
ARENBERG DOCTORAL SCHOOL

Faculty of Engineering Technology

Decomposition-based
algorithms for optimization
problems

Túlio Ângelo Machado Toffolo

Dissertation presented in partial

fulfillment of the requirements

for the degree of Doctor in

Engineering Technology (PhD)

November 2017

Supervisors:
Prof. dr. ir. G. Vanden Berghe
Prof. dr. P. De Causmaecker
Prof. dr. F. Spieksma





Decomposition-based algorithms for optimization
problems

Túlio Ângelo Machado TOFFOLO

Examination committee:
Prof. dr. ir. J. Ivens, chair
Prof. dr. ir. G. Vanden Berghe, supervisor
Prof. dr. P. De Causmaecker, co-supervisor
Prof. dr. F. Spieksma, co-supervisor
Prof. dr. ir. S. Vandewalle
Prof. dr. L. De Raedt
Prof. dr. R. Leus
Prof. dr. ir. D. Vigo
(Università di Bologna, Italy)

W. Tielemans
(Ordina, Belgium)

Dissertation presented in
partial fulfillment of the
requirements for the degree of
Doctor in Engineering Technol-
ogy (PhD): Computer Science

November 2017



© 2017 KU Leuven – Faculty of Engineering Technology
Uitgegeven in eigen beheer, Túlio Ângelo Machado Toffolo, Celestijnenlaan 200A box 2402, B-3001 Heverlee
(Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.



Acknowledgments

Developing and studying algorithms has long been one of my passions. It is
thus by no means a coincidence that I have spent almost four years as a PhD
researcher on this very topic, dedicating myself towards studying, researching
and coding various approaches to address optimization problems. Luck has,
however, played an important role in the course of my academic life. And
lucky I certainly was, for encountering in my professional path amazing people
like Marcone Souza and Greet Vanden Berghe. More than supervisors, they
are friends who have my eternal gratitude for all their advice throughout my
academic career. Advice which often went beyond the academic sphere and in
diverse ways have contributed into making me the person I am today.

Concerning specifically the PhD, I would like to thank my supervisors Greet
Vanden Berghe, Patrick De Causmaecker and Frits Spieksma for the unique
opportunity of doing research at KU Leuven. It was an honor to have your
support and guidance. Next, I thank Daniele Vigo, Stefan Vandewalle, Roel
Leus, Luc De Raedt and Wouter Tielemans for being part of my examination
committee and providing valuable feedback. Additionally, I would like to thank
Jan Ivens for agreeing to chair my PhD defense.

Throughout the PhD I had the privilege of working in multiple problem domains,
which provided me with the chance of collaborating with a large number of
colleagues. To all co-authors I have worked with, I send my appreciation. Thank
you all very much, in particular Thibaut Vidal and Haroldo Santos, who came
all the way from Brazil to Belgium for our joint projects.

i



ii ACKNOWLEDGMENTS

Moving to a country so far away from home often leaves one feeling isolated. It
was, however, never the case for me. Alix, Jean-Pierre and Lynn received me as
part of their family. Fleur’s family further contributed to make Belgium feel
more like home. It was a privilege to be with all of you. I would like to also
thank Vanessa, a very special soul. I will always be grateful for your support.
At work, even though I was the only international student for a long while at
CODeS, the Belgian colleagues, in particular Tony, made it very easy for me to
adapt.

Speaking of colleagues, I would like to dedicate at least one paragraph to
those with whom I spent most of my time in Belgium. I would like to begin
by thanking my dear friend Luke Connolly, who deserves more than a single
mention. Luke went beyond providing editorial consultation, and indirectly
taught me to see the English language in a different manner. I will miss our
discussions together with Everton and conversations with Erik. I would like to
also explicitly thank Everton, Tony, Jannes, Sam, Catherine, Sam Van Malderen,
Federico, Thomas, Pieter, Wim, Evert-Jan, Jan, Eline, Thomas Sys, David,
Bert, and the new colleagues Toni, Manos, Yihang, Reshma, Annelies, Farzaneh
and Michiel. You all have made CODeS a very enjoyable working place.

I would like to also leave some words to my family and friends from Brazil.
Thank you, grandma Gracinda, friends, cousins, ants and uncles, in particular
uncle Ronaldo and Ângelo, for warmly welcoming me everytime I went home.
To my beloved parents and brother, I send a special message. Even from so far
away, you managed to be the most important people at all relevant moments.
Your unwavering support and confidence in me throughout the last 32 years is
more than I could have ever asked for.

My final words go to Fleur, who was there for me during the toughest moments
of the PhD. You illuminated my days. Thank you for everything!

Túlio A. M. Toffolo Ghent, November 2017



Abstract

Despite the recent very significant progress concerning algorithms for combina-
torial optimization problems, most large instances of NP-Hard problems remain
intractable by general solvers, motivating the development of problem-specific
(meta)heuristic algorithms. While often resulting in acceptable results, the
development of problem-specific algorithms is time-consuming and traditionally
very expensive. In response to these shortcomings, this manuscript investigates
decomposition-based algorithms as an alternative for addressing combinatorial
optimization problems. These algorithms decompose a problem into multiple
subproblems so as to efficiently approach it. Generally, such subproblems are
much easier to solve than the entire problem, thereby enabling one to address
large problems by employing, for example, general solvers.

Decomposition-based algorithms may be categorized as follows: those which
optimally solve the original problem and those which address it heuristically
with the goal of producing high-quality solutions. Both algorithm classes are
addressed within this thesis, whose primary focus concerns decomposition-
based heuristic algorithms. However, can these algorithms replace state-
of-the-art problem-specific (meta)heuristics? To answer this question, six
different problems are investigated throughout this manuscript, ranging from
scheduling to logistic problems. All six problems are associated with challenging
benchmark instances extensively studied in the literature, which permits a
comparison of the developed methods against several other algorithms. Multiple
decomposition strategies are investigated, employing the problems’ structure, the
decisions associated with them or simple strategies seeking to reduce their size.
Several decomposition-based algorithms are proposed and thoroughly analyzed,
with some of them proven general despite the various individual problem
characteristics. A general framework is proposed, successfully addressing not
only some of the problems studied throughout the thesis but also an additional

iii



iv ABSTRACT

one from the literature.

Computational experiments validate the proposed algorithms, which result in
several improvements over the state-of-the-art for all six investigated problems.
This thesis not only contributes towards various individual problem domains, but
also to the future of decomposition-based methodologies. Its findings, combined
with the practical advantages of decomposition-based algorithms, culminate
in a discussion concerning the role of decomposition within state-of-the-art
algorithms for combinatorial optimization problems. Furthermore, in the spirit
of reproducible science, whenever possible the source code produced was made
publicly available online together with instance and solutions files.



Beknopte samenvatting

Ondanks significante doorbraken in de combinatorische optimalisatie blijken
algemene solvers nog altijd tekort te schieten om grote instanties van NP-harde
problemen op te lossen. Voor deze open optimalisatievraagstukken biedt de
ontwikkeling van probleemspecifieke (meta)heuristieken een uitweg. Dergelijke
algoritmen, hoewel meestal erg performant, vergen een aanzienlijke ontwikkeltijd
en zijn bijgevolg bijzonder duur.

Dit manuscript onderzoekt hoe decompositie-algoritmen een alternatief kunnen
bieden voor zowel algemene solvers als probleemspecifieke heuristieken voor
combinatorische optimalisatieproblemen. Een decompositie-algoritme benadert
een probleem efficiënt door het op te splitsen in een aantal deelproblemen, die zelf
gewoonlijk veel gemakkelijker zijn dan het oorspronkelijke optimalisatieprobleem.
Met deze methodologie worden grote problemen alsnog oplosbaar met,
bijvoorbeeld, algemene solvers.

Men kan decompositie-algoritmen als volgt categoriseren: algoritmen die
het originele probleem optimaal oplossen en heuristische alternatieven die
goede benaderende oplossingen berekenen. Terwijl dit onderzoek hoofdzakelijk
decompositie-gebaseerde heuristieken bestudeert, komen de beide categorieën
aan bod in het manuscript. De centrale onderzoeksvraag luidt ‘Kunnen
deze decompositie-algoritmen de huidige probleemspecifieke (meta)heuristieken
vervangen?’ Om deze vraag te beantwoorden onderzoekt dit werk zes
verschillende logistieke problemen, gaande van scheduling tot rittenplanning.
Bij elk van deze problemen horen uitdagende instanties, uitgebreid bestudeerd
in de wetenschappelijke literatuur. Deze referentie-instanties vergemakkelijken
een kwantitatieve performantievergelijking met bestaande algoritmen.

Het ontwerp van de verschillende decompositiestrategieën is ofwel geïnspireerd op
de probleemstructuur of op veel eenvoudiger methoden die de probleemdimensies

v



vi BEKNOPTE SAMENVATTING

trachten te verminderen. Een grondige analyse van deze nieuwe decompositiebe-
naderingen bewijst de optimaliteit en de algemene toepasbaarheid van enkele
algoritmen, die niettemin individuele probleemkarakteristieken aankunnen.

Het algemene raamwerk ontwikkeld tijdens dit onderzoek overstijgt de problemen
in dit manuscript. Zonder noemenswaardige inspanning werd ook een ander
optimalisatieprobleem uit de wetenschappelijke literatuur succesvol opgelost.

Uitgebreide computationele experimenten bevestigen de kwaliteit van de
voorgestelde algoritmen, die talrijke nieuwe beste oplossingen laten noteren voor
elk van de zes bestudeerde problemen. Deze thesis levert niet enkel een bijdrage
tot elk individueel probleemdomein maar, bovenal, tot de decompositiemethoden
van de toekomst.

De wetenschappelijke realisaties en praktische voordelen van decompositiege-
baseerde algoritmen komen bijeen in een discussie over de rol van decompositie
in actuele algoritmen voor combinatorische optimalisatieproblemen. In de geest
van reproduceerbare wetenschap is de ontwikkelde broncode publiek beschikbaar,
samen met de instanties en hun oplossingsbestanden.



Abbreviations

APD Average Project delay

BFS Best First Search

BKS Best Known Solution

B&S Balas & Simonetti Neighborhood

CP Constraint Programming

CPD Critical Path Duration

CVRP Capacitated Vehicle Routing Problem

DFS Depth First Search

ESICUP EURO Special Interest Group on Cutting and Packing

GA Genetic Algorithm

GPSP Generalized Project Scheduling Problem

HBSS Heuristic-Biased Stochastic Sampling

HC Hill Climbing

ILS Iterated Local Search

INRC-1 First International Nurse Rostering Competition

IP Integer Programming

LAHC Late Acceptance Hill-Climbing

LB Lower Bound

vii



viii ABBREVIATIONS

LP Linear Programming

MCLP Multiple Container Loading Problem

MISTA Multidisciplinary International Scheduling Conference: Theory
and Applications

MPSP Multi-Project Scheduling Problem

MSSCSP Multiple Stock-Size Cutting Stock Problem

NRP Nurse Rostering Problem

OSI Open Solver Interface

PSP Project Scheduling Problem

RCPSP Resource-Constrained Project Scheduling Problem

SAT Boolean Satisfiability Problem

SBVRP Swap-Body Vehicle Routing Problem

SGS Serial Generation Scheme

SMPTSP Shift Minimization Personnel Task Scheduling Problem

TMS Total MakeSpan

TPD Total Project Delay

TSP Traveling Salesman Problem

TUP Traveling Umpire Problem

UB Upper Bound

UHGS Unified Hybrid Genetic Search

VeRoLog EURO Working Group on Vehicle Routing and Logistics

VND Variable Neighborhood Descent

VRP Vehicle Routing Problem



Contents

Acknowledgments i

Abstract iii

Abbreviations viii

List of Algorithms xv

List of Figures xvii

List of Tables xxi

1 Introduction 1

Part I Optimal subproblem solutions 7

2 Traveling Umpire Problem 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Integer programming formulation . . . . . . . . . . . . . . . . . 15

2.2.1 Computational experiments . . . . . . . . . . . . . . . . 18

ix



x CONTENTS

2.3 Dantzig-Wolfe decomposition . . . . . . . . . . . . . . . . . . . 19

2.3.1 Column generation . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Solving the pricing problems . . . . . . . . . . . . . . . 22

2.3.3 Branch-and-price . . . . . . . . . . . . . . . . . . . . . . 24

2.3.4 Computational experiments . . . . . . . . . . . . . . . . 25

2.4 Branch-and-bound with decomposition-based lower bounds . . 29

2.4.1 Branch-and-bound . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Decomposition-based lower bounds . . . . . . . . . . . . 32

2.4.3 Pruning strategies . . . . . . . . . . . . . . . . . . . . . 37

2.4.4 Parallelization . . . . . . . . . . . . . . . . . . . . . . . 38

2.4.5 Computational experiments . . . . . . . . . . . . . . . . 39

2.5 Decomposition-based heuristic . . . . . . . . . . . . . . . . . . . 45

2.5.1 Constructive procedure . . . . . . . . . . . . . . . . . . 46

2.5.2 Local search . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5.3 Computational experiments . . . . . . . . . . . . . . . . 50

2.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . 52

3 Nurse Rostering Problem 55

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Integer programming formulation . . . . . . . . . . . . . . . . . 59

3.2.1 Computational experiments . . . . . . . . . . . . . . . . 66

3.3 Dantzig-Wolfe decomposition . . . . . . . . . . . . . . . . . . . 67

3.3.1 Column generation . . . . . . . . . . . . . . . . . . . . . 69

3.3.2 Computational experiments . . . . . . . . . . . . . . . . 70



CONTENTS xi

3.4 Decomposition-based heuristic . . . . . . . . . . . . . . . . . . . 71

3.4.1 Decomposition scheme . . . . . . . . . . . . . . . . . . . 71

3.4.2 Heuristic algorithm . . . . . . . . . . . . . . . . . . . . . 74

3.4.3 Computational experiments . . . . . . . . . . . . . . . . 75

3.4.4 Best results . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . 79

4 Project Scheduling Problem 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 Integer programming formulation . . . . . . . . . . . . . . . . . 85

4.2.1 Computational experiments . . . . . . . . . . . . . . . . 88

4.3 Decomposition-based heuristic . . . . . . . . . . . . . . . . . . . 90

4.3.1 Constructive algorithm . . . . . . . . . . . . . . . . . . 90

4.3.2 Local Search algorithm . . . . . . . . . . . . . . . . . . 97

4.3.3 Metaheuristic framework integration . . . . . . . . . . . 100

4.4 Computational experiments . . . . . . . . . . . . . . . . . . . . 103

4.4.1 Multi-project scheduling problem . . . . . . . . . . . . . 104

4.4.2 Generalized project scheduling problem . . . . . . . . . 107

4.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . 110

5 Towards a general solver 113

5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.1.1 Defining the problem . . . . . . . . . . . . . . . . . . . . 115

5.1.2 Defining the decompositions . . . . . . . . . . . . . . . . 115



xii CONTENTS

5.1.3 Defining subproblem characteristics . . . . . . . . . . . 117

5.2 Algorithmic components . . . . . . . . . . . . . . . . . . . . . . 119

5.2.1 Constructive procedure . . . . . . . . . . . . . . . . . . 119

5.2.2 Local search procedure . . . . . . . . . . . . . . . . . . . 120

5.3 Framework validation . . . . . . . . . . . . . . . . . . . . . . . 123

5.3.1 Validation with the addressed problems . . . . . . . . . 123

5.3.2 Validation with another problem . . . . . . . . . . . . . 125

5.4 Conclusions and future work . . . . . . . . . . . . . . . . . . . 127

Part II Heuristic subproblem solutions 129

6 Capacitated Vehicle Routing Problem 135

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.2 Related literature . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.1 Search spaces . . . . . . . . . . . . . . . . . . . . . . . . 141

6.3.2 Efficient exploration strategies . . . . . . . . . . . . . . 146

6.3.3 Constant-time evaluation . . . . . . . . . . . . . . . . . 149

6.3.4 Using memory to reshape the search space . . . . . . . . 151

6.4 Computational experiments . . . . . . . . . . . . . . . . . . . . 154

6.4.1 Search space and computational effort . . . . . . . . . . 154

6.4.2 Parameters and speedup techniques . . . . . . . . . . . 157

6.4.3 Final results . . . . . . . . . . . . . . . . . . . . . . . . . 159

6.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . 164



CONTENTS xiii

7 Swap-body Vehicle Routing Problem 165

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.1.1 The VeRoLog challenge problem . . . . . . . . . . . . . 167

7.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.3 Local search algorithm . . . . . . . . . . . . . . . . . . . . . . . 174

7.3.1 Constructive algorithm . . . . . . . . . . . . . . . . . . 174

7.3.2 Hybrid local search algorithm . . . . . . . . . . . . . . . 175

7.4 Neighborhood structures . . . . . . . . . . . . . . . . . . . . . . 176

7.4.1 Neighborhood size reduction . . . . . . . . . . . . . . . 177

7.4.2 Classical neighborhood structures . . . . . . . . . . . . . 178

7.4.3 Problem-specific neighborhood structures . . . . . . . . 179

7.4.4 Subproblem optimization scheme . . . . . . . . . . . . . 180

7.4.5 Learning automaton . . . . . . . . . . . . . . . . . . . . 182

7.5 Computational Experiments . . . . . . . . . . . . . . . . . . . . 183

7.5.1 VeRoLog challenge datasets . . . . . . . . . . . . . . . . 183

7.5.2 Neighborhood groups . . . . . . . . . . . . . . . . . . . 184

7.5.3 Learning automaton and neighborhoods . . . . . . . . . 185

7.5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7.5.5 Additional instances . . . . . . . . . . . . . . . . . . . . 190

7.6 Conclusions and future work . . . . . . . . . . . . . . . . . . . 195

8 Multiple Container Loading Problem 197

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.1.1 The ESICUP challenge problem . . . . . . . . . . . . . 200



xiv CONTENTS

8.2 Lower bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

8.3 Decomposition-based heuristic . . . . . . . . . . . . . . . . . . . 205

8.3.1 Stack builder . . . . . . . . . . . . . . . . . . . . . . . . 205

8.3.2 Bin builder . . . . . . . . . . . . . . . . . . . . . . . . . 209

8.3.3 Local search algorithm . . . . . . . . . . . . . . . . . . . 211

8.4 Computational experiments . . . . . . . . . . . . . . . . . . . . 213

8.4.1 Instances . . . . . . . . . . . . . . . . . . . . . . . . . . 214

8.4.2 Algorithm components . . . . . . . . . . . . . . . . . . . 216

8.4.3 Results for ESICUP instances . . . . . . . . . . . . . . . 218

8.4.4 General applicability . . . . . . . . . . . . . . . . . . . . 220

8.5 Conclusions and future work . . . . . . . . . . . . . . . . . . . 225

9 Conclusions 227

Bibliography 231

Awards and publications 249

Awards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Conferences and symposia (during the PhD) . . . . . . . . . . . . . . 252

Source code and data published online (during the PhD) . . . . . . . 255



List of Algorithms

Chapter 2: Traveling Umpire Problem

2.1 Branch-and-bound algorithm . . . . . . . . . . . . . . . . . . . . 33

2.2 Lower bounds computation algorithm . . . . . . . . . . . . . . . 36

2.3 Decomposition-based constructive algorithm for the TUP . . . . 47

2.4 Decomposition-based local search for the TUP . . . . . . . . . . 49

Chapter 3: Nurse Rostering Problem

3.1 Decomposition-based local search algorithm . . . . . . . . . . . . 74

Chapter 4: Project Scheduling Problem

4.1 Decomposition-based constructive algorithm . . . . . . . . . . . 96

4.2 Decomposition-based local search algorithm for the GPSP . . . 102

Chapter 5: Towards a general solver

5.1 General decomposition-based constructive algorithm . . . . . . . 120

5.2 Local search subproblems generation . . . . . . . . . . . . . . . . . 121

5.3 General decomposition-based local search . . . . . . . . . . . . . 122

xv



xvi LIST OF ALGORITHMS

Chapter 6: Capacitated Vehicle Routing Problem

6.1 Efficient local search in space SBk . . . . . . . . . . . . . . . . . . 149

Chapter 7: Swap-body Vehicle Routing Problem

7.1 Late Acceptance Hill-Climbing . . . . . . . . . . . . . . . . . . . 176

7.2 Hybrid Algorithm (ILS and LAHC) . . . . . . . . . . . . . . . . 177

Chapter 8: Multiple Container Loading Problem

8.1 Layer building algorithm . . . . . . . . . . . . . . . . . . . . . . 208

8.2 Best-fit algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 210



List of Figures

Chapter 1: Introduction

1.1 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Introduction to Part I

I Organization of Part I . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 2: Traveling Umpire Problem

2.1 Graph G = (V,E) representing an 8-team TUP instance . . . . 16

2.2 Representation of Dantzig-Wolfe’s decomposition for the TUP . 20

2.3 Pricing solver example for an 8-team TUP instance . . . . . . . 23

2.4 Branch-and-bound illustration for an 8-team TUP instance . . 30

2.5 Example of a (solved) TUP subproblem . . . . . . . . . . . . . 33

2.6 Lower bounds example for a TUP subproblem with four rounds 35

2.7 “Partial” matching problem example . . . . . . . . . . . . . . . 38

2.8 Performance of the branch-and-bound with deactivated compo-
nents on 14-team instances . . . . . . . . . . . . . . . . . . . . 44

2.9 Decomposition example with η = 4 and step = 3 . . . . . . . . 46

xvii



xviii LIST OF FIGURES

Chapter 3: Nurse Rostering Problem

3.1 Representation of Dantzig-Wolfe’s decomposition . . . . . . . . 68

3.2 Time-based decomposition with ηt = 3 and stept = 2 . . . . . . 72

3.3 Nurse-based decomposition with ηn = 4 and stepn = 2 . . . . . 73

Chapter 4: Project Scheduling Problem

4.1 Outline of the developed algorithm . . . . . . . . . . . . . . . . 90

4.2 Forward-Backward Improvement (FBI) example . . . . . . . . . 98

4.3 Solution values obtained after 10 algorithm runs on the MISTA
Challenge 2013 instances . . . . . . . . . . . . . . . . . . . . . . 110

Chapter 5: Towards a general solver

5.1 Illustration of the general framework components . . . . . . . . 114

5.2 Example of decomposition representation for the TUP . . . . . 116

5.3 Future research directions towards a truly general solver . . . . 128

Introduction to Part II

II Organization of Part II . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 6: Capacitated Vehicle Routing Problem

6.1 Two alternative search spaces for the CVRP . . . . . . . . . . . 137

6.2 Search space S for a small asymmetric CVRP instance . . . . . 142

6.3 Search space SA for a small asymmetric CVRP instance . . . . 143

6.4 Search space SB1 for a small asymmetric CVRP instance . . . . 145

6.5 Permutation and set cache strategies . . . . . . . . . . . . . . . 152



LIST OF FIGURES xix

6.6 Dynamic reshaping (tunneling) of the search space . . . . . . . 153

6.7 Results (solution quality and runtime) of local search solution
on different search spaces . . . . . . . . . . . . . . . . . . . . . 155

6.8 Results (solution quality and runtime) of local search on different
search spaces for instances with different route cardinalities . . 156

6.9 Results (solution quality and runtime) of UHGS for different
cache strategies and k values . . . . . . . . . . . . . . . . . . . 158

6.10 Results (solution quality and runtime) of UHGS for different
[ξ−, ξ+] values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Chapter 7: Swap-body Vehicle Routing Problem

7.1 Vehicle type examples . . . . . . . . . . . . . . . . . . . . . . . 166

7.2 Graph representation of a small SBVRP instance . . . . . . . . 169

7.3 Example of a SBVRP solution . . . . . . . . . . . . . . . . . . 170

7.4 Boxplots comparing the solutions obtained with the proposed
approach and the best results reported in the literature for all
instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.5 Example of CVRP and SBVRP solutions . . . . . . . . . . . . . 191

