

Citation Leonardo Cecconi, Smets Sander, Benini Luca, Verhelst Marian, (2017),

Optimal Tiling Strategy for Memory Bandwidth Reduction for CNNs

Advanced Concepts on Intelligent Vision Systems (ACIVS), 2017 Conference

on.

Archived version Author manuscript: the content is identical to the content of the published

paper, but without the final typesetting by the publisher

Published version http://www.springer.com/gp/book/9783319703527#otherversion=9783319703

534

Conference homepage http://acivs.org/acivs2017/

Author contact sander.smets@esat.kuleuven.be

+ 32 (0)16 328081

(article begins on next page)

http://www.springer.com/gp/book/9783319703527#otherversion=9783319703534
http://www.springer.com/gp/book/9783319703527#otherversion=9783319703534

Optimal Tiling Strategy for Memory Bandwidth
Reduction for CNNs

Leonardo Cecconi1, Sander Smets2, Luca Benini1, Marian Verhelst2

1 DEI, University of Bologna, Bologna, Italy
2 ESAT-MICAS KU Leuven, Leuven, Belgium

Abstract. Convolutional Neural Networks (CNNs), are nowadays present
in many different embedded solutions. One of the biggest problems re-
lated to their execution is the memory bottleneck. In this work we pro-
pose an optimal double buffering tiling strategy, to reduce the memory
bandwidth in the execution of deep CNN architecture, testing our model
on one of the two cores of a Zynq®-7020 embedded platform. An optimal
tiling strategy is found for each layer of the network, optimizing for low-
est external memory ⇀↽ On-Chip memory bandwidth. Performance test
results show an improvement in the total execution time of 50% (cache
disabled / 34% cache enabled), compared to a non double buffered imple-
mentation. Moreover, a 5x lower external memory ⇀↽ On-Chip memory
double buffering memory bandwidth is achieved, with respect to naive
tiling settings. Furthermore it is shown that tiling settings for highest
OCM usage do not generally lead to the lowest bandwidth scenario.

1 Introduction and Related works

Nowadays, mobile devices aim to implement Neural Networks for tasks like face
recognition, fault detection, speech processing and so on. The great number of
computations involved in this kind of algorithms requires an efficient usage of
the limited available resources in order to keep performance at an acceptable
level. [3] or [6] look towards dedicated hardware on FPGA, while other works
like [5] target multi-core mobile solutions (e.g. the Odroid-XU platform) to ex-
ploit parallelism. Despite significantly enhancing the performance of Neural Net-
works, design tools for these solutions often lack of an optimal strategy to tackle
the memory bottlenecks. Some level of transfer-computation pipelining can be
introduced, but fails to get performances close to hand crafted solutions. More
structured reuse techniques are a common way to reduce the external bandwidth.
Works like [10] and [11] address this issue by means of loop transformations and
data tiling. In [12] for example, a tiling strategy is proposed for two-dimensional
data processing in multi-core architectures. The effectiveness of these techniques
has been assessed for both non-cached and cached scenarios, where data tiles
become an easier fit for cache blocks [8].
In this work, a double buffering system will be implemented by means of a
Direct Memory Access (DMA) on-chip unit, to transfer data between the ex-
ternal Double Data Rate (DDR) memory an the On-chip memory (OCM). The

contribution of this work is in developing a data tiling strategy for the double
buffering system, tailored to specifically target a CNN architecture, taking into
account data dependencies, changing shape of the layers throughout the net-
work and underlying DMA transfer specifications and characteristics. Modeling
the DDR ⇀↽ OCM data transfer costs, optimal tiling parameters are found, by
means of an exhaustive search over a constrained search space. This proves to
improve performance both in cached and non-cached scenarios. Furthermore a
comparison between the performances of naive tiling parameters and optimal
ones, for similar OCM size usage, will lead to the evidence that using the most
of the available OCM space does not necessarily lead to the best performances
in terms of external memory bandwidth.
In Section 2 of the paper, an overview of CNN architecture and operations will
be presented, together with a brief description of the network chosen for test-
ing. Section 3, will focus on the embedded platform used for the tests and the
double buffering system and tiling mechanisms. Following, Section 4 will be ded-
icated to introduce and develop the Optimal Tiling model and its solution for
minimum data bandwidth. Section 5 is dedicated to give out details about the
implementation on the embedded target, focusing on the programming of the
DMA controller. Finally in Section 6 the results of the tests are reported and
discussed.

