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Identification of Linear Parameter-Varying Systems:
A Reweighted `2,1-Norm Regularization Approach
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aKU Leuven, Department of Mechanical Engineering, Member of Flanders Make
Celestijnenlaan 300 - box 2420, 3001 Leuven, Belgium

Abstract

This paper presents a regularized nonlinear least-squares identification approach for lin-
ear parameter-varying (LPV) systems. The objective of the method is, on the one hand, to
obtain an LPV model of which the response fits the system measurements as accurately as
possible and, on the other hand, to favor models with an as simple as possible dependency
on the scheduling parameter. This is accomplished by introducing `2,1-norm regularization
into the nonlinear least-squares problem. The resulting nonsmooth optimization problem
is reformulated into a nonlinear second-order cone program and solved using a sequen-
tial convex programming approach. Through an iterative reweighting of the regularization,
the parameters that do not substantially contribute to the system response are penalized
heavily, while the significant parameters remain unaffected or are penalized only slightly.
Numerical and experimental validations of the proposed method show a substantial model
simplification in comparison with the nonregularized solution, without significantly sacri-
ficing model accuracy.

Key words: Linear Parameter-Varying (LPV) Systems, System Identification, State-space
Models, Basis Selection, Regularization

1 Introduction

System identification is a well-established subfield of automatic control that is con-
cerned with deriving mathematical models of dynamic systems based on available
input-output data. The dynamic systems of a particular interest in this paper are
linear parameter-varying (LPV) systems: nonlinear systems described by a linear
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model with coefficients varying as a function of one or more scheduling param-
eters. Literature study shows that LPV modeling and control have a clear track
record in a wide variety of application areas such as: thermal control systems with
different heat sources and temperature probes, active control of vibro-acoustic sys-
tems with multiple accelerometers and actuators, control of mechatronic motion
systems, control of magnetic bearings, adaptive active vehicle suspension control,
(turbofan) engine control, and vehicle drivetrain control [1].

The literature on LPV system identification distinguishes between global and local
approaches. The global techniques (e.g. [2], [3]) directly identify an LPV model
based on data obtained from experiments where both the input signal and the
scheduling parameters are continuously changing. Experiments of this kind are
referred to as global experiments. Systems for which the scheduling parameter
cannot be fixed during the identification experiment and hence only global ap-
proach can be applied are for example: LPV identification of the rotor dynamics
of a helicopter [4] and wind turbine [5]. Local identification techniques identify
an LPV model based on data obtained from several so-called local experiments,
that is, experiments during which the scheduling parameters are fixed. The local
identification techniques (e.g. [6], [7]) typically first identify linear time-invariant
(LTI) models based on these local experiments, and then interpolate them into a
parameter-dependent model. Systems that can be identified with this approach are
for example: an overhead crane with a varying cable length and a temperature-
dependent vibro-acoustic panel [8], and am industrial pick and place unit (gantry
system) [7]. In [9], these two seemingly exclusive approaches are combined.

An important issue in LPV system identification is the determination of an adequate
dependency of the model on the scheduling parameter(s), called model selection. A
complex dependency complicates consequent LPV control synthesis and analysis.
Model selection is recognized as being the most critical step in any system identi-
fication procedure (see [10], Chapter 11), and as especially challenging in the LPV
case if no prior knowledge on the scheduling parameter dependency of the system
model is available.

The traditional approach to model selection in system identification is to imple-
ment an iterative procedure where in each iteration a candidate model is selected,
the model parameters are estimated and the model is evaluated using criteria that
try to find a good balance between model accuracy, model parameter uncertainty
and model complexity, e.g. Akaike’s criterion (AIC) [11] or minimum description
complexity (MDC) [12].

A more recent approach to model selection is to combine it with parameter esti-
mation by augmenting the parameter estimation objective with a penalty such that
simpler models are favored. This well-known strategy in system identification and
machine learning is called regularization. The most common penalty functions are
`2 norm (Tikhonov regularization or ridge regression [13]), `1 norm (LASSO [14]
or basis pursuit), and their combination (elastic net regularization [15]). The advan-
tage of the `2 norm is that it is differentiable, while the `1 norm induces sparsity.
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The survey given in [16] explores connections between system identification and
machine learning, also brought up in [17] and [18].

Regularization is also a common approach in LPV system identification. In [19],
an `1 sparse estimator approach called SPARSEVA (SPARSe Estimator based on
VAlidation criterion) method [20] for ARX models is extended to the LPV case
and compared to the Non-Negative Garrote approach (NNG), [21], [22], and [23].
The SPARSEVA estimator is a variant of the LASSO estimator (`1 penalized least-
squares) which does not require tuning of regularization parameters, while the
NNG is based on a penalization of the least-squares solution by attaching weights
to it. In [24], a Basis Pursuit DeNoising (BPDN) sparse estimation approach is
presented, which is a regularization technique in a predictor-based subspace state-
space model identification framework.

