedule for aircraft maintenance workers. When all workers are trained for all

skills, cheaper workforce schedules are possible. However, the training that is required to acquire all

those skills can become very expensive. In the first and second stage, we therefore make a trade-off

between the training costs and the resulting cheaper workforce schedule. As we assume that workers

are unavailable to work during their training, the resulting schedules are only applicable in practice

if the required training can be performed without endangering the current maintenance operations.

In the third stage, we therefore want to find an optimal and feasible training schedule in order to
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obtain the desired skill mix with minimal costs. A computational experiment based on real-life data

of an aircraft maintenance company not only demonstrates that our models succeed in finding good

solutions within reasonable computation times, but also illustrates how the explicit incorporation of

skills training in the scheduling process can lead to significant cost savings.

Keywords: OR in service industries, aircraft maintenance, skills training, shift scheduling, mixed

integer programming

1. Introduction

In service industries, labor is often the largest expenditure for a company. An efficient scheduling of

the workforce is therefore very important. This paper presents a three-stage mixed integer program-

ming (MIP) approach for optimizing the skill mix and training schedule at an aircraft maintenance

company. In this study, we only focus on the line maintenance which takes place at the gate or

parking ramp between the arrival and departure of an aircraft. Line maintenance consists of on-call

assistance and routine checks of the engines, the landing gear, etc. Since different aircraft have dif-

ferent features and can show different problems, only adequately skilled workers should be assigned

to maintain certain flights. In fact, according to aviation legislation, each type of aircraft requires

its own maintenance license. Consequently, skills and licenses are used as synonyms in this paper.

A good personnel schedule should make sure that all flights can be maintained with the available

workers and their respective skills. Schedules based on the current (limited) skill pool can, however,

be very expensive. Therefore, as a first step, we follow an integrated approach to build inexpensive

personnel schedules and to design the optimal skill mix at the same time. The final step is to build

the lowest cost training schedule that leads to this optimal skill mix. We illustrate our procedure

using real-life data from an aircraft maintenance company.

Aviation industries are often characterized by a highly seasonal demand. Hence, the demand for

aircraft maintenance also follows a seasonal pattern. Typically, aircraft maintenance companies

have to build new workforce schedules twice a year, i.e., before the start of the winter as well as the

summer season. A special feature of the aircraft maintenance business is the fact that every week

the same set of flights must be maintained. These flight schedules are known months in advance of

the start of a new season and contain information such as the STA (Scheduled Time of Arrival), the

STD (Scheduled Time of Departure) and the workload. In this paper we also assume that the flight

schedule specifies the required skill for each flight. An example of such a weekly flight schedule with

skill requirements is shown in Table 1.

Once the demand for maintenance is known for the next season, the construction of an optimal

workforce schedule for the next season can start. Figure 1 visualizes this process. A detailed

description of the problem details and the specifics about the cycles, shifts and teams in the workforce

configuration is given in Section 3.1.
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Table 1: Example of a weekly flight schedule

Flight Company STA STD Workload (man-hours) Skill

1 AA Monday 22:05 Tuesday 07:45 4.00 A

... ... ... ... ...

56 BA Thursday 07:30 Thursday 11:40 6.00 A

... ... ... ... ...

100 SN33 Saturday 05:30 Saturday 10:45 4.25 B

Figure 1: Overview of the seasons

In the example shown in Figure 1, the company is currently operating based on the winter flight

schedules and the winter workforce schedule. When the summer flight schedules become known, the

company has to construct the summer workforce schedule. We distinguish between two important

tasks in constructing an optimal summer workforce schedule.

The first task is to build an efficient schedule to make sure that all flights can be maintained with the

available workers and their respective skills. We therefore have to make two major decisions. First,

we have to decide on the scheduling of the shifts, and second, we have to assign the available workers

to these shifts to make sure that all flights can be maintained in time with the available skills. These

two decisions are integrated in the optimization model to build optimal workforce schedules.

The second task is to find the optimal skill mix. When the number of skills per worker is relatively

small, too many workers would be needed to construct a feasible workforce configuration leading to

very high costs. Using the current available workers and their current skills to construct the summer

workforce schedule therefore only leads to a suboptimal result. Cheaper schedules can be obtained

by training some of the workers. These higher skilled workers can then do some of the work for

which they were not certified earlier. This can decrease the required number of staff and hence

decrease costs. The workers that are not needed anymore to do the line maintenance can then be

used somewhere else in the company such as in the heavy maintenance.

Because training can be very expensive, a trade-off must be made between cheaper rosters that

require higher skilled workers and the training costs to obtain this higher skilled workforce. There-

fore, these two tasks are incorporated in the same optimization model to build optimal workforce

schedules. This model is presented in Section 3.1 and is referred to as the workforce scheduling

model.
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While the workforce scheduling model results in a decision about the optimal skill mix and the

skills that must be trained, it does not specify when this training should take place. To build the

lowest cost training schedule that results in the optimal skill mix, another optimization model is

constructed in Section 3.3. This model takes into account that workers are unavailable to work

during their training. The goal of this model is to schedule the training during the training horizon

(see Figure 1). Based on the current winter workforce schedule, this model decides who will be

trained on each day in each week for each skill.

The remainder of this paper is organized as follows. Section 2 reviews the related literature. Section

3 describes the three-stage approach, while Section 4 presents computational results and managerial

insights. Section 5 concludes this paper.

2. Literature review

Since several decades, aircraft maintenance has been a popular application area for operations re-

search studies. Most of these studies address aircraft maintenance routing problems (e.g., Haouari

et al. (2013), Liang et al. (2010), Liang and Chaovalitwongse (2013)), an important problem within

the general framework of airline crew scheduling (Barnhart et al. (2003)). Only a few have studied

maintenance workforce or capacity scheduling problems. Beliën et al. (2012) describe the successful

application of MIP for building aircraft maintenance workforce schedules. Van den Bergh et al.

(2013) extend the work of Beliën et al. (2012) taking into account uncertainty in flight arrivals.

Using a discrete event simulation model and data envelopment analysis, the generated rosters are

evaluated on 5 parameters: cost, preferences, average number of flights maintained in time, average

number of completions without preemption, and average tardiness. Keysan et al. (2010) study the

tactical and operational planning of scheduled maintenance for per-seat, on-demand air transporta-

tion. They present a MIP formulation for the general tactical capacity planning problem at an

aircraft maintenance facility. None of these studies take individual skills and training into account.

Safaei et al. (2011) study a real maintenance workforce-constrained scheduling problem in a steel

manufacturing context in which maintenance jobs must be scheduled during the course of a pre-

determined planning horizon considering two conflicting objectives: skilled workforce requirement

minimization and equipment availability maximization. The model incorporates skilled manpower

availabilities but does neither optimize shift scheduling nor training. Quan et al. (2007) propose

evolutionary algorithms for scheduling preventive maintenance tasks with the conflicting objectives

of minimizing worker idle time by reducing the workforce and minimizing the completion time of

maintenance jobs. The problem setting is limited by the assumption that each worker can perform

only one skill. Moreover, shift scheduling and training are not considered.

In a broader context, personnel scheduling has been extensively studied in the operations research

literature. Several review articles exist that focus on general workforce planning problems (Alfares

(2004); Burke et al. (2004); Ernst et al. (2004); Kohl and Karisch (2004); Van den Bergh et al. (2013)),

but none go into detail regarding skills. To the best of our knowledge, the problem presented in this

paper is unique in the literature since we integrate shift construction, skill constraints and training.
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Several solution approaches have already been proposed in the literature to build personnel schedules

incorporating skills. Many models take flexible shifts or training into account, but none of them

incorporates both.

Scheduling the workforce in shifts is usually much harder than without shifts. On top of the usual

coverage constraints, shift planning adds extra constraints about the start time and duration of

shifts, shift successions, team sizes, etc. Only a limited number of papers considers shift planning

in combination with skills. While most papers consider shifts that are predefined (with a fixed

start and end time, a fixed team size,...), only a few incorporate decisions about the composition of

shifts in their model (Cai and Li (2000); Aickelin and White (2004); Bard and Purnomo (2005a,b);

Aickelin and Dowsland (2004); Bard and Wan (2008); Aickelin et al. (2009); Detienne et al. (2009);

Avramidis et al. (2010); Brunner et al. (2011); Brunner and Edenharter (2011)). To incorporate

shifts in a workforce planning problem, the set covering formulation developed by Dantzig (1954) is

most often used (Bard et al. (2003)). The number of possible shift patterns will increase dramatically

in real-life problems when (lunch) breaks, flexible start times, etc. are considered (Van den Bergh

et al. (2013)). Therefore, when solving optimization problems that include shifts, researchers often

tend to use heuristics instead of exact solution techniques. Brusco et al. (1995) present a column

generation approach that focuses upon the selection of full time and part time shifts as well as a

local search heuristic based on simulated annealing to improve the initial shift schedules at airline

ground stations using data from United Airlines. The proposed methods do not incorporate skills

let alone training.

