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SAMENVATTING 

De studie van visuele perceptie bestrijkt niet alleen een grote verscheidenheid aan 

disciplines, gaande van cognitieve wetenschappen tot computerwetenschappen tot 

neurowetenschappen, maar ook een waaier aan diermodellen, gaande van primaten tot 

knaagdieren tot zelfs insecten. Het onderzoek van deze thesis ligt op het raakvlak van 

cognitieve en neurowetenschappen, met enkele ideeën ontleend aan 

computerwetenschappen. Het is een verzameling van studies uitgevoerd met zowel 

ratten (Laboratorium voor Biologische Psychologie, KU Leuven) als apen (Laboratorium 

voor Neuro- en Psychofysiologie, KU Leuven), samengebracht onder de titel: “Complexe 

en adaptieve representaties in de visuele cortex van de rat en makaak”. In een 

informatieverwerkingssysteem zoals het visuele, verwijst de term representatie naar de 

informatie die door het systeem expliciet gemaakt is. Bijvoorbeeld, welke eigenschappen 

van de visuele omgeving drijven in een zeker stadium van verwerking de neurale 

activiteit? Over het algemeen stijgen deze eigenschappen in complexiteit doorheen de 

visuele stroom. Neurale activiteit wordt echter niet alleen door huidige visuele 

stimulatie gedreven, maar past zich ook aan bij voorafgaande stimulatie. Dus, het 

uiteindelijke product is een complexe en adaptieve representatie. 

Voor onze eerste onderzoekslijn hebben we het visuele systeem van de rat onderzocht. 

Deel I van deze studies is gericht op objectherkenning en omvat hoofdstukken 1-3. In 

Hoofdstuk 1 gaan we visuele classificatievaardigheden van ratten met natuurlijke 

filmpjes na. Vervolgens rapporteren we in Hoofdstuk 2 veranderingen in neurale 

representaties van deze filmpjes doorheen een baan in de visuele cortex van de rat. Die 

baan wordt weleens voorgesteld als homoloog van de ventrale visuele stroom in 

primaten. Ten slotte onderzoeken we in Hoofdstuk 3 of deze neurale representaties de 

visuele classificatievaardigheden besproken in Hoofdstuk 1 zouden kunnen 

ondersteunen. Dit doen we door middel van een vergelijking van corticale representaties 

van de filmpjes met representaties in de lagen van een diep neuraal netwerk model. 

Over het geheel genomen, concluderen we dat de vermeende rat ventrale stroom 

resulteert in een relatief complexe representatie van visuele input: één die niet direct 
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categorie-gerelateerd is, maar die misschien toch generalisatie in een complexe 

classificatie taak zou kunnen ondersteunen. 

Voor Deel II, wat enkel Hoofdstuk 4 inhoud, focussen we op dezelfde baan in de visuele 

cortex van de rat, om te onderzoeken hoe recente visuele stimulatie neurale antwoorden 

beïnvloedt. De resultaten verschillen opmerkelijk van die in de aap, en we speculeren 

dat deze baan in de rat misschien gespecialiseerd is in de detectie van veranderingen. Dit 

Hoofstuk geeft de overgang naar het onderwerp van neurale adaptatie aan. 

In Deel III zetten we het onderzoek naar neurale adaptatie verder. Hier richten we ons 

op de relatie met de predictive coding theorie, die veronderstelt dat corticale antwoorden 

schendingen van eerdere verwachtingen signaleren. We verplaatsten de focus naar apen 

om meer geavanceerde cognitieve processen te bestuderen. In Hoofdstuk 5 onderzoeken 

we de interactie tussen perceptuele verwachtingen en neurale adaptatie in de inferieur 

temporale cortex van de makaak. We vinden specifiek dat noch aandacht, noch een erg 

relevante stimulus categorie zoals gezichten, voldoende zijn om die interactie te kunnen 

observeren. Ten slotte gebruiken we in Hoofdstuk 6 een model dat neurale adaptatie 

mechanismen simuleert. We tonen aan dat stimulus-gedreven effecten van neurale 

adaptatie de zogenaamde verwachtings-effecten van een recente studie kunnen 

verklaren. Samen toont dit aan dat er onvoldoende bewijs is voor een algemene rol van 

perceptuele verwachtingen in adaptatie van neuronen in de inferieur temporale cortex. 
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SUMMARY 

The study of visual perception not only spans a wide variety of fields, ranging from 

cognitive science to computer science to neuroscience, but also covers an abundance of 

animal models, from primates to rodents to even insects. The work presented in this 

dissertation lies at the intersection between cognitive science and systems neuroscience, 

while borrowing some ideas from computer science. It is a collection of studies 

conducted with both rats (Laboratory for Biological Psychology, KU Leuven) and 

monkeys (Laboratory for Neuro- and Psychophysiology, KU Leuven), brought together 

under the title of: “Complex and adaptive representations in rat and macaque visual cortex”. In 

an information processing system such as the visual system, the term representation refers 

to the information that is made explicit by the system. For example, which features of the 

visual world drive neural activity in a certain stage of processing? These features 

typically increase in complexity across the visual stream. However, neural activity is not 

only driven by current visual input, but also adapts to previous stimulation. Therefore, 

the eventual product is a complex and adaptive representation. 

For our first line of research, we investigate the rat visual system. Part I of these studies 

is focused on object recognition and encompasses chapters 1-3. In Chapter 1, we 

investigate visual classification abilities of rats with naturalistic movies. In Chapter 2, we 

report changes in neural representations of these movies across a pathway in the rat 

visual cortex. This pathway has been proposed to be a homologue to the primate ventral 

visual stream. Finally, we explore in Chapter 3 whether these neural representations 

might be able to support the visual classification abilities presented in Chapter 1. We do 

this by comparing cortical representations of the movies with representations in layers of 

a deep neural network model. Overall, we conclude that the putative rat ventral stream 

results in a relatively complex representation of visual input: one that is not directly 

category-related, yet might support generalization in complex classification tasks. 

For Part II, which includes only Chapter 4, we continue with the same pathway in rat 

visual cortex to study how recent visual stimulus history affects neural responses. The 
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results differ markedly from those in monkeys, and we speculate that maybe this 

pathway is specialized in in change detection in rats. This chapter marks a transition to 

the topic of neural adaptation. 

We continue our research on neural adaptation in Part III. Here, we focus on its relation 

to the predictive coding theory, which postulates that cortical responses signal violations 

of prior expectations. We move the focus to monkeys to be able to study more advanced 

cognitive processes. In Chapter 5, we investigate the interaction between perceptual 

expectations and neural adaptation in macaque inferior temporal cortex. Specifically, we 

find that neither attention, nor a highly relevant stimulus category such as faces, are 

sufficient for observing that interaction. Finally, in Chapter 6, we use a model that 

simulates neural adaptation mechanisms. We show that simple, stimulus-driven effects 

of neural adaptation can explain a recent study’s proclaimed expectation effects. Taken 

together, the actual evidence does not support a general role of perceptual expectation in 

adaptation of inferior temporal cortex neurons. 
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 0.1 GENERAL INTRODUCTION 

Understanding the brain, and how it gives rise to behavior, is one of the most 

complicated yet important challenges in science today. It is hard to overstate the value of 

goals such as explaining the workings of brain disorders, or uncovering the mysteries of 

intelligence. Our brain is essentially who we are, everything we experience. Yet, we still 

do not understand this machine and how it processes information. That is, which 

computations transform sensory input to internal representations and eventually to an 

output, to behavior? Vision is a remarkable example of such information processing, 

which seems so effortless to us despite the tremendous computational challenge (Dicarlo 

et al., 2012). How does the brain construct a rich and meaningful representation of the 

outside world from the blizzard of photons entering the eye? This question, which has 

attracted scientists from many different fields over the centuries, is the backdrop of this 

dissertation. The study of this problem has branched out in a great variety of research 

topics, sometimes with very little overlap. Over the last few years I have worked on two 

of those topics, which I will briefly introduce here before going into more detail.  

Historically, research on visual perception has mainly focused on humans – or, more 

generally, on primates. Like other primates, we are highly specialized in visual object 

recognition, which is the ability to recognize objects despite an enormous variation in the 

retinal projection. In order to achieve this, our visual system needs to construct an 

internal representation that is relatively invariant to changes in size, position, luminance, 

etc., but remains selective for object identity (Logothetis and Sheinberg, 1996; Tanaka, 

1996; Dicarlo et al., 2012). We have long suspected that neural processing underlying this 

capability largely takes place in a visual pathway called the ventral visual stream 

(Mishkin et al., 1983), without much of an understanding of how this is actually 

implemented. After all, reaching an invariant representation while maintaining 

selectivity is a major computational challenge (Riesenhuber and Poggio, 2000; Rust and 

Dicarlo, 2010). A computational principle by which this can be achieved was introduced 

over 50 years ago in Hubel and Wiesel’s (1962) seminal work on the primary visual 

cortex (V1). They proposed the idea that the output of several simple cells, with identical 
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orientation preference but different retinal positions, is combined in complex cells with 

local tolerance to spatial shifts. Only recently, this principle has been generalized 

successfully in hierarchical neural network models that not only predict object selective 

neural responses surprisingly well, but also achieve unprecedented categorization 

performance in relatively confined object recognition tasks (Kriegeskorte, 2015).  

Although much progress on vision has focused on primates, not much is known about 

other animals. In particular, we know very little about the rodent visual system. This is 

partly not surprising, given that they mainly rely on other senses such as touch, smell, 

and audition (Zoccolan, 2015). On the other hand, it is somewhat unexpected, because 

rats and mice are so widespread as a model in neuroscience. In recent years, however, 

there has been increased interest in their visual system, driven by the advances in 

scientific tools available to study their neural circuitry (Huberman and Niell, 2011). Still, 

there are reasons other than the available toolkit for investigating rodent vision. One 

argument, often advocated by Zoccolan (2009, 2015), is that a simpler system should be 

easier to understand, and that some principles might translate to a more complex 

system. Much like studying V1 allowed Hubel and Wiesel (1962) to discover a 

computational principle that may generalize well to more advanced stages of the visual 

system (and across species). On the other hand, the visual system of different animals is 

expected to be uniquely tailored to their functional requirements (Marr, 1982). 

Nevertheless, studying a diversity of systems with a related function can lead to the 

identification of universal computational principles (Carandini and Heeger, 2011). In 

addition, a comparative approach is one of the only ways to uncover how a complex 

systems and their specializations have evolved (Krubitzer, 2009). In Part I and II of this 

dissertation we focus on the rat visual system, and approach the subject by assessing to 

what extent it also expresses some general principles of the primate ventral stream. 

While the success of deep neural network models of the ventral stream looks promising, 

they assume a fixed visual representation and ignore the temporal dynamics of the 

system. Yet, both object perception and neural responses change as a result of previous 

stimulation, even as a function of short-term stimulus history. These changes in neural 

responses are often referred to by the umbrella term neural adaptation (Kohn, 2007; Wark 
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et al., 2007). Even though this phenomenon may be largely explained by bottom-up and 

local mechanisms (Solomon and Kohn, 2014; Vogels, 2016), some researchers have 

proposed a predictive coding account which emphasizes the role of top down influences 

of perceptual expectation (Friston, 2005; Summerfield and de Lange, 2014). The 

predictive coding framework is a theory of sensory processing that, if proven to be 

universal, has far reaching implications. In Part II and III of this dissertation, we focus on 

the relation between expectation and adaptation in the visual system. 

In summary, in this dissertation I will present the work we have done on the topics of rat 

vision and on neural adaptation in the visual system. Before we proceed to the actual 

body of the dissertation, it seems appropriate to provide some background for both 

topics. 

0.2 RAT VISION 

There are several distinct advantages of studying neural circuits in rodents. The primary 

reason often cited is the development and widespread use in mice of molecular and 

genetic tools that allow, for example, for recording activity of a large number of 

individual neurons, or for reversibly silencing or activating specific cell-types (O’Connor 

et al., 2009; Huberman and Niell, 2011). In addition to that, thanks to the smaller overall 

size of rodent brains, it is possible to simultaneously monitor neural activity in a large 

part of their visual system (Andermann et al., 2011; Marshel et al., 2011; Garrett et al., 

2014). Besides these scientific reasons, rats and mice are cheaper, easier to maintain and 

handle, and less subject to ethical concern than monkeys (Huberman and Niell, 2011; 

Baker, 2013).  

However, rats and other rodents are not little monkeys. They have no fovea (Euler and 

Wässle, 1995) and a very low visual acuity of 1-1.5 cycles per degree for pigmented 

strains (Prusky et al., 2002). They are primarily nocturnal (Burn, 2008), and therefore rely 

extensively on whisker touch and smell when exploring or navigating the environment 

(Zoccolan et al., 2015). So, what do they use vision for? It has been suggested that their 

eye movements serve to keep a continuously overlapping (binocular) field for enhanced 
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predator detection (Wallace et al., 2013). Basically, vision is the only useful modality for 

timely detection and avoidance of aerial predators (Yilmaz and Meister, 2013). A second 

function is that of spatial navigation. For example, primarily vision is used for guidance 

in laboratory water mazes (Burn, 2008). Thus, predator detection and spatial navigation 

seem important functions of the rat visual system, but is it capable of more high-level 

tasks such as object recognition? 

0.2.1 VISUAL OBJECT RECOGNITION 

Because invariant visual object recognition entails such a computational challenge, it has 

often  been assumed to be a unique hallmark of the primate visual system (Dicarlo et al., 

2012; Zoccolan, 2015). Nonetheless, over the past decade, several studies have 

investigated these capabilities in the rat. While there is a long history of preceding 

behavioral studies of rat vision, dating back to over a century (Zoccolan et al., 2015), I 

will restrict myself here to giving an overview of the recent line of research aimed 

specifically at visual object recognition. 

An important issue when studying such advanced visual functions is that rats will tend 

to find the simplest strategy available to successfully do the task, even if their solution is 

inconspicuous to us. This pitfall was highlighted in a series of experiments by Minini 

and Jeffery (2006), showing that rats did not actually use shape in a shape discrimination 

task, but instead relied on a strategy based on local luminance differences in the lower 

hemifield. The tendency to use this strategy was later confirmed by Vermaercke and Op 

de Beeck (2012), who also revealed that the behavioral templates were context 

dependent, meaning that rats seem to adapt the complexity of their strategy when 

necessary. Thus, it seems like these animals need to be pushed to use more advanced 

visual functions. 

Zoccolan et al. (2009) really pushed their rats with the goal of probing truly invariant 

visual object recognition, by using 3-D rendered objects under a wide range of 

transformations. Rats that were trained to discriminate these objects despite variations in 

size and viewpoint, could successfully generalize to novel transformations. The authors 

concluded that, given the substantial variation in object appearance, the rats could not 
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have relied on low-level visual strategies. The evidence for tolerance in the rat visual 

system in this task was later strengthened by demonstrating visual priming across 

transformations (Tafazoli et al., 2012). An investigation of the strategies used by the rats 

suggested they relied on a combination of visual features that was relatively stable 

across object transformations (Alemi-Neissi et al., 2013). 

In conclusion, rats do seem to be able to demonstrate capabilities reminiscent of 

invariant visual object recognition when they need to. However, it is still hard to tell 

what level of processing was required for them to perform the task successfully. What if 

they found another, more complex strategy that still does not require an actual shape 

recognition? Vermaercke and Op de Beeck (2012) hypothesized that rats are capable of 

using flexible mid-level strategies based on a combination of local contrast cues. While 

not ruling out this possibility, Zoccolan has argued that object recognition based on a 

specific spatial arrangement of contrast cues could be considered shape-based (Zoccolan, 

2015). In any case, on their own the behavioral data do not tell us which information the 

rat visual system used and how. In order to approach this problem, it might help to look 

at the structural and functional organization of that system. 

0.2.2 TWO STREAMS 

In the last 30 years a decent amount of research has been done to investigate the 

parcellation and connectivity of the rodent visual cortex. The rat visual cortex consists of 

several distinct regions organized in a multilevel hierarchy around V1 (Espinoza and 

Thomas, 1983; Coogan and Burkhalter, 1993). Mice have a similar organization of their 

visual cortex (Wang et al., 2007), which has been shown to be structured in two clusters 

based on their connectivity (Wang et al., 2011, 2012). Similarly, the primate visual cortex 

is typically divided in the dorsal and ventral stream (Mishkin et al., 1983). These two 

primate pathways each serve distinct functions that are closely related to their 

connectivity: visually guided actions for the dorsal and object processing for the ventral 

stream (Kravitz et al., 2011, 2013). The ventral stream transforms visual input signals into 

an object- or category-related complex representation that is tolerant for a range of 
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identity preserving transformations, such as changes in size, position, viewpoint, and 

illumination (Tanaka, 1996; Orban, 2008; Dicarlo et al., 2012).  

Figure 0.1A shows a schematic representation of the sensory cortices in the macaque 

brain, with the two streams indicated for the visual cortex. Figure 0.1B shows an 

analogue schematic representation for the rat brain, which shows a similar constellation 

of sensory cortices that is typically shared amongst mammals (Krubitzer, 2009). Based on 

their location, the two aforementioned clusters have been proposed to be homologues of 

 
Figure 0.1. Two processing streams in macaque and rat visual cortex. 

(A) Sensory cortices in the macaque brain. Area parcellation is based on Calabrese et al. (2015) 

and labeling on Felleman and Van Essen (1991). Arrows indicate the dorsal and ventral stream of 

visual cortical areas. Regions forming the ventral steam: visual area 1, 2, and 4 (V1, V2, and V4), 

and posterior, central, and anterior inferior temporal cortex (PIT, CIT, and AIT). Other regions: 

primary motor area M1, primary and secondary somatosensory areas S1 and S2, auditory cortex 

A, and perirhinal cortex PER. (B) Sensory cortices in the rat brain. Area parcellation in mainly 

based on Valdés-Hernández et al. (2011), Espinoza and Thomas (1983), Thomas and Espinoza 

(1987), and Vermaercke et al. (2014). Arrows indicate potential functional homologues of the 

primate dorsal and ventral visual stream. (C) Schematic top-view representation of V1 and lateral 

extrastriate regions in the rat, adapted from Vermaercke et al. (2014). The arrow illustrates how 

one electrode track can cross up to 5 different areas in a lateral pathway that could be a primate 

ventral stream homologue: V1, lateromedial (LM), latero-intermediate (LI), laterolateral (LL), and 

lateral occipito-temporal cortex (TO).  
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the two visual pathways in primates: a group of medial and parietal areas as a dorsal 

stream and a group of lateral temporal areas as the ventral stream (Wang et al., 2011, 

2012). Indeed, posterior parietal lesions have been shown to selectively impair 

visuospatial functions in rats (Sánchez et al., 1997; Tees, 1999),  while posterior temporal 

lesions lead to impaired object recognition and visual pattern discrimination (Wörtwein 

et al., 1994; Aggleton et al., 1997; Tees, 1999). Despite this evidence, surprisingly little is 

known of the functional properties of neurons in these regions. 

In rat V1 the functional properties are very similar to those shared by cats and monkeys. 

The neurons are orientation selective with a distinction between simple and complex 

cells, but no organization in orientation columns (Girman et al., 1999). In mice, the 

posterior parietal cluster of extrastriate areas shows properties consistent with the idea 

of a dorsal stream for motion processing, such as increased direction selectivity relative 

to V1 (Marshel et al., 2011) and computation of global motion of complex patterns 

(Juavinett and Callaway, 2015). In rats, there have also been successful investigations 

into the functional properties of the putative ventral stream. Vermaercke et al. (2014) 

found, using simple shapes, that position tolerance increased along the pathway of the 

putative ventral stream. While an increase in position tolerance is typical for the primate 

ventral stream, they also reported an increased response to moving stimuli which is not 

typical. Recently, Tafazoli et al. (2017) greatly expanded upon those findings by showing 

that neural representations along the pathway increasingly support visual object 

discrimination despite changes in size, position, rotation, and illumination. However, 

this progression only became apparent when the authors extensively controlled for 

stimulus luminance. They conclude that “these findings strongly argue for the existence 

of a rat object-processing pathway” (Tafazoli et al., 2017).  

Taken together, there is increasing anatomical and functional evidence in support of the 

two stream hypothesis of rat visual cortex that may to some extent be homologous to 

primates. On the other hand, from an ecological point of view it seems unlikely that 

object recognition is the main goal of the rat visual system. Furthermore, the connectivity 

in rodent visual cortex does differ in some notable ways: all visual areas receive input 

from V1, which additionally has extensive direct cross-modal connections (Wang et al., 
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2012; Laramée and Boire, 2015). This suggests that, as opposed to primates, rodent V1’s 

outputs are directly integrated with other modalities. It is unknown to what extent these 

network differences indicate fundamentally different information processing. Thus, 

while the above results do sound very promising, we have yet to determine to what 

extent the mechanisms of visual object processing overlap with primates. 

0.2.3 THE CAT MODEL 

Rodents and non-human primates are not the only animal models commonly used for 

studying the visual cortex. Indeed, perhaps the most influential breakthrough for our 

understanding of the visual system was the early work of Hubel and Wiesel on receptive 

fields of single V1 neurons in anaesthetized cat (Hubel and Wiesel, 1959, 1962). Soon 

after, non-human primates became the dominant model to study visual processing. 

Hubel and Wiesel turned to monkeys to extend their work on V1, arguing that they are 

closer to humans in their visual capabilities (Hubel and Wiesel, 1968). At the same time 

there was an increased interest in studying higher visual functions, which required 

recordings in visual cortex of awake, behaving animals. Monkeys were the animal of 

choice for these recordings, because of their ability to perform complex tasks (Wurtz, 

2009). Thus, studies of visual processing in cats have been more restricted to V1 

recordings in anaesthetized animals. Like other primary (and secondary) sensory areas, 

V1 is considered to be evolutionary homologous across all mammals (Krubitzer and 

Hunt, 2007). However, parallels can be drawn even outside of V1: similar to primates 

and rodents, cat extrastriate visual cortex can be divided in two functionally distinct 

processing streams (Lomber et al., 1996). In addition, in cats there is evidence for early- 

to mid-level macaque visual area homologues (Payne, 1993). Still, while cats are more 

visual than rats and mice, they are phylogenetically even less related to primates 

(Krubitzer and Hunt, 2007). More importantly, however, cats lack the major advantages 

of rats and mice that we discussed earlier, such as the genetic toolkit, smaller brain size, 

low cost and ease of maintenance and handling. 
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0.3 NEURAL ADAPTATION 

Neural responses in sensory cortex are not only dependent on the current input, but are 

also dependent on previous stimulation. A typical observation is that these responses are 

attenuated for repeated stimuli, a phenomenon called repetition suppression (Desimone, 

1996). Repetition suppression refers specifically to a response reduction, while the more 

general term of neural adaptation can in principle also refer to response enhancement 

effects (Solomon and Kohn, 2014; Kaliukhovich and Vogels, 2016). However, it should be 

noted that in general these terms are often used interchangeably. 

If adaptation for a repeated stimulus does not completely generalize to other stimuli, it is 

called stimulus-specific adaptation. This specificity is the basis of functional magnetic 

resonance imaging (fMRI) adaptation paradigms which are widely used to make 

inference about the functional properties of a neuronal population (Grill-Spector and 

Malach, 2001; Grill-Spector et al., 2006; Barron et al., 2016). The phenomenon is typically 

explained on the basis of relatively simple local and bottom-up mechanisms of neural 

fatigue. On the other hand, proponents of the predictive coding theory (Friston, 2005) 

have proposed that adaptation also involves top-down influences of perceptual 

expectations (Summerfield et al., 2008). In this section, I will provide a brief overview of 

the neural fatigue mechanisms and the perceptual expectation account of neural 

adaptation.  

0.3.1 MECHANISMS OF NEURAL FATIGUE 

In general, we can divide the fatigue related mechanisms into those acting on the level of 

a neuron and those acting on the level of a synapse. In addition, it is possible that a 

neuron’s response is suppressed indirectly, as a result of adaptation of other cells that 

provide input to said neuron. 

Response fatigue 

At the level of a neuron, response suppression can occur as a result of a 

hyperpolarization of the membrane potential (Carandini and, 1997; Sanchez-Vives et al., 

2000a, 2000b). This hyperpolarization moves the state of the membrane potential away 
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from the action potential threshold. The result is effectively a reduction of spiking 

probability in response to subsequent stimulation. Because of its dependence on the 

previous activity of the neuron, this mechanism is referred to as firing rate adaptation 

(Grill-Spector et al., 2006) or response fatigue (Vogels, 2016). 

Synaptic depression 

At the level of a synapse, repeated presynaptic activation can result in a reduced 

neurotransmitter release and thus reduced input for the postsynaptic neuron. Several 

known mechanisms can contribute to synaptic depression (Fioravante and Regehr, 2011), 

making it a possible source of neural adaptation. Nevertheless, a causal role in repetition 

suppression in the visual system has not yet been demonstrated (Vogels, 2016). Synaptic 

depression is a form of input fatigue and depends on activity of the presynaptic neuron 

(Vogels, 2016). Input fatigue can explain stimulus specific adaptation: if the first stimulus 

activates a different population of input neurons than the second, only input from that 

first population (that was activated by the first stimulus) will be adapted and the 

synaptic input for the second stimulus will not be affected. 

Suppressed input neurons 

Obviously, neurons are part of a network and should not just be considered in isolation. 

In a network, repetition suppression will be inherited from one neuron to the next, that 

is, when a presynaptic neuron’s activity is suppressed, the postsynaptic neuron receives 

less input (Vogels, 2016). Thus, for each neuron, adaptation can be a combination of 

response fatigue affecting the state of the actual neuron as well as input fatigue through 

adaptation inherited from input neurons or trough synaptic depression. In this 

framework, adaptation propagates through the pathway and dynamically changes the 

state of the network. When considered in the context of a sensory processing system, 

these relatively simple fatigue mechanisms can explain relatively complex phenomena 

resulting in both excitatory and suppressive signals (Solomon and Kohn, 2014). 

0.3.2 PERCEPTUAL EXPECTATION AND ADAPTATION 

Fatigue based mechanisms are very low-level: they basically emerge automatically from 

the hardware constraints of the network. They offer an explanation that is attractive for 
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its simplicity and for the lack of unproven assumptions. Nevertheless, advocates of the 

predictive coding theory have proposed an alternative (or perhaps complementary) 

account of adaptation, emphasizing top-down mechanisms. Central to predictive coding 

is the view of the brain as a prediction machine that constructs prior expectations of the 

environment (Friston, 2005). Cortical responses are conceptualized as “prediction 

errors”, meaning that sensory events that violate expectations elicit a stronger response.  

However, perceptual expectation (unless triggered by a cue or similar) is often 

confounded by stimulus repetition: frequent, repeated stimuli become expected, while 

rare stimuli are unexpected. So how do we dissociate stimulus repetition and 

expectation? According to predictive coding theory, repetition suppression should occur 

when the sensory system expects a stimulus repetition (low prediction error) as opposed 

to when a repetition is unexpected (high prediction error). This hypothesis was 

supported by an influential study showing that fMRI adaptation in human fusiform face 

area (FFA) was modulated by the probability of a face repetition (Summerfield et al., 

2008).  

While several fMRI studies have later replicated such a repetition probability effect 

(Kovács et al., 2012, 2013; Larsson and Smith, 2012; Grotheer and Kovács, 2014; Ewbank 

et al., 2016), there are a number of inconsistencies. For example, while some studies 

could not find an effect of repetition probability for objects (Kaliukhovich and Vogels, 

2011; Kovács et al., 2013), others did do so (Mayrhauser et al., 2014; Utzerath et al., 2017). 

Later studies have suggested that these effects are dependent on familiarity with the 

stimulus category (Grotheer and Kovács, 2014; Utzerath et al., 2017). In addition it is not 

clear at which level of processing these effects take place: some studies suggest they 

emerge as early as V1 (Larsson and Smith, 2012; Utzerath et al., 2017), but in other 

studies they emerge only after the object-selective lateral occipital cortex (Summerfield et 

al., 2008; Kovács et al., 2013). One study could not even find an effect of face repetition 

probability in any visual area (Olkkonen et al., 2017).  

In conclusion, mechanisms of neural fatigue provide a relatively simple explanation of 

neural adaptation or repetition suppression. Considered in the context of a neural 

network, these mechanisms can lead to more complex effects, such as stimulus 
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specificity. Conversely, evidence for a predictive coding account of neural adaptation is 

not always consistent, questioning the generality of the role of top-down mechanisms in 

adaptation. Nonetheless, under some conditions expectation and adaptation seem to 

interact. Most of the evidence for this interaction is based on human fMRI studies and 

the neural signature of these effects is unknown. 

0.4 OBJECTIVES 

Combining the two topics of rat vision and neural adaptation in monkeys has 

inescapably led to two distinct sets of research objectives (nevertheless united behind the 

common goal of understanding vision). In this section I will consider these objectives, 

broken down by chapter.  

0.4.1 PART I: VISUAL OBJECT RECOGNITION IN RATS 

At the time we started this project, rats and mice had become popular models in visual 

neuroscience. Our main objective was to further investigate the rat visual system, both 

on a behavioral and neurophysiological level. The reason why we chose to study rats 

instead of mice is that there is a lack of systematic behavioral studies that have 

investigated advanced visual abilities in mice. Even though the visual system of mice is 

very similar, it has been argued that it might simply be more difficult to test them in 

complex visual tasks (Zoccolan, 2015). This work was done at the Laboratory for 

Biological Psychology, KU Leuven. 

Chapter 1: A behavioral investigation of rat visual abilities 

Previously, behavioral tests of purely visual object recognition have only used simple 

shapes (Minini and Jeffery, 2006; Vermaercke and Op de Beeck, 2012) or rendered 3D 

shapes (Zoccolan et al., 2009). This leaves open the question of what these animals would 

do with visual stimuli that are less artificial and more like real-life visual input. Can rats 

categorize naturalistic movies? 
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Chapter 2: Natural stimulus representations in rat visual cortex 

In our previous experiment, we had established that rats can be trained to discriminate 

categories of natural movies and generalize to novel exemplars. Meanwhile, research in 

our lab was showing promising evidence of position tolerance in their visual system 

(Vermaercke et al., 2014), a hallmark of object processing in primates. Would the rat 

visual system show other hallmarks of object processing? Do we see a categorical 

representation emerge? 

Chapter 3: A bridge between behavior and neurons 

While rats can categorize novel natural movies, we had not found evidence for a 

categorical representation in their visual system. Unfortunately, a direct comparison 

between our neural and behavioral data is not possible, because we have no neural 

responses for any of the movies that the animals had to generalize to. Meanwhile, deep 

neural network models (DNN) had been developed that predict neural responses and 

categorization performance on the same stimulus set in monkeys with unprecedented 

accuracy (Kriegeskorte, 2015). Quantifying our natural movies with a DNN allows us to 

ask new questions that connect the neural and behavioral data. A) what level of processing 

of the DNN is required to support the categorization experiment? B) what level of processing of 

the DNN do the neural representations in rat visual cortex correspond to? 

0.4.2 PART II: ADAPTATION AND EXPECTATION IN RAT VISUAL CORTEX 

Chapter 4: Change detection in rat visual cortex 

All of our previous studies were aimed at investigating object recognition properties in 

the rat visual system. Here, we turn to a visual oddball paradigm in a study on 

adaptation and expectation. In human event-related potential studies, this paradigm is 

associated with a component called the mismatch negativity (MMN; Näätänen et al., 

2007). This refers to a difference in response between frequent and rare events. In 

monkey IT cortex, this difference can be explained by repetition suppression for frequent 

stimuli and not by a surprise related enhancement for rare stimuli (Kaliukhovich and 

Vogels, 2014). In this final rat study, we use this paradigm to investigate adaptation and 

effects of expectation in the rat visual system. Do we see a surprise-based response 

enhancement in the rat visual system? 
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0.4.3 PART III: ADAPTATION AND EXPECTATION IN MACAQUE VISUAL CORTEX 

The final rat study presented in Chapter 4 marks a transition from the topic of object 

recognition to the topic of neural adaptation and related expectation effects. For Part II, 

we moved on to macaques to investigate the theory of adaptation as a manifestation of 

perceptual expectation. These experiments could only work with monkeys, because of 

task complexity requirements and the importance of a face stimulus set. However, the 

topic is important, with implications for adaptation paradigms used in fMRI research 

(Grill-Spector and Malach, 2001) as well as for general theories of cortical responses 

(Friston, 2005). This work was done at the Laboratory for Neuro- and Psychophysiology, 

KU Leuven. 

Chapter 5: The perceptual expectation account of neural adaptation 

In contrast with fMRI studies, expectation effects on repetition suppression could not be 

replicated in neural responses in macaque IT (Kaliukhovich and Vogels, 2011). 

Subsequent fMRI studies pointed to the importance of attention (Larsson and Smith, 

2012) or face specificity of the effect (Kovács et al., 2013). Are these two conditions sufficient 

for observing expectation effects on repetition suppression in macaque IT? 

Chapter 6: Adaptation confounded as expectation 

In Chapter 5, we did not find an effect of expectation on repetition suppression of face-

responsive IT neurons. In contrast, Bell and colleagues reportedly found evidence for an 

expectation-based mechanism distinct from stimulus-driven adaptation (Bell et al., 2016). 

The authors used a design where stimulus repetition is confounded with expectation, 

but tried to control for repetition suppression with a linear regression approach. Using 

simulated neural responses, we investigate whether their method actually controls for 

the confound. Could the analysis in Bell et al. lead to spurious effects of expectation? 
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Chapter 1.  

A BEHAVIORAL INVESTIGATION OF RAT VISUAL ABILITIES 

 Previously, behavioral tests of purely visual object recognition have only used simple 

shapes (Minini and Jeffery, 2006; Vermaercke and Op de Beeck, 2012) or rendered 3D 

shapes (Zoccolan et al., 2009). This leaves open the question of what these animals would 

do with visual stimuli that are less artificial and more like real-life visual input. Can rats 

categorize naturalistic movies? 

  

Published as 

Vinken K., Vermaercke B., Op de Beeck H. (2014). Visual categorization of natural 

movies by rats. Journal of Neuroscience, 34 (32), 10645-10658. 
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VISUAL CATEGORIZATION OF NATURAL MOVIES BY RATS 

Visual categorization of complex, natural stimuli has been studied for some time in 

human and non-human primates. Recent interest in the rodent as a model for visual 

perception, including higher-level functional specialization, leads to the question of how 

rodents would perform on a categorization task using natural stimuli. To answer this 

question, rats were trained in a two-alternative forced choice task to discriminate movies 

containing rats from movies containing other objects and from scrambled movies 

(ordinate-level categorization). Subsequently, transfer to novel, previously unseen 

stimuli was tested, followed by a series of control probes. The results show that the 

animals are capable of acquiring a decision rule by abstracting common features from 

natural movies in order to generalize categorization to new stimuli. Control probes 

demonstrate that they did not use single low-level features, such as motion energy or 

(local) luminance. Significant generalization was even present with stationary snapshots 

from untrained movies. The variability within and between training and test stimuli, the 

complexity of natural movies, and the control experiments and analyses all suggest that 

a more high-level rule based on more complex stimulus features than local luminance-

based cues was used to classify the novel stimuli. In conclusion, natural stimuli can be 

used to probe ordinate-level categorization in rats. 

1.1 INTRODUCTION 

There is an increasing scientific interest in the visual perception of rodents. Several 

recent studies have focused upon the cortical organization in rodents, elucidating the 

extent of functional specialization in rodent extrastriate visual areas (Andermann et al., 

2011; Marshel et al., 2011). However, the usefulness of this model depends on the visual 

capabilities of rodents. A number of studies have found behavioral evidence in rats for 

higher level visual processing (Zoccolan et al., 2009; Tafazoli et al., 2012; Vermaercke and 

Op de Beeck, 2012; Alemi-Neissi et al., 2013; Brooks et al., 2013). While these studies 

provide evidence for abilities reminiscent of higher level vision, none of them used very 

complex naturalistic stimuli. This leaves open the question of how rats would perform in 
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more sophisticated visual tasks in which complex, dynamic stimuli are used for 

categorization and generalization to new stimuli.  

The use of natural stimuli in visual neuroscience has been both defended and criticized. 

It has been argued that simple artificial stimuli are necessary for uncovering the specific 

response properties of neurons in each stage of visual processing  (Rust and Movshon, 

2005). Others have pointed towards evidence suggesting that visual processing cannot 

be entirely elucidated solely based on experiments with simple stimuli (Kayser et al., 

2004; Felsen and Dan, 2005; Einhäuser and König, 2010). For example, humans are more 

efficient in classifying natural scenes compared to simplistic unnatural stimuli (Li et al., 

2002). To find out the extent of the validity of rats as a model in vision research, it is very 

relevant to investigate to what extent experiments with complex stimuli can work. 

In monkeys and humans, natural stimuli have been used effectively in highly 

demanding tasks for superordinate- and ordinate-level categorization (Thorpe et al., 

1996; Fabre-Thorpe et al., 1998; Vogels, 1999a; Serre et al., 2007; Greene and Oliva, 2009; 

Peelen et al., 2009; Walther et al., 2009; Fize et al., 2011). Provided that the stimulus set 

contains sufficient variation, categorization of natural stimuli requires generalization 

relying on processing and extraction of category-specific features, invariant to the 

presence of other information. Therefore, successful performance of an animal on novel 

category exemplars provides information about the extent of the capabilities of their 

visual system.  

In the present study, rats were trained to discriminate movies containing rats from 

movies containing other objects and from scrambled movies in a two-alternative forced 

choice (2AFC) task in a visual water maze (Prusky et al., 2000). After training, the 

animals were tested for generalization to unseen movies. Several tests were performed, 

starting with stimuli which could be considered as ‘typical’ exemplars, and gradually 

including more deviant movies, still images, and some controls to exclude the possibility 

that low-level cues would drive performance. The rats generalized well to new ‘typical’ 

movies, and generalization was still significant for slower movies, stationary snapshots, 

movies with differently colored rats, and movies controlling for local luminance cues. 
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Overall, the findings indicate that the rats were using relatively complex stimulus 

features to perform the categorization task. 

1.2 MATERIALS AND METHODS 

1.2.1 ANIMALS 

Experiments were conducted with six male FBNF1 rats, aged 25 months at the start of 

the study. This specific breed was chosen for their relatively high visual acuity of 1.5 

cycles per degree (Prusky et al., 2002). One subject was excluded from the data as a result 

of extreme response bias during training, preventing the rat from reaching above chance 

performance in over 1200 trials with the first stimulus pair. All rats had previously been 

used in discrimination experiments, but with unrelated stimuli: sinusoidal gratings of 

varying orientation and spatial frequency. Animals had ad libitum access to water and 

food pellets. Housing conditions and experimental procedures were approved by the KU 

Leuven Animal Ethics Committee. 

1.2.2 STIMULI 

Pairing of target and distractor stimuli 

Natural movies were selected from our own database of 537 five-second movies created 

for the purpose of this experiment. They were recorded at 30 Hz (thus including 150 

frames) and sized 384×384 pixels. For every stimulus, three vectors were calculated from 

the pixel intensities across columns x = 1…X and rows y = 1…Y, but per frame t = 1…T. 