This paper presents a nonlinear least-squares LPV system identification method
with `2,1-norm regularization. The method directly identifies state-space models,
as they are preferred in control synthesis over the input-output models, and as the
transformation from input-output models to their state-space equivalents is complex
and sometimes limiting [25]. Through a reweighted `2,1-norm regularization, an
automatic reduction of model structure complexity is accomplished by discarding
redundant basis function dependencies from the state-space matrices. The choice
of the norm is motivated by the appealing properties the `2,1-norm regularization
has when it comes to selecting a subset of relevant features in machine learn-
ing [26], [27]. Furthermore, applying an iterative reweighting scheme, as shown
in [28], [29], [30], improves the effectiveness of the sparsity inducing property of
the `1 norm. Due to its noonsmooth nature, the obtained optimization problem is
hard to solve, and the way proposed in this paper is to reformulate it into a nonlin-
ear second-order cone program (NSOCP) and solve it by applying the sequential
convex programming approach. To keep the focus mainly on the effects of the pro-
posed regularization, only local frequency domain data are considered in this paper.
Adaptation to account for any combination of global and local, time and frequency
domain data is straightforward.

The paper is organized as follows. Section 2 introduces the chosen LPV model
structure. In section 3, the reweighted `2,1-norm regularization is developed and re-
formulated into conic constraints by introducing auxiliary variables. The same sec-
tion discusses the process of solving the presented optimization problem and gives
instructions for its implementation in the form of a pseudo code. In section 4 the
proposed approach is numerically validated on a flexible gantry system, whereas its
experimental validation on an XY-motion system is given in section 5. The obtained
validation results form the bottom line for the conclusions conveyed in section 6.
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2 LPV model structure

In this paper we focus on the following fully parameterized discrete-time state-
space model: {

x(t +1) = A (p(t))x(t)+B(p(t))u(t)
y(t) = C (p(t))x(t)+D(p(t))u(t),

(1)

where x(t) ∈ Rn, u(t) ∈ Rr, y(t) ∈ Rl , and p(t) ∈ RNp , are respectively the state
vector, the input vector, the output vector, and the scheduling parameter vector, at
time instance t. The state-space matrices of the introduced model are parameter-
dependent:

X (p(t)) = X (0)+
Nb

∑
i=1

X (i)
ψi(p(t)), (2)

∀(X , X) ∈ {(A , A) ,(B, B) ,(C ,C) ,(D , D)}; A(i) ∈ Rn×n, B(i) ∈ Rn×r, C(i) ∈
Rl×n, D(i) ∈Rl×r, ∀i = 0,1, ...,Nb, where Nb is the number of basis functions ψi of
the scheduling parameter p(t) that are employed for the parameterization. No par-
ticular choice of basis functions is here assumed. Since the identification method
proposed in this paper considers only local data, the basis functions ψi are consid-
ered to depend only on the instantaneous time values of the scheduling parameter
p(t), which excludes dynamic dependency. For simplicity of notation all model
matrices {A ,B,C ,D} are assumed to have the same number of basis functions.
This assumption can, however, be relaxed without loss of generality.

Let the model parameters be stacked in a vector θ as follows:

θX (i) = vec
(

X (i)
)
, ∀X ∈ {A,B,C,D}, ∀i = 0, ...,Nb, (3)

θX = [θ T
X (0) θ

T
X (1) ... θ

T

X (Nb)
]T , ∀X ∈ {A,B,C,D}, (4)

θ = [θ T
A θ

T
B θ

T
C θ

T
D]

T . (5)

3 LPV model identification

This section discusses the reweighted `2,1-norm regularization approach for LPV
system identification. It starts with the description of the frequency domain data
available for identification in section 3.1, introduces the nonlinear least-squares ap-
proach in section 3.2, which provides foundations for the regularization algorithm
disclosed in section 3.3.
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3.1 Identification data

Assume that N local experiments have been performed, each providing a frequency
domain data set and corresponding scheduling parameter value. The frequency do-
main data set is in this paper assumed to be the frequency response function (FRF)
matrix of the system measured at a specified set of frequencies F [q], for a fixed
value of the scheduling parameter p[q], that is:

{G[q]
m (ωk)}, k = 1, ..., F [q], q = 1, ..., N. (6)

In general, the measured FRFs contain stochastic components originating from var-
ious noise sources and system nonlinearities, of which the characteristics are dis-
cussed in [31] and [32] respectively. Stochastic frequency domain identification
methods can take these characteristics into account [33].

3.2 The nonlinear least-squares approach

In parameter estimation, a commonly used fitness-criterion is the weighted squared
error:

VNLS(θ) = ε(θ)HWε(θ), (7)

where ε(θ) denotes the difference between the model response and the correspond-
ing measured system response, ε(θ)H is the conjugate transpose of ε(θ), and W is a
positive definite weighting matrix. Stochastic identification approaches, e.g. maxi-
mum likelihood and generalized total least squares, use information about the char-
acteristics of the stochastic components to determine this weighting matrix [33].
Deterministic identification approaches use other arguments, e.g. common sense,
to select these weights. For the particular cases considered in section 4 and section
5, estimates of the sample total variance of the measured FRFs are used as weights,
yielding that the nonlinear least-squares estimate corresponds to the maximum like-
lihood estimate [31].

The frequency domain model error vector for each q = 1, ..., N equals

ε
[q](θ) = [ε [q](θ ,ω1)

T
ε
[q](θ ,ω2)

T ... ε
[q](θ ,ωF [q])

T ]T (8)

and consists of:

ε
[q](θ ,ωk) = vec

(
G[q](θ ,ωk)−G[q]

m (ωk)
)
, k = 1, ..., F [q], (9)

where G[q](θ ,ωk) is the model frequency response function matrix. Eventually, all
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data are stacked in one vector, i.e.:

ε(θ) = [ε [1](θ)T
ε
[2](θ)T ... ε

[N](θ)T ]T . (10)

The nonlinear least-squares parameter estimate is given by

θ̂ = argmin
θ

VNLS (11)

and can be calculated via the Levenberg-Marquardt algorithm.