2 Network Structure

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specific type of feed-forward arti-
ficial Neural Network, proven to be very effective in tasks like image recognition
and classification. The neurons of these networks are arranged in three dimen-
sions and every layer of the network transforms one volume of activations to
another one by means of a differentiable function [4].
For every layer of the network, the input features map is convolved with a stack
of 2D kernels to obtain another 3D feature map and repeat the process. The
3D convolution is the operation that gives this type of Network its name. Ac-
cording to the purpose of the CNN, the last few layers of the network can be
fully-connected, for classification or even deconvolutional layers if the goal is to
reconstruct some sort of output image or map.

Focusing on the 3D convolution operation, the arguments required for this
function are essentially four: an input 3D map of features, a set of kernels of
weights (3D as well), a set of biases and a 3D output map to accumulate and
store the computed features.
Let wn,mi,j be the (i, j) element of the kernel referred to input map n and contribut-
ing to output map m. Let xns,t be the element in position (s, t) and belonging
to input map n. Finally, let yms,t the element in position (s, t) and belonging to
output map m and bm the bias to be added to the elements of output map m.
The 3D convolution can then be expressed as follows:

yms
str ,

t
str

= actf

N−1∑
n=0

Ks/2∑
i=−Ks/2

Ks/2∑
j=−Ks/2

wn,mi,j · xns−i,t−j + bm

where actf is the activation function (usually relu or tanh) and where the kernels
are considered squares of size Ks×Ks. The s and t coordinates are update with
stride str so that yms

str ,
t

str
only integer indexes occur.

2.2 Test Network

Without limiting the generality of this work, we will apply the proposed approach
in this paper to the contracting section (layer Conv 1 to layer Conv 6 1) of
FlowNet S [7] , as it is a good example of a deep CNN whose weights and maps
do not fit the relatively small On-Chip memories of embedded targets.

The MAC operations involved in FlowNet S are in the order of several bil-
lions per input image pair, moreover, the deep layers lead to a great number of
weights that do not fit the small On-Chip memory of a typical embedded tar-
get. In detail, the total size of weights and biases for the contractive section of
FlowNet is approximately 96 MBytes, while the memory space needed to allo-
cate the maps is roughly 32 Mbytes. Moreover this amount of data is transferred
to and from the external memory multiple times during the computations and
this strongly affects performance. Fetching data from the external memory is
more expensive in terms of power and time, but becomes a necessity when the
OCM is not big enough to host all the necessary data. For this reason a Double
Buffering system, together with an efficient tiling strategy, become an important
step in reducing access times and enhance data reuse to limit the bandwidth.

3 System Structure

3.1 Embedded Target

The system of choice for testing is Zedboard, a development board based on
the Xilinx Zynq®-7020 All Programmable SoC [2]. This platform also features
two external 512 MB DDR3 memories. The Zynq®-7020 SoC is composed by
two main sections: the Processing System (PS) and the Programmable Logic
(PL). The PS consists of dual-core ARM® Cortex®A9, 32KB of L1 cache per
core, 512 KB of shared L2 cache, 256 KB of On-Chip memory (OCM), a DMA
controller, a DDR controller and other peripherals. The two levels of cache sit
in between the processing core and the OCM and can be enabled or disabled
programmatically. The choice of a SoC from the Zynq family is supported by
other works on CNNs, like [14], where this SoC has been proven the right choice
especially for the possibility of building hardware accelerators in the PL side to
speed up computations.

3.2 Double Buffering

To reduce the impact of data transfers on performance, data can be moved to a
physical memory closer to the processor, where closer implies a shorter access
time. Typically, these memories are also much smaller and cannot contain all
data to run deep CNN architectures like FlowNet.
Double Buffering is a technique to overlap data transfers between external and
On-Chip memories with CPU computations, at the cost of an extra hardware
unit, a DMA. The key point of this method is that the DMA constantly fills
the OCM with the data needed by the CPU, so that the CPU communicates
with the short access time OCM only. As such, Double Buffering masks the
long access time from the large external memory. To ensure data consistency,
the OCM memory is divided into two buffers, one to receive data moved by the
DMA and the other one accessed by the CPU. At the end of each computational
unit, the pointers to the two buffers are swapped and the same process repeats.