Chapter 8: Multiple Container Loading Problem

8.1 Representation of Row, Layer and Stack . . . . . . . . . . . . . . 201

8.2 Example of single-row widthwise and lengthwise layers . . . . . 207

8.3 Local search algorithm outline . . . . . . . . . . . . . . . . . . . . 211

8.4 Visual example of the Bin-0 repair procedure . . . . . . . . . . 212





List of Tables

Chapter 2: Traveling Umpire Problem

2.1 Experiments with IP formulation . . . . . . . . . . . . . . . . . 19

2.2 Branch-and-price results for the TUP . . . . . . . . . . . . . . 27

2.3 Branch-and-bound with decomposition-based lower bounds
results for the TUP . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Parallel branch-and-bound gain when utilizing eight times more
processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Decomposition-based heuristic results for the TUP . . . . . . . . 51

2.6 Impact of heuristic objective function within the decomposition-
based constructive heuristic for the TUP . . . . . . . . . . . . . 52

Chapter 3: Nurse Rostering Problem

3.1 Example of a one-week NRP solution . . . . . . . . . . . . . . . 57

3.2 Ranged and logical soft NRP constraints . . . . . . . . . . . . . 62

3.3 Experiments with Formulation (3.1)-(3.21) . . . . . . . . . . . . 67

3.4 Column generation results for NRP instances . . . . . . . . . . 70

3.5 Results of decomposition-based heuristic on instances of set long 76

xxi



xxii LIST OF TABLES

3.6 Results of decomposition-based heuristic on instances of set medium 77

3.7 Previous upper bounds and updated lower and upper bounds . 78

Chapter 4: Project Scheduling Problem

4.1 Experiments with IP formulation . . . . . . . . . . . . . . . . . 89

4.2 Parameters employed during experiments . . . . . . . . . . . . 103

4.3 Results for MPSPLib instances . . . . . . . . . . . . . . . . . . 104

4.4 Characteristics of the MISTA Challenge 2013 instances . . . . . 108

4.5 Results for MISTA Challenge 2013 instances . . . . . . . . . . . 109

Chapter 6: Capacitated Vehicle Routing Problem

6.1 Instance groups . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 Results for small instances from Uchoa et al. (2017) . . . . . . . 161

6.3 Results for medium instances from Uchoa et al. (2017) . . . . . 162

6.4 Results for large instances from Uchoa et al. (2017) . . . . . . . 163

Chapter 7: Swap-body Vehicle Routing Problem

7.1 Overview of previous SBVRP strategies in the literature . . . . 172

7.2 Characteristics of the VeRoLog challenge instances . . . . . . . 184

7.3 Average gap obtained by employing different neighborhood group
combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.4 Initial probabilities and considered neighborhoods . . . . . . . 186

7.5 Results for VeRoLog challenge instances . . . . . . . . . . . . . 188

7.6 Characteristics of the proposed instances and computational
results for 10min and 1h . . . . . . . . . . . . . . . . . . . . . . 192



LIST OF TABLES xxiii

Chapter 8: Multiple Container Loading Problem

8.1 Characteristics analysis of InstancesA set . . . . . . . . . . . . 215

8.2 Characteristics analysis of InstancesB set . . . . . . . . . . . . 215

8.3 Characteristics analysis of InstancesX set . . . . . . . . . . . . 216

8.4 Gap to the best generated solutions among best-fit and bottom-
left-fill as bin builder algorithms . . . . . . . . . . . . . . . . . 217

8.5 Gap to the best generated solutions among single-item, single-row
and multiple-row layers . . . . . . . . . . . . . . . . . . . . . . 217

8.6 Results for InstancesA set . . . . . . . . . . . . . . . . . . . . . 219

8.7 Results for InstancesB set . . . . . . . . . . . . . . . . . . . . . 219

8.8 Results for InstancesX set . . . . . . . . . . . . . . . . . . . . . 220

8.9 Characteristics of the different instance sets . . . . . . . . . . . 220

8.10 Average number of used bins for the MPV instances by Martello
et al. (2000) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.11 Results obtained for the 15 instances from Loh and Nee (1992).
Values represent the volume utilization (%). . . . . . . . . . . . 223

8.12 Results for relaxed InstancesA set . . . . . . . . . . . . . . . . 224

8.13 Results for relaxed InstancesB set . . . . . . . . . . . . . . . . 224

8.14 Results for relaxed InstancesX set . . . . . . . . . . . . . . . . 224





Chapter 1

Introduction

Throughout the last several decades there has been remarkable progress within
the Operational Research (OR) field. The amount of progress is particularly
significant when considering fundamental optimization problems such as the
Traveling Salesman Problem. However, these advances are not limited to
traditional problems. General solvers, employing Mixed Integer Programming
(MIP) and Constraint Programming (CP) for example, have also evolved at an
impressive rate. CPLEX, one of the leading commercial MIP solvers, has become
approximately 90 times faster between the years 1998 and 2012 (Achterberg and
Wunderling, 2013). These advances together with recent gains in computational
power have resulted in breakthroughs and the solving of several previously
unsolved problem instances.

Despite all the recent progress, large instances of most NP-Hard problems
remain intractable by general solvers. This is primarily due to the fact that these
solvers employ exponential time complexity algorithms, in addition to them
often being unable to explore key problem characteristics. This situation is even
more evident when considering real-world problems from industry, given these
problems generally exhibit a large number of constraints and consist of multiple
interconnected problems. Such large problems are predominantly addressed by
problem-specific heuristics, which often obtain satisfactory results within short
computational time. However, developing such problem-specific algorithms is
time-consuming and thus very expensive. Additionally, these algorithms do not
take advantage of recent progress within general solvers.

1



2 INTRODUCTION

This research seeks to combine both heuristic and exact algorithms, taking
advantage of principles from both paradigms. Note, however, that this
integration is by no means an idea here proposed. It is in fact an established
research theme, with such integration typically implemented by decomposition
methods.

Decomposing a problem or system consists in breaking it into smaller parts. In
our context these constituent parts represent subproblems. Each subproblem
addresses only a subset of the problem components, being generally much easier
to solve than the original problem. Subproblem solutions are then combined to
generate a solution for the entire original problem. Note that even MIP solvers
themselves implement decomposition approaches, where subproblems are mostly
defined by either the soft-fixation of variables, as in Local Branching (Fischetti
and Lodi, 2003, Hansen et al., 2006) and similar methods, or by hard-fixation
of variables, as in Relaxation Induced Neighborhood Search (Danna et al., 2003).

There are many advantages in applying decomposition, specially when complex,
difficult-to-solve problems are considered. One of these advantages is the
possibility of employing general solvers to handle subproblems. The generation
of reusable code represents another potential advantage.

This thesis studies decomposition approaches that result in both exact and
heuristic algorithms, which may or may not employ general solvers. In a
decomposition-based exact algorithm, the problem is decomposed to result in an
algorithm that ultimately produces an optimal solution for the original problem.
Moreover, problems can be decomposed resulting in a relaxation of the original
problem. These relaxations can provide strong bounds, which may for instance
be used within a branch-and-bound framework, deriving an exact algorithm.
It is the case of the decomposition schemes proposed by Dantzig and Wolfe
(1960) and Benders (1962) for linear programming models, for example. The
main drawback of decomposition-based exact algorithms is their exponential
worst-case time complexity. While often being capable of solving larger problems
than MIP and CP general solvers (as in Toffolo et al., 2017a), their exponential
time complexity remains an issue for many real-world applications.

Decomposition-based heuristic algorithms divide the problem heuristically into
subproblems, which are generally solved to optimality. This class of algorithms
represents an alternative when addressing problems for which exact algorithms
result in unreasonably long computational times, which is the case for a large
number of real-world applications. However, one drawback is clear: combining
(optimal) solutions for heuristically-defined subproblems does not necessarily



INTRODUCTION 3

result in an optimal solution for the original problem. In fact, there is often no
information concerning optimality. Despite this drawback, decomposition-based
heuristic algorithms symbolize a growing trend in combinatorial optimization
(Maniezzo et al., 2010), and represent the main theme of this thesis.

When looking at the literature concerning decomposition-based algorithms, it
is noticeable how many pervasive terms are employed, such as heuristic decom-
position, subproblem optimization, matheuristic, and very large neighborhood
search. These terms, although often employed in different contexts, generally
refer to algorithms sharing similar characteristics. Heuristic decomposition and
subproblem optimization are terms usually employed to allude to problem size
reduction strategies, as in Hansen et al. (2001), Brunner (2010) and Krüger
et al. (2016) for example. The term matheuristic refers to algorithms which
employ mathematical programming methods, such as MIP, to produce heuristics
(Boschetti et al., 2009), while very large neighborhood search refers to the
employment of exponentially-large neighborhoods within local search, which
are generally explored by resolving subproblems (see Ahuja et al., 2002).

The approaches proposed and studied throughout this thesis go beyond
matheuristics and very large neighborhood search. In fact, a MIP formulation
is not always a requirement and subproblem solutions are often employed
outside local search. Although MIP formulations are employed to solve
subproblems in many cases, and also within local search methods, we prefer
the term decomposition-based heuristic given its generality and contextual
appropriateness.

In total, this thesis addresses six different optimization problems, for which
different decomposition strategies are proposed and evaluated. For all six
problems, the decomposition-based methodologies here proposed represent the
current state-of-the-art concerning solution quality, outperforming previous
approaches on benchmark instances. Some methods are also state-of-the-art
in terms of computational performance, obtaining very strong results within
limited runtimes.

Among the work developed during the PhD, we have decided to include only
those which consider benchmarked and challenging data within this thesis. By
benchmarked data we mean data consistently utilized by various authors to
evaluate algorithms, and by challenging data we refer to difficult, currently
unsolved problem instances. On the one hand, this decision forced us to leave
some interesting work developed throughout the PhD outside the thesis, such as
the decomposition approaches proposed for the Sport Teams Grouping Problem



4 INTRODUCTION

(Toffolo et al., 2017a) and for the Leather Nesting Problem1. On the other
hand, however, considering only problems with benchmarked and challenging
instances strengthens our conclusions concerning the superior performance of
the decomposition-based algorithms proposed when compared against state-of-
the-art algorithms.

Structure of the thesis

The remainder of this thesis is divided into two parts plus the final conclusions.
The main difference between these parts lies in how subproblems are solved:
while in Part I decomposition-based algorithms enforce optimal subproblem
solutions, Part II evaluates algorithms which permit heuristic (possibly non-
optimal) subproblem solutions. Each part investigates decomposition-based
algorithms for three different problems. Part I focuses on scheduling and
timetabling problems while Part II addresses logistics problems concerning
routing and packing, considering both classic and real-world problems defined
by industry. Figure 1.1 outlines this thesis by presenting an organizational chart
correlating all nine chapters. Note that the research conducted during the PhD
is not presented in chronological order. Instead, the manuscript was structured
as to best support and explain the main thesis’ idea.

Part I encompasses four chapters, beginning with Chapter 2 and ending with
Chapter 5. Three different problems are addressed: the Traveling Umpire
Problem (TUP), Nurse Rostering Problem (NRP) and Project Scheduling
Problem (PSP). These problems have one common characteristic: the clear
definition of a time dimension. This similarity is exploited to derive both exact
and heuristic decomposition-based methodologies. In all of them, subproblems
are solved to optimality. In total, up to four different approaches are proposed
and evaluated for these problems, namely: (i) compact MIP formulation, (ii)
Dantzig-Wolfe decomposition, (iii) exact algorithm employing decomposition-
based bounds and (iv) decomposition-based heuristic. The resulting algorithms
improve upon many results from the literature, redefining the state-of-the-art
for these problems. These results motivate combining the primary principles
from these algorithms in an attempt of producing a general decomposition-based
solver, which is discussed in Chapter 5.

1An academic report concerning our work on the Leather Nesting Problem will be published
online at a later date.



IN
TRO

D
UCTIO

N
5

Part I
Chapter 3

Nurse Rostering 
Problem

Chapter 1
Introduction

Chapter 2
Traveling Umpire 

Problem

Chapter 4
Project Scheduling 

Problem

Chapter 5
Towards a general solver

Part II
Chapter 6

Capacitated Vehicle 
Routing Problem

Chapter 9
Conclusions

IP formulation

Decomposition-
based heuristic

IP formulation

Decomposition-
based heuristic

Branch-and-bound 
with decomposition-
based lower bounds

Dantzig-Wolfe 
decomposition

IP formulation

Decomposition-
based heuristic

Dantzig-Wolfe 
decomposition

Integration with 
classical problem 
neighborhoods

Analysis of different 
search spaces 

Decomposition-
based heuristic

Exact and heuristic 
subproblem solution

Chapter 8
Multiple Container 
Loading Problem

Decomposition-
based heuristic

Exact and heuristic  
subproblem solution

Chapter 7
Swap-body Vehicle 
Routing Problem

Decomposition-
based heuristic

Heuristic  
subproblem solution

Integration with 
both classical and 
problem-specific 
neighborhoods

Awarded in international optimization 
algorithm challenges (VeRoLog and ESICUP)

Figure 1.1: Thesis outline



6 INTRODUCTION

Part II focuses on another three problems, all related to logistics: the Capacitated
Vehicle Routing Problem (CVRP), the Swap-Body Vehicle Routing Problem
(SBVRP), and the Multiple Container Loading Problem (MCLP). In contrast
to Part I, only decomposition-based heuristics are considered. Different
methodologies are proposed and evaluated, also resulting in competitive and
state-of-the-art algorithms. Also differently from Part I, Part II evaluates
decomposition-based heuristics in which subproblems are not necessarily solved
to optimality. This results in algorithms which can be applied even when the
permitted runtime is very restricted. Such was the case, for instance, for the
problems discussed throughout Chapters 7 and 8. These two chapters present
award-winning approaches that competed in international algorithm challenges,
where a tight runtime limit was enforced.

Chapter 9 finishes this thesis by presenting the final conclusions and future
research directions, while conducting a discussion concerning the role of
decomposition approaches within algorithms for combinatorial optimization
problems.

In the spirit of reproducible science (Kendall et al., 2016), whenever possible the
source code associated with elements of this thesis was made available online,
together with all instance and solution files.



Part I

Optimal subproblem solutions

7





Introduction to Part I

Part I addresses three problems that share one characteristic: they all contain
the time dimension. Naturally, time is a dimension present in any timetabling or
scheduling problem, defining a unique structure, which we exploit to decompose
the problem deriving both exact and heuristic algorithms. In addition to
time-structure based decompositions, classical decomposition methods are also
evaluated for two of these problems as means of providing lower bounds to
further evaluate the efficacy of the proposed decompositions. In all cases,
subproblems resulting from the decompositions are optimally solved.

The three next chapters present both published and unpublished content. Rather
than simply reproducing the published content, the notation, organization and
nomenclature throughout the chapters were unified. Given that similar strategies
were applied to the problems addressed by these chapters, a unified notation
facilitates identifying the commonalities among the different decomposition
approaches. Experiments including Integer Programming (IP) solvers were re-
executed with the latest versions of the two best-performing2 IP solvers currently:
CPLEX and Gurobi. Results are also reported differently than within the papers,
as to enable a sequential presentation of the primary principles behind the
algorithms. Moreover, the chapters were crafted so that some independence is
kept between them, with special attention to avoiding needless repetition.

Figure I presents the organization of the next chapters.

Chapter 2 investigates the Traveling Umpire Problem (TUP). Three different
decomposition-based algorithms are proposed and evaluated: (i) a branch-and-
price algorithm applying Dantzig-Wolfe’s decomposition, (ii) a branch-and-
bound algorithm employing decomposition-based lower bounds and, finally, (iii)

2According to the benchmark experiments reported by Mittelmann (2017).

9



10

Part I
Chapter 2

Traveling Umpire 
Problem (TUP)

Chapter 5
Towards a General Solver

Chapter 3
Nurse Rostering 
Problem (NRP)

Chapter 4
Project Scheduling 

Problem (PSP)

3.2 IP formulation

Evaluation

2.6 Conclusions

2.5 Decomposition-
based heuristic 

Evaluation

2.4 Branch-and-bound 
with decomposition-
based lower bounds

Evaluation

2.3 Dantzig-Wolfe 
decomposition

Evaluation

3.5 Conclusions

3.3 Dantzig-Wolfe 
decomposition

Evaluation

4.5 Conclusions

4.3 Decomposition-
based heuristic

4.4 Evaluation on
multiple problems

3.4 Decomposition-
based heuristic 

Evaluation

2.1 Introduction 3.1 Introduction 4.1 Introduction

2.2 IP formulation

Evaluation

4.2 IP formulation

Evaluation

5.1 Methodology

5.4 Conclusions

5.2  Algorithmic components

5.3 Framework validation
 on multiple problems

Figure I: Organization of Part I



11

a decomposition-based heuristic approach. These approaches resulted in various
improved bounds and solutions, many of which proven optimal.

Chapter 3 focuses on the Nurse Rostering Problem (NRP). An exact
decomposition-based algorithm and a local search method employing three
decompositions are evaluated. Multiple benchmark instances had their best
known solutions and bounds improved, evidencing the efficiency of the employed
decompositions.

Chapter 4 investigates multiple versions of the Project Scheduling Problem
(PSP). Constructive and local search decomposition-based heuristics are
proposed and evaluated for the problem. Computational experiments considering
two benchmark sets show the efficiency of the proposed approaches. Additionally,
challenges imposed by specific problem properties are discussed together with
strategies to circumvent them.

Finally, Chapter 5 proposes a general framework built upon the knowledge
produced by Chapters 2, 3 and 4. The primary challenges are discussed and
it is shown how the algorithms proposed by these chapters can be generalized.
The general framework is validated with experiments considering not only
the problems studied throughout Part I but also an additional one from the
literature.





Chapter 2

Traveling Umpire Problem

This chapter addresses the Traveling Umpire Problem (TUP), an optimization
problem in which umpires must be assigned to games in a double round
robin tournament. The objective is to obtain a solution with minimum total
travel distance over all umpires, while respecting hard constraints concerning
assignment and sequencing.

As with all the problems addressed by this thesis, the TUP represents a
challenging optimization problem. Up till this research, no general or dedicated
algorithm was capable of solving all instances with 12 and 14 teams. This
challenging status, combined with the problem’s properties, such as its time
structure, make the TUP the ideal test subject for the decomposition strategies
we propose.

This chapter is the result of two publications – Toffolo et al. (2014)1 and
Toffolo et al. (2016c)2 – combined with some more recent, unpublished research.
It begins with an introduction and literature overview concerning the TUP,
presented in Section 2.1. The problem is then formally described by an IP
model in Section 2.2. Next, three different decomposition-based algorithms
are introduced and evaluated for the problem: a classical approach, an exact

1Toffolo, T. A. M., Van Malderen, S., Wauters, T., and Vanden Berghe, G. (2014).
Branch-and-price and improved bounds to the traveling umpire problem. In Proceedings of
the 10th international conference on practice and theory of automated timetabling (PATAT
2014), pages 420–432, York, UK.

2Toffolo, T. A. M., Wauters, T., Van Malderen, S., and Vanden Berghe, G. (2016).
Branch-and-bound with decomposition-based lower bounds for the traveling umpire problem.
European Journal of Operational Research, 250(3), 737–744.

13



14 TRAVELING UMPIRE PROBLEM

one exploiting the problem’s time structure and, finally, a heuristic algorithm.
Section 2.3 presents the Dantzig-Wolfe’s reformulation of the IP model presented
in Section 2.2. The resulting formulation is solved by a tailor-made branch-
and-price algorithm. Details of the methodology are described and then
analyzed via computational experiments. In the quest of obtaining better
bounds and solutions, Section 2.4 explores the TUP’s time structure to derive
a competitive branch-and-bound with decomposition-based lower bounds. All
algorithmic components are evaluated and several new optimal solutions are
obtained within short runtime. Rather than requiring more than 24 hours of
computational time, as previously published approaches in the literature did,
the proposed algorithm is capable of solving some 14-team instances in only a
few seconds. However, larger instances prove challenging and remain unsolved.
A decomposition-based heuristic is proposed throughout Section 2.5 to address
these larger instances. Constructive and local search procedures derived from
the decomposition approach are presented, resulting in improved solutions for
large instances. Finally, Section 2.6 concludes this chapter by evaluating the
different decomposition methods and highlighting our contributions, which
include redefining the state-of-the-art for the TUP.

2.1 Introduction

The TUP is a sports timetabling problem concerning the scheduling of umpires
(sport referees). The goal is to assign umpires to the matches of a tournament
whose schedule is predetermined.

A double round robin tournament is considered, with 2n teams playing twice
against each other – once at their home venue and once away. This results
in a competition with 4n − 2 rounds, each consisting of n matches. Such a
tournament requires assigning n umpires to the games, with the objective to
minimize their total travel distance. In order to obtain a fair schedule, hard
Constraints (a)− (e) are imposed:

(a) every match in the tournament is officiated by exactly one umpire;

(b) every umpire must work in every round;

(c) every umpire must visit the home venue of every team at least once;

(d) no umpire may be assigned to the same venue more than once in any q1
consecutive rounds;



INTEGER PROGRAMMING FORMULATION 15

(e) no umpire may officiate games of the same team more than once in any q2
consecutive rounds. This constraint is similar to the previous one, but also
takes the ‘away team’ into consideration.

The values q1 and q2 range from 1 to n and 1 to bn2 c3, respectively.

Since the introduction of the TUP by Trick and Yildiz (2007), who specifically
address the Major League Baseball tournament, many exact and heuristic
approaches have been developed. This initial work was extended (Trick and
Yildiz, 2011) by a Benders’ cuts guided large neighborhood search. Both papers
also provided Integer Programming (IP) and Constraint Programming (CP)
formulations for the problem. A greedy matching heuristic and a simulated
annealing approach employing a two-exchange neighborhood were described by
Trick et al. (2012). Trick and Yildiz (2012) developed a Genetic Algorithm (GA)
with a locally optimized crossover procedure. A stronger IP formulation and a
relax-and-fix heuristic were proposed by de Oliveira et al. (2014), who improved
both lower and upper bounds. Wauters et al. (2014) improved solutions and
lower bounds using an enhanced iterative deepening search with leaf node
improvements (IDLI), an iterated local search (ILS) and a new lower bound
methodology. Xue et al. (2015) presented two exact approaches to the TUP: a
branch-and-bound algorithm relying on a Lagrangian relaxation for obtaining
lower bounds and a branch-and-price-and-cut algorithm. The latter approach,
which builds upon the branch-and-price algorithm we propose (Section 2.3),
enabled two 14-team instances to be solved within the runtime limit of 48h.

Next, we formally present the TUP by means of an integer programming
formulation.

2.2 Integer programming formulation

This section presents a flow formulation for the TUP based on the formulations
presented by Trick and Yildiz (2007) and de Oliveira et al. (2014). A graph
G = (V,E) is given, in which each node represents a game and directed edges
connect the nodes (games) of round r to the nodes of round r + 1. G also
contains:

3Trick and Yildiz (2007) originally presented the parameters d1 and d2 such that q1 = n−d1
and q2 = bn2 c − d2, with 0 ≤ d1 < n and 0 ≤ d2 < bn2 c.



16 TRAVELING UMPIRE PROBLEM

• a source node, f , and directed edges connecting f to the nodes representing
games of the first round;

• a sink node, l, and directed edges connecting the nodes representing games
of the last round to l.