3.3 A reweighted `2,1-norm regularization approach

As mentioned in the introduction, this paper follows a regularization approach to
select the most appropriate scheduling parameter dependency. This approach as-
sumes a predefined set of basis functions—based on physical insights or guess—to
describe the scheduling parameter dependency of the initial, purposely too complex
model. Throughout the identification algorithm, the model complexity is iteratively
reduced by discarding basis function dependencies from the state-space matrices
where they are assessed as redundant. This strategy is achieved via the reweighted
`2,1-norm regularization approach, thoroughly explained in what follows.

3.3.1 `2,1-norm regularization

The `2,1-norm of an arbitrary matrix M ∈ Rm×n is defined as

‖M‖2,1 =
n

∑
j=1

√
m

∑
i=1

M2
i, j =

n

∑
j=1
‖M1:m, j‖2, (12)

and has a desirable “grouping” property [26], [27]: in case (12) is added to an
optimization problem where all elements of M are optimization variables, the op-
timization favors solutions M with as many zero columns as possible. In order to
group model parameters associated with the same basis functions, the concept of
columns in (12) is in this paper extended to matrices of model parameters

(
X (i)
)

;
these matrices are vectorized and the values of the resulting Euclidean norm are
summed up into the regularization objective

V θX
reg =

Nb

∑
i=1

∥∥θX (i)

∥∥
2, ∀X ∈ {A,B,C,D}, (13)

that is added to the model-fitness criterion (7).

To effectively reduce the model complexity without discarding parameter sets that
significantly contribute to the model response, we chose to add penalization weights,
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of which the explicit definition is given at the end of this section. Combining the
nonlinear least-squares approach (section 3.2), with the concept of weighted `2,1-
norm regularization yields the following optimization problem:

minimize
θ

VNLS(θ)+ γ

Nb

∑
i=1

(
φ
(
θ̂A(i)

)∥∥θA(i)

∥∥
2 +φ

(
θ̂B(i)

)∥∥θB(i)

∥∥
2+

+φ
(
θ̂C(i)

)∥∥θC(i)

∥∥
2 +φ

(
θ̂D(i)

)∥∥θD(i)

∥∥
2

)
, (14)

where γ is a scalar, the value of which determines the rigorousness of the penal-
ization, that is, the importance of the model simplicity with regard to the accuracy
VNLS (θ), and φ is an expression for the penalization weights, defined in section
3.3.3. It is important to notice that the arguments θ̂ are not optimization variables.
The choice of θ̂ is discussed in section 3.3.3.

The objective function (14) is nonsmooth, which makes the optimization problem
challenging to solve. The way to tackle it chosen in this paper is to reformulate
the `2,1 regularization objective into second-order cone constraints by including
auxiliary optimization variables (s), which results in a nonlinear second-order cone
programming (NSOCP) problem, [34]:

minimize
θ , s

VNLS(θ)+ γ

Nb

∑
i=1

(
φ
(
θ̂A(i)

)
sA(i) +φ

(
θ̂B(i)

)
sB(i)+

+φ
(
θ̂C(i)

)
sC(i) +φ

(
θ̂D(i)

)
sD(i)

)
,

subject to
∥∥θA(i)

∥∥
2 ≤ sA(i),∥∥θB(i)

∥∥
2 ≤ sB(i),∥∥θC(i)

∥∥
2 ≤ sC(i),∥∥θD(i)

∥∥
2 ≤ sD(i).

i = 1, ...,Nb. (15)

In that way not only is it possible to handle the nonsmoothness, but also the Hessian
of the Lagrangian coincides with the one of the nonlinear least-squares problem (7),
which is handy. Motivated by the Levenberg-Marquardt algorithm, we decided to
solve (15) by “cutting” it into convex SOCP subproblems. The objective function
of the SOCP subproblem is a convex quadratic function, while the second-order
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cone constraints remain as linear cone constraints, that is:

minimize
∆θ , ∆s

∇VNLS

(
θ
(k)
)T

∆θ +
1
2

∆θ
T M(k)

∆θ + γ

Nb

∑
i=1

(
φ
(
θ̂A(i)

)
∆sA(i)+

+φ
(
θ̂B(i)

)
∆sB(i) +φ

(
θ̂C(i)

)
∆sC(i) +φ

(
θ̂D(i)

)
∆sD(i)

)

subject to
∥∥∥θ

(k)
A(i) +∆θA(i)

∥∥∥
2
≤ s(k)

A(i) +∆sA(i),∥∥∥θ
(k)
B(i) +∆θB(i)

∥∥∥
2
≤ s(k)

B(i) +∆sB(i),∥∥∥θ
(k)
C(i) +∆θC(i)

∥∥∥
2
≤ s(k)

C(i) +∆sC(i),∥∥∥θ
(k)
D(i) +∆θD(i)

∥∥∥
2
≤ s(k)

D(k) +∆sD(i),

i = 1, ...,Nb. (16)

In (16),
∆s = [∆sT

A ∆sT
B ∆sT

C ∆sT
D]

T , (17)

and M(k) is an approximation of the Hessian defined as in the original Levenberg-
Marquardt algorithm:

M(k) = 2

(
∇VNLS

(
θ
(k)
)T

∇VNLS

(
θ
(k)
)
+λ

2diag
(

∇VNLS

(
θ
(k)
)T

∇VNLS

(
θ
(k)
)))

,

(18)

where ∇VNLS

(
θ (k)

)
is the Jacobian matrix of VNLS, and λ is the damping param-

eter. For solving (16), we used YALMIP [35] with the Embedded Conic Solver
(ECOS) [36]. What remains is to update the estimates of the model parameters, at
the end of each iteration, which is done as follows:

θ
(k+1)
X (i) = θ

(k)
X (i) +∆θX (i), ∀X ∈ {A,B,C,D}, ∀i = 0,1, ...,Nb, (19)

where ∆θ = [∆θ T
A ∆θ T

B ∆θ T
C ∆θ T

D]
T .

The algorithm is stopped once the step size ‖∆θ‖2 is smaller than a specified thresh-
old or when the obtained model accuracy is sufficient. A somewhat similar ap-
proach for solving nonlinear second-order cone programs is proposed in [37].

3.3.2 Initial estimates

Just like the nonlinear least-squares approach, the proposed reweighted `2,1 mini-
mization approach requires estimates of the model parameters to start from. In both

8



the numerical (section 4) and experimental (section 5) case of validation, these ini-
tial estimates θ0 are generated using the State-space Model Interpolation of Local
Estimates (SMILE) technique, [38].

3.3.3 Selection of the penalization weights

This section discusses several alternative formulations of the penalization weights.
They are selected such that model parameters not contributing substantially to the
system response are penalized.

The importance of a subset of model parameters θX (i) can be ranked according
to its magnitude. Consequently, penalization weights inversely proportional to the
magnitude of some valid estimates of these model parameters θ̂X (i)—the process of
obtaining them is discussed below in the text—arise as a natural choice:

φ
(
θ̂X (i)

)
=


(∥∥θ̂X (i)

∥∥
2

)−1
if
∥∥θ̂X (i)

∥∥
2 6= 0

∞ otherwise
, (20)

∀X ∈ {A,B,C,D}, ∀i = 1, ...,Nb. For numerical stability a small tuning parameter
ε is added, which yields:

φ
(
θ̂X (i)

)
=
(∥∥θ̂X (i)

∥∥
2 + ε

)−1
, (21)

∀X ∈ {A,B,C,D}, ∀i = 1, ...,Nb. When
∥∥θ̂X (i)

∥∥
2 is large, ε is negligible and (21)

is small. When
∥∥θ̂X (i)

∥∥
2 has a value close to zero, ε starts playing a role since its

inverse will determine the value of (21), which will in this case be large. By tuning
the value of ε , one tunes the intensity of the penalization strategy.

However, by revisiting the expressions for the state-space matrices of the chosen
LPV model structure (1) - (2), one can notice that the contribution of a subset of
parameters to a state-space matrix and consequently to the overall system response
might be better assessed if expressed through the product of these parameters with
the basis function they are assigned to. Since the value ψi(p(t)) varies with the
scheduling parameter p(t), the infinity norm, that is, the maximal absolute value of
ψi within the given scheduling parameter range, is here considered:

φ
(
θ̂X (i)

)
=
(∥∥θ̂X (i)

∥∥
2

∥∥ψi
∥∥

∞
+ ε
)−1

, (22)

∀X ∈ {A,B,C,D}, ∀i = 1, ...,Nb.

A step further in assessing the importance of a particular subset of model parame-
ters is comparing their contribution to a state-space matrix against the LTI contri-
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bution, which yields:

φ
(
θ̂X (i)

)
=

(∥∥θ̂X (i)

∥∥
2

∥∥ψi
∥∥

∞∥∥θ̂X (0)

∥∥
2

+ ε

)−1

, (23)

∀X ∈ {A,B,C,D}, ∀i = 1, ...,Nb.

Moreover, by rescaling and restructuring the optimization problem into

minimize
θ , s

VNLS(θ)+ γ

Nb

∑
i=1

(
φ
(
θ̂A(i)

)
sA(i) +φ

(
θ̂B(i)

)
sB(i)+

+φ
(
θ̂C(i)

)
sC(i) +φ

(
θ̂D(i)

)
sD(i)

)
,

subject to ϕ
(
θ̂A(i)

)∥∥θA(i)

∥∥
2 ≤ sA(i),

ϕ
(
θ̂B(i)

)∥∥θB(i)

∥∥
2 ≤ sB(i),

ϕ
(
θ̂C(i)

)∥∥θC(i)

∥∥
2 ≤ sC(i),

ϕ
(
θ̂D(i)

)∥∥θD(i)

∥∥
2 ≤ sD(i),

i = 1, ...,Nb, (24)

with

ϕ
(
θ̂X (i)

)
=

∥∥ψi
∥∥

∞∥∥θ̂X (0)

∥∥
2

, (25)

the value of the regularization part of the optimization criterion will converge to the
number of nonzero subsets θX (i) , namely

φ
(
θ̂X (i)

)
sX (i) ≈

∥∥ψi
∥∥

∞∥∥θ̂X (0)

∥∥
2

∥∥θX (i)

∥∥
2∥∥θ̂X (i)

∥∥
2

∥∥ψi
∥∥

∞∥∥θ̂X (0)

∥∥
2

+ ε

≈


1 if

∥∥ψi
∥∥

∞

∥∥θX (i)

∥∥
2∥∥θ̂X (0)

∥∥
2

� ε

0 if

∥∥ψi
∥∥

∞

∥∥θ̂X (i)

∥∥
2∥∥θ̂X (0)

∥∥
2

� ε

(26)

∀X ∈ {A,B,C,D}, ∀i = 1, ...,Nb, which is convenient for keeping track of the algo-
rithm progress. In case there exist θX (i) for which

∥∥θ̂X (0)

∥∥
2 = 0, expression (21) or
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(22) should be used instead.