3.3 Tiling

The convolution operation, which underpins the CNN, requires 3 different data
to operate: input, weights and output to accumulate the result. The question
that arises at this point is how to partition the available OCM space among
these three when transferring data with the double buffering system. Tiling is
the strategy by which all the necessary layer data is partitioned in smaller chunks
that are transferred by the double buffering system and fit the OCM.
Let us consider a generic convolutional layer of the network. All the three data
types involved are essentially three-dimensional maps. The boundaries of these
maps are represented in fig.2. For the input and output maps the names used
throughout this work are ROW , COL and N respectively for the s, t and u
directions. The tiling process consists of cutting smaller three-dimensional sec-
tions out of these three volumes. The volume of the tiles depends on the available
OCM space, on the dependency between the entities and on the tiling strategy.

Fig. 1. CNN layer tiling parameters

In fig.1, all the tiling parameters are represented with the names and symbols
that will be adopted later for the mathematical model. In particular for each new

computational unit, the DMA transfers a σs×σt×σk input tile, a σs

str ×
σt

str ×σz
output tile and σk × σz kernels of weights.
The constants Ks (kernel size) and str (stride) are specific for the layer, while
the four σ parameters are the degrees of freedom of the problem, bounded by the
map dimensions (fig.2) and constrained by the OCM size as it will be explained
in section 4.
Because of the nature of the convolution operation, choosing σs and σt for the
input tile, fixes the s and t parameters also for the output. Furthermore the
choice of σk and σz determines the total number of Ks×Ks kernels to be fetched
and the third dimension of respectively input and output tiles. Because of the
granularity of the convolution algorithm, the minimum amount of data that can
be tiled for each layer, for a computational unit to work, is a Ks ×Ks × 1 × 1
input tile, Ks×Ks + 1 for one kernel and one bias, plus a single element to hold
and accumulate the output.
It is important to also stress that each layer of the network works with kernels,
input and output maps of very different shapes and this is why there is no such
a thing as an overall optimal tiling parameter sets. Each layer of the CNN has
its own characteristics and needs to be optimized accordingly.

4 Optimal Tiling

4.1 Cost model

In this work the memory bottleneck is the addressed problem, hence the aim
of the OCM partitioning will be to minimize the external memory bandwidth.
To represent the impact of a transaction on the external bandwidth, a linear
model is used that takes into account how data are transferred by the DMA
with respect to their layout in memory. In other words, the cost of accessing and
transferring data sequentially is different from the cost of accessing the same
amount of data but fragmented in many memory blocks.
The linear model used is similar to the one presented in [10]. While the model
in [10] is linear in two parameters, the one used in this work introduces an extra
parameter, p, to better represent the cost of a DMA transaction.

T = C + s · p+ n · t (1)

In the cost function T , the parameter C represents the cost of initiating a new
DMA transfer and is a startup cost independent from the amount of data to be
moved or their memory layout. The extra parameter p, is introduced to make
a distinction between the startup cost C and the additional cost of accessing
non sequential elements in memory (scattering) within the same DMA call. This
extra parameter was also used by [12], in modeling the transfer of 2D data
tiles, with a similar cost function. The distinction between p and C is important
because there is no need to issue a new DMA instruction when non sequential
elements are accessed, thanks to the scatter-gather capabilities of the PL-330
DMA controller. The parameter p is multiplied by the number of address jumps,

s, occurring for the transfer. Lastly, t is the cost for transferring a single element,
that has to be multiplied by the total number of transferred data elements n.
The layout of data in memory is row-major. This means that to cut out a σs ×
σt × σk tile in a certain position , σt elements can be transferred sequentially.
Then one needs to update the source address to the next row, before proceeding
with another σt sequential transfer. The same applies for moving from one input
feature to the next one. As a consequence, the cost for accessing a σs × σt × σk
input tile can be modeled as in eq.2.To derive the cost functions for weights
(Twb) and outputs (Tout), a reasoning similar to the one used for the input tiles
is applied. Because of the Ks×Ks granularity of the convolution algorithm being
used, whole kernels are fetched for every tiling iteration.