Note that the monitors presenting the stimuli were gamma corrected to obtain a linear 

transfer function between pixel intensity values and luminance, thus using actual pixel 

values will not distort the metrics. The first vector contained the average pixel intensities 

as a function of time t: 
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the second the root mean squared contrasts: 

 2
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  ; 

the third the average changes in pixel intensity (this time per frame transition for t = 

1…T – 1): 
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Next, we reduced this information by taking the means and standard deviations across 

frames/frame transitions t to six features per stimulus: M(𝐼)̅, SD(𝐼)̅, M(𝑅𝑀𝑆), SD(𝑅𝑀𝑆), 

M( 𝑃𝐶̅̅̅̅ ), and SD( 𝑃𝐶̅̅̅̅ ). Doing this for every stimulus resulted in six feature-vectors 

summarizing our database of 537 stimuli in a relatively low-dimensional space. After 

taking Z-scores of each of these six feature-vectors (across all 537 movies), each rat movie 

was paired with a non-rat movie so that the Euclidean distance between them in this 

standardized space was less than one standard deviation. Without the constraint of one 

standard deviation, the average distance between all possible pairs of movies was 3.24 

standard deviations with a 95% percentile interval of [1.19 6.60]. 

Training stimulus set 

From these matched stimuli, a general set of five pairs was selected with variability of 

target and distractor in mind, along with three test sets (see Figure 1.1). Note that the 

previously described method of pairing stimuli with their most similar distractor could 

result in two rat movies being matched with the same distractor. This was the case for 

two rat movies in the test sets: one distractor is shared between a target movie of test set 

1 and 2, and one between a target movie of test set 1 and 3. There was, however, 

complete separation of training and test sets. The target movies showed moving rats of 

the same strain, while three of the paired distractors contained a train, one a gloved hand 

moving in and out of the screen and one a moving stuffed sock. Both stimulus types had 

varying amounts of camera movement. 
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Figure 1.1. Stimulus sets. 

The left side displays three rows of snapshots for each stimulus set, with the first row depicting 

the five rat movies, the second row the phase scrambled versions of these rat movies, and the 

third row the natural distractor chosen for each rat movie (for the last stimulus set the row with 

scrambled stimuli is omitted, because they were not used in the experiments). The snapshots of 

each target movie and its distractors are taken at the time point at which the frame of the target 

stimulus (i.e. rat movie) is most similar to the rest of the frames in that movie (i.e., minimal pixel-

wise Euclidean distance). The red asterisk indicates the adjusted distractor (see materials and 

methods, stimuli). Yellow and blue dots indicate the two distractors that were each matched to 

two rat movies. The right side displays average pixel intensity (𝐼)̅, root mean square contrast 

(𝑅𝑀𝑆), and mean absolute pixel change (𝑃𝐶̅̅ ̅̅ ).as a function of frame number for one target and its 

distractors of each set (the outline of the chosen movie is colored in the left panel). Dashed lines 

indicate the location in time of the frame displayed on the left. 



A behavioral investigation of rat visual abilities 

 

 
Visual object recognition in rats | 25 

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

The degree of variation is illustrated by the fact that the six-dimensional Euclidean 

distance between the target and distractor movies of the different pairs was relatively 

large (M = 2.76, calculated from all possible target-distractor combinations excluding the 

actual pairs), much larger than the distance between target and distractor movies from 

the same pair (M = 0.65; see Figure 1.2A for a plot of the distribution of these distances). 

Note that the magnitudes of these average distances are still in standardized space, 

expressed in units of SD across movies. In a later section we will show that a strategy 

based upon local luminance cues cannot explain generalization from this training set to 

test sets containing new stimuli.  

Test stimulus sets 

The first test set, used for generalization purposes, included movie pairs which were 

very different from the training pairs in terms of low-level properties (Figure 1.2B), but 

were judged to be relatively typical in terms of their high-level content by the 

experimenters (same strain of rats, similar motion properties, etc.). The second test set 

included movies in which the rats/objects were more stationary. In quantitative terms, 

the non-standardized M(𝑃𝐶̅̅̅̅ ) was on average 4.22 for the movies of this second test set, 

while it was 5.18 and 5.39 for the movies of the training set and first test set (note that the 

difference is rather small because there was still camera movement). For the third test 

 
Figure 1.2. Standardized distances between individual stimuli. 

Panel (A) shows a bee swarm plot of the distribution of all pairwise distances between target and 

distractor movies of the training set for paired (grey) and unpaired (black) target and distractor 

movies separately. Panel (B) shows bee swarm plots for all pairwise distances between either the 

targets (rat movies) or the distractors (non-rat movies) of a certain test set (e.g. the targets of test 

set 1) and either all training set movies of the same stimulus type (black), or all training set 

movies of the different stimulus type (grey). For example, for the targets of test set one, all 

pairwise distances to the rat movies of the training set are shown in black, while all pairwise 

distances to the non-rat movies of the training set are shown in gray.  
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set, the target movies included rats of a different strain (Long Evans) which are 

white/black spotted rather than uniformly dark. In each test set all of the natural 

distractors contained a (moving) train and some of them had objects (a ball, cone) 

present in them and/or a hand moving one of those objects. Figure 1.2B shows the 

distribution of all pairwise distances between either the targets (rat movies) or the 

distractors (non-rat movies) of a certain test set and either all training set movies of the 

same stimulus type, or all training set movies of the different stimulus type. It is clear 

that generalization cannot be explained by the six dimensions we used to match targets 

and distractors, because the distributions of target-target distances and distractor-

distractor distances are not systematically lower than the distribution of target-distractor 

distances. The rat test set movies were not more similar to training set movies of the 

same type (targets) than to those of the other type (distractors), nor were the non-rat test 

set movies. Figure 1.3 illustrates how all aforementioned stimulus sets compare to each 

other in the standardized six-dimensional stimulus space. Figure 1.3A and B clearly 

show that within-pair distances are much smaller than the between-pair variability. 

Figure 1.3C shows that on average test set 1 matches the training set best on all six 

dimensions. This plot also illustrates that on average test set 2 not only has the 

aforementioned smaller change of pixel values M(𝑃𝐶̅̅̅̅ ), but also less variability in average 

pixel intensity SD(𝐼)̅, contrast SD(𝑅𝑀𝑆), and change of pixel values SD(𝑃𝐶̅̅̅̅ ), all of which 

is consistent with the more stationary rats/objects. 

Scrambled distractors 

For the training set and first two test sets, additional distractors were created by phase-

scrambling the rat movies. On trials using scrambled distractors, a rat movie was only 

paired with its own scrambled version. The scrambled stimuli were created in three 

steps, as illustrated in Figure 1.4. 

First the spatial amplitude spectrum 𝐴(𝐼𝑡)  for each frame 𝐼𝑡  in a rat-movie 𝑀  was 

estimated by means of a two-dimensional fast Fourier transform (2D FFT). To each 

spatial frequency component, a random phase angle (drawn from a uniform distribution 

over the interval [-π, π]) was assigned, resulting in a new phase spectrum 𝜑∗. A new 

movie 𝑀′ was obtained by performing an inverse 2-D FFT on the combination of each 
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frame’s amplitude spectrum with the new phase spectrum 𝐴(𝐼𝑡)𝑒−𝑖𝜑∗
, for t = 1...T. This 

first step is equivalent to the scrambling method used by Schultz and Pilz (2009). 

Note that this method uses the same phase spectrum 𝜑∗ for all frames of a particular 

movie (i.e. for every rat movie one set of random angles was generated and used), which 

results in excessive temporal correlation of pixel values in consecutive frames. Therefore, 

using a 3D FFT, the spatiotemporal phase spectrum of this scrambled result 𝜑(𝑀′) and the 

spatiotemporal amplitude spectrum of the original movie 𝐴(𝑀)  were taken and 

combined into a scrambled movie 𝑀′′  by performing an inverse 3-D FFT on 

𝐴(𝑀)𝑒−𝑖𝜑(𝑀′) . The result of this second step is a movie with consecutive frame 

correlations comparable to those of the original natural movie (see Figure 1.4).  

 
Figure 1.3. Stimulus dissimilarities. 

Panel (A) depicts distance matrix for all natural movies used in the experiment (in SD units, see 

materials and methods, stimuli). Colored boxes highlight target (T) and natural distractor (D) 

combinations per stimulus set. Black circles indicate distances shorter than one (i.e. the criterion 

for target-distractor match). Panel (B) shows all stimuli in two-dimensional space after principal 

component analysis on the distance matrix from panel (A). Full markers indicate targets, while 

empty circles indicate distractors (color codes correspond to those in panel (A)). Black markers 

indicate distractors that are shared by two target movies. Variance explained by these first two 

principal components is 83.6%. Panel (C) is a parallel coordinates plot showing bee swarm plots 

of individual stimuli per dimension and the centroids (averages) of each stimulus set for targets 

(continuous lines) and distractors (dashed lines) separately in the standardized six-dimensional 

stimulus space (color codes correspond to those in panel (A)). 
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Finally, to compensate for the expanded range of pixel values (i.e. values outside the 

range of 0 to 255), in the third step each scrambled movies’ 𝑀′′ pixel distribution was 

replaced by that of the original movie 𝑀. The result was a temporally correlated image 

sequence with identical contrast, luminance and virtually identical spatiotemporal 

power spectrum, while not containing any recognizable content. The frame per frame 

contrast, luminance and spatial power spectra were highly similar. 

The reason for using the trick in the first step instead of just generating random phase 

angles for each spatiotemporal frequency component is that the latter would result in a 

scrambled movie for which each frame is not matched as well with the corresponding 

frame of the original (a problem which is for example present in Fraedrich et al., 2010). 

For instance, for the example movie in Figure 1.4 the mean absolute deviation for frame 

per frame comparison between the original and 1000 scrambled samples generated using 

our method is on average 2.2 (95% percentile interval [1.5 3.1]) for pixel intensities I , 3.5 

(95% percentile interval [3.0 4.0]) for contrast values 𝑅𝑀𝑆, 4.9 (95% percentile interval 

[4.5 5.4]) for changes in pixel intensity 𝑃𝐶̅̅̅̅ . The correlation between the spatial amplitude 

 
Figure 1.4. Creation of scrambled stimuli. 

One example rat movie is represented by five example frames taken in steps of five (the 

scrambled versions depicted here correspond to these exact frames). For each image sequence a 

histogram is inserted showing the distribution of Pearson correlations of pixel values belonging 

to consecutive frames. 
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spectra for frequency components lower than one cycle per degree (excluding the zero-

frequency component) of corresponding frames is on average .93 (95% percentile interval 

[.92 .93]). On the other hand, when these statistics are calculated for samples where 

scrambling is done by completely randomizing spatiotemporal phase, the values are 16.4 

(95% percentile interval [10.7 21.1]) for pixel intensities 𝐼,̅ 5.1 (95% percentile interval [3.5 

7.0]) for contrast values 𝑅𝑀𝑆, 5.9 (95% percentile interval [5.4 6.5]) for changes in pixel 

intensity 𝑃𝐶̅̅̅̅ , and .87 (95% percentile interval [.84 .89]) for the spatial amplitude spectra. 

The scrambled version of one rat movie in the training set was adjusted after nine 

sessions into the training, because we suspected that the rat which had started with this 

particular pair used the luminance difference in the lower part of the screens to achieve 

above chance performance suspiciously rapidly. To prevent this from happening the 

lower part of the frames of this one scrambled movie was made brighter by increasing 

the pixel values according to a linear gradient so that pixel values closer to the bottom of 

the movie frames were increased more. Specifically, the values of the gradient went from 

x at the bottom pixel row to zero at the top, where x was chosen so that the average 

(weighted by a linear gradient ranging from 100 to 0% from bottom to top pixel row) 

over all frames was equal to that of the original rat movie. Performance of this one 

animal dropped to chance immediately after this change (data not shown), hence for the 

continuation of the training this adjusted distractor was used. 

1.2.3 EXPERIMENTAL SETUP AND TASK 

Rats were trained to discriminate movies containing a rat versus movies without rat in a 

2AFC task in a visual water maze (Prusky et al., 2000). Briefly, the setup consisted of a 

water filled V-shaped maze with two arms (Figure 1.5). At the end of each arm a 

stimulus was shown and a transparent platform was placed just below the water surface 

in front of the target stimulus. A trial started when a subject was placed in the water at 

the end opposite to the stimuli and ended when the rat reached the platform. For a quick 

escape, the animal had to choose the correct arm where the target movie was played. If 

the rat had entered the wrong arm, it had to swim back to the other arm and sit through 

a 20 second time interval before being rescued. In the case of an instant correct choice, 
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this interval was 10 seconds to still 

ensure some stimulus exposure. 

Overall, the distribution of time to 

reach the platform had a mode of 4.7 

seconds (with a 95% percentile 

interval of [3.8 22.5]) for correct trials 

and a mode of 8.6 seconds (with a 

95% percentile interval of [5 27.7]) 

for incorrect trials. Note that the 

lower bound of 3.8 seconds is limited 

by swimming speed rather than 

animals waiting before responding, 

meaning that a mode of 4.7 seconds 

would be about one second extra. 

Between trials, the animals resided under a heat lamp. The water was kept at a 

temperature of 26-27° C. Stimuli were presented on two 768x1024 CRT screens at a width 

of 24 visual degrees as seen from the divider. Output to the monitors was linearized and 

the mean luminance was 53 cd/m² and 52 cd/m² for the left and right screen, 

respectively. The stimuli where played in an infinite loop alternating between forwards 

and backwards play, to always ensure a smooth transition. The target was always the 

stimulus containing a rat. The distractor was either the matched non-rat movie, or the 

scrambled version of the rat movie. Each animal was trained for two sessions per day. 

Each session included 12 trials carried out in an interleaved fashion (all rats were tested 

on trial n before any rat was tested on trial n+1). The side of the target stimulus was 

determined according to a standard sequence of LRLLRLRR (Prusky et al., 2000). 

Specifically, per rat and per session a random starting point in this sequence was chosen, 

with the only restriction that no rat could start with the target movie on the same side for 

two trials. Whenever the end of the sequence was reached, the procedure would jump to 

the beginning to fill in the remainder of target locations in order to get to 12 trials. We 

opted for adopting these stringent constraints used by Prusky et al. (2000) in an attempt 

to prevent development of response biases. However, this means that in theory a rat 

 
Figure 1.5. Schematic representation of the 2AFC 

setup as seen from the top. 

In each trial, the rat had to find the hidden platform 

by swimming towards the side showing the target 

stimulus, while ignoring the distractor. During 

generalization sessions there was a platform present 

in front of each screen. 
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could predict the correct response if the 

target had been presented for two 

consecutive trials on the same side (i.e. 

after LL or RR). In addition, overall the 

probability that the next target will be on 

the opposite side is much higher than that 

it will be on the same side, meaning a 

strategy where a rat would switch sides 

would be relatively successful overall. 

Finally, because the sequence could not 

start with a repetition (i.e. LL or RR), the 

platform location on the second trial of 

each session could always be predicted 

from that on the first trial. However, the 

fact that the number of trials per session 

were limited and that the interleaved 

testing of animals resulted in a long inter 

trial interval of at least a few minutes 

argue against the hypothesis that a rat can 

pick up the regularities of this sequence. 

Indeed, Figure 1.6A shows that the 

animals did not use any of these potential 

shortcuts: percentage correct does not fall 

to chance when trials are not predictable 

(e.g. the first), nor does it peak on trials 

that are predictable (the second trial or a 

trial following a repetition of the same 

target side). In addition, performance is well above chance even if the target side in a 

trial was a repetition of that in the previous one (i.e. a switch strategy would not be 

successful). Moreover, previous unsuccessful experiments at our lab using the same 

 
Figure 1.6. Control analyses to check for 

potential shortcuts related to the sequence 

for assigning stimuli to the left or right 

screen (A) and to check for learning of new 

pairs during two-platform trials (B). 

Panel (A) shows percentage correct from all 

sessions where only one platform was used: 

for the first trial (first), the second trial 

(second), trials where the target was on the 

same side as on the previous trial (AA), trials 

where the target was on the other side as on 

the previous trial (AB), and trials following 

two consecutive trials in which the target was 

on the same side (AAB). The correct response 

for the cases indicated in grey were perfectly 

predictable in theory for a subject with full 

insight in the stimulus sequence, as opposed 

to all the other data shown here where the 

correct response was unpredictable. Panel (B) 

shows percentage correct averaged across 

animals from all trials with new stimulus 

pairs (and therefore using two platforms) as a 

function of how many times the animal had 

seen that pair before. Error bars in both panels 

(A) and (B) are the 95% confidence intervals 

obtained from a two-sided t-test on the arcsine 

of the square rooted proportions correct per 

animal (N = 5 per confidence interval). 



 

32  

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

protocol in tasks that turned out to be too challenging indicate that rats will not pick up 

any potential shortcut even after substantial training. Whenever a rat would reach a 

response bias of over 80% in one session, an anti-bias procedure was used in the 

subsequent session: on the first two trials the target was presented to the side opposite of 

the bias. If the bias persisted in the following session, the target was presented for 75% of 

the trials on the side opposite to the bias. For all but one animal, this procedure was 

sufficient to break any persistent response preference. This rat never learned any 

stimulus pair and thus the rat could not be included in the experiment. Note that bias 

correction trials were never used during any of the generalization sessions with two 

platforms. Only the data to test performance on all target-distractor combinations of the 

training stimuli include bias correction trials (see testing phase). 

Training phase 

At the start of training, the subjects were familiarized with the 2AFC task using a white 

screen as the target versus a black screen as the distractor. This shaping procedure was 

terminated when all rats had reached a performance of at least 80% correct on three 

consecutive sessions. The actual experiment consisted of two phases: a training phase, 

and a testing phase. During the former, rats were trained to discriminate the five rat 

movies of the training set from their distractors (see Figure 1.1). A rat would start the 

phase with one target movie and one distractor movie. Whenever performance would 

reach a criterion of at least 75% correct on four consecutive sessions, the same target 

movie would be presented with the other type of distractor (the two types being object 

movies and scrambled movies). Whenever a rat would fail to reach this criterion within a 

large number of trials (e.g., over 300, which would take about a month), the decision was 

made to move to the next pair to advance the training process. This happened a few 

times, because we had chosen some challenging combinations for the training set on 

purpose in order to push the animals: both the second training pair containing a movie 

of a rat relatively far away and high up the screen and the last training pair containing 

rat-like sock puppet as distractor proved to be difficult. Test set 1 did not include such 

challenging combinations. When the criterion was reached again (i.e., after the rat was 

trained with the two types of distractors for a certain target), a rehearsal intermezzo of 

the previous combinations started until performance for every pair (assessed on the 6 
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last trials per pair) was at least 75% again. Subsequently the rat moved to a new target 

movie with the distractor of the same type as that of the latest combination. Except for 

the first sessions, trials containing a new target or distractor were always mixed with 

trials containing the most recently learned combination. On every switch to a new 

movie, the new-old stimulus pair ratio was 1/2 and changed to 2/3 after a full session for 

which performance on the old pair was 75%. The order in which rats were trained on 

each target and their distractors was different for every animal. At the end of the training 

phase, final performance on the training stimuli was assessed by presenting all possible 

target and distractor combinations (thus no longer only including the original pairings of 

each target with its two distractors). 

Testing phase 

During the subsequent testing phase, generalization to the stimulus pairs of the three 

test sets was assessed. On these generalization trials, the protocol was changed to limit 

new learning: both arms contained a platform and the animals were rescued 

immediately upon reaching it. Thus, any response was rewarded and most importantly 

there was no negative reinforcement. Figure 1.6B shows that on average the percentage 

correct on a new stimulus pair did not increase as a function of the amount of times the 

animal has seen (any of the movies in) that pair. Rather, the figure suggests that if there 

was any learning at all during the test phase, it had a negative effect on the performance 

of the animals. Generalization trials were randomly mixed with trials using training 

movies and only one platform in order to keep the rats motivated to perform the task 

well. If a rat acquired a strong response bias during testing with two platforms (i.e., over 

80% responses in one direction), the data for that particular session were removed from 

analysis and an anti-bias procedure (see first paragraph of experimental setup and task) 

was initiated using mixed target-distractor combinations with training stimuli and one 

platform only. The data obtained during these correction sessions were pooled with the 

data obtained at the end of the training phase using all possible target and distractor 

combinations to ensure a sufficiently large number of trials per target × distractor 

combination. After probing for generalization, specific hypotheses were examined by 

manipulating the stimuli of the first test set and assessing the effects on performance. It 

should be noted that not every rat underwent every testing condition, because of 
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temporal constraints related to the fact that each animal finished training at a different 

time (see Table 1.1). In total, the experiment encompassed 251 behavioral sessions per 

rat (spread over about 6.5 months), with each containing 12 trials per rat and taking 

about one hour. 

1.2.4 DATA ANALYSIS 

In some occasions we report the results from a classical one-tailed t-test based upon the 

across-rat variability (N=5) and using a significance threshold of α = .05. These tests are 

performed on the arcsine of the square root of the proportion correct trials (i.e., 𝑦𝑗
𝑡𝑟𝑎𝑛𝑠 =

sin−1 √𝑦𝑗 𝑛𝑗⁄ , with 𝑦𝑗 correct responses of rat j on 𝑛𝑗 trials) in order to stabilize variance 

and  approximate normality for the transformed proportions (Hogg and Craig, 1995). 

However, the t-tests do not take into account the number of trials on which the 

performance in each animal is based, in fact, the transformed numbers should not be 

treated as metric because then we ignore information about the number of trials 𝑛𝑗. The 

latter issue can be addressed by using a simple binomial test and pooling all trials over 

animals, but then the unmodeled dependencies can lead to meaningless results. On the 

other hand, logistic regression supersedes transformations for analyzing proportional 

Table 1.1. Number of trials used for data analysis per rat and per phase or test condition. 
       

Phase Type   Rat   

  1 2 3 4 5 

Training  1668 1704 1692 2124 1896 

Test training pairs  60 60 60 60 60 

Test new combinations  204 180 119 180 240 

Test generalization       

1: Typical Natural distractor 48 48 48 48 48 

Scrambled distractor 48 48 48 . 48 

Reduced speed 48 48 48 48 48 

Single frame 48 48 42 24 . 

Changed luminance 48 48 48 . . 

Single frame, changed 

luminance 

12 48 48 54 . 

2: Less rat/ object movement Natural distractor 48 48 48 48 48 

Scrambled distractor 48 48 48 . 48 

3: Long Evans Natural distractor 48 . 48 . . 

Note. For the generalization data the numbers of trials are only taken from sessions without 

response bias (i.e., no more than 80% responses in one direction). 
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data (Warton and Hui, 2011). In addition, a hierarchical model is the preferred method to 

approach dependencies between observations  (Lazic, 2010; Aarts et al., 2014), since 

information on the uncertainty of the estimates on the within-subject level is not 

discarded, but used in the analysis on the population level. 

Given the widespread familiarity with t-tests in the neuroscience community, we include 

t-tests for the results on each of the stimulus sets with data of more than three animals 

and binomial 95% confidence intervals per rat otherwise. However, given the 

disadvantages of such tests discussed in the preceding paragraph, in addition we turned 

to a more comprehensive hierarchical model which allowed us to take into account both 

the number of subjects and the number of trials per subject.  Specifically, a within-subject 

logistic-binomial model was fit to the data to make inference on animal performances 

and on comparisons between the different stimulus sets: 

𝑦𝑖𝑗~𝐵(𝑛𝑖𝑗 , 𝑝𝑖𝑗) 

(1) 

𝑝𝑖𝑗 = logit−1(𝜇 + 𝛼𝑖𝑆𝐸𝑇𝑖 + 𝛽𝑗𝑅𝐴𝑇𝑗 + 𝛾𝑖𝑗(𝑅𝐴𝑇 × 𝑆𝐸𝑇)𝑖𝑗 + 휀𝑖𝑗) 

𝛽𝑗~𝑁(0, 𝜎𝛽
2) 

𝛾𝑖𝑗~𝑁(0, 𝜎𝛾
2) 

휀𝑖𝑗~𝑁(0, 𝜎𝜀
2) 

In this model the observed number of correct trials 𝑦𝑖𝑗of rat 𝑗 on stimulus set 𝑖 is assumed 

to have a binomial distribution with 𝑛𝑖𝑗 denoting the number of trials and 𝑝𝑖𝑗 denoting 

the probability of a correct trial. This probability is estimated by the logistic function 

𝑓(𝑥) = 1 ÷ (1 + 𝑒−𝑥)  (which compresses values between zero and one) of a linear 

combination of predictors: one for stimulus set (𝑆𝐸𝑇, a nominal predictor with 13 levels: 

five stimulus sets with natural distractors, four with scrambled distractor, and four 

manipulations of test set 1), one for subject (𝑅𝐴𝑇, a nominal predictor with five levels: 

one for each rat), and one for the interactions between subject and stimulus set (𝑅𝐴𝑇 ×

𝑆𝐸𝑇, a nominal predictor covering all interactions between subjects and stimulus sets). 

The parameters 𝛼𝑖, 𝛽𝑗, and 𝛾𝑖𝑗(for all i = 1…13 and j = 1…5) are the estimated deflections 

from the central tendency   for each stimulus set, rat, and combination of rat and 

stimulus set, respectively. These parameters are estimated on the log odds scale 
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(logit(𝑝) = log (𝑝 ÷ (1 − 𝑝)) for percentage 𝑝), meaning that the increase or decrease in 

percentage correct corresponding to their value is not a constant but depends on the 

percentage correct from which the deflection is calculated (for a more detailed discussion 

of the interpretation of logistic regression coefficients, see Gelman and Hill, 2007, p 81-

83). The residuals are assumed to be normally distributed with variance 𝜎𝜀
2 . The 

regression weights for the subject predictor and subject interactions are also assumed to 

be normally distributed with variances 𝜎𝛽
2 and 𝜎𝛾

2, respectively. All three variances, as 

well as the central tendency and all deflections, are estimated by the data. This model is 

formally equivalent to the example model of Gelman and Hill (2007 p.116–117). While 

only the effect of the nominal predictor 𝑆𝐸𝑇 is used for inference, all other parameters 

are necessary to model the dependencies present in the data (Lazic, 2010).  

A slightly modified model was used for inference on different target and distractor 

combinations: stimulus pair was used as predictor instead of stimulus set, with a 

variance parameter for its regression weights (𝛼𝑖~𝑁(0, 𝜎𝛼
2) for i = 1…50). This parameter 

provides shrinkage towards   on the performance estimates for stimulus pairs (i.e. 

regularizing the regression), which makes sense because they are estimated from a rather 

limited number of trials (between 14 and 33, Mdn = 30) while there is a large number of 

parameters (stimulus pair is a nominal predictor with 50 levels). 

Estimation was done within the Bayesian framework by approximating the posterior 

distribution by means of Markov chain Monte Carlo sampling using JAGS (Plummer, 

2003;  an improved clone of BUGS, one of the most popular statistical modelling 

packages, Lunn et al., 2009) in R (R Core Team, 2015). JAGS uses Gibbs sampling, which 

is an algorithm that can draw samples from a joint probability distribution, given that all 

the conditional distributions (i.e. one for each parameter) can be expressed 

mathematically. The joint posterior distribution was approximated by generating 10000-

20000 samples (using three chains to check for convergence). The joint posterior 

distribution quantifies the probability of each parameter value given the data, by 

combining a prior with the likelihood. Non-informative prior distributions were used as 

to let the data fully speak for themselves and not constrain the estimates in this respect. 

Specifically, priors for the regression weights were all normally distributed and centered 
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around zero. Large standard deviations of magnitude 100 were chosen for parameters 

without hyperprior. Uniform priors ranging from 0 to 100 were chosen for the standard 

deviations that were estimated in the model (as in Gelman, 2006). Similar to confidence 

intervals, a 95% highest density interval (HDI), containing the 95% most probable 

parameter values, was used for inference, while the mode indicates the single most 

probable value, which will be called the point estimate from here on. A 95% HDI covers 

95% of the posterior probability density (i.e. there is 95% certainty that the underlying 

population parameter that generated the data falls within the bounds of the interval) 

and, in addition, there is no value outside the interval that is more probable than the 

least probable value within the interval (the concept of HDI is explained in further detail 

in Kruschke, 2011 p.296–303). Values falling outside of the 95 % HDI are rejected based 

on low probability. Essentially this is a within subject ANOVA model. However, the 

logistic-binomial extension makes it appropriate for dichotomous predicted variables. In 

addition, by including the information about the magnitude of 𝑛𝑖𝑗 , one allows for 

appropriate inference taking into account the (often unbalanced) number of trials over 

subjects and conditions. In sum, the Bayesian framework permits us to choose the 

appropriate model for the experiment design and data type.  

A different yet very similar model was used to check whether generalization to new 

stimuli could be explained by a strategy where rats use simple cues based on local 

luminance to achieve above chance performance: 

𝑦𝑖𝑗~𝐵(𝑛𝑖𝑗 , 𝑝𝑖𝑗) 

(2) 

𝑝𝑖𝑗 = logit−1(𝜇 + 𝛼𝑘𝑋𝑖𝑘 + 𝛽𝑗𝑅𝐴𝑇𝑗 + 𝛾𝑗𝑘𝑋𝑗𝑘 + 휀𝑖𝑗) 

𝛼𝑘~𝑡(0, 𝜎𝛼
2, 𝜈) 

𝛽𝑗~𝑁(0, 𝜎𝛽
2) 

𝛾𝑗𝑘~𝑁(0, 𝜎𝛾
2) 

휀𝑖𝑗~𝑁(0, 𝜎𝜀
2) 

This model is the same as the one described above, except that it uses metric predictors 

Xk. In a first test, Xik for k = 1…36 denote the following predictors for each stimulus pair i: 

M(𝐼)̅ (local mean luminance) and M(𝑃𝐶̅̅̅̅ )  (variation in luminance) values of the target 
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and distractor in nine locations of each screen (2 metrics × 9 locations × 2 stimuli equals 

36 predictors). Indices 𝑖 , 𝑗 , and 𝑘  denote stimulus pair, rat, and metric predictor, 

respectively. In a second test, for each stimulus pair i, Xik for k=1…18 denote the M(𝐼)̅ and 

M( 𝑃𝐶̅̅̅̅ ) for the distractor subtracted from the same metrics for the target for the 

corresponding nine locations of the screens. The t distribution on the regression 

coefficients k  for our metric predictors provides regularization and avoids over-fitting 

to the data by only allowing strong predictors to have a substantial regression weight 

(Kruschke, 2011 p.463–467). A uniform prior ranging from 0 to .5 was used on the 

inverse of the degrees of freedom (1 ÷ 𝜈) of the t distribution, allowing it to range from 

heavy tailed (e.g. 𝜈 = 2) to more normal (i.e. 𝜈 becomes larger) depending on the data. 

1.3 RESULTS 

1.3.1 TRAINING 

Rats were trained to categorize 5 rat movies versus 5 object movies and 5 scrambled 

movies. The training started with one pair of movies, and gradually other pairs were 

added. Subjects completed the training phase after a total of 139, 142, 141, 177, and 158 

sessions, corresponding to 1668, 1704, 1692, 2124, and 1896 trials (M = 1816.8). Counting a 

rate of 40 training sessions per month (2 per working day), this is a training period of 

3.5-4.5 months. Table 1.1 contains the number of trials carried out per rat per condition 

for the training phase and all subsequent test phases. 

Before the testing phase, 6 trials per training pair and per animal were conducted to 

assess performance at the end of training. Performance was significantly different from 

chance regardless of the distractor type: mean performance was 76.7% correct for the 

natural distractors (one tailed t(4) = 8.76, p = .0005, d = 3.92) and 83.3% correct for the 

scrambled distractors (one tailed t(4) = 5.52, p = .0026, d = 2.47). Subsequently, all training 

stimuli were presented in all previously unseen target-distractor combinations. Again, 

mean performance was higher than chance for both distractors: 75.9% correct for natural 

distractors (one tailed t(4) = 10.2, p = .0003, d = 4.54) and 80.3% correct for scrambled 

distractors (one tailed t(4) = 8.24, p = .0006, d = 3.69).  
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For more detailed inference the model of Equation 1 was fit to the data with a slight 

modification (see material and methods, data analysis). Figure 1.7 displays the results of 

this analysis. While the numbers on top of the heat map in Figure 1.7A are measured 

proportions correct per target distractor combination, the colors represent a deflection 

(α) from the central tendency (i.e. overall performance, µ) for a specific level of the 

nominal predictor for stimulus pair. Recall that in logistic regression this deflection is on 

the log odds scale and an increase or decrease in percentage correct depends on the 

percentage correct from which the deflection is calculated. Specifically, a certain 

deflection on the log odds scale is compressed at the ends of the probability scale (or: the 

difference 55%-50% is not of the same magnitude as the difference 95%-90%). In using 

the parameter values   for the color scale, differences in color intensity correspond 

linearly to differences in performance on an unbound scale. For these data’s central 

 
Figure 1.7. Performance on all target-distractor combinations of the training set. 

Panel (A) displays a heat map of point estimates of the regression weights (αk) for each different 

pair. Red indicates performance on this combination is estimated higher than the central 

tendency over all combinations (μ), while blue indicates the reverse (lower than the central 

tendency, which in most cases is still higher than chance performance). Percentages correct 

corresponding to regression weights (i.e. 100 ÷ (1 + 𝑒−(𝜇+𝑡𝑖𝑐𝑘𝑣𝑎𝑙𝑢𝑒))) are indicated above the color 

bar. Numbers placed on the heat map are the proportion correct for each combination for all rats 

pooled together (with marginal proportions at the top and right side). White print indicates that 

the 95% HDI of the regression weight did not include zero, indicating high certainty (i.e. at least 

95%) that performance on this pair was different from the central tendency. Panel (B) 

summarizes the marginal posterior distributions of estimated performances for targets, over 

distractors and vice versa. White dots indicate the mode, thick error bars the 50% HDI, and thin 

error bars the 95% HDI. The dashed line indicates the central tendency. 
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tendency of 81.7%, the percentages correct corresponding to different values of α are 

indicated on the color bar of the heat map. 

Notice the presence of a pattern where color seems to vary predominantly across 

columns rather than rows. Since each column shows the data and estimates for a 

different distractor, this visual inspection already indicates that performance seems to be 

mostly modulated by the distractor. Target distractor combinations for which the 95% 

HDI of the regression weight did not include zero were indicated by printing the 

corresponding measured proportions correct in white bold font to further highlight 

those combinations for which performance deviates from the overall performance across 

all stimulus pairs. Recall that the 95% HDI indicates the range of values for which there 

is 95% certainty that the underlying population parameter that generated the data falls 

within the bounds of the interval. Values falling outside of the interval are rejected based 

on low probability. This comparison indicates that performances on several 

combinations with natural distractor 1 are higher than average, while performances on 

several combinations with natural distractors 2 and 5 and one combination with 

scrambled distractor 2 are lower than average (although still higher than chance 

performance which is 50%). On the two diagonals the proportions correct for the training 

pairs are located. Performance for three of these pairs is lower than the criterion of 75% 

correct which was upheld during training, because for some pairs we had to continue 

training without that criterion having been reached. To see the main effect per movie, we 

looked at the marginal posterior distributions for effects of targets and distractors 

separately. Figure 1.7B shows the estimated proportion correct (i.e. mode of the 

distribution) and its 95% HDI (indicated by thin error bars) for each target movie 

independent of the distractor, and for each distractor independent of the target. If the 

estimated proportion correct across all target distractor combinations (indicated by the 

dashed line) falls outside of the 95% HDI, meaning that this value is highly improbable 

for this target or distractor, we have strong evidence that this particular movie 

modulates performance independent of the movie it was paired with. Here we can 

clearly see that performance is substantially modulated by four natural distractors and 

one scrambled distractor only. 
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1.3.2 GENERALIZATION TO NEW MOVIES 

Next, performance of the animals was tested on new stimuli. In order to limit learning 

effects, each arm of the maze contained a platform during the trials with new stimuli so 

there was no negative reinforcement. On the first test set the rats performed significantly 

higher than chance level. Mean performance was 78.3% correct for natural distractors 

(one tailed t(4) = 4.91, p = .0040, d = 2.19) and 76.6% correct for scrambled distractors (one 

tailed t(3) = 7.69, p = .0023, d = 3.85). The model of Equation 1 leads to the same 

conclusions for the natural and scrambled distractors of test set 1, since the 95% HDI did 

not include the chance level of 50% correct (95% HDI [72.0 85.4] and [68.5 84.3], for 

natural and scrambled distractors respectively; see Figure 1.8). Overall, we find that the 

animals were able to generalize to new movies to (a) categorize rat movies from 

scrambled movies, and to (b) categorize rat movies from movies containing another 

object. 

After Test Set 1, a second set was presented, using target movies in which the rat was 

more stationary (as judged qualitatively by the experimenter). For the natural distractors 

mean performance was 58.8% correct, and estimated different from chance level (95% 

HDI [50.2 67.8], one tailed t(4) = 2.42, p = .0366, d = 1.08). Performance of 74.5% correct on 

the same targets versus scrambled distractors, is estimated to be substantially different 

from chance (95% HDI [66.8 83.5], one tailed t(3) = 4.71, p = .0091, d = 2.35). With natural 

distractors we find that performance on test set 2 was estimated lower than performance 

on test set 1 (non-overlapping 95% HDI). Thus, either the decreased amount of 

movement or another factor confounded with it makes generalization more difficult on 

test set 2. One potential confound might be that these movies were less similar to the 

trained movies (less ‘typical’) in more aspects than just the amount of motion. In a later 

section we will present specific manipulations of the motion in the movies of test set 1 

which are meant to exclude such confounds. 
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Combining the estimates for the training stimuli with those for test set 1 and 2, the 

proportion correct on stimulus pairs with a natural distractor is estimated lower than 

that on pairs with a scrambled distractor (95% HDI [-0.64 -0.03], on the log odds scale). 

Finally, performance of two rats was assessed for test set 3, which contained five target 

movies of a Long Evans rat, paired with natural distractors. To have a robust estimate in 

each rat, the rats performed each 48 trials with test set 3. Again, posterior distribution 

indicates performance to be higher than chance (95% HDI [54.2 80.6], binomial 95% 

confidence intervals for the two animals: [51.6 79.6] and [55.9 83.1]), based on an overall 

performance of 68.8% correct. So, the fact that the movie includes an animal which is no 

longer homogeneously dark, did not abolish generalization. 

1.3.3 GENERALIZATION TO ALTERED VERSIONS OF THE MOVIES FROM TEST SET 1 

Rats were also tested with several manipulations of test set 1. In all those manipulations 

the distractors were natural movies. The first two changes probed how the temporal 

variation of the movies affect performance, in order to have a more direct test of the 

effect of motion than provided by test set 2. First, we played the movies at 1/4th of their 

 
Figure 1.8. Performance per stimulus set as estimated by the model (Equation 1). 