AxE FxB GxC DxHRound 1

Round 2 AxF BxH ExC DxG

Source  Node

…
Round 4n-2 ExA DxB HxC FxG

Sink Node

Figure 2.1: Graph G = (V,E) representing an 8-team TUP instance

Figure 2.1 presents an example of this graph for an 8-team (or 4-umpire)
instance. The formulation considers the following input data:

de : distance of directed edge e;

I : set of teams {1, ..., 2n};

Hi : set of nodes where team i plays at home;

R : set of rounds {1, ..., 4n− 2};

Q′i,r : set of nodes (games) of team i playing at home in rounds R∩{r, ..., r+
q1 − 1};

Q′′i,r : set of nodes (games) of team i (home or away) in rounds R∩{r, ..., r+
q2 − 1}.

U : set of umpires {1, ..., n}.



INTEGER PROGRAMMING FORMULATION 17

And the following variables:

xe,u =
{

1 if edge e is selected for umpire u
0 otherwise

Finally, let δ(I) and ω(I) denote the sets of edges that enter and exit the nodes
in I, respectively. The problem’s formulation is given by Equations (2.1)-(2.7).

Minimize: ∑
e∈E

∑
u∈U

dexe,u (2.1)

Subject to: ∑
e∈δ(j)

∑
u∈U

xe,u = 1 ∀j ∈ V \{source, sink} (2.2)

∑
e∈δ(j)

xe,u −
∑
e∈ω(j)

xe,u =


−1 if j is the source
+1 if j is the sink
0 ∀j ∈ V \{source, sink},

∀u ∈ U (2.3)∑
e∈δ(Hi)

xe,u ≥ 1 ∀i ∈ I, u ∈ U (2.4)

∑
e∈δ(Q′

i,r
)

xe,u ≤ 1 ∀i ∈ I, r ∈ R, u ∈ U (2.5)

∑
e∈δ(Q′′

i,r
)

xe,u ≤ 1 ∀i ∈ I, r ∈ R, u ∈ U (2.6)

xe,u ∈ {0, 1} ∀e ∈ E, u ∈ U (2.7)

The objective, given by Equation (2.1), is to minimize the total distance traveled
by the umpires. Constraints (2.2) ascertain that each game is officiated by
exactly one umpire. Constraints (2.3) are flow preservation constraints, and
together with the graph structure ensure that every umpire officiates exactly
one game per round. If an umpire is at the location of a team in round r, the
umpire must leave from this location to go to the next location in round r + 1.



18 TRAVELING UMPIRE PROBLEM

This is also guaranteed by the flow preservation constraints. Constraints (2.4)
state that every umpire must visit every location at least once during the season.
Constraints (2.5) and (2.6) specify that every umpire must wait q1 − 1 days
to revisit the same home location and q2 − 1 days to revisit the same team,
respectively. Finally, Constraints (2.7) specify that the variables considered are
binary.

2.2.1 Computational experiments

Formulation (2.1)-(2.7) was evaluated using the state-of-the-art solvers CPLEX
12.7 and Gurobi 7.5 on an Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz
computer with 128Gb of RAM memory running Linux Ubuntu 16.04.2 LTS.
Table 2.1 details the results obtained by these solvers. The characteristics of
the model – number of variables (Vars), constraints (Cons) and non-zeros (NZs)
– are presented together with the results obtained by the solvers: final lower
(LB) and upper (UB) bounds, the computed optimality gap UB−LB

UB × 100 and
required runtime (Time). For compactness, runtimes are presented in different
units. Moreover, note that the computational runtime was restricted to three
hours.

Small instances with up to 10 teams were quickly solved by the solvers. The
solvers were, however, unable to solve instances with more than 10 teams
employing Formulation (2.1)-(2.7). On the one hand, CPLEX was capable of
producing feasible solutions for most instances, while Gurobi could not find
any feasible solution for instances with 16 teams. On the other hand, Gurobi
produced better lower bounds on average for the evaluated instances than
CPLEX.

Additional experiments concerning compact IP formulations for the TUP are
reported by de Oliveira et al. (2014). They recently extended their formulation
by adding valid inequalities and cutting planes, resulting in a branch-and-cut
algorithm (de Oliveira et al., 2016). Despite improving lower bounds for large
instances, IP formulations remain incapable of solving reasonable-sized TUP
instances.



DANTZIG-WOLFE DECOMPOSITION 19

Table 2.1: Experiments with IP formulation

Instance Model Dimensions CPLEX 12.7 Gurobi 7.5

Vars Cons NZs LB UB Gap Time LB UB Gap Time

6 - 3,1 213 504 2019 14077 14077 0.0 0.1s 14077 14077 0.0 0.0s
6A - 3,1 213 504 2019 15457 15457 0.0 0.1s 15457 15457 0.0 0.0s
6B - 3,1 213 504 2019 16716 16716 0.0 0.1s 16716 16716 0.0 0.0s
6C - 3,1 213 504 2019 14396 14396 0.0 0.0s 14396 14396 0.0 0.0s
8 - 4,2 448 1244 5472 34311 34311 0.0 0.3s 34311 34311 0.0 0.2s

10 - 5,2 1325 2440 17650 48941 48942 0.0 22.6s 48938 48942 0.0 48.1s
10A - 5,2 1325 2440 17650 46548 46551 0.0 26.4s 46551 46551 0.0 29.8s
10B - 5,2 1325 2440 17650 45609 45609 0.0 5.0s 45609 45609 0.0 6.1s
10C - 5,2 1325 2440 17650 43149 43149 0.0 43.6s 43145 43149 0.0 3.2m
12 - 5,3 3096 4224 47592 91819 93965 2.3 3.0h 88426 94190 6.1 3.0h

14 - 7,3 6223 6755 106575 148668 177359 16.2 3.0h 151032 186184 18.9 3.0h
14 - 6,3 6223 6755 101675 150058 170196 11.8 3.0h 150370 170534 11.8 3.0h
14 - 5,3 6223 6755 96530 150165 164584 8.8 3.0h 149935 169260 11.4 3.0h

14A - 7,3 6223 6755 106575 141338 172515 18.1 3.0h 144259 188194 23.3 3.0h
14A - 6,3 6223 6755 101675 141813 163707 13.4 3.0h 143557 166542 13.8 3.0h
14A - 5,3 6223 6755 96530 143208 163840 12.6 3.0h 143765 159287 9.7 3.0h

14B - 7,3 6223 6755 106575 140568 170031 17.3 3.0h 144605 172994 16.4 3.0h
14B - 6,3 6223 6755 101675 142868 165740 13.8 3.0h 144052 164620 12.5 3.0h
14B - 5,3 6223 6755 96530 142075 157806 10.0 3.0h 143466 167170 14.2 3.0h

14C - 7,3 6223 6755 106575 140623 167983 16.3 3.0h 143048 190189 24.8 3.0h
14C - 6,3 6223 6755 101675 140097 162294 13.7 3.0h 142541 164291 13.2 3.0h
14C - 5,3 6223 6755 96530 142233 161820 12.1 3.0h 142421 159458 10.7 3.0h

16 - 8,4 11304 9568 224968 150938 - - 3.0h 154988 - - 3.0h
16 - 8,2 11304 9568 182568 142637 190640 25.2 3.0h 147950 - - 3.0h
16 - 7,3 11304 9528 195280 143094 193649 26.1 3.0h 149468 - - 3.0h
16 - 7,2 11304 9528 173696 137950 167491 17.6 3.0h 143474 - - 3.0h

16A - 8,4 11304 9568 224968 161467 - - 3.0h 159627 - - 3.0h
16A - 8,2 11304 9568 182568 157054 187014 16.0 3.0h 159553 - - 3.0h
16A - 7,3 11304 9528 195280 158235 207098 23.6 3.0h 163100 - - 3.0h
16A - 7,2 11304 9528 173696 154095 177248 13.1 3.0h 157299 - - 3.0h

16B - 8,4 11304 9568 224968 160253 - - 3.0h 168404 - - 3.0h
16B - 8,2 11304 9568 182568 156309 215056 27.3 3.0h 160977 - - 3.0h
16B - 7,3 11304 9528 195280 156471 209344 25.3 3.0h 160750 - - 3.0h
16B - 7,2 11304 9528 173696 154216 185852 17.0 3.0h 158604 - - 3.0h

16C - 8,4 11304 9568 224968 158674 - - 3.0h 167002 - - 3.0h
16C - 8,2 11304 9568 182568 156446 195605 20.0 3.0h 160367 212078 24.4 3.0h
16C - 7,3 11304 9528 195280 158469 224646 29.5 3.0h 162645 - - 3.0h
16C - 7,2 11304 9528 173696 155009 180532 14.1 3.0h 158982 194055 18.1 3.0h

2.3 Dantzig-Wolfe decomposition

The IP model presented during the previous section is reformulated by applying
the Dantzig-Wolfe decomposition (Dantzig and Wolfe, 1960). The original
problem is decomposed into a master problem and n pricing problems, one per
umpire.



20 TRAVELING UMPIRE PROBLEM

Figure 2.2 visualizes the structure of the Linear Program (LP) for a 6-team
TUP instance considering the formulation presented in Section 2.2. This figure
presents the coefficient matrix of the original LP (left image) and the same LP
after sorting the rows and columns by umpire (right image). The dots indicate
non-zero coefficients in the constraint matrix. The required block structure
for the Dantzig-Wolfe decomposition is easily identifiable in the right image,
where each square block forms a pricing problem containing the constraints and
variables corresponding to a single umpire.

Figure 2.2: Representation of Dantzig-Wolfe’s decomposition for the TUP

In Formulation (2.1)-(2.7), Constraints (2.3)-(2.7) are umpire-oriented and form
the pricing problems. The remaining constraints, given by Equation (2.2), are
the coupling (or linking) constraints. These correspond to the wide block at
the bottom of the sorted LP in Figure 2.2.

The pricing problem essentially constitutes finding the optimum schedule for
one umpire with the consideration of dual costs.

The master problem is a set partition problem whose formulation is given
by Equations (2.8)-(2.11). Within this formulation, G is the set of games
(G = V \{source, sink}), Ω is the set of columns (possible schedules for the
umpires), Ωu represents the subset of Ω containing all columns of umpire u ∈ U ,
ds is the cost (travel distance) of column s ∈ Ω, λs is a binary variable indicating
whether column s ∈ Ω is selected or not and, finally, aj,s is a binary coefficient



DANTZIG-WOLFE DECOMPOSITION 21

denoting whether game j ∈ G is officiated in schedule (column) s ∈ Ω or not.
Constraints (2.9) guarantee that only one column is selected per umpire while
Constraints 2.10 are the coupling constraints inherited from the original problem
(2.2), which ensure that each game in each round is officiated by exactly one
umpire.

Minimize: ∑
s∈Ω

dsλs (2.8)

Subject to: ∑
s∈Ωu

λs = 1 ∀u ∈ U (2.9)

∑
s∈Ω

aj,sλs = 1 ∀j ∈ G (2.10)

λs ∈ {0, 1} ∀s ∈ Ω (2.11)

2.3.1 Column generation

The column generation approach (Lübbecke and Desrosiers, 2005, Vanderbeck
and Wolsey, 2010) is applied iteratively. The linear relaxation of the master
problem is solved first. At each iteration, the pricing problems are solved to
obtain columns with negative reduced cost. A negative reduced cost column
for umpire u is a column s ∈ Ωu for which vu +

∑
j∈G aj,swj > ds, where vu

and wj represent the dual values corresponding to Constraints (2.9) and (2.10),
respectively. If such columns are found, they are added to the master problem,
which is subsequently re-solved. The algorithm continues until no column with
negative reduced cost exists, whereupon the relaxation of the reduced master
problem is solved.

Symmetry breaking

In order to speed up the pricing solver, the games assigned to the umpires
in the first round are preallocated. This strategy, proposed by Yildiz (2008),
reduces symmetry in the original problem, as otherwise the umpires would
have similar coefficients in the constraint matrix. Preallocation is enforced by



22 TRAVELING UMPIRE PROBLEM

adding Constraints (2.12) to Formulation (2.1)-(2.7). In these constraints, I(i)
is employed to represent the edge connecting the source node to the i-th game
in the first round, with the games in lexicographic order.

xe,u = 1 ∀u ∈ U, e = I(u) (2.12)

Constraints (2.12) are umpire-oriented and may be included in the pricing
problems of the column generation scheme. Including these constraints reduces
the pricing problem size by one round.

2.3.2 Solving the pricing problems

A branch-and-bound pricing solver is employed to produce columns with negative
reduced cost. Beginning in the first round, the algorithm assigns games to the
umpire, round after round until the last round. An assignment of a game to an
umpire in a round is feasible if (i) the umpire did not visit the same location in
the previous q1− 1 rounds and (ii) the umpire did not officiate any of the teams
playing the game during the previous q2 − 1 rounds. Whenever multiple games
can be assigned in a round, the algorithm selects the assignment incurring the
smallest increase in travel distance.

Figure 2.3 shows a snapshot of the branch-and-bound tree during its traversal
for an 8-team (4-umpire) problem instance. The table inside the figure details
the considered game schedule (opponents matrix). The example considers the
pricing problem for the first umpire using parameter values q1 = 4 and q2 = 2.
As detailed earlier within Section 2.3.1, the assignment for the first round is
fixed.

The umpire may neither officiate game AxF nor game ExC in the second round
due to Constraint (e) (presented in Section 2.1), since a game played by teams
A and E has already been officiated by the umpire during the first round.
Moreover, the umpire must not officiate game AxF due to Constraint (d), since
the home location of team 1 has already been visited in the previous round.
The only possibilities left in round two are games BxH and DxG. The branch-
and-bound assigns the umpire to game BxH because the travel distance between
the home location of teams A and B is smaller than the distance between the
home locations of teams A and D.

If no valid assignment is possible in a certain round, the procedure returns
to the previous round and instead selects the game with the second-lowest



DANTZIG-WOLFE DECOMPOSITION 23

AxE

BxH ExC DxGAxF

BxG CxH ExFAxD

HxB CxG ExDFxA

GxB CxD FxEHxA

BxC DxF HxEGxA

d,e e

d,ed e

e d

e d,e

ee

Round 1

Round 2

Round 3

Round 4

Round 5

Round Game [Home x Away]

Opponents Matrix

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14

AxE 
AxF 
AxD 
FxA 
HxA 
GxA 
AxH 
AxG 
DxA 
BxA 
CxA 
AxB 
AxC 
ExA

FxB 
BxH 
BxG 
HxB 
GxB 
BxC 
BxF 
BxD 
CxB 
FxC 
BxE 
CxE 
ExB 
DxB

GxC 
ExC 
CxH 
CxG 
CxD 
DxF 
DxC 
CxF 
ExG 
DxE 
HxD 
GxD 
FxD 
HxC

DxH 
DxG 
ExF 
ExD 
FxE 
HxE 
GxE 
ExH 
FxH 
HxG 
GxF 
HxF 
HxG 
FxG

Figure 2.3: Pricing solver example for an 8-team TUP instance

travel distance. This procedure continues until a valid assignment has been
found for the tournament’s last round. If the resulting solution does not violate
Constraint (c), it is feasible and its distance serves as an upper bound for
pruning when exploring the remainder of the search tree.

Multiple strategies exist to prune unfavorable parts of the search tree. First,
the branch-and-bound algorithm prunes the parts of the search tree where
no optimum solution can reside based on the travel distance lower and upper
bounds. Once the branch-and-bound algorithm has obtained a feasible solution,
it serves as an upper bound concerning the minimum travel distance of the
umpire.

For each game in every round, a shortest path exists to any of the games in
the last round. The shortest path serves as a lower bound for the branch-and-
bound procedure. When attempting to assign a game in a round, the algorithm
evaluates whether the current travel distance together with the lower bound
exceeds the currently best known upper bound. If so, the branch-and-bound



24 TRAVELING UMPIRE PROBLEM

need not consider that assignment anymore, since it will not improve the current
upper bound.

It is impossible to evaluate Constraint (c) before a complete path has been
generated for the umpire. Nevertheless, a second pruning strategy is possible.
If the number of unvisited home locations exceeds the remaining number of
rounds within a certain round, it is impossible to obtain a solution satisfying
Constraint (c), given the assignments throughout the previous rounds. The
branch-and-bound algorithm should therefore return to a previous round and
explore alternative assignments.

2.3.3 Branch-and-price

Section 2.3.1 presented the column generation scheme. Since this algorithm
only solves the LP-relaxed version of the problem, it may be necessary to
branch on fractional variables to obtain an integer solution. When this situation
occurs, branch-and-price (Barnhart et al., 1998) is applied, which is a variant
of branch-and-bound where the relaxation is solved by column generation in
each node of the search tree.

The branch-and-price algorithm branches on the variables xe,u from the original
formulation. Since the branching tree is too large, we consider two different
strategies for branching, each one pursuing a different goal. The first strategy
seeks to provide good lower bounds by conducting a Best-First Search (BFS)
in the branching tree. The second strategy executes Depth-First Search (DFS)
and focuses on obtaining integral solutions.

In each iteration, the BFS strategy selects variables for branching based on
the following criterion: variables with the most fractional value concerning
the earliest available round are selected first. Fixing variables of the earliest
available round impacts the performance of the pricing solver considerably.
The pricing solver constructs the solution from the first to the last round, in
lexicographical order. Hence, if a variable from the last round was selected first,
runtime could be wasted exploring infeasible subtrees. Since the fixation of a
variable renders several subtrees infeasible, it is better to detect the infeasibility
as soon as possible during the branching process. Otherwise the detection of
infeasible subtrees is delayed, consuming a considerable amount of processing
time.

The DFS strategy aims to obtain feasible solutions as soon as possible. Therefore,



DANTZIG-WOLFE DECOMPOSITION 25

in each node the variable with the least fractional value of the earliest possible
round is selected to be branched first. By proceeding in a depth-first search
manner, the fixations are directed to iteratively build a feasible solution
employing the information provided by the column generation.

2.3.4 Computational experiments

The developed approach employs SCIP/GCG (Achterberg, 2009). This open
source framework provides a well-structured platform for developing branch-
and-price algorithms. The branching scheme, node rules and pricing solver
were coded in Java, using Java Native Interface (JNI) to exchange information
between Java and C. CPLEX was employed to solve the linear relaxation of the
Restricted Master Problem.

The experiments were executed on an Intel(R) Xeon(R) CPU E5-2650 @ 2.60GHz
computer with 128Gb of RAM memory running Linux Mint 16. CPLEX version
12.6 and Java Virtual Machine 1.7 were used.

We developed an automated benchmark website for TUP4 where the considered
instances are available, together with all solutions and bounds produced. Results
are here compared against the best known solution values in the literature at
the time of the experiment, which includes bounds and solutions from Trick
and Yildiz (2007, 2011, 2012, 2013), Trick et al. (2012), de Oliveira et al. (2014)
and Wauters et al. (2014). Note that Xue et al. (2015) builds upon the research
here presented and is therefore not considered in this comparison. Their results
are mentioned in the next sections.

The discussion of experiments focuses on two evaluations: the dual bounds
obtained by the BFS branching scheme in the branch-and-price and the feasible
solutions obtained by the DFS branching strategy. The results obtained by both
strategies are presented in Table 2.2. Instance names are abbreviated, such that
‘12-7,2’ represents instance umps12 with q1 = 7 and q2 = 2. The table details:

• the best lower bounds (LB∗) and solution values (UB∗) found in the
literature, followed by the derived optimality gap;

• the lower bounds (LB0) obtained by column generation (in the root node)
and the required runtime in seconds;

4https://benchmark.gent.cs.kuleuven.be/tup



26 TRAVELING UMPIRE PROBLEM

• the lower bounds (LB) obtained with the BFS strategy, followed by the
total runtime to obtain the bound;

• the solution values (UB) obtained with the DFS strategy, followed by the
runtime to obtain the solution;

• and the resulting (often improved) optimality gap for each instance.

Note that gaps are calculated as UB−LB
UB × 100.

The results obtained with Formulation (2.1)-(2.7) are not competitive and were
not included in the table. Additionally, the BFS strategy could not generate
feasible solutions for any instance with more than 10 teams within the runtime
limit and its solution values were consequently omitted. Results for smaller
instances are not reported either, since they were easily solved in a few seconds.

Table 2.2 shows that the column generation (root node) alone already improved 8
best known lower bounds. By applying the branch-and-price with BFS, 15 other
instances had their best known dual bound improved. This result corroborates
the expected strong bounds from column generation.

Table 2.2 also enables assessing the influence of the pricing solver on the total
processing time of the column generation. Consider, for example, the difference
in time required for solving the column generation in the root bound (given
by column LB0) for instances ‘16A-7,2’ and ‘16A-7,3’. Column generation
for instance ‘16A-7,2’ required much more computation time than for ‘16-A-
7,3’. This is primarily due to the value q2 = 2 for the first instance, which is
less constrained than the second one, within which q2 = 3. Small q2 values
negatively impact the pricing solver’s performance, since it provides fewer
pruning opportunities.

The DFS strategy within the branch-and-price improves upon five best known
solutions, despite the total available runtime being only three hours. Considering
that the developed approach tends to perform better on more constrained
instances, one would presumably expect better results for the highly-constrained
‘16-8,4’, ‘16A-8,4’, ‘16B-8,4’ and ‘16C-8,4’ instances. It is important to note that
the bounds (and solutions) for these benchmark instances have been repeatedly
updated over the years. The branch-and-price was unable to find any feasible
solution after three hours of processing time. This result, together with the fact
that there are no known solution for these instances, motivated us to investigate
the strong indication that they may be infeasible. The infeasibility of these
instances is proven in Section 2.4.5.



BRAN
CH

-AN
D
-BO

UN
D

W
ITH

D
ECO

M
PO

SITIO
N
-BASED

LO
W
ER

BO
UN

D
S

27

Table 2.2: Branch-and-price results for the TUP

Inst. Best results in literature Column generation BFS strategy DFS strategy Best
gap

LB∗ UB∗ Gap LB0 Time(s) LB Time(s) UB Time(s)

14 - 7,3 159797 164440 2.8% 156439.3 42 157812.8 10500 166942 547 2.8%
14 - 6,3 156551 159505 1.9% 154439.9 41 155570.4 10560 159808 2462 1.9%
14 - 5,3 153066 155439 1.5% 152941.3 50 153759.6 10740 155392 1215 1.1%

14A - 7,3 153199 158760 3.5% 149992.7 41 151243.5 10740 160856 7500 3.5%
14A - 6,3 150998 153216 1.4% 148168.7 46 149285.4 10680 154637 2814 1.4%
14A - 5,3 148299 149331 0.7% 147097.5 48 147966.4 10620 150386 4110 0.7%

14B - 7,3 151059 157884 4.3% 149767.0 44 151165.8 10620 162677 1560 4.3%
14B - 6,3 149267 152740 2.3% 148243.9 50 149208.6 10620 155817 5662 2.3%
14B - 5,3 147534 149621 1.4% 146846.2 56 147638.3 10800 149866 1579 1.3%

14C - 7,3 151581 154913 2.2% 148613.2 45 150101.6 10380 159815 6072 2.2%
14C - 6,3 148728 150858 1.4% 146774.6 48 147820.0 10320 152696 6877 1.4%
14C - 5,3 146764 149662 1.9% 145794.4 50 146622.1 10620 149482 9219 1.8%

16 - 8,4 185939 - - 184187.6 172 193457.1 10260 - - -
16 - 8,2 151481 160705 5.7% 155045.2 7092 155045.2 7092 161999 9919 3.5%
16 - 7,3 158480 168860 6.1% 158257.4 10500 158586.0 10500 170293 7800 6.1%
16 - 7,2 147138 153978 4.4% 148341.8 10102 148341.8 10102 - - 3.7%

(continued on next page)



28
TRAVELIN

G
UM

PIRE
PRO

BLEM

Table 2.2 continued: Branch-and-price results for the TUP

Inst. Best results in literature Column generation BFS strategy DFS strategy Best
gap

LB∗ UB∗ Gap LB0 Time(s) LB Time(s) UB Time(s)

16A - 8,4 185119 - - 198969.7 172 200648.5 10260 - - -
16A - 8,2 162788 172966 5.9% 166575.5 5403 166624.1 10410 171882 8017 3.1%
16A - 7,3 172964 179960 3.9% 170575.1 371 172420.1 10560 187686 2980 3.9%
16A - 7,2 161640 164620 1.8% 161571.2 7476 161571.2 7476 165766 9759 1.8%

16B - 8,4 208418 - - 207505.4 202 209346.5 10440 - - -
16B - 8,2 167768 180888 7.3% 169363.4 5162 170092.6 10162 180728 10717 5.9%
16B - 7,3 173023 181565 4.7% 170632.5 880 172058.0 10560 186429 1378 4.7%
16B - 7,2 164012 170194 3.6% 163539.7 9021 163649.6 11298 - - 3.6%

16C - 8,4 188561 - - 200682.6 234 205643.8 10380 - - -
16C - 8,2 166001 180221 7.9% 168783.6 7380 168783.6 7380 179939 9286 6.2%
16C - 7,3 171377 184181 7.0% 171216.0 449 171767.6 10740 187310 2235 6.7%
16C - 7,2 163305 169184 3.5% 163850.8 10578 163850.8 10578 - - 3.2%



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 29

2.4 Branch-and-bound with decomposition-based
lower bounds

The Dantzig-Wolfe decomposition proposed earlier within Section 2.3 for the
TUP was improved by Xue et al. (2015), who included cuts and employed a
labeling algorithm to solve the pricing problem. Consequently, and for the first
time, a 14-team instance was solved. However, only the two least constrained 14-
team instances were solved, requiring a prohibitive runtime in practice (around
48 hours). The question remains: how to solve such instances in a reasonable
amount of time?