Tin = C + σs · σk · p+ σs · σt · σk · t (2)

Tout = 2 · (C +
σs · σz
str

· p+
σs · σt · σz

str2
· t) (3)

Twb = C + (σz + 1) · p+ (σk · σz ·Ks2 + σz) · t (4)

Each of the cost functions will have to be multiplied by the number of times
the specific transfer is issued (DMA calls). The number of DMA calls depends
on how the tiling nested loop is sorted. The pseudo code for the tiling loop is
reported in listing 1.1.

for(st = 0; st < ROWin; st+= Ss)
for(tt = 0; tt < COLin; tt+= St)

for(kt = 0; kt < Nin; kt+= Sk){
DMA_DDR_to_OCM(INPUT);

for(zt = 0; zt < Nout; zt+= Sz){
DMA_DDR_to_OCM(WEIGHTS);
DMA_DDR_to_OCM(OUT);

CONV_TILE(INPUT ,WEIGHTS ,OUTPUT);
DMA_OCM_to_DDR(OUT);

}
}

Listing 1.1. Tiling Loop pseudo- code

The meaning of the loop boundaries are shown in fig.2. The loop order affects the
bandwidth and there exist different techniques to determine which loop order is
the best in terms of bandwidth. This aspect will not be analyzed in this work
where the focus is instead how to optimize the tiling for a given nesting order.
The total number of DMA calls per layer (Din, Dwb, Dout for input, weights and
output) according to the given loop order, are expressed as follows:

Din =
ROWin · COLin ·Nin

σs · σt · σk
(5)

Dwb = Dout =
ROWin · COLin ·Nin ·Nout

σs · σt · σk · σz
(6)

Fig. 2. CNN dimensions (loop boundaries)

The overall cost function is then derived by summation of the T∗ by D∗
products and can be expressed as follows:

Ttot =
ROWin · COLin ·Nin

σs · σt · σk
· (Tin +

Nout

σz
· (Tout + Twb))

4.2 Constraints

Once the cost functions have been defined, the focus can be moved on the con-
straints that affect the σ parameters. The first restriction comes from the size
of the OCM of the target. In particular input and output tiles, together with
weight kernels and biases have to occupy less then half the OCM size, for the
double buffering to work correctly. This limit can be expressed as:

σs · σt · σk +
σs · σt · σz

str2
+ σk · σz ·K2

s + σz ≤ OCMsize

2

On top of this, other constraints are related to the underlying tiling loop and
the way data is fetched. Firstly the tiling size along a specific direction has to be
a divisor of the map size in that direction. Moreover, all the σ parameters have
to be positive integers smaller than the map dimension for that direction.

4.3 Optimal parameters

Applying this set of constraints greatly reduces the search space of the problem,
allowing exhaustive search techniques to be used without having to deal with
very long simulation times.

To derive the optimal tiling settings for the presented double buffering strategy,
the tiling parameters are swept for every layer of the test network individually.
The results are presented in Section 6.

5 Implementation

5.1 CNN framework

The FlowNet network is implemented within the Caffe[9] software environment.
The Caffe framework is meant to run on PC workstations and has many depen-
dencies on external high-level libraries and tools. For this reason and performance
issues, the choice has been not to install Caffe on the embedded target.
From the Caffe implementation however, a binary file can be extracted, contain-
ing all the pre-trained weights and biases of the network.
To run CNNs on the Zynq®-7020 target, a custom stand-alone C framework has
been implemented to exactly emulate all the data processing that takes place in
Caffe.

5.2 PL-330 programming

At boot time weights and maps are fetched from an SD card and loaded onto
one of the two external DDR3 modules where they can be accessed by either the
CPU or other memory controllers on the Zynq®-7020.
The Zynq®-7020 SoC features an ARM® PL-330 DMA [1] controller (DMAC).
The DMAC is programmable by means of a small and variable length instruction
set that provides a flexible method of specifying the DMA operations. The usage
and restrictions of these instructions can be found in [1].
The key to enable full transfer flexibility in the PL-330 is to assemble ad-hoc
DMAC instruction programs in the system memory space, that the DMAC can
access for execution. In particular different DMAC programs can be assigned to
different channels simultaneously and executed in a quasi-parallel round-robin
fashion.
In the case of CNNs four different programs (for input, output read, output write
back and weights) are built from four different code templates whose parameters
are updated at runtime. In the most general scenario, full control over the three
tiling dimensions has to be provided. This means that Scatter-Gather capabili-
ties have to be exploited to cut out σs × σt × σk tiles from the input.
The main issue regarding a three-dimensional tiling is that the DMAC instruc-
tion set only supports two-level-deep nested loops. The strategy used in this
work is to loop unroll in the leftover dimension thus repeating the same code
template multiple times.