The new optimization problem (24) gets solved sequentially as before:

minimize
∆θ , ∆s

∇VNLS

(
θ
(k)
)T

∆θ +
1
2

∆θ
T M(k)

∆θ + γ

Nb

∑
i=1

(
φ
(
θ̂A(i)

)
∆sA(i)+

+φ
(
θ̂B(i)

)
∆sB(i) +φ

(
θ̂C(i)

)
∆sC(i) +φ

(
θ̂D(i)

)
∆sD(i)

)

subject to ϕ
(
θ̂A(i)

)∥∥∥θ
(k)
A(i) +∆θA(i)

∥∥∥
2
≤ s(k)

A(i) +∆sA(i)

ϕ
(
θ̂A(i)

)∥∥∥θ
(k)
B(i) +∆θB(i)

∥∥∥
2
≤ s(k)

B(i) +∆sB(i)

ϕ
(
θ̂A(i)

)∥∥∥θ
(k)
C(i) +∆θC(i)

∥∥∥
2
≤ s(k)

C(i) +∆sC(i)

φ
(
θ̂A(i)

)∥∥∥θ
(k)
D(i) +∆θD(i)

∥∥∥
2
≤ s(k)

D(i) +∆sD(i)

i = 1, ...,Nb. (27)

The described principle makes sense though only under assumption that the weights
are based upon a valid set of parameter estimates θ̂ . The algorithm should, there-
fore, alternate between estimating θ by solving (24) and redefining the penalization
weights, as in [28]. This functionality is realized in Algorithm 1. The inner loop is
iteratively solving (24) by updating θ via (27), as long as the step size is larger than
a specified tolerance ∆θmin. Once ∆θmin is reached, the outer loop takes the latest
estimate of θ to calculate new weights φ , redefines the optimization problem, and
runs the inner loop anew. The procedure is being repeated as long as the relative
change of the weights between the cycles is above a certain threshold ∆φmin.

As already mentioned, the value of the regularization factor γ determines the impor-
tance of the model simplicity with regard to the accuracy. This implies an inevitable
trade-off between the two objectives for a fixed γ . Nevertheless, following the rea-
soning of Algorithm 1, where better estimates of the model parameters are obtained
over and over thanks to updated penalization weights (and vise versa), one could
use the updated estimates of the model parameters and run again the entire algo-
rithm with a reduced γ to possibly improve model accuracy. Too small γ results in
regularization having no influence on the model identification.
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Data: θ0, Gm, ∆θmin, ∆φmin

Result: θ̂

`← 0, θ̂ [`]← θ0,
∣∣∣φ (θ̂

[`−1]
X (i)

)∣∣∣← 0, ∀X ∈ {A,B,C,D}, ∀i = 1, ...,Nb;

while ∃X ,∃i

∣∣∣φ (θ̂
[`]

X (i)

)
−φ

(
θ̂
[`−1]
X (i)

)∣∣∣∣∣∣φ (θ̂
[`−1]
X (i)

)∣∣∣ > ∆φmin do

θ ← θ̂ [`];

while ‖∆θ‖2 > ∆θmin do
∆θ ← solve (27);

θ ← θ +∆θ ;

end

`← `+1;

θ̂ [`]← θ ;

end

θ̂ = θ̂ [`];

Algorithm 1: Reweighted `2,1-norm regularization procedure

4 Numerical validation

This section discusses the application of the developed reweighted `2,1-norm regu-
larization approach to a flexible gantry system. This case study is part of a research
project which develops methods to concurrently design and optimize systems and
their controller. To facilitate this concurrent design, low-order system models are
required that explicitly depend on a selected set of design parameters.

4.1 System description and identification data

The gantry system shown in Fig. 1 consists of a bridge that is moving along two
linear guides and is actuated at each side by a motor via a rack and pinion. The
bridge is a mechanical truss structure constructed of square tubes of fixed thickness
t = 2mm and side length p. The side length of the tubes is the design parameter in
the above mentioned study and hence the scheduling parameter for the LPV model
identification. This parameter influences the mass and the stiffness of the gantry.
The head of the gantry system is fixed in the middle of the bridge. In this case study,
the input to the system is the motor torque, which is the same for both motors. The
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Fig. 1. Gantry crane

outputs are the acceleration of the head in the x-direction and the acceleration of the
gantry on the rack, also in the x-direction, which is the same at both sides because
of system symmetry and because both motors apply the same torques.

The models used to generate the data for the LPV identification are five continuous-
time 6th order LTI Single-Input Multiple-Output state-space models for the side
lengths of the tubes equal to

p = {24, 30, 36, 42, 48} mm. (28)

These models have been derived from a high-order flexible multi-body model of
this system by applying the model reduction techniques described in [39]. The 6th

order models were then discretized and the corresponding FRFs, evaluated at 300
equally distributed frequency lines within the band f ∈ [50,300]Hz and corrupted
with complex Gaussian noise yielding a SNR of 40 dB, form the identification
data set. The square root of the reciprocal value of the known noise variance is
used to build the weights in the fitness criterion (7) of all performed LTI and LPV
identifications. By doing this, the weighted error criterion (7) corresponds to the
maximum likelihood criterion [33].