Incorporating skills and shifts into a personnel scheduling problem often involves assigning workers

with appropriate skills to different shifts. In aircraft maintenance, only workers that acquired the

required license are allowed to maintain a specific type of aircraft. Hence, in accordance to the

categorisation of De Bruecker et al. (2015), we consider individual skills instead of group skills.

Furthermore, as we assume that there is no hierarchical structure between the licenses, we deal with

categorical skills (De Bruecker et al. (2015)).

Aickelin and Dowsland (2004) and Aickelin and White (2004) assign nurses from the current pool

of workers to shifts using a genetic algorithm. Also Cai and Li (2000) use a genetic algorithm to

solve a multi-objective personnel scheduling problem at a transportation company involving multiple

skills. Aickelin et al. (2009) use an evolutionary squeaky wheel optimization approach to solve the

nurse scheduling problem. All these papers take into account skills (or grades) as well as individual

preferences and construct static schedules for individuals. Bard and Purnomo (2005a,b) tackle the

same kind of problem as Aickelin et al. (2009), Aickelin and Dowsland (2004) and Aickelin and

White (2004), but allow for downgrading, i.e. assigning temporarily idle higher skilled workers

to shifts that require lesser skills, and use column generation to solve the optimization model.

Downgrading is also allowed in Bard et al. (2003) who present a mixed integer linear programming

approach for staff scheduling at the United States Postal Service. In the first stage, a shift-scheduling

problem is solved to determine the optimal number of employees and their shifts. The results are

postprocessed in subsequent stages to obtain lunch breaks, days off, and task assignments. Bard

and Wan (2008) extend this methodology to include the issue when each employee must be assigned

to a home base and restrictions exist on how he or she can be repositioned during a shift. Although

obtaining promising results, the model still faces problems with larger instances, an issue that
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could be overcome by a column generation approach. Brunner and Edenharter (2011) successfully

use column generation to solve the long term staff scheduling problem of physicians distinguishing

between two experience levels, i.e. residents and specialists. Brunner et al. (2011) extend this

column generation algorithm into a branch-and-price framework comparing two different branching

schemes. As in our case, Brucker et al. (2010) consider a personnel scheduling problem with cyclic

schedules. While we want to construct shifts and assign workers at the same time, Brucker et al.

(2010) propose to use a two-phased approach using greedy algorithms.

To the best of our knowledge, studies that incorporate training and shift construction do not exist in

the personnel scheduling literature. Training is a straightforward way to enhance the skills of a person

in order to increase his performance (quality, speed of work and efficiency) or to allow the worker to

perform a different task. The latter is referred to as cross-training. A trade-off must be made between

the training cost (loss of available working time and/or monetary costs) and the possible benefits (the

increased flexibility or performance). Biskup (2008) presents an excellent review on scheduling with

learning effects. One remarkable observation in this review is that all but one paper are based on the

learning-by-doing (or autonomous learning) assumption, while proactive investments in know-how

(induced learning, planned learning or training), although extremely important in practice, is highly

neglected in the literature. This paper explicitly incorporates training in the workforce scheduling

process trying to fill this literature gap.

In the work of Li and Li (2000), Huang et al. (2009), Song and Huang (2008), Marentette et al.

(2009), Wirojanagud et al. (2007) and Fowler et al. (2008), the planning decision for cross-training

the workforce is incorporated in the model. The model decides on how many employees should be

trained to acquire certain skills. In contrast to our work, Li and Li (2000) include time flexibility

in the form of overhours. Moreover, their multi-objective goal programming approach incorporates

a service level objective, which is evaluated through simulation. Their model is, however, limited

to staffing decisions at the planning level and hence do not consider shift scheduling, which is also

the case for Huang et al. (2009), Song and Huang (2008), Marentette et al. (2009), Wirojanagud

et al. (2007) and Fowler et al. (2008). Huang et al. (2009) propose a simulation model which can be

used for comparing planning options and assignment rules in long term workforce planning. Being

a simulation model, the optimization of operational workforce schedules is not addressed. Song

and Huang (2008) present a basic successive convex approximation method for solving a workforce

capacity planning formulated as a multistage stochastic program. The contribution of Marentette

et al. (2009) is similar to our study in the fact that it tries to make an optimal trade-off between

the costs of training to the benefits of increased staffing level efficiencies. A limit of their approach

is, however, that they assume a workforce that is either 100% cross-trained or 100% specialized.

Wirojanagud et al. (2007) present a mixed integer programming model that acknowledges individual

worker differences in ability to learn new skills. Although a decomposition approach making use

of groupings of skills for cross-training was proposed in order to reduce the required computation

time, large real-life instances turn out to be still challenging to solve within acceptable time limits.

Therefore, Fowler et al. (2008) present two linear programming based heuristics as well as a solution

space partition approach to cope with larger instances. As is the case in our paper, flexibility is

only considered with respect to cross-training, excluding the option of flexibility through overtime

or temporary workers. Li and Li (2000), Song and Huang (2008), Wirojanagud et al. (2007) and

Fowler et al. (2008) make training decisions on a weekly or monthly basis. Huang et al. (2009)
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and Marentette et al. (2009) only make the training decision on a yearly basis and therefore fail to

provide the exact timing of the training. Tiwari et al. (2009) and Zülch et al. (2004) neglect the

training decision during the workforce planning optimization problem and analyze the bottleneck

skills only afterwards. In a second phase, they provide an advice to the management about what

skills should be trained. Although theses papers are highly related to our study, the most important

differences are that none of these studies include shift scheduling decisions nor the optimization of

timing of training.

To the best of our knowledge, the reduced availability or even total absence of the worker during his

training period has never been incorporated in a mathematical model with skills. Training can take

place on the job or externally. Training on the job is preferred in most cases because of the direct

link with the company and the lower costs. However, according to du Boulay and Medway (1999),

training on the job is very difficult these days. For some tasks for example, it is prohibited by law

to involve people without the necessary skills or qualifications. Therefore, Beddoe et al. (2009) and

Beddoe and Petrovic (2006) talk about eye-training instead of on the job training. They present a

genetic algorithm for the automated selection and weighting of features for a case-based reasoning

approach to nurse rostering. They conclude that information about the staff qualification levels and

training should be considered when performing swap operations on shifts or shift patterns between

nurses. Although training is explicitly considered, the effect of training and the impact it can have

on constructing better schedules in the future is not studied. Wang and Chuang (2014) mention

the role of adequate training to help aircraft maintenance crews become familiar with the tools

and maintenance tasks involved in their jobs, which may result in a reduction in fatigue. Although

clearly identifying the impact of different factors affecting the fatigue of crew members, including

adequacy of rest, work proficiency, communication and coordination, and work shift, the paper does

not describe how these findings should be integrated into automated scheduling programs.

3. The three-stage approach

3.1. Stage 1: The workforce scheduling model

The workforce scheduling model presented in this paper is an extension of the MILP formulation

from Beliën et al. (2013). The extension lies in the incorporation of skills. Figure 2 visualizes the

different time concepts in our model. A workforce schedule consists of multiple subschedules, called

cycles. Each cycle is defined by its team size, number of weeks, shift definitions and shift sequence.

The number of weeks in a cycle is equal to the number of shift sequences that can be fulfilled by the

teams working in the cycle (note that the number of teams in a cycle equals the number of weeks).

In one particular week, each team of the cycle will execute one specific shift sequence. In the upper

left of Figure 2 a schedule is depicted that consists of two cycles. For each cycle, the team size,

shift definitions and roster are presented. Each row in a roster represents a shift sequence and each

column denotes a day of the week (Monday till Sunday). In the example, we differentiate between

a morning shift (M), a day shift (D), an evening shift (E) and a night shift (N). Observe that we

use a discretized time horizon P , consisting of time periods p. For each period p, we will calculate

the scheduled capacity (lower left of Figure 2), which is a function of the scheduled shifts that cover
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Figure 2: A visualization of cycles, weeks, days, time periods, and their associated decision variables
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a particular time period, as well as the demand for maintenance (lower right of Figure 2), resulting

from the flight arrivals (upper right of Figure 2).