Panel (A): raw performance data (each rat has its own marker), with the vertical lines signifying 

the mean. Panel (B): posterior distributions are summarized, with white dots indicating the 

mode, thick error bars the 50% HDI, and thin error bars the 95% HDI. This plot indicates for each 

stimulus set which proportions correct are most probable given the data. Chance level (i.e., .5) is 

rejected when it lies outside the 95% HDI. 
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original speed and in a subsequent test only showed one static snapshot. The time point 

of the snapshot was that for which the frame of the target movie was most similar to all 

other frames in that movie (i.e., minimal pixel-wise Euclidean distance; see Figure 1.1). 

These tests were motivated by the observation of a lower performance on test set 2, 

where rats were more stationary in the target movies. Mean performance was 72.5% 

correct for the reduced playback speed and 76.5% correct for the snapshots. Both were 

estimated to be different from chance (95% HDI [65.3 80.5], one tailed t(4) = 7.73, p = 

.0008, d = 3.46, and 95% HDI [68 84.9], one tailed t(3) = 5.77, p = .0052, d = 2.89, for the 

speed reduction and static frame respectively). Comparisons with proportion correct on 

the unadjusted test set 1 do not indicate a decrease in performance (95% HDI [-0.26 0.87] 

and [-0.51 0.75], on the log odds scale, for the speed reduction and static frame 

respectively). Thus, most likely, the decrease in performance on test set 2 had to do with 

other confounding factors making the movies less typical. The amount of motion does 

not affect the ability to achieve above chance performance on test set 1 stimuli. The 

presence of motion is not necessary, and rats can differentiate between images 

containing a rat and other images based upon stationary cues. 

Next, we tested whether generalization could be explained by local luminance 

differences. Indeed, previous studies have shown that whenever possible rats tend to use 

simple cues such as average luminance of the lower part of stimuli in visual 

discrimination tasks (Minini and Jeffery, 2006; Vermaercke and Op de Beeck, 2012). 

Figure 1.9 shows that the average pixel value in the lower half of the target stimuli was 

consistently higher than that of the lower half of the corresponding natural distractors 

(note that this was also the case with four out of the five scrambled distractors; data not 

shown). Therefore, the lower part of target stimuli was made darker, while the reverse 

was done for the distractors. Specifically, pixel values where adjusted according to a 

linear gradient ranging from x to –x from top to bottom pixel rows for target stimuli and 

from –x to x for distractors, where x was chosen for each pair so that the difference in 

average lower half pixel values was just below zero (see Figure 1.9). In this way the 

global luminance was retained. Note that the average lower half pixel value was 

calculated across all frames. 



 

44  

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

With full movies, the rats’ mean 

performance was 70.1% correct, which 

is estimated to be different from chance 

(95% HDI [59.1 79.7], binomial 95% 

confidence intervals for each of the 

three animals: [58.2 84.7], [45.3 74.2], 

and [62.7 88.0]), and not different from 

the performance with the original test 

set 1 movies (95% HDI [-0.16 1.12], on 

the log odds scale). When the same 

luminance manipulation was applied 

to the static frame stimuli, mean 

performance was 64.2% correct, which 

is also estimated to be different from 

chance (95% HDI [54.4 74.9], one tailed 

t(3) = 3.43, p = .0207, d = 1.72), but in this 

case it was estimated substantially 

lower than the performance with the 

original test set 1 movies (95% HDI [0.06 1.13], on the log odds scale). Note that in this 

case there was only one frame, meaning that lower half pixel intensities were now equal 

simultaneously at all time. Overall, we still find significant generalization in both tests, 

showing that animals were not simply picking up a luminance difference in the lower 

half of the stimuli. While performance on the static pixel intensity adjusted frames did 

differ from that in test set 1 (without this being the case for the pixel intensity adjusted 

movies), the total picture is more complicated since there is no convincing evidence for a 

difference in performance between the static versus moving adjusted stimuli (95% HDI [-

0.5 0.9], on the log odds scale). The lower observed performance can be explained by the 

fact that rats had been doing more trials with two platforms by then, which might 

decrease motivation as a result of mistakes being rewarded (see also Figure 1.6b). 

Another possible explanation is that the pixel intensity adjustment is more thorough in 

the case of one stationary frame, because it is now applied to the level of this individual 

 
Figure 1.9. Difference in average lower-half 

pixel value between target and distractor before 

and after the adjustment. 

Bar plots show the average (across width, height, 

and frames) pixel values in the lower half of the 

distractor movie subtracted from the same 

average of the target movie for each of the five 

pairs of test set 1 before (five bars on the left) and 

after luminance adjustment (five bars on the 

right; if a bar is not visible, its value is too close to 

zero). Positive values indicate that the lower part 

of the target movie is on average (across frames) 

lighter than the lower part of the distractor 

movie. Snapshots show the first frame of an 

example pair (corresponding to the third bar in 

each set of five, with the target on the left and the 

distractor on the right). 
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frame. Most importantly, there is clear above chance performance for all test sets and for 

all included stimulus manipulations. 

1.3.4 DO RATS USE A STRATEGY BASED ON LOCAL LUMINANCE 

To determine whether rats used a strategy based on local luminance or pixel change a 

linear logistic-binomial regression model (see Equation 2) was fit on the rat performance 

scores with the following predictors: local mean luminance and local mean variation in 

luminance of the target and distractor in nine locations of each screen. The latter two 

statistics are the same as M(𝐼)̅ and M(𝑃𝐶̅̅̅̅ ) (defined in the method section), with the 

exception that they were calculated separately for different locations on the screen: each 

frame was divided in three by three equally sized (128×128 pixels) squares (which 

together cover the entire frame/screen). Concretely, this means that performance on each 

stimulus pair is estimated based on 36 metric predictors (2 metrics × 9 locations × 2 

stimuli). The model was fit to the performance on all target-distractor combinations of 

the training stimuli (shown in Figure 1.6) in order to check whether a strategy that could 

be learned from these stimuli might allow rats to generalize to the test stimuli. Figure 

1.10A depicts four templates based on the point estimates of the regression weights for 

the predictors (each of the nine squares of the templates corresponds to one of the nine 

locations on the stimulus). Note that the highest loading regression weights are for the 

properties of the distractor, not the target. 

If rats use one or more of these stimulus properties in their generalization to new stimuli, 

the regression weights fit to the training data should accurately predict performance in 

the testing data. For example, if the regression weights represent a real strategy, then we 

would expect a distractor to be associated with better-than-average performance if it 

would have a higher-than-average luminance in the top right corner (the most positive 

regressor in the distractor pixel intensity template in Figure 1.10A and/or a lower-than-

average luminance in the bottom right corner (the most negative regressor in this 

template). For all of the predictor regression weights the 95% HDI included zero (Figure 

1.10B), so for none of these regression weights there was enough evidence to reject zero. 

Moreover, the proportion of variance explained by the model (1 -  residual variance   
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total variance) is .12 for the training data and .01 for the test data (which were not used 

to fit the model). Thus, the significant generalization of the rats and the variation in 

generalization performance among different targets and distractors cannot be explained 

by a strategy based upon local luminance cues.  

Next, the same model was used but now with predictors referring to the local difference 

 
Figure 1.10. Local luminance cues and performance. 

Panel (A) depicts templates based on modes of the posterior distributions of the regression 

weights for the 36 luminance predictors: average pixel values and mean absolute pixel change, 

each on nine locations of both stimuli (the nine squares in each template correspond to the nine 

locations on the square stimulus frames). Red indicates average luminance or pixel change in this 

area correlates positively with performance, while blue indicates the reverse.  Panel (B) 

summarizes the posterior distributions of the regression weights for each of the 36 predictors, 

with dots indicating the mode, thick lines the 50% HDI and thin lines the 95% HDI. Panel (C) and 

(D) are analogue to panel (A) and (B), but show the results of a model based of the difference in 

each corresponding local luminance cue on the target and the distractor. Red indicates that a 

higher difference in average luminance or pixel change in this area for the target versus the 

distractor correlates positively with performance, while blue indicates the reverse. Panel (E) 

shows performance on each target-distractor combination (dot) as a function of the luminance 

difference in the lower right corner (predictor 9 of the difference template, which is estimated to 

be different from zero). Only the training data (indicated in black) were used to fit the model. 

The mode of the posterior distribution and 95% HDI’s are indicated in grey as a function of 

predictor 9. This panel shows that this predictor cannot explain generalization because the 

model’s intercept does not coincide with chance level. At the intercept, where there is no average 

difference in luminance in the lower right corner of the screens between target and distractor (i.e. 

predictor 9 is equal to zero), performance is well above chance (as indicated by the data points 

and the 95% HDI shown in grey). 
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in luminance between target and distractor (these new predictors correspond to a 

subtraction of the predictors of the previous model). This new model tests whether a 

strategy based upon differences between the target and distractor on corresponding local 

luminance or pixel change values could have allowed for successful generalization. 

The templates (Figure 1.10C) and regression weights (Figure 1.10D) indicate that 

performance on the test set is positively correlated with a difference in luminance (for 

target minus distractor) on the lower right part of the screen. This difference template 

model has a proportion of variance explained of .12 for the training data and .13 for the 

test data. However, the predicted performance is still 71.5% correct (95% HDI [61.4 80.0]) 

for the intercept, which is the estimate for when there is no information in the difference 

template. Indeed, both the model as well as the training and test data shown in Figure 

1.10E support the conclusion that while performance is modulated by a luminance 

difference in the lower right corner of the screen, it cannot explain generalization. Rats 

neither perform at chance when this predictor is zero, nor do they prefer the distractor 

when it is negative. Generalization performance is still around 70% even when there is 

no luminance difference. 

1.4 DISCUSSION 

Five out of six subjects were able to complete the training phase. Mixing up the training 

pairs proved that the acquired decision rule(s) were not bound to these specific target-

distractor combinations. In addition, these data with the training movies indicated that 

the variability in performance for different pairs can mainly be explained by the 

variability in natural distractors. Subsequently, the animals successfully generalized to a 

first typical test set, another test set with more stationary rats/objects, and one with a 

strain of differently colored rats. In general, performance with scrambled distractors was 

higher than with natural distractors.  

Taken together, the results of the test phase show a successful generalization to a set of 

novel, unique stimulus pairs. This was the case for pairs with a natural as well as with a 

scrambled distractor. The latter are more different from the target movies in that they 
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lack naturally occurring feature conjunctions. Even though performance was mainly 

modulated by the distractor, one cannot conclude that this means the animals used an 

avoid-distractor strategy. For example, this finding can be explained equally well by the 

simple fact that the content of the distractor movies was more variable than that of the 

targets.  

1.4.1 SIMPLE BEHAVIORAL STRATEGIES WHICH CANNOT EXPLAIN THE GENERALIZATION TO 

NOVEL MOVIES 

We investigated several simple strategies which could underlie the main results. For 

instance, rats might have used general differences in motion energy or local luminance. 

Neither reducing the frame rate, nor presenting stationary frames, resulted in a 

substantial reduction of performance. This means that motion cues in the movies were 

not a critical factor. Likewise, there is no evidence that equalizing the luminance in the 

lower part of the target corrupted performance on test movies. The latter did affect 

performance on stationary frames, yet even in this case it remained well above chance. 

Finally, we did a control analysis to see whether a more complex pattern of local 

luminance cues could explain generalization. The results show that  these cues cannot 

explain above chance performance on the test sets. Therefore, we conclude that both 

simple local luminance and motion energy are insufficient to explain the achieved 

proportion correct on the test sets, which indicates that generalization relied on a more 

complex combination of features. 

1.4.2 BEHAVIORAL STRATEGIES WHICH MIGHT UNDERLIE THE GENERALIZATION TO NOVEL 

MOVIES 

Here we consider three non-trivial and interesting strategies. Although we discuss to 

what extent they might underlie performance in our experiments, further studies are 

needed to distinguish between these possibilities. 

First, the rats might use contrast templates by comparing the luminance in different 

screen positions (instead of using the simple luminance cues which we ruled out). We 

recently suggested the use of such contrast strategies as an explanation of the behavioral 
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templates in an invariant shape discrimination task (Vermaercke and Op de Beeck, 2012). 

Such contrast templates can be fairly complex by combining different contrast cues, as 

has been suggested in the context of face detection by the human and monkey visual 

system (Gilad et al., 2009; Ohayon et al., 2012). Nevertheless, these templates arise from 

low spatial frequencies and do not necessarily require orientation selectivity, edge 

detection, or curvature processing and are effectively used in computational face 

detection models (Viola and Jones, 2001; Viola et al., 2004). 

 This property sets the contrast template strategy aside from a second strategy based on 

shape cues such as edges/lines, corners, and curvature. Hierarchical computational 

models of object vision based upon the primate literature (Hummel and Biederman, 

1992; Cadieu et al., 2007) aim to process the visual input in terms of such shape features 

which have been shown to drive neurons in inferior temporal cortex in monkeys 

(Kayaert et al., 2005; Connor et al., 2007). In rats we currently lack such 

neurophysiological evidence. Previous studies reporting the use of shape information by 

rats (Simpson and Gaffan, 1999; Alemi-Neissi et al., 2013) did not make this important 

distinction and therefore cannot exclude the use of contrast templates.  

Third, we cannot exclude the possibility that rats would have a notion of rats as a 

‘semantic’ category. However, we believe this possibility is very unlikely, at least when 

based on visual cues only. First, it takes quite some time to train them to categorize 

movies containing a congener from non-rat movies. If this category distinction would be 

salient to them, as it is for humans and other primates, we would expect that training 

with only one pair of movies would allow very good generalization to other pairs. In 

contrast, training was relatively slow, also for later movie pairs. This could be because 

they tend to use simpler cues first and/or because they do not make this distinction 

naturally. However, this study cannot say anything about a possible semantic 

representation of the category rats relying on one or more other modalities that are more 

ecologically relevant to rats as a species.  
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1.4.3 COMPARISON WITH CATEGORIZATION OF NATURAL STIMULI IN MONKEYS 

At this point it is relevant to compare our findings to the two most similar studies in 

monkeys: Vogels (1999a) and Fabre-Thorpe (1998). Similar to both studies, rats could 

learn to successfully discriminate natural stimuli belonging to different categories and 

generalize to novel stimuli. Even though the training period (on average 151.4 sessions) 

might seem highly intensive, the average number of training trials (1816.8) is actually 

relatively low. Vogels (1999a) used probe stimuli to test whether a single low-level 

feature lead to generalization and concluded that at least feature combinations were 

required. Similarly, in the present study a number of probe tests were performed to 

exclude the simplest low-level strategies. Fabre-Thorpe (1998), on the other hand, 

focused on the speed of categorization during very brief presentations. The setup used in 

the current study neither allowed for such a short stimulus presentation, nor for fast 

response by the rat or for an accurate measurement of reaction times. A different setup 

using still images would be necessary to investigate that aspect of categorization in rats. 

Finally, the most obvious difference with both Vogels (1999a) and Fabre-Thorpe (1998) is 

that in the present study natural movies were used instead of still natural images. 

However, presenting snapshots of the movies did not disrupt generalization. Overall, 

there are interesting commonalities with previous findings in monkeys, but a more 

systematic comparison requires a study which tests both species on the same stimuli in 

the same task context.  

1.4.4 NEURAL MECHANISMS 

The swimming-based task used here was chosen for its relative ease to train rats and the 

very low error-rate the animals obtain with easy stimuli. This task cannot immediately 

be combined with experiments involving electrophysiological recordings. Of course, as 

mentioned in the introduction, uncovering the visual capabilities of rodents on a 

behavioral level to evaluate the validity of rodents as a model for vision (such as Tafazoli 

et al., 2012) is in itself relevant for the growing group of neuroscientist focusing on these 

animals. Furthermore, just as other swimming-based tasks used in neuroscience such as 

the Morris water maze, techniques such as lesioning, genetic or pharmacological 

manipulations, and activity-mapping with immediate early gene expression can be 
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successfully applied in the context of our task. Finally, an extension with simultaneous 

neural recordings might use virtual navigation (Harvey et al., 2009) as a paradigm with 

similar behavioral responses (i.e. “running towards”). 

Which neural representations might underlie the categorization performance? In 

primates visual features that are encoded in the primary visual cortex (V1) are integrated 

into higher level representations in the extrastriate cortex (Orban, 2008). Traditionally 

these extrastriate areas are grouped into two anatomically and functionally distinct 

pathways: a ventral stream, providing the computations underlying object recognition, 

and a dorsal stream, mediating spatial perception and visually guided actions (Kravitz et 

al., 2011). Neurons in the ventral stream in monkeys display category specific responses 

which are tolerant to changes in various image transformations (e.g., Vogels, 1999b; 

Hung et al., 2005). The superordinate distinction between animals and non-animals has 

also been related to strong categorical responses in monkey and human ventral regions 

(Kiani et al., 2007; Kriegeskorte et al., 2008b). 

Based on the high complexity and variability of the stimuli and on the evidence from the 

probe tests and the local luminance control analyses presented here, we suggest that a 

computation based on the integration of features encoded in V1 would have been 

necessary for generalization to novel stimuli. Consequently, extrastriate cortical regions 

might be involved as in primates. Previous research has suggested that the rodent visual 

cortex consists of two streams resembling the dorsal and ventral pathways in primates 

(Wang et al., 2012). It seems therefore natural to suspect that the putative ventral stream 

in rodents is involved in learning the categorical distinction between rat and non-rat 

movies. Indeed, one of these areas has been shown to respond to high spatial frequencies 

in mice, which might indicate a role in the analysis of structural detail and form (Marshel 

et al., 2011). However, for now this proposal remains very speculative given the many 

differences between rodents and monkeys and the lack of knowledge about rodent 

extrastriate cortex.  
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Chapter 2.  

NATURAL STIMULUS REPRESENTATIONS IN RAT VISUAL CORTEX 

In our previous experiment, we had established that rats can be trained to discriminate 

categories of natural movies and generalize to novel exemplars. Meanwhile, research in 

our lab was showing promising evidence of position tolerance in their visual system 

(Vermaercke et al., 2014), a hallmark of object processing in primates. Would the rat 

visual system show other hallmarks of object processing? Do we see a categorical 

representation emerge? 
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NEURAL REPRESENTATIONS OF NATURAL AND SCRAMBLED MOVIES PROGRESSIVELY CHANGE FROM 

RAT STRIATE TO TEMPORAL CORTEX. 

In recent years the rodent has come forward as a candidate model for investigating 

higher level visual abilities such as object vision. This view has been backed up 

substantially by evidence from behavioral studies that show rats can be trained to 

express visual object recognition and categorization capabilities. However, almost no 

studies have investigated the functional properties of rodent extrastriate visual cortex 

using stimuli that target object vision, leaving a gap compared to the primate literature. 

Therefore, we recorded single-neuron responses along a proposed ventral pathway in rat 

visual cortex to investigate hallmarks of primate neural object representations such as 

preference for intact versus scrambled stimuli and category-selectivity. We presented 

natural movies containing a rat or no rat as well as their phase-scrambled versions. 

Population analyses showed increased dissociation in representations of natural versus 

scrambled stimuli along the targeted stream, but without a clear preference for natural 

stimuli. Along the measured cortical hierarchy, the neural response seemed to be driven 

increasingly by features that are not V1-like and destroyed by phase-scrambling. 

However, there was no evidence for category selectivity for the rat versus non-rat 

distinction. Together, these findings provide insights about differences and 

commonalities between rodent and primate visual cortex. 

2.1 INTRODUCTION 

Visual perception is the end product of a series of computations that start in the retina 

and culminate in several cortical areas. Although we can readily experience this end 

product effortlessly, decades of intensive research still have not yielded a full picture 

about the computations taking place beyond the point where visual information first 

arrives at the cortex, the primary visual area (V1). Until a few years ago the neural 

underpinnings of visual perception were mainly investigated in primates and cats. With 

the recent surge of rodent studies involving new techniques which have proven to be of 

high value to disentangle the mechanisms of visual processing (Huberman and Niell, 

2011), questions concerning the functional properties and capabilities of areas in rodent 
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extrastriate visual cortex have become highly relevant. Behavioral experiments have 

found evidence in rats for forms of higher level visual processing (Zoccolan et al., 2009; 

Tafazoli et al., 2012; Vermaercke and Op de Beeck, 2012; Alemi-Neissi et al., 2013; Brooks 

et al., 2013; Vinken et al., 2014; Rosselli et al., 2015; for review, see Zoccolan, 2015), 

fueling the idea that these animals might be useful as an alternative and experimentally 

more flexible model to tackle certain questions related to these complex visual 

capabilities.   

In primates, extrastriate visual areas further integrate visual features that are encoded in 

V1 into more complex representations (Orban, 2008). These areas have traditionally been 

grouped into two anatomically and functionally distinct pathways: a dorsal stream and a 

ventral stream (Mishkin and Ungerleider, 1982; Kravitz et al., 2011). The latter is 

responsible for the transformations that eventually produce the ingredients necessary for 

extraordinary abilities such as object recognition, namely high selectivity distinguishing 

between objects, combined with tolerance for a range of identity preserving 

transformations, such as changes in size, position, viewpoint, illumination, etc. (DiCarlo 

and Cox, 2007; Dicarlo et al., 2012). The result is a high level representation that 

manifests itself in strong categorical responses in monkey and human ventral regions, 

with for example a high selectivity for the distinction between animal and non-animal 

pictures  (Kiani et al., 2007; Kriegeskorte et al., 2008a). This category selectivity comes on 

top of a general preference in primate occipitotemporal cortex for natural, intact images 

compared to scrambled versions of these stimuli. Thus, in primates the computations 

along the ventral pathway introduce a bias in favor of coherent stimuli containing 

surfaces and objects over random texture patterns. This preference for intact coherent 

images was found higher up in this pathway through human functional magnetic 

resonance imaging (fMRI, Grill-Spector et al., 1998), monkey fMRI (Rainer et al., 2002), 

and monkey single-neuron physiology (Vogels, 1999c). This bias does not exist in lower 

levels of the pathway where sometimes even a preference for scrambled images is found 

(Rainer et al., 2002), potentially depending upon the exact scrambling procedure 

(Stojanoski and Cusack, 2014).  
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Can we find evidence for similar computations being performed in the rodent brain? 

Previous research has suggested that anatomically the rodent visual cortex consists of 

two streams resembling the dorsal and ventral pathways in primates (Niell, 2011; Wang 

et al., 2012). Already some steps have been taken to investigate the functional properties 

of rodent extrastriate cortex using drifting bars and gratings (Andermann et al., 2011; 

Marshel et al., 2011) and simple shapes (Vermaercke et al., 2014). Marshel et al. (2011) 

reported that mouse latero-intermediate area (LI) prefers high spatial frequencies, which 

might indicate a role in the analysis of structural detail and form. Vermaercke et al. 

(2014) report an increase in position tolerance, consistent with the primate ventral visual 

stream, along a progression of five cortical areas starting in V1 and culminating via LI in 

recently established lateral occipito-temporal area TO (Vermaercke et al., 2014). This 

increased position tolerance paralleled a gradual transformation of the selectivity for the 

simple shapes used in the study. However, these areas were hardly selective to 

stationary shapes and were more responsive to moving stimuli, which contrasts with the 

primate ventral visual stream. More complex stimuli such as natural movies have rarely 

been used in rodents, with two recent exceptions (Kampa et al., 2011; Froudarakis et al., 

2014). In those studies, the focus was primarily on the population code in primary visual 

cortex. Kampa et al. (2011) measured responses of V1 layer 2/3 populations to dynamic 

stimuli (including natural movies), showing reliable stimulus-specific tuning and 

evidence for functional sub-networks (despite the lack of orientation columns in rodent 

V1). Froudarakis et al. (2014) found that natural scenes evoke a sparser population 

response compared to phase scrambled movies, leading to an improved scene 

discriminability that also depended on cortical state. Both studies focused on primary 

visual cortex and not explicitly on coding of movie content. Here we investigated 

whether the two most salient functional hallmarks of neural object representations in 

primates might also exist in rodents: preference for intact versus scrambled stimuli and 

category-selective responses. To achieve this, we recorded action potential activity in 

three areas belonging to this putative ventral stream in rats with the aim of 

systematically comparing how stimulus representations change across areas: V1, LI, and 

TO. LI is the most downstream area in the putative ventral visual pathway which has 

been identified in both mice and rats (Espinoza and Thomas, 1983; Wang and 
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Burkhalter, 2007); TO extends even further to rat temporal cortex and its responses to 

simple grating stimuli and shapes already suggested a higher-order processing 

compared to the other areas (Vermaercke et al., 2014). While recording neural responses, 

we presented natural movies belonging to different categories, as well as phase-

scrambled versions of these movies. Based on the primate research, we would expect 

very different results in higher stages of the cortical processing hierarchy. First, a 

functional hierarchy would be supported by a systematic and gradual change in 

population representation of scrambled versus natural movies across areas. Second, a 

change culminating in a preference for natural movies would show that this functional 

hierarchy is comparable to the primate ventral visual stream in this respect, a notion that 

would even be more supported by a categorical representation towards the most 

downstream area TO. 

2.2 MATERIALS AND METHODS 

Much of the materials and methods have been described previously in detail (for 

descriptions of the apparatus, methodological details, and functional criteria, see 

Vermaercke et al., 2014; for a description of the stimuli, see Vinken et al., 2014). There 

was however no overlap and animals were completely naïve with respect to the stimulus 

set. Here we focus upon the details which are most important and most relevant in the 

context of the present study. 

2.2.1 ANIMALS 

Experiments were conducted with 7 male FBNF1 rats, aged 14 to 30 months (21 on 

average) at the start of the study. This specific breed was chosen for their relatively high 

visual acuity of 1.5 cycles per degree (Prusky et al., 2002). Surgery was performed to 

implant a head post and a recording chamber. The craniotomy was centered -7.9 mm 

anterioposterior and -2.5 mm lateral from bregma. This location allowed the electrode to 

pass through five different visual areas, including our three target areas, when entering 

at an angle of 45°: V1, latero-medial area, LI, latero-lateral area and TO (Vermaercke et 

al., 2014). As in Vermaercke et al. (2014), we performed histology in five out of the seven 
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rat brains, confirming that the electrode tracks followed trajectories similar to that study 

(therefore also confirming a sampling bias towards upper layers in V1). After recovery 

the animals were water deprived and had ad libitum access to food pellets. Housing 

conditions and experimental procedures were approved by the KU Leuven Animal 

Ethics Committee. 

2.2.2 STIMULI 

The set of stimuli used in this experiment corresponds to the training set described in 

Vinken et al. (2014). The set consisted of 20 movies: 10 natural movies and the phase-

scrambled versions of these movies. The natural movies had a duration of 5 seconds and 

were recorded at 30 Hz (thus including 150 frames) and sized 384×384 pixels. Five of 

them contained a rat, while the other five contained a moving object. For each rat movie, 

a non-rat movie was chosen from our own database of 537 five-second movies in order 

to match relatively well on pixel intensities, contrast and changes in pixel intensities 

(Vinken et al., 2014). The rat movies showed moving rats of the same strain as the 

subjects. Three of the paired non-rat movies contained a train, one a gloved hand 

moving in and out of the screen, and one a moving stuffed sock. For each movie a phase 

scrambled version was created according to the procedure described previously, which 

allows for a better frame-wise match according to statistics such as average pixel 

intensity, contrast, changes in pixel intensity across successive frames, as well as spatial 

power spectrum compared to standard methods (Vinken et al., 2014). See Figure 2.1 for 

snapshots of each movie. The original movies and their scrambled versions were created 

at a size of 384×384 pixels (to reduce memory load), but in the electrophysiological 

experiment the movies were shown at a size of 768×768 pixels.  

2.2.3 ELECTROPHYSIOLOGICAL RECORDINGS 

As described at full length by Vermaercke et al. (2014), the rats were head-fixed and 

placed in front of a 24” LCD screen (1280x768 at 60Hz), which was gamma corrected to 

obtain a linear transfer function between pixel intensity values and luminance. The 

animal’s nose pointed at the left edge at an angle of 40° and a closest eye-to-screen 

distance of 20.5 cm. The movies were always presented at the full height of the screen 
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 (768 pixels) and positioned on the horizontal axis according to the estimated receptive 

field location (see receptive field mapping below). This resulted in a stimulus width 

ranging from 50 to 74 visual degrees depending on the position (as the eye-to-stimulus 

distance varies according to position). During the experiments every fifth (movie 

experiment) or tenth (receptive field estimation) stimulus presentation a water reward 

was given. 

Recordings were performed with a Biela Microdrive and single high-impedance 

electrodes (FHC, Bowdoin, ME; ordered with impedance 5 to 10 MΩ) in areas V1, LI, and 

TO. Spike detection was done using custom written code in Matlab (The MathWorks, 

 
Figure 2.1. Representative snapshots of the movies used in the experiments. 

First row depicts the original natural rat movies, with the corresponding scrambled versions 

represented on the second row. The third row depicts the natural stimuli belonging to the non-

rat category, each matched to the rat movie displayed in the same column (see materials and 

methods, stimuli). From left to right: three movies of a toy train, one with a stuffed sock, and one 

with a gloved hand, with the corresponding scrambled versions represented on the fourth row. 

The full movies are available at: 

http://ppw.kuleuven.be/home/english/research/lbp/downloads/ratMovies. 
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Inc., Natick, MA), with the spike detection threshold set to detect spikes with a peak-to-

peak amplitude of four times the standard deviation of the noise. Single-units (SU) were 

isolated based on cluster analysis of the properties of the recorded waveforms (the first n 

principal components, where n was optimized to the situation) using KlustaKwik 1.6, 

followed by a manual check in SpikeSort 3D 2.5.1. Spike waveforms that could not be 

separated into single units were pooled into one multi-unit (MU) cluster per recording 

site (each spike waveform was only used once, so there is no overlap between SU and 

MU). On average the peak-to-peak amplitude of the mean spike waveform was 12.4, 

12.9, and 11.3 times the standard deviation of the noise for V1, LI, and TO units 

respectively. For all except two (one in V1 and one in TO) of the neurons included for 

analysis, this signal-noise-ratio was higher than the criterion value of 5 used by Issa and 

DiCarlo (2012). For multi-unit clusters these values were 4.9, 4.7, and 4.6 for V1, LI, and 

TO respectively (note that these values are limited in the lower end by the spike 

detection threshold of four times the standard deviation of the noise).  

Receptive field mapping 

Boundaries of the five aforementioned different areas were estimated based on changes 

in retinotopy as described previously (Vermaercke et al., 2014). A rough estimate of a 

site’s population receptive field could be obtained manually by using continuously 

changing shapes or drifting gratings that could be moved across the screen. A 

quantitative estimate of receptive field size and location was achieved by flashing a hash 

symbol at 15 locations (3 rows by 5 columns) on the screen. Movies were translated 

along the horizontal screen axis in order to best cover the receptive field. We chose to 

record from V1, LI, and TO, and not the two additional intermediate areas LM and LL, 

because the elevation of the receptive fields encountered in V1, LI, and TO tends to be 

very similar (see Fig. 2C in Vermaercke et al., 2014). In contrast, the receptive fields 

encountered in LM and in particular LL show a very different elevation, which would 

make it difficult to compare results between the different areas (the receptive fields of 

the neuronal populations would then cover different parts of the movies). 
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Presentation of movies 

In the main experiment, rats were passively viewing the 10 five-second natural movies 

and the phase scrambled versions of these movies. These were presented in random 

order intermitted by a two-second blank screen, with 10 repetitions per movie. The pixel 

intensity value of the blank screen and the part of the screen not covered by the movies 

was set equal to the average pixel intensity of all movies. 

2.2.4 DATA ANALYSIS 

We maintained two criteria to include units for analysis: units needed to be isolated for 

the full 10 presentations of each movie and have an average net response of more than 2 

Hz for at least one movie. 

Pre-processing 

Before all analyses, peristimulus time histograms (PSTHs) with a bin width of 1 ms were 

made for each trial across the [-1999, 6000] ms interval (with stimulus onset at 0 ms). To 

estimate the response onset latency the PSTHs were averaged across trials and stimuli 

and smoothed with a Gaussian kernel (3 ms full width at half maximum). Response 

onset latency was defined per unit as the first time point after stimulus onset where the 

smoothed PSTH exceeded a threshold of the baseline activity (calculated from the ]-1000, 

0] ms window) plus three times the baseline activity standard deviation. For all further 

analyses only a 4800 ms time window after response onset was used, with the first 200 

ms cut off to ignore the onset peak  mainly for fitting the motion energy model. For 

consistency the same 4800 ms window was used for all other analyses, even though the 

inclusion of the window does not affect the results in any significant way. 

Sparseness and reliability 

Response sparseness for a certain neuron to a certain movie was quantified using the 

index defined by Vinje and Gallant (2000): 

𝑆 = (1 −
1

𝑛

(∑ 𝑟𝑖𝑖 )2

∑ 𝑟𝑖
2

𝑖
) (1 −

1

𝑛
)⁄  

where S is the sparseness index for a neuron with average (across trials) response ri to 

frame i of a stimulus with n frames. Onset of the first bin is the estimated response 



 

62  

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

latency plus 200 ms (see pre-processing) and the bin-width is ~33.3 ms, which 

corresponds with the frame rate. This sparseness index can vary between 0 and 1, with 

values close to 0 indicating a dense response, and values close to 1 indicating a sparse 

response. Response reliability for the time course of the response of a certain neuron to a 

certain movie was estimated using the Spearman-Brown correction as follows: 

(𝑛𝑟𝑥𝑥′) (1 + (𝑛 − 1)𝑟𝑥𝑥′)⁄  

With the average correlation across time between two trials rxx’ (across all combinations) 

and number of trials n. As before, the bin width to calculate the reliability was set to 

correspond with the frame rate of 30Hz. 

Population representation 

For each population of neurons (i.e. in V1, LI, or TO) pair-wise stimulus dissimilarities 

were calculated based on the correlation distance using the average responses to full 

movies. First, firing rates were averaged across trials and per stimulus across the entire 

4800 ms interval, resulting in 20 responses per neuron. Second, responses of each neuron 

were transformed to Z-scores (across stimuli). Third, for each stimulus a response vector 

was created containing the transformed responses of each neuron to that particular 

stimulus. Finally, dissimilarity between a pair of stimuli is defined as 1 – r (Pearson 

correlation) between the response vectors of the two stimuli in question. Figure 2.2 

illustrates how we used this method to create dissimilarity matrices. 

Spatiotemporal motion energy model 

To simulate the relative response of V1-like cells we calculated the output of a 

spatiotemporal motion energy model (Adelson and Bergen, 1985). Specifically, the 

spatiotemporal receptive field of a modeled V1 neuron is based on a three-dimensional 

Gabor filter, with a certain frequency, orientation, and location relative to the stimulus. 

The output of the filter (calculated through linear multiplication with the stimulus) is 

then squared, and summed with the output of the quadrature pair to that filter which is 

90 degrees out of phase. This squared and summed output gives a physiologically 

plausible measure of motion energy. The square root of this measure is our modeled 

response of a complex V1 cell (Nishimoto and Gallant, 2011). See Figure 2.3 for a 

schematic representation of this process. 
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A wide range of Gabor filters spanning different frequencies, orientations, and locations 

is then used to model our set of V1 cells. Thus, we end up with a modeled V1 complex 

cell for each spatiotemporal frequency, orientation, and spatial location included in the 

model. The output of each modeled cell is then standardized by calculating the Z-score 

across all movie frames. The set of Gabor filters spanned eight different directions, six 

different spatial frequencies, and six different temporal frequencies. The spatial 

frequencies were log spaced between .04 and .15 cycles per degree and the temporal 

frequencies between 0 and 15 Hz, based on the optimal responses of rat V1 neurons 

reported by Girman et al. (1999). Each filter occurred at different spatial locations. Grid 

spacing was identical to what is reported by Nishimoto and Gallant (2011) and 

depended on spatial frequency: filters were separated by 2.2 standard deviations of the 

 
Figure 2.2. Schematic illustration of how dissimilarity matrices were calculated. 

For the analysis of the population representation we started with the responses of single units, 

averaged across repeated stimulus presentations and summed across the 201 to 5000 ms window 

calculated from response onset (as indicated by the summation symbol). PSTH’s in this example 

figure illustrate responses averaged across stimulus presentations of five single units to three 

movies (A, B, and C), all arbitrarily selected for the purpose of illustrating the methods. This was 

done for each stimulus (e. g. A, B, and C, in this example) to get raw response vectors. These raw 

responses were further standardized per neuron, by calculating the Z-scores across stimuli. Next 

the correlation matrix was calculated from these normalized response data by pair-wise 

correlation of the stimulus response vectors. For the stimulus dissimilarity matrix each value in 

this correlation matrix was subtracted from one, resulting in values between 0 and 2, where 0 

indicates the lowest dissimilarity (i.e. an identical population response pattern) and 2 indicates 

the highest dissimilarity (i.e. a highly different population response pattern). To visualize the 

stimulus space as represented by the population of neurons, we performed multi-dimensional 

scaling on the dissimilarity matrix and present the stimuli using the first two dimensions. Stimuli 

plotted closer together (A and B in this example) have a more similar population response 

pattern than stimuli plotted further apart (A and C, and B and C in this example). 
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Gaussian envelope, with one 

standard deviation set to half a 

cycle of the sine wave. Next, the 

output of these filters was used as 

predictors in a regularized linear 

regression model with an early 

stopping rule (David et al., 2007; 

Nishimoto and Gallant, 2011) 

fitted to the neural responses 

using code from the STRFlab 

toolkit (version 1.45, retrieved 

from http://strflab.berkeley.edu/). 

The model was estimated at five 

different latencies, ranging from 

20 to 153 ms in steps of the 

duration of one frame. For each 

unit and latency, the model was fit 

10 times, each time refraining two movies (i.e. a natural movie and its scrambled pair) 

from the fitting procedure for cross-validation and using the remaining 18 movies for 

training the model. Reported accuracies refer always to data that was not included in the 

training set. 

Statistical analysis 

For statistical inference we relied on the bias-corrected accelerated bootstrap (BCa; Efron, 

1987) by random sampling with replacement (10000 iterations) of the neurons/units 

(unless indicated otherwise) to estimate the 95% confidence interval (CI) of the statistic 

in question. In addition, randomization tests (10000 iterations) are used to estimate the 

distribution of the test statistic in question under the null hypothesis in order to calculate 

p-values. In several places we report the slope of a linear regression to quantify gradual 

change across the three regions in the pathway under investigation for reasons of 

simplicity and interpretability, without the intention of making strong claims of 

linearity. However, we formally tested for a deviation of linearity by including 

 
Figure 2.3. Schematic representation of the motion 

energy model 

(based on Nishimoto et al., 2011), described under 

materials and methods, data analysis, spatiotemporal 

motion energy model. In short, input stimuli (movies) 

are run through a bank of quadrature pairs of Gabor 

filters, each with a certain spatiotemporal frequency 

and orientation and located on a grid covering the 

stimulus. The output of each pair is then squared and 

summed to give a physiologically plausible measure of 

motion energy. The end result is finally obtained by 

taking the square root to model a compressive 

nonlinearity. This final output is calculated for each of 

the spatiotemporal frequencies and locations covered 

by the bank of Gabor filters and standardized per filter 

across frames. In a next step the neural response is 

predicted as a linear combination of those 

standardized outputs. 
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categorical dummy variables for each region in the regression. In none of the cases 

where we report a slope did a categorical predictor show a significant effect, which 

would indicate that there would be a non-linear component. Thus, the simpler model 

with one linear trend is preferred. 