In this section, we propose a completely different algorithm that decomposes
the TUP into subproblems by exploring the time structure of the problem.
Subproblem solutions are combined to produce strong bounds, which are
employed within a branch-and-bound algorithm. The resulting algorithm solved
all 14-team instances. Rather than requiring over one day of runtime (Xue
et al., 2015), the 14-team instances were solved within a few minutes, or even
seconds, of runtime. This corroborates our hypothesis that algorithms which
employ decomposition approaches exploiting straightforward structural problem
characteristics can outperform classical heuristic and exact algorithms.

2.4.1 Branch-and-bound

Building on the branch-and-bound procedure established by Land and Doig
(1960), we introduce a specialized decomposition-based algorithm to the TUP.
This algorithm considers the same graph G = (V,E) presented for the integer
programming formulation in Section 2.2. Beginning from the first round, the
branch-and-bound algorithm assigns games to umpires, one at a time and round
by round, until the sink node is reached. An assignment of a game to an umpire
in a round is feasible if (i) the umpire did not visit the same location in the
previous q1 − 1 rounds and (ii) the umpire did not officiate any of the teams
during the previous q2 − 1 rounds. Whenever it is possible to assign multiple
games to a single umpire in one round, the algorithm greedily selects the
assignment incurring the smallest increase in travel distance. When ties occur,
games are sorted lexicographically (using home team names, for instance). Note
that a similar strategy was employed within the branch-and-bound algorithm
described in Section 2.3.2.



30 TRAVELING UMPIRE PROBLEM

If no valid assignment exists for an umpire in a certain round, the procedure
backtracks to the previous allocation and selects the next game in the ordered
list of games in the round. This procedure continues until the sink node is
reached for all umpires. If the resulting solution does not violate Constraint (c),
it is feasible and its total distance serves as an upper bound. This upper bound
is, together with the calculated lower bounds, employed to prune the parts of
the search tree where no optimum solution can reside.

Whenever a new feasible solution is obtained, a local search procedure is applied
to improve its quality. Even if the obtained solution is infeasible, meaning
it does not satisfy Constraint (c), a local search algorithm is executed which
attempts to first restore feasibility and then to improve the quality of the
resulting solution.

Figure 2.4 presents an example of the branch-and-bound optimizing an 8-team
instance where q1 = 3 and q2 = 2. It illustrates the algorithm currently defining
which game Umpire 1 will officiate after game BxH. The games AxD, BxG and
CxH are cut from the search tree in the current stage, as they would lead to
infeasible solutions. The first two games would violate Constraint (d) while
the second and third would violate Constraint (e). Thus, the only option for
Umpire 1 in the next round is to officiate game ExF.

Round 1

Round 2

Round 3

Round 4n-2

d ed,e

Source  Node

AxE FxB GxC DxH

AxF BxH ExC DxG

AxD BxG CxH ExF

ExA DxB HxC FxG

Sink Node

Ump. 1 Ump. 2 Ump. 3 Ump. 4

…

Figure 2.4: Branch-and-bound illustration for an 8-team TUP instance



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 31

Symmetry breaking

The symmetry breaking strategy discussed in Section 2.3.1 is also applied here:
game assignments of the first round are fixed, as otherwise the umpires would
be identical and introduce redundant subtrees. Therefore, Constraints (2.12)
are also considered within the branch-and-bound algorithm.

Preprocessing the graph

Another way to speed up the branch-and-bound is by removing edges which
violate one of the constraints (de Oliveira et al., 2014). If q1 > 1, then all edges
connecting games in the same venue are removed. Likewise, if q2 > 1 then
edges connecting games of the same team are also removed. For instance, the
edges connecting games BxH to BxG and BxH to CxH in Figure 2.4 would be
removed by this preprocessing procedure.

Additional pruning rules

Constraint (c) – every umpire should visit the home of every team at least once
– is employed as an additional pruning rule. If the number of unvisited home
locations for an umpire in a certain round exceeds the remaining number of
rounds, given the assignments in the previous rounds, it is impossible to obtain
a solution satisfying Constraint (c). The branch-and-bound algorithm should
consequently backtrack and explore alternative assignments. This pruning
strategy is irrelevant for the last round, however, because the maximum number
of unvisited home locations for an umpire would be one. In this case, the local
search heuristic can be applied to restore feasibility, potentially resulting in an
improved upper bound.

Local search procedure

A local search procedure is applied to feasible and infeasible solutions obtained
by the branch-and-bound to quickly improve the upper bound. The local search
performs a steepest descent search employing a matching neighborhood. The
neighborhood calculates the matching for each round in the solution. With a
view to minimizing infeasibility, invalid assignments incur additional costs to
the matching problems. For every umpire u and every game g in a given round



32 TRAVELING UMPIRE PROBLEM

r, the matching cost Cu,g for assigning game g to umpire u is a combination of
two deltas presented by Equation (2.13):

Cu,g = ∆du,g + ρ ∆vu,g (2.13)

where ∆du,g is the difference between the distance of the new and the current
assignment, ∆vu,g is the difference between the number of hard constraint
violations in the new and the current assignment, and ρ is a value sufficiently
large such that any variation of ∆vu,g is more significant than any possible
value for ∆du,g.

Pseudo-code of the branch-and-bound algorithm

The pseudo-code of a recursive version of the branch-and-bound algorithm is
presented in Algorithm 2.1. This algorithm should initially be executed as
BranchBound(∅, 1, 1), thereby receiving the following parameters: (i) an empty
solution, (ii) the first umpire and (iii) the first round. Initially, the umpire
and round to be analyzed in the next iteration are determined (lines 1-2) and a
sorted list L of possible allocations for umpire u in round r is constructed (line
3). The algorithm then iterates through list L (line 4), pruning the allocation
when possible (line 5) or adding it to the solution (line 6). If other umpire-game
allocations remain unexplored, the procedure is recursively executed for the
next umpire and/or round (lines 7-8). Once the solution is complete (line
9), meaning all the games have umpires assigned, the local search procedure
described in Section 2.4.1 is executed (line 10). If the resulting solution S′ is
better than the best found (S∗), then S∗ is updated (lines 11-12). Finally, the
current allocation is removed in line 13.

2.4.2 Decomposition-based lower bounds

A good lower bound is a basic requirement for an efficient branch-and-bound
minimization algorithm. The branch-and-bound developed for the TUP employs
a decomposition approach for quickly calculating strong lower bounds. Initially,
the problem is decomposed into |R|−1 subproblems. Each of these subproblems
consists of exactly two consecutive rounds, which enables calculating a lower
bound for these rounds. Next, the decomposition is modified by iteratively
increasing the size of the subproblems by one round.



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 33

Algorithm 2.1: Branch-and-bound algorithm
Let S∗ be a global variable representing the best solution, initialized as S∗ ← ∅
Input: Solution S, umpire u and round r
BranchBound(S, u, r)

1 u+ ← (u mod n)+1 // next umpire to analyze
2 r+ ← r + 1 if u = n and r otherwise // next round to analyze
3 L ← sorted list of feasible allocations in S for umpire u in round r
4 foreach a ∈ L do
5 if allocation a cannot be pruned away then
6 S ← S ∪ {a}
7 if S is not complete then
8 BranchBound(S, u+, r+)
9 else

10 S′ ← LocalSearch(S)
11 if S∗ = ∅ or S′ is better than S∗ then
12 S∗ ← S′

13 S ← S \ {a}

Initial lower bounds

The first subproblems contain exactly two consecutive rounds and consist of
finding a set of trips (edges) for the umpires to officiate the games in these
rounds. The objective thus is to find a feasible edge set which connects the
subproblem’s rounds. This subproblem is a simple assignment problem and can
be solved efficiently using the Hungarian Algorithm (Munkres, 1957). Constraint
(c) is ignored in the subproblems.

Figure 2.5 shows an example of a subproblem with two rounds, r and r + 1.
Four games are to be officiated by four umpires in each round. The solution is
a matching. Note that edges violating Constraints (d) and (e) were removed
from the graph. The preprocessing procedure presented in Section 2.4.1 avoids
analyzing these infeasible connections.

AxF BxH ExC DxG

Round r

Round r+1

AxE FxB GxC DxH

Figure 2.5: Example of a (solved) TUP subproblem



34 TRAVELING UMPIRE PROBLEM

The sum of the distances of all |R| − 1 matchings is a valid lower bound for the
problem. It equals the minimum-cost flow with node capacity (equal to 1) for
the original problem. This network flow problem is a relaxation of the TUP,
obtained by removing Constraints (2.4)-(2.6) from Formulation (2.1)-(2.7).

The lower bound obtained is employed by the branch-and-bound procedure for
pruning. Let mr be the value of the matching between the consecutive rounds
r and r + 1. The initial lower bounds LBr1,r2 for the cost between rounds r1
and r2, r1 < r2, are given by Equation (2.14).

LBr1,r2 =
∑

r∈R:r1≤r<r2

mr (2.14)

Strengthening the lower bounds

The matchings provide valid, but relatively weak lower bounds. In order to
improve the quality of the bounds, subproblem sizes are incremented. The main
principle is that subproblems with more rounds consider more constraints and,
therefore, the obtained bounds tend to be stronger. However, by increasing the
number of rounds, the subproblems become considerably more difficult to solve.
For instance, the subproblem with |R| rounds is equivalent to the original TUP
without Constraint (c).

Subproblems with three or more rounds are solved by the very same branch-
and-bound presented in Section 2.4, except for the evaluation of Constraint (c),
which here is irrelevant. Therefore, the pruning rules presented in Section 2.4.1
are not considered.

Lower bounds computed previously are employed for pruning incrementally
larger subproblems. Figure 2.6 shows an example of a subproblem containing
four rounds of an 8-team instance with q1 = 3 and q2 = 2. While solving this
subproblem, the bounds obtained from smaller subproblems, with two and three
rounds, are utilized to prune the search tree. Note that the algorithm ensures
that smaller subproblems, which may provide bounds, are solved before the
enclosing ‘larger’ subproblems. For instance, in the example of Figure 2.6, the
subproblems with rounds {r+ 2, r+ 3} and {r+ 1, r+ 2, r+ 3} are solved before
the subproblem with rounds {r, r + 1, r + 2, r + 3}.



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 35

Round r

Round r+1

Round r+2

Round r+3

AxE FxB GxC DxH

AxF BxH ExC DxG

AxD BxG CxH ExF

AxC ExB FxD HxG

LB calculated
by subproblem
with {r + 2, r + 3}

LB calculated
by subproblem with
{r + 1, r + 2, r + 3}

Figure 2.6: Lower bounds example for a TUP subproblem with four rounds

Lower bounds propagation

One of the key advantages of the decomposition approach presented is how the
solution of one subproblem may be employed to strengthen a number of lower
bounds. Strengthening is achieved with a simple bound propagation procedure.

Consider the subproblem illustrated by Figure 2.6, which includes rounds r,
r + 1, r + 2 and r + 3. The solution distance of this subproblem provides a new
bound, LB∗r,r+3. This bound is applied to improve all values of LBr1,r2 with
r1 ≤ r and r2 ≥ r + 3. Equation (2.15) shows how these bounds are improved.
In this equation, k represents the difference between the subproblem first and
last rounds (k = 3 in the example of Figure 2.6). Note that for any r, LBr,r = 0.

LBr1,r2 = max(LBr1,r2 , LBr1,r + LB∗r,r+k + LBr+k,r2) (2.15)

Equation (2.15) is applied to all pairs of rounds (r1, r2), with r1 ∈ {1, ..., r} and
r2 ∈ {r + k, ..., |R|}, possibly improving several bounds.

Pseudo-code of the lower bounds computation algorithm

Algorithm 2.2 presents the lower bounds computation procedure. The algorithm
begins by setting all values of the matrices S and LB to zero (lines 1-2). The
first for-loop (lines 3-6) calculates the initial lower bounds for all pairs of rounds
using the values of the matchings between every two consecutive rounds. The
next for-loop (line 7) is responsible for solving subproblems with more than two
rounds. The difference between the subproblem first and last rounds (k) begins



36 TRAVELING UMPIRE PROBLEM

at 2 and increases until |R| − 1, thereby implying the subproblem size begins at
3 and increases until it equals |R|. Line 8 specifies the first round of the current
subproblem (r). The subproblems are solved in the while-loop (line 9). Some
subproblems require that lower bounds are calculated beforehand. Lines 10-11
guarantee this requirement, by first solving subproblems beginning in round
r′ = r + k − 2 and decrementing until round r′ = r. To avoid recalculation, a
subproblem with rounds {r′, ..., r + k} is solved only if Sr′,r+k = 0 (line 10).
The new bounds are subsequently propagated to all pairs of rounds which can
benefit from the improved values (lines 12-13). Finally, the first round r of the
next subproblem is updated (line 14).

Algorithm 2.2: Lower bounds computation algorithm
Let S be an |R| × |R| matrix with solution values for the subproblems
Let LB be an |R| × |R| matrix with lower bounds for all pairs of rounds
CalculateLBs()

1 S ← 0|R|×|R|
2 LB ← 0|R|×|R|
3 foreach r ∈ {|R| − 1, ..., 1} do
4 Sr,r+1 ← value of matching between rounds r and r + 1
5 foreach r2 ∈ {r + 1, ..., |R|} do
6 LBr,r2 ← Sr,r+1 + LBr+1,r2

7 foreach k ∈ {2, ..., |R| − 1} do
8 r ← |R| − k
9 while r ≥ 1 do

10 foreach r′ ∈ {r + k − 2, ..., r} | Sr′,r+k = 0 do
11 Sr′,r+k ← solution value of subproblem {r′, ..., r + k}
12 foreach r1 ∈ {r′, ..., 1}, r2 ∈ {r + k, ..., |R|} do
13 LBr1,r2 ← max(LBr1,r2 , LBr1,r′ + Sr′,r+k + LBr+k,r2 )

14 r ← r − k

Algorithm 2.2 is executed in parallel during the branch-and-bound procedure.
Two threads are employed by the final algorithm: one to calculate lower
bounds (Algorithm 2.2) and another to compute upper bounds (Algorithm 2.1).
Executing both algorithms sequentially would require solving all the subproblems
in advance, potentially leading to a waste in computational time. Addressing
both lower and upper bounds in parallel avoids this situation, since the algorithm
stops whenever optimality is proven, a situation which may be achieved before
all subproblems are solved. One possible disadvantage is that the algorithm’s
execution is not deterministic, since information is exchanged between threads.



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 37

2.4.3 Pruning strategies

The branch-and-bound procedure prunes away nodes and reduces the search
tree based on the lower bounds. Assume a feasible solution with cost UB is
given, and that the branch-and-bound is analyzing the node corresponding
to the allocation of a specific game to an umpire in round r. Let LBr,|R| be
the lower bound for all allocations after round r and let C be the sum of the
distances of all the allocations in the current solution plus the distance of the
allocation currently being analyzed. The search tree derived from the current
allocation may be pruned if C + LBr,|R| ≥ UB.

This strategy, however, has one drawback. If remaining umpires are to be
assigned in round r, the number of pruning opportunities may be limited because
bound LBr,|R| only considers allocations of rounds after r, while allocations for
round r itself are pending. The following procedure is proposed to address this
drawback and improve the pruning strategy:

1. A subgraph is derived containing:
• the games of round r − 1 of umpires not yet allocated in round r,
• the games of round r with allocations pending,
• the edges connecting games of these two sets.

2. A matching problem defined by the subgraph is solved.

This “partial” matching provides a valuem that may be employed to improve the
lower bound, enabling the pruning away of a branch whenever C+LBr,|R|+m ≥
UB.

Figure 2.7 illustrates this procedure. The allocation of game CxH to Umpire 2
is being considered for round 3. Note that game ExF of round 3 was already
assigned to Umpire 1. In this case, the “partial” matching problem consists of
games AxF, ExC, AxD and BxG and the edges connecting these games. Let
m be the solution cost of this matching problem. The allocation of CxH to
Umpire 2 in the current solution is ignored if C + LB3,|R| +m ≥ UB, where C
is the total allocation distance in the current solution plus the cost of allocating
game CxH to Umpire 2 after game DxG.

The “partial” matching procedure introduces considerable computational
overhead to the branch-and-bound algorithm. To circumvent this issue, a
memoization scheme (Michie, 1968) is employed to avoid the recalculation of



38 TRAVELING UMPIRE PROBLEM

Round 1

Round 2

Round 3

Round 4

CxH

FxA HxB CxG ExD

AxE FxB GxC DxH

BxH DxG

ExF

AxF ExC

AxD BxG

Source  Node

…

Ump. 1 Ump. 2 Ump. 3 Ump. 4

Figure 2.7: “Partial” matching problem example

previously-solved matching problems, reducing this computational overhead to
an acceptable level.

2.4.4 Parallelization

The branch-and-bound previously described already employs two threads: one
to calculate lower bounds and another to compute upper bounds. However, the
algorithm contains properties which enable additional parallelization:

1. most subproblems solved during the computation of lower bounds are
independent and may be processed in parallel;

2. multiple subtrees of the branch-and-bound algorithm may be analyzed in
parallel.

With these two properties in mind, a parallel version of the algorithm is also
considered. Rather than employing two threads, an arbitrary number T ≥ 2 of
CPUs is utilized to execute the branch-and-bound algorithm. The additional
CPUs are initially divided among computing lower bounds and exploring the
branch-and-bound tree. Here many division strategies may be employed, but
to prioritize simplicity we opted for dividing the resources equally between



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 39

the two processes. Whenever there are fewer independent subproblems to be
solved than the number of available CPUs, CPUs are re-allocated to explore the
branch-and-bound tree. Ultimately, after all lower bounds have been computed,
every CPU is assigned to search the tree.

Employing multiple CPUs to compute the lower bounds is straightforward.
However, when it comes to searching the branch-and-bound tree in parallel,
many design decision must be made. Gendron and Crainic (1994) and Crainic
et al. (2006) present surveys on parallel branch-and-bound algorithms, indicating
different strategies for parallelizing the search. We opted for a simple strategy.
A certain number of nodes are initially stored in a centralized pool. The subtrees
of each of these nodes are subsequently expanded by different CPUs. Each
CPU retrieves the next node in the pool and performs the depth first search
explained in Section 2.4.1. Whenever a subtree exploration finishes, the idle
CPU takes the next node available. If a CPU is idle and the pool is empty, a flag
is activated and new nodes are added to the pool by the CPUs currently working.
Note that information concerning bounds are shared among the CPUs. One
of the primary advantages of this strategy is the reduced (controlled) memory
usage.

Experiments comparing the 2-threaded against the fully parallelized versions of
the algorithm are presented in the following section.

2.4.5 Computational experiments

The branch-and-bound algorithm was coded in Java 8 and the experiments were
executed on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz computer with 16GB
of RAM memory running Ubuntu Linux 12.04 LTS. In the spirit of reproducible
science, the source code and all the solution files are publicly available at github5
and at our automated TUP benchmark website6, respectively.

This section is organized as follows. First the results obtained by the presented
approach are compared against the best known results from the literature,
namely those of Trick and Yildiz (2007, 2011, 2012, 2013), Trick et al. (2012),
de Oliveira et al. (2014), Wauters et al. (2014), and Xue et al. (2015). Next, the
impact of the presented branch-and-bound components is discussed. Finally,
the benefits of parallelizing the proposed algorithm are analyzed.

5https://github.com/tuliotoffolo/tup
6https://benchmark.gent.cs.kuleuven.be/tup

https://github.com/tuliotoffolo/tup
https://benchmark.gent.cs.kuleuven.be/tup


40 TRAVELING UMPIRE PROBLEM

Results on benchmark instances

Table 2.3 details the results obtained by the algorithm with two threads for
the benchmark instances from 12 to 32 teams. The table presents, for each
instance:

• the best known results: the runtime (in hours), when available, for
obtaining the best known lower bound and the best solution, as well
as the values of the best lower (LB) and upper bounds (UB), collected
from different papers and including results reported in Section 2.3.4;

• the results obtained by the presented branch-and-bound: the runtime (in
different units for compactness: seconds (s), minutes (m) or hours (h)),
number of explored nodes and maximum size of subproblems solved by
Algorithm 2.2 (|S|), as well as the lower (LB) and upper bounds (UB).

The best bounds are highlighted in the table, with ~ indicating that the solution
was proven to be either optimum or infeasible.