DMA_LOAD src_addr ;init src , dest , transfer config
DMA_LOAD dest_addr
DMA_LOAD dma_config
LOOP_0 cnt0:

LOOP_1 cnt1: ; transfer consecutive data
DMA_LOAD data from DDR
DMA_STORE data to OCM

END_LOOP1
LOOP_1 cnt2: ; update src address

ADD Imm16_bit to src_addr

END_LOOP1
ADD Imm16_bit to src_addr

END_LOOP0
...

;LOOP0 cnt0 repeated sigma_k times (unrolling)
...

DMA_SEND_EVENT ev_id ;end of transfer interrupt
DMA_END

Listing 1.2. Input transfer DMAC pseudo-code

The nested loop (cnt0 and cnt1) in listing 1.2 takes care of the first two di-
mensions, rows and columns, cutting out σs × σt tiles, while the unrolling is
adopted to loop through the third one for σk times. In between the nested loop,
a single loop (cnt2) is instantiated to update the source address to the new
memory location by means of a series of 16-bit immediates additions. Finally, a
DMA SEND EVENT instruction is issued to signal the end of transfer to the
processor and the program ends. To prevent the convolution operations to run
before the transfer of all the necessary data has completed, software barriers in
the C code have been used in between the loop levels. (These barriers consist
of software watchdog down-counter that are reset at the end of each transfer
completion, preventing them from elapsing. The execution is suspended on the
barriers when the data to be computed has not been completely transferred)

6 Results

6.1 Performance on hardware target

To estimate the effectiveness of the optimal tiling parameter set, another naive
set of parameters has been used for comparison. These parameters have been
selected with the only aim of using a high OCM space percentage (at least above
80 %) for the tiling of each layer. Handcrafting the parameters to occupy most
of the OCM space is a reasonable choice. This is because as found in different
works, like [10], bigger OCM sizes lead to better performances when it comes to
double buffering.

As the tiling strategy aims to alleviate the memory bottleneck to increase perfor-
mance, the first considered evaluation metric is the number of execution cycles
for the ARM®Cortex®A9, running at 667 MHz. Fig. 3 shows the execution
cycles for the contractive layers of FlowNet, both with the L1 and L2 levels of
cache disabled (left) and enabled (right). For both cases, three different scenar-
ios are considered: the non-optimized implementation (blue), where no double
buffering system is present and all the data are fetched by the CPU from the
external DDR; an optimized implementation with double buffering at a naive
(non-optimal) set of parameters (red) and the optimized implementation with
the double buffering system running at the optimal parameter set (green).

The advantage of using a double buffering system is clear from the results. The
total non-cached execution time goes from 1573s to 838s for the naive Double

c
o
n
v
1

c
o
n
v
2

c
o
n
v
3

c
o
n
v
3
-1

c
o
n
v
4

c
o
n
v
4
-1

c
o
n
v
5

c
o
n
v
5
-1

c
o
n
v
6

c
o
n
v
6
-1

0

0.2

0.4

0.6

0.8

1
·1011

cy
cl
es

no DB

DB naive

DB optimal

(a) Cache disabled

c
o
n
v
1

c
o
n
v
2

c
o
n
v
3

c
o
n
v
3
-1

c
o
n
v
4

c
o
n
v
4
-1

c
o
n
v
5

c
o
n
v
5
-1

c
o
n
v
6

c
o
n
v
6
-1

0

0.5

1

1.5

2
·1010

cy
cl
es

no DB

DB naive

DB optimal

(b) Cache enabled

Fig. 3. Execution cycles for the FlowNet contractive layers, for scenarios with cache
disabled and enabled.

Buffering (DB) Tiling and 805s for the optimal DB, hence with an overall im-
provement of almost 2x, with a peak of 2.4x for the second layer. Regarding the
naive versus optimal tiling, the difference is present but not so marked, especially
in the deeper layers.
Moving on to the cache-enabled setting, the double buffering system is still
moving data between the DDR and the OCM but now two levels of cache sit in
between the OCM and the CPU and the caches are flushed after every compu-
tational unit.
In this setting, the impact of the external bandwidth on performance is partially
masked because of the presence of the cache. The cache size (512 KB), bigger
than the OCM, greatly reduces the external memory bandwidth and masks the
benefits of the double buffering solution. Nevertheless it is important to under-
line that still a tangible improvement is present exploiting the double buffering
and still the optimal set performs better than the naive one.