2.3 RESULTS 

We recorded the activity of single neurons in three areas of awake rats, namely V1, LI, 

and TO (Vermaercke et al., 2014), while presenting natural movies containing a rat or not 

as well as scrambled movies. The recordings yielded 50 (out of 58, or 86%) responsive 

single units for V1, 53 (out of 88, or 60%) for LI, and 52 (out of 84, or 62%) for TO, as well 

as 25 (out of 25, or 100%), 33 (out of 35, or 94%), and 26 (out of 30, or 87%) responsive 

multi-unit sites for each area respectively (percentages indicate the proportion of units 

that passed the inclusion criteria for analysis, i.e. an average net response of more than 2 

Hz for at least one movie). We tested for a) a change in representation of stimulus type 

(natural versus scrambled) across areas, supporting a functional hierarchy, b) the 

emergence of a categorical representation for the distinction between rat and non-rat 

movies, and c) the emergence of a preference for natural movies along these areas. 

2.3.1 STIMULUS REPRESENTATIONS IN V1, LI, AND TO 

To get an idea of how the stimuli are represented by the populations of neurons, we 

investigated the neural stimulus dissimilarities in the N-dimensional representational 

space defined by the average response of N neurons to the individual stimuli (Figure 

2.2). Two stimuli that elicit a very different response in the population of recorded 

neurons will result in a higher dissimilarity value. On the other hand, if a population of 

neurons shows the same response pattern to two different stimuli, the dissimilarity 

value will be zero. These dissimilarity values can be visualized in a dissimilarity matrix 

as in Figure4A (top row), where more yellow colors indicate higher pair-wise stimulus 

dissimilarity. Visual inspection of the dissimilarity matrices suggests that moving from 

V1 to TO, a pattern emerges which can be summarized as an increased structuring by 

quadrants in the matrix: between stimulus type (i.e. natural or scrambled) dissimilarities 
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increase relative to within stimulus type dissimilarities, which leads to an increased 

dissociation of natural versus scrambled movies. This is also illustrated by the plots on 

the lower row of Figure 2.4A, where the similarity representations are visualized in two-

dimensional space after performing non-metric multidimensional scaling (MDS) on each 

dissimilarity matrix (using the function mdscale in Matlab, The MathWorks, Inc., Natick, 

MA, with the number of dimensions set to 2 and criterion set to ‘stress’). These plots 

show an increased separation between natural movies versus scrambled movies. This 

increased separation is also supported by further statistical analyses. The difference of 

average between stimulus type and average within stimulus type dissimilarities 

increases per area (Figure 2.4B; ordinary least squares, OLS, slope .16, 95% CI [.06 .26], p 

= .003), with a value of .20 (95% CI [.11 .32], p < .001) for V1  neurons, .39 (95% CI [.25 

.54], p < .001) for LI  neurons, and .53 (95% CI [.36 .70], p < .001) for TO  neurons. Thus, 

the distinction between natural and scrambled movies becomes more dominant in the 

neural representation when we move up in the cortical hierarchy. 

In order to relate single cell responses to this population effect we plotted the 

standardized (per neuron) responses of each neuron to each stimulus that were used to 

create the dissimilarity matrices (Figure 2.4D). Here we see that the curve showing 

average natural minus scrambled responses per neuron (to the right of each heatmap) is 

generally shifted to the right for LI compared to V1. This means that the distribution of a 

natural versus scrambled comparison shifts in favor of natural stimuli from V1 to LI 

causing more neurons to respond more to natural than to scrambled stimuli. For TO 

however, this curve has moved to the right nearly only for neurons responding more to 

natural stimuli. Thus, in TO the proportion of neurons responding more to natural 

stimuli is not necessarily different compared to LI, but the natural/scrambled difference 

is higher for those that do respond stronger to natural movies. 

Is this increased sensitivity for natural versus scrambled movies accompanied by an 

increase in category selectivity, that is, a differentiation between movies that depict a rat 

versus movies without rat? This would result in a similar “structuring by quadrants” as 

described in the previous paragraph, but now within the left upper quadrant of the 

dissimilarity matrix. 
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Figure 2.4. Stimulus representations based on responses averaged across movie durations.  

Panel (A) shows the stimulus dissimilarity matrices based on the correlation distance for each 

population of neurons recorded in V1, LI, and TO (upper row). Non-metric MDS is then used to 

represent the representational space in two dimensions (lower row). Panel (B) shows the 

difference between dissimilarities for stimulus pairs of the opposite stimulus type (i.e. natural 

versus scrambled) and dissimilarities for pairs of the same type in areas V1, LI, and TO. Grey 

area indicates 95% confidence bounds for OLS regression, calculated by BCa. Panel (C) is the 

same as panel B, but for the difference between dissimilarities for stimulus pairs of the opposite 

stimulus category (i.e. rat versus non-rat) and dissimilarities for pairs of the same category. Panel 

(D) contains heatmaps (one per area) displaying the average response to each movie 

standardized per neuron (Z-score across stimuli). Neurons (rows) are sorted in descending order 

according to the values of the average standardized response to natural movies minus that to 

their scrambled versions. To the right of each heatmap the average of this value used for sorting 

is plotted per neuron, with the yellow area indicating neurons that respond more to natural 

images than to their scrambled version and the blue area indicating the reverse. For LI and TO, 

red hatching indicates how this distribution changed from V1 and LI respectively. Stimuli 

(columns) are sorted in the same way as in the dissimilarity matrices: five natural rat movies, five 

natural non-rat movies, and their scrambled versions in the same order. Column averages are 

displayed below each heatmap (black lines), with the average across stimulus type (yellow for 

natural movies, blue for their scrambled version) indicated in color. 



 

68  

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

Visual inspection does not suggest that this pattern exists in the representational space 

for the populations of neurons recorded in either V1, LI, or TO. The MDS plots suggest 

an overlap in representations for rat versus non-rat movies without a clear separation. 

We performed further statistical analysis where we compared the average within 

stimulus category dissimilarities with average between stimulus category dissimilarities. 

The results do not show an emerging trend that would support an increased separation 

between representations of rat movies and those of non-rat movies (OLS slope -.02, 95% 

CI [-.06 .02], p = .432).  Looking at each area separately, the difference in dissimilarity is -

.02 (95% CI [-.08 .06], p = .696) for V1 neurons, .04 (95% CI [-.03 .13], p = .269) for LI 

neurons, and -.06 (95% CI [-.10 -.01], p = .148) for TO neurons. Positive values signify 

higher within category similarity than between category similarity, which is what one 

would expect in the case of a categorical representation. None of the areas shows such a 

categorical representation. To further strengthen these findings, we performed a 

potentially more sensitive population decoding analysis using support vector machines 

as a linear classifier. In agreement with the other analyses discussed above, the results of 

the linear classifier reveal no evidence for a categorical representation (Supplementary 

Material, Population Decoding Analysis). 

As described previously (Vermaercke et al., 2014), moving from V1 to LI and to TO is 

characterized by systematic changes in retinotopic location and size of the receptive 

field. Furthermore, we might sample neurons with different receptive field properties in 

the three areas.  This could mean that there are systematic changes in the area of the 

stimulus covered by our recorded samples of neurons across areas. However, a control 

analysis using average local stimulus statistics for each neuron’s receptive field shows 

that this confound cannot account for the increased natural/scrambled distinction from 

V1 to TO. In addition, there is no evidence that an emergence of a categorical rat/non-rat 

distinction could be hidden by such a confound (Supplementary Material, Receptive 

Field Confound). 
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2.3.2 RESPONSE STATISTICS FOR 

NATURAL AND SCRAMBLED MOVIES: 

MEAN, SPARSENESS, AND RELIABILITY 

Next, we looked at the average 

firing rates. Figure 2.5A shows the 

average firing rate for natural and 

scrambled movies (first averaged 

per neuron across movies for 

statistical analysis) for each area. 

Overall there is a statistically non-

significant decrease in firing rate 

(OLS slope -2.7, 95% CI [-5.7 0.1], 

p = .083) moving from V1 to TO, 

while the average baseline firing rate does not seem to vary. The difference in response 

to natural movies versus scrambled versions is negative for V1 (see Figure 2.5B) and this 

difference disappears towards the other areas, or, quantitatively, decreases significantly 

(OLS slope .9, 95% CI [.4 1.5], p = .003). The average difference is -1.6 for V1 (95% CI [-2.8 

-.8]), -.6 for LI (95% CI [-1.4 .2]), and .2 for TO (95% CI [-.4 1]). Similar results are 

obtained when the difference in firing rate is first divided by the average firing rate per 

neuron (OLS slope .04, 95% CI [.01 .08], p = .020), with an average difference of -.06 for 

V1 (95% CI [-.10 -.02]), .01 for LI (95% CI [-.03 .06]), and .02 for TO (95% CI [-.02 .09]). 

Control analyses show that these differences in firing rate between natural movies and 

their scrambled versions cannot be explained by differences in location and size of 

receptive fields (Supplementary Material, Receptive Field Confound). The reason why 

V1 neurons would prefer scrambled movies is further explored in a later section. For 

inference per neuron, BCa 95% CIs on the average difference in response to natural 

movies versus their scrambled version were calculated for each unit by means of random 

sampling of natural/scrambled stimulus pairs. We decided a unit prefers natural stimuli 

when this 95% CI excludes zero. This criterion indicates that 4% (95% CI [0 14], based on 

the binomial distribution) of the units in V1 prefer natural stimuli, 23% (95% CI [12 36]) 

 
Figure 2.5. Firing rates per area. 

Panel (A) shows average (across trials, stimuli, and 

neurons) response strength to natural (grey markers) 

and scrambled (white markers) movies per area, with 

the average baseline firing rate indicated by a 

horizontal line. Error bars indicate the 95% CI’s 

calculated by BCa. Panel (B) shows the average 

difference in response strength to natural and 

scrambled movies per area. Negative values indicate a 

stronger response to scrambled versions of the movies. 

Error bars indicate the 95% CI’s calculated by BCa. 
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in LI, and 27% (95% CI [16 41]) in TO. Scrambled stimuli are preferred by 32% (95% CI 

[20 47]) of the units in V1, 19% (95% CI [9 32]) in LI, and 29% (95% CI [17 43]) in TO. We 

conclude that, while there is an increase in the percentage of units consistently 

responding more to natural stimuli from V1 to TO, no clear change is evident for the 

percentage of units consistently responding more to scrambled stimuli. Applying the 

same criterion, rat stimuli are preferred by 18% (95% CI [9 31]) of the units in V1, 6% 

(95% CI [1 16]) in LI, and 13% (95% CI [6 26]) in TO. Non-rat stimuli finally are preferred 

by 2% (95% CI [0 11]) of the units in V1, 11% (95% CI [4 23]) in LI, and 0% (95% CI [0 7]) 

in TO. In general, it seems that a higher percentage of units tend to consistently respond 

more to rat than to non-rat movies. However, since this is clearest for V1 neurons and 

since these percentages do not change progressively across areas, we conclude that this 

is most likely a result of lower level stimulus properties that V1 neurons typically 

respond to. 

Next, we investigated the variation in responsiveness. Natural stimulation has been 

shown to increase the sparseness of the neural response (Vinje and Gallant, 2000).  We 

looked at the sparseness (see materials and methods, data analysis, sparseness and 

reliability) of each neuron’s response to natural movies and to their scrambled 

counterparts. In mouse V1, sparseness has been shown to be higher for responses to 

natural movies than to their scrambled counterparts (Froudarakis et al., 2014). We 

confirm this finding for single units in rat V1, with a difference in sparseness index of 

.035 (95% CI [.027 .047], p < .001; positive values mean higher response sparseness to 

natural movies; see Figure 2.6A). Also in LI and TO we find a higher sparseness for 

natural movies, with a difference of .028 (95% CI [.014 .042], p < .001) and .015 (95% CI 

[.004 .025], p = .011), respectively. 

Importantly local luminance based stimulus sparseness calculated for each neuron’s 

receptive field cannot explain the difference in response sparseness (Supplementary 

Material, Receptive Field Confound). However, if lower firing rates would tend to get 

higher sparseness index values and vice versa, some of these differences might be 

explained by the differences in firing rates shown before, in particular in area V1. 

Indeed, differences in firing rates are negatively correlated with differences in sparseness 
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 index for each area, with a Pearson correlation of -.28 in V1 (95% BCa interval [-.50 -.001], 

p = .050), -.54 in LI (95% CI [-.69 -.35], p < .001), and -.43 in TO (95% CI [-.67 -.02], p = 

.002). Thus, we controlled for differences in firing rates by taking for each cortical area 

the 30 units with a difference in firing rates evenly distributed around zero. For these 

units, the average difference in sparseness indices was .025 in V1 (95% CI [.017 .037], p < 

.001), .024 in LI (95% CI [.011 .037], p < .001), and .011 in TO (95% CI [.004 .019], p = .010). 

Thus, responses to natural movies show a higher sparseness than responses to scrambled 

movies, even when we control for overall responsiveness. 

 
Figure 2.6. Sparseness and reliability of single neuron’s responses. 

Panel (A) contains scatterplots of the sparseness index for natural (N) compared to the same 

index for scrambled (S) movies for all neurons recorded in V1 (left), LI (middle), and TO (right). 

Neurons with a lower index for natural movies are greyed out. Dashed lines indicate the means. 

Histograms of the difference between natural and scrambled stimuli are shown in the top right 

corner of each plot, with the 95% CI (calculated by means of BCa) of the mean indicated by a 

black bar. Panel (B) contains the same figures, but for the reliability coefficient. Panel (C) shows 

raster plots for an example neuron with relatively high response reliability of responses to two 

natural movies and their scrambled versions. For this example, response sparseness is much 

higher for the original stimuli compared to their scrambled version. Panel (D) shows raster plots 

for another example neuron. In this case response sparseness indices are equal for the two 

stimulus types. 
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Finally, responses to natural movies are decisively more reliable in all three areas (Figure 

2.6B). Reliability of V1 neural responses is on average .056 (95% CI [.037 .072], p < .001) 

higher to natural movies than to scrambled versions. For LI and TO neurons this 

difference is on average .090 (95% CI [.074 .108], p < .001) and .070 (95% CI [.047 .097], p < 

.001), respectively. In the case of reliability, we have relatively weak evidence of a 

possible influence of differences in response strength: the Pearson correlations between 

the difference in standardized reliability and the difference in standardized firing rates 

are .26 in V1 (95% CI [-.04 .47], p = .070), .12 in LI (95% CI [-.08 .35], p = .385), and .40 in 

TO (95% CI [-.040 .64], p = .003). The results for the 30 units selected to match for 

response strength (see paragraph above) of each cortical area are qualitatively similar to 

the results for the whole sample, with a difference of .059 in V1 (95% CI [.034 .081], p < 

.001), .095 in LI (95% CI [.072 .120], p < .001), and .052 in TO (95% CI [.029 .077], p < .001).  

2.3.3 USING A V1 MODEL TO EXPLAIN THE PREFERENCE FOR SCRAMBLED STIMULI AND TO 

PREDICT NEURAL RESPONSES 

To further investigate these findings, we used simulated V1 responses to see (a) if these 

simulated responses can predict observed responses and, if the response to (a) is 

affirmative, (b) if these simulated responses can explain the relative increase of the 

response for natural movies and the increased segregation between natural and 

scrambled movies. In the model spatiotemporal motion energy filters (Adelson and 

Bergen, 1985) are used as modeled V1 complex cells for a set of spatiotemporal 

frequencies, orientations, and spatial locations. The output of these filters can be used to 

estimate how strong responses in V1 would be to one stimulus relative to another one. 

Furthermore, the filters can be used in a model that is fitted to part of the data in order 

predict independent test data (Nishimoto and Gallant, 2011). Note that the V1-like filters 

are linearly combined to predict the neural responses, which is why the model might 

even capture the responses of neurons in higher visual areas to the extent that the 

complexity of their computations can be approximated by a linear combination of V1-

like filters.  
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Predicting neural responses 

The standardized output of each 

V1 filter was used as a predictor in 

a regularized linear regression 

model that was fit to the neural 

data, resulting in a spatiotemporal 

receptive field estimate consisting 

of a linear combination of these 

filters. This receptive field 

estimate can then be used to 

predict the response to a new 

stimulus. If this predicted 

response captures a certain 

amount of variability in the 

response to movies that were not 

used for fitting the model, then the 

fitted receptive field can explain 

some of the response properties of 

the neuron. For this test we also 

included the multi-unit data, since 

their firing rate is the sum (i.e. a 

linear combination) of the firing 

rates of the single units contained in the multi-unit cluster which can be accounted for 

because the model can use a linear combination of outputs of modeled single cells. 

The observed and predicted responses of a V1 example neuron on one natural movie are 

illustrated in Figure 2.7A. Histograms with prediction accuracy (i.e. Pearson correlation 

between observed and predicted response) averaged across all stimuli are shown in 

Figure 2.7B. The model performs reasonably well for V1 units, with an average 

prediction accuracy of .24 (95% CI [.21 .27], randomization test for difference from zero p 

< .001). To put this number in perspective, this is lower than the prediction accuracy of 

.52 reported by Nishimoto and Gallant (2011) in monkeys. This was to be expected since 

 
Figure 2.7. Performance of the V1-like motion energy 

model. 

Panel (A) shows the observed (dashed line) and 

predicted (full line) response of a V1 example neuron 

to each frame of a natural movie (note that the number 

of frames is 144, because the first six were omitted to 

get rid of the onset peak). Panel (B) contains stacked 

histograms for the prediction accuracy (Pearson 

correlation) averaged across all movies for single 

neurons (white) and multi-unit clusters (grey) 

recorded in V1, LI, and TO. Panel (C) contains 

scatterplots of average (across movies) accuracy for 

natural versus scrambled movies for single and multi-

units. Histograms of the difference between natural 

and scrambled stimuli are shown in the top right 

corner of each plot, with the 95% CI (calculated by 

means of BCa) of the mean indicated by a black bar. 

Greyed out markers represent units for which the 95% 

CI of the average accuracy as calculated by BCa 

(resampling all of the 20 stimuli) does include zero. 
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the number of frames (data) we used to train the model (2736) is one order of magnitude 

lower (on average 27120 in their case) and since we used natural movies and not motion 

enhanced movies. Prediction accuracy is lower but still significantly different from zero 

for LI (.16, 95% CI [.14 .18], p < .001) and even lower but still significantly different from 

zero for TO (.09, 95% CI [.07 .10], p < .001). In general, accuracy decreases across areas 

(OLS slope -.08, 95% CI [-.09 -.06], p < .001). Even when including reliability as a 

covariate accuracy decreases across areas (OLS slope -.05, 95% CI [-.06 -.03], p < .001). 

Dividing prediction accuracy by reliability gives us an estimate of the proportion 

obtained prediction accuracy out of the total possible prediction accuracy. When we do 

this per neuron and movie, we get an average of .46 (95% CI [.41 .51], randomization test 

for difference from zero p < .001) for V1, .34 (95% CI [.30 .38], p < .001) for LI, and .20 

(95% CI [.16 .24], p < .001) for TO. This amounts to a decrease across areas (OLS slope -

.13, 95% CI [-.16 -.10], p < .001). Thus, the aforementioned decrease in response reliability 

cannot explain the decrease in the performance of the model from V1 to TO.  

Focusing on the performance for single neurons and multi-unit clusters, prediction 

accuracy averaged across all 20 stimuli (natural and scrambled) is significantly different 

from zero (i.e. the 95% CI – calculated by resampling the stimulus labels – excludes 

zero), for 85.3% of the units in V1, 82.5% of the units in LI, and 56.4% of the units in TO. 

To get an estimate of receptive field size, we estimated the percentage of pixels in the 

area covered by the movie that modulate the neural response. Specifically, we used the 

median regression weights of the V1-like filters (across the 20 training sets used for 

cross-validation) in order to estimate the spatial receptive field. Pixels that were 

estimated to modulate the response with a magnitude less than 50% of that of the pixel 

that maximally modulated the response were excluded, to ignore the pixels that 

contribute relatively nothing. Based on this approach, V1 neurons were estimated to be 

modulated on average by 8% of the movies’ pixels (95% CI [7% 10%]), LI neurons by 14% 

(95% CI [12% 17%]), and TO neurons by 16% (95% CI [13% 20%]). This means that for LI 

neurons this movie frame coverage was 6% higher than for V1 neurons (95% CI [3% 9%], 

p < .001) and for TO neurons it was 8% higher than for V1 neurons (95% CI [5% 12%], p < 
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.001). The difference in coverage between TO and LI neurons was 2% (95% CI [-2 % 7%], 

p = .294). 

In sum, the simulated V1 model allows us to predict neural responses in each of the 

investigated areas, and reveals several differences between the areas which can be 

expected given their position in the cortical hierarchy: the model works better for V1 

than for the other areas, and the estimated receptive field size is smallest in V1. Thus, the 

model can be used to further investigate potential differences in how these three 

neuronal populations respond to natural and scrambled movies. 

Preference for scrambled stimuli in V1 filters 

To investigate the preference for 

one stimulus type over another, 

we calculated the output of the 

V1-like spatiotemporal motion 

energy model, thus before 

combining the V1 filters into a 

spatiotemporal receptive field 

estimate. For the vast majority of 

modeled V1 filters, the overall (across time) response to natural movies is lower than 

that to their scrambled versions. Figure 2.8 contains a histogram depicting the 

standardized response to scrambled movies subtracted from the response to their 

natural counterparts for all filters in the model (in this case 4616), with 98.6% of them 

preferring scrambled movies. This means that scrambled movies do seem to contain 

relatively more motion energy in virtually all spatiotemporal frequencies regardless of 

orientation and location. Other scrambling methods, such as segment/box scrambling 

(i.e. random repositioning of rectangular image segments), give qualitatively the same 

result (data not shown). This characteristic of scrambled stimuli has been reported before 

in the context of scrambling of still images using various methods including phase 

scrambling (Stojanoski and Cusack, 2014) and in an fMRI experiment using phase-

scrambled movies (Fraedrich et al., 2010). The higher amount of motion energy in 

 
Figure 2.8. Stimulus type preference in output of the 

V1-like motion energy model. 

Negative values indicate filter output for scrambled 

movies is on average higher than filter output for 

natural movies. 
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scrambled movies can explain the neural preference for scrambled stimuli especially 

prominent in the V1 data. 

Prediction accuracy on natural versus scrambled movies 

Scatter plots of average prediction accuracy on natural versus that on scrambled movies 

for each unit are shown in Figure 2.7C. For all three cortical areas, accuracy was higher 

for natural compared to scrambled movies: the difference in accuracy for natural minus 

that for scrambled was .10 for V1 (95% CI [.09 .12], p < .001), .07 for LI (95% CI [.06 .09], p 

< .001), and .05 for TO (95% CI [.03 .06], p <.001). Given the earlier finding that responses 

to natural movies are more reliable than responses to scrambled movies, this difference 

in prediction accuracy might be caused by the difference in reliability. Including 

reliability as a covariate still resulted in an estimated higher accuracy for natural movies 

of .07 for V1 (OLS estimate, 95% CI [.06 .09], p <.001), .05 for LI (OLS estimate, 95% CI 

[.03 .09], p = .003), and .05 for TO (OLS estimate, 95% CI [.03 .07], p <.001). Thus, the 

effect of scrambling on prediction accuracy does not seem to be the result of differences 

in response reliability. 

2.4 DISCUSSION 

We investigated the neural responses to natural movies and their phase scrambled 

versions in rat V1 and two extrastriate visual areas LI and TO, which belong to a distinct 

pathway reminiscent of the primate ventral visual stream (Vermaercke et al., 2014).  

First, we found an increased clustering of natural versus scrambled movie 

representations when progressing from V1 to TO. The increased dissociation of the two 

stimulus types correlates with a decreased overall preference for scrambled stimuli in 

spite of the stronger motion energy contained in scrambled movies.  A closer look at 

single cell preferences suggests that the population effect is driven by the increase in the 

proportion of cells preferring natural stimuli and by an increase in strength of preference 

for those neurons that prefer natural stimuli. 

Second, unlike what one would expect to see in an object representation pathway such as 

the primate ventral visual stream (Orban, 2008), the population representations of the 
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stimulus set do not culminate into a higher level categorical representation in area LI or 

in the most downstream area TO. Of course, we are restricted in making strong claims 

about this by our small stimulus set and limited amount of neurons per area. However, 

the neurons used for our analyses were all responsive to at least one stimulus and did 

show selectivity, indicating that they did encode information. Furthermore, as far as we 

can judge from the available primate literature, the distinction between animate and 

non-animate stimuli in the monkey and human brain is very clear. For example, the 

matrices from monkey and human data as shown by Kriegeskorte et al. (2008b, Fig. 1) 

suggest that this animate/inanimate distinction in primates is at least as clear as the 

distinction between natural and scrambled in our rat data. Given that we can easily pick 

up the natural vs scrambled distinction in our rat data, we think we should be able to 

pick up a similarly sized effect of rat (animate) vs nonrat (inanimate). An effect of this 

size does not seem to be present for our stimuli in the recorded neuronal populations. 

Nonetheless, we cannot exclude that factors we did not control for, such as attention or 

rather the lack thereof, might have influenced such findings. Nor can we exclude the 

possibility that other areas in the rat brain would show such category selectivity. 

However, it is not very obvious which other areas would do so.  

Finally, a V1-like model that has previously been used to model receptive field 

properties of neurons (Nishimoto and Gallant, 2011; Talebi and Baker, 2012) as well as 

voxels in human brain imaging (Nishimoto et al., 2011) could predict responses of V1 

neurons reasonably well, especially when we take into consideration that our 

experiment was not optimized for fitting such a model. Similar to what is reported in 

humans when comparing primary visual cortex with extrastriate areas (Nishimoto et al., 

2011), prediction accuracy was reduced in LI and even more so in TO, suggesting that 

such a model was progressively less able to capture response properties of areas further 

along this visual stream. Of course, this is only one model that will not capture all 

possible tuning properties of V1 neurons, therefore caution should be taken in drawing 

strong conclusions from this piece of evidence alone. 

The sampling bias of upper cortical layers for the V1 recordings could explain (some of) 

the differences that we observe between recordings in V1 on the one hand and 
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recordings in LI and TO on the other hand. A previous systematic comparison between 

responses in upper and lower layers of V1 did not show consistent differences 

(Vermaercke et al., 2014). Likewise, Froudarakis et al. (2014) report no differences 

between responses to natural movies in V1 layer 2/3 and V1 layer 4. Moreover, all the 

changes across the succession of areas that we do describe continue in the same direction 

from LI to TO, where there is no difference in layer sampling bias. Thus, we argue that a 

sampling bias of upper layers in V1 does not invalidate conclusions of gradual changes 

across the visual processing pathway under investigation. 

Together, these findings support the idea of a functional hierarchy in these areas. The 

data suggest that an increasing number of neurons are driven by more complex stimulus 

features that are not captured by V1-like filters and destroyed by a phase-scrambling 

method. Indeed, a linear combination of V1-like receptive fields decreases in efficiency in 

predicting neural responses the further up this hierarchy. Nevertheless, the functional 

hierarchy does not seem to culminate in neural representations as found in primates. 

2.4.1 COMPARISON WITH PREVIOUS RESEARCH ON RODENT EXTRASTRIATE VISUAL CORTEX 

Previous research on the functional properties of rodent extrastriate areas LI and/or TO 

have only used drifting gratings (Marshel et al., 2011; Vermaercke et al., 2014) or 

simplistic artificial stimuli (Vermaercke et al., 2014).  

The current study is the first that allows an investigation of selectivity in more 

downstream visual cortex for the complex features present during natural stimulation. 

The increased response to natural movies relative to scrambled movies and the 

decreased performance of a V1-like energy model significantly extend the earlier 

findings of position invariance and simple shape representations, and support the notion 

of an increasingly high-level stimulus representation when progressing from V1 to TO. 

Nevertheless, we could not find any evidence for a category selective representation in 

rat extrastriate cortex and to the best of our knowledge there is no other neural data 

supporting this notion. In a recent study, rats could be trained in a two alternative forced 

choice task to discriminate rat movies from non-rat movies and could generalize to new 

previously unseen exemplars (Vinken et al., 2014). However, the training was difficult 
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and took a substantial amount of time, which is consistent with the absence of a 

categorical representation in naïve animals. 

2.4.2 COMPARISON WITH PREVIOUS EXPERIMENTS USING NATURAL STIMULI 

Previous studies using stationary natural and scrambled images indicate a preference for 

natural images in responses of human lateral occipital complex (Grill-Spector et al., 1998) 

and monkey inferior temporal cortex (Vogels, 1999c; Rainer et al., 2002). In areas earlier 

in the ventral visual processing hierarchy responses have been reported to show a 

preference for scrambled images in V1 that disappears in extrastriate visual areas (Rainer 

et al., 2002). The current study included a method of scrambling which falls within the 

range of methods used previously. Recent studies zoomed in on this general difference 

between intact and scrambled images by including specific methods of scrambling and 

focusing upon particular characteristics of natural images. For example, Freeman and 

colleagues showed in monkeys and in humans that responses in V2 were stronger for 

naturalistic textures than for spectrally matched noise, while they were the same in 

magnitude in V1 (Freeman et al., 2013).  

In the current study, the change in preference for natural and scrambled is similar to all 

this earlier work when the preference is expressed in relative terms: more preference for 

natural movies when moving away from V1. We find a stronger firing rate in response to 

scrambled movies compared to their original natural counterparts in V1 and this 

difference decreases in extrastriate area LI and ends in an equal firing rate for both 

stimulus types in TO. Similarly, an fMRI study in humans has reported stronger early 

visual cortex activity to spatiotemporally phase-scrambled movies relative to their 

original version (Fraedrich et al., 2010). This result is supported by the motion energy 

model we used to show an increased output for scrambled movies when passed through 

a bank of V1-like filters, as well as by previous modeling studies using still images 

(Stojanoski and Cusack, 2014). In the study by Freeman et al. (2013) the reported equal 

firing rate for natural and scrambled images in V1 might be the result of control stimuli 

that are more carefully matched in spectral properties than is allowed by our 

spatiotemporal phase scrambling of the movies. These previous reports related to phase-
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scrambling combined with our own modeling results indicate a parallel between our 

experimental results and the earlier findings in primates: namely, a preference for 

scrambled stimuli that disappears in extrastriate cortex (Rainer et al., 2002). Similar to 

the present study, Rainer et al. (2002) used a scrambling method that introduced 

distortions that the earlier visual system is sensitive to (Stojanoski and Cusack, 2014). 

However, in the present study this gradual change in stimulus type preference did not 

culminate in the higher response to natural stimuli that is observed in monkey inferior 

temporal cortex (Rainer et al., 2002) and human lateral occipital complex (Grill-Spector et 

al., 1998). This means that inasmuch as the succession of areas where we recorded can be 

compared with the primate ventral visual stream, we could not find support for a 

preference for natural stimuli typical of these primate higher visual areas, and find a 

resemblance with more mid-level areas, at best. Another recent study in rodents reports 

a stronger response to phase scrambled movies in mouse V1 when the animal was sitting 

still and not whisking (Froudarakis et al., 2014), which is consistent with our findings. 

On the other hand, their recordings when the animals were whisking and/or running as 

well as their recordings in anaesthetized animals showed an equal response to natural 

movies and their phase scrambled controls. These findings suggest that brain/behavioral 

state interacts with the effect of phase scrambling. Our rats were awake and passively 

viewing the stimuli during recordings, but we did not monitor behavioral cues such as 

whisking, so we cannot control for this. Overall, the animals tended to be sitting very 

still during the recordings. We speculate that behavioral state might increase the 

sensitivity for natural stimulation in rodent visual cortex overall, which then overcomes 

the difference in motion energy in V1. Several other comparisons in our report between 

natural and scrambled movies were also included in the investigation of V1 by 

Froudarakis et al. (Froudarakis et al., 2014), and for those indices the results tend to be 

consistent between the two studies. More specifically, we replicate a higher sparseness 

and more reliable responses for natural movies. 

2.4.3 IMPLICATIONS FOR THE RODENT AS A MODEL FOR OBJECT VISION 

What are the implications of our findings on the idea of the rodent as a model for object 

vision?  The rodent has become a popular model in the neuroscience community for 
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tackling questions on the topic of higher-level and object vision (Glickfeld et al., 2014; 

Cooke and Bear, 2015). A large and consistent body of evidence exists in the behavioral 

literature revealing encouraging visual capabilities in rats (Zoccolan, 2015). However, 

while steps have been taken to show the existence of two anatomically and functionally 

distinct streams in mouse visual cortex (Andermann et al., 2011; Marshel et al., 2011; 

Wang et al., 2012), it remains an open question whether and to what extent the rodent 

ventral visual stream can be considered as homologous to that of the primate. Here we 

show that the proposed homologue of the rat ventral visual stream may not show certain 

properties to the same extent as the primate ventral visual stream, such as higher 

responses to natural images, and even lack defining properties like a categorical 

representation. This story parallels previous findings that show both typical (an increase 

in tolerance for stimulus position), as well as atypical (an increased response to moving 

stimuli) properties of the pathway (Vermaercke et al., 2014). Together, Vermaercke’s 

(2014) and our results show that we should be cautious in assuming functional 

similarities in visual processing between rodents and primates. Perhaps we should 

reconsider the concept of a ventral visual stream tuned for object recognition in rats and 

mice. After all, these are non-foveal animals, with a very low visual acuity (Prusky et al., 

2000), that might rely so much on their other senses for object recognition in natural 

situations that they lack the functional specialization in visual cortex. The situation is 

complicated further by the finer differentiation of this ventral stream in primates into 

multiple pathways (Kravitz et al., 2013), and it is unclear which pathway(s) might be 

present in rodents, if any. 

2.4.4 CONCLUSION 

We recorded neural responses in areas belonging to a proposed rodent homologue of the 

primate ventral visual stream in order to investigate two hallmarks of high-level 

representations in primates: preference for intact versus scrambled stimuli and category-

selective responses. We found that our results parallel changes in response strength to 

natural versus scrambled stimuli from primate primary visual cortex to early extrastriate 

visual areas. However, unlike in primate ventral visual stream, in our results we failed to 
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find a preference for natural stimuli in most temporal visual area TO, nor did the 

targeted pathway lead to category-selective representations. 

2.5 SUPPLEMENTAL INFORMATION 

2.5.1 RECEPTIVE FIELD CONFOUND 

Methods 

The receptive field properties (i.e. size and location) are expected to change across areas 

(Vermaercke et al., 2014). Furthermore, the distribution of receptive field positions is not 

guaranteed to be the same in the sampled neurons from different areas. As a 

consequence, the part of the stimulus covered by receptive fields – and therefore the 

local stimulus properties – might change systematically. This could then cause changes 

in response properties that are not related to changes in actual functional properties 

across these areas. In order to assess the role of this confound, local stimulus statistics 

were calculated for each neuron, using only the area of the stimulus covered by the 

receptive field as estimated by a separate receptive field mapping experiment (see 

materials and methods, electrophysiological recordings, receptive field mapping). For 

this experiment, the screen area was divided in 3 × 5 square screen locations that could 

drive a neuron, out of which 3 × 3 locations overlap with the presented square stimulus. 

Thus, for each stimulus and per frame we calculated local stimulus statistics for each of 

those 9 locations: mean pixel value, root-mean-square contrast, mean absolute pixel 

change (between successive frames), skewness, and kurtosis. For each neuron, the 

corresponding stimulus properties were then defined as the average of the statistic in 

question across responsive locations as determined by the receptive field mapping 

experiment. Those statistics can then be used instead of the actual responses to calculate 

sparseness, dissimilarity matrices, etc. using exactly the same methods as for the neural 

data. As a criterion for responsiveness at a certain screen position, a Wilcoxon signed 

rank test was performed with a threshold of p = .05 (across hashtag stimulus 

presentations and per screen position). 
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Results 

Stimulus representations in V1, LI, and TO. 

Figure 2.9 illustrates the stimulus 

coverage of each neural population 

sample. A control analysis was 

performed to see whether 

systematic changes in receptive 

fields could underlie the change in 

population representation across 

areas. For this we used each 

neuron’s average local stimulus 

statistics (i.e. the stimulus 

properties within the neurons 

receptive field) and used these to 

make dissimilarity matrices. Thus, the analysis is exactly the same, only now the values 

of the average local stimulus statistics are used for each neuron instead of firing rate. If a 

systematic change in receptive fields would underlie our finding of a systematic increase 

in natural versus scrambled clustering of representations, we should find a systematic 

increase in the local receptive field based stimulus statistics. This results in the following 

natural versus scrambled dissimilarity values based on: (a) pixel values; V1 .03 (95% CI 

[.00 .07], p = .144), LI .04 (95% CI [.01 .08], p = .024), TO .02 (95% CI [.00 .05], p = .243), (b) 

RMS contrast; V1 .07 (95% CI [.01 .13], p = .002), LI .11 (95% CI [.05 .16], p < .001), TO .10 

(95% CI [.05 .17], p < .001), (c) skewness; V1 -.06 (95% CI [-.08 -.04], p = .005), LI -.06 (95% 

CI [-.07 -.04], p = .003), TO -.06 (95% CI [-.07 -.04], p = .006), (d) kurtosis; V1 .09 (95% CI 

[.05 .13], p < .001), LI .06 (95% CI [.03 .09], p = .001), TO .07 (95% CI [.03 .11], p < .001), (e) 

pixel change; V1 -.04 (95% CI [-.06 -.01], p = .051), LI -.04 (95% CI [-.06 -.02], p = .019), TO -

.03 (95% CI [-.05 .01], p = .181). 

In general, scrambled and natural movies are locally more different in terms of pixel 

values, RMS contrast, and kurtosis compared to within scrambled or natural 

comparisons. They are locally even more similar in terms of skewness and pixel change. 

However, there is no systematic change across areas in terms of local stimulus statistics 

 
Figure 2.9. Stimulus coverage by receptive fields. 

White dots indicate the centers of gravity of the 

responsive screen positions as determined by the 

receptive field mapping experiment. Their position is 

calculated by taking the average responsive screen 

location (weighted by the net responses) and plotted 

relative to the square stimulus. Note that for four TO 

neurons that center of gravity fell just besides the 

stimulus, but the bigger receptive field size ensured 

overlap of the stimulus and receptive field. The 

greymaps indicate the proportion of neurons that have 

that part of the stimulus within their receptive field. 