4.2 Initial LPV model

An initial LPV model is obtained using the SMILE technique, as suggested in sec-
tion 3.3.2. The SMILE technique starts from LTI models identified via the nonlin-
ear least-squares frequency domain system identification method [10] based on the
aforementioned FRFs. The next step is the interpolation of the LTI models using

13



basis functions of the scheduling parameter suggested by the user. Since there is no
prior knowledge available on the scheduling parameter dependency of the model,
and since there are five LTI models, a fourth-order polynomial scheduling parame-
ter dependency and hence following set of basis functions:

ψ1 = p(t), ψ2 = p(t)2, ψ3 = p(t)3, ψ4 = p(t)4, (29)

was chosen. With this choice, the interpolation can be performed without introduc-
ing errors; the LTI models match exactly to the LPV model for the corresponding
fixed values of the scheduling parameter. Table 1 shows for the obtained SMILE
model the magnitude of the parameters of the matrices linked to the different ba-
sis functions. The left side of the table displays their `2 norm, whereas the right
side shows their relative magnitude indicating the contribution to the system re-
sponse compared to the linear counterpart. It can be seen that all basis functions
(ψ1, ... , ψ4) are being used in each model matrix (A , B, C , D), although the
parameters building matrix B are relatively small.

Employing all four basis functions for each state-space model matrix (1) - (2) may
not be necessary. This assessment is often a matter of compromise one is willing
to make when trading off model accuracy for model simplicity. The technique pre-
sented in this paper implements this compromise and delivers a model the most
accordant with the requirements. Nevertheless, the trade-off curve is in most cases
a function more complex than a straight line, which means there might exist points
in which the lost model accuracy is negligible in comparison with the obtained
model simplification. Finding these points is the main challenge of the presented
technique, taken up in what follows.

4.3 Results

Algorithm 1 solving (24) with the weights (23) and (25) was firstly run with γ =
10−3. The resulting model matrices B and D are independent of every basis func-
tion and consequently, independent of the scheduling parameter. Fig. 2 shows the
magnitude of the difference between the FRF data used for the identification and the
FRF of the model (red crosses). This error is further referred to as error magnitude.
Comparing this error magnitude with the standard deviation of the used FRF data
(blue crosses), one notices a bias, that is a systematic modeling error due to over-
simplification of the scheduling parameter dependency. This systematic modeling
error can be reduced by giving less importance to the regularization, i.e. decreasing
γ .

With the same settings, Algorithm 1 was run again, but with γ = 5 · 10−5. The
magnitude measures of the obtained model parameters are given in Table 2. It can
be seen that the parameters building components of B remained negligible, and
so did the parameters building D , except for those associated with basis function
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Table 1
Parameter magnitude of the SMILE model.

i
∥∥θA(i)

∥∥
2

∥∥θB(i)

∥∥
2

∥∥θC(i)

∥∥
2

∥∥θD(i)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θA(i)

∥∥
2∥∥θ̂A(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θB(i)

∥∥
2∥∥θ̂B(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θC(i)

∥∥
2∥∥θ̂C(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θD(i)

∥∥
2∥∥θ̂D(0)

∥∥
2

0 25.965 1.000 0.470 1.580

1 82.659 1.908 ·10−4 57.619 49.620 0.152 9.156 ·10−6 5.878 1.508

2 2.833 ·103 0.004 2.425 ·103 2.126 ·103 0.250 8.420 ·10−6 11.875 3.100

3 3.689 ·104 0.118 4.507 ·104 4.078 ·104 0.157 1.301 ·10−5 10.593 2.855

4 1.782 ·105 1.670 3.095 ·105 2.886 ·105 0.036 8.866 ·10−6 3.491 0.970

Table 2
Parameter magnitude of the regularized model.

i
∥∥θA(i)

∥∥
2

∥∥θB(i)

∥∥
2

∥∥θC(i)

∥∥
2

∥∥θD(i)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θA(i)

∥∥
2∥∥θ̂A(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θB(i)

∥∥
2∥∥θ̂B(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θC(i)

∥∥
2∥∥θ̂C(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θD(i)

∥∥
2∥∥θ̂D(0)

∥∥
2

0 25.965 2.999 0.471 1.783

1 82.659 7.858 ·10−10 57.034 4.604 ·10−10 0.152 1.2579 ·10−11 5.810 1.240 ·10−11

2 2.833 ·103 2.362 ·10−8 2.422 ·103 33.466 0.250 1.815 ·10−11 11.844 0.043

3 3.689 ·104 5.790 ·10−7 4.438 ·104 3.312 ·10−8 0.157 2.135 ·10−11 10.415 2.055 ·10−12

4 1.781 ·105 1.311 ·10−5 2.900 ·105 1.612 ·10−6 0.036 2.321 ·10−11 3.268 4.801 ·10−12
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Fig. 2. Error magnitude of the initial SMILE model (+), the regularized model obtained
with γ = 10−3 (+), and the regularized model obtained with γ = 5 · 10−5 (+), compared
against the standard deviation of the FRF data (+). The solid lines show the corresponding
FRFs. Left subfigure concerns the first model output, right the second.