Table 2.3: Branch-and-bound with decomposition-based lower bounds results
for the TUP

Instance Best known results Branch-and-bound

Time and LB Time and UB Time Nodes |S| LB UB

12 - 7,2 - - - - 14.4s 2.8E + 06 17 ~ 86889
12 - 6,3 - ~ - infeas. 1.2s 9.0E + 05 15 ~ infeas.
12 - 5,3 - - - - 1.2s 6.3E + 05 22 ~ 93679
12 - 4,3 - - - - 5.4s 5.5E + 06 13 ~ 89826

14 - 8,3 - - - - 34.8m 4.9E + 09 24 ~ 172177
14 - 8,2 - - - - 2.9m 3.5E + 08 18 ~ 147824
14 - 7,3 3.0h 159797 3.0h 164440 3.8m 5.1E + 08 26 ~ 164440
14 - 7,2 - - - - 0.5m 4.9E + 07 25 ~ 146656
14 - 6,3 48.0h 157084 3.0h 159505 0.9m 8.9E + 07 26 ~ 158875
14 - 6,2 - - - - 0.3m 3.1E + 07 26 ~ 145124
14 - 5,3 34.8h ~ 34.8h 154962 2.2m 2.0E + 08 26 ~ 154962
14 - 5,2 - - - - 0.2m 1.5E + 07 25 ~ 143357

14A - 8,3 - - - - 20.3m 2.8E + 09 26 ~ 166184
14A - 8,2 - - - - 2.5m 2.8E + 08 25 ~ 143043
14A - 7,3 3.0h 153199 3.0h 158760 2.1m 2.6E + 08 26 ~ 158760
14A - 7,2 - - - - 0.5m 5.4E + 07 25 ~ 140562
14A - 6,3 48.0h 151044 3.0h 153216 0.5m 5.5E + 07 26 ~ 152981
14A - 6,2 - - - - 0.1m 8.1E + 06 26 ~ 138927
14A - 5,3 11.4h ~ 11.4h 149331 1.1m 1.2E + 08 26 ~ 149331
14A - 5,2 - - - - 0.6m 6.0E + 07 24 ~ 137853

(continued on next page)



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 41

Table 2.3 continued: Branch-and-bound with decomposition-based lower bounds
results for the TUP

Instance Best known results Branch-and-bound

Time and LB Time and UB Time Nodes |S| LB UB

14B - 8,3 - - - - 22.1m 3.0E + 09 22 ~ 165026
14B - 8,2 - - - - 12.8m 1.5E + 09 26 ~ 141312
14B - 7,3 48.0h 152518 3.0h 157884 4.0m 5.2E + 08 24 ~ 157884
14B - 7,2 - - - - 1.0m 1.2E + 08 26 ~ 138998
14B - 6,3 48.0h 150942 3.0h 152740 1.7m 2.2E + 08 26 ~ 152740
14B - 6,2 - - - - 0.9m 1.0E + 08 26 ~ 138241
14B - 5,3 - ~ - 149455 1.1m 1.2E + 08 26 ~ 149455
14B - 5,2 - - - - 0.2m 1.9E + 07 23 ~ 136069

14C - 8,3 - - - - 14.5m 2.0E + 09 19 ~ 161262
14C - 8,2 - - - - 16.4m 2.0E + 09 21 ~ 141015
14C - 7,3 3.0h 151581 3.0h 154913 0.8m 9.5E + 07 22 ~ 154913
14C - 7,2 - - - - 5.5m 6.5E + 08 26 ~ 138832
14C - 6,3 48.0h 148987 3.0h 150858 1.7m 2.1E + 08 26 ~ 150858
14C - 6,2 - - - - 0.7m 7.6E + 07 26 ~ 136394
14C - 5,3 48.0h 147903 3.0h 149482 12.7m 1.7E + 09 26 ~ 148349
14C - 5,2 - - - - 0.6m 5.7E + 07 26 ~ 134916

16 - 8,4 3.0h 193458 - - 3.9h 3.6E+10 10 ~ infeas.
16 - 8,3 - - - - 48.0h 4.0E+11 11 162902 189415
16 - 8,2 48.0h 156089 3.0h 160705 48.0h 3.9E+11 11 145531 184977
16 - 7,4 - - - - 4.6h 3.8E+10 15 ~ 197028
16 - 7,3 48.0h 160162 3.0h 168860 6.7h 5.1E+10 27 ~ 165765
16 - 7,2 48.0h 149488 3.0h 153978 18.4h 1.3E+11 30 ~ 150433

16A - 8,4 48.0h 206142 - - 3.8h 3.6E+10 10 ~ infeas.
16A - 8,3 - - - - 48.0h 4.0E+11 11 175590 214512
16A - 8,2 48.0h 168275 3.0h 171882 48.0h 4.5E+11 9 160739 -
16A - 7,4 - - - - 4.5h 3.9E+10 14 ~ 213416
16A - 7,3 3.0h 172964 3.0h 179960 4.2h 3.1E+10 26 ~ 178511
16A - 7,2 48.0h 162622 3.0h 164620 16.0h 1.2E+11 30 ~ 163709

16B - 8,4 48.0h 215521 - - 3.8h 3.6E+10 9 ~ infeas.
16B - 8,3 - - - - 48.0h 4.1E+11 11 178821 217764
16B - 8,2 48.0h 170385 3.0h 180728 48.0h 3.6E+11 10 165737 202897
16B - 7,4 - - - - 5.0h 4.3E+10 13 ~ 223868
16B - 7,3 3.0h 173023 3.0h 181565 37.8h 2.9E+11 30 ~ 180204
16B - 7,2 48.0h 164816 3.0h 170194 38.4h 2.6E+11 26 ~ 167190

16C - 8,4 48.0h 206369 - - 3.9h 3.6E+10 10 ~ infeas.
16C - 8,3 - - - - 48.0h 4.0E+11 11 175435 214993
16C - 8,2 48.0h 169698 3.0h 179939 48.0h 3.7E+11 10 164541 204887
16C - 7,4 - - - - 5.6h 4.7E+10 12 ~ 209088
16C - 7,3 48.0h 172755 3.0h 184181 48.0h 3.4E+11 18 176161 180483
16C - 7,2 48.0h 164626 3.0h 169184 37.6h 2.6E+11 27 ~ 166479

(continued on next page)



42 TRAVELING UMPIRE PROBLEM

Table 2.3 continued: Branch-and-bound with decomposition-based lower bounds
results for the TUP

Instance Best known results Branch-and-bound

Time and LB Time and UB Time Nodes |S| LB UB

18 - 9,4 48.0h 213806 - - 48.0h 3.7E+11 9 193632 -
18 - 9,3 - - - - 48.0h 3.8E+11 9 186173 262987
18 - 8,4 - - - - 48.0h 3.3E+11 10 197511 254155
18 - 8,3 - - - - 48.0h 3.3E+11 11 187335 248302
18 - 7,4 - - - - 48.0h 3.1E+11 15 200551 217502

20 - 10,5 3.0h 216333 - - 48.0h 3.3E+11 8 220907 -
22 - 11,5 3.0h 245518 - - 48.0h 3.1E+11 6 243052 -
24 - 12,6 3.0h 273057 - - 48.0h 3.5E+10 4 250590 -
26 - 13,6 3.0h 312786 - - 48.0h 2.8E+10 4 289651 -
28 - 14,7 3.0h 350263 - - 48.0h 9.2E+09 3 322208 -
30 - 15,7 3.0h 413103 - - 48.0h 4.1E+09 3 339331 -
32 - 16,8 3.0h 430890 - - 48.0h 5.2E+09 3 369695 -

Note that we also report results for non-standard instances in Table 2.3, with
q1 > n and q2 = 2. Table 2.3 confirms how the branch-and-bound results clearly
outperform the best known results from the literature for the 14-team instances.
Before this work, only three 14-team instances had their optimality proven. Xue
et al. (2015) required approximately 46h to prove optimality for two of these
instances (the runtime to obtain the optimum solution for instance ‘14B-5,3’,
collected from Trick and Yildiz’s website7, is unknown). The proposed branch-
and-bound with decomposition-based lower bounds is capable of producing
(and proving) optimal solutions for all these three instances in approximately 4
minutes. Optimality was also quickly proven for all the other 14-team instances.
The procedure required, on average, 5 minutes to solve each instance. It is
noteworthy, however, to highlight how instances with higher values for q1 and
q2 demand more computational effort from the branch-and-bound.

The time limit for 16-team and larger instances was set to 48 hours, thereby
enabling a fair comparison with the approaches proposed by Xue et al. (2015).

Table 2.3 reveals how the branch-and-bound obtained 11 optimal solutions for
the 16-team instances, improving 8 upper bound values reported in the literature.
Nevertheless, some of the results obtained are poor when compared against
the best results from the literature. For example, no solution was obtained
for instance ‘16A-8,2’. This demonstrates how obtaining feasible solutions for

7http://mat.gsia.cmu.edu/TUP/



BRANCH-AND-BOUND WITH DECOMPOSITION-BASED LOWER BOUNDS 43

highly-constrained instances may take considerable additional time. Without
an upper bound, the proposed algorithm behaves like a naive enumeration
procedure. For the more constrained instances, even solving the subproblems
is difficult. This is confirmed by the smaller size |S| of the largest subproblem
solved for these instances. Therefore, despite the impressive results for the
14-team instances, the algorithm’s exponential time complexity is noticeable
when solving instances with more than 14 teams. This behavior is evident in
the results for the 18-team instances, where the average gap is approximately
21%.

Impact of the branch-and-bound components

We present experiments to analyze the impact of the main branch-and-bound
components. The objective is to define which components are the most
important, with the goal of providing a simpler algorithm or at least of indicating
the least relevant components. Four algorithm versions were prepared:

• the complete algorithm, with all the described components;

• the algorithm without the local search procedure presented in Section 2.4.1;

• the algorithm without the partial matching presented in Section 2.4.3;

• and the algorithm without the bound propagation presented in Sec-
tion 2.4.2;

The different versions of the algorithm were executed for the standard 14-team
instances which were considered by other studies. The total runtime and the
total number of nodes generated before finding (and proving) an optimum
solution were analyzed. Figure 2.8 presents a graph showing the results of
these executions. Since the total number of nodes is proportional to the total
runtime, only the runtime is shown in the figure. The vertical axis presents the
percentage of processing time to solve the instance while the horizontal axis
lists the different instances considered. This figure shows that removing any one
of the components negatively impacts the total runtime. Among the considered
components, the partial matching had the highest overall impact, followed by
the local search procedure. The bound propagation had the smallest impact
given that the subproblems were solved very quickly.

We also ran experiments disabling other features of the algorithm, such as the
lower bound strengthening by decomposition. However, when such features
were deactivated the total runtime exceeded the imposed limit of 24 hours.



44 TRAVELING UMPIRE PROBLEM

14-8,2 14-7,3 14-7,2 14A-8,2 14A-7,3 14A-7,2 14B-8,2 14B-7,3 14B-7,2 14C-8,2 14C-7,3 14C-7,2
complete	version 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
without	local	search 105% 195% 249% 117% 112% 333% 221% 116% 423% 193% 110% 241%
without	par<al	
matching 475% 197% 521% 438% 180% 579% 376% 144% 401% 335% 188% 457%

without	bound	
propaga<on 199% 99% 104% 113% 106% 113% 190% 106% 160% 204% 102% 103%

100%

200%

300%

400%

500%

600%

14-8,2 14-7,3 14-7,2 14A-8,2 14A-7,3 14A-7,2 14B-8,2 14B-7,3 14B-7,2 14C-8,2 14C-7,3 14C-7,2

complete version without local search
without partial matching without bound propagation

Figure 2.8: Performance of the branch-and-bound with deactivated components
on 14-team instances

Parallelization

Table 2.4 presents the runtime (in seconds) and the speed-up obtained with
the parallel version discussed in Section 2.4.4 for 14-team instances. An
Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz was employed for this particular
experiment. The algorithm was executed utilizing both 2 and 16 CPUs. Note
how for some instances the speedup is superior to the proportional number of
CPUs added (values highlighted in the table). As discussed by Crainic et al.
(2006), these speedup anomalies are due to the reduction in the number of nodes
explored by the branch-and-bound. By searching the tree in parallel, improved
upper bounds may be obtained earlier, enabling additional pruning. More
pruning means less nodes to explore, thereby explaining some of the spectacular
speedups observed in Table 2.4. In one particular case, the additional overhead
negatively impacted the algorithm.

Finally, note how instances ‘14-5,3’ and ‘14A-5,3’, previously solved by Xue
et al. (2015) in 46 hours, were solved in only 35 seconds by the proposed parallel
branch-and-bound.



DECOMPOSITION-BASED HEURISTIC 45

Table 2.4: Parallel branch-and-bound gain when utilizing eight times more
processors

Instance 2 CPUs 16 CPUs Speedup Instance 2 cores 16 cores Speedup

14 - 8,3 1871.0 234.1 7.99x 14B - 8,3 1219.9 224.2 5.44x
14 - 8,2 96.8 22.4 4.32x 14B - 8,2 745.0 226.2 3.29x
14 - 7,3 215.2 17.1 12.62x 14B - 7,3 238.8 47.5 5.02x
14 - 7,2 25.5 5.0 5.09x 14B - 7,2 70.2 14.0 5.02x
14 - 6,3 49.4 26.4 1.87x 14B - 6,3 100.3 8.1 12.37x
14 - 6,2 17.5 3.7 4.72x 14B - 6,2 66.9 17.5 3.82x
14 - 5,3 126.1 20.4 6.18x 14B - 5,3 60.5 5.2 11.74x
14 - 5,2 9.7 3.5 2.74x 14B - 5,2 11.7 4.9 2.39x

14A - 8,3 1152.6 114.3 10.08x 14C - 8,3 908.2 83.4 10.90x
14A - 8,2 129.0 28.8 4.47x 14C - 8,2 827.7 298.8 2.77x
14A - 7,3 116.4 20.0 5.82x 14C - 7,3 45.6 12.0 3.80x
14A - 7,2 28.8 7.2 4.00x 14C - 7,2 323.0 41.6 7.76x
14A - 6,3 27.8 3.8 7.24x 14C - 6,3 97.2 9.8 9.94x
14A - 6,2 5.0 4.2 1.18x 14C - 6,2 40.2 30.9 1.30x
14A - 5,3 62.6 15.0 4.19x 14C - 5,3 751.7 132.7 5.67x
14A - 5,2 32.3 4.7 6.85x 14C - 5,2 31.1 32.6 0.95x

2.5 Decomposition-based heuristic

The branch-and-bound with decomposition-based lower bounds, despite
considerably improving upon all exact methods proposed for the TUP, is
incapable of handling large instances. This is an expected result, given the
algorithm’s exponential time complexity. Seeking to provide high-quality
solutions for the largest instances, a decomposition-based heuristic is proposed.

The employed decomposition strategy is very similar to the one proposed in
Section 2.4.2. However, rather than being applied to compute lower bounds, it is
instead utilized to produce feasible solutions. The time horizon, here represented
by rounds, defines subproblems solvable within short computational time. A
solution is iteratively constructed by combining these subproblem solutions.
Following this, a local search also employing the decomposition is performed
to improve solution quality. The constructive procedure is detailed next, in
Section 2.5.1, and the local search is explained in Section 2.5.2. Computational
experiments evaluating the heuristic are presented in Section 2.5.3.



46 TRAVELING UMPIRE PROBLEM

2.5.1 Constructive procedure

The constructive approach begins by decomposing the problem into subproblems
containing η consecutive rounds each. Evidently, η is an important parameter:
it must be large enough to produce non-trivial subproblems but also small
enough so that subproblems are quickly solved. Figure 2.9 presents an example
of such a decomposition, with η = 4 and one round of intersection among
subproblems. The amount of intersection between two subproblems is given by
the parameter step ∈ Z+, with step ≤ η. Note in the example of Figure 2.9
that step = η − 1, meaning step = 3 in this case.

step

≤ η.

Round Game [Home x Away]

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14

AxE 

AxF 

AxD 

FxA 

HxA 

GxA 

AxH 

AxG 

DxA 

BxA 

CxA 

AxB 

AxC 

ExA

FxB 

BxH 

BxG 

HxB 

GxB 

BxC 

BxF 

BxD 

CxB 

FxC 

BxE 

CxE 

ExB 

DxB

GxC 

ExC 

CxH 

CxG 

CxD 

DxF 

DxC 

CxF 

ExG 

DxE 

HxD 

GxD 

FxD 

HxC

DxH 

DxG 

ExF 

ExD 

FxE 

HxE 

GxE 

ExH 

FxH 

HxG 

GxF 

HxF 

HxG 

FxG

Figure 2.9: Decomposition example with η = 4 and step = 3

Once the problem is decomposed, the solution process begins. Initially,
the first subproblem – the one containing the first round – is solved to
optimality. Next, the second subproblem is solved taking into account the
solution of the first subproblem. Allocations made in previous rounds are fixed
when solving each subsequent subproblem. The procedure repeats until all
subproblems are solved. If a feasible solution is obtained for all subproblems,
then a feasible initial solution is produced for the entire problem. However,
fixations enforced by subproblems previously solved often results in an infeasible
subproblem. If such a situation occurs, the algorithm backtracks and an
alternative solution is produced for the previous subproblem. To reduce



DECOMPOSITION-BASED HEURISTIC 47

infeasibility and consequently lessen backtracking, a heuristic objective function
is employed for the subproblems.

Note that the proposed constructive procedure resembles the relax-and-fix
algorithm presented by de Oliveira et al. (2014). However, some significant
differences should be highlighted. Rather than dividing the problem into
subproblems, de Oliveira et al. (2014) relax the integrality of variables related to
some rounds, while keeping variables concerning a subset of rounds integer. Once
the partially relaxed problem is solved, the integer variables have their values
fixed and other previously-relaxed variables become integer. This procedure
repeats until all variables have been fixed. Such a strategy disallows addressing
instances with more than 30 rounds because the runtime to solve the linear
relaxation is unreasonably large for these instances.

Algorithm 2.3 presents the constructive procedure as a recursive algorithm.
The stopping criterion is a completely formed solution (lines 1-2), which is
immediately returned. Otherwise, a subproblem P is defined (line 3) and solved
(line 4). All solutions obtained are stored in a list L, together with the optimal
solution. Beginning with the best solution, the algorithm iterates over all
solutions s′ ∈ L (line 5). The assignments in s′ are then included in S (line 6).
Next, a recursive call is made to solve the remaining subproblems (line 7). If
a feasible solution is obtained, the algorithm returns it (line 8). Otherwise, it
removes allocations of s′ from S (line 9) and continues with the next solution.
If no subproblem solution in L culminates in feasible assignments for S, the
algorithm returns an empty, infeasible solution (line 10).

Algorithm 2.3: Decomposition-based constructive algorithm for the TUP
Input: Solution S (initially ∅), current round r (initially one), subproblem size

η and intersection parameter step
Constructive(S, r, η, step)

1 if S is a feasible solution then
2 return S // success: feasible solution is returned

3 P ← subproblem {r, ..., min(r + η − 1, |R|)} considering allocations in S
4 L← list of feasible solutions (allocations) for P , sorted by increasing cost
5 for s′ ∈ L do
6 S ← S ∪ s′ // fix allocations of subproblem solution s′

7 if Constructive(S, r + step, η, step) 6= ∅ then
8 return S

9 S ← S\s′ // unfix (remove) allocations of subproblem solution s′

10 return ∅ // backtracks since all subproblem solutions resulted in infeasibility



48 TRAVELING UMPIRE PROBLEM

Reducing infeasibility

Constraint (c) – every umpire should visit the home of every team at least once –
is the main cause of infeasibility when solving the last subproblems. Taking this
into account, a heuristic objective function is proposed to reduce infeasibility.

Rather than exclusively minimizing travel distance, subproblems include the
number of different locations visited by the umpires in their objective function.
The principle is straightforward: by maximizing the number of locations visited
by each umpire in the early rounds, Constraint (c) becomes less relevant for the
last rounds, thereby reducing the risk of infeasibility. The objective function
for the subproblems is given by Equation (2.16), with `i,u indicating whether
location i is visited by umpire u (`i,u = 0) or not (`i,u = 1), and ψu the
multiplier applied to each location not visited by umpire u.∑

e∈E

∑
u∈U

dexe,u +
∑
i∈I

∑
u∈U

ψu`i,u (2.16)

Note that the vector ψ represents a critical parameter given how it strongly
influences solution quality. The focus of the constructive method is, however,
on feasibility and thus ψ is generally composed of large values. Equation 2.17
presents the calculation of ψu. In this equation, ω corresponds to a regular
weight (multiplier), r to the first round of the subproblem and `0u to the initial
number of unattended locations of umpire u. The principle behind the square
root of r is to give higher (but not too high) penalties in later rounds. As for
summing `0u in ψu, the goal is to assign (slightly) higher priority to umpires
with more unattended locations.

ψu = ω
√
r + 1 + `0u (2.17)

Note from Equation 2.17 that ψu is a heuristic multiplier applying problem-
specific information. The impact of such a heuristic objective function is
evaluated throughout Section 2.5.3.

2.5.2 Local search

Once a feasible solution is obtained by the constructive approach, the local search
phase begins. Here the decomposition proposed in the previous section serves as
a neighborhood within a Hill Climbing (HC) procedure. The principle is to solve



DECOMPOSITION-BASED HEURISTIC 49

subproblems while fixing allocations of games not included in the subproblem.
A subproblem is, again, defined by a set of η consecutive rounds. Once no
improvement is achievable from a certain decomposition (set of subproblems),
the value of η is incremented. The procedure continues until the time limit
is reached or η = |R|, in which case a subproblem represents the entire TUP
instance.

Algorithm 2.4 describes the local search decomposition method. The algorithm
iterates until either the entire TUP instance is solved or the time limit is reached
(line 1). For each iteration, the round r and the number of subproblems without
improvement c are initialized (lines 2-3). Then, until a local optimum is reached
(line 4), a subproblem P is defined (line 5) and solved (line 6). If the solution
improves upon the previous one, meaning that the cost of solution S is reduced,
it is accepted and the counter is reset (lines 7-9). Otherwise, the counter is
incremented (lines 10-11). Finally, r is updated to consider the next subproblem
(line 12). When a local optimum is reached, η is incremented (line 13). Once
one of the stopping criteria is reached, the best solution obtained is returned
(line 14).

Algorithm 2.4: Decomposition-based local search for the TUP
Input: Solution S, subproblem size η and intersection parameter step
LocalSearch(S, η, step)

1 while η ≤ |R| and time limit not reached do
2 r ← 1 // first subproblem begins with the first round
3 c← 0 // counter of non-improving iterations
4 while c < b|R|/stepc do
5 P ← subproblem {r, ..., min(r + η − 1, |R|)} considering S
6 SP ← optimum solution of P
7 if SP improves solution S then
8 update S with allocations from SP
9 c← 0

10 else
11 c← c+ 1
12 r ← (r + step) mod |R|
13 η ← η + 1
14 return S



50 TRAVELING UMPIRE PROBLEM

2.5.3 Computational experiments

The decomposition-based heuristic was coded in Java 8 and the experiments
were executed on an Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz computer
with 16GB of RAM memory running Ubuntu Linux 12.04 LTS. Subproblems
were solved by Gurobi 7.5 employing Formulation (2.1)-(2.7) with the altered
objective function given by Equation (2.16). The experiments were executed
with η = 5 and step = 2, since larger values for η resulted in long runtimes. The
penalty ω was set initially to 50 during the constructive procedure. Whenever
infeasible solutions are produced, the algorithm automatically increases ω’s
value by 25 units. The procedure continues until a feasible solution is obtained.
As with the developed branch-and-bound, the source code and all solution files
have been made publicly available online at our automated TUP benchmark
website8.

Table 2.5 compares the results obtained with the proposed heuristic method
against the best known ones, including those produced by the branch-and-bound
with decomposition-based lower bounds. Both medium- and large-size instances
were considered for the experiments. The table reports the best known solution
(column BKS) followed by (i) results obtained by the constructive approach
and (ii) the final solution obtained after local search. Runtimes are presented
in seconds and column gap reports the gap between the obtained solution and
the previous best known, with gap calculated as UB−BKS

UB . The constructive
method was executed until a feasible solution was returned – possibly updating
multiple times the value for ω –, and the local search ran for exactly one hour.
The total runtime was always below three hours.

Table 2.5 demonstrates the efficiency of the proposed decomposition-based
heuristic. Many instances had their best known solution improved. For the
largest instances, with at least 20 teams, solutions produced by the constructive
procedure alone improved upon previous best solutions. For smaller 14- and
16-team instances, however, results were less competitive, with average gap of
3.17% after local search.