Note that this stimulus coverage is more 

homogeneously distributed for LI and TO neurons. 
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such as we see from V1 to TO in the actual data (see Figure 4B). We conclude that 

changes in retinotopic location and size of receptive fields cannot account for the 

increasing distinction between natural and scrambled movies in neural representations 

from V1 to TO. 

As we did before for the natural versus scrambled test, we report the same rat versus 

non-rat contrasts based on each neuron’s average local stimulus statistics. Given the 

absence of categorical distinctions in the neural data, we should mainly check whether 

maybe this absence is due to differences in the local stimulus statistics in the other 

direction than expected, that is, differences that are counterproductive for finding 

categorical distinctions. More specifically, this would be the case if the local stimulus 

statistics would give negative values. This results in the following rat versus nonrat 

dissimilarity values based on: (a) pixel values; V1 -.16 (95% CI [-.19 -.11], p < .001), LI -.12 

(95% CI [-.17 -.06], p = .002), TO .12 (95% CI [-.17 -.07], p = .004), (b) RMS contrast; V1 -.09 

(95% CI [-.14 -.03], p = .025), LI -.08 (95% CI [-.12 -.03], p = .057), TO -.11 (95% CI [-.15 -

.06], p = .008), (c) skewness; V1 -.06 (95% CI [-.11 .00], p = .139), LI -.09 (95% CI [-.14 -.02], 

p = .024), TO -.05 (95% CI [-.11 .02], p = .237), (d) kurtosis; V1 .02 (95% CI [-.05 .09], p = 

.710), LI -.02 (95% CI [-.08 .04], p = .565), TO .05 (95% CI [-.01 .13], p = .179), (e) pixel 

change; V1 -.19 (95% CI [-.21 -.16], p < .001), LI -.15 (95% CI [-.18 -.11], p < .001), TO -.15 

(95% CI [-.19 -.10], p < .001). These values are negative for pixel values, RMS contrast, 

skewness and pixel change, indicating that differences on these local statistics might hide 

a categorical distinction. However, these contrasts are relatively small in absolute value 

(the minimum is -.19) compared to the size of the natural versus scrambled effect (.20, 

.39, and .53, for V1, LI, and TO, respectively). In addition, each local stimulus statistic is 

highly similar across regions, meaning that if a difference in local stimulus statistics 

would hide a categorical representation, it could equally affect the dissimilarity values of 

each region. This means we would then expect a change in dissimilarity values in our 

data across regions, since a categorical representation is expected to emerge along the 

pathway and would not be present in V1 responses. The absence of this change in our 

data means that we have no evidence that an emergence of a categorical distinction is 

hidden by local stimulus statistics. 
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Single unit response statistics for natural and scrambled movies: Mean and sparseness. 

The difference in various local stimulus statistics (averaged across responsive stimulus 

parts and frames) for natural movies versus scrambled versions is not correlated with 

the difference in response to natural movies versus scrambled versions, with a Pearson 

correlation (across neurons) of .03 for pixel values (95% CI [-.17 .16], p = .731), -.01 for 

RMS contrast (95% CI [-.13 .22], p = .876), -.03 for skewness (95% CI [-.18 .16], p = .743), -

.01 for kurtosis (95% CI [-.21 .12], p = .907), .01 for pixel change (95% CI [-.08 .25], p = 

.921). Thus, differences in local stimulus statistics cannot explain differences in firing rate 

between natural movies and their scrambled versions. 

The differences in sparseness indices are not positively correlated with differences in 

sparseness indices calculated on the local pixel values, with a Pearson correlation of -.16 

for V1 (95% CI [-.35 .10], p = .269), -.07 for LI (95% CI [-.33 .35], p = .727), and -.07 for TO 

(95% CI [-.44 .17], p = .651). Thus, we conclude that a difference in local luminance based 

stimulus sparseness does not underlie the difference in response sparseness. 

2.5.2 POPULATION DECODING ANALYSIS 

Methods 

In addition to the dissimilarity matrices, we conducted a population decoding analysis 

to test whether a classifier trained on a few stimuli to discriminate stimuli of a different 

type would generalize to independent test stimuli. Specifically, we trained a linear 

classifier (support vector machine, linear kernel, least squares method, and a C-

parameter of 1) to discriminate between movie types (natural/scrambled, rat/non-rat, 

and scrambled-rat/scrambled-non-rat). Generalization performance of the classifier was 

assessed by means of cross-validation where correct classification was tested separately 

for two stimuli (one from each movie type) using only all other relevant stimuli for 

training. The support vector machine analysis was performed exhaustively for each 

possible training and test set combination to obtain an average performance. For 

example, the classification of one rat movie was tested five times by training the 

classifier on the remaining four rat movies and four non-rat movies, each time leaving 

another non-rat movie out to have a balanced training set. This was then done for each of 
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the ten rat or non-rat movies, resulting in 10 × 5 rat/non-rat classifications. Performance 

of the classifier was calculated as proportion of correctly classified test stimuli (out of 20 

× 10 for natural/scrambled and out of 10 × 5 for both rat/non-rat and scrambled-

rat/scrambled-non-rat classification), ensuring a complete separation of training and test 

stimuli. The distribution of the performance under the null hypothesis was estimated by 

randomly shuffling responses across neurons per stimulus in order to calculate p-values. 

The distribution of the difference between rat/non-rat performance and scrambled-

rat/scrambled-non-rat performance under the null hypothesis was estimated by 

randomly flipping natural and scrambled labels across neurons in order to calculate p-

values. 

Results 

In this additional analysis, we trained a linear classifier to discriminate between movie 

types (natural/scrambled, rat/non-rat, and scrambled-rat/scrambled-non-rat; see 

materials and methods, data analysis, population decoding analysis). In case of 

natural/scrambled classification the ceiling of 100% correct becomes quickly apparent, 

with a performance of .89 (p = .002) for V1, 1 (p < .001) for LI, and 1 (p < .001) for TO. For 

the categorical rat/non-rat test performance is .5 (p = 1) for V1, .9 (p = .007) for LI, and .4 

(p = .528) for TO. This seems to suggest a possible categorical population representation 

in LI responses. However, if the classifier uses categorical information, which is not 

preserved by phase scrambling, it should perform better on the original stimuli than on 

their scrambled versions. Therefore, the appropriate baseline for comparison in this case 

is the performance on the scrambled versions of those stimuli. For the scrambled-

rat/scrambled-non-rat test performance is .48 (p = .954) for V1, .66 (p = .303) for LI, and 

.28 (p = .188) for TO. A pair-wise (i.e. taking into account natural-scrambled stimulus 

pairs) comparison with this baseline shows no evidence of a difference in rat/non-rat 

versus scrambled-rat/scrambled-non-rat classification performance, with a difference of 

.02 (p = .930) for V1, .24 (p = .320) for LI, and .12 (p = .419) for TO. We conclude that in 

agreement with the other analyses, the linear classifier reveals no evidence for a 

categorical representation. 

 



A bridge between behavior and neurons 

 

  
Visual object recognition in rats | 87 

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

Chapter 3.  

A BRIDGE BETWEEN BEHAVIOR AND NEURONS 

While rats can categorize novel natural movies, we had not found evidence for a 

categorical representation in their visual system. Unfortunately, a direct comparison 

between our neural and behavioral data is not possible, because we have no neural 

responses for any of the movies that the animals had to generalize to. Meanwhile, deep 

neural network models (DNN) had been developed that predict neural responses and 

categorization performance on the same stimulus set in monkeys with unprecedented 

accuracy (Kriegeskorte, 2015). Quantifying our natural movies with a DNN allows us to 

ask new questions that connect the neural and behavioral data. A) what level of processing 

of the DNN is required to support the categorization experiment? B) what level of processing of 

the DNN do the neural representations in rat visual cortex correspond to? 

3.0 BACKGROUND 

The brain is essentially a large neural network. Brain functions such as complex 

information processing are achieved through interactions between neurons, the 

computational units of a neural network. Neural network models are computational 

models consisting of a collection of interconnected units for which the activation is a 

weighted sum of their incoming inputs, passed through a nonlinear activation function. 

DNNs are models in which the units are organized in multiple layers between input data 

and the final output layer. When such models are trained to solve complex problems, 

their layers learn complex representations of the data with different levels of abstraction 

(LeCun et al., 2015). Convolutional neural networks are a special case of (deep) neural 

networks that are inspired by the visual system and feature convolutional and pooling 

layers. In particular, each unit in a convolutional layer only processes a local patch of the 

data (i.e. receptive field). These units are organized in feature maps. Units within the 
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same feature map tile the input space and share the same input weights (i.e. they 

respond to the same feature at a different location). Mathematically, this operation is 

equivalent to a discrete convolution, hence the name. Pooling layers then combine the 

outputs of a number of units from the same feature map with neighboring receptive 

fields (typically by taking the maximum). Convolutional and pooling operations are 

directly inspired by the idea that complex cells combine (pool) the output of several 

simple cells with identical orientation preference but different receptive field locations 

(Hubel and Wiesel, 1962). Several stages of convolutional and pooling layers are 

typically followed by fully connected layers in which each neuron receives input from all 

neurons in the previous layer. 

A deep convolutional neural network that implements these principles in several layers 

can be trained to do natural image categorization with previously unprecedented 

accuracy (Krizhevsky et al., 2012). Interestingly, such models can match human level 

accuracy in certain object recognition tasks (Yamins et al., 2014) and even to some extent 

capture human shape sensitivity (Kubilius et al., 2016). The units in a trained 

convolutional network become feature detectors that encode increasingly complex 

features of the input image. Their activations in response to an input image can be taken 

to quantify the presence of each feature (i.e., feature extraction). Unit activations can also 

be used to predict actual neural responses in monkey IT and V4 (Cadieu et al., 2014; 

Yamins et al., 2014; Kalfas et al., 2017) and fMRI responses across the human ventral 

visual stream (Güçlü and van Gerven, 2015). Thus, deep neural networks provide an 

excellent framework for simultaneously predicting brain and behavioral responses 

(Kriegeskorte, 2015). 

In the upcoming chapter, we revisit the behavioral categorization data of Chapter 1 and 

the neuronal data of Chapter 2. We refer to the respective chapters for methodological 

details of the experiments. Our understanding of these data was limited by the lack of a 

model that can quantify our natural movies in terms of complex visual features. Here, 

we attempt to address this issue by using a convolutional deep neural network to extract 

features of these movies. Figure 3.1 shows the architecture of the DNN that we used in 

this paper. We extracted features at different layers of the network (shaded in blue), by 
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taking their unit activations in response to our natural movies. Different layers represent 

different stages of processing, with units from lower to higher layers encoding 

increasingly complex visual features. For comparison with neural data, we applied an 

analysis analogue to the one described in detail for our neural data under “Population 

representation” in section 2.2.4, Data analysis. For comparison with behavioral data, we 

trained a linear classifier on features (activations) extracted from the training stimuli (for 

which we also have neuronal data) and tested for generalization on test stimuli. 

  

 
Figure 3.1. Schematic representation of the network architecture used for movie feature 

extraction. 

The network is a 3D ConvNet (Tran et al., 2014) with a VGG-11 architecture (Simonyan and 

Zisserman, 2014). The figure should be read from left (input) to right (classification) and has 5 

convolutional layer stacks followed by three fully connected layers. Convolution is done by 3 × 3 

× 3 (height, width, and time) patches with 64, 128, 256, or 512 feature maps per convolutional 

layer. The fully connected layers have 4096 or 487 units. We only used the blue shaded layers for 

feature extraction. 
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DEEP NEURAL NETWORKS AND VISUAL PROCESSING IN THE RAT. 

The increased use of rodents as a model for low- and higher-level visual functions has 

raised the question of how rodent visual processing compares to existing computational 

and primate models. Rodent visual cortex has two pathways, with one “lateral stream” 

anatomically resembling the primate ventral stream (Wang et al., 2012). This primate 

pathway is specialized in object recognition and the stages of processing are captured 

well by deep neural networks (DNNs; Güçlü and van Gerven, 2015). Here we compare 

the stages of processing of natural and scrambled movies in a 3D convolutional network 

(3D ConvNet) with three stages of the aforementioned rat lateral stream: primary visual 

(V1), laterointermediate (LI), and temporal occipital cortex (TO). As in rats (Vinken et al., 

2016), a natural versus scrambled representation emerges in the convolutional layers of 

the DNN. The last of these layers can support generalization in a movie categorization 

task that rats could also learn (Vinken et al., 2014). The subsequent fully connected layers 

lead to a clear categorical representation not found in untrained rats (Vinken et al., 2016). 

This comparison reveals similarities between the rat lateral stream and a DNN that could 

explain relatively complex visual abilities. 

3.1 RESULTS 

We extracted spatio-temporal features from a movie stimulus set using a 3D ConvNet 

(Tran et al., 2014). Next, we compared DNN stimulus representations with neural 

representations in rat visual cortex (V1, LI, and TO). Finally, we assessed whether the 

DNN features allow a linear classifier to generalize in a movie categorization task that 

rats are able to learn. 

3.1.1 DEEP NEURAL NETWORK FEATURE EXTRACTION 

All stimuli are greyscale 384 x 384 movies of 5s (150 frames) each, with either a rat or a 

moving object. Frames were resized to 128 x 128 pixels and 112 x 112 center crops were 

taken. Features were extracted per window of 16 frames (9 windows spanning 144 

frames) and averaged per movie (like for the neural data). We used a pre-trained (Sports 
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M-1) 3D ConvNet (Tran et al., 2014) with a VGG-11 architecture (Simonyan and 

Zisserman, 2014) that is extended to encompass the time dimension. This model is 

included in C3D-v1.0 (http://vlg.cs.dartmouth.edu/c3d/). 

We focus on a subset of 20 movies 

for which we have neural data: 5 

rat movies, 5 non-rat movies, and 

their spatio-temporal phase 

scrambled version (Vinken et al., 

2014). On the extracted features, 

we applied per layer principal 

component analysis (PCA) 

resulting in 19-dimensional vectors per stimulus. As for the neural data, these vectors 

were correlated pair-wise (Pearson r) in order to obtain representational dissimilarity 

matrices (RDMs) with distances 1 - r. Stimulus pairs that share a similar representation 

across features in a layer result in a lower dissimilarity. These matrices were calculated 

for 8 DNN layers (Figure 3.2). Across the max-pool layers (1-5) a natural versus 

scrambled movie pattern emerges: 4 large quadrants become visible. Later, in the fully 

connected layers 6-8 a categorical pattern emerges within the natural movies (i.e. a 

grouping within the left-upper quadrant). 

3.1.2 NEURAL STIMULUS REPRESENTATIONS 

Next, we compare the DNN 

RDMs with neural RDMs that 

previously revealed a natural 

versus scrambled dissociation but 

no categorical pattern in rats 

(Vinken et al., 2016). In short, per 

stimulus a neural response vector 

was obtained using each single 

and multi-unit’s (SU and MU) 

 
Figure 3.2. Deep Neural Network RDMs. 

The first 5 are max-pool layers (each preceded by one 

or more convolutional layers). Layer 6-8 are fully 

connected. 

 
Figure 3.3. Neural RDMs per area (A) and their 

correspondence with DNN layers for all, natural or 

scrambled stimulus pairs (B). 

Filled markers indicate the lower 95% CI bound was 

higher than zero. Layers for which the LI-V1 or TO-V1 

95% CI excludes zero are marked with a dot. 
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normalized firing rate. This resulted in N-dimensional response vectors, with N = 

50SU+25MU for V1, N = 53SU+33MU for LI, and N = 52SU+26MU for TO. Again, 

stimulus pairs that elicit a similar neural response  result in a lower dissimilarity. These 

neural RDMs are shown in Figure 3.3A. 

In Figure 3.3B we quantified the correspondence between neural and DNN RDMs by 

calculating the correlation (Spearman R) between off-diagonal upper halves of the 

matrices. In general, the correspondence increases up to layer 3 for V1/LI and up to layer 

4 for TO. The maximum correlation is higher for LI and TO than for V1. For scrambled 

movies, TO corresponds less with earlier layers than V1. For natural movies, both LI and 

TO correspond more with earlier layers than V1. In particular, there is a decreased 

correlation for fully connected layers 6-8: the DNN representation of natural movies 

grows towards a categorical pattern that is absent in the neural representations. 

3.1.3 CATEGORIZATION PERFORMANCE 

Next, features were extracted 

for a larger set of movies used 

previously in a behavioral 

experiment. Here, rats 

learned to classify rat movies from natural or scrambled distractors and could generalize 

to several new test sets (Vinken et al., 2014). To assess for each DNN layer whether its 

features would be able to support such a task, we trained a linear support vector 

machine (SVM) and tested for generalization on the test sets. PCA was used for feature 

reduction, only retaining the first N dimensions that explain at least 50% of the variance 

(more features generally lead to poor generalization). 

The SVM performance as a function of DNN layer is shown in Table 3.1. 

Representations in later convolutional layers (in particular at maxpool layer 5) can 

support successful generalization from training to test stimuli with natural distractors.  

Note that, as opposed to rats (Vinken et al., 2014), in fully convolutional layers the 

classifier fails to generalize to stationary or slow stimuli (labeled “natural slow”). 

Table 3.1. Rat versus non-rat generalization (% correct). 
          

Test set L1 L2 L3 L4 L5 L6 L7  L8 

Natural 40 30 50 75 98 98 93  100 
Natural slow 50 50 60 60 93 100 57  63 
Scrambled 93 87 97 100 100 100 97  97 
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3.2 CONCLUSION 

In this work we compare stimulus representations in a DNN with those of the rat visual 

“lateral stream”. We show a correspondence with convolutional layers that does not 

extend to the  categorical representation of fully connected layers. In addition, later 

convolutional layers can explain visual categorization abilities in rats. Together, this 

suggests that rat neural responses and behavior relate to a mid-level representation in 

visual hierarchical processing. 
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Chapter 4.  

CHANGE DETECTION IN RAT VISUAL CORTEX 

All of our previous studies were aimed at investigating object recognition properties in 

the rat visual system. Here, we turn to a visual oddball paradigm in a study on 

adaptation and expectation. In human event-related potential studies, this paradigm is 

associated with a component called the mismatch negativity (MMN; Näätänen et al., 

2007). This refers to a difference in response between frequent and rare events. In 

monkey IT cortex, this difference can be explained by repetition suppression for frequent 

stimuli and not by a surprise related enhancement for rare stimuli (Kaliukhovich and 

Vogels, 2014). In this final rat study, we use this paradigm to investigate adaptation and 

effects of expectation in the rat visual system. Do we see a surprise-based response 

enhancement in the rat visual system? 

  

Published as 

Vinken K., Vogels R., Op de Beeck H. (2017). Recent Visual Experience Shapes Visual 

Processing in Rats Through Stimulus Specific Adaptation and Response 

Enhancement. Current Biology, 27 (6), 914-919. 
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RECENT VISUAL EXPERIENCE SHAPES VISUAL PROCESSING IN RATS THROUGH STIMULUS SPECIFIC 

ADAPTATION AND RESPONSE ENHANCEMENT. 

From an ecological point of view it is generally suggested that the main goal of vision in 

rats and mice is navigation and (aerial) predator evasion (Wallace et al., 2013; Yilmaz 

and Meister, 2013; Zoccolan, 2015). The latter requires fast and accurate detection of a 

change in the visual environment. An outstanding question is whether there are 

mechanisms in the rodent visual system that would support and facilitate visual change 

detection. An experimental protocol frequently used to investigate change detection in 

humans is the oddball paradigm, where a rare unexpected stimulus is presented in a 

train of stimulus repetitions (Garrido et al., 2009). A popular “predictive coding” theory 

of cortical responses states that neural responses should decrease for expected sensory 

input and increase for unexpected input (Friston, 2005; Summerfield and de Lange, 

2014). Despite evidence for response suppression and enhancement in noninvasive scalp 

recordings in humans with this paradigm (Jacobsen and Schröger, 2001; Czigler et al., 

2002), it has proven challenging to observe both phenomena in invasive action potential 

recordings in other animals (Farley et al., 2010; Fishman and Steinschneider, 2012; 

Kaliukhovich and Vogels, 2014). During a visual oddball experiment, we recorded multi-

unit spiking activity in rat primary visual cortex (V1) and latero-intermediate area (LI), 

which is a higher area of the rodent ventral visual stream. In rat V1 there was only 

evidence for response suppression related to stimulus-specific adaptation and not for 

response enhancement. Yet, higher up in area LI, spiking activity showed clear surprise-

based response enhancement in addition to stimulus-specific adaptation. These results 

show that neural responses along the rat ventral visual stream become increasingly 

sensitive to changes in the visual environment, suggesting a system specialized in the 

detection of unexpected events. 

4.1 RESULTS 

We recorded the action potential activity of multi-unit sites in V1 and extrastriate area LI 

of awake rats, during a visual oddball paradigm with an equiprobable control condition 

(see Figure 4.1 and supplemental information). The standard, deviant, and control 
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conditions allow us to identify two mechanisms: response suppression for highly 

probable stimuli (standard < control and < deviant) and response enhancement for 

unexpected stimuli (deviant > control).  

4.1.1 PRIMARY VISUAL CORTEX: IDENTITY ODDBALL EXPERIMENT 

In V1, we recorded multi-unit spiking activity (MUA) in 55 responsive sites (28 in Rat 1 

and 27 in Rat 2, in 13 and 14 sessions, respectively) to sequences in which two stimuli 

were presented with different probabilities: p(standard) = 0.9; p(deviant) = 0.1 (Figure 

4.1B; see supplemental information). In general, the V1 response to a stimulus was very 

transient, with a relatively low sustained response (Figure 4.2A; first 2 rows). Because of 

the transient nature of the response, we focused the analysis on its first 100 ms. Using the 

 
Figure 4.1. Stimulus set and visual oddball paradigm. 

 (A) Stimuli included sine wave gratings (4 orientations at 2 frequencies) and 8 textures. For each 

sine wave we included the quadrature phase shift and for each texture the negative version. Sine 

wave gratings typically drive neural responses in V1 well, but extrastriate area LI might be more 

sensitive to complex stimuli like textures (Vinken et al., 2016). (B) In the identity oddball 

experiment different stimuli were presented in different blocks of 100 randomized trials of 300 

ms, separated by 300 ms. Oddball blocks consisted of two stimuli (A and B) shown at different 

probabilities: p(standard) = 0.9; p(deviant) = 0.1. Assignment of the probabilities to A and B was 

counterbalanced across blocks. In equiprobable control blocks, the probability of A, B, and 8 

additional stimuli is 0.1, so that none of them stand out as a deviant. Responses to the standard, 

deviant, and control conditions were averaged across A and B for sites that had a positive net 

response to both (see supplemental information). (C) The position oddball experiment was 

identical, except that instead of presenting different stimuli, one stimulus was presented at 

different screen positions. 
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average net firing rates per condition, we calculated adaptation indices (AI) that indicate 

response suppression (AI < 0) and enhancement (AI > 0) for the standard (S) and deviant 

(D) relative to the response to the same stimulus in the equiprobable control condition 

(C): 

𝐴𝐼𝑆𝐶 =
(𝑆 − 𝐶)

(|𝑆| + |𝐶|)
, 𝐴𝐼𝐷𝐶 =

(𝐷 − 𝐶)

(|𝐷| + |𝐶|)
 

The median AI demonstrated response suppression to the standard (AISC Rat 1: Median = 

-0.28, p < 0.0001, sign test, AISC Rat 2: Median = -0.31, p < 0.0001). However, we find no 

evidence for a change in response to the deviant, relative to the control (AIDC Rat 1: 

Median = 0.01, p = 0.1849, AIDC  Rat 2: Median = -0.03, p = 1.0000; Figure 4.2B).  

To account for the variability caused by differences amongst MUA sites across rats, we 

analyzed our data using a multi-level model (Lazic, 2010; Aarts et al., 2014; Vinken et al., 

2014). We used a regression model where average raw firing rates per condition and per 

unit are modeled with a lognormal distribution.  Responses of cortical neurons have 

been shown to follow a lognormal distribution (Buzsáki and Mizuseki, 2014) and this 

was confirmed in the present data. From this model we report parameter δ, which 

expresses the ratio of the net responses for deviant (δDC) and standard (δSC) conditions 

relative to those for the control condition (see supplemental information). The results 

(Figure 4.2C) indicated that the response to the standard was 57% of the response to the 

control (δSC = 0.57, Figure 4.3A), and the response to the deviant was 101% of the control 

(δDC = 1.01, Figure 4.3A). Both rats showed a lower response to the standard compared 

with  those to the deviant – and lower than those to the control (δDC – δSC = 0.44, Figure 

4.3A), indicating stimulus specific adaptation. 

4.1.2 LATERO-INTERMEDIATE AREA: IDENTITY ODDBALL EXPERIMENT 

We performed the same experiment while recording MUA in 48 responsive sites in LI 

(29 in Rat 2 and 19 in Rat 3, in 11 and 8 sessions, respectively). The mean time course 

plots of firing rates (Figure 4.2A) indicate that a very small response was elicited to the 

standard compared to the control.  The AIs (Figure 4.2B) showed strong reduction of the  
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Figure 4.2. Multi-unit neural responses for deviant, standard, and control condition. 

(A) The net (baseline subtracted) firing rate expressed in spikes per second is plotted across time 

(10 ms bins) averaged across deviant (red), standard (blue), or control (black) stimulus 

presentations. Vertical scale bars indicate a firing rate of 100 Hz. The horizontal line indicates the 

300 ms stimulus presentation. The results are plotted separate for each rat × area combination. 

Further analyses were done on net spike counts of the first 100 ms onset of the response (area 

shaded in gray). (B) Scatterplots of adaptation indices of multi-unit sites for deviant (abscissa; 

AIDC) versus for standard (ordinate; AISC) conditions, superimposed on a contour plot. Median 

values are indicated by a red cross. Points below the horizontal line (AISC < 0) indicate response 

suppression for the standard relative to the control condition. Points to the right of the vertical 

line (AIDC > 0)  indicate response enhancement for the deviant relative to the control condition. 

(C) Multi-level model effect estimates (δ) for standard and deviant condition on rat × area level 

and on population level. Values of δ indicate net responses for standard or deviant conditions as 

a proportion of net responses for the control condition. Estimated posterior distributions are 

plotted, which indicate the estimated probability density for each parameter value δ given the 

data: the higher the density, the more probable the underlying values. The effects’ point 

estimates (posterior median) and 95% intervals are indicated below each distribution by a dot 

and a horizontal line, respectively (see also Figure 4.3). The value of 1 is indicated by a black 

vertical line. Estimates close to 1 indicate similar responses in the control relative to the responses 

for a standard or deviant. See also Figures S1, S2, and S3. 
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response to the standard (AISC Rat 2: Median = -0.53, p < 0.0001, AISC Rat 3: Median =-0.58, 

p < 0.0001).  

Contrary to V1, the response to the deviant was stronger compared to the control (AIDC 

Rat 2: Median = 0.14, p = 0.0001, AIDC Rat 3: Median = 0.17, p < 0.0001). The latter suggests 

LI response enhancement to the unexpected deviant stimulus in LI. This difference 

between V1 and LI could not be explained by a sampling bias in cortical layers (see 

supplemental Figure 4.4). The multi-level model estimates (Figure 4.2C) indicated that 

the response to the standard was 32% of the response of the control (δSC = 0.32, Figure 

4.3B) while the response to the deviant was 135% of the control (δDC = 1.35, Figure 4.3B). 

Logically, these results amounted to a strong difference in responses to standard and 

deviant (δDC – δSC = 1.02, Figure 4.3B). 

Comparing LI with V1, the deviant-standard response difference was estimated to be 

stronger in LI ([δDCLI – δSCLI] – [δDCV1 – δSCV1] = 0.59, Figure 4.3D). This difference between 

areas resulted from both an increase in stimulus-specific adaptation for the standard 

(δSCLI – δSCV1 = -0.25, Figure 4.3D), and a change in effect of the deviant (δDCLI – δDCV1 = 0.34, 

Figure 4.3D), with only the latter difference between the areas being significant. 

We could compare the responses in V1 and LI within one animal (Rat 2). Like on the 

population level, the deviant-standard response difference was estimated to be stronger 

in LI than in V1 ([δDCLI – δSCLI] – [δDCV1 – δSCV1] = 0.55, Figure 4.3D). In addition, this animal 

showed in LI an increase in stimulus-specific adaptation for the standard (δSCLI – δSCV1 = -

0.20, Figure 4.3D), in addition to a change in effect for the deviant (δDCLI – δDCV1 = 0.35, 

Figure 4.3D). Thus, the increase in the MUA difference between standard and deviant in 

Rat 2 LI compared to V1 resulted from both a stronger repetition suppression and 

stronger response enhancement. 

4.1.3 LATERO-INTERMEDIATE AREA: POSITION ODDBALL EXPERIMENT 

A possible explanation for the deviant-control response difference in LI is that there was 

more cross-stimulus adaptation in the equiprobable blocks from the additional 8 stimuli. 

For example, if the neural site responds very well to most stimuli in equiprobable blocks, 

neural fatigue (Vogels, 2016) alone can cause reduced general responsiveness in these 
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blocks. This can result in response suppression for the control condition which might 

explain a difference in neural response between deviant and control. Such suppression 

can also be caused by feature specific adaptation if the neural site responds to one or 

more features shared by the different stimuli in equiprobable blocks. We calculated a 

response equivalence index (EI, see supplemental information) that indicates whether 

the response to the additional stimuli is equivalent to (EI = 0) or lower (EI > 0) than the 

control. The EI was practically zero for the identity oddball recordings (Rat 1 V1 EI: 

Median = 0.03, IQR = 0.11; Rat 2 V1 EI: Median = 0.00, IQR = 0.10; Rat 2 LI EI: Median = 

0.00, IQR = 0.14; Rat 3 EI: Median = 0.04, IQR = 0.08), indicating that cross-adaptation in 

the equiprobable blocks might indeed be present. This possibility was supported by a 

decrease of the responses with trial number in the control condition (see supplemental 

Figure 4.5C, D). We addressed this issue by performing an experiment where we 

manipulated stimulus position instead of stimulus identity (Figure 4.1C; see 

supplemental information). This allowed us to place stimuli for the control condition 

outside the receptive field, which should prevent cross-adaptation to the two positions 

used as standard and deviant in the oddball blocks. The data obtained in the position 

oddball experiment showed positive EIs for both rats (Rat 4 EI: Median = 0.65, IQR = 0.28; 

Rat 5 EI: Median = 0.33, IQR = 0.46), indicating that cross-adaptation in the equiprobable 

blocks should at least be reduced.  

For this second experiment, we recorded MUA in 44 responsive sites in LI (22 in Rat 4 

and 22 in Rat 5, in 6 and 5 sessions, respectively). Again, the AIs (Figure 4.2B) showed 

strong reduction of the response to the standard (AISC Rat 4: Median = -0.64, p < 0.0001, 

AISC Rat 5: Median = -0.81, p = 0.0043). In addition, the response to the deviant was still 

elevated compared to the control (AIDC Rat 4: Median = 0.11, p = 0.0009, AIDC Rat 5: Median 

= 0.11, p < 0.0001). The multi-level model estimates (Figure 4.2C) indicated that the 

response to the standard was 14% of the response to the control (δSC = 0.14, Figure 4.3C). 

The response to the deviant was estimated as 124% of that to the control (δDC = 1.24, 

Figure 4.3C). As before, this resulted in a strong difference in response between the 

standard and deviant conditions (δDC – δSC = 1.09, Figure 4.3C).  Importantly, we no 

longer observed a decrease in response to the control as a function of trial number (see 
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supplemental Figure 4.5E, F), suggesting that cross-adaptation was successfully 

eliminated. 

4.2 DISCUSSION 

To summarize, we observed a clear difference between multi-unit responses to the 

deviant and standard stimuli in an oddball paradigm consistently across all rats and 

areas. This response difference was bigger in LI compared to V1. In LI it was the 

combined result of a strong response reduction for the standard and an enhancement for 

the deviant. V1 did not show such an enhancement and might have weaker stimulus-

specific adaptation. 

Stimulus specific adaptation has been documented to play an important role in 

modulating spiking activity in both auditory and visual cortices during modality 

 
Figure 4.3. Multi-level model effect estimates on rat × area level and on population level. 

(A-D) Point estimates (posterior median) and 95% intervals (error bars) for each comparison. 

Relevant reference points (0 or 1) are indicated by black vertical lines. Note that effects for 

standard and deviant in panels (A)–(C) are the same as those presented in Figure 4.2. 
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appropriate oddball sequences (Ulanovsky et al., 2003; Farley et al., 2010; Fishman and 

Steinschneider, 2012; Kaliukhovich and Vogels, 2014), as well as recent sensory 

experience in general (Solomon and Kohn, 2014). Our results confirm this in both V1 and 

LI. In addition, this adaptation might be stronger in LI compared to V1. This agrees with 

the finding that stimulus-specific adaptation in auditory oddball sequences is stronger 

and faster outside primary auditory cortex (Nieto-Diego and Malmierca, 2016). In our 

data, the suppression for the standard was rapid and persistent, and seemed only to be 

relieved by the occurrence of a deviant in the immediately preceding trial (see 

supplemental Figure 4.6). Stimulus-specific adaptation also affected the response to the 

deviant/control, which was lower the more recent the previous deviant or the same 

stimulus was (see supplemental Figure 4.6). 

Spiking activity in rat V1 did not show an enhanced response to the deviant.  Rather, a 

response reduction for trial numbers later in the sequence points towards cross-

adaptation from the standard (see supplemental Figure 4.5A, B). The absence of a 

surprise response in rat V1 corroborates multi-unit recordings in primary auditory 

cortex of both rat (Farley et al., 2010) and monkey (Fishman and Steinschneider, 2012). 

Recently, an increased response to a deviant was reported for neural responses in mouse 

V1 (Hamm and Yuste, 2016). However, the difference between standard and deviant 

stimuli (orthogonal orientations) was considerably greater than those between stimuli in 

their control condition. Thus, their effect can be explained by more cross-stimulus 

adaptation for the control than for the deviant (Farley et al., 2010). In contrast with V1, 

multi-unit responses in area LI did demonstrate a higher response to the deviant 

compared to the control. This enhancement was also present in an additional experiment 

which decreased cross-stimulus adaptation in the equiprobable sequences (i.e. the 

position oddball experiment). The absence of a decreased response to the control stimuli 

as a function of trial number (see supplemental Figure 4.5E, F) indicates that cross-

adaptation was eliminated. Thus, we provide the first demonstration of a surprise 

response in spiking activity in an oddball paradigm when controlling for adaptation, 

which is an important prediction of the predictive coding framework (Friston, 2005). The 

timing of this effect is in the earliest phase of the response and thus may originate in LI 
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itself. The high frequency of the standard stimulus could affect the processing of stimuli 

in the local LI circuit, giving rise to surprise responses. Perhaps NMDA receptor 

neurotransmission might be involved in deviant responses (Garrido et al., 2009) as 

opposed to stimulus specific adaptation (Farley et al., 2010). The relative contribution of 

local versus top-down processes (Gilbert and Li, 2013) requires further investigation. A 

trend for an enhanced response to the deviant was also present in single LI neurons, and 

this was significant when responses were not individually normalized for firing rate (see 

supplemental information). In addition, the results of simultaneously recorded local field 

potentials correspond to those of the MU activity (see supplemental Figure 4.4). 

The results of our recordings in LI differ noticeably from those of monkey IT neurons. 

Various observations in monkeys show a sensitivity for statistical structure of visual 

information after weeks of exposure (Meyer and Olson, 2011; Kaposvári et al., 2016). 

Nevertheless, surprise-related enhancements in an oddball paradigm were not observed 

in primate visual cortical areas (Kaliukhovich and Vogels, 2014). We have to be careful 

when engaging in such species comparisons for various reasons, such as difficulties to 

know which areas and pathways correspond and differences in the details of 

experiments (stimulus size, behavioral tasks, reward schedules, etc.). Still, we stayed as 

close as possible to the experiment by Kaliukhovich and Vogels (Kaliukhovich and 

Vogels, 2014) and both rat and monkey were not actively engaged in a task with the 

stimuli. In addition , rodent LI belongs to a processing stream that has been suggested to 

be homologous to the primate ventral stream that culminates in IT (Wang et al., 2012). 

However, it remains an open question whether and to what extent they might be 

functionally similar. Other studies have reported unexpected properties of the proposed 

rat ventral pathway before, namely an increased response to moving stimuli 

(Vermaercke et al., 2014) as well as a lack of a categorical representation and lack of 

higher responses to natural stimuli (Vinken et al., 2016). Nevertheless, the same studies 

also reported commonalities with the primate ventral pathway, namely an increased 

tolerance for stimulus position (Vermaercke et al., 2014) and clustering of natural versus 

scrambled movie representations (Vinken et al., 2016). 
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A clear difference in neural response between regular and irregular stimuli is a necessary 

prerequisite for a system specialized in change detection. We observed this difference in 

all of our recordings and it increased between V1 and higher visual area LI. The fact that 

we see this transition might indicate that change detection is an important functional 

specialization of the processing stream that both areas belong to. This claim is 

compatible with previous reports emphasizing predator detection as one of the major 

ecologically valid functions of vision in rats and mice (Wallace et al., 2013; Yilmaz and 

Meister, 2013). Previous research has indeed shown that sensory adaptation facilitates 

perceptual detection of deviant stimuli by increasing the difference in neural responses 

(Musall et al., 2014). A response enhancement for the unexpected stimulus will only 

further increase this difference. Future studies are needed to study the behavioral 

relevance of this surprise-based response enhancement. 

4.3 SUPPLEMENTAL INFORMATION 

4.3.1 ANIMALS 

Experiments were conducted with 5 male Long-Evans rats, aged between 6 and 25 

months (12.8 on average) at the start of the study. The distribution of rats across 

experiments was as follows:  V1 recordings for the identity oddball experiment in Rat 1 

and Rat 2, LI recordings for the identity oddball experiment in Rat 2 and Rat 3, LI 

recordings for the position oddball experiment in Rat 4 and Rat 5. Surgical procedures 

were the same as previously reported (Vermaercke et al., 2014). Surgery was performed 

to implant a head post and a recording chamber. The craniotomy was centered on 

average 7.5 mm anterioposterior and 2.8 mm mediolateral. When entering at an angle of 

45° this location allowed recordings in V1, as well as LI (Vermaercke et al., 2014). In one 

rat the craniotomy and recording chamber were placed at an angle of 90°, to allow 

sampling from different cortical depths in V1. After recovery the animals had ad libitum 

access to food pellets and had restricted access to water to train them to sit comfortably 

in the setup. After initial training the animals would remain still during recording even 
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without water rewards, so water restriction was stopped. Housing conditions and 

experimental procedures were approved by the KU Leuven Animal Ethics Committee. 