In what follows we present the complete mathematical formulation of the workforce scheduling op-

timization model with skills. We first list the sets, along with their associated indices:

d ∈ {1, ..., 7} : days in the week

p ∈ P : time periods in one week

f ∈ F : flights to be serviced

p ∈ Pf : time periods during which flight f can be serviced

s ∈ S : skill types

c ∈ C : cycles in the workforce configuration

ω ∈ Ω : available workers

η ∈ {1, 2, ...,Mc} : workers in a team in cycle c, with Mc the team size in cycle c

i ∈ I : feasible shifts

t ∈ T : shift types {M,D,E,N}
i ∈ It : feasible shifts of shift type t

The coefficients and right hand side constants are presented below:
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Lfs : the workload (in man-hours) of flight f of skill type s

Aidp : = 1 if period p is included in shift i on day d, = 0 otherwise

Bidp : the fraction of workers available to work in shift i on period p on day d

Hi : the duration of shift i (in hours)

αωs : = 1 if worker ω has skill s, = 0 otherwise

Ktraining
s > 0 : the training cost (for one worker) to acquire skill type s

Kid > 0 : the total cost (for one worker) of shift i on day d

W l : the minimum number of weeks (= teams) in a cycle

Wu : the maximum number of weeks (= teams) in a cycle

W planning : the number of weeks in the planning horizon

H l : the minimum average number of working hours per week

Hu : the maximum average number of working hours per week

R : the maximum fraction of working weekends; i.e., weekends during which at least

one shift is scheduled. R = (number of working weekends)/(number of weeks in

the cycle)

Θmax
ω : the maximum training (in skills) worker ω can receive

M : Big M, a large positive number

Mc: the team size in cycle c

The decision variables are:

aωcη ≥ 0 : > 0 if worker ω is assigned as the η-th worker of the team in cycle c, =

0 otherwise

a′ωcηs ∈ {0, 1} : = 1 if worker ω with skill s is assigned as the η-th worker of the team in

cycle c, = 0 otherwise

qsηcp ≥ 0 : the capacity of skill type s made available by worker η in cycle c in time

period p

xidc ≥ 0 : the number of shifts i that is scheduled during day d in cycle c

gfps ≥ 0 : capacity of skill type s assigned to maintain flight f during time period p

zskillηcs ∈ {0, 1} : = 1 if worker η in cycle c requires skill s, = 0 otherwise

zic ∈ {0, 1} : = 1 if shift i is used in cycle c, = 0 otherwise

τωs ∈ {0, 1} : = 1 if worker ω is trained to acquire skill s, = 0 otherwise

nc ∈ {W l, ...,Wu} : the number of weeks (= teams) in cycle c

e+tdc ∈ {0, 1, ...,Wu} : the number of extra weeks needed in cycle c for day d caused by shifts of

type t (with t ∈ {E,N}) on the preceding day

e−Ndc ∈ {0, 1, ...,Wu} : the number of extra weeks needed in cycle c for day d caused by E shifts

that can be compensated by an excess in N shifts on the preceding day

The workforce scheduling optimization model can be formulated as follows:
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Minimize
∑
c∈C

∑
i∈I

7∑
d=1

Kid ·Mc · xidc ·W planning +
∑
ω∈Ω

∑
s∈S

Ktraining
s · τωs (1)

Subject to:

∑
s∈S

qsηcp ≤
∑
i∈I

7∑
d=1

Bidpxidc, ∀c ∈ C,∀η ∈ {1, 2, ...,Mc},∀p ∈ P (2)

∑
f∈F

gfps ≤
∑
c∈C

∑
η∈{1,2,...,Mc}

qsηcp, ∀p ∈ P,∀s ∈ S (3)

∑
p∈Pf

gfps = Lfs ∗
|P |

24 ∗ 7
, ∀f ∈ F,∀s ∈ S (4)

qsηcp ≤M · zskillηcs , ∀c ∈ C, ∀η ∈ {1, 2, ...,Mc}, ∀s ∈ S,

∀p ∈ P (5)

zskillηcs ≤
∑
ω∈Ω

a′ωcηs − (nc − 1)

+Wu ·
(

1− zskillηcs

)
, ∀c ∈ C, ∀η ∈ {1, 2, ...,Mc}, ∀s ∈ S (6)

a′ωcηs ≤ aωcη, ∀c ∈ C, ∀η ∈ {1, 2, ...,Mc}, ∀s ∈ S,

∀ω ∈ Ω (7)∑
c∈C

∑
η∈{1,2,...,Mc}

aωcη ≤ 1, ∀ω ∈ Ω (8)

∑
c∈C

∑
η∈{1,2,...,Mc}

a′ωcηs ≤ αωs + τωs, ∀ω ∈ Ω, ∀s ∈ S (9)

∑
s∈S

τωs ≤ Θmax
ω , ∀ω ∈ Ω (10)

∑
ω∈Ω

aωcη = nc, ∀c ∈ C, ∀η ∈ {1, 2, ...,Mc} (11)

nc ≥ d1/Re ·
∑
i∈I

xi6c, ∀c ∈ C (12)

nc ≥ d1/Re ·

(∑
i∈I

xi7c + e+
N7c + e+

E7c

)
, ∀c ∈ C (13)

∑
i∈I

7∑
d=1

Hixidc ≥ Hl · nc, ∀c ∈ C (14)

∑
i∈I

7∑
d=1

Hixidc ≤ Hu · nc, ∀c ∈ C (15)

xidc ≤Wu · zic, ∀i ∈ I, ∀d = 1, ..., 7, ∀c ∈ C (16)∑
i∈It

zic ≤ 1, ∀t ∈ T,∀c ∈ C (17)

∑
i∈I

7∑
d=1

∑
c∈C

Aidpxidc ≥ 1, ∀p ∈ P (18)
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nc ≥
∑
i∈I

xidc + e+
Ndc + e+

Edc, ∀d ∈ {1, ..., 7}, ∀c ∈ C (19)

e+
N(d+1)c ≥

∑
i∈IN

xidc −
∑
i∈IN

xi(d+1)c, ∀d ∈ {1, ..., 6}, ∀c ∈ C (20)

e+
E(d+1)c ≥

∑
i∈IE

xidc −
∑
i∈IE

xi(d+1)c − e−N(d+1)c, ∀d ∈ {1, ..., 6}, ∀c ∈ C (21)

e−N(d+1)c ≤
∑
i∈IN

xi(d+1)c −
∑
i∈IN

xidc + e+
N(d+1)c, ∀d ∈ {1, ..., 6}, ∀c ∈ C (22)

e+
N1c ≥

∑
i∈IN

xi7c −
∑
i∈IN

xi1c, ∀c ∈ C (23)

e+
E1c ≥

∑
i∈IE

xi7c −
∑
i∈IE

xi1c − e−N1c, ∀c ∈ C (24)

e−N1c ≤
∑
i∈IN

xi1c −
∑
i∈IN

xi7c + e+
N1c, ∀c ∈ C (25)

xidc ∈ {0, 1, ...,Wu}, ∀i ∈ I, ∀d ∈ {1, ..., 7}, ∀c ∈ C (26)

gfps ≥ 0, ∀f ∈ F,∀p ∈ P,∀s ∈ S (27)

zic ∈ {0, 1}, ∀i ∈ I, ∀c ∈ C (28)

nc ∈ {W l,W l + 1, ...,Wu}, ∀c ∈ C (29)

qsηcp ≥ 0, ∀c ∈ C, ∀s ∈ S,∀η ∈ {1, 2, ...,Mc},∀p ∈ P (30)

e+
tdc ∈ {0, 1, ...,W

u}, ∀t ∈ {E,N}, ∀d ∈ {1, ..., 7}, ∀c ∈ C (31)

e−Ndc ∈ {0, 1, ...,W
u}, ∀d ∈ {1, ..., 7}, ∀c ∈ C (32)

aωcη ≥ 0, ∀ω ∈ Ω,∀c ∈ C,∀η ∈ {1, 2, ...,Mc} (33)

a′ωcηs ∈ {0, 1}, ∀ω ∈ Ω,∀c ∈ C,∀η ∈ {1, 2, ...,Mc}, ∀s ∈ S (34)

zskillηcs ∈ {0, 1}, ∀c ∈ C,∀η ∈ {1, 2, ...,Mc}, ∀s ∈ S (35)

τωs ≥ 0, ∀ω ∈ Ω, ∀s ∈ S (36)

The model presented above is an extension of the MILP model presented by Beliën et al. (2013)

as it incorporates skills and training. Constraints (2) to (11) can be seen as the extension, while

constraints (12) to (25) can be found in the original model. The extension presented above takes into

account the skills of the available workers and the skill restrictions for the maintenance jobs. The

extended model allows to do two different things. First, it can be used to build personnel schedules

based on the available skill pool. Second, the model allows to investigate the possible benefits of

training. Therefore, when we assume a sufficient number of workers with all possible skills, the

extended model will result in the same solutions as those found by the original model of Beliën et al.