The impact of employing a heuristic objective function was also evaluated.
Table 2.6 shows the initial solution quality for two scenarios, one employing
the TUP’s original objective function (Orig. obj.) and another employing the
proposed heuristic objective function (Heur. obj.). The table also displays the
value for ω that resulted in a feasible solution. Solution distance is omitted

8https://benchmark.gent.cs.kuleuven.be/tup

https://benchmark.gent.cs.kuleuven.be/tup


DECOMPOSITION-BASED HEURISTIC 51

Table 2.5: Decomposition-based heuristic results for the TUP

Instance BKS Constructive Local search

Time UB gap+ Time UB gap+

umps14 - 7,3 164440 11.9 176300 6.7% 3600 172510 4.7%
umps14 - 6,3 158875 32.1 168691 5.8% 3600 163933 3.1%
umps14 - 5,3 154962 26.3 157419 1.6% 3600 157402 1.6%
umps14A - 7,3 158760 17.7 171366 7.4% 3600 166329 4.6%
umps14A - 6,3 152981 34.3 160563 4.7% 3600 157917 3.1%
umps14A - 5,3 149331 23.3 156821 4.8% 3600 151590 1.5%
umps14B - 7,3 157884 4.1 169668 6.9% 3600 165421 4.6%
umps14B - 6,3 152740 27.1 157216 2.8% 3600 156659 2.5%
umps14B - 5,3 149455 28.4 153953 2.9% 3600 152357 1.9%
umps14C - 7,3 154913 8.2 164545 5.9% 3600 164360 5.7%
umps14C - 6,3 150858 38.4 158212 4.6% 3600 153542 1.7%
umps14C - 5,3 148349 27.6 153577 3.4% 3600 151312 2.0%

umps16 - 8,2 160705 35 177915 9.7% 3600 164665 2.4%
umps16 - 7,3 165765 11.9 173304 4.4% 3600 171425 3.3%
umps16 - 7,2 150433 12.1 161644 6.9% 3600 155656 3.4%
umps16A - 8,2 171882 105.5 191631 10.3% 3600 171882 0.0%
umps16A - 7,3 178511 23.8 183946 3.0% 3600 181879 1.9%
umps16A - 7,2 163709 16.6 170700 4.1% 3600 168447 2.8%
umps16B - 8,2 180728 82.1 181232 0.3% 3600 180540 -0.1%
umps16B - 7,3 180204 20.5 193558 6.9% 3600 191974 6.1%
umps16B - 7,2 167190 28.7 176386 5.2% 3600 172579 3.1%
umps16C - 8,2 179939 15.7 203485 11.6% 3600 186253 3.4%
umps16C - 7,3 172755 26.9 195462 11.6% 3600 188818 8.5%
umps16C - 7,2 164626 30.2 173871 5.3% 3600 172319 4.5%

umps18 - 5,5 213806 73.9 223190 4.2% 3600 221480 3.5%
umps20 - 5,5 - 366.8 251782 - 3600 250569 -
umps22 - 5,5 - 758.7 279342 - 3600 278842 -
umps24 - 5,5 - 1897.8 310468 - 3600 305514 -
umps26 - 5,5 354134 2498.5 352016 -0.6% 3600 351932 -0.6%
umps28 - 5,5 398101 2095.7 390832 -1.9% 3600 390635 -1.9%
umps30 - 5,5 450919 5983.4 444870 -1.4% 3600 443739 -1.6%
umps32 - 5,5 502890 4279.8 493007 -2.0% 3600 491075 -2.4%

whenever the resulting solution is infeasible in respect to Constraint (c). Note
how the decomposition-based constructive algorithm consistently fails to provide
a feasible solution when the original objective function is employed. It was
capable of providing feasible solutions only for four out of 40 considered instances.
It is therefore clear that the heuristic objective function is essential to lead the
constructive algorithm towards feasible solutions.



52 TRAVELING UMPIRE PROBLEM

Table 2.6: Impact of heuristic objective function within the decomposition-based
constructive heuristic for the TUP

Instance Orig.
obj.

Heur. obj.
Instance Orig.

obj.

Heur. obj.

ω Obj. ω Obj.

umps14 - 7,3 - 150 176300 umps14B - 7,3 - 75 169668
umps14 - 6,3 - 225 168691 umps14B - 6,3 - 200 157216
umps14 - 5,3 - 150 157419 umps14B - 5,3 - 175 153953

umps14A - 7,3 - 150 171366 umps14C - 7,3 - 100 164545
umps14A - 6,3 - 225 160563 umps14C - 6,3 - 275 158212
umps14A - 5,3 - 125 156821 umps14C - 5,3 - 125 153577

umps16 - 8,2 179837 50 177915 umps16B - 8,2 - 125 181232
umps16 - 7,3 - 50 173304 umps16B - 7,3 - 75 193558
umps16 - 7,2 - 50 161644 umps16B - 7,2 - 75 176386

umps16A - 8,2 - 50 191631 umps16C - 8,2 - 50 203485
umps16A - 7,3 185202 50 183946 umps16C - 7,3 196821 50 195462
umps16A - 7,2 170353 50 170700 umps16C - 7,2 - 100 173871

umps18 - 5,5 - 100 223190 umps26 - 5,5 - 75 352016
umps20 - 5,5 - 100 251782 umps28 - 5,5 - 50 390832
umps22 - 5,5 - 75 279342 umps30 - 5,5 - 75 444870
umps24 - 5,5 - 100 310468 umps32 - 5,5 - 50 493007

2.6 Conclusions and future work

This chapter introduced three decomposition approaches for the TUP, devoting
special attention to both computation of tight lower bounds and production of
high-quality feasible solutions.

The algorithms improved a large number of lower and upper bounds. Among
these improving results, optimality was proven for all the 14-team instances and
for 11 of the 16-team instances. While previous approaches required over 24
hours of runtime to solve the less constrained 14-team instances, the research
presented in this chapter enabled solving such instances within a few minutes
of runtime. Parallelization of the algorithm resulted in even lower runtimes.
When optimality was not proven, the branch-and-bound with decomposition-
based lower bounds was capable of generating competitive feasible solutions for
instances with 16 teams, improving the best known result in one case. It was
also proven that no feasible solutions exist for instances ‘16-8,4’.

A decomposition-based heuristic was proposed to address larger instances.
Several new best known solutions were produced within limited runtimes.



CONCLUSIONS AND FUTURE WORK 53

In summary, the time-structure decomposition proposed and evaluated within
branch-and-bound and heuristic algorithms obtained very strong results,
outperforming all other approaches proposed for the problem. These results
motivate questions concerning the general applicability of such a straightforward
decomposition principle. Can it outperform classical heuristic and exact
algorithms for other problems? This and other questions are addressed
throughout the following chapters.

Concerning the TUP more particularly, there seems to be room for improvement
within the proposed algorithms. The branch-and-bound currently employs a
DFS to explore the branching tree, greedily selecting the next node. Future
research directions include evaluating other strategies in addition to alternative
criteria for selecting the node to process. As for the decomposition-based
heuristic, future work include investigating different objective functions for the
subproblems generated during the constructive algorithm.





Chapter 3

Nurse Rostering Problem

This chapter addresses the Nurse Rostering Problem (NRP), a challenging
timetabling problem in which nurses must be assigned to shifts while respecting
hard constraints and minimizing the violation of soft constraints. The NRP
is also very relevant in practice, having been the subject of two prestigious
international algorithm optimization challenges. This chapter focuses on the
problem defined during the First International Nurse Rostering Competition
(INRC-1), for which a broadly studied set of benchmark instances is available.

This chapter builds upon the content of my presentation at PATAT’2012 (Santos
et al., 2012)1 and my contributions to the extended journal version (Santos
et al., 2016)2, which are partially reproduced here together with the novel
content, algorithm and results. Initially, Section 3.1 discusses the NRP while
introducing the problem defined during the INRC-1. Next, Section 3.2 presents
an IP formulation for the problem with a polynomial number of constraints and
variables. The formulation is evaluated within two state-of-the-art solvers,
with many instances solved quickly. For other instances, however, large
optimality gaps motivated the investigation of different approaches. Dantzig-
Wolfe decomposition is applied, resulting in a formulation with an exponential
number of variables whose linear relaxation provides strong bounds. Section 3.3

1Santos, H. G., Toffolo, T. A. M., Ribas, S., and Gomes, R. A. M., (2012). Integer
programming techniques for the nurse rostering problem. Proceedings of the 9th International
Conference on Practice and Theory of Automated Timetabling (PATAT) 2012, pages 257-282.

2Santos, H. G., Toffolo, T. A. M., Gomes, R. A. M., and Ribas, S. (2016). Integer
programming techniques for the nurse rostering problem. Annals of Operations Research,
239(1):225–251.

55



56 NURSE ROSTERING PROBLEM

describes the decomposition and the column generation algorithm employed to
solve the linear relaxation of the reformulated model. While capable of providing
strong bounds, the column generation is unable to provide integer solutions for
most instances. Branching would be the expected approach, however runtime
was already long for solving the column generation. Therefore, with a view
to obtain competitive solutions within short computational times, a heuristic
employing three different decompositions is proposed in Section 3.4. Many
principles explored throughout Chapter 2 are applied here within an algorithm
consisting of constructive and local search phases. The different decompositions
are analyzed and computational experiments validate the resulting methodology.
Every single best known solution was generated by the proposed decomposition-
based heuristic, which was even capable of obtaining improved solutions for
the long-studied dataset addressed. By combining the heuristic’s results and
those obtained by column generation, most solutions were proven optimal. This
chapter finishes with Section 3.5, where conclusions are discussed.

3.1 Introduction

A significant amount of research has been devoted towards computationally
solving the NRP. Much of the literature, however, concentrates on specific case
studies and consequently focuses on the particularities of certain institutions.
In such situations, comparing different solution strategies proves a very difficult
task. The INRC-1 (Haspeslagh et al., 2012) was organized to stimulate research
in the NRP and offered an opportunity for evaluating different solution strategies
for the problem by proposing a set of benchmark instances.

The NRP may be generally described as the problem of assigning working shifts
and days-off to nurses throughout a given time horizon, typically one month.
A solution may be represented by a matrix M where each cell Mn,d contains
the set of shifts to be performed by nurse n on day d. While this set may have
any number of shifts, in most practical cases and within the INRC-1 problem a
nurse performs at most one shift per day. Generally morning (M), evening (E),
night (N), and late (L) are possible shift allocations. Days off (-) are indicated
by the absence of working shifts in a day. Table 3.1 presents a one-week roster
example which indicates the shift allocated to each nurse on each day.

The scope of this chapter is limited to the problem defined on the occasion
of the INRC-1. Therefore, a brief description of the approaches that won the



INTRODUCTION 57

Table 3.1: Example of a one-week NRP solution

Mon Tue Wed Thu Fri Sat Sun
Nurse 1 E N N N - - M
Nurse 2 M M E E - - E
Nurse 3 - E M - M M M

competition is provided.

Valouxis et al. (2012) won the INRC-1 with a two phase algorithm. In the first
phase the workload for each nurse and for each day of the week was decided,
while the second phase assigned specific daily shifts. Since the INRC-1 imposed
quality and runtime constraint requirements, Valouxis et al. (2012) partitioned
the problem instances into subproblems of manageable computational size
which were subsequently solved using IP. They also applied local optimization
techniques for searching across combinations of partial nurse schedules. This
sequence was repeated several times depending on the computational time
available.

Burke and Curtois (2014) applied an ejection chain based method for small
(sprint) instances and a branch-and-price algorithm for medium and long
instances defined during the competition. Problem instances were converted into
the general staff rostering model proposed and documented by the same team.
Their software Roster Booster, which includes the aforementioned algorithmic
approaches, was then employed.

Bilgin et al. (2012) applied a hyper-heuristic approach combined with a greedy
shuffle heuristic. The hyper-heuristic consisted of a heuristic selection method
and a move acceptance criterion. The best solution found was further improved
by exploring swaps of partial rosters between nurses.

Further details concerning these approaches are available on the competition’s
website3. Various authors proposed approaches for the INRC-1 problem after
the challenge, producing new best known solutions in some cases. A wide range
of methods were evaluated. Readers interested in these methods are referred to
Nonobe (2010), Lü and Hao (2012), Tassopoulos et al. (2015) and Awadallah
et al. (2017).

3https://www.kuleuven-kulak.be/nrpcompetition/competitor-ranking

https://www.kuleuven-kulak.be/nrpcompetition/competitor-ranking


58 NURSE ROSTERING PROBLEM

The INRC-1 problem

Combinatorial optimization problems are generally associated with hard and soft
constraints. Broadly speaking, the difference is that hard constraints must be
met while soft constraint, though permissible, should be avoided. The INRC-1
problem considers two hard constraints (I-II):

I) a nurse cannot work more than one shift per day;

II) all shift type demands during the planning period must be met.

Additionally, 13 soft constraints are considered, subdivided into two groups:
ranged and logical. Ranged soft constraints are those which state a range
(minimum and maximum) of valid values. Each unit outside the defined range
incurs a penalty in the objective function. In total, six ranged soft constraints
are considered:

1) minimum/maximum number of shifts assigned to a nurse;

2) minimum/maximum number of consecutive free days;

3) minimum/maximum number of consecutive working days;

4) maximum number of working weekends in four weeks;

5) minimum/maximum number of consecutive working weekends;

6) number of days off after a series of night shifts.

Logical soft constraints are those which can be either satisfied or not. Whenever
one of these constraints is violated, a penalty is applied in the objective function.
The INRC-1 problem considers seven logical soft constraints:

7) complete weekends: if a nurse is assigned to work only part of a weekend
(and not the entire weekend) then a penalty occurs;

8) no night shift before free weekend: if a nurse does not work on the weekend,
then Friday night should also be free, otherwise a penalty occurs;

9) identical shift types during the weekend: assignments of different shift
types to the same nurse during a weekend are penalized;

10) alternative skill: if a shift type requires a certain skill which the assigned
nurse does not have, then the solution is penalized accordingly;



INTEGER PROGRAMMING FORMULATION 59

11) unwanted patterns: an unwanted pattern is a sequence of assignments
which do not correspond to the preferences outlined in the nurse’s contract;

12) days on/off request: requests by nurses to work or not on specific days of
the week should be respected, otherwise solution quality is compromised;

13) shift on/off request: similar to the previous constraint but for specific
shifts on certain days instead.

A solution for the INRC-1 problem must satisfy the hard constraints while
minimizing violations of soft constraints. The objective is, therefore, to minimize
the total penalty incurred by both ranged and logical soft constraint violations.

A compact IP formulation further detailing the INRC-1 problem is discussed
throughout the following section.

3.2 Integer programming formulation

This section presents the IP formulation produced in cooperation with Haroldo
Santos4 and first introduced by Santos et al. (2012), which is employed to
derive the methodologies proposed throughout the remainder of this chapter.
The formulation successfully models all constraints, explicitly or implicitly,
considered within instances of the INRC-1, wherein nurses are hired under
different contracts. Despite the large quantity of contractual data within this
formulation, most sets and parameters are presented in a generic manner to
simplify the notation.

The classification of soft constraints into ranged and logical is also utilized to
simplify the notation. The constraint numbers (or indices) presented in the
previous section are employed to express parameters and auxiliary variables.
Since all soft constraints are nurse-oriented, these parameters and auxiliary
variables are generally defined for each soft constraint i and nurse n.

Ranged soft constraints state a range of valid values for a variable in the format
γ ≤ value ≤ γ. Therefore, each ranged soft constraint i and nurse n is associated
with minimum and maximum valid values γi

n
and γin, respectively. The penalty

for violating the minimum limit is denoted by ωin while ωin represents the

4Prof. Dr. Haroldo Gambini Santos (haroldo@iceb.ufop.br), Department of Computing,
Federal University of Ouro Preto, Brazil



60 NURSE ROSTERING PROBLEM

penalty for violating the maximum limit. Moreover, the violation of such a
constraint is measured by integer slack variables αin and αin.

Logical soft constraints have a boolean behavior, and therefore a binary slack
variable ωin is employed to indicate whether constraint i is violated for nurse
n. In case of a violation, penalty ωin is applied to the objective function. Note
that some logical soft constraints penalize unwanted patterns, such as Soft
Constraints 11 and 12. To simplify expressing these constraints, the set of
unwanted allocation patterns for nurse n is defined as Ṕn with each pattern
ṕ ∈ Ṕn having size |ṕ| and content ṕ[1], . . . , ṕ[|ṕ|] ∈ S. Analogously, the set of
day-related patterns is defined as P̂n, with elements p̂ ∈ P̂n having size |p̂|.

In summary, the following notation is considered:

N : set of nurses;

S : set of shifts, with S̃ ⊂ S being the set of night shifts and Ŝ ⊂ S the
set of day shifts;

D : set of days with elements sequentially numbered from 1;

r̃s,d : number of required nurses on day d for shift s;

Π : set of all ordered pairs (d1, d2) ∈ D × D : d1 ≤ d2 representing
windows in the planning horizon;

W̃n : set of weekends in the planning horizon according to the weekend
definition for nurse n, with elements numbered from 1 to w̃n;

D̃i,n : set of days in the i-th weekend of nurse n;

li,n : last day before the i-th weekend of nurse n;

Ṕn : set of unwanted working shift patterns for nurse n;

P̂n : set of unwanted working day patterns for nurse n;

γi
n
, γin : lower and upper limits for ranged soft constraint i for nurse n,

respectively;

ωin,ωin : penalties associated with violating the lower and upper limits of
ranged soft constraint i for nurse n, respectively;

ωin : penalty associated with violating logical soft constraint i for nurse n;

σn,d1,d2 : precalculated penalty for the continuous work of nurse n on days
{d1, . . . , d2} considering Soft Constraints 3 and 7;



INTEGER PROGRAMMING FORMULATION 61

τn,d1,d2 : precalculated penalty for the continuous rest of nurse n on days
{d1, . . . , d2} considering Soft Constraint 2;

ψn,i1,i2 : precalculated penalty for the continuous work of nurse n on weekends
{i1, . . . , i2} considering Soft Constraint 5;

νn,s,d : precalculated penalty for the work of nurse n for shift s on day d
considering Soft Constraints 10 and 13.

The formulation considers binary decision variables xn,s,d in addition to four
auxiliary variable sets:

xn,s,d =
{

1 if nurse n is allocated to shift s on day d
0 otherwise

yn,i =
{

1 if nurse n works on weekend i
0 otherwise

wn,d1,d2 =
{

1 if nurse n works from day d1 until day d2

0 otherwise

rn,d1,d2 =
{

1 if nurse n rests from day d1 until day d2

0 otherwise

zn,i1,i2 =
{

1 if nurse n works from weekend i1 until weekend i2
0 otherwise

Additionally, the formulation considers three sets of slack variables:

αin ∈ Z+, αin ∈ Z+ : slack variables measuring violations of ranged soft
constraint i’s lower and upper limits for nurse n,
respectively; note that additional indices may be employed
for some specific soft constraints;

αin ∈ {0, 1} : binary variables indicating whether logical soft constraint
i is violated for nurse n (αin = 1) or not (αin = 0);
again, additional indices may be employed for specific
soft constraints.



62 NURSE ROSTERING PROBLEM

Some slack variables (and their respective constraints) need not be explicitly
included. This is the case for constraints which are directly linked to the
selection of a specific working or resting window from Π. Take for instance Soft
Constraints 2 and 3. The consecutive free and working days assigned to a nurse
is indicated directly by variables rn,d1,d2 and wn,d1,d2 respectively. There is,
therefore, no need to explicitly define variables or constraints for them. This
is also true for Soft Constraints 5, 7, 10 and 13. Soft Constraint 5 violations
are directly measured by variables zn,i1,i2 while violations of Soft Constraints
7 are indicated by the activation of wn,d1,d2 variables which begin or finish
during the course of a weekend. Finally, Soft Constraints 10 and 13 can be
implicitly evaluated by activating certain xn,s,d variables (recall that within
INRC-1 instances skills and shifts are directly related).

Table 3.2 presents the penalties, range and variables utilized by each soft
constraint. Note that some variables require additional indices: it is the case of
those measuring the violation of soft constraints involving weekends, patterns
or requests.

Table 3.2: Ranged and logical soft NRP constraints

Ranged soft constraint Penalties Range Variables

1 min/max shifts assigned to a nurse ω1
n, ω

1
n γ1

n
, γ1

n α1
n, α

1
n

2 min/max consecutive free days τn,d1,d2 - rn,d1,d2

3 min/max consecutive working days σn,d1,d2 - wn,d1,d2

4 max working weekends in four weeks ω4
n γ4

n α4
n,i

5 min/max consecutive working weekends ψn,i1,i2 - zn,i1,i2
6 days off after series of night shifts ω6

n γ6
n

α6
n

Logical soft constraint Penalties Variables

7 complete weekends σn,d1,d2 wn,d1,d2

8 no night shift before free weekend ω8
n α8

n,i

9 identical shift types during weekend ω9
n α9

n,d1,d2

10 alternative skill νn,s,d xn,s,d

11 unwanted patterns ω11
n α11

n,ṕ,d

12 day on/off request ω12
n α12

n,p̂

13 shift on/off request νn,s,d xn,s,d

There are O(|N |× |D|2) variables w and r, and therefore the formulation’s total
number of variables is affected more by the extension of the planing horizon than
by the number of nurses. In practice, the number of variables is not expected



INTEGER PROGRAMMING FORMULATION 63

to increase considerably given that the planning horizon is generally one month
in most hospitals. The same holds for variables z but instead of the number of
days, the number of weekends is considered.

Objective Function

The objective function of the problem defined during the INRC-1 is presented
by Equation 3.1, which minimizes the total penalty incurred by soft constraint
violations. To facilitate reading the equation, components of the objective
function are ordered according to the soft constraint indices (see Table 3.2).
Note that the penalties for Soft Constraints 3 and 7 are aggregated (σn,d1,d2).
Soft Constraints 10 and 13’s penalties are also aggregated (νn,s,d) and, therefore,
the objective function consists of summing 11 components.

Minimize:

∑
n∈N



(
ω1
nα

1
n + ω1

nα
1
n

)
+
∑

(d1,d2)∈Π

τn,d1,d2rn,d1,d2 +
∑

(d1,d2)∈Π

σn,d1,d2wn,d1,d2 +

∑
i∈{1,...,w̃c}

ω4
nα

4
n,i +

∑
i1,i2∈W̃n:i2≥i1

ψn,i1,i2zn,i1,i2 +

∑
d∈D

ω6
nα

6
n +

∑
i∈{1,...,w̃c}

ω8
nα

8
n,i+

∑
i∈{1,...,w̃c}

∑
d1∈D̃i,n

∑
d2∈D̃i,n:d2>d1

ω9
nα

9
n,d1,d2 +

∑
s∈S

∑
d∈D

νn,s,dxn,s,d+

∑
ṕ∈Ṕn

∑
d∈{1,...,|D|−|ṕ|+1}

ω11
n α

11
n,ṕ,d +

∑
p̂∈P̂n

ω12
n α

12
n,p̂



(3.1)

Constraints

The two hard constraints associated with the INRC-1 problem are formulated
by Constraints (3.2) and (3.3): (i) to satisfy the nurse demand for every day
and shift and (ii) to limit working shifts for nurses to a maximum of one per
day.



64 NURSE ROSTERING PROBLEM

∑
n∈N

xn,s,d = r̃s,d ∀d ∈ D, s ∈ S (3.2)

∑
s∈S

xn,s,d ≤ 1 ∀n ∈ N, d ∈ D (3.3)

Constraints (3.4)-(3.13) concern the activation of variables y, w, r and z.
Constraints (3.4) and (3.5) ensure that yn,i equals one whenever nurse n

works on weekend i. Constraints (3.6) and (3.7) link x, w and r variables.
Constraints (3.8)-(3.10) ensure there is no overlap between working and resting
windows, while guaranteeing that every active working window is immediately
followed by a resting window. Constraints (3.11) ensure that at most one
pattern expressed in z variables covers one weekend. Constraints (3.12) forbid
the occurrence of two consecutive patterns expressed in z variables, since these
should be combined into a single larger one, while Constraints (3.13) link
variables y and z.