4.3.2 STIMULI 

The stimulus set consisted of 16 sine wave gratings (quadrature phase pairs of 2 

frequencies x 4 orientations) and 8 textures. While sine wave gratings are typically ideal 

to drive neural responses in V1, we included textures to ensure good responses in 

extrastriate area LI, which might be more sensitive to more natural visual stimulation 

(Vinken et al., 2016). The 8 textures where taken and modified from the MIT VisTex 

database (http://vismod.media.mit.edu/pub/VisTex/), and we included their negative 

version to balance the stimulus set with respect to the 8 quadrature phase pairs of 

gratings. All images where modified to have the same uniform pixel value distribution. 

The full stimulus set is displayed in Figure 4.1A. 

4.3.3 ODDBALL PARADIGM 

For the main experiment we based the design on the visual oddball paradigm as 

implemented by Kaliukhovich and Vogels (2014). In this protocol two stimuli (say A and 

B) are presented at different probabilities in oddball blocks of 100 stimulus presentations 

(trials) of 300 ms, each preceded by a 300 ms blank screen. One stimulus (the “standard”) 

is presented for 90 trials, while the other (the “deviant”) is presented for only 10 trials. 

The order of the standard and deviant trials is randomly shuffled. The standard and 

deviant are counterbalanced between blocks, meaning each stimulus is the standard in 

half of the oddball blocks and the deviant in the other half. As a control condition, the 

oddball blocks where interspersed with equiprobable sequences. In these sequences 10 

different stimuli, including A and B, are presented each at equal probability (i.e. each for 

10 trials). The trials of these stimuli are randomly shuffled. This leads to a total of 3 block 

types: two oddball blocks (counterbalanced for standard and deviant) and one 

equiprobable block. The order in which these three block types were presented was 

counterbalanced by means of a Latin square design (i.e. 1, 2, 3, 2, 3, 1, 3, 1, 2), with each 

block type randomly assigned to first, second, or third place. To minimize interference 

and adaptation between blocks, each block was preceded by serially presenting 50 



Change detection in rat visual cortex 

 

  
Adaptation and expectation in rat visual cortex | 109 

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

random full screen stimuli (white noise of 10 by 6 squares) for 33.3 ms each. We used this 

oddball paradigm in two slightly different experiments. 

Experiment 1: identity oddball experiment 

Here we use a visual oddball paradigm where we manipulate the stimulus identity. 

Prior to starting the experiment, we completed two tests to determine (1) responsive 

receptive field positions, and (2) effective stimuli. In the first test, a hash shape was 

shown at 15 locations (on a 3 by 5 grid) on a black screen to determine the most 

responsive location(s) of the receptive field covered by the computer screen. At the 

center of the screen the shape diameter was 24 visual degrees and the shape centers were 

spaced 26° apart. The shape was presented for 500 ms, with an inter-trial interval of 500 

ms plus up to 300 ms random jitter. Next, a responsive location was chosen for the 

stimulus selection protocol. In this stimulus selection protocol all of the 32 stimuli where 

presented in pseudorandom order for 7 to 23 times each (Median = 14). Each presentation 

lasted 300 ms and was separated from the next by an inter-trial interval of at least 300 

ms. The stimulus diameter was about 30 visual degrees in the center of the screen. The 

background pixel value was 128, which is the same as during the oddball protocol. One 

grating and one texture stimulus that both elicited a clear response were then chosen as 

stimulus A and B for the oddball protocol. For the equiprobable sequences, 8 additional 

stimuli (4 textures and 4 gratings) where randomly chosen, with the restriction that none 

of them could be part of the quadrature phase pair of the selected grating (A) or the 

negative/original pair of the selected texture (B). Finally, the oddball paradigm described 

in the previous paragraph was run for  a total of 18 to 28 blocks (Median = 24), with all 

stimuli presented at the screen location used in the stimulus selection protocol. 

Experiment 2: position oddball experiment 

Instead of manipulating stimulus identity, in this experiment we manipulate stimulus 

position in a visual oddball paradigm. The procedures were largely the same as those for 

the stimulus identity oddball experiment. The stimulus selection protocol was run with 

each of the 32 stimuli presented for 5 to 11 times (Median = 8). Since a stimulus would be 

presented in this experiment at different locations within the same blocks, their diameter 

was reduced to 20 visual degrees in the center of the screen in order to avoid any 
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overlap. After the stimulus selection protocol, only one stimulus with a good response 

was chosen as stimulus A. Stimulus B, however, was now the same stimulus presented 

at a different location usually within the receptive field. Only 13 out of the 15 positions 

of the receptive field mapping test (see previous paragraph) where eligible as stimulus 

location, because the lower left and right were partially obstructed from view by 

photocells that serve to record onset and offset of the stimulus appearance on the screen. 

For the equiprobable sequences, eight additional locations where randomly chosen out 

of the remaining 11 locations. To sum up, experiment 2 was the same as experiment 1, 

except that now one stimulus was presented at different locations instead of multiple 

stimuli at only one location. This position oddball experiment was run for 23 to 30 blocks 

(Median = 24). See Figure 4.1B and C for an illustration of the oddball experiments 1 and 

2. 

4.3.4 ELECTROPHYSIOLOGICAL RECORDINGS 

Recording procedures were identical to those previously reported (Vermaercke et al., 

2014; Vinken et al., 2016). During recordings, rats were head-fixed, awake, and passively 

viewing stimulus presentations on a gamma corrected 24” LCD screen (1280x768 pixels 

at 60 Hz). Animals were positioned sideways next to the screen, with a closest eye-to-

screen distance of 20.5 cm and a 40° angle formed by the screen and the rostrocaudal 

axis. We used single high-impedance tungsten electrodes (FHC, Bowdoin, ME; ordered 

with impedance 5 to 10 MΩ) fixed in a Biela Microdrive (Crist Instruments, Hagerstown, 

MD) for recordings of spiking activity in V1 and LI. The recording chambers were placed 

so that the electrode could enter the cortex orthogonally to record in different layers of 

V1 (Rat 1) or at an angle of 45° to enter in V1 and be able to reach LI (Rats 2, 3, 4, and 5). 

At each recording site of the identity oddball experiment, we tried to record large spikes 

of at least one cell for single-unit isolation. On-line single unit isolation was achieved by 

setting a threshold for either the peak or the trough of the spike waveform. The stimuli 

and their location of presentation were chosen for this isolated unit. In the position 

oddball experiment, where the intent was to record only multi-unit activity, the 

threshold was set low to get spikes from multiple neurons. Once off-line, all data still 

went through a procedure of spike detection and spike sorting using our own custom 
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Matlab (The MathWorks, Inc., Natick, MA) code, in order to retain a multi-unit cluster 

per recording site and one or more other single units if possible. Specifically, spikes with 

a peak-to-peak amplitude divided by the standard deviation of the noise (i.e. signal-to-

noise-ratio (Issa and DiCarlo, 2012)) of at least 4 were detected and clustered with 

KlustaKwik 1.6 based on the first n principal components of their waveform (where n 

was optimized to the site). Automatic clustering was followed by a manual check based 

on properties such as spike waveforms, changes across time, and inter-spike interval 

histograms. At this stage all non-spike-waveforms were removed from the data and all 

remaining spikes were merged into one multi-unit cluster. Of all single units, the 

minimum signal-to-noise-ratio was 7. 

4.3.5 PRIMARY DATA ANALYSIS 

For all analyses we used the spike count in the first 100 ms of the response and the spike 

count of the 100 ms of the baseline before stimulus onset. The first 100 ms response 

window was chosen for consistency across areas because LI neurons do not really show 

a longer sustained response. It should be noted however that including the sustained 

response of V1 neurons in their analysis does not affect the results in a qualitative way. 

The latency of the 100 ms response window was set at 20 ms after stimulus onset for V1 

spiking activity, and 40 ms after stimulus onset for LI spiking activity. These values were 

chosen based on visual inspection of population peristimulus time histograms across all 

units and conditions per area. Note that also using a 40 ms latency window for analyzing 

V1 data did not affect the results in any notable way. 

Based on Kaliukhovich and Vogels (2014) we included only those unit × stimulus 

combinations where the stimulus (A or B) evoked a positive net response (spike count in 

baseline subtracted from that in response window) in at least one of three conditions 

(standard, deviant, or control). Specifically, we required the p-value resulting from a 

trial-wise right-tailed Wilcoxon signed rank test to be lower than .05/3 for at least one 

condition. For each unit we then calculated condition averages from the spike counts, by 

averaging first across trials of the same stimulus and then across stimuli in case both 
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were selected. If none of the two stimuli (A or B) were selected for a particular unit, then 

we did not include it in the analysis.  

Response equivalence index 

Our neurons or multi-unit recording sites can differ in the extent to which they respond 

more to the stimuli we used in the oddball blocks, compared to the 8 additional stimuli 

used to fill the equiprobable control blocks. To quantify this, we calculated a response 

equivalence index (EI) from the responses in the control blocks: 

𝐸𝐼 =
𝑅𝐴,𝐵 − 𝑅𝑐,𝑑,𝑒…

|𝑅𝐴,𝐵| + |𝑅𝑐,𝑑,𝑒…|
, 

with RA,B the average net response to the responsive stimuli that are used in the oddball 

blocks (A and/or B) and Rc,d,e… the average net response to the 8 additional stimuli (c, d, e 

…). This index’s values can range from -1 (no response to the stimuli of interest: A 

and/or B) to 1 (no response to the 8 additional stimuli: c, d, e …). A value of zero would 

indicate an equal average response to both stimulus groups. Note that for calculating 

RA,B we only used those stimuli that were used to calculate responses for the standard 

and deviant conditions, i.e. those that evoked a positive net response according to the 

criterion explained in the beginning of this section. In short, a positive value indicates 

that the neuron or neural site responds stronger  to the stimuli used for our standard and 

deviant conditions, compared to the 8 additional stimuli used for the equiprobable 

blocks. 

Multi-level models 

If we want to pool the data across rats for inference, we should take into account the 

dependencies between our observations. After all, these neural units are nested within 

rats, and the level of rats is nested within the areas we recorded in (except for rat 2, for 

which we recorded both in V1 and LI). Multi-level models take into account these 

different levels of variability in the data. We use a lognormal distribution to model the 

right-tailed, positive-only distribution of average raw firing rates.  

Model 1. In the first model we compare standard, deviant and control conditions and 

include the data of all rats to allow for inference on the animal population level. Instead 

of treating the baseline firing rate as fixed and known, we model it as a random variable 
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together with the response firing rate. The mean firing rate yi (for condition and unit 

combination i = 1,…I, with I = 3 conditions × U units) is modelled as the linear 

combination of the predicted baseline b’i (on the log scale) and 3 predictors per neural 

unit u (denoted as αcu, for condition c = 1,2,3 and unit u = 1,…,U): 

𝑦𝑖  ~ lognormal(𝑏𝑖
′ +  𝛼1𝑢[𝑖] +  𝛼2𝑢[𝑖]𝑋𝑆𝑖 + 𝛼3𝑢[𝑖]𝑋𝐷𝑖, 𝜎), 

for 𝑖 = 1, … , 𝐼. 

Index variable u[i] codes unit membership for data point i.  The unit intercepts are set to 

the control condition and are captured by regression weights α1u. XS and XD are indicator 

variables (with a value of either 0 or 1) for the standard and deviant conditions, 

respectively. For each condition c we allow the regression weights αc* to vary across 

neural units according to a t distribution with a standard deviation σc and νc degrees of 

freedom, which makes our model robust for outliers on the level of neural units (Lange 

et al., 1989). The average for these t distributions is a linear combination of predictors 

indicating the area, experiment, and rat × area in which the unit was recorded: 

𝛼𝑐𝑢 ~ 𝑡(𝛽𝑉1𝑐 + 𝛽𝐿𝐼𝑐𝑋𝐿𝐼𝑢 + 𝛽𝐸𝑋𝑃𝑐𝑋𝐸𝑋𝑃𝑢 + 𝛾𝑐𝑟[𝑢], 𝜎𝑐 , 𝜈𝑐), 

for condition 𝑐 = 1,2,3,     unit 𝑢 = 1, … , 𝑈. 

Index variable r[u] codes rat × area membership for unit u. For each condition, the 

intercept is set at V1, with an indicator XLI for LI recordings, and an indicator XEXP  for 

the position oddball experiment. Rat × area parameters γj* capture variability across rats 

(and the interaction with area for one rat) and are estimated by a normal distribution 

with standard deviation σRATc and a sum to zero constraint per condition c: 

𝛾𝑐𝑟 ~ 𝑁(0, 𝜎𝑅𝐴𝑇𝑐),    ∑ 𝛾𝑐𝑟

𝑅

𝑟=1

= 0, 

for condition 𝑐 = 1,2,3,     rat × area 𝑟 = 1, … , 𝑅 

Simultaneously, an almost identical model is fit for the baseline responses. The only 

difference is that for the baseline model we don’t differentiate between standard and 

deviant (i.e. two conditions within the oddball block), because trials of these conditions 
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are intermixed in the same blocks.  For each baseline firing rate bi the average of the 

lognormal distribution is a linear combination of 2 predictors per neural unit u (denoted 

as αbasebu for block-type b = 1,2): 

𝑏𝑖 ~ lognormal(𝛼1𝑢[𝑖]
𝑏𝑎𝑠𝑒 + 𝛼2𝑢[𝑖]

𝑏𝑎𝑠𝑒𝑋𝑂𝐷𝐷𝑖, 𝜎), 

for 𝑖 = 1, … , 𝐼. 

Index variable u[i] codes unit membership for data point i. Again, the unit intercept is set 

to the control condition and is captured by regression weights αbase1u. XODD is an indicator 

for the oddball blocks (both standard and deviant conditions). This is the only difference 

with the response firing rate model, meaning that the modelling of baseline parameters 

αbasebu is identical to that of response parameters αcu explained earlier. 

The model was fit by generating 30000 samples from the posterior distribution with the 

probabilistic programming language Stan (Stan Development Team, 2016a), using the 

RStan interface (Stan Development Team, 2016b) for R (R Core Team, 2015). We used 

uniform priors for all regression weights, and the standard deviation of the lognormal 

distribution. For all other standard deviation parameters (expressing variability across 

neural units and rats), we used a half-Cauchy distribution with location 0 and a uniform 

hyperprior for the scale parameter. This prior distribution is recommended for multi-

level models in cases where the number of groups (in our case neural units and rats) is 

small (Gelman, 2006). For statistical inference we report the mean of a parameter’s 

posterior distribution and its 95% interval (containing 95% of the posterior density) to 

express uncertainty. 

The use of the lognormal distribution does affect our interpretation of regression 

coefficients with relation to the original scale (average firing rate). Instead of reporting 

parameters on the log scale, we report parameter δ that expresses predicted net 

responses on the original linear scale for deviant and standard conditions relative to 

those for the control condition: 

𝛿𝑆𝐶 =
(𝑆 − 𝑆𝑏𝑎𝑠𝑒)

(𝐶 − 𝐶𝑏𝑎𝑠𝑒)
, 𝛿𝐷𝐶 =

(𝐷 − 𝐷𝑏𝑎𝑠𝑒)

(𝐶 − 𝐶𝑏𝑎𝑠𝑒)
, 
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with S, D, and C indicating the predicted gross responses on the linear scale to a 

stimulus presented as a standard, deviant, and control, respectively. The superscript base 

indicates the corresponding predicted baseline responses. For example, for V1 responses 

this relative predicted net response of the standard condition δSC is calculated as follows 

(with S indicating standard condition, C the control condition which also serves as 

intercept, and base indicating baseline model parameters): 

𝛿𝑆𝐶 =
exp(𝛽𝑉1𝐶

𝑏𝑎𝑠𝑒 + 𝛽𝑉1𝑆
𝑏𝑎𝑠𝑒 + 𝛽𝑉1𝐶 + 𝛽𝑉1𝑆) − exp(𝛽𝑉1𝐶

𝑏𝑎𝑠𝑒 + 𝛽𝑉1𝑆
𝑏𝑎𝑠𝑒)

exp(𝛽𝑉1𝐶
𝑏𝑎𝑠𝑒 + 𝛽𝑉1𝐶) − exp(𝛽𝑉1𝐶

𝑏𝑎𝑠𝑒)
 

Thus, a δSC value of for example 0.5 would mean that the net response for the standard 

condition is 50% of the net response for the equiprobable control condition. For area LI, 

the position oddball experiment, or individual rats, the relevant coefficients (βLI*, βEXP*, or 

γ*r, respectively) are included in numerator and denominator of the equation. 

Model 2. In the second model we now compare within each rat the standard, deviant 

and control conditions at different time points in oddball or control blocks, or for 

different stimulus histories. This model is fit separately for each rat, so it does not allow 

for inference on the animal population level. As in Model 1, the response firing rate yi is 

modeled as a linear combination of the predicted baseline b’i (on the log scale), an 

intercept (see below) and J predictors per neural unit u. Again, the baseline firing rate bi 

is modeled simultaneously and the only difference is that that the baseline model does 

not differentiate between standard and deviant conditions. 

Contrary to Model 1, we now set the neural unit intercept to the presentation of the 

stimulus (A/B) at the first trial in a block. This should be independent of whether the 

stimulus will become a standard, deviant, or control in that block. Note that for the 

control blocks we only use responses to the stimuli that are used as standard or deviant 

in the other blocks. The J predictors are 3 × N indicators for the three conditions 

(standard, deviant, or control) at N different time points (first application of this model) 

or for N different preceding stimulus presentations (second application of this model). 

This means that now we model the mean firing rate yi for each condition, unit and time-

point/stimulus history combination i = 1,…I, with I = 3 conditions × U units × N. Again, 
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we make our model robust for outliers on the neural unit level, by allowing the 

regression weights α0* and αj* to vary according to a t distribution with averages π0 and 

πj, standard deviations σ0 and σc[j]u, and ν0 and ν degrees of freedom. The degrees of 

freedom parameter ν is set to be the same for all J predictors. The full model (excluding 

the baseline part) is the following: 

𝑦𝑖  ~ lognormal (𝑏𝑖
′ + 𝛼0𝑢[𝑖] +  ∑  𝛼𝑗𝑢[𝑖]𝑋𝑗𝑖

𝐽

𝑗=1

, 𝜎) ,     for 𝑖 = 1, … , 𝐼,     unit 𝑢 = 1, … , 𝑈. 

𝛼0𝑢 ~ 𝑡(𝜇0, 𝜎0, 𝜈0),  

𝛼𝑗𝑢 ~ 𝑡(𝜇𝑗 , 𝜎𝑐[𝑗]𝑢 , 𝜈), 

     for predictor 𝑗 = 1, … , 𝐽,     for condition 𝑐 = 1, … ,3,     unit 𝑢 = 1, … , 𝑈. 

Again, we used uniform priors for all regression weights, and the standard deviation of 

the lognormal distribution. For all other standard deviation parameters (expressing 

variability across neural units), we used a half-Cauchy distribution with location 0 and a 

scale of 1.  

As we do for the results of Model 1, we report a parameter that expresses the predicted 

net responses on the original scale relative to the intercept. With the intercepts set at the 

occurrence of the stimulus at the first trial number in a block, this parameter (denoted as 

δ1) expresses predicted net responses for deviant, standard, and control conditions 

relative to those to the stimulus in the first position of the block. The neural data and 

code for fitting these multi-level models are available at https://osf.io/mecg4/ . 

4.3.6 FURTHER DATA ANALYSIS FOR SUPPLEMENTAL FIGURES 

Cortical layer sampling bias 

As reported before (Vermaercke et al., 2014; Vinken et al., 2016), there is a potential 

sampling bias of upper cortical layers for V1 recordings compared to LI recordings when 

entering the cortex (i.e. in V1) at an acute angle as we did in order to reach LI. This might 

explain differences between V1 and LI findings within Rat 2 (and between Rat 2 V1 and 

all other LI recordings). To eliminate this possible confound, we penetrated the cortex 

orthogonally for recordings across the entire width of V1 in Rat 1. The location of the 
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receptive field remained constant across recording depth, demonstrating that the 

penetrations in Rat 1 were orthogonal indeed (Figure 4.4A). 

It is clear from Figure 4.2 that recordings in this rat agree with Rat 2 V1 results, as 

opposed to the LI results in all other rats. Furthermore, in Rat 1 there is no evidence for a 

correlation between recording depth and adaptation of the standard AISC (single-unit 

data: spearman correlation rs = -0.16, p = 0.36; multi-unit data: rs = 0.28, p = 0.15) or 

between depth and any effect for the deviant AIDC (single-unit data: rs = 0.07, p = 0.70; 

multi-unit data: rs = 0.24, p = 0.21). The data behind these correlations are visualized in 

Figure 4.4B. The depths of the MU recording sites measured from the point of entry in 

the cortex ranged from about 200 µm up to about 1200 µm, covering the typical 

 
Figure 4.4. Recording depths in V1 (Rat 1) and LI (Rat 3). 

Related to Figure 4.2. (A) The receptive field was mapped by presenting a hashtag symbol 

(diameter of 24 visual degrees) at 15 locations (see supplemental information, Oddball 

paradigm). The optimally responsive position on the computer screen does not change when 

advancing the electrode in Rat 1 (see supplemental information). This confirms that the 

penetration is orthogonal to the cortical surface (data obtained in one recording session). (B) 

Adaptation indices for deviant or standard stimuli for Rat 1 recordings are independent of the 

recording depths covering about 1 mm of cortex (grey lines indicate robust linear regression fit). 

The distributions of indices correspond with those from V1 recordings in the other Rat 2 (blue 

histograms), as opposed to those from LI recordings in Rat 2 and 3 (yellow histograms). (C) 

Histological sections (Nissl-stained) from Rat 3 with electrolytic lesions made along the electrode 

track indicate cortical recording depths fully covered by those of the V1 recordings in Rat 1. 
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thickness of the rodent cortex of ~1 mm. Sampling was densest around a depth of  500 

µm. It turns out that this distribution of depths overlaps substantially with the estimated 

distribution in our LI recordings. Evidence comes from histology in Rat 3. After the last 

recording session, we made two small electrolytic lesions at the functionally defined 

medial and lateral boundaries of LI in order to histologically determine the cortical 

depth of recording sites. Two nearly adjacent Nissl-stained sections, processed following 

previously described procedures (Vermaercke et al., 2014), show that we recorded LI 

MU activity at a cortical depth of about 500 µm in Rat 3 (Figure 4.4C), which overlapped 

with the V1 depths for Rat 1. Therefore, we conclude that a layer sampling bias cannot 

explain the marked and consistent differences in experimental results between V1 and 

LI. 

Effect of trial number of stimulus presentations within blocks 

In the main text we have quantified the effect for a standard and for a deviant stimulus 

in the visual oddball paradigm. The question remains whether these effects depend on 

the trial number at which the stimulus is presented within a block. Specifically, we 

expect the response to a deviant or a standard occurring in the beginning of a block to be 

different from when they occur later in a block. Typically a response reduction for both 

the standard and the deviant is observed compared with the first stimulus presentation 

(Kaliukhovich and Vogels, 2014; Nieto-Diego and Malmierca, 2016). The net response of 

each target stimulus (A or B) on the first trial in a block was averaged across all block 

types. The remaining 99 trial numbers of each block were grouped in 11 sets of 9 trials 

each to calculate an average net response per condition per set (first 9, second 9,…, 

eleventh 9 trials). Thus, for each stimulus × neural site combination, we have one value 

for the stimulus in the first trial of a block, and 11 values per condition: standard, 

deviant, and control. 

Figure 4.5 summarizes the results per rat × area combination. The leftmost plot in each 

panel displays the averages across neural sites per trial number (set) and condition. The 

middle plot in each panel displays for each condition the multi-level model estimates for 

each of the 11 9-trial number sets, expressed proportional to the net response in the first 

trial (denoted as δ1). The rightmost plot in each panel displays for each trial number set 
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 the difference between these multi-level model estimates for the standard/deviant 

condition and those of the control condition. 

For the V1 data (Figure 4.5A, B) it is clear that in both rats the average net response in 

trial numbers 2-10 (first set) is already well below the net response in trial 1 (95% 

intervals fall below 1). While this effect is strongest for the standard condition, it is also 

present for both the deviant and control conditions. Compared to the control condition, 

deviant responses do no really seem to differ (95% intervals are centered on 0), while 

responses for the standard are significantly lower and increasingly so across the first 3 to 

 
Figure 4.5. The effect of the trial number on multi-unit net responses in the visual oddball 

task. 

Related to Figure 4.2. (A-F) For each rat × area combination: net multi-unit responses and effect 

estimates as a function of trial number. The left plot shows the average net response for the first 

trial (open black marker), with the firing rate indicated next to it. For the remaining 99 trials in a 

block, the average net response for each condition (blue for standard, red for deviant, and black 

for control) is plotted per set of 9 trial numbers. The middle plot shows for each of these trial 

number sets (and per condition) the estimated δ1 effect, which is the estimated ratio of a trial 

number set’s net response and the net response at trial 1. The right plot shows for each of these 

trial number sets (for both standard and deviant conditions) the difference with the control 

condition calculated from these multi-level model estimates. Marginal effects (average across the 

11 trial number sets) are indicated in the right margin of each plot. All error bars in this plot 

indicate 95% intervals.  Estimates for which the 95% interval excludes 1 or 0 (i.e. the standard, 

deviant or control’s net response is increased or decreased relative to the first trial’s or the 

control’s net response, respectively), are indicated with filled markers. 
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5 trial number sets. In sum, we see increasing stimulus specific adaptation for the 

standard, as well as adaptation for the control and the deviant. 

The results of the LI data from the same experiment (Figure 4.5C, D) paint a different 

picture. As for the V1 data, we see a response reduction for the standard and the control 

from the first set onwards (95% intervals fall below 1).  In addition, deviant net 

responses across the entire block length are similar to the net response in the first trial 

(95% intervals are centered on 1). This means that the difference between deviant and 

control could be explained by stronger cross-stimulus adaptation in the equiprobable 

blocks. 

In the next experiment we attempted to rule out the effect off cross-stimulus adaptation 

in the control condition, by using different stimulus positions that could be outside the 

receptive field instead of different stimuli. For these data (Figure 4.5E, F), there is no 

longer a reduction in response for the control condition across the block length (95% 

intervals are above or centered on 1), confirming the absence of cross-stimulus 

adaptation in the equiprobable blocks. In fact, in Rat 4, the average net response for the 

control condition is actually increased from the start of the block compared to the net 

response in trial 1. Importantly, deviant net responses are elevated compared to the 

control condition from the second trial number set onwards. 

Effects of stimulus history 

In addition to the trial number at which a stimulus is presented in a block, we expect the 

local stimulus history to affect the responses. For example, as was shown for monkey IT 

(Kaliukhovich and Vogels, 2014), the response for a deviant and even a standard 

stimulus can depend considerably on whether the previous stimulus was the same or 

different. A related question is how the enhanced response for the deviant condition is 

affected by the presentation of a deviant at different proximities in time. In particular, 

how many successive presentations of the standard do we need before we see an 

enhanced response for the deviant? 

In order to answer these questions, we divided the responses into conditions based on 

the stimulus history of 5 trials back. Specifically, for the oddball blocks we look at 
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whether and when a deviant occurred in one of the 5 previous trials. This results in 6 

independent conditions which can be represented as follows: SSSSS ?, DSSSS ?, SDSSS ?, 

SSDSS ?, SSSDS ?, SSSSD ?, where ‘S’ indicates standard, ‘D’ deviant, and ‘?’ the actual 

stimulus of interest, which could be both a standard or a deviant. For this analysis we 

omit the data where more than one deviant was presented in the previous 5 trials, since 

this was too rare to reliably estimate all the possible interactions. In addition, by 

definition we omit the first 5 stimulus trials from these conditions. However, the 

response for the first trial was included in the analysis in the form of the intercept of our 

multi-level model. Finally, for the equiprobable blocks we look at whether and when a 

same stimulus occurred in one of the 5 previous trials. Again, we only look at the data 

with only one same stimulus in the previous 5 trials, to have an appropriate reference for 

the 6 deviant conditions. 

Figure 4.6 summarizes the results per rat × area combination. In V1 (Figure 4.6, A, B) 

response reduction relative to the first trial in a block is observed in all conditions (all 

95% intervals fall well below 1 in both Rat 1 and 2). The responses for the deviant and 

control conditions are similarly reduced by the proximity of a recent presentation of the 

same stimulus (all but one of the 95% intervals in the deviant – control column for V1 

recordings include 0). The response for the standard is relatively independent of local 

stimulus history: only if a deviant was presented immediately before the standard, we 

see a noticeably higher response compared to no deviant in the previous 5 positions 

(standard – history 6 95% intervals fall above 0 in both Rat 1 and Rat 2). 

In LI recordings for the identity oddball experiment (Figure 4.6C, D), response reduction 

for the deviant relative to the first trial in a block is only observed when the last deviant 

was presented up to three trials back (95% intervals fall below 1 in both Rat 2 and 3). 

What is more, response enhancement for the deviant relative to the first trial in a block is 

observed when it was preceded by 5 or more consecutive presentations of the standard 

(95% intervals fall above 1 in both Rat 2 and 3). When comparing to the corresponding 

control conditions, the response for the deviant is enhanced when it is separated by 3 or 

more standards from the last deviant (deviant – control 95% intervals fall well above 0 in 

both Rat 2 and Rat 3). Again, the response to the standard only seems to be affected by a 
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deviant presented in the previous trial (standard – history 6 95% intervals fall well above 

0 in both Rat 2 and Rat 3). This effect is very strong compared to the V1 recordings, with 

the reduction relative to the first trial in a block now being roughly half of what it is for 

other local stimulus histories. 

The results of our LI recordings for the position oddball experiment (Figure 4.6E, F), tell 

a similar story. Response reduction for the deviant relative to the first trial in a block is 

 
Figure 4.6. The effect of the local stimulus history on multi-unit net responses in the visual 

oddball task. 

Related to Figure 4.2. For each rat × area combination: responses to a standard (blue), deviant 

(red), or control (black) condition separately for 6 local stimulus histories defined by the 5 

previous stimulus presentations. The leftmost column indicates these 6 histories: 5 colored circles 

indicate the nature of the 5 stimuli that preceded the current stimulus (which is indicated by ‘?’), 

for which the actual response is plotted. For standard (blue) and deviant (red) conditions, blue 

and red circles indicate previous presentations of a standard and deviant stimulus, respectively. 

For the control (black) condition, a red circle indicates a presentation of the same stimulus as the 

current stimulus, and a blue circle the presentation of a different stimulus. The second column 

displays for each condition (standard, deviant, or control) the net response averaged across 

neural sites per local stimulus history. The third column shows for each condition the multi-level 

model estimates δ1 for each of the 6 local stimulus histories. These values reflect the net response 

expressed proportional to the net response in the first trial. The fourth column shows per 

condition the difference between the deviant and control condition calculated from these multi-

level model estimates. The rightmost column shows for the standard condition the difference 

between the multi-level model estimates for each local stimulus history containing a deviant and 

that without a deviant. Error bars in the last three columns indicate 95% intervals. Filled markers 

indicate that this estimate’s 95% interval excludes the value specified by the vertical dashed line. 
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only observed when the last deviant was only 1 or 2 trials back (95% intervals fall below 

1 in Rat 4 and 5), while response enhancement is observed when it was more than 4 or 5 

trials back (95% intervals fall above 1 in Rat 4 and 5). In comparison with the 

corresponding control conditions, the response enhancement for the deviant occurs 

when it is separated by 5 or more standards from the last deviant (deviant – control 95% 

intervals fall above 0 in Rat 4 and Rat 5). In contrast with all other rats, for Rat 5 (Figure 

4.6F) the response to the standard does not seem to be clearly affected by a recent 

presentation of a deviant (no standard – history 6 95% interval falls completely above 0 

in Rat 5). We purposefully refrain from trying to interpret the relatively small differences 

between rats in the identity and position oddball experiments, since we lack the data to 

discern experimental effect from inter rat variability here. Importantly, the enhancement 

of the response for the deviant is present and significant in the LI data of each of the 4 

rats, regardless of the experiment. 

4.3.7 FURTHER DATA ANALYSIS ON SINGLE-UNIT DATA AND LOCAL FIELD POTENTIALS 

In the main text and the primary data analysis we focus upon multi-unit data. Here we 

describe further analysis on single-unit data and local field potentials.  

Single-unit spiking activity 

In this section we discuss the results of the single-unit data we collected for the identity 

oddball experiment in both V1 and LI. We isolated 72 responsive single units in V1 (36 in 

Rat 1 and 36 in Rat 2) and 63 in LI (41 in Rat 2 and 22 in Rat 3). The data for the AIs  of 

the standard, relative to control, are consistent with those of the multi-unit activity: we 

see a clear response reduction for the standard in V1 (AISC Rat 1: Median = -0.24, p = 

0.0012, AISC Rat 2: Median = -0.24, p < 0.0001), as well as LI (AISC Rat 2: Median = -0.28, p = 

0.0115, AISC Rat 3: Median = -0.46, p = 0.0043). However, contrary to the multi-unit data, 

for V1 we find some evidence for cross-stimulus adaptation in the form of a response 

reduction of the deviant in Rat 1 (AIDC Rat 1: Median = -0.10, p = 0.0039, AIDC Rat 2: Median 

= -0.03, p = 0.2430). For LI, there was a nonsignificant trend for an enhanced response to 

the deviant (AIDC Rat 2: Median = 0.06, p = 0.5327, AIDC Rat 3: Median = 0.05, p = 0.1892). 
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This trend is smaller than the effect for our MU data, and might actually be attributable 

to cross-adaptation in the control blocks. 

The absence of a significant enhancement for the deviant in the LI single units suggests 

that the data from our single-unit samples might not be very representative of our multi-

unit data. One possible explanation is that of a selection bias in the type of single 

neurons that we recorded from, leading to results that are not representative of the 

general neural population. This is a known issue with extracellular recordings (Towe 

and Harding, 1970). In addition, multi-unit activity cannot be normalized for each 

individual neuron’s response strength. Therefore, just like with un-normalized single-

unit data, neuronal types such as interneurons with a high firing rate will contribute 

relatively more to the measured multi-unit firing rates. We tested this hypothesis by 

summing the firing rates of single neurons and calculating the AIs from these summed 

responses. For statistical inference, we calculated bias-corrected accelerated bootstrap 

confidence intervals (Efron, 1987) based on 10000 random neuron samples. These 

adaptation indices did not differ from the Median values reported in the previous 

paragraph, but the deviant enhancement for LI is now significant as a result of a 

narrower confidence interval (V1: Rat 1: AISC = -0.23, CI [-0.33 -0.14], AIDC = -0.09, CI [-0.15 

-0.05], Rat 2: AISC = -0.23, CI [-0.28 -0.19] , AIDC = -0.05, CI [-0.10 -0.02]; LI: Rat 2: AISC = -

0.45, CI [-0.53 -0.34], AIDC = 0.06, CI [0.01 0.12], Rat 3: AISC = -0.49, CI [-0.61 -0.39] , AIDC = 

0.08, CI [0.01 0.12]). The reason is that this approach is not affected by erratic index 

values that can result from calculating indices from single neurons with low unreliable 

firing rates.  

Local field potentials 

Simultaneously with spikes, we recorded local field potentials (LFPs) which were 

sampled at 1 kHz and band-passed between 1.66 Hz (stimulus + inter-stimulus interval 

presentation frequency) and 170 Hz. Line noise was removed by means of a 50Hz notch 

filter. Spectral analysis was based on a time-frequency Morlet wavelet decomposition as 

described previously (Kaliukhovich and Vogels, 2014), using Fieldtrip Toolbox (F.C. 

Donders Centre for Cognitive Neuroimaging, Nijmegen, the Netherlands; 

http://fieldtrip. fcdonders.nl). Frequencies below 15 Hz were excluded from the wavelet 
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analysis to avoid wavelets overlapping multiple stimulus presentations. Visually evoked 

potentials (VEPs) were computed by stimulus-locked averaging of the LFPs per 

condition. Trials for which the LFP signal exceeded the 5-95% window of the total input 

range were removed. 

In total, we recorded the LFP signal during the identity oddball experiment in 47 V1 sites 

(19 in Rat 1, 28 in Rat 2) and in 52 LI sites (30 in Rat 2, 22 in Rat 3) and during the 

position oddball experiment in 50 LI sites (26 in Rat 4, 24 in Rat 5). Visual inspection of 

the LFP power spectra (Figure 4.7A, B) supports a stronger suppression for the standard 

in LI compared to V1, as well as an enhanced response to the deviant in LI. More 

detailed analysis of frequency bands per rat × area combination shows that, in particular 

for gamma frequencies, power in the first 100 ms of the response is significantly 

enhanced for the deviant in LI only (Figure 4.7C-H, left plots). Analysis of the VEPs per 

rat × area show the same deviant enhancement consistently for the first peak in LI 

recordings (Figure 4.7C-H, right plots). 

Summarized, LFPs confirm all the major findings observed in MUA: (1) a difference in 

responses to the deviant and standard that (2) was bigger in LI compared to V1, with (3) 

a surprise-based response enhancement in LI. 
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Figure 4.7. Analysis of LFP data. 

Related to Figure 4.2. (A, B) average (across sites, then across animals) LFP power spectra for V1 

and LI recordings, respectively. (C-H) Left: Median adaptation indices for standard and deviant 

stimuli per frequency band (beta: 16-40 Hz, gamma: 41-170 Hz). Filled makers indicate a p-value 

<.05 for a two-tailed sign test against a Median of 0. Error bars indicate 95% bias-corrected 

accelerated bootstrap confidence intervals (Efron, 1987) based on 10000 random recording site 

samples. Right: average VEPs (first normalized by absolute peak response for the control 

condition) for standard (blue), deviant (red), and control (black) stimuli. Adaptation indices were 

calculated for standard and deviant stimuli from the average VEP signal of the three peaks in V1 

(20 ms latency + 1-80 ms, 101-180 ms, and 301-350 ms) and in LI (40 ms latency + 1-50 ms, 71-

170ms, and 301-350 ms). Blue colored bars at the top of each graph indicate a p-value <.05 for a 

two-tailed sign test of the Median adaptation index for the standard against a Median of 0. Red 

colored bars at the bottom of each graph indicate the same for the Median adaptation index for 

the deviant. 
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Chapter 5.  

THE PERCEPTUAL EXPECTATION ACCOUNT OF NEURAL ADAPTATION 

In contrast with fMRI studies, expectation effects on repetition suppression could not be 

replicated in neural responses in macaque IT (Kaliukhovich and Vogels, 2011). 

Subsequent fMRI studies pointed to the importance of attention (Larsson and Smith, 

2012) or face specificity of the effect (Kovács et al., 2013). Are these two conditions sufficient 

for observing expectation effects on repetition suppression in macaque IT? 
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FACE REPETITION PROBABILITY DOES NOT AFFECT REPETITION SUPPRESSION IN MACAQUE VISUAL 

CORTEX 

Repetition suppression, which refers to reduced neural activity for repeated stimuli, is 

typically explained by relatively simple adaptation mechanisms (Vogels, 2016). 