ψ2. Judging by Fig. 2, the error magnitude of this model (green crosses) is com-
parable with the error magnitude of the SMILE model (yellow crosses) and the
standard deviation of the measured FRFs (blue crosses). Hence, by allowing for
one more basis function (yielding only two more nonzero parameters), the model
error and accordingly the value of the weighted nonlinear least-squares criterion
(7) is significantly smaller, more precisely VNLS = 3.652 · 103, compared to the
one of the model with B and D completely independent of the scheduling pa-
rameter (VNLS = 1.876 · 104). For the reference, the SMILE model error equals
VNLS = 3.405 · 103. Taking into account the substantial model simplification with
respect to the SMILE model, we conclude that the model obtained with γ = 5 ·10−5

got the best of both criteria—accuracy and simplicity—and represents a good com-
promise between the two extremes. Fig 3 portrays its magnitude and phase surface
as a function of the scheduling parameter. The transitions of the system resonances
and antiresonances are smooth, which confirms the validity of the model over the
considered operating range.
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Fig. 3. The regularized LPV model of the gantry crane system: magnitude (top) and phase
(bottom) surface of the first (left) and second (right) output, as a function of the scheduling
parameter.

Remark on computational complexity. It is difficult to formulate a general state-
ment on the comparison of computational complexity of the non-regularized and
regularized optimization problem. This is because the number of computations re-
quired to find a solution depends on many things, e.g. the number of data samples
involved, the selected basis functions and on the order of the model being identified.
The total number of iterations needed to find an optimum may be different as well.
However, to get a rough idea on this issue, a comparison of the average computa-
tion time of one iteration of the two optimization problems is given for this specific
case. One iteration of the Levenberg-Marquardt algorithm corresponds to solving
a linear least squares problem, one iteration of the regularized problem (NSOCP)
corresponds to solving one SOCP. For this specific case, the SOCP on the average
takes 0.16s, whereas one iteration of the Levenberg-Marquardt algorithm takes on
the average 0.02s, yielding a ratio of 8. The code of both methods is implemented
in MATLAB 8.3.0.532 (R2014a) and executed on the 64-bit Operating System with
Intel® CoreTM i5-3210M CPU @ 2.50 GHz and 8 GB of RAM.

5 Experimental validation

5.1 Setup description

The experimental setup is the XY-motion system shown in Fig. 4. The system con-
sists of two perpendicularly mounted linear stages (X and Y) and a flexible can-
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Fig. 4. XY-motion system

tilever beam. The length of this beam is changed by the position of the Y-motor,
such that the cantilever beam resonances and hence the dynamics in the X-direction
depend on the position of the Y-motor [38]. The reference velocity for the velocity
controlled X-motor is the system input, while the acceleration of the end-effector
in the same direction represents the system output. The acceleration is measured by
an inductive accelerometer having a flat frequency spectrum within f ∈ [0,250]Hz.
The reference position for the position controlled Y-motor is the scheduling param-
eter of the system we aim to identify.

5.2 Experiment design and initial LPV model

Given the operating range of the setup, the following positions of the Y-motor were
chosen as scheduling points at which local experiments were performed:

p = {−0.151, −0.093, p =−0.0639, −0.035, 0.023} m, (30)

where 0m corresponds to the middle position of the Y-stage.

Both measurement noise and nonlinear system distortions corrupt the FRF mea-
surements, and have to be accounted for in the estimation of the variance of the
FRF. In order to estimate this variance and average out both types of distortions
and hence improve the quality of the FRF measurement, ten experiments with dif-
ferent realizations of a random-phase multisine signal were performed, and this
for each of the four chosen local scheduling points. These mesurements were per-
formed in a zero-order-hold setting, also meaning that the input is noise free. The
multisine signals are composed of frequencies in the range f ∈ [3,50]Hz, with
an as high as possible amplitude without causing motor current saturation, and a
duration of 8.192s resulting in a frequency resolution of 0.1221Hz. During each
experiment, 10 periods were measured. Consequently, for each of the five local
scheduling points, there are 10×10 FRFs. Their average and sample total variance
are then calculated using the procedure described in [40]. The measurement taken
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in the middle of the operating range, i.e. at p = −0.0639m, is used for valida-
tion purposes only, whereas the remaining four are used for the identification. The
reciprocal value of the square root of their sample total variance is used to build
the weights in the fitness criterion (7) of all performed LTI and LPV identifica-
tions. Through this choice of weighting, and because of noise-free input data, the
weighted error criterion corresponds to the maximum likelihood criterion [33].

To obtain initial estimates of the LPV model parameters using again the SMILE
technique, LTI models describing the system behavior at the aforementioned sche-
duling points must be identified first. This LTI model identification was performed
with the nonlinear least-squares frequency domain identification technique [10] us-
ing the weights as described above. The obtained LTI models are of order 4. Since
there is no direct feedthrough between the input and the output due to data sam-
pling, the state space model matrix D and hence parameter vector θD is fixed to
zero.

No prior information about suitable basis functions was available, so a third-order
polynomial scheduling parameter dependency i.e. the following set of basis func-
tions:

ψ1 = p(t), ψ2 = p(t)2, ψ3 = p(t)3, (31)

was chosen to interpolate the four LTI models. In that way, no interpolation error is
introduced and the LPV model evaluated at the values of the scheduling parameter
p = {−0.151, −0.093, −0.035, 0.023} m matches exactly to the corresponding
LTI models.