∑
s∈S

xn,s,d ≤ yn,i ∀n ∈ N, i ∈ W̃n, d ∈ D̃i,n (3.4)

∑
s∈S

∑
d∈D̃i,n

xn,s,d ≥ yn,i ∀n ∈ N, i ∈ W̃n (3.5)

∑
s∈S

xn,s,d =
∑

(d1,d2)∈Π:
d∈{d1,...,d2}

wn,d1,d2 ∀n ∈ N, d ∈ D (3.6)

∑
s∈S

xn,s,d = 1−

( ∑
(d1,d2)∈Π:
d∈{d1,...,d2}

rn,d1,d2

)
∀n ∈ N, d ∈ D (3.7)

∑
d′∈{1,...,d}

wn,d′,d +
∑
d′′∈D:
d′′≥d+1

wn,d+1,d′′ ≤ 1 ∀n ∈ N, d ∈ D (3.8)

∑
d′∈{1,...,d}

rn,d′,d +
∑
d′′∈D:
d′′≥d+1

rn,d+1,d′′ ≤ 1 ∀n ∈ N, d ∈ D (3.9)



INTEGER PROGRAMMING FORMULATION 65

∑
(d1,d2)∈Π:
d∈{d1,...,d2}

(
wn,d1,d2 + rn,d1,d2

)
= 1 ∀n ∈ N, d ∈ D (3.10)

∑
i′∈{1,...,i}

∑
i′′∈{i,...,W̃}

zn,i′,i′′ ≤ 1 ∀n ∈ N, i ∈ W̃ (3.11)

∑
i′∈{1,...,i}

zn,i′,i +
∑

i′′∈{i+1,...,W̃}

zn,i+1,i′′ ≤ 1 ∀n ∈ N, i ∈ {1, . . . , |W̃ | − 1} (3.12)

∑
i′∈{1,...,i}

∑
i′′∈{i,...,W̃}

zn,i′,i′′ = yn,i ∀n ∈ N, i ∈ W̃ (3.13)

Constraints (3.14)-(3.21) concern the computation of slack variable values
responsible for measuring violations of soft constraints. As before, soft
constraints are presented in accordance with the order defined in Table 3.2.
Constraints (3.14) formulate the minimum and maximum working days in the
planning horizon. Constraints (3.15) limit the number of working weekends
within four weeks. Constraints (3.16) impose a minimum number of resting days
after a sequence of night shifts. Constraints (3.17) ensure that a nurse is not
allocated to a night shift on the day preceding a free weekend. Constraints (3.18)
and (3.19) state that allocated shifts should be equal for every working day
during a weekend. Finally, undesired patterns for shifts and days are formulated
by Constraints (3.20) and (3.21), respectively.

γ1
n
− α1

n ≤
∑
s∈S

∑
d∈D

xn,s,d ≤ γ1
n + α1

n ∀n ∈ N (3.14)

∑
i′∈{i,...,i+3}

yn,i′ ≤ γ4
n + α4

n,i ∀n ∈ N, i ∈ {1, . . . , w̃n − 3} (3.15)

∑
s∈Ŝ

∑
d′∈{d+1,...,d+γ6

n
}

xn,s,d′ +
∑
s′∈S̃

γ6
n
xn,s′,d ≤ γ6

n
+ α6

n,d

∀n ∈ N, d ∈ D : d ≤ |D| − γ6
n

(3.16)∑
s∈S̃

xn,s,li,n − yn,i ≤ α
8
n,i ∀n ∈ N, i ∈ W̃n (3.17)

α9
n,d1,d2 ≥ xn,s,d1 − xn,s,d2

∀n ∈ N, s ∈ S, i ∈ W̃n,

(d1, d2) ∈ D̃i,n : d1 < d2
(3.18)



66 NURSE ROSTERING PROBLEM

α9
n,d1,d2 ≥ xn,s,d2 − xn,s,d1

∀n ∈ N, s ∈ S, i ∈ W̃n,

(d1, d2) ∈ D̃i,n : d1 < d2
(3.19)

∑
j∈{1,...,|ṕ|}

xn,ṕ[j],d+j−1 ≤ |ṕ| − 1 + α11
n,ṕ,d

∀n ∈ N, ṕ ∈ Ṕn,
d ∈ {1, . . . , |D| − |ṕ|+ 1}

(3.20)

∑
s∈S

∑
j∈{1,...,|p̂|:
p̂[j]≥1}

xn,s,p̂[j] +
∑

j∈{1,...,|p̂|:
p̂[j]≤−1}

(
1−

∑
s∈S

xn,s,−p̂[j]

)
≤ |p̂| − 1 + α12

n,p̂

∀n ∈ N, p̂ ∈ P̂n (3.21)

3.2.1 Computational experiments

Formulation (3.1)-(3.21) was evaluated using the solvers CPLEX 12.7 and
Gurobi 7.5 on an Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz computer
with 128Gb of RAM memory running Linux Ubuntu 16.04.2 LTS. Table 3.3
details the results obtained by these state-of-the-art solvers. Computational
time was restricted to one hour. The final lower (LB) and upper (UB) bounds
are presented together with the computed optimality gap UB−LB

UB × 100 and the
required runtime. All instances proposed during the INRC-1 were considered.
However, since both CPLEX and Gurobi quickly obtained the optimal solution
for all sprint instances, results for these instances are omitted.

Results in Table 3.3 indicate that although there are large instances which are
easy for CPLEX and Gurobi – optimality was proven in under 10 minutes –
there exist instances for which CPLEX could not reach any feasible solution
within one hour of runtime. It is noteworthy how Gurobi performed better than
CPLEX when employing Formulation (3.1)-(3.21), being capable of obtaining
feasible solutions for all instances. Nevertheless, optimality gaps of over 30% are
still observed for long hidden, long hint and medium hidden instances. These
results serve to show that, despite the recent progresses in generic IP solvers, in
many real-world applications the hybridization of these solvers with methods
which consider problem-specific information remains critical.



DANTZIG-WOLFE DECOMPOSITION 67

Table 3.3: Experiments with Formulation (3.1)-(3.21)

Instance

Model Dimensions CPLEX 12.7 Gurobi 7.5

Vars Constrs Non-zeros LB UB Gap Time LB UB Gap Time

lo
ng

ea
rl
y

01 52,729 17,241 1,012,492 197.0 197 0.0% 32.1s 197.0 197 0.0% 37.3s
02 52,803 17,241 1,012,566 219.0 219 0.0% 3.0m 219.0 219 0.0% 9.9m
03 52,838 17,241 1,012,601 240.0 240 0.0% 28.6s 240.0 240 0.0% 41.1s
04 52,831 17,241 1,012,594 303.0 303 0.0% 22.6s 303.0 303 0.0% 31.3s
05 52,789 17,241 1,012,552 284.0 284 0.0% 25.0s 284.0 284 0.0% 25.8s

lo
ng

hi
dd

en

01 63,205 28,370 1,065,275 319.0 373 14.5% 1.0h 341.0 347 1.7% 1.0h
02 63,205 28,370 1,065,275 81.0 117 30.8% 1.0h 81.0 89 9.0% 1.0h
03 63,620 29,210 1,068,150 25.4 - - 1.0h 19.0 42 54.8% 1.0h
04 63,205 28,370 1,065,275 13.8 - - 1.0h 21.0 22 4.5% 1.0h
05 62,880 27,530 1,062,510 41.0 41 0.0% 56.6m 41.0 41 0.0% 30.0m

lo
ng

la
te

01 63,005 27,875 1,063,670 175.4 284 38.3% 1.0h 232.0 241 3.7% 1.0h
02 63,005 27,875 1,063,670 88.0 270 67.4% 1.0h 229.0 229 0.0% 50.3m
03 63,005 27,875 1,063,670 72.0 695 89.6% 1.0h 218.0 220 0.9% 1.0h
04 63,005 27,875 1,063,670 72.0 259 72.2% 1.0h 216.0 222 2.7% 1.0h
05 62,631 27,243 1,061,472 79.5 139 42.8% 1.0h 83.0 84 1.2% 1.0h

lo
ng

hi
nt

01 62,820 27,480 1,062,280 18.0 38 52.6% 1.0h 29.0 39 25.6% 1.0h
02 59,551 23,990 1,051,461 9.0 35 74.3% 1.0h 17.0 17 0.0% 46.3m
03 59,620 23,990 1,051,450 36.0 141 74.5% 1.0h 43.0 65 33.8% 1.0h

m
ed

iu
m

ea
rl
y

01 30,279 8,668 622,441 240.0 240 0.0% 1.5m 240.0 240 0.0% 17.8s
02 30,309 8,668 622,471 240.0 240 0.0% 31.6s 240.0 240 0.0% 22.2s
03 30,309 8,668 622,471 236.0 236 0.0% 30.9s 236.0 236 0.0% 29.2s
04 30,273 8,668 622,435 237.0 237 0.0% 1.3m 237.0 237 0.0% 1.6m
05 30,348 8,668 622,510 303.0 303 0.0% 33.9s 303.0 303 0.0% 22.6s

m
ed

iu
m

hi
dd

en

01 37,415 16,070 635,725 72.7 161 54.8% 1.0h 86.0 138 37.7% 1.0h
02 37,415 16,070 635,725 191.4 328 41.6% 1.0h 202.0 237 14.8% 1.0h
03 37,415 16,070 635,725 25.1 53 52.7% 1.0h 29.0 39 25.6% 1.0h
04 37,415 16,070 635,725 62.1 111 44.1% 1.0h 67.0 86 22.1% 1.0h
05 37,415 16,070 635,725 85.3 215 60.3% 1.0h 99.0 138 28.3% 1.0h

m
ed

iu
m

la
te

01 34,850 14,062 623,360 154.6 157 1.5% 1.0h 155.0 157 1.3% 1.0h
02 34,814 14,062 623,352 18.0 18 0.0% 2.3m 18.0 18 0.0% 9.7m
03 29,486 8,872 603,434 29.0 29 0.0% 7.2m 29.0 29 0.0% 5.4m
04 34,770 13,902 622,880 35.0 35 0.0% 12.9m 35.0 35 0.0% 14.0m
05 35,810 14,450 630,920 107.0 107 0.0% 20.5m 107.0 107 0.0% 28.4m

m
ed

.
hi
nt

01 34,886 14,062 623,384 34.0 34 0.0% 59.0m 34.0 34 0.0% 17.8m
02 34,814 14,062 623,352 66.9 74 9.6% 1.0h 72.0 72 0.0% 41.0m
03 34,886 14,062 623,384 102.9 119 13.5% 1.0h 113.0 115 1.7% 1.0h

3.3 Dantzig-Wolfe decomposition

Formulation (3.1)-(3.21), proposed throughout the previous section, has the
ideal structure for applying Dantzig-Wolfe decomposition. The original problem
is decomposed into a master problem and |N | pricing problems, one for each
nurse.

Figure 3.1 presents the coefficient matrix of the original LP (left image) of
Formulation (3.1)-(3.21) on a NRP instance with six nurses and the same LP



68 NURSE ROSTERING PROBLEM

after sorting the rows and columns by nurse (right image). The dots indicate
non-zero coefficients in the constraint matrix. Each block corresponds to the
variables and constraints associated with a nurse. Note how similar this figure
is to Figure 2.2, presented in the previous chapter on page 20. Indeed, the
formulations considered for the NRP and TUP have very similar structures,
both exhibiting the required block structure for Dantzig-Wolfe decomposition.

Figure 3.1: Representation of Dantzig-Wolfe’s decomposition

In Formulation (3.1)-(3.21), all constraints except the cover ones (Con-
straints (3.2)) are nurse-oriented. The decomposition is thus straightforward.
Each pricing problem concerns finding the optimal allocations (schedule) for
one nurse subject to dual costs on each shift and day. Note that the pricing
problems are not identical, since nurses have different preferences and contracts.
The master problem is given by Formulation (3.22)-(3.25), where Ωn is the set
of all possible schedules for nurse n, ck the cost (violation of soft constraints) of
schedule k, and as,d,k is a parameter indicating whether the nurse of schedule k
is assigned to shift s of day d (as,d,k = 1) or not (as,d,k = 0). Binary variable
λk defines whether schedule k is selected (λk = 1) or not (λk = 0).

Minimize: ∑
n∈N

∑
k∈Ωn

ckλk (3.22)



DANTZIG-WOLFE DECOMPOSITION 69

Subject to: ∑
k∈Ωn

λk = 1 ∀n ∈ N (3.23)

∑
n∈N

∑
k∈Ωn

as,d,kλk = r̃s,d ∀d ∈ D, s ∈ S (3.24)

λk ∈ {0, 1} ∀n ∈ N, k ∈ Ωn (3.25)

3.3.1 Column generation

Formulation (3.22)-(3.25) has an exponential number of variables (schedules),
which prohibits its complete generation. Rather than generating all possible
schedules, column generation is applied to solve the formulation’s linear
relaxation. As previously explained in Section 2.3.1, pricing problems are
solved at each iteration to obtain columns (here schedules) with negative
reduced cost, which are subsequently added to the master problem. A
negative reduced cost column for nurse n is a column k ∈ Ωn for which
vn +

∑
d∈D

∑
s∈S as,d,kws,d > ck, where vn and ws,d represent the dual values

corresponding to Constraints (3.23) and (3.24), respectively, and where ck
corresponds to the cost of schedule k, given by penalties of violated soft
constraints. If such columns are found, they are added to the master problem,
which is subsequently re-solved. The algorithm continues until no column with
negative reduced cost exists, in which case the linear relaxation of the reduced
master problem is solved.

The pricing problems are solved employing Formulation (3.1)-(3.21) with
Constraints (3.2) relaxed. Note that each pricing problem corresponds to
a single nurse, and therefore only one nurse is considered within the formulation.
Additionally, the objective function is modified so as to produce the most
negative reduced cost column.



70 NURSE ROSTERING PROBLEM

3.3.2 Computational experiments

Experiments were conducted employing column generation to solve the linear
relaxation of Formulation (3.22)-(3.25). The goal is to obtain stronger lower
bounds, thereby enabling more precise heuristic solution quality evaluation. The
column generation procedure was implemented in Java and, again, experiments
were executed on Core i7 3.4GHz computers with 16Gb of RAM memory running
Linux Ubuntu 12.04. CPLEX was employed to solve both the reduced master
LP and pricing IP problems.

Note that the approach evaluated here has many similarities with that proposed
by Burke and Curtois (2014). However, Burke and Curtois (2014) did not
report results for the challenging hidden instances due to compatibility issues
between their code and these instances. Since these are the instances for which
CPLEX and Gurobi obtained poor results employing Formulation (3.1)-(3.21)
(see Section 3.2.1), we implemented and evaluated the column generation in
order to improve lower bounds.

Table 3.4: Column generation results for NRP instances

Instance LB∗ Col. Gen. Instance LB∗ Col. Gen.

LB Time LB Time

lo
ng

ea
rl
y

01 197 197 498s

m
ed

iu
m

ea
rl
y

01 240 240 285s
02 219 219 542s 02 240 240 278s
03 240 240 497s 03 236 236 279s
04 303 303 484s 04 237 237 294s
05 284 284 486s 05 303 303 342s

lo
ng

hi
dd

en

01 341 345 508s

m
ed

iu
m

hi
dd

en

01 88 96 737s
02 86 89 584s 02 197 213 640s
03 36 38 606s 03 28 34 782s
04 19 22 585s 04 73 76 865s
05 41 41 653s 05 91 118 485s

lo
ng

la
te

01 235 235 498s

m
ed

iu
m

la
te

01 156 156 970s
02 229 229 547s 02 18 18 568s
03 219 219 500s 03 29 29 330s
04 221 221 602s 04 35 35 535s
05 83 83 513s 05 107 107 1559s

lo
ng

hi
nt

01 29 30 685s

m
ed

.
hi
nt

01 34 34 652s
02 17 17 647s 02 72 72 1446s
03 43 51 581s 03 113 114 1314s

Table 3.4 presents the best known lower bound (LB∗) and those obtained by
the column generation (LB) together with the required runtime, in seconds.
Note that lower bounds were rounded up, remaining valid since every feasible
solution for the addressed NRP has integer objective values. Multiple instances
had their best known lower bound improved. However, the average runtime to



DECOMPOSITION-BASED HEURISTIC 71

solve the relaxation is long for proceeding with a branch-and-price algorithm
for large NRP instances. The current algorithm’s bottleneck is the long runtime
required by CPLEX to solve pricing problems. Indeed, employing a general
IP solver to handle the pricing is not the best strategy for the NRP, given the
better performance of the pricing solver proposed by Burke and Curtois (2014).
Nevertheless, solving the column generation for all instances was useful: tight,
improved lower bounds were generated.

3.4 Decomposition-based heuristic

A heuristic subproblem optimization scheme is proposed in which Formula-
tion (3.1)-(3.21) is employed to solve NRP subproblems. Heuristic rules are
applied to decompose the problem creating subproblems defined by the fixation
of certain variables of the original problem. The algorithm essentially consists
of two subsequent phases: construction and local search phase.

The construction phase builds a feasible initial solution using a straightforward
greedy algorithm. An allocation matrix M with |N | rows and |D| columns is
created (as in Table 3.1), with all Mn,d cells initially set to days off. Then, for
each day d and shift s, the demand r̃s,d is satisfied by selecting the nurse n for
which the allocation incurs the smallest increase (or largest decrease) in the
objective function of the current solution. The solution is updated and this
process is repeated until all demands are satisfied. Since |N | nurses are analyzed
for each demand, the resulting algorithm has time complexity O(R̃×|N |), where
R̃ represents the total demand for nurses, meaning R̃ =

∑
s∈S

∑
d∈D r̃s,d.

Following the generation of the initial solution, a local search algorithm
employing different decompositions is applied to improve this solution. The
decomposition scheme and resulting local search algorithm are discussed in the
following section.

3.4.1 Decomposition scheme

The local search phase explores the search space by solving subproblems defined
by different decomposition approaches, inspired by the three dimensions of
variables x: time (or days), nurses and shifts. Given a feasible solution S, a
neighbor is obtained in three steps: (i) selecting the subproblem to be solved,



72 NURSE ROSTERING PROBLEM

(ii) fixing allocations in S which are not part of the selected subproblem and,
finally, (iii) solving to optimality the subproblem generated by these fixations.
The differences between the subproblems lie in the rules employed to generate
them. Note that in contrast to Santos et al. (2016), additional decompositions
are considered and subproblems are solved in any order. However, precautions
must be taken to prevent solving twice subproblems which cannot improve the
solution. The three decompositions considered are explained in the following
paragraphs.

Time-based decomposition

The Time-based decomposition exploits the NRP’s time structure to decompose
the problem. NRP subproblems are generated by fixing all nurse allocations
of |D| − ηt days, where ηt is a parameter defining the number of unfixed
days. Generally, consecutive days are considered, so as to include constraints
concerning consecutive working (or resting) days. Figure 3.2 depicts an example
of the Time-based decomposition for the NRP.

step ≤ η.

Nurse 1

Nurse 2

Nurse 3

M

E

-

M

N

E

N

E

M

-

E

-

-

M

M

E

-

-

E

-

N

M

E

-

M

N

E

M

E

M

Mon   Tue    Wed    Thu   Fri    Sat    Sun    Mon   Tue   Wed

tt

Figure 3.2: Time-based decomposition with ηt = 3 and stept = 2

The decomposition has two parameters: stept and ηt. The smaller the value of
stept, the greater the number of different subproblems. Parameter stept also
indicates the degree of overlap between subproblems. The other parameter,
ηt, defines the size of each subproblem and is therefore critical. Small values
may result in subproblems which do not contain any better solution while large
values may create unmanageably large subproblems. Note how similar this
decomposition is to that defined for the TUP in Section 2.5, sharing similar
principles and parameters.



DECOMPOSITION-BASED HEURISTIC 73

Nurse-based decomposition

The Nurse-based decomposition is very similar to the Time-based decomposition.
NRP subproblems are generated by fixing |N |−ηn nurse allocations for all days,
where ηn is a parameter which defines the number of unfixed nurses. Ideally, all
nurse combinations of size ηn would be considered. This would result, however,
in a very large number of subproblems. To circumvent this issue and therefore
limit the number of subproblems, a strategy similar to that employed for the
Time-based decomposition is utilized. Figure 3.3 presents this strategy and
depicts an example of the Nurse-based decomposition to the NRP.

step

≤ η.

Nurse 1

Nurse 2

Nurse 3

Nurse 4

Nurse 5

Nurse 6

Nurse 7

Nurse 8

Nurse 9

Nurse 10

N

L

M

E

L

-

E

E

-

L

Mon    Tue    Wed    Thu    Fri

-

L

E

E

L

-

N

M

M

L

E

-

-

E

-

N

L

L

M

-

N

-

E

L

-

N

-

L

M

M

N

E

L

L

E

-

L

-

M

M

n

n

Figure 3.3: Nurse-based decomposition with ηn = 4 and stepn = 2

Similarly to the Time-based decomposition, parameters ηn and stepn are
employed. However, in contrast to the Time-based decomposition, there is
generally little or no relation between consecutive nurses. The ordering of nurses
is, therefore, important to define which subproblems the decomposition will
generate. Generally, a random ordering of nurses is considered by the algorithm.

Shift-based decomposition

In the Shift-based decomposition, subproblems are created by fixing all the
allocations of |S| − 1 shifts. The decomposition does not rely on any specific
parameter and always results in |S| different subproblems.



74 NURSE ROSTERING PROBLEM

Given that an average instance has three to five shifts, it may appear that
the subproblems generated by this decomposition are hard to solve. However,
counter-intuitively, such subproblems may actually be solved in short runtimes.

3.4.2 Heuristic algorithm

The local search heuristic consists of solving the subproblems defined by the
decomposition strategies presented in the previous section. Algorithm 3.1
presents the heuristic approach. Seven arguments are required: the initial
solution S0; parameters for the Time-based decomposition ηt, η̄t and stept; and
parameters for the Nurse-based decomposition ηn, η̄n and stepn. Note that η̄t
and η̄n specify upper limits for ηt and ηn values, respectively.

Algorithm 3.1: Decomposition-based local search algorithm
Input: initial solution S0 and parameters for the decompositions
LocalSearch(S0, ηt, η̄t, stept, ηn, η̄n, stepn)

1 S ← S0
2 k ← 0 // counter of solution improvements
3 L ← Time-based, Nurse-based and Shift-based decomposition subproblems

considering parameters ηt, stept, ηn and stepn
4 while L 6= ∅ and time limit not reached do
5 P ← random subproblem from L
6 L ← L\{P}
7 solve subproblem P and update solution S
8 if solution S was improved then
9 k ← k + 1 // updating solution improvements counter

10 if L = ∅ and (k > 0 or ηt < η̄t or ηn < η̄n) then
11 k ← 0 // resetting solution improvements counter for new subproblems L
12 update values for ηt, stept, ηn and stepn
13 shuffle list of nurses // for Nurse-based decomposition
14 L ← Time-based, Nurse-based and Shift-based decomposition

subproblems considering parameters ηt, stept, ηn and stepn

15 return S

The algorithm begins by setting solution S to the constructive one (line 1) and
counter k to zero (line 2). Then list L is created incorporating all subproblems
from the considered decompositions (line 3). Next the main loop begins, and
is executed until there are no subproblems to solve or a specified time limit
is reached (line 4). A random subproblem P ∈ L is selected (line 5), being
subsequently removed from L (line 6). Subproblem P is then solved, updating



DECOMPOSITION-BASED HEURISTIC 75

solution S (line 7). If S is improved, counter k is incremented (lines 8-9). Once
L is empty, meaning all its subproblems were solved, updated subproblems may
be created. L is populated with subproblems if solution S was improved (k > 0)
or if some η or step value may be updated, meaning that novel subproblems will
be generated (line 10). In such cases, k is reset (line 11) and values for η and
step are updated for all decompositions (line 12). Generally η is incremented
and step is set to half the value of η. As part of the Nurse-based decomposition,
the order of nurses are shuffled (line 13). Afterwards, L is recreated including
all subproblems from the considered decompositions (line 14). Finally, when
the main loop finishes, the updated solution S is returned (line 15).

It is noteworthy that if no time limit is set and η̄t equals |D| (or η̄n equals |N |),
the original problem will be solved during the heuristic’s final iteration.