However, recent theories have emphasized the role of top-down processes, suggesting 

that this response reduction reflects the fulfillment of perceptual expectations. To 

support this, an influential functional magnetic resonance imaging (fMRI) study 

(Summerfield et al., 2008) showed that the magnitude of suppression is modulated by 

the probability of a repetition. No such effect was found in macaque inferior temporal 

(IT) cortex (Kaliukhovich and Vogels, 2011), calling into question the generality of the 

role of top-down mechanisms. Here, we combined three measures of brain activity in 

search for expectation effects: spiking activity, local field potentials (LFPs), and fMRI. 

Specifically, we investigated two conditions that might be necessary: using face stimuli 

(Kovács et al., 2013) and a stimulus related task (Larsson and Smith, 2012). In an 

experiment similar to Summerfield et al. (2008), we simultaneously recorded spiking 

activity and LFPs in middle lateral face patch (ML) of one monkey (male), and a face-

responsive region of another (female). While we observed clear repetition suppression, 

there were no effects of repetition probability, even when in a second experiment 

repetitions were task-relevant. Next, we performed a separate fMRI study with the same 

animals. Here, we did find effects of repetition probability which were inconsistent with 

direct measures of neural activity and in opposite directions for each monkey. In 

conclusion, even with face stimuli and a stimulus related task, we failed to replicate the 

Summerfield et al. (2008) results in macaque (face-selective) visual cortex. This further 

challenges a general perceptual expectation account of neural adaptation. 

5.1 INTRODUCTION 

Sensory processing in the brain does not only depend on the current input from the 

senses, but is also affected by previous sensory experience. A well-known example is the 

reduced neural activity when stimuli are repeated, called repetition suppression 

(Desimone, 1996). Research on this phenomenon is not only important for understanding 
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its role in sensory processing, but also because repetition suppression paradigms are 

widely used in functional magnetic resonance imaging (fMRI) research (Grill-Spector 

and Malach, 2001; Grill-Spector et al., 2006; Barron et al., 2016). Several simple bottom-up 

or local adaptation mechanisms are thought to underlie these changes in neural 

responses (Vogels, 2016). However, it has also been suggested that repetition 

suppression can be explained by a reduction of responses that encode a prediction error, 

through a mechanism involving top-down influences of perceptual expectation (Friston, 

2005; Summerfield et al., 2008). 

In support of this theory, several studies have found evidence for a stronger fMRI 

suppression in blocks of trials were a repetition is more frequent, compared to those 

where a repetition is infrequent (Summerfield et al., 2008; Larsson and Smith, 2012; 

Kovács et al., 2013; Grotheer and Kovács, 2014). These repetition probability effects were 

originally reported for the fusiform face area (FFA; Summerfield et al., 2008) and later 

generalized to other upstream visual areas (Kovács et al., 2012; Larsson and Smith, 2012), 

but not in every study (Kovács et al., 2013).  On the other hand, a single-cell study 

(Kaliukhovich and Vogels, 2011) found no evidence for an effect of repetition probability 

on repetition suppression in macaque inferior temporal (IT) cortex. What is more, a 

recent fMRI study did not support such an effect either (Olkkonen et al., 2017). These 

results imply that the relation between adaptation and expectation remains 

controversial. Therefore, an important question is how general the reported effect of 

repetition probability is. 

Several studies have contributed to this question by narrowing down the conditions 

under which the effect was replicable. First, there is one study suggesting that attention 

is necessary for the expectation effect to be measurable (Larsson and Smith, 2012). 

Second, it has been implied that the expectation effects are specific for certain stimulus 

categories such as faces (Kovács et al., 2013), because of a dependence on prior 

experience (Grotheer and Kovács, 2014). Both constraints could potentially explain the 

absence of an effect of repetition probability in the study by Kaliukhovich and Vogels 

(2011): (a) the monkeys were passively fixating and perhaps paying little to no attention 
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towards the content of the stimuli; (b) fractal patterns or various object images were used 

instead of faces or another stimulus category that monkeys are familiar with. 

Here, we tried to address both issues in an experiment using a paradigm almost identical 

to that of Summerfield et al. (2008), where we (a) only use face stimuli and (b) make the 

monkeys perform a stimulus related task that was orthogonal to the manipulation of face 

repetitions (i.e. the task was unrelated to face repetitions or alternations). In a second 

experiment, we made face repetitions task relevant in case the orthogonal task would not 

be sufficient. During these experiments we recorded spiking activity and LFPs in the 

macaque middle lateral face patch (ML), an area that typically shows face category 

selective activity (Tsao et al., 2006; Aparicio et al., 2016). ML might be homologous to 

human FFA based on its location on the occipito-temporal axis (Tsao et al., 2008), but not 

according to every view (Yovel and Freiwald, 2013).  

In a final experiment, we recorded fMRI responses to investigate the possibility that 

measurable expectation effects are restricted to neuroimaging signals. After all, there is 

evidence that such signals can contain task-related components that are poorly related to 

local spiking activity or LFPs (Cardoso et al., 2012; Lima et al., 2014). 

Together, these experiments allowed us to investigate several conditions under which 

repetition suppression might be affected by repetition probability in different brain 

signals in macaque visual cortex. Concretely, we made the following predictions. First, in 

all experiments, independent of the task (repetitions relevant or not) or brain signal 

(spiking activity, LFP, fMRI), we expect stimulus-specific adaptation: more suppression 

for repetition trials than for alternation trials. Second, we expect an effect of repetition 

probability on repetition suppression in all experiments if face stimuli, a stimulus-related 

task, and/or face area specificity are sufficient conditions. Third, if repetitions need to be 

task relevant, we only expect an effect of repetition probability during such a task and 

not during the orthogonal task. Finally, if repetition probability effects are restricted to 

LFPs or fMRI, we only expect to observe the effects in these signals. 
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5.2 MATERIALS AND METHODS 

5.2.1 SUBJECTS 

Experiments were conducted with two rhesus macaques (Macaca mulatta; 1 male G and 

1 female D). Surgical procedures for implant placement were the same as previously 

reported (Kaliukhovich and Vogels, 2011). Surgeries were performed for the placement 

of a head post and recording chamber. The location of the latter was guided with a 

preoperative anatomical magnetic resonance imaging (MRI) scan. Animal care and 

experimental procedures were approved by the KU Leuven Animal Ethics Committee 

and in accordance with the national and European guidelines. 

5.2.2 FACE PATCH LOCALIZATION 

In each monkey, face-selective patches were localized using a functional MRI (fMRI) 

experiment described previously in detail (Taubert et al., 2015). Briefly, we used 80 

naturalistic greyscale stimuli originally used in Tsao et al. (2003) of 5 categories (16 

images each): human faces, human (headless) bodies, fruits, manmade objects, and 

hands. The images were presented at a visual angle of 8° on a grey background with a 

red fixation dot in a categorical block design during continuous fixation. The 5 

categorical blocks were presented in pseudo-random order and each time all had to be 

presented before they could be repeated again. Each block duration was 16 s: 16 images 

presented in shuffled order for 1 s each, no inter-stimulus interval. A fixation block (16 s) 

was presented after every 5th categorical block presentation. Each block was presented 5 

times per run of 490 s. 

Imaging data were acquired with a 3 Tesla full-body scanner (MAGNETOM Prisma, 

Siemens), using a custom-made 8 channel phased-array receive coil and radial transmit-

only surface coil (Ekstrom et al., 2008). We used a gradient-echo T2*-weighted echo-

planar imaging sequence of 34 horizontal slices (Monkey G; voxel size = 1.5 mm 

isotropic, TR = 2 s, TE = 15 ms, flip angle = 90°) or 40 horizontal slices (Monkey D; voxel 

size = 1.25 mm isotropic, TR = 2 s, TE = 18 ms, flip angle = 90°). Signal-to-noise ratio was 

enhanced with a MION contrast agent (monocrystalline iron oxide nanoparticle, Rienso: 

Takeda, 8-11 mg/kg) injected intravenously before scanning (Vanduffel et al., 2001). 
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The functional images were preprocessed separately per day using SPM12 for slice-time 

correction and spatial realignment to the first volume of the first run. Next, the mean of 

the realigned functional scans was used to calculate transformation parameters for co-

registration  with a skull-stripped anatomical MRI of the subject (JIP Toolkit v3.1). After 

co-registration, the images (resliced at 1 mm isotropic voxel size) were spatially 

smoothed with an isotropic 3D Gaussian kernel (2 mm full width at half maximum; 

SPM12). 

For statistical analysis we used SPM12 to fit a general linear model to the functional 

images, estimating regression coefficients per run. Regressors were convolved with the 

MION response function (Vanduffel et al., 2001) and included one for each block type 

(image category) as well as motion and eye movement regressors of no interest. Face 

patches were defined with xjView (v9.0) using a threshold of T = 5 (positive activations 

only) on the contrast faces versus all other categories. 

5.2.3 REPETITION PROBABILITY EXPERIMENT 

For the main experiments, we generated 50,000 images of unique human faces seen from 

the same frontal perspective (FaceGen Modeler, v 3.5, https://facegen.com/ ). They were 

presented in trials of two stimulus presentations of 250 ms separated by 500 ms. In a 

repetition trial the same image was repeated, while two different faces were shown in an 

alternation trial (Figure 5.1B). A trial was initiated by 500 ms of maintained fixation and 

was interrupted whenever fixation was broken. For maintained fixation the monkey’s 

gaze had to stay within an area (fixation window) of about 2 by 2 visual degrees 

centered on the fixation dot. Each face was practically trial unique as a result of the large 

number of faces and the restriction that all images had to be used once before they could 

be used again. Compared to some earlier studies (e.g. Summerfield et al., 2008; Larsson 

and Smith, 2012), our computer-generated face stimuli were relatively homogeneous 

(viewpoint, lack of hair,…). To make sure that the faces presented in alternation trials 

were visually distinct, we predetermined face pairs as follows. First, we down-sampled 

the images to 32 by 32 pixels and unfolded the resulting image matrices into image 

vectors. Next, we performed principal component analysis on the full set of 50,000 image 

vectors, and retained only the first 50 principal components. Then, we calculated all pair-
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wise Euclidean distances in 50D space. Finally, we sequentially selected 25,000 face pairs 

by each time taking the two images with the maximum pair-wise distance (face 

dissimilarity) from the remaining pool of images. As a result, the average difference 

between faces in alternation trials was substantially larger than it would be in the case of 

random pairings. See Figure 5.1A for example face pairs. 

The alternation and repetition trials were both presented in blocks of 40, 100, or 120 trials 

(the number was changed between sessions). A block had either a high or low repetition 

probability: repetition blocks (75% repetition trials) and alternation blocks (25% 

repetition trials). The first 5 trials of a block were always of the same type (i.e. repetition 

or alternation) as the block type. Both block types were presented alternatingly and the 

type of the first block in a recording session or run was randomly determined. Between 

 
Figure 5.1. Stimuli and experimental paradigm. 

(A) Example face pairs that we used for alternation trials, selected according to percent rank 

number of face dissimilarity (Euclidean distance in 50D PC space; see materials and methods): 

from the most similar pair with rank number 0, to the most dissimilar pair with rank number 100. 

Thus, the former is the most similar pair that we used and the latter the most dissimilar. (B) The 

different types of trial sequences. Subjects were required to fixate throughout the entire sequence 

and give the correct saccade response in order to receive a fluid rewards. Each trial new stimuli 

were selected until all 50,000 were used (after which the cycle restarted). For target trials either 

the first or the second face could be inverted. Note that there were no target trials in Experiment 

2, where the monkey had to indicate repetition (left) versus alternation (right). (C) Composition 

of repetition and alternation blocks in terms of repetition and alternation trials and regular and 

target trials. 
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blocks, there were 5 trials with 300 ms presentations of a full screen color (blue, yellow, 

green, orange, or purple) during maintained fixation. Except for the task, these 

procedures were identical to the ones previously described in detail in Kaliukhovich et 

al. (2011). 

Experiment 1: orthogonal task 

Each block contained a number of target trials (20%) where either the first or second face 

was inverted (i.e. presented upside down; Figure 5.1B). At 100 ms after the end of the 

presentation of the second face, the subject was required to indicate whether it had been 

a regular or target trial by making an eye movement to the left (regular) or right (target). 

The monkey received a fluid reward after maintaining fixation throughout the trial 

sequence and giving the correct response. A higher reward for target trials was required 

to keep the subjects motivated to do the task, because a left response on all trials would 

already result in 80% correct. Note that we only analyzed responses to regular trials, 

which all had the same reward for a correct response regardless of being alternation or 

repetition. See Figure 5.1C for an illustration of the composition of blocks in this 

experiment. 

Experiment 2: task relevant repetitions 

Experiment 2 was identical to Experiment 1, except for the task: the monkey had to 

indicate whether a trial was a repetition (left) or an alternation (right). This task makes 

the face repetitions task-relevant. There were no inverted face trials in this experiment 

and all trials received the same reward for a correct response. Note that we did not do 

this experiment in the scanner. 

5.2.4 ELECTROPHYSIOLOGICAL RECORDINGS 

We recorded LFPs simultaneously with single or multi-unit spiking activity using 

Epoxylite-insulated tungsten microelectrodes (FHC Inc., impedance of around 1 MΩ in 

situ). For every recording session, a single electrode was lowered into the brain with a 

Narishige microdrive through a stainless steel guide tube that was fixed in a Crist grid. 

Spikes of single neurons were isolated online using a window discriminator. In addition, 

when no single neuron could be isolated, spikes of multiple neurons were thresholded 



The perceptual expectation account of neural adaptation 

 
Adaptation and expectation in macaque visual cortex | 137 

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

online to record multi-unit activity. Stimuli were displayed on a CRT monitor (1024x768 

pixels at 75 Hz; Philips Brilliance 202P4) at an eye-distance of about 57 cm. The point of 

gaze was continuously tracked by means of a video-based eye tracker using one eye (SR 

Research EyeLink; sampling rate 1 kHz). 

Spiking activity 

While advancing the electrode in search for responsive units, we presented 16 human 

face images and 16 non-face images in a category selectivity experiment as described 

previously (Taubert et al., 2015). The images were taken from the image set used in the 

fMRI localizer, but with the noise background removed. The set of 16 non-face images 

consisted of 4 images per category (bodies, fruits, manmade objects, and hands). To 

initiate a trial, the subject had to fixate (2 by 2 visual degree fixation window) for 300 ms, 

followed by 300 ms of stimulus presentation, and an additional 300 ms fixation period 

before receiving a fluid reward. The lower bound of the inter-trial interval was set to 500 

ms, but it could be longer based on the behavior of the monkey as they were required to 

initiate each trial. All 32 stimuli were presented in random order, with the restriction 

that all images had to be presented before one could be repeated again. For each 

stimulus presentation we calculated the net response using the firing rate in the 300 ms 

window starting 50 ms after stimulus onset, minus that in the 50 ms window before 

stimulus onset. For each neuron or multi-unit site, spiking activity was recorded during 

at least 3 presentations of each image in order to assess the category selectivity. 

Specifically, we quantified the face category selectivity using the following index (Tsao 

et al., 2006; Taubert et al., 2015): 

𝐹𝑆𝐼 =
𝑅𝑓𝑎𝑐𝑒−𝑅𝑛𝑜𝑛𝑓𝑎𝑐𝑒

|𝑅𝑓𝑎𝑐𝑒|+|𝑅𝑛𝑜𝑛𝑓𝑎𝑐𝑒|
, 

with Rface the mean net response to the 16 faces and Rnonface the mean net response to the 

16 non-face images. This face-selectivity index is > 0 for neurons or multi-unit sites that 

respond more to faces than non-faces (i.e. they are face category selective). 

After the category selectivity experiment, we ran the repetition probability experiment 

for at least 4 blocks (2 repetition and 2 alternation) per neuron or neural site. For the 

analyses of the data recorded in this experiment, we calculated for each stimulus 
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presentation the firing rate in the 250 ms window starting 50 ms after stimulus onset. 

The data for target trials and the first 5 unaborted trials of each block were excluded 

from analysis. The gross firing rates for the first (S1) and second (S2) face in each 

unaborted trial were used to calculate an adaptation index as follows: 

𝐴𝐼 =
𝑆1 − 𝑆2

𝑆1
. 

This number expresses the proportional difference in response strength between the first 

and second stimulus and is > 0 if the response to the second stimulus is lower (e.g. 

repetition suppression), < 0 if it is higher, and = 0 if responses are equal. In order to have 

stimulus specific adaptation, the suppression for repetition trials needs to be stronger 

than for alternation trials. Thus, the AI should be positive and larger for repetition trials 

than alternation trials. 

Local field potentials 

At most spiking activity recording site, we also recorded LFPs sampled at 1 kHz. Offline, 

the signal was band-passed between .2 and 170 Hz and line noise was removed using a 

50 Hz notch filter (48–52 Hz). We used time-frequency Morlet wavelet decomposition for 

spectral analysis as described previously (Kaliukhovich and Vogels, 2011), using 

FieldTrip (Oostenveld et al., 2011). Frequencies below 10 Hz were excluded from the 

wavelet analysis to avoid wavelets overlapping adapter and test stimulus presentations.  

At each frequency we normalized power by division by the average baseline power (200 

ms window before stimulus onset). For LFP power responses to S1 and S2 we used the 

average normalized power of the 250 ms window starting 50 ms after stimulus onset 

over 4 frequency bands: 12-25 Hz, 26-60 Hz, 61-100 Hz (i.e. the 3 windows used by 

Kaliukhovich and Vogels, 2011), and 101-170 Hz. Like we did for spiking activity, these 

LFP power responses were then used to calculate AIs. 

5.2.5 FMRI  

Scanning details were almost identical to the ones described under Face patch 

localization, except for the following. For one subject (Monkey G), we used higher spatial 

resolutions for the first 5 scanning days (voxel size = 1.2 mm isotropic, 40 horizontal 
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slices, TR = 2 s, TE = 18 ms, flip angle = 90°), which we decreased for the last 3 days 

(voxel size = 1.5 mm isotropic, 34 horizontal slices, TR = 2 s, TE = 15 ms, flip angle = 90°). 

After pre-processing (see face patch localization), which upscales the voxel size to  1 mm 

isotropic, these scanning days were combined for data analysis. For Monkey D the latter 

resolution was used throughout the 9 scanning days. 

For the repetition probability experiment, we changed the minimum inter-trial interval 

to an average of 3 s (uniform distribution between 2 and 4 s) in accordance with 

Summerfield et al. (Summerfield et al., 2008). However, as for the electrophysiology 

experiment, the interval could be longer based on the behavior of the monkey. The 

length of a run was 800 s and after a few sessions was increased to 820 s. During this 

time, the subjects could usually finish 4 blocks (2 repetition and 2 alternation). The block 

length was always 40 trials, and the task was always to detect an inverted face. For data 

analysis we only used the data of completed blocks and discarded the imaging data 

collected during the last unfinished block. For the general linear model, we used 8 

regressors in addition to motion and eye movement regressors: 1) repetition trials 

(excluding the first 5 trials of a block) in repetition blocks, 2) alternation trials in 

repetition blocks, 3) repetition trials in alternation blocks, 4) alternation trials (excluding 

the first 5) in alternation blocks, 5) repetition trials and 6) alternation trials in the first 5 

trials of a block, 7) target trials, and, 8) full screen color presentations between blocks. 

Regressors were convolved with the MION response function (Vanduffel et al., 2001). 

Trials were modeled as 1 s events in SPM12 (0 s for color presentations), and because of 

the low temporal resolution of fMRI each face pair was treated as a compound trial 

(Summerfield et al., 2008). 

The regions of interest (ROI) for analysis of the beta values were the face patches defined 

by the functional localizer, as well as several anatomically defined regions of interest. 

The latter were defined by an intersection between a contrast indicating voxels 

responsive to our stimuli (T > 5 on average across regressors 1-7 of the repetition 

suppression experiment) and the following anatomical regions: visual area 1 (V1), visual 

area 2 (V2), visual area 4 (V4), dorsal and ventral posterior IT (pIT), dorsal and ventral 

central IT (cIT), and dorsal and ventral anterior IT (aIT). Anatomical areas were based on 
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the parcellation of Felleman and Van Essen (1991), included in Caret (v 5.61) software, 

coregistered to each monkey’s native space. 

5.2.6 STATISTICAL ANALYSIS 

For statistical inference we generally relied on bias-corrected accelerated bootstrap 

confidence intervals (Efron, 1987) and randomization tests, unless indicated otherwise. 

The bootstrap estimates are based on random sampling with replacement (10,000 

iterations) of the neurons, recording sites (for multi-unit activity), or runs (fMRI). P-

values (uncorrected for multiple comparisons) were calculated using randomization 

tests (10,000 iterations) to estimate the distribution of the test statistic under the null 

hypothesis. SPM T-maps are based on parametric t-tests and visualized in FslView (v 

4.0.1) for Figure 5.2 (t value threshold = 5 for faces versus bodies, fruits, manmade 

objects, and hands contrast and 12 for faces versus fixation contrast). In addition, on 

several occasions we use the JZS Bayes factor with the default √2 2⁄  scale parameter to 

quantify evidence for the null hypothesis of one sample t tests (Rouder et al., 2009). 

5.3 RESULTS 

We recorded spiking activity and fMRI signals in one male (Monkey G) and one female 

monkey (Monkey D) during trials where either two different faces were shown 

(alternation trial) or the same face was repeated (repetition trial). In separate blocks, we 

manipulated the probability of a repetition trial: 75% repetition trials and 25% 

alternation trials for repetition blocks and vice versa for alternation blocks. If repetition 

suppression for faces reflects fulfillment of perceptual expectations (Summerfield et al., 

2008), it should be stronger in repetition blocks where a repetition is expected, compared 

to alternation blocks where it is unexpected. 

5.3.1 FACE CATEGORY SELECTIVITY 

We localized face-selective regions using an fMRI block design with images of 5 

categories: faces, bodies, fruits, manmade objects, and hands (Tsao et al., 2003). We 

collected 13 runs for Monkey G and 31 for Monkey D. The results show the 6 
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prototypical face patches (Tsao et al., 2008) in IT cortex of Monkey G: posterior lateral 

(PL), middle lateral (ML), middle fundus (MF), and anterior lateral (AL) bilaterally, 

anterior fundus (AF) only in the right hemisphere, and anterior medial (AM) only in the 

left (Figure 5.2A). For IT cortex of Monkey D, there was only one face patch (bilaterally), 

which we identified as AL based on its location. There were no other face-selective 

patches defined by the contrast faces versus all other categories in this monkey. 

However, the contrast faces versus fixation did peak around the expected location of 

ML, suggesting that this area responds strongly to faces, albeit not selectively on the 

level of voxels. We will call this region putative ML from here on (Figure 5.2B).  

 
Figure 5.2. fMRI localized face patches and single cell face category selectivity. 

(A) For Monkey G we were able to identify 6 face-selective patches: PL, ML, MF, and AL 

bilaterally; AM and AF unilaterally (faces versus bodies, fruits, manmade objects, and hands 

contrast; t value threshold = 5). The locations are indicated on 4 coronal slices (slices 1-4 selected 

along the posterior-anterior axis as indicated on the sagittal view). The heat-map below the 

images shows the face category selectivity profile of spiking activity in ML. Each row represents 

one image (16 faces and 16 non-faces) and each column represents one neuron (168 cells sorted 

by FSI). Values are net responses normalized by the maximum. To the right we show the 

preferred face and non-face. (B) For Monkey D we were able to identify only 1 face-selective 

patch: AL. Responses to faces (face versus fixation contrast; t value threshold = 12) did peak at 

the anatomically expected location of ML. We call this region putative ML. The locations are 

indicated on 2 coronal slices. The heat-map to the right of the images shows the face category 

selectivity profile in putative ML (34 cells, same conventions as in A). 
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Both fMRI localized ML of Monkey G and putative ML of Monkey D are the areas we 

targeted for our recordings of spiking activity during our repetition probability 

experiments. First, we ran a face category selectivity experiment to validate the results of 

the fMRI localizer. Spiking activity recorded in ML (Monkey G) showed face-selectivity 

for both single neurons (mean FSI = .69, 95% CI [.62 .74], SD = .38, 168 neurons; Figure 

5.2A) and multi-unit sites (mean FSI = .71, 95% CI [.66 .76], SD = .35, 219 sites). Spiking 

activity recorded in putative ML (Monkey D) did also show face-selectivity for both 

single neurons (mean FSI = .35, 95% CI [.19 .49], SD = .44, 33 neurons; Figure 5.2B) and 

multi-unit sites (mean FSI = .45, 95% CI [.28 .62], SD = .38, 18 sites). However, it should be 

noted that our recordings were biased towards higher FSI values because we did not 

record from neurons that showed no or little response to faces (since faces were the only 

stimuli in our main experiment). 

5.3.2 THE EFFECT OF REPETITION PROBABILITY ON SPIKING ACTIVITY AND LFP SIGNALS 

Here we assessed the effect of repetition probability on the adaptation of 

electrophysiological signals. In general, we expected stimulus specific adaptation: AI 

repetition trials > 0 and > AI alternation trials. If there is an expectation effect, this 

difference (AI repetition trials > AI alternation trials) should be larger for repetition 

blocks compared to alternation blocks. In a first experiment the task was orthogonal to 

the manipulation of repetition trials. In a second experiment, face repetitions were task-

relevant. Spiking activity was recorded simultaneously with LFPs in fMRI localized 

regions: ML of Monkey G (experiment 1: 97 single, 110 multi-units, 68 LFP sites; 

experiment 2: 20 single, 60 multi-units, and 80 LFP sites), and putative ML for Monkey D 

(experiment 1: 34 single, 18 multi-units, and 52 LFP sites). 

Orthogonal task 

In our first experiment we implemented the task used in the main experiment of 

Summerfield et al. (2008): the monkey had to detect inverted faces, occurring in 20% of 

all trials. In these target trials, either the first or the second face could be inverted. After 

each trial, the monkey  had to indicate with saccades whether it had been a target trial 

(left), or not (right). This task requires the monkey to attend the stimuli that are being 

presented, but is unrelated to face repetitions or alternations. In our initial recording 
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sessions we used a block length of 40 trials following previous studies (Kaliukhovich 

and Vogels, 2011; Kovács et al., 2013), which is already two times the 20 trials initially 

reported by Summerfield et al. (Summerfield et al., 2008). Later this was increased to 120 

trials, because longer blocks increase the chances of finding an expectation effect: more 

trials provide more information about the trial probabilities. Since there was no 

indication/evidence of an effect of block length, we pooled the data of the different block 

lengths. Monkey G’s performance (proportion correct) for target and non-target trials 

was: .993, 95% CI [.991 .994] (non-target) and .990, 95% CI [.987 .993] (target) for 

repetition blocks, and .993, 95% CI [.991 .995] (non-target) and .991, 95% CI [.987 .993] 

(target) for alternation blocks. Monkey D’s performance was: .996, 95% CI [.985 .998] 

(non-target) and .968, 95% CI [.950 .980] (target) for repetition blocks, and .996, 95% CI 

[.988 .999] (non-target) and .966, 95% CI [.948 .978] (target) for alternation blocks. 

Spiking activity. For the single unit data recorded in Monkey G (N = 97), we observed 

stronger suppression for a face repetition than for an alternation, without any block 

effect. This is clear from both the peristimulus time histogram (PSTH) as well as the AIs 

(Figure 5.3A). The response reduction for a repeated stimulus was about 18%, compared 

to 8% for an alternation. This translates to a stimulus specific reduction of about 10% for 

each block (Repetition Block (RB): M = .10, SD = .24, p < .001; Alternation Block (AB): M = 

.10, SD = .23, p < .001), with no evidence for a difference between blocks (M = .00, SD = 

.26, p = .95). Assuming a normal distribution, the Bayes factor (Rouder et al., 2009) in 

favor of no block effect (BF0) is 8.9. Thus, it is about 9 times more likely that there is no 

effect of repetition probability in the population average, given the data. We have 

previously reported a discrepancy between adaptation related effects from single versus 

multi-unit data, perhaps as a result of a single cell sampling bias (Vinken et al., 2017). 

Thus, we examined adaptation in multi-unit activity for potential probability effects. The 

results for multi-unit data recorded in Monkey G (N = 110, Figure 5.3B) are very similar 

to the single unit data, with a stimulus specific reduction of about 9-11% (RB: M = .11, SD 

= .13, p < .001; AB: M = .09, SD = .11, p < .001), with no evidence for a difference between 

blocks (M = .02, SD = .17, p = .22, BF0 = 4.5). In Monkey D, for single unit data (N = 34, 

Figure 5.3C) the stimulus specific reduction was 5-8% (RB: M = .05, SD = .22, p = .25; AB: 

M = .08, SD = .15, p = .004) and 8-10% for multi-unit data (N = 18, Figure 5.3D; RB: M = 
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.10, SD = .13, p = .009; AB: M = .08, SD = .12, p = .009). There was no evidence for a 

difference between blocks for either (single unit: M = -.03, SD = .23, p = .43, BF0 = 4.0; 

multi-unit: M = .01, SD = .15, p = .73, BF0 = 3.9). 

LFP signals. The relationship between fMRI signals and spiking activity is complex. 

Depending on task conditions, the two signals can correlate less good (Logothetis et al., 

 
Figure 5.3. Spiking activity recorded during the orthogonal task. 

(A-D) First column: population PSTHs showing the firing rate during the two stimulus 

presentations (S1 and S2) of repetition trials in repetition blocks (red) and alternation blocks 

(blue), as well as alternation trials in repetition blocks (orange) and alternation blocks (light blue). 

Second column: AIs for each trial x block combination (positive values mean suppression for S2), 

stimulus specific effects (AI repetition trials - AI alternation trials), and block effects (difference in 

stimulus specific effect: repetition block - adaptation block). Third column: scatter plot of AIs for 

repetition trials in repetition blocks (abscissa) and alternation blocks (ordinate). Triangles on axes 

indicate mean values. Fourth column: scatter plot of AIs for alternations trials (see third column). 

(A) Monkey G single and (B) multi-unit results. (C) Monkey D single and (D) multi-unit results.  
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2001; Maier et al., 2008) and sometimes better (Lima et al., 2014) than the correlation 

between fMRI and other measures such as LFP. To exclude the possibility that 

electrophysiological expectation effects are restricted to LFPs, we analyzed LFP data 

recorded together with spiking activity. Figure 5.4A shows baseline normalized time-

frequency power maps per trial x block combination for Monkey G (N = 76 sites). 

Consistent with previous reports (De Baene and Vogels, 2010; Kaliukhovich and Vogels, 

2011), these maps indicate that there is a stimulus-specific adaptation effect only for 

frequencies of about 70 Hz and higher. This is confirmed by the AIs for the 101-170 Hz 

window, which show a stimulus specific power reduction of 10% (RB: M = .10, SD = .14, 

p < .001; AB: M = .10, SD = .11, p < .001). As with spiking activity, there is no evidence for 

a difference between blocks (M = .01, SD = .18, p = .70, BF0 = 7.3). For the other frequency 

bands, there was either a stimulus unspecific suppression (26-100 Hz) or enhancement 

(10-25 Hz) for S2, without evidence for a block effect (10-25 Hz: BF0 = 7.9, 26-60 Hz: BF0 = 

6.3, 61-100 Hz: BF0 = 7.2). The results for Monkey D (N = 52 sites, Figure 5.4B) indicate a 

stimulus-specific reduction for both the 61-100 Hz and 101-170 Hz band: 4% for the 

former (RB: M = .04, SD = .09, p = .001; AB: M = .04, SD = .08, p = .003) and  5-6% for the 

latter (RB: M = .06, SD = .09, p < .001; AB: M = .05, SD = .09, p < .001). Neither showed 

evidence for an effect of block (61-100 Hz: M = .01, SD = .11, p = .72, BF0 = 6.2; 101-170 Hz: 

M = .01, SD = .12, p = .63, BF0 = 5.9). In addition, the lowest frequency band of 10-25 Hz 

showed a stimulus-specific enhancement of 6-9% (RB: M = -.06, SD = .21, p = .039; AB: M 

= -.09, SD = .20, p = .001), with no evidence for a difference between blocks (M = .03, SD = 

.31, p = .44, BF0 = 4.9). 

Together, these data suggest that neither the use of face stimuli, nor an orthogonal 

stimulus-related task are sufficient conditions for an effect of repetition probability on 

the adaptation of spiking activity or LFPs. Therefore, in the next experiment we made 

repetition probability task-relevant. 
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 Making repetition probability task-relevant 

In this experiment, there were no inverted target trials. Instead, after each trial, the 

monkey  had to indicate whether it had been a repetition (left saccade) or alternation 

trial (right). In this way, the manipulated probability of a repetition became directly 

relevant for the task. We conducted this experiment with Monkey G, using block lengths 

of 40 and 100 trials. An important advantage is that we can now assess the effect of 

repetition probability on behavior in addition to neural activity. There was a clear 

interaction between block type and trial type: percentage correct for repetition trials was 

higher for repetition blocks compared to alternation blocks (RB: .94, 95% CI [.94 .95], AB: 

 
Figure 5.4. Time-frequency power spectra of LFP signals recorded during the orthogonal task. 

(A) Results for Monkey G. First row: time-frequency maps of power relative to baseline (-200 - 0 

ms). We used a base 10 logarithmic color scale to give power suppression (values < 1) equal 

contrast as enhancement (values > 1). Second row: AIs calculated for separate frequency bands 

(same conventions as in Figure 5.3). (B) Results for Monkey D (same conventions as in A). 
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.83, 95% CI [.81 .85], N = 80 sessions), while the reverse was true for alternation trials (RB: 

.81, 95% CI [.79 .83], AB: .91, 95% CI [.90 .92]). 

Despite this behavioral effect, repetition probability has no effect on repetition 

suppression of neural activity in ML. Spiking activity shows a stimulus specific 

reduction of 20-21% for single unit data (N = 20, Figure 5.5A; RB: M = .21, SD = .19, p < 

.001; AB: M = .20, SD = .11, p < .001) and 11-13% for multi-unit data (N = 60, Figure 5.5B; 

RB: M = .13, SD = .11, p < .001; AB: M = .11, SD = .09, p < .001). There was no evidence for 

a difference between blocks for either (single unit: M = .01, SD = .20, p = .78, BF0 = 4.1; 

multi-unit: M = .02, SD = .11, p = .15, BF0 = 2.6). In addition, there was no positive 

 
Figure 5.5. Spiking activity and LFPs recorded in Monkey G during a repetition versus 

alternation task. 

Same conventions as Figure 5.3 for single (A) and multi-unit (B) results and as Figure 5.4 for LFP 

results (C). 
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correlation across sessions between the behavioral interaction and block effect (spearman 

r; single units: r = -.34, p = .15; multi-units: r = -.07, p = .62). LFP power (N = 80, Figure 

5.5C) shows a clear stimulus specific reduction of 11% for the 101-170 Hz band (RB: M = 

.11, SD = .09, p < .001; AB: M = .11, SD = .10, p < .001) as well as an enhancement of 6-7% 

for the 10-25 Hz band (RB: M = -.06, SD = .18, p = .004; AB: M = -.07, SD = .21, p = .002), 

with no evidence for a difference between blocks (10-25 Hz: M = .01, SD = .25, p = .63, BF0 

= 7.3; 101-170 Hz: M = .01, SD = .13, p = .69, BF0 = 7.5). In conclusion, even when repetition 

probability was task relevant and modulated task performance, it did not affect the 

adaptation of spiking activity or LFP signals. 

5.3.3 THE EFFECT OF REPETITION PROBABILITY ON FMRI SIGNALS 

Finally, we ran the repetition probability experiment with the orthogonal task while 

recording fMRI responses. For our analysis, we look at the face patches defined by the 

functional localizer, as well as several anatomically defined ROIs (see materials and 

methods). We collected 90 runs for Monkey G and 100 for Monkey D. For Monkey G, in 

ML (Figure 5.6A) we observed lower responses for repetition trials than for alternation 

trials in alternation blocks (M = 1.2, SD = 5.3, p = .035, BF0 = 0.97), but not in repetition 

blocks (M = -.45, SD = 5.5, p = .45, BF0 = 6.4). As a result, there was evidence for a 

difference between blocks (M = -1.6, SD = 7.3, p = .034, BF0 = 0.99), but in the direction 

inconsistent with predictive coding: repetition suppression was stronger in alternation 

blocks, where a repetition should be surprising. For none of the other ROIs in this 

monkey there was a block effect (Figure 5.6C). 

For Monkey D, in putative ML (Figure 5.6B) we observed stronger responses for 

alternation trials than for repetition trials in repetition blocks (M = 1.5, SD = 6.4, p = .026, 

BF0 = 0.76), but not in alternation blocks (M = .04, SD = 5.8, p = .94, BF0 = 9). This resulted 

at best in very weak evidence for a block effect (M = 1.4, SD = 8.6, p = .10, BF0 = 2.4) that 

would be consistent with Summerfield et al. (2008), i.e. that repetition suppression is 

stronger when repetitions are expected. For several other ROIs there was evidence for 

such a block effect, which was significant for V2, V4, cIT, and aIT (Figure 5.6D). 
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To sum up, even though we did find weak evidence for effects of repetition probability 

on repetition suppression in fMRI signals, it was inconsistent with the hypothesized 

direction (Monkey G), inconsistent across ROIs (Monkey G), and inconsistent across 

monkeys (Monkey G versus Monkey D). 

5.4 DISCUSSION 

We investigated the effect of face repetition probability on adaptation of spiking activity, 

LFPs, and fMRI responses in (putative) ML of macaque IT cortex. In none of the 

electrophysiological recordings there was evidence in favor of an effect of repetition 

probability on adaptation and this was consistent in 2 monkeys. In contrast, the fMRI 

results showed weak effects of repetition probability but in opposite directions for each 

monkey. 

The results of our electrophysiological data were consistent with the previous 

investigation by Kaliukhovich and Vogels (2011). Yet, here we had improved the 

 
Figure 5.6. fMRI activity measured during the orthogonal task. 

(A) Beta values (mean + 95% CI) for each trial × block combination in ML of Monkey G, stimulus 

specific adaptation (beta value repetition trials – beta value alternation trials), and block effects 

(difference in stimulus specific effect: repetition block - adaptation block). A filled marker for the 

block effect indicates p < .05. (B) Beta values in putative ML of Monkey D (same conventions as 

(A)). (C) Block effects (mean + 95% CI) for all other ROIs in Monkey G (face patches PL, MF, AL, 

AF, and AM; anatomical areas V1, V2, V4, pIT, cIT, and aIT). Filled markers indicate p < .05. (D) 

Block effects for all other ROIs in Monkey D (same conventions as (C)). 
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paradigm by including two supposedly crucial conditions for observing the repetition 

probability effect: a task directing attention towards the stimuli (and later the repetition) 

(Larsson and Smith, 2012) and the use of faces, which might form a special stimulus 

category based on prior experience (Grotheer and Kovács, 2014). In addition to that, we 

recorded responses in face selective IT patch ML, which might be homologous to human 

FFA (Tsao et al., 2008), where the originally reported effects were clearest (Summerfield 

et al., 2008). Thus, neither attention, nor face stimuli were sufficient conditions for 

observing a perceptual expectation effect in electrophysiological responses in face patch 

ML. 