(2013).

Note that the extended model presented above features the same technique as the original model

to avoid the non-linearity caused by the team size decision. As the team size is incorporated into

the model as a parameter (Mc) instead of a decision variable, the same enumeration technique with

bounding can be used to solve the model as in the paper of Beliën et al. (2013). Moreover, we

also follow the same technique as Beliën et al. (2013) to reduce the computation time by replacing

the binary variable xidwc by the integer variable xidc. Thus, instead of assigning each shift to a

particular day in a particular week, we now limit our decision to the number of shifts on a particular
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day. Because of this simplification, we omit the index for the week (team) in our model and assume

that each team in a cycle consists of the same number and type of workers. The assignment of shifts

to weeks (teams) can be done afterwards. It should be clear that it is therefore not possible in the

model presented above to distinguish between the workers of different teams in a cycle. With the

index η ∈ {1, 2, ...,Mc}, we can only make a distinction between the workers in the same team. All

other teams in the cycle are duplicates of this team. Hence, the variable qsηcp must be seen as the

sum of the capacity over all teams in cycle c of skill type s made available by worker η in time period

p with η ∈ {1, 2, ...,Mc}. With this in mind, we can now explain the model.

The objective function (1) minimizes the total labor costs over the entire planning horizon plus the

total training costs. As we assume a planning horizon of one season with 24 weeks, the weekly

labor costs are multiplied by 24 (W planning = 24). A trade-off is made between cheaper rosters that

require higher skilled workers and the training costs to obtain this higher skilled workforce.

Constraint (2) distributes the capacity made available by the shifts over the different workers and

their skills. Hence, it determines the capacity of skill type s made available by worker η in cycle c in

time period p. Summing over s makes sure that the capacity over all skills is not larger than what is

available. Constraint (3) ensures that the assigned capacity to maintain the flights is less than the

available capacity. Constraint (4) then checks that there is sufficient capacity of the required skill

assigned to a flight in order to be maintained in time. In constraint (4), |P |24∗7 is a conversion factor

such that the units of the RHS match the units of the LHS.

While constraints (2) to (4) determine the shifts, the required capacity and the skills, constraints

(5) to (11) make sure that this can be achieved with the currently available workforce and skills.

According to constraint (5), zskillηcs will flip to 1 when worker η in cycle c requires skill s. Constraints

(6) and (11) make sure that the assigned workers to cycle c have all the skills that are required

according to constraint (5). Recall that we assumed that all teams in a cycle consist of the same

workers and skills. Therefore, when skill s is required for worker η in cycle c, there should be exactly

nc workers with skill s assigned to cycle c as the η-th worker of a team. Take for example the

situation where skill A is required for worker η in cycle c. Since the LHS of constraint (6) is 1 for

skill A, the RHS should also be at least 1. Also assume that there are 6 teams in cycle c. This

means that we also need 6 workers in cycle c to work as the η-th worker of a team in order to satisfy

constraints (6) and (11).

Constraints (7) and (8) make sure that a worker (ω) can only be assigned once as a team member.

Therefore, we introduced the variable aωcη. This variable is introduced to check if the worker is

assigned as the η-th worker of the team in cycle c. While it is defined as a continuous variable (for

efficiency reasons), it can only be zero or one because of constraints (8) and (11).

To know whether or not we need to train a certain worker, constraint (9) is used to determine

the value of τωs. Constraint (10) then limits the amount of training a worker can receive. Recall

that workers that are not needed this season in the line maintenance are assigned to the heavy

maintenance division of the company. This makes that many of the heavy maintenance workers are

actually also qualified for the line maintenance. Therefore, when constructing the line maintenance

workforce for the next season, the company cannot only choose from the workers that are currently
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active in the line maintenance, but it can also consider to use some qualified workers that are

currently active in the heavy maintenance division. However, as there is less idle capacity in the

heavy maintenance division as compared to the line maintenance, we assume that only the workers

that are currently working in the line maintenance can receive training. Therefore, Θmax
ω will be 0

for all workers currently not working in the line maintenance.

Since the incorporation of skills has no impact on work regulations (i.e. weekend, working hours, and

shift succession constraints) and stand-by requirements, constraints (12) to (25) are identical to the

constraints of the original workforce scheduling model presented in Beliën et al. (2013). Constraints

(12) to (13) guarantee for each cycle a minimum number of weekends without any shifts. To ensure

that at most R ∗ 100% of the weekends contain shifts, the number of weeks nc must exceed d1/Re
times the number of shifts scheduled on Saturday. For instance, if three shifts are scheduled on

Saturday, i.e., if
∑
i∈I xi6c = 3, and if 50% of the weekends must be free of any shift, i.e., if R = 0.5,

then the number of weeks nc must be larger than or equal to 6. For Sundays, we have a similar

constraint, except for the extra terms e+N7c and e+E7c. The reason is that a Sunday shift can only be

placed in the same weekend as a Saturday shift if there is no shift succession violation. The number

of extra weeks needed in order to satisfy the weekend constraints due to shift succession constraints

related to N and E shifts on Saturday, i.e. e+N7c and e+E7c, will obtain their correct value by the

shift succession guaranteeing constraints (20) to (21). Constraints (14) and (15) ensure that every

worker works on average between a minimum and maximum number of hours per week. Constraints

(16) and (17) make sure that within a cycle all shifts of a particular shift type are identical, e.g.

all morning shifts have the same start and end hours in cycle 1. Constraint set (18) guarantees

that in every time period there is at least 1 team of workers stand-by (independent of skills and

scheduled flight arrivals and departures). Constraints (19) to (25) are the shift succession guaran-

teeing constraints. They ensure that each cycle consists of a sufficient number of weeks in order to

guarantee the construction of a shift cycle in which all shift succession constraints are satisfied. The

explanation of these constraints is not straightforward. For a more detailed exposition we refer the

reader to Beliën et al. (2013).

The model presented above first results in the assignment of the available workers to cycles and

arbitrary teams. In a second step, we should decide on an optimal training scheme for each worker.

Since we assumed that all teams are equal in one cycle, the skill requirements (and training require-

ments) for all teams are also equal. When skill A is required in one team, it is required in each team

of that cycle. This assumption can result in a suboptimal situation. Take the following example

where there are two time periods during one week and four flights that require maintenance. Flight

1, 2 and 3 arrive and leave during the first time period. Flight 4 arrives and leaves during the second

time period. Flight 1 requires one period of work of skill A, flight 2 requires one period of work of

skill B, flight 3 requires two periods of work of skill C and flight 4 requires one period of work of

skill C. Assume that the duration of a shift must be one time period and that we can have no more

than two teams. Assuming that all skills have the same cost (1 Euro for one period), an optimal

schedule is to schedule two shifts during the first time period and one shift during the second. This

optimal solution has two unequal teams (i.e., with a different skill mix) of two workers and a total

labor cost of 6 Euro. This solution requires that we assign one worker with skill A and one worker

with skill C to the first team and one worker with skill B and one worker with skill C to the second

13



Figure 3: Overview of the models that constitute the solution approach
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team. There is no cheaper option that involves equal teams (i.e., with the same skill mix). Even if

we only schedule one team with one worker with skill A, one worker with skill B and two workers

with skill C during the two time periods, the total costs are 8 Euro.

From the previous example, we conclude that the assumption of equal teams (i.e., with the same

skill mix) can lead to suboptimal solutions. Therefore, we need to refine the solution found by

the workforce scheduling model before constructing the training schedule. This is the task of the

second-stage model in Section 3.2. This is shown in Figure 3, which presents an overview of the

three models that constitute the solution approach. Recall that the assumption of equal teams is

the result of omitting the assignment of shifts to weeks because of efficiency issues (see the research

of Beliën et al. (2013)). So the first step after solving the workforce scheduling model is to construct

a solution with weeks and, hence, with teams with the objective of minimizing the violations of

the weekend constraints and shift succession constraints. This is done using a so-called satisfaction

Tabu Search method (see De Bruecker (2015)). The neighborhood consists of all rosters that can

be found by swapping a shift between two weeks on the same day of the cycle. Note that, thanks

to the shift succession guaranteeing constraints in the MIP model, this always results in a feasible

solution. Moreover, the schedule cost is completely determined by the first stage problem as the

allocation of shifts to weeks in the cycle has no impact on the costs.