5.3 Results

Table 3 and Table 4 show for the SMILE model and the regularized model the mag-
nitude of the parameters of the matrices linked to the different basis functions, as
in Table 1. The regularized model is obtained using Algorithm 1 within a loop that
gradually decreases γ to improve model accuracy. The magnitude of the parameters
in Bi and Ci, ∀i = 1,2,3 of the regularized model is significantly smaller than the
magnitude of the parameters in B0 and C0, respectively. The proposed `2,1-norm
regularization enabled us to select a simpler scheduling parameter dependency, in
the sense that the input matrix (B) and the complete output equation (matrices C
and D) are independent of the scheduling parameter.

When it comes to accuracy, the regularized model results in a 7.33% larger VNLS
(7) value compared to the SMILE model, indicating a trade-off between the model
accuracy and simplicity. However, by looking at Fig. 5 - Fig. 7, which portray the
fit of the initial SMILE model and the regularized model to the measured FRFs, one
can see no significant difference between the two. Their overlap with the measured
FRFs evidently implies that both models capture the local LPV behavior of the
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Table 3
Parameter magnitude of the SMILE model.

i
∥∥θA(i)

∥∥
2

∥∥θB(i)

∥∥
2

∥∥θC(i)

∥∥
2

∥∥θD(i)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θA(i)

∥∥
2∥∥θ̂A(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θB(i)

∥∥
2∥∥θ̂B(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θC(i)

∥∥
2∥∥θ̂C(0)

∥∥
2

0 2.617 1.312 3.865 ·104 0

1 0.549 0.365 6.631 ·104 0 0.025 0.042 0.259

2 35.976 2.069 5.056 ·105 0 0.249 0.036 0.297

3 197.322 6.765 2.781 ·106 0 0.206 0.018 0.247

Table 4
Parameter magnitude of the regularized model.

i
∥∥θA(i)

∥∥
2

∥∥θB(i)

∥∥
2

∥∥θC(i)

∥∥
2

∥∥θD(i)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θA(i)

∥∥
2∥∥θ̂A(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θB(i)

∥∥
2∥∥θ̂B(0)

∥∥
2

∥∥ψi
∥∥

∞

∥∥θC(i)

∥∥
2∥∥θ̂C(0)

∥∥
2

0 2.611 1.358 3.585 ·104 0

1 0.169 8.491 ·10−16 1.842 ·10−11 0 0.008 9.425 ·10−17 7.746 ·10−17

2 31.732 5.085 ·10−15 1.222 ·10−10 0 0.219 8.510 ·10−17 7.746 ·10−17

3 174.820 3.921 ·10−14 8.933 ·10−10 0 0.182 9.891 ·10−17 8.536 ·10−17

XY-motion system sufficiently well. The fact that in both cases the model error
magnitude is at the level of the standard deviation of the measured FRFs σ(Gm)
confirms that the obtained accuracy is very close to the maximum one can achieve.

Fig. 8 shows the accuracy of the obtained models for the validation FRF measure-
ment at p = −0.0639m. The error magnitude obtained with both the SMILE and
regularized model are similar as for the FRF measurements that were used in the
identification, that is, it is at the same level as the total sample variance of the FRF
measurement. This shows that both models have excellent interpolating capabili-
ties.

With respect to the computation requirements, one SOCP iteration needs 0.027s,
while the Levenberg-Marquardt iteration needs 0.003s, which makes it 9 times
faster than the SOCP.

6 Conclusion

With the aim of reducing the complexity of LPV models in terms of dependency
on the scheduling parameters, and consequently avoiding data overfitting, we ex-
plored the reweighted `2,1-norm regularization in a nonlinear least-squares system
identification setting. The reweighted `2,1-norm regularization is the outcome of
combining the idea of applying the `2,1-norm regularization to the parameter esti-
mation problem, and the concept of reweighted `1 minimization. Reformulation of
the optimization problem with added regularization into a nonlinear second-order
cone programming problem resulted in an approach successfully validated numer-
ically on a flexible gantry system, and experimentally on an XY-motion system.
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Fig. 5. Local identification fit - magnitude. Gm, GSMILE, and G2,1 indicate the measured
FRF, the FRF of the SMILE model and the FRF of the regularized model, respectively.
σ(Gm) indicates the estimated standard deviation of the FRF data.
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Fig. 6. Local identification fit - phase. Gm, GSMILE, and G2,1 indicate the measured FRF,
the FRF of the SMILE model and the FRF of the regularized model, respectively. σ(Gm)
indicates the estimated standard deviation of the FRF data.

The obtained LPV models have significantly simpler scheduling parameter depen-
dency than the nonregularized version, while still being a good approximation of
the system behavior.
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Fig. 7. Local identification fit in 3D - magnitude. Gm, GSMILE, and G2,1 indicate the mea-
sured FRF, the FRF of the SMILE model and the FRF of the regularized model, respec-
tively. σ(Gm) indicates the estimated standard deviation of the FRF data.
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Fig. 8. Local validation fit at p = −0.0639m - magnitude. Gm, GSMILE, and G2,1 indicate
the measured FRF, the FRF of the SMILE model and the FRF of the regularized model,
respectively. σ(Gm) indicates the estimated standard deviation of the FRF data.
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