Similarly, previous work by Kaliukhovich and Vogels (2014) demonstrates that IT 

neurons show no surprise response to deviants in visual oddball sequences. In contrast, 

a recent study did report effects of perceptual expectations on responses of mostly face 

selective macaque IT neurons (Bell et al., 2016). The authors claimed their effects were 

distinct from low-level sensory adaptation, based on a multivariate regression analysis 

where they tried to control for repetition suppression. They argued that expectation 

effects might have been absent in previous studies of spiking activity because of a lack of 

attentional requirements of the task. However, recently (Vinken and Vogels, 2017) we 

have shown that the analysis of Bell et al. (2016) did not properly control for adaptation. 

Indeed, we get the same ‘expectation’ effects in simulated neurons that only include 

mechanisms of low-level sensory adaptation. Hence, we argue that their results are also 

in line with simple bottom-up and local mechanisms of adaptation and do not require a 

perceptual expectation account. 

Compared to electrophysiological data, our fMRI results were much less consistent. For 

starters, in ML of Monkey G we observed a block effect that had the opposite sign to 

what the perceptual expectation hypothesis predicts. Thus, instead of being larger, there 

was no suppression for expected repetitions. This effect was not present in any of the 

other (face selective) regions. The lack of stimulus specific fMRI adaptation in repetition 

blocks is also inconsistent with the clear stimulus specific adaptation for 

electrophysiological responses in these blocks. Of course, this block effect for ML might 

be a false positive. On the other hand, several regions in Monkey D did exhibit a block 
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effect consistent with perceptual expectation: suppression for expected repetitions was 

stronger. This effect was the result of an absence of stimulus specific fMRI adaptation in 

alternation blocks. This absence was also the case for putative ML, which is inconsistent 

our electrophysiological recordings. However, for putative ML the block effect was not 

statistically significant. Interestingly, the only face selective patch as identified by our 

fMRI localizer, i.e. AL, did not show this block effect. Thus, the fMRI results were 

inconsistent and contradicted direct measures of neural activity. 

Recently, Olkkonen et al. (2017) failed to replicate previous studies of an effect of 

expectation on fMRI adaptation in the FFA (or any visual area), showing that in humans 

the effect is not consistently found. Olkkonen et al. (2017) contemplate the possibility 

that their computer-generated stimuli (for which they also used FaceGen) did not attract 

enough attention compared to real faces during an orthogonal task. They do find a clear 

behavioral effect of repetition probability, but this was only assessed with a different 

task during a separate experiment without fMRI recordings. In our second experiment 

we also used a task that allowed us to observe a clear behavioral effect. Despite this, we 

did not find any evidence for an expectation effect in our simultaneously recorded 

electrophysiological responses. In any case, both Olkkonen et al. (2017) and our results 

show that adaptation is independent of expectation and that a role of such higher level 

processes is not very general. Indeed, even in the presence of attention (Larsson and 

Smith, 2012) and with an experience-based stimulus category like faces (Kovács et al., 

2013; Grotheer and Kovács, 2014), we could not replicate the effect. 

Finally, there is the question of the lack of face patches in Monkey D. Typically, six or 

more patches of face selective cortex can be defined in the temporal cortex using an fMRI 

localizer (Tsao et al., 2008). These patches form a hierarchical system for the processing 

and perception of faces (Moeller et al., 2008, 2017; Freiwald and Tsao, 2010). However, in 

Monkey D we could only find one anterior patch which we presume to be AL based on 

its location. It has been shown that the formation of the face domains requires exposure 

to faces during development (Arcaro et al., 2017). Yet, Monkey D was not visually 

deprived during development or reared in any unusual way. In addition, given the 

hierarchical nature of the face processing system it is a puzzle why this monkey would 
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develop an anterior face patch while missing the earlier stages. One possible explanation 

is that there was no clustering of face selective neurons at earlier stages of processing in 

the functional hierarchy (at least not at a voxel level). For our experiments, we did record 

neural responses in a face responsive patch at the expected location of ML (i.e., putative 

ML) in Monkey D. The results for our main experiment were consistent with the results 

from the actual face patch ML of Monkey G, both in terms of clear stimulus-specific 

adaptation and the absence of an expectation effect. 

In sum, we investigated whether repetition probability affects repetition suppression of 

single neurons in monkey IT under two supposedly necessary conditions: (a) the use of 

face stimuli, and (b) a task that requires attention for the stimuli (or repetitions). Even 

under these specific circumstances, we did not find any effect of repetition probability in 

any of the two monkeys. These results were confirmed by recordings of LFPs and multi-

unit spiking activity. In an independent fMRI experiment, we did find evidence for 

effects of repetition probability that went in opposite directions for each monkey – and 

thus in the ‘wrong’ direction for one monkey. Importantly, both effects were inconsistent 

with the three electrophysiological measures recorded in the same region. We conclude 

that while fMRI recordings showed inconsistent results, direct measures of neural 

activity consistently suggested that there was no effect of face repetition probability on 

repetition suppression of face-responsive IT neurons. These results further call into 

question the importance of repetition-induced top-down mechanisms in neural 

adaptation. 
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Chapter 6.  

ADAPTATION CONFOUNDED AS EXPECTATION 

In Chapter 5, we did not find an effect of expectation on repetition suppression of face-

responsive IT neurons. In contrast, Bell and colleagues reportedly found evidence for an 

expectation-based mechanism distinct from stimulus-driven adaptation (Bell et al., 2016). 

The authors used a design where stimulus repetition is confounded with expectation, 

but tried to control for repetition suppression with a linear regression approach. Using 

simulated neural responses, we investigate whether their method actually controls for 

the confound. Could the analysis in Bell et al. lead to spurious effects of expectation? 

 

  

In press as 

Vinken K., Vogels R. (2017). Adaptation can explain evidence for encoding of 

probabilistic information in macaque inferior temporal cortex. Current Biology, in press.  
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ADAPTATION CAN EXPLAIN EVIDENCE FOR ENCODING OF PROBABILISTIC INFORMATION IN MACAQUE 

INFERIOR TEMPORAL CORTEX. 

In predictive coding theory, the brain is conceptualized as a prediction machine that 

constantly constructs and updates expectations of the sensory environment (Friston, 

2005). In the context of this theory, Bell et al. (2016) recently studied the effect of the 

probability of task-relevant stimuli on the activity of macaque inferior temporal (IT) 

neurons and observed a reduced population response to expected faces in face-selective 

neurons. They concluded that “IT neurons encode long-term, latent probabilistic 

information about stimulus occurrence”, supporting predictive coding. They 

manipulated expectation by the frequency of face versus fruit stimuli in blocks of trials. 

In such design, stimulus repetition is confounded with expectation. Since previous 

studies showed that IT neurons decrease their response with repetition (Vogels, 2016), 

such adaptation (or repetition suppression), instead of expectation suppression, could 

explain their effects. The authors attempted to control for this alternative interpretation 

with a multiple regression approach. Here we show by using simulation that adaptation 

can still masquerade as expectation effects reported in Bell et al. (2016). In addition, the 

results from the regression model used for most analyses cannot be trusted, because the 

model is not uniquely defined. 

6.1 RESULTS 

 We simulated three 1000 neuron populations (see supplemental information). The 

response levels roughly matched the mean responses of Bell et al. (2016) for the third 

population (simulation C). In simulation A, no adaptation was present. We fitted the 

same regression models to the simulated responses as Bell et al. (2016) did to the actual 

data: Model 1 where the expected probability of a face, p(face), is estimated using a 

Bayesian model (their equation 1), and Model 2 (their equation 4) where p(face) is 

estimated using a reinforcement learning model. Model 2 is problematic, since 

prediction error Δp(face) is computed as a linear combination of other predictors: 

stimulus – p(face). Since the coefficients are not uniquely defined (singular design 

matrix), we employed the Moore-Penrose pseudoinverse of the design matrix as Bell et 
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al. (2016) (C. Summerfield, personal communication). Bell et al. reported evidence for 

expectation responses for two predictors: a negative value for Model 1’s β3 (stimulus × 

p(face)) and a positive value for Model 2’s β3 (Δp(face), or prediction error). For 

simulation A, Model 1 correctly showed only the stimulus selectivity (Figure 6.1A).  

However, Model 2 showed an effect of Δp(face) and p(face), although the simulated 

neurons were sensitive for neither. Further examination showed that a positive value of 

the prediction error coefficient β3 required relatively higher responses for faces (Figure 

6.2A), which was the case in the neurons of Bell et al. (2016). We believe that these 

spurious expectation effects resulted from the collinearity between the model’s 

predictors. This means that the majority of further analyses by Bell et al. (2016) are based 

 
Figure 6.1. Results based on simulated neural responses for the Bell et al. study. 

The two rows show the mean estimated regression weights for linear regression Models 1 and 2, 

respectively. In each subplot, the relevant regression coefficient that demonstrated putative 

expectation effects in Bell et al. (2016) is indicated by a white marker. The gray bars indicate the 

direction of significant regression coefficients observed in the neural data of Bell et al. (2016). The 

p(face) coefficient of Model 2 showed a non-significant positive trend which is indicated by the 

open bar. 95% confidence intervals were smaller than the symbol diameter. (A-C) We fitted each 

model for three different populations of simulated neurons: simulation A with no adaptation 

effects, simulation B with only a stimulus-specific adaptation effect, and simulation C with a 

firing-rate dependent response fatigue and recovery effect in addition to stimulus-specific 

adaptation. The colored dots for the Model 2 plot indicate the mean regression weights for 

neurons for which the response difference between faces and fruit is above (red) or below (blue) 

the median. See also Figure 6.2. 
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on coefficients of a regression model that cannot be used as evidence for expectation 

effects.  

For simulation B we included stimulus-specific adaptation (Vogels, 2016). Here we used 

a simple resource decay model (Mill, 2014), where the response to a face/fruit is 

proportional to its corresponding input resources. These stimulus-specific resources 

decrease with each presentation and recover between them, reflecting synaptic 

depression in the input population (Fioravante and Regehr, 2011). The interaction 

between depletion and recovery allows suppression to build up, reach a stable state, or 

recover over time depending on the interval between repetitions. This simulates the 

finding that repetition suppression in IT increases with number of repetitions, even with 

intervening stimuli, and decreases with the inter-stimulus interval (Sawamura et al., 

2006). For average adaptation rate γ and the lower bound δ parameters, the stimulus-

specific suppression for a repetition was between 0% and 25%. When including 

adaptation in the simulation (Figure 6.1B), Model 1 showed a negative effect for stimulus 

× p(face). The magnitude of this effect was related to  γ and δ (Figure 6.2B). Model 2 

showed again the two expectation effects.  

Bell et al. did not observe any putative expectation effects for fruits (Bell et al., 2016). We 

think this lack of an effect can in principle be explained by response fatigue: a reduction 

in excitability proportional to the previous response (Vogels, 2016). Specifically, high 

responses to face choice stimuli will cause more fatigue when p(face) is high, while low 

responses to fruit will result in more recovery from fatigue when p(face) is low. Thus, for 

simulation C, the firing rate for subsequent stimuli was reduced proportional to the 

previous response, reflecting a mechanism like after-hyperpolarization of the membrane 

potential (Sanchez-Vives et al., 2000a). We simulated firing rate recovery taking place in 

the interstimulus interval, which increased with decreasing response strength to the 

previous stimulus. For example, if the normalized response to a particular trial’s choice 

equals 1, the response to the next cue is reduced by 12%, but recovers by 4%, resulting in 

a net reduction by 8% (see supplemental information). The regression analyses (Figure 

6.1C) again showed ‘prediction error’ effects, with little to no effect on average fruit 



Adaptation confounded as expectation 

 

 
Adaptation and expectation in macaque visual cortex| 157 

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

responses (Figure 6.2C). In an additional analysis, we show the results of a regression 

that separates the contributions of cue and choice (supplemental information). 

6.2 DISCUSSION 

In summary, we replicated the results reported by Bell et al. (2016) using simulations 

that included only stimulus- and response-dependent processes that are thought to 

underlie adaptation in visual cortex and IT (Vogels, 2016). Although the simulated 

neurons were not sensitive to expectation-related signals, applying the multiple 

regression models of Bell et al. (2016) resulted in spurious effects of expectation and 

prediction error. Specifically, a higher response to faces is a sufficient condition for 

prediction error effects in regression Model 2, while the effect in Model 1 additionally 

requires stimulus-specific adaptation. By no means do we claim that this simple model 

captures everything IT neurons do in the design of Bell et al. (2016). Indeed, adaptation 

cannot explain the decoding of the forthcoming cue identity from baseline activity in 

“expectation” trials (Bell et al., 2016): faces in high p(face) blocks versus fruits in low 

p(face) blocks. However, this is essentially a decoding of block membership from 

baseline activity, which could have resulted from temporally correlated fluctuations in 

baseline activity unrelated to p(face) (supplemental information). We could replicate the 

major regression effects that were interpreted as “expectation suppression” rather than 

“repetition suppression” (Bell et al., 2016) in our simplified simulation exercise which 

only used basic passive adaptation mechanisms. This shows that their regression method 

did not control sufficiently for repetition suppression. Note that adaptation can be 

dissociated from expectation with a proper experimental design (Todorovic and de 

Lange, 2012) and adaptation and expectation are not just different semantic labels of the 

same mechanisms. In conclusion, expectation effects in the regression coefficients 

reported by Bell et al. (2016) can be explained in principle by adaptation and do not 

provide unequivocal evidence for encoding of probabilistic information in IT. 
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6.3 SUPPLEMENTAL INFORMATION 

 

6.3.1 SIMULATIONS 

We simulated responses as a Poisson process of which the rate for a particular stimulus 

presentation rt (i.e. a cue or choice stimulus) is determined by a simple model 

incorporating firing rate dependent fatigue, firing rate dependent recovery, and 

stimulus-specific adaptation. Specifically, rt is a combination of a fixed rate for the 

baseline rbase and the unadapted rate associated with the cue stimulus rstim (referring to 

either a low noise face rface, a low noise fruit rfruit, or a high noise cue response rnoise), which 

can be suppressed according to a stimulus-specific adaptation variable At that captures 

the state of adaptation for that stimulus at that time (0 = complete suppression, 1 = no 

adaptation). In addition, a fatigue variable Ft captures the state of neural fatigue at a 

particular trial. Note that we also enforced a stronger response to choice stimuli by 

multiplying rstim by a factor of 1.2. 

𝑟𝑡 = 𝑟𝑏𝑎𝑠𝑒 + 𝐴𝑡𝐹𝑡𝑟𝑠𝑡𝑖𝑚. 

 
Figure 6.2. Supplemental results based on simulated neural responses. 

Related to Figure 6.1. (A) Values of β3 (prediction error) for Model 2 for each neuron of 

simulation A, as a function of their response to faces and fruits. The black line shows LOWESS 

(locally weighted scatterplot smoothing) fits. (B) Values of β3 (stimulus x p(face)) for Model 1 for 

each neuron of simulation B, as a function of their response to faces and fruits, and stimulus 

specific adaptation parameters (γ and δ). (C) The population responses from simulation C are 

comparable to the response levels reported by Bell et al. (2016) for all conditions. Importantly, 

they show an effect of the stimulus probability (or expectation) for low noise face cues only. 
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At is determined by stimulus-specific resource variables Rtface or Rtfruit and a lower bound 

parameter δ. For example, in case of a face stimulus: 

𝐴𝑡 = 𝛿 + 𝑅𝑡
𝑓𝑎𝑐𝑒(1 − 𝛿) 

Both Rtface and Rtfruit start at a value of 1 and are updated after every stimulus 

presentation following a simple resource decay model (Mill, 2014). That is, after a 

presentation of a low noise face cue Rface decreases and Rfruit increases (or vice versa after 

the presentation of a fruit cue): 

𝑅𝑡+1
𝑓𝑎𝑐𝑒

= 𝛾𝑅𝑡
𝑓𝑎𝑐𝑒

 

𝑅𝑡+1
𝑓𝑟𝑢𝑖𝑡

= 𝑅𝑡
𝑓𝑟𝑢𝑖𝑡

+ 𝛾(1 − 𝑅𝑡
𝑓𝑟𝑢𝑖𝑡

) 

Similarly, Rtface and Rtfruit are updated after the presentation of a choice stimulus. Since 

there were no stimulus specific effects for high noise cue stimuli in the data reported by 

Bell et al., we considered them as neither face, nor fruit and let both Rface and Rfruit 

increase. The interstimulus interval between a choice stimulus and the next cue (mean = 

1350 ms, not counting time to initiate a new trial) is longer than that between the cue and 

choice within a trial (mean = 350 ms, not counting response time). We account for this 

difference by attenuating the decay of the resource variable after a choice stimulus by a 

factor of 3. For example, for a face choice that would be: 

𝑅𝑡+1
𝑓𝑎𝑐𝑒

= (1 −
1 − 𝛾

3
) 𝑅𝑡

𝑓𝑎𝑐𝑒
 

To update the fatigue variable F after every stimulus presentation t, we used the net rate 

for that stimulus, normalized by the maximum unadapted net rate for the face and fruit 

choice stimuli (rfruit and rface multiplied by a factor of 1.2): 

𝑟𝑡
𝑛𝑜𝑟𝑚 =

𝑟𝑡 − 𝑟𝑏𝑎𝑠𝑒

max(𝑟𝑓𝑎𝑐𝑒𝑐ℎ𝑜𝑖𝑐𝑒 , 𝑟𝑓𝑟𝑢𝑖𝑡𝑐ℎ𝑜𝑖𝑐𝑒)
. 

F is then updated with the fatigue parameter α and recovery parameter β: 

𝐹𝑡+1 = 𝐹𝑡 − 𝛼𝑟𝑡
𝑛𝑜𝑟𝑚 +

𝛽

1 + 𝑟𝑡
𝑛𝑜𝑟𝑚. 



 

160 

 

 1  

 2  

 3  

 4  

 5  

 6  

 
 

The value of F is constrained between 0 and 1. If the net firing rate to the previous choice 

stimulus decreases, the amount of recovery will eventually become higher than the 

amount of response fatigue (if it is 0, F will increase with β). We accounted for the 

difference in interstimulus interval mentioned earlier by attenuating the amount of 

recovery after a cue stimulus by a factor of 3 (i.e. using β/3). 

Populations of neurons were simulated by generating firing rate values rbase, rface, rfruit, and 

rnoise from lognormal distributions. The average baseline firing rate was 10 Hz (SD = 5) 

and the average net response was 15 Hz (SD = 15) to faces, 6 Hz (SD = 6) to fruit, and .5 

Hz (SD = .5) to high noise stimuli. This produced for simulation C response levels similar 

to those shown in Figure 3A of Bell et al. (2016). Fatigue and recovery parameters α 

(mean = .12, SD = .15) and β  (mean = .08, SD = .1) and stimulus specific adaptation 

parameters γ  (mean γ = .5, SD = .1) and δ (mean δ = .5, SD = .1) were generated using 

beta distributions. The experimental design was as described by Bell et al. (2016), except 

that a block had a fixed number of 50 trials (the mean block length in Bell et al. (2016)). 

For each simulated neuron, each of the five block-types (0%, 25%, 50%, 75%, 100% faces) 

was repeated three times in random order, resulting in a total of 750 trials. Behavioral 

responses were randomly generated to approximate the mean behavioral performances 

per p(face) as reported in Figure 1B of Bell et al. (2016). 

6.3.2 CONTRIBUTIONS OF CUE AND CHOICE STIMULI 

To examine whether the effect is driven by the probability of a face cue or that of a face 

choice, one could use the following regression model (C. Summerfield, personal 

communication):  

𝑦 =  𝛽0 + 𝛽1𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 + 𝛽2𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 × 𝑝(𝑓𝑎𝑐𝑒𝑐𝑢𝑒) + 𝛽3𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 × 𝑝(𝑓𝑎𝑐𝑒𝑐ℎ𝑜𝑖𝑐𝑒)

+ 𝛽4𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 × 𝑝𝑟𝑒𝑣𝑐ℎ𝑜𝑖𝑐𝑒1 + 𝛽5𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 × 𝑝𝑟𝑒𝑣𝑐ℎ𝑜𝑖𝑐𝑒2

+ 𝛽6𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠 × 𝑝𝑟𝑒𝑣𝑐ℎ𝑜𝑖𝑐𝑒3 + 𝛽7𝑡𝑟𝑖𝑎𝑙, 

where p(facecue) is identical to the p(face) of Model 1, and p(facechoice) is based on the 

history of choices instead of cues. For our simulated data, the effect for the cue is clearly 

much stronger than for the choice (β2 = -0.05, versus β3 = -0.01). This could lead one to 
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conclude that it is indeed the expectation of a face cue that drives the effect (which is 

false because we did not simulate expectation). 

6.3.3 DECODING FORTHCOMING CUE IDENTITY 

Bell et al. (2016) could decode the upcoming cue from baseline activity on trials were 

expectation and the stimulus were congruent: faces in high p(face) blocks versus fruits in 

low p(face) blocks. While they argued that “neural expectation signals carried 

information about its likely identity”, it cannot be excluded that these decoding results 

arose from temporally correlated slow fluctuations in baseline activity, which were 

unlikely to be equally spread across high p(face) and low p(face) blocks within a session. 

We confirmed this possibility by first arbitrarily dividing real monkey spiking data in 

blocks, and then decoding block membership from baseline activity, leading to an above 

chance accuracy similar in magnitude to theirs (data not shown). 
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In Part I-III, I have presented in detail all the work that we have done for this 

dissertation in the Laboratories for Biological Psychology and for Neuro- and 

Psychophysiology at KU Leuven. Here, I will try to provide a synthesis that reflects both 

direct implications, more indirect speculations, as well as my personal opinion as shaped 

by this work. I will start with an overview of the main results and implications per 

study. Next, I will discuss and speculate about what these results might mean more 

generally for each of the two research topics. Finally, I will end with some concluding 

remarks that reflect how this work has shaped my view on (visual) neuroscience in 

general. 

7.1 SUMMARY OF THE MAIN RESULTS 

7.1.1 PART I: VISUAL OBJECT RECOGNITION IN RATS 

In Part I, we presented three studies related to visual object recognition in rats. Our 

angle was to use stimuli that are closer to a realistic visual experience for these animals, 

at least compared to artificial stimuli such as gratings, 2D shapes, or 3D shapes. The idea 

was that perhaps such natural stimuli were necessary and sufficient in order to easily 

elicit presumed visual object recognition capacities. For these experiments we used 

videos of rats and of inanimate moving objects. Our reasoning was simple: in their cages 

these animals are constantly surrounded by their cage mates, surely the visual image of 

other rats should be familiar to them? 

First, we needed to investigate to which extent these animals can process our videos. 

With this goal in mind, we performed the experiment presented in Chapter 1, where we 

successfully trained five rats to go for target rat movies paired with distractor non-rat 

movies (moving objects or phase-scrambled version of the rat movies) in a two-

alternative forced choice task. The crucial part is that these animals were able to 

generalize this classification to new pairs they had never seen before. They were able to 

do this in the face of considerable variation of stimuli both within and between training 

and test sets. In an additional test we showed that they did not rely on motion cues for 

successful classification. A control analysis showed that, while target-distractor 
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differences in local screen luminance do explain some variability in classification 

accuracy, they do not explain the overall accuracy. We suggested that a further 

integration of features encoded in V1 might be required for successful generalization in 

this task. 

In Chapter 2, we explored candidate areas where this further integration might take 

place. We used the same movies that had been used to train the rats in our categorization 

experiment and recorded neural responses in the visual cortex. In particular, we targeted 

neurons along a latero-temporal pathway (V1, LI, and TO) that is a putative homologue 

of the primate ventral stream, and looked for two hallmarks of the latter: preference for 

intact versus scrambled stimuli (Vogels, 1999c) and a category-related representation 

(Kiani et al., 2007). We found neither an overall preference for intact stimuli, nor 

evidence of a category-related representation. However, there was an increasingly 

different response pattern for natural versus phase-scrambled stimuli driven by an 

increased proportion of neurons preferring natural stimuli, perhaps paralleling changes 

from primate V1 to early extrastriate visual areas. 

Unfortunately, we only have neural data for the training set videos, which makes it 

impossible to directly relate generalization performance to neural representations. One 

way to tackle such a problem, is to quantify and map the stimulus set to a feature space. 

We can then not only compare video representations in feature space with those in rat 

visual cortex, but also assess whether those features could support generalization in the 

behavioral task. In Chapter 3, we extracted features from several layers of a deep neural 

network (Tran et al., 2014). These features typically change across layers from V1-like to 

category-related (Güçlü and van Gerven, 2015). We found that stimulus representations 

in rat extrastriate visual cortex (LI and TO) corresponded best to up to mid-level 

representations in the neural network (late convolutional layers) and that generalization 

in the behavioral task could be supported by these mid-level representations. 

Taken together, these studies suggest that the putative rat ventral stream results in a 

relatively complex representation of visual input: one that is not directly category-

related, yet might support generalization in complex classification tasks. 
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7.1.2 PART II: ADAPTATION AND EXPECTATION IN RAT VISUAL CORTEX 

After several studies on visual object recognition in the rat, in Part II we moved on to a 

second topic: neural adaptation and effects of expectation. The paradigm we focused on 

was a visual oddball paradigm, which is used for investigating pre-attentive processes of 

change detection in human electroencephalography (EEG) studies (Stefanics et al., 2014). 

Our motivation was a recent study that used this paradigm to characterize its effects in 

monkey IT neurons (Kaliukhovich and Vogels, 2014) and thus provided a frame of 

reference. They had only found repetition suppression for frequent standard stimuli, but 

no “surprise” response enhancements for rare deviant stimuli. 

We performed a very similar experiment in rats, while measuring neural responses in 

both V1 and extrastriate area LI. The results of this study are presented in Chapter 4. In 

V1, we found clear repetition suppression for the standard, but no enhancement for the 

deviant. These results were very similar to what is found in monkey IT (Kaliukhovich 

and Vogels, 2014). However, in contrast with monkey IT and rat V1, we did find an 

enhanced response to the deviant in rat extrastriate area LI. In addition, we found 

evidence for a stronger repetition suppression for the standard. We speculated that these 

results might indicate a specialization in change detection of the pathway, related to the 

central function of visual predator detection in rats and mice (Wallace et al., 2013; Yilmaz 

and Meister, 2013). 

7.1.3 PART III: ADAPTATION AND EXPECTATION IN MACAQUE VISUAL CORTEX 

In Part III, we continued our research on the relation between neural adaptation and 

expectation. We moved on to monkeys to study effects of perceptual expectation in tasks 

and with stimuli associated with higher cognitive demands. Our motivation was to get 

as close as possible to the conditions of human fMRI studies in order to replicate their 

results and investigate what might actually be happening on a neural level. 

Specifically, the results we tried to replicate in monkeys are based on a human fMRI 

study that showed that repetition suppression (usually of face stimuli) is stronger in 

blocks of high repetition probability (Summerfield et al., 2008). Despite other human 

fMRI replications, no such effect had been found in monkey IT neurons, using fractal 
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images or a wide variety of natural image categories (Kaliukhovich and Vogels, 2011). In 

Chapter 5, we investigate two conditions that might be necessary in order to observe the 

repetition probability effect. The first is that it could be attention-dependent (Larsson 

and Smith, 2012), and therefore passive fixation as in Kaliukhovich et al. (2011) might not 

be sufficient. The second is that the effect might be restricted to specific stimulus 

categories such as faces (Kovács et al., 2013), perhaps based on prior experience 

(Grotheer and Kovács, 2014). We addressed these criteria by specifically using face 

stimuli combined with a stimulus-related orthogonal task, while recording neural 

responses in a face selective/responsive patch in macaque IT cortex. Despite these 

improvements, we did not find evidence for a repetition probability effect. Even in a 

second experiment, where repetition probability was task relevant and modulated task 

performance, it did not affect repetition suppression. Finally, in a follow-up fMRI 

experiment, we found opposite results in our two monkeys. We concluded that these 

results further call into question the generality of a role of perceptual expectation or top-

down mechanisms in neural adaptation. 

In contrast, a recent study did report effects of perceptual expectation on mostly face 

selective monkey IT neurons (Bell et al., 2016). The major problem in that study was that 

stimulus repetition is confounded with expectation. The authors were aware of this and 

used a multiple regression approach in an attempt to control for repetition suppression. 

In Chapter 6, we assessed the validity of their approach by testing their regression 

analysis on simulated data. Despite the fact that our simulations only implemented 

purely stimulus-driven effects of adaptation, we could replicate the regression results 

that Bell et al. (2016) interpreted as expectation effects. We concluded that their study did 

not provide unequivocal evidence for encoding of probabilistic information in IT. 

7.2 THE RAT: A MODEL FOR VISUAL OBJECT RECOGNITION? 

Almost 10 years ago, Zoccolan and colleagues argued for “an increased focus on rodents 

as models for studying high-level visual processing” (Zoccolan et al., 2009). In true 

primate-centric fashion, high-level vision is often operationally defined as object 

recognition, or anatomically as referring to later stages in the ventral visual stream (Cox, 
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2014). Over the past few years, a number of studies have been published that focused on 

object recognition and extrastriate visual processing in the rat, some of which constitute 

the first few chapters of this dissertation. In this section, I will discuss the general 

considerations and speculations that have followed from those studies. 

In Chapters 1-3, we have adopted an object-recognition-centered approach while 

investigating the rat’s visual system and abilities. Through this approach, we found both 

a similarity and differences with the primate ventral visual stream. The similarity that 

we found was an increasingly distinct representation of natural versus scrambled images 

(Chapter 2). This result can be seen as evidence for a hierarchical pathway that 

transforms the stimulus representation into one that is less determined by the light 

intensity pattern, and likely of relevance to the animal. In primates, the ultimate 

representation in IT cortex is usually interpreted as tailored towards the goal of object 

recognition (Tanaka, 1996; Vogels and Orban, 1996). However, it seems unlikely that 

object recognition is the main goal of the rat visual system. Quoting Marr (1982): 

The general point here is that because vision is used by different animals 

for such a wide variety of purposes, it is inconceivable that all seeing 

animals use the same representations; each can confidently be expected to 

use one or more representations that are nicely tailored to the owner’s 

purposes (p. 32). 

In other words, the idea is that animals that use vision for a different purpose should 

have a different functional specialization of their visual system. Comparing and 

characterizing similarities and differences of the visual system across species becomes 

very interesting when they can be related to similarities and differences in operational 

goals. If such a comparative approach is the objective, then the question of whether rats 

and mice are a good model for primate-based visual object recognition becomes less 

relevant. For example, in Chapter 4 we found that, as opposed to monkey IT, the 

putative rat ventral stream showed an enhanced response for visual oddball events. We 

speculated that this difference might be related to the emphasis of the rat visual system 

on predator detection. 
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On the other hand, our experiments of Chapter 1 and several other studies (Zoccolan, 

2015) show that rats can be successfully trained to perform complex visual recognition 

tasks. In addition, studies of single neurons across the rat putative ventral stream have 

found evidence for properties typically associated with object recognition, such as 

tolerance for stimulus position (Vermaercke et al., 2014), but also size, rotation, and 

illumination (Tafazoli et al., 2017). Yet, similar properties might actually be required for 

successful navigation in complex environments under various lighting conditions (Cox, 

2014). Indeed, it seems plausible for rats to actually use invariant representations, that 

they might have for navigation purposes, when they are trained in complex visual 

recognition tasks under experimental conditions. From this point of view, the rodent 

putative and primate ventral stream might be considered functional homologues 

because of such representational invariance, even if the purpose of rodents is not object 

recognition. The computational principles for gaining invariance might be preserved, 

even if the neurons are tuned to different features serving different purposes. 

At the moment we have no idea what features are actually encoded in rodent extrastriate 

visual areas like LI and TO. In Chapter 3, we found that stimulus representations in LI 

and TO are best comparable with those in up to mid-level layers of a DNN, which were 

incidentally the minimum layers that could do the behavioral experiment of Chapter 1. 

These results are suggestive at best, but we could look at features encoded in these layers 

as possible candidates to investigate neural tuning in LI or TO. In a static DNN, these 

mid-level layers typically encode features such as shape and texture and corresponded 

mostly to human V4 (Güçlü and van Gerven, 2015). 

In sum, we have learned that in some aspects the rat putative ventral stream is 

comparable to the one in primates, and in other aspects this is not the case. Ultimately, it 

makes sense to characterize the commonalities and differences and try to relate them to 

each animal’s purpose of vision. In the grand scheme of this, the question of whether the 

rat visual system is a good model for high-level vision in primates is not really relevant. 

At best, it will lead to a characterization of similarities and differences anyway, at worst, 

it is a distraction leading commonalities to be over-emphasized by proponents and 

minimalized by opponents (and differences vice-versa). 
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7.3 IN PRAISE OF SIMPLICITY: THE CASE OF ADAPTATION 

The idea of our brain as a prediction machine that constructs prior expectations of the 

environment has become very popular. It is a general theoretical framework for cortical 

responses (Friston, 2005), that emphasizes top-down mechanisms in explaining 

phenomena ranging from extra-classical receptive field effects (Rao and Ballard, 1999) to 

the mismatch negativity component in EEG (Stefanics et al., 2014), and that even found 

its way in DNNs (Lotter et al., 2016). Within this framework, expectation-based top 

down processes have been proposed to be an important contributor to repetition 

suppression (Summerfield et al., 2008) and the encoding of stimulus probabilities (Bell et 

al., 2016) in visual cortex. In this section, I will discuss the insights gained from our 

investigation of the relation between expectation and adaptation in these studies. 

With regard to Summerfield’s repetition probability effect in high-level visual cortex, 

there is a discrepancy between human fMRI studies and recordings of monkey neural 

activity. Despite multiple successful fMRI replications over the years (but see, Olkkonen 

et al., 2017), we couldn’t even find an effect while using face stimuli and directing 

attention towards the stimulus repetitions (Chapter 5). When we tested the possibility 

that such effects are restricted to fMRI signals, we got mixed and contradictory results. 

Perhaps at best, those effects were too weak to warrant any useful comparison, but at 

worst, they suggest a difference between fMRI signals and neural activity. 

Neuroimaging signals can indeed contain task-related components that are not (or 

poorly) related to neural activity (Cardoso et al., 2012; Lima et al., 2014). Given the 

inconsistency and weak effects in our fMRI data, this explanation remains speculative, 

but it seems like a path worth further exploring. As a counterargument, Summerfield’s 

repetition probability effect has also been reported in direct EEG measurements 

(Summerfield et al., 2011). However, without any source localization it is impossible to 

pinpoint its neuroanatomical source, which might as well not be visual cortex.  

The possibility still remains that we have stumbled upon a species difference between 

macaques and humans, which was also considered by Kaliukhovich and Vogels (2011). 

Of course, this would mean that the explanation of repetition suppression/adaptation in 

terms of top-down expectation is restricted to certain species. Combined with previous 
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studies suggesting that repetition probability effects are limited to certain stimulus sets 

or attentional states, it seems that the explanatory power of a perceptual expectation 

account is very restricted indeed. On a related note, in Chapter 4, we describe a surprise-

related response enhancement in rat visual cortex, which was not there in monkey. Does 

that mean that only rodent and human higher visual cortex show effects of perceptual 

expectation, as opposed to monkeys? A more parsimonious interpretation would be that 

like in monkeys in rat visual cortex similar bottom-up and local mechanisms are at work, 

and that perhaps the response enhancement emerges from specific neural computations 

that are performed by the neural network (Solomon and Kohn, 2014). 

In our final chapter, we closely investigate a paper on perceptual expectation signals in 

monkey IT (Bell et al., 2016). We uncovered (in addition to several methodological 

issues) that the results can be explained equally well by purely stimulus-driven effects of 

adaptation (Chapter 6). This is an excellent example of the unwarranted tendency to give 

results a “high-level” interpretation which emphasizes complicated cognitive concepts 

like expectation.  

To conclude, it seems that the actual evidence does not support a general role of top-

down based mechanisms of perceptual expectation in neural adaptation of sensory 

neurons. Such high-level explanations are often chosen in the name of a nice theory such 

as predictive coding, rather than by necessity. The bottom line is, no matter how 

attractive the theory, there is no reason to invoke it for explaining phenomena that can 

equally be covered by a more parsimonious account. 

7.4 CONCLUDING REMARKS 

I introduced this dissertation as a presentation of the work that we did on two specific 

topics situated within the general context of visual perception: the study of rat vision 

and neural adaptation in the visual system. By now, we have first considered the 

implications for each chapter more or less in isolation. Subsequently, I have attempted to 

make an abstraction towards more general implications on each of the two research 

topics presented here. I am aware that by moving away from the specifics of each 
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particular study, my considerations get more speculative. With that in mind, I will 

finally summarize my concluding remarks with relation to visual neuroscience in 

general. 

The first general consideration is that, when studying a complex system such as an 

animal’s visual system, one should not lose sight of the actual purpose of this system: 

what problems does it solve for the animal? This idea is of course not new, and was an 

important part of the “three levels of understanding” framework proposed by Marr 

(1982), under the name of “computational theory”. In the context of animal models, this 

viewpoint fosters a focus on comparative studies rather than trying to prove that one is a 

good model of the other. But possible implications are not restricted to situations where 

different animals are being considered. For example, Cox (2014) has argued that object 

recognition is a rather limited operational definition of (primate) higher-level vision. 

From this point of view, it would be too restrictive to reduce the function of the primate 

ventral visual stream to what has been called “core object recognition” (Dicarlo et al., 

2012). In this way it is not surprising that DNNs as our current best models of the ventral 

stream are in many ways severely limited (Kriegeskorte, 2015): they have been trained 

within the same confines of “core object recognition”. 

Of course, one should be careful to not unnecessarily impose computational theory onto 

an interpretation of experimental results. For example, while phenomena such as neural 

adaptation effects can correlate well with predictions from predictive coding theory, 

they often do not require high-level mechanisms such as expectation-related feedback. 

This brings us to a second general consideration, namely that very “high-level” 

interpretations are often given to neural data without an appropriate control for simpler 

explanations. This is in particular an issue with a theory like predictive coding that is 

formulated so broadly and flexibly that it can be interpreted as compatible with almost 

any data. Other examples that are particularly sensitive to this issue are semantic 

interpretations of neural selectivity. For example, there is a strong tendency to interpret 

IT neural representations in terms of meaningful categories such as animate versus 

inanimate (Kiani et al., 2007; Kriegeskorte et al., 2008a), rather than in terms of shape 

similarity (Baldassi et al., 2013) which is mostly independent of meaning (Op De Beeck et 
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al., 2008). Likewise, selectivity for biologically important semantic categories such as 

bodies and faces seems mostly determined by shape selectivity (Srihasam et al., 2014; 

Popivanov et al., 2016; Kalfas et al., 2017). This second consideration is in particular 

relevant for interpretations of neural data in rats as evidence for the existence of a rat 

object-processing pathway (Tafazoli et al., 2017). This might be a tempting conclusion, 

but it is perhaps not very compatible with the purpose of their visual system. 
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