Based on the value of aωcη, each worker ω is assigned to the η-th worker of an arbitrary team n.

This way, the resulting value of the decision variable aωcη from the workforce scheduling model is

transformed into input parameter Xηncs from the intermediate model based on the value of αωs.

Xηncs has value 1 if worker η in team n in cycle c has skill s, and has value 0 otherwise.
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3.2. Optimize training requirements: second-stage optimization model

As the skill requirements are not necessarily equal for all teams in an optimal solution, we use

a second mixed integer programming model to reduce the training requirements resulting from

the workforce scheduling model. The most important difference with the workforce scheduling

model is that the second-stage model does feature the week (team) decision that is absent in the

workforce scheduling model. The use of a week (team) index in this model does not cause the same

efficiency problems as in the workforce scheduling model because the most difficult decision, the shift

scheduling decision, is already made. Hence, we will see that the decision variable xidc from the

workforce scheduling model is absent in the intermediate model. In Section 3.1 we already explained

how the decision variable aωcη from the previous model is transformed into input parameter Xηncs

for this model with the help of the satisfaction Tabu Search procedure. Moreover, based on the

output of the satisfaction Tabu Search procedure, the decision variable xidc from the previous model

is transformed into input parameter Qncp for this model. This can also be observed in Figure 3.

Furthermore, the decision variable nc from the previous model is now used as the input parameter

|Nc|, which equals |Wc|. Of course, the team size Mc is also fixed at this time because it was

optimized during the enumeration technique for solving the workforce scheduling model.

As the shift decision is already made during the workforce scheduling model, whereby the decision

variable xidc is transformed into input parameter Qncp for this model, we know how much capacity is

available in each week, in each cycle, on each period. In the second-stage model presented below, we

neglect the skill and training decisions that have been made during the workforce scheduling model

as we will now reinvestigate the skill and training requirements. A concrete example of the output

of the first-stage workforce scheduling model can be seen in the upper left of Figure 2. In cycle 2,

there are four teams each having an identical skill composition (both consisting of already present

skills and skills to be achieved through training). In contrast, the second-stage optimization model

will determine for each team separately which skills (already present or to be trained) it needs to

have.

In the remainder of this section, we define the second-stage model. We first list the sets, along with

their associated indices:
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d ∈ {1, ..., 7} : days in the week

p ∈ P : time periods in one week

f, f ′ ∈ F : flights to be serviced

f ′ ∈ δ(f) : set of all flights that overlap at least during one period with flight f , with

f ∈ δ(f)

p ∈ Pf : time periods during which flight f can be serviced

s ∈ S : skill types

c ∈ C : cycles in the workforce configuration

n ∈ Nc : teams in cycle c, with |Nc| = |Wc| = the number of teams (= weeks) in

cycle c

w ∈Wc : weeks in cycle c, with |Wc| = |Nc| = the number of weeks (= teams) in cycle

c

η ∈ {1, 2, ...,Mc} : workers in a team in cycle c, with Mc the team size in cycle c

The coefficients and right hand side constants are presented below:

Xηncs ∈ {0, 1}: = 1 if worker η in team n in cycle c has skill s, = 0 otherwise

W lcm ≥ 0 : least common multiplier of |Wc| for all c ∈ C
Lfs : workload (in time periods p) of flight f of skill type s

Qncp ≥ 0 : capacity made available by team n in cycle c in time period p

Ktraining
s > 0 : training cost for skill type s per worker

Θmax
ηnc : maximum training (in skills) that worker η in team n in cycle c can receive

Mc: the team size in cycle c

The decision variables are:

qsηncpw ≥ 0 : capacity of skill type s made available by worker η in team n in cycle c in time

period p in week w

τηncs ∈ {0, 1} : = 1 if worker η in team n in cycle c must be trained for skill s, = 0 otherwise

gfpsw ≥ 0 : capacity of skill type s assigned to maintain flight f during time period p in week

w

mfs ≥ 0 : minimum capacity (over all weeks w = 0, ...,W lcm − 1) of skill type s that is

available between the STA and STD of flight f

The second-stage optimization model can be formulated as follows:

Minimize
∑
c∈C

∑
s∈S

∑
n∈Nc

∑
η∈{1,2,...,Mc}

τηncs ·Ktraining
s (37)

Subject to:
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qsηncpw ≤
Xηncs + τηncs

Mc
·Q((n+w)mod(|Wc|))cp, ∀c ∈ C,∀s ∈ S,

∀p ∈ P,∀w ∈Wc,

∀n ∈ Nc, ∀η ∈ {1, 2, ...,Mc} (38)∑
s∈S

qsηncpw ≤
Q((n+w)mod(|Wc|))cp

Mc
, ∀c ∈ C, ∀p ∈ P,∀w ∈Wc,

∀n ∈ Nc, ∀η ∈ {1, 2, ...,Mc} (39)∑
s∈S

τηncs ≤ Θmax
ηnc , ∀c ∈ C, ∀n ∈ Nc,

∀η ∈ {1, 2, ...,Mc} (40)

τηncs +Xηncs ≤ 1, ∀c ∈ C, ∀n ∈ Nc,

∀η ∈ {1, 2, ...,Mc},∀s ∈ S (41)∑
f∈F

gfpsw ≤
∑
c∈C

∑
n∈Nc

∑
η∈{1,...,Mc}

qsηncpw, ∀p ∈ P,∀s ∈ S,w = 0 (42)

∑
p∈Pf

gfpsw = Lfs ∗
|P |

24 ∗ 7
, ∀f ∈ F,∀s ∈ S,w = 0 (43)

∑
f ′∈δ(f)

∑
p∈[Pf∩Pf′ ]

gf ′psw ≤ mfs, ∀f ∈ F,∀s ∈ S,w = 0 (44)

mfs ≤
∑
p∈Pf

∑
c∈C

∑
η∈{1,...,Mc}

∑
n∈Nc

qsηncp((w)mod(|Wc|)), ∀f ∈ F,∀s ∈ S,

∀w ∈ {0, 1, ...,W lcm − 1} (45)

qsηncpw ≥ 0, ∀c ∈ C, ∀s ∈ S,∀p ∈ P,∀w ∈Wc,∀n ∈ Nc, ∀η ∈ {1, 2, ...,Mc} (46)

τηncs ∈ {0, 1}, ∀c ∈ C,∀s ∈ S,∀n ∈ Nc, ∀η ∈ {1, 2, ...,Mc} (47)

gfpsw ≥ 0, ∀f ∈ F,∀p ∈ P,∀s ∈ S,w = 0 (48)

mfs ≥ 0, ∀f ∈ F,∀s ∈ S (49)

Since the workforce scheduling model assumed that all teams are equal in one cycle, the training

requirements are also equal for all teams in the cycle. It is however not always necessary to train

all teams for the same skill. The intermediate model therefore looks to each worker in each team

individually and only assigns the necessary training to a worker. With the objective function (37),

the model tries to find the minimal training costs in order to execute the rosters found by the

workforce scheduling model.

Constraint (38) distributes the available capacity on each time period in each week over the different

workers and their skills. Hence, it determines the capacity of skill type s made available by worker

η in team n in cycle c in time period p in week w. The capacity made available by team n in cycle c

in time period p is therefore multiplied by the sum of the parameter Xηncs and the decision variable

τηncs. When worker η in team n in cycle c has skill s, or when this worker is trained for skill s,

this sum equals 1. Because the capacity is also distributed over the different skills, constraint (39)

makes sure that the capacity over all skills is not larger than what is available. Recall that Qncp is a
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combination of the results of the workforce scheduling model and the reconstructed weekly schedule.

Constraint (40) then makes sure that a worker cannot be trained for more than Θmax
ηnc skills and

constraint (41) ensures that a worker can only be trained for skill s when he lacks this skill.

Constraints (42) and (43) are similar to constraints (3) and (4) and make sure that all flights can be

maintained in time with the available skills and workers. Since all teams in a cycle can be different

in this model, the capacity that is available of a certain skill type on a certain time period can be

different for each week. Therefore, the coverage constraints (42) and (43) should be satisfied for

all weeks w ∈ {0, 1, ...,W lcm − 1}. Since every cycle can have a different number of teams (weeks),

the total available capacity (over all cycles) follows a cyclic pattern that is repeated after W lcm

weeks. To avoid the large number of constraints and variables to check the coverage for all weeks

w ∈ {0, 1, ...,W lcm − 1}, constraints (44) and (45) are used. Constraint (44) makes sure that the

assigned capacity to maintain flights is not larger than the minimum capacity over all weeks that is

available to maintain each flight. Constraint (45) calculates this minimum.