6.2 Data Transfer profiling

As a second evaluation metric, the external memory bandwidth can be evalu-
ated. For this test, the convolution operations of the layers have been disabled,
removing the internal bandwidth and computations cycles and allowing to pro-
file the external data movements (DDR ⇀↽ OCM) under the double buffering for
naive and optimal settings.

Fig. 4. Naive versus Optimal Tiling transfer cycles

The results in fig.4 clearly demonstrate that the optimal tiling strategy is more
effective than a naive approach. Note that both approaches use roughly the
same (high) percentage of the available OCM space, as demonstrated in tab. 1.
Therefore, it is generally not true that the highest SPM usage leads to the
lowest external memory bandwidth. This is particularly clear for layer 7, where
the optimal result is achieved with a smaller SPM space than the one used by
the naive tiling.

conv 1 conv 2 conv 3 conv 3.1 conv 4 conv 4.1 conv 5 conv 5.1 conv 6 conv 6.1

naive 86 92 96 83 91 89 88 88 80 91

opt. 88 98 98 86 85 88 76 86 90 91
Table 1. OCM Space Usage % per Layer

7 Conclusion

An optimal tiling strategy for the double buffering system has been proven to be
effective in removing the memory bottleneck for a deep CNN architecture. When
applied to the FlowNet CNN, this improves the overall execution cycles by 50%
(with cache disabled / 34% with cache enabled). Moreover a 5x improvement is
brought by the use of optimal tiling parameters has been assessed, with respect
to the use of naive ones when it comes to data transfers between the external
DDR memory and the On-Chip memory. Furthermore, another key point that
flows from the results is that high percentages of On-Chip memory space usage
do not necessarily lead to a lower transfer time. This statement does not imply
that there is no reason to prefer bigger On-Chip memories to small ones. Despite
the findings, the general trend is that performances increase with bigger OCMs,

as found in different works such as [13]. Because of this, finding an optimal set
of parameters to transfer data tiles in a deep CNN architecture has been proven
to be an important step of the optimization process.

Acknowledgment

The work of S. Smets was supported by a Doctoral Fellowship of the Research
Foundation Flanders (FWO).

References

1. PrimeCell DMA Controller (PL330), 2007.
2. Zedboard,Zynq Evaluation and Development Hardware Users Guide, 2014.
3. A. Al Maashri, M. Cotter, N. Chandramoorthy, M. DeBole, C.-L. Yu,

V. Narayanan, and C. Chakrabarti. Hardware acceleration for neuromorphic vision
algorithms. Journal of Signal Processing Systems, 70(2):163–175, 2013.

4. S. C. class. Cs231n: Convolutional neural networks for visual recognition. 2016.
5. F. Conti, A. Pullini, and L. Benini. Brain-inspired classroom occupancy monitor-

ing on a low-power mobile platform. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 610–615, 2014.

6. C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun.
Neuflow: A runtime reconfigurable dataflow processor for vision. In Computer Vi-
sion and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society
Conference on, pages 109–116. IEEE, 2011.

7. P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazırbaş, V. Golkov, P. van der
Smagt, D. Cremers, and T. Brox. Flownet: Learning optical flow with convolutional
networks. arXiv preprint arXiv:1504.06852, 2015.

8. Q. Huang, J. Xue, and X. Vera. Code tiling for improving the cache performance
of pde solvers. In Parallel Processing, 2003. Proceedings. 2003 International Con-
ference on, pages 615–624. IEEE, 2003.

9. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093, 2014.

10. M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh. Dynamic management of scratch-pad memory space. In Design Au-
tomation Conference, 2001. Proceedings, pages 690–695. IEEE, 2001.

11. I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-level blocking. In ACM
SIGPLAN Notices, volume 32, pages 346–357. ACM, 1997.

12. S. Saidi, P. Tendulkar, T. Lepley, and O. Maler. Optimizing two-dimensional dma
transfers for scratchpad based mpsocs platforms. Microprocessors and Microsys-
tems, 37(8):848–857, 2013.

13. X. Yang, L. Wang, J. Xue, T. Tang, X. Ren, and S. Ye. Improving scratchpad
allocation with demand-driven data tiling. In Proceedings of the 2010 international
conference on Compilers, architectures and synthesis for embedded systems, pages
127–136. ACM, 2010.

14. C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Optimizing fpga-based
accelerator design for deep convolutional neural networks. In Proceedings of the
2015 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
pages 161–170. ACM, 2015.