Suppose that a flight arrives at the beginning of time period 1 and leaves at the end of time period

3. Also assume that in the first week, one team with one worker with skill A is scheduled to work a

shift during the first period and one team with one worker with skill B is scheduled during the next

two time periods. Next week, the first team will work the shift of the second team and the second

team will work the shift of the first team. During the first week, the available capacity to maintain

the flight is only one time period of skill type A and two time periods of skill type B. During the

second week, there is only one time period of skill type B and two time periods of skill type A. This

means that the minimum available capacity over all weeks of each skill type is only one time period.

Hence, in a workforce schedule that is feasible for each week, the assigned work of each skill type

should be no more than one time period. Note that constraint (44) checks the coverage constraint

for all f time intervals, while constraint (42) checks the coverage for all p time periods. Using time

intervals instead of time periods is necessary because we want to compare the assigned work gfpsw

during a flight interval with the minimum capacity mfs that is available in this flight interval.

The model presented above results in a certain number of training goals equal to the number of

workers that are required to maintain all flights in time for the next season. A training goal is

defined as a collection of skills. Assume we would need two workers with four skills and that both

workers already have skills A, B and C. Suppose that, according to the model, worker 1 should

acquire skill D and worker 2 should acquire skill E. This results in two training goals where the first

goal consists of skills A, B, C, and D, and the second goal of skills A, B, C, and E.

The next and final model uses these training goals as its input and determines the training schedule

in order to obtain these goals. We refer to this model as the training model.

3.3. Finding the best training schedule: The training model

While the first two models (the workforce scheduling model and the second-stage model) are con-

cerned with constructing and optimizing the workforce schedule of the next season, the training

18



model is only concerned with constructing a feasible training schedule during the current season

(see Figure 3). Hence, this model assumes a fixed workforce schedule which defines the capacity of

each skill, for each worker, in each team, in each cycle, on each time period. This information is

contained in the input parameters Qncp and Xηncs. Of course, the number of weeks and teams in

each cycle (|Wc| = |Nc|) and the team size in each cycle (Mc) is also known in advance.

Furthermore, the training model assumes a set of training goals (Γ). The number of training goals

contained in the set Γ equals the number of workers that are required to maintain all flights in time

during the next season. This set is composed based on the result of the intermediate model (see

Section 3.2). The goal of the training model is to find a training schedule that satisfies three different

criteria. First, the training schedule should not interfere with the current operations. Hence, all

flights should still be maintained in time. Second, all training goals in set Γ should be satisfied at

the end of the current season. Third, the right worker should be trained for the right skills such

that the training costs are minimized.

In the remainder of this section, we define the training model. We first list the sets, along with their

associated indices:

d ∈ {1, ..., 7} : days in the week

d ∈ Dtraining : training days

p ∈ P : time periods in one week

f, f ′ ∈ F : flights to be serviced

f ′ ∈ δ(f) : set of all flights that overlap at least during one period with flight f , with

f ∈ δ(f)

p ∈ Pf : time periods during which flight f can be serviced

s ∈ S : skill types

c ∈ C : cycles in the workforce configuration

n ∈ Nc : teams in cycle c, with |Nc| = |Wc| = the number of teams (=weeks) in cycle

c

w ∈Wc : weeks in cycle c, with |Wc| = |Nc| = the number of weeks (=teams) in cycle

c

w ∈W training : weeks in the training horizon

η ∈ {1, 2, ...,Mc} : workers in a team in cycle c, with Mc the team size in cycle c

γ ∈ Γ : training goals

The coefficients and right hand side constants are presented below:
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Lfs : workload (in time periods p) of flight f of skill type s

αdp ∈ {0, 1} : = 1 if training is possible on period p on day d, = 0 otherwise

λγηnc ∈ {0, 1} : = 1 if worker η in team n in cycle c already has all the skills needed for goal γ,

= 0 otherwise

Qncp ≥ 0 : the capacity made available by team n in cycle c in time period p

Ktraining
γηnc > 0 : training cost to train worker η in team n in cycle c for goal γ

Xηncs ∈ {0, 1}: = 1 if worker η in team n in cycle c has skill s, = 0 otherwise

Dγηnc ≥ 0 : duration (in days) to train worker η in team n in cycle c to reach goal γ

∆γ ≥ 0 : number of workers that should reach goal γ

Mc: the team size in cycle c

The decision variables are:

τγηncdw ∈ {0, 1} : = 1 if worker η in team n in cycle c is trained for goal γ on day d in week w,

= 0 otherwise

qsηncpw ≥ 0 : capacity of skill type s made available by worker η in team n in cycle c in time

period p in week w

gfpsw ≥ 0 : capacity of skill type s assigned to maintain flight f during time period p in

week w

mfs ≥ 0 : minimum capacity (over all weeks w ∈ W training in the training horizon) of

skill type s that is available between the STA and STD of flight f

zchoiceγηnc ∈ {0, 1} : = 1 if goal γ is chosen for worker η in team n in cycle c, = 0 otherwise

The training model can be formulated as follows:

Minimize
∑
c∈C

∑
γ∈Γ

∑
n∈Nc

∑
η∈{1,2,...,Mc}

zchoiceγηnc ·Ktraining
γηnc (50)

Subject to:
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qsηncpw ≤
Xηncs
Mc

·Q((n+w)mod(|Wc|))cp ·

1−
∑

d∈Dtraining

∑
γ∈Γ

[τγηncdw · αdp]

 , ∀c ∈ C, ∀s ∈ S,∀p ∈ P,

∀w ∈W training,∀n ∈ Nc,

∀η ∈ {1, 2, ...,Mc}
(51)∑

s∈S

qsηncpw ≤
Q((n+w)mod(|Wc|))cp

Mc
, ∀c ∈ C, ∀p ∈ P,∀n ∈ Nc,

∀w ∈W training,

∀η ∈ {1, 2, ...,Mc}
(52)∑

f∈F

gfpsw ≤
∑
c∈C

∑
n∈Nc

∑
η∈{1,2,...,Mc}

qsηncpw, ∀p ∈ P,∀s ∈ S,w = 0

(53)∑
p∈Pf

gfpsw = Lfs ∗
|P |

24 ∗ 7
, ∀f ∈ F,∀s ∈ S,w = 0

(54)∑
f ′∈δ(f)

∑
p∈[Pf∩Pf′ ]

gf ′psw ≤ mfs, ∀f ∈ F,∀s ∈ S,w = 0

(55)

mfs ≤
∑
p∈Pf

∑
c∈C

∑
η∈{1,2,...,Mc}

∑
n∈Nc

qsηncpw, ∀f ∈ F,∀s ∈ S,∀w ∈W training

(56)

∑
d∈Dtraining

∑
w∈W training

τγηncdw = Dγηnc · zchoiceγηnc · (1− λγηnc) , ∀c ∈ C,∀γ ∈ Γ,∀η ∈ {1, 2, ...,Mc}, ∀n ∈ Nc

(57)∑
γ∈Γ

zchoiceγηnc ≤ 1, ∀c ∈ C,∀η ∈ {1, 2, ...,Mc}, ∀n ∈ Nc

(58)∑
c∈C

∑
n∈Nc

∑
η∈{1,2,...,Mc}

zchoiceγηnc = ∆γ , ∀γ ∈ Γ

(59)

τγηncdw ∈ {0, 1}, ∀c ∈ C, ∀γ ∈ Γ, ∀η ∈ {1, 2, ...,Mc}, ∀n ∈ Nc,∀d ∈ {1, ..., 7},

∀w ∈W training (60)

qsηncpw ≥ 0, ∀c ∈ C, ∀s ∈ S,∀η ∈ {1, 2, ...,Mc}, ∀n ∈ Nc, ∀p ∈ P,

∀w ∈W training (61)

gfpsw ≥ 0, ∀f ∈ F,∀p ∈ P,∀s ∈ S,w = 0 (62)

mfs ≥ 0, ∀f ∈ F,∀s ∈ S (63)

zchoiceγηnc ∈ {0, 1}, ∀c ∈ C, ∀γ ∈ Γ, ∀η ∈ {1, 2, ...,Mc},∀n ∈ Nc (64)

The objective function (50) tries to decrease the total training costs. While the training goals are
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predefined by the workforce scheduling model and the intermediate model, the decision to train who,

when and how is still to be made. The goal is to finish the required training during the weeks in the

training horizon defined by the set W training with minimal costs. Recall that the training horizon is

the time between the construction of the new schedule and the start of the next season (see Figure

1).

In this model, constraints (51) to (56) replace constraints (38) to (39) and constraints (42) to (45)

in the intermediate model. They make sure that flights can be maintained in time with the available

skills and workers. Constraint (51) is however very different from constraint (38) in the intermediate

model. The capacity that is available of skill type s in time period p of team n in cycle c is multiplied

by a factor that is zero or one. This factor is 0 when training takes place during that time period

and is 1 otherwise. This way, the capacity decreases because a certain worker is trained at that

moment. To model training on the job, the parameter αdp can be fixed to a value between 0 and

1. This way, the model can account for a certain decrease in capacity due to the training on the

job. Because we want to decide on the training for each week in the training horizon, we have to

build constraints for all weeks w ∈W training instead of just the weeks w ∈Wc. This is also true for

constraint (52) and (56). Constraints (53) to (55) are exactly the same as constraints (42) to (44).

Constraints (57) to (59) are specific constraints to solve the training problem. The decision variable

zchoiceγηnc can be found in all three training constraints. zchoiceγηnc is 1 when we decide that worker η in

team n in cycle c will be used for goal γ and is 0 otherwise. When zchoiceγηnc is 1, it means that this

worker already has all the skills for goal γ or that he will be trained to reach that goal. When a

worker does not have all the skills for goal γ, and when zchoiceγηnc is 1 for this worker, he must be fully

trained. This is ensured by constraint (57). When a worker should be trained for too many skills

in order to reach a certain goal, zchoiceγηnc is fixed to 0. This way we can limit the number of skills a

worker can be trained for.

Constraint (58) makes sure that one can only choose one goal for each worker. When the left hand

side of constraint (58) is 0, the worker is not needed anymore. Of course, this worker is not just fired,

but he is relocated to another division of the company (usually to the heavy maintenance division).

Constraint (59) makes sure that the number of workers that are chosen for goal γ is equal to the

required number of workers that should reach this goal.

The model presented above returns a feasible training schedule to reach all goals with minimal

training costs. Recall that these costs are less than or equal to the training costs resulting from the

workforce scheduling model because of the intermediate model. According to the current formulation

of the training model, the model can freely decide when to schedule the training as long as there is

enough capacity left to maintain all flights in time. It has however not a single incentive to finish

the training as soon as possible. When the total training duration is part of the decision problem,

constraint (65) can be used to define the earliest finishing time of all training. The decision variable

φ ≥ 0 is thus defined as the earliest finishing time (in weeks) of all training required to reach all

goals. The finishing time could, for instance, be minimized in the objective function.

τγηncdw · (w + 1) ≤ φ, ∀c ∈ C, ∀γ ∈ Γ,∀η ∈ {1, 2, ...,Mc},∀n ∈ Nc,

∀d ∈ {1, ..., 7},∀w ∈W training (65)
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4. Results and discussion

4.1. Test instances

The performance of the three models is tested on 20 test instances. These instances are created

randomly based on real-life data dimensions from the company Sabena Technics (see also Beliën

et al. (2012)). These instances1 are named “abcd”, with a, b and c ∈ {1, 2} the factor settings

for three factors discussed hereafter, and d ∈ {1, 2, 3, 4, 5} the number of the instance. Factor a

indicates the number of flights to be served. In this experiment a is always 1 corresponding to 100

flights to be maintained. Factor b indicates whether the workloads, i.e. the maintenance durations,

are drawn from a uniform distribution between 0 and 10 hours (b=1) or from an exponential distri-

bution with average 3.5 hours (b=2). Factor c indicates whether there are peak arrivals (c=1), i.e.

50% of the flights arrive between 6 am and 9 am or between 4 pm and 7 pm, or the arrival times

are spread over the day (c=2), i.e., drawn from a uniform, random distribution. The workforce

regulations are as follows. The average number of work hours per week must be between 36 and

38 hours. Each worker must have at least 50% free weekends. A morning shift must start between

5 am and 6:30 am, a day shift must start between 7 am and 9 am, an evening shift must start

between 12:15 pm and 2:45 pm, and a night shift must start between 9 pm and 10:30 pm. The

total duration of a shift must lie between 8 and 9.5 hours (including a half hour break). The cost

of a day shift during the week is set at 15 Euro per hour (gross cost). There are extra shift pre-

miums for other shift types and for shifts during weekends, which are detailed in Beliën et al. (2013).

Table 2 shows the results of the workforce scheduling model without training, the workforce schedul-

ing model with training, the intermediate model and the training model. For the tested instances,

the workforce scheduling model with training has on average 9,472,645 variables and 348,545 con-

straints, the intermediate model 6,559,940 variables and 193,168,128 constraints and the training

model 6,592,052 variables and 8,917,520 constraints. We solved the models with IBM optimization

software CPLEX 12.4. All models were given 1500 seconds of computation time on an AMD FX

8120 eight-core processor with a clock speed of 3.10GHz and 8GB RAM.

The first column of Table 2 shows the name of the test instance. The next three columns show the

results of the scheduling model without training. In this model, Θmax
ω is set to 0 and the model only

tries to cover the demand with the available workers and their current skills. The weekly costs are

the weekly incurred labor costs to operate the workforce schedule. Next to the costs, Table 2 also

lists the number of workers that are required in the schedule as well as the optimality gap. This gap

is the relative difference between the obtained solution (after 1500 seconds) and the lower bound

obtained by the optimization software.

The next four columns show the results of the scheduling model with training. We assumed that

each worker can be trained for at most two skills. Hence, Θmax
ω is set to 2. Again, Table 2 shows

the weekly costs incurred by the company, but this time, these costs are the sum of the weekly

1The instances can be downloaded from https://feb.kuleuven.be/Jeroen.Belien
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labor costs and the total training costs divided by 24. Recall that we assumed a planning horizon

of one season with 24 weeks. The total training costs are shown in the next column, followed by the

required number of workers and the optimality gap.

Table 2 also shows the savings resulting from the training. We make a difference between the pure

monetary savings and the workforce reduction. The monetary savings are the differences between

the weekly costs of the scheduling model without training and the weekly costs of the scheduling

model with training, multiplied by 24. The reduction of the workforce can be expressed as the

difference between the required number of workers in both models.

The last three columns of Table 2 present the results of the intermediate model and the training

model. While the workforce scheduling models did not return an optimal solution after 1500 seconds

of computation time, the intermediate model and training model did solve the problem to optimality

in the allowed computation time. Therefore, the CPU times are shown instead of the optimality

gaps for these two models.

The average values of each column are shown at the bottom of Table 2. The results reported in

Table 2 will be discussed in more detail in Section 4.2.

4.2. The workforce scheduling model: Discussion

4.2.1. Assumptions

To test the performance of the workforce scheduling model, we designed a pool of 30 workers with

three arbitrarily chosen skills. We assume that there are five different skill types and that each

aircraft requires exactly one skill type. The skill required to maintain each aircraft is arbitrarily

chosen such that 2% of all flights require skill A, 2% require skill B, 4% require skill C, 10% require

skill D and 82% require skill E. We further assume that a week is divided in 672 periods of 15

minutes and that we only consider two cycles with at most eight teams in each cycle. The minimum

team size is fixed to two workers.

As we fix Θmax
ω to 2 in the workforce scheduling model with training, the number of skills a worker

can be trained for is limited to 2. We also assume that there are two training days in each week. On

these days, the training takes place between 10AM and 2PM. In order to acquire skill A, five training

days are required, skills B, C and D take eight days of training and skill E takes ten days. The costs

to acquire each skill type are 2000, 800, 1200, 500 and 800 Euro respectively. All assumptions are

based on real-life observations.

4.2.2. Making the optimal trade-off

The workforce scheduling model is solved with CPLEX 12.4 using the enumeration approach out-

lined in Beliën et al. (2013) to incorporate the decision about the optimal team size. During the

enumeration MILP approach, each MILP was provided with a computation time limit of 60 seconds,
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which is extended by another 60 seconds every time the node is revisited. To study the impact of

training on the costs of the workforce schedule for the next season, we solve the model with and

without training. The results are shown in Table 2.
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Table 2: Results of the three different skills and training models

Scheduling model without training Scheduling model with training Savings Intermediate model Training model

Test Set Weekly costs Workers Gap (%) Weekly costs Training costs Workers Gap (%) Money Workers Training costs Time (s) Time (s)

1 1 1 1 17450 24 23.71 15154 5400 20 11.56 55105 4 4900 1.28 4.37

1 1 1 2 20869 30 15.55 19517 8000 28 9.57 32440 2 6400 3.99 5.14

1 1 1 3 17160 24 21.84 16584 3000 22 19.22 13819 2 3000 3.62 2.96

1 1 1 4 17706 26 21.49 17135 4700 24 13.15 13706 2 3900 2.54 3.48

1 1 1 5 20804 30 21.41 17569 6000 24 6.92 77656 6 6000 1.07 2.14

1 1 2 1 15651 24 27.12 13661 2000 20 16.50 47766 4 2000 1.09 3.44

1 1 2 2 19547 30 45.24 14546 10000 20 26.62 120016 10 9500 2.37 4.07

1 1 2 3 20592 30 10.74 20296 3000 30 9.44 7110 0 3000 2.03 3.50

1 1 2 4 18393 26 19.76 16483 4000 24 10.71 45844 2 4000 2.89 3.26

1 1 2 5 18267 28 22.73 16432 4000 24 14.08 44038 4 4000 0.87 3.92

1 2 1 1 13707 20 11.58 13600 0 20 10.97 2556 0 0 0.00 0.00

1 2 1 2 18759 28 21.20 16424 3000 24 9.95 56032 4 3000 0.73 2.40

1 2 1 3 11645 16 10.98 11296 1000 16 8.42 8377 0 500 0.61 2.79

1 2 1 4 13107 18 22.09 12063 3700 16 15.31 25069 2 3700 0.58 3.15

1 2 1 5 16274 22 20.91 14861 7600 20 13.39 33904 2 6800 0.69 2.36

1 2 2 1 10854 16 17.63 10837 0 16 17.50 408 0 0 0.00 0.00

1 2 2 2 11387 16 6.21 11386 0 16 6.22 26 0 0 0.71 0.00

1 2 2 3 13043 20 3.20 13004 0 20 2.88 945 0 0 0.00 0.00

1 2 2 4 10966 16 16.84 10929 0 16 16.56 888 0 0 0.00 0.00

1 2 2 5 10797 16 11.90 10797 0 16 11.87 0 0 0 1.03 0.00

Average 15849 23 18.61 14629 3270 21 12.54 29285 2 3035 1.31 2.35
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Recall that the workforce scheduling model with training makes a trade-off between cheaper rosters

that require higher skilled workers and the training costs to obtain this higher skilled workforce.

This way, an optimal amount of training will be determined in order to minimize the total costs for

the next season. Workers will only be trained as long as the training costs can be compensated by a

decrease in the labor costs. Therefore, it is possible that the workforce scheduling model will decide

that no training should take place because the potential training costs cannot be compensated by a

decrease in labor costs. This is for example the case for test set 1 2 1 1 and sets 1 2 2 1 to 1 2 2 5

in Table 2. For these six test sets, no savings can be obtained by training some of the workers.

Therefore, the weekly costs and the required number of workers are equal in the model without

training and the model with training. However, some small differences can be observed in Table 2

because of the slightly lower optimality gaps in the model with training.

4.2.3. The benefits of training

While training is not always beneficial, it results in substantial savings for most instances in Table

2. As shown in columns 9 and 10 in Table 2, these savings are twofold. First, the company can

save money with cheaper personnel schedules. Second, some of the workers can become redundant

and can be used somewhere else in the company such as in the heavy maintenance department.

On average, 29285 Euro can be saved over the whole season with training. Moreover, applying

the workforce scheduling model with training always results in lower (or equal) costs compared to

the model without training. While there is a strong linear relation between the monetary savings

and the reduction of workers (R2 = 0.95), training can also decrease costs without a reduction of

workers. This is true for test sets 1 1 2 3 and 1 2 1 3 in Table 2. In these two cases, the higher

skilled workforce makes it possible to reorganize the current workforce schedule and decrease the

labor costs. Furthermore, a higher skilled workforce cannot only be beneficial for the next season,

but it will also increase the possibility of building better and cheaper workforce schedules in the

future.

4.2.4. Performance of the workforce scheduling model

While the workforce scheduling model is the most important model to minimize the costs, it is

also the most time consuming of all three models. Therefore, Table 2 shows the optimality gaps

instead of the required computation time. An interesting observation is made when the gaps of the

scheduling model without training and the scheduling model with training are compared. According

to Table 2, the gaps of the first model are much larger than those of the second model (18.61%

versus 12.54%). Furthermore, the gaps of the second model are much more similar to those of the

respective MILP model presented by Beliën et al. (2013) (12.54% versus 11.01%). This means that

finding a good solution without training appears to be much more difficult than finding a good

solution with training. However, this statement is not true when only little training (or even no

training at all) is required to find a good solution. For these cases, the gaps (and solution values) of

the first model are much closer to the gaps (and solution values) of the second model. There appears

to be a relatively strong linear relation between the gaps of the model without training (column 4)

and the monetary savings (column 9) resulting from training (R2 = 0.70). This relation is absent for

the model with training (R2 = 0.16). Hence, this relation suggests that the large gaps belonging to
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the model without training must be seen as an indication of the possible savings that can be made

when the workforce would be trained instead of an indication of poor solutions.

4.3. The intermediate model: Results and performance

Since the workforce scheduling model assumes that all teams are equal in one cycle, the training

requirements are equal for all teams. It is however not always necessary to train all teams for the

same skill. Therefore, the goal of the intermediate model is to find the minimal training requirements

in order to perform all maintenance in time. The results are shown in columns 11 and 12 of Table

2. Because the intermediate model minimizes the training requirements, the training costs are also

minimized. The comparison of columns 6 and 11 in Table 2 reveals that the intermediate model

always results in less or equal training costs. On average, the difference between the training costs

found by the workforce scheduling model and those found by the intermediate model is less than 6%.

However, the maximum reduction of training costs is 50%. Hence, the application of the intermediate

model can be beneficial in some cases. Furthermore, solving the model always returns an optimal

solution in only 1.31 seconds (on average). As the intermediate model results in the optimal skill

requirements, it can be used (with or without the workforce scheduling model) to assess the impact

of an extra maintenance contract. Tests showed that the addition of just one new flight with a new

skill type already requires a lot of new training. Even if the shift schedules can remain unchanged,

many workers should be trained to acquire this new skill type because of the cyclic work pattern. In a

cyclic workforce schedule it is very likely that all teams in a cycle will be assigned to the same flights

at least once. Therefore, when a new flight with a new skill is introduced, many workers should

acquire this new skill. Hence, one must be very cautious to accept a new maintenance contract that

involves training the workforce for a new skill.

4.4. Performance of the training model

The training model is very important to decide when and who will be trained in order to reach all

training goals without disrupting the maintenance work. Table 2 shows the required computation

time to solve the training model for each of the test instances to optimality. The objective value (the

training costs) are not shown in the table because they are equal to the training costs found by the

intermediate model. Recall from Section 3.3 that as the length of the training horizon (W training)

increases, the number of decision variables in the training model also increases. Therefore, the length

of the training horizon has an impact on the performance of the training model. We used a training

horizon of eight weeks to solve the test sets in Table 2. While the average computation time of the

training model is larger than for the intermediate model (2.35 s versus 1.31 s), the time required to

solve the problem to optimality is still relatively small.

5. Conclusion and future research

In this paper, we present a three-stage mixed integer programming approach for optimizing the

skill mix and training schedule at an aircraft maintenance company. In the first stage, a trade-off is
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made between cheaper rosters that require higher skilled workers and the training costs to obtain this

higher skilled workforce. Finding this optimal trade-off is the goal of the workforce scheduling model.

In order to speed up calculations, the workforce scheduling model assumes that all teams are equal

(i.e., with the same skill mix). Because this assumption can lead to suboptimal solutions, a second

stage model is used to refine the solution of the workforce scheduling model before constructing a

training schedule. In a third stage, the training model is used to find an optimal training schedule.

This model determines the exact timing of the training for each worker and takes into account

that a worker is unavailable to work during his training periods. The goal is to finish the required

training during the weeks in the training horizon with minimal costs. We successfully applied our

approach to 20 different test sets based on real-life data from Sabena Technics. Experiments first

demonstrate that our models succeed in finding good solutions in reasonable computation times.

Second, we illustrate the benefits of training by comparing a scenario without training to a scenario

with training. The results show how our approach can make a good trade-off between cheaper rosters

that require higher skilled workers and the training costs to obtain this higher skilled workforce. For

future research regarding the proposed skills and training model, one can focus on the constraint

that defines the earliest finishing time of all training required to reach all training goals. When the

required training cannot be finished in the predefined training horizon, training costs will increase

or the training model will not find a feasible result at all. A special approach can be proposed that

confines the training possibilities in order to obtain a feasible training schedule. Furthermore, it

can be interesting to investigate the implications of a continuous training program. Instead of a

short training program dedicated to the next season, one can choose to train the workforce on a

continuous basis with a long term vision.
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