3.4.3 Computational experiments

The decomposition-based heuristic was coded in C++ and compiled on
GCC/G++ version 4.8.4. The source code is available online5, in addition to all
models and solutions6. All experiments were executed on an Intel(R) Xeon(R)
CPU E5-2640 v3 @ 2.60GHz computer with 128Gb of RAM memory running
Linux Ubuntu 16.04.2 LTS. In contrast to experiments reported in Section 3.2.1,
CPLEX 12.7 demonstrated slightly better performance than Gurobi 7.5 when
solving subproblems, and was therefore employed throughout the experiments.
Furthermore, parallel mode was disabled so that exactly one CPU is utilized by
the solver.

The instance set proposed during the INRC-1 was employed within the
experiments. The algorithm parameters were tuned using the iRace package
(López-Ibáñez et al., 2011) with a budget of 500 runs and considering a subset
of instances containing one random instance per category (8 instances in total).
The following values were suggested by iRace and employed during experiments:
ηt = 4, η̄t = 30, stept = 3, ηn = 2, η̄n = 5 and stepn = 4.

Tables 3.5 and 3.6 report, for each instance, the best known solutions (BKS) and
those reported by multiple papers from the literature together with the best and
average results obtained by the decomposition-based heuristic. The proposed
method was executed 10 times for each instance with different random seeds,

5https://www.github.com/tuliotoffolo/nrp
6https://benchmark.gent.cs.kuleuven.be/nrp/

https://www.github.com/tuliotoffolo/nrp
https://benchmark.gent.cs.kuleuven.be/nrp/


76
N
URSE

RO
STERIN

G
PRO

BLEM

Table 3.5: Results of decomposition-based heuristic on instances of set long

Instance BKS Nonobe
(2010)

Bilgin
et al.

(2012)

Lü and
Hao

(2012)

Valouxis
et al.

(2012)

Burke and
Curtois
(2014)

Tassopoulos
et al.

(2015)

Santos
et al.

(2016)

Rahimian
et al.

(2017)

Decomposition-
based heuristic

Best Average

lo
ng

ea
rl
y

01 197 197 197 197 197 197 197 197 197 197 197.0
02 219 219 220 222 219 219 219 219 219 219 219.0
03 240 240 240 240 240 240 240 240 240 240 240.0
04 303 303 303 303 303 303 303 303 303 303 303.0
05 284 284 284 284 284 284 284 284 284 284 284.0

lo
ng

hi
dd

en

01 346 - - 346 363 - 349 346 488 346 346.6
02 89 - - 89 90 - 89 89 101 89 89.1
03 38 - - 38 38 - 38 38 59 38 39.4
04 22 - - 22 22 - 22 22 38 22 22.0
05 41 - - 45 41 - 41 41 114 41 43.0

lo
ng

la
te

01 235 235 241 237 235 235 239 235 332 235 237.6
02 229 229 245 229 229 229 234 229 289 229 230.8
03 220 220 233 222 220 220 227 220 320 220 220.3
04 221 221 246 227 221 221 232 222 320 221 223.3
05 83 83 87 83 83 83 83 83 156 83 83.0

lo
ng

hi
nt

01 31 - 33 - - - - - 164 30 31.4
02 17 - 17 - - - - - 96 17 17.0
03 53 - 55 - - - - - 272 51 51.9



D
ECO

M
PO

SITIO
N
-BASED

H
EURISTIC

77

Table 3.6: Results of decomposition-based heuristic on instances of set medium

Instance BKS Nonobe
(2010)

Bilgin
et al.

(2012)

Lü and
Hao

(2012)

Valouxis
et al.

(2012)

Burke and
Curtois
(2014)

Tassopoulos
et al.

(2015)

Santos
et al.

(2016)

Rahimian
et al.

(2017)

Decomposition-
based heuristic

Best Average

m
ed

iu
m

ea
rl
y

01 240 241 242 240 240 240 240 240 240 240 240.0
02 240 240 241 240 240 240 240 240 240 240 240.0
03 236 236 238 236 236 236 236 236 236 236 236.0
04 237 238 238 237 237 237 237 237 237 237 237.0
05 303 304 304 303 303 303 303 303 303 303 303.0

m
ed

iu
m

hi
dd

en

01 111 - - 117 130 - 122 111 192 111 116.0
02 220 - - 220 221 - 221 221 312 219 220.3
03 34 - - 35 36 - 34 34 73 34 34.4
04 78 - - 79 81 - 79 78 124 78 80.8
05 119 - - 119 122 - 124 119 174 118 120.4

m
ed

iu
m

la
te

01 157 176 163 164 158 157 161 157 159 157 159.6
02 18 19 21 20 18 18 19 18 18 18 18.1
03 29 30 32 30 29 29 30 29 29 29 29.0
04 35 37 38 36 35 35 35 35 35 35 35.0
05 107 125 122 117 107 107 112 107 107 107 111.2

m
ed

.
hi
nt

01 34 - 40 - - - - - 39 34 34.8
02 72 - 91 - - - - - 80 72 73.8
03 117 - 134 - - - - - 121 115 117.7



78 NURSE ROSTERING PROBLEM

always respecting the runtime limit of 10 minutes. Note that the comparison
against the best results from literature ignores the difference concerning order of
magnitude in terms of runtime for long instances: Valouxis et al. (2012) report,
for example, runtimes of up to 600 minutes for these instances. The number of
executions is also ignored by the comparison. Santos et al. (2016), for instance,
present the best results obtained from a large set of experiments considering
different parameters. The results for sprint instances are not presented since
these are no longer challenging instances: the heuristic was capable of very
quickly finding optimal solutions for all instances on all executions.

The tables demonstrate how the proposed decomposition-based heuristic
obtained all best known solutions for the problem, improving the results for
five instances. Since the heuristic was able to robustly find good solutions
within 10 minutes of sequential processing time, results for longer runs are not
reported. This is justified since running the heuristic for longer times could
result in solving the original problem (see Section 3.4.2), which would take a
prohibitively long runtime for some instances.

3.4.4 Best results

A summary of the results is presented in Table 3.7. The table displays the
previous best known solution (column BKS), the best lower bound (LB) obtained

Table 3.7: Previous upper bounds and updated lower and upper bounds

Instance BKS LB UB Gap Instance BKS LB UB Gap

lo
ng

ea
rl
y

01 197 197 197 0.0

m
ed

iu
m

ea
rl
y

01 240 240 240 0.0
02 219 219 219 0.0 02 240 240 240 0.0
03 240 240 240 0.0 03 236 236 236 0.0
04 303 303 303 0.0 04 237 237 237 0.0
05 284 284 284 0.0 05 303 303 303 0.0

lo
ng

hi
dd

en

01 346 345 346 0.3

m
ed

iu
m

hi
dd

en

01 111 96 111 13.5
02 89 89 89 0.0 02 220 213 219 2.7
03 38 38 38 0.0 03 34 34 34 0.0
04 22 22 22 0.0 04 78 76 78 2.6
05 41 41 41 0.0 05 119 118 118 0.0

lo
ng

la
te

01 235 235 235 0.0

m
ed

iu
m

la
te

01 157 156 157 0.6
02 229 229 229 0.0 02 18 18 18 0.0
03 220 219 220 0.5 03 29 29 29 0.0
04 221 221 221 0.0 04 35 35 35 0.0
05 83 83 83 0.0 05 107 107 107 0.0

lo
ng

hi
nt

01 31 30 30 0.0

m
ed

.
hi
nt

01 34 34 34 0.0
02 17 17 17 0.0 02 72 72 72 0.0
03 53 51 51 0.0 03 117 114 115 0.9



CONCLUSIONS AND FUTURE WORK 79

either by the column generation approach or one of the state-of-the-art IP solvers,
the best solution generated by the decomposition-based heuristic and, finally, the
current optimality gap UB−LB

UB × 100. Most instances were solved to optimality
and the proposed heuristic was capable of improving some best known solutions.
Currently, the most difficult among the unsolved instances is ‘medium hidden
01 ’, for which the optimality gap is 13.5%.

3.5 Conclusions and future work

This chapter proposed a decomposition-based heuristic for the NRP introduced
on the occasion of the INRC-1 based on a compact IP formulation. Additionally,
Dantzig-Wolfe decomposition was applied to the IP formulation, with the
resulting formulation being solved by column generation. As with Chapter 2,
particular attention was assigned to both the computation of strong lower
bounds and the fast production of high-quality solutions.

The compact IP formulation solved all sprint instances in addition to some
instances of the medium and large benchmark sets, but did not provide good
bounds and solutions for the challenging instances. Solving the linear relaxation
of the Dantzig-Wolfe reformulation resulted in better lower bounds, but generally
no integer solution was produced. A decomposition-based heuristic algorithm
was then proposed, built upon the compact IP formulation. The algorithm was
evaluated with the state-of-the-art CPLEX solver, obtaining the best known
solutions for all INRC-1 instances, requiring very short computational times and
outperforming the best heuristics for the problem in terms of both performance
and solution quality. Among these solutions, five improve upon the best known
solutions from the literature. These results, when coupled with the bounds
produced by the Dantzig-Wolfe reformulation, enabled proving optimality for
solutions of previously unsolved instances.

The decomposition strategy utilized within the decomposition-based heuristic
resembles the one applied to the TUP in Chapter 2. In fact, exploiting the
time-structure of the problem has proven a simple yet successful decomposition
approach for deriving competitive subproblem optimization heuristics for both
problems.





Chapter 4

Project Scheduling Problem

This chapter addresses a generalization of the Project Scheduling Problem
(PSP), a problem which is the subject of several studies throughout computer
science, mathematics and operations research, given its difficulty and practical
importance. This generalization encompasses multiple projects, multiple job
execution modes, precedence constraints, renewable and non-renewable resource
constraints and resource sharing among different projects. A solution for this
problem consists of a feasible job schedule which does not exceed the stipulated
limits of renewable and non-renewable resources while respecting precedence
constraints between jobs. A set of execution modes must be selected given that
job duration and the quantity of required resources varies depending upon the
selected mode. The primary objective is to reduce the sum of the projects’
duration. A secondary objective is also defined: to reduce the last project’s
completion time.

This chapter builds upon Toffolo et al. (2016b)1, which is partially reproduced
here together with the novel content, algorithm and results. First, Section 4.1
introduces the addressed problem and presents a literature review concerning
it. Next, an IP formulation is presented in Section 4.2. The formulation
is then evaluated employing state-of-the-art solvers and instances from a
benchmark set. Despite successfully modeling all problem constraints, the
formulation’s performance within solvers is very poor, being incapable of

1Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., and Soares, J. A. (2016). An
integer programming approach to the multimode resource-constrained multiproject scheduling
problem. Journal of Scheduling, 19(3):295–307.

81



82 PROJECT SCHEDULING PROBLEM

producing any solution in most cases. To produce feasible, high-quality solutions,
a decomposition-based heuristic algorithm is proposed in Section 4.3. Differently
from the decomposition-based heuristics proposed for the TUP and the NRP
(Chapters 2 and 3), here the subproblem optimization is embedded within
a metaheuristic framework. The resulting algorithm and its components,
which include multiple IP formulations, are described in detail. Computational
experiments evaluating the heuristic are presented in Section 4.4. Given that
a generalization of the PSP is addressed in this chapter, a special case of the
problem is also considered for evaluation. Several instances had their best
known result improved, despite the short runtime. Finally, Section 4.5 presents
conclusions and future work directions.

4.1 Introduction

A PSP, in its general form, consists of scheduling the processing times of jobs
(tasks or activities) contained in a project. These jobs are interrelated by
precedence constraints, that is, a job may require another to have concluded
before its start. This class of problem models many general and practical
situations occurring throughout engineering and management sciences, being
tackled by experts of various fields ranging from civil engineering to software
development. One natural generalization of the PSP is the Resource-Constrained
Project Scheduling Problem (RCPSP), which includes constraints concerning
resource consumption during each job’s processing. The RCPSP is NP-hard
in the strong sense (Błażewicz et al., 1983) and was claimed to be “one of the
most intractable problems in Operations Research” by Möhring et al. (2003).

Various Integer Programming (IP) formulations for the RCPSP are found in the
literature. Pritsker et al. (1969) proposed a binary programming formulation
where variables xj,t indicate whether job j is scheduled at time t (xj,t = 1).
In this formulation, known as discrete-time, the number of binary decision
variables depends upon an upper limit t for the number of timeslots required
to complete the project, which can be heuristically defined. Therefore, the
number of variables in this formulation is O(n × t), where n represents the
number of jobs. Kolisch and Hartmann (2006) extended this formulation to
handle different execution modes, introducing an additional index to the binary
variables. Koné et al. (2011) proposed an event-based formulation called OOE
(On/Off Event-based), where an event corresponds to the starting time of one
or more jobs. General integer variables te are employed to indicate the starting



INTRODUCTION 83

time of each event e. These variables are linked to binary variables xj,e which
indicate whether task j starts or is still being processed during event e. As the
maximum number of events is equal to the number of jobs n, this formulation
has O(n2) variables. However, the number of constraints in this formulation is
O(n3), since it is necessary to link activities to their start and end events. This
renders the formulation less practical in terms of being solved by IP solvers.

There are many other generalizations of the PSP and RCPSP. For comprehensive
research concerning project scheduling problems’ historical origins, classification,
complexity analysis and solution methods, the reader is referred to Weglarz
(1999), Klein (2000), Demeulemeester and Herroelen (2002), Hartmann and
Rieger (2002), Józefowska and Weglarz (2006) and Artigues et al. (2013).
Additionally, a comprehensive classification and computational analysis of
heuristics and metaheuristics applied to the RCPSP is provided by Kolisch and
Hartmann (1999, 2006).

The PSP considered throughout this chapter is a more recent RCPSP
generalization: the Multi-Mode Resource-Constrained Multi-Project Scheduling
Problem, which is henceforth referred to as the Generalized Project Scheduling
Problem (GPSP). This problem was selected as the subject of the Multidisci-
plinary International Scheduling Conference: Theory and Applications (MISTA)
Challenge 2013 (Wauters et al., 2016).

The GPSP consists of a set P of projects, where each project p ∈ P is composed
of a set Jp of non-preemptive jobs, which must be scheduled. Each project p
is also associated with a release time, that is, a time when its jobs’ processing
may be started. The start and end of a project are delimited by dummy jobs
j−p and j+

p , the first and last jobs of each project, respectively.

Scheduling a project means determining the starting time of its jobs while
respecting precedence constraints and resource availability. Jobs may consume
local resources (resources exclusive to a project) and global resources (resources
shared among all projects). These resources can be either (i) renewable, with
capacity renewed every timeslot (working hours, for example) or (ii) non-
renewable, with a fixed initial capacity (money, for example). Each job may be
executed on one or more execution modes, each consuming a specific quantity of
resources and resulting in different job completion durations. Note that dummy
jobs do not consume any resources and their duration is always zero.

One practical example of a problem that can be modeled as a GPSP is
software project management. Assume a software company is responsible



84 PROJECT SCHEDULING PROBLEM

for the development and maintenance of multiple softwares (projects) thereby
requiring the execution of tasks which consume resources that may be non-
renewable (money, for example) and renewable (employee hours). The tasks
within these projects may be executed in different modes depending on the
resources assigned. Therefore, task durations depend on their execution modes.
Solving this practical example was considered by Kerzner (2013) to constitute
one of the most important responsibilities of a project manager, i.e. to plan the
integration and execution of the tasks. In fact, the application of optimization
techniques to software engineering has received increasing attention throughout
the academic community, creating a new field called Search-Based Software
Engineering. In the work of Alba and Chicano (2007), for instance, resources
represent employees, each associated with a set of skills and wages, plus a
maximum degree of dedication to a project. They used a genetic algorithm to
obtain solutions minimizing the cost and time of software projects.

Recently some methodologies were proposed for the GPSP. Asta et al. (2016), the
MISTA Challenge 2013 winners, proposed an approach combining Monte-Carlo
and Hyper-Heuristics along with several neighborhoods which are explored
by stochastic local search. Their approach employs an indirect solution
representation where solutions are always decoded by a constructive algorithm.
To speed up this constructive algorithm a prefix matching method is employed.
In the construction phase, modes are randomly selected and feasibility for non-
renewable resources is achieved by stochastic local search. Several neighborhoods
which perform large modifications in the solution were developed, including one
in which allocation priorities are changed for all tasks of a given project.

Geiger (2013), who ranked second in the challenge, proposed an Iterative
Variable Neighborhood Search for the GPSP which explores the solution space
through systematic exchanges of neighborhood structures (Hansen and Jaumard,
1997). This approaches considers a set of feasible schedulesX which is associated
with two vectors, M = {m1, ...,mn} and S = {S1, ..., Sn}. M represents the
execution mode chosen for each job and S the permutation of job indices.
Initial modes are randomly assigned to M . If M is not feasible considering
non-renewable resources, a procedure which randomly changes modes is applied
until feasibility is reached. If feasibility is not achieved,M is rebuilt from scratch.
Later, sequence S is built, assigning higher priority to activities with earlier
starting times. The local search is performed in parallel. Once a local optimum
is reached, the best solution obtained is updated and the search continues with
the best known alternative.



INTEGER PROGRAMMING FORMULATION 85

We also competed in the MISTA Challenge 2013 (Toffolo et al., 2013), ranking
third with an algorithm that exhibits certain similarities with the one discussed
in this chapter. Despite such similarities, the algorithm which competed is far
less general and encountered difficulties in handling large problem instances.

A lower bound on a project’s earliest finish time is the critical path duration.
The Critical Path Method (Kelley and Walker, 1959) is a tool for general project
management that represents the precedence constraints as a network, where
each job is a node and arcs connect jobs to their predecessors and successors.
This method computes the earliest and latest start and finish times for each job
such that the project is not delayed, while respecting precedence constraints.
The critical path itself is the sequence of related jobs that cannot be delayed
without delaying the entire project, denoted by a path between the two dummy
jobs in the network. The critical path duration is the sum of these job durations.
In order to calculate the critical path duration for a GPSP instance, some
constraints are excluded: the duration of a job is fixed as the duration of the
fastest execution mode and all resource constraints are ignored. Once a project
is scheduled it is assigned both a makespan, defined as the difference between the
project’s finish and release times, and a project delay, defined as the difference
between the project’s critical path duration and the actual project duration.

The GPSP minimizes two objectives: Total Project Delay (TPD) and Total
MakeSpan (TMS). The TPD is defined as the sum of all project delays while the
TMS is defined as the time required to finish all projects, given by the difference
between the maximum finish time and the minimum release time among all
projects. The TPD is the primary objective, while the TMS is a tie-breaker.

Next, an IP formulation for the GPSP is presented and evaluated.

4.2 Integer programming formulation

This section presents an IP formulation for the GPSP which is a straightforward
adaption of the formulations presented by Kolisch and Sprecher (1997) and
Pritsker et al. (1969). These authors proposed time-indexed formulations for
the RCPSP in which the number of variables increases with the duration of jobs
and projects. Koné et al. (2011) proposed an event-based formulation that does
not depend on the duration of jobs and projects. The number of events is given
by the total number of jobs. Their formulation is thus particularly interesting
for instances with long-duration jobs, in which the number of jobs is usually



86 PROJECT SCHEDULING PROBLEM

smaller than the number of time slots. Koné et al. (2011) presented situations
in which an event-based formulation outperforms time-indexed formulations.

Both event-based and time-indexed formulations for the GPSP were considered.
However, the event-based formulation performed very poorly when compared
against the time-indexed formulation, with state-of-the-art solvers unable to
solve some of the easier instances when employing it. Koné et al. (2013)
conducted a detailed comparison of formulations for the RCPSP which
corroborates our finding. They concluded that event-based formulations result
in poor linear relaxation bounds, being only adequate for problems with high
level of parallelism involving large and very different job durations. Therefore,
we focus upon time-indexed formulations.

Before presenting an IP for the GPSP, the necessary input data is introduced:

P : set of projects;

J : set of all jobs;

Jp : set of jobs associated with project p, such that Jp ⊆ J ;

Mj : set of execution modes for job j;

K : set of non-renewable resources;

R : set of renewable resources;

T : set of available time-slots {1, ..., |T |};

Tj,m : set of possible time-slots for beginning job j in modem, {tej , ..., tlj,m},
where tej is the earliest start time of job j given by the critical path
and tlj,m is the latest start time of job j in mode m such that the
job ends within |T | time-slots;

B : set of direct precedence relations expressed by ordered pairs (j, l),
where j should be scheduled before l;

Bj : set of jobs with which job j has a direct precedence relation, i.e. jobs
l such that either (l, j) ∈ B or (j, l) ∈ B;

dj,m : duration of job j in mode m;

uk,j,m : required units of non-renewable resource k for job j to be processed
in mode m;



INTEGER PROGRAMMING FORMULATION 87

vr,j,m : required units of renewable resource r for job j to be processed in
mode m;

ok : available units of non-renewable resource k;

qr : available units of renewable resource r;

ω1 : weight associated with objective TPD;

ω2 : weight associated with objective TMS.

The following variables are employed by the formulation:

xj,m,t : binary variable that is equal to 1 when the job j is processed in mode
m and starts at time t and 0 otherwise.

z : completion time for the final project.

The objective function minimizes the sum of completion times for projects,
given by the sum of start times of final dummy jobs j+

p (p ∈ P ), together with
the completion time of the last project2.

Minimize:
ω1
∑
p∈P

∑
t∈T

j
+
p ,0

t xj+
p ,0,t

+ ω2z (4.1)

Subject to:∑
m∈Mj

∑
t∈Tj,m

xj,m,t = 1 ∀j ∈ J (4.2)

∑
m∈Mj

∑
t∈Tj,m

(t+ dj,m)xj,m,t ≤
∑
m∈Ml

∑
t∈Tl,m

t xl,m,t ∀(j, l) ∈ B (4.3)

∑
j∈J

∑
m∈Mj

t∑
t′=t−dj,m+1

vj,m,rxj,m,t′ ≤ pr ∀r ∈ R, t ∈ T (4.4)

∑
j∈J

∑
m∈Mj

∑
t∈Tj,m

uj,m,kxj,m,t ≤ ok ∀k ∈ K (4.5)

2Constants included in objective function of the MISTA Challenge 2013 Problem were
omitted for the sake of clarity.



88 PROJECT SCHEDULING PROBLEM

∑
t∈T

j
+
p ,0

t xj+
p ,0,t

≤ z ∀p ∈ P (4.6)

xj,m,t ∈ {0, 1}, tj ∈ Z+ ∀j ∈ J,m ∈Mj ,

t ∈ Tj,m
(4.7)

Constraints (4.2) ensure every job is allocated to exactly one starting time and
mode. Meanwhile, Constraints (4.3) force precedence relations to be satisfied.
Constraints (4.4) and (4.5) control the usage of renewable and non-renewable
resources, respectively. Constraints (4.6) compute the final completion time
of all projects. Note that the final dummy jobs (j+

p ) are utilized within these
constraints. Finally, Constraints (4.7) define the bounds of the employed
variables.

4.2.1 Computational experiments

Formulation (4.1)-(4.7) was implemented in two state-of-the-art IP solvers:
CPLEX 12.7 and Gurobi 7.5. Experiments were conducted considering the
dataset from the MISTA Challenge 2013 and executed on an Intel(R) Xeon(R)
CPU E5-2640 v3 @ 2.60GHz computer with 128Gb of RAM memory running
Linux Ubuntu 16.04.2 LTS. Both CPLEX and Gurobi were executed in sequential
mode (single threaded). The formulation was preprocessed before generation to
reduce the number of variables by tightening the size of Tjm for every job j ∈ J
and its execution modes m ∈ Mj . Moreover, while the number of time-slots
|T | should also be as tight as possible, it must be large enough to enable the
production of feasible schedules. With this in mind, |T | was set in accordance
with the best known solutions reported by Wauters et al. (2016). The principle
is to ensure there exists no improving solution using more than |T | time-slots.
Equation 4.8 describes how |T | is calculated, where CPp represents the critical
path completion time for project p, TPD the solution’s total project delay
and LBp the optimal project delay (or a lower bound) for project p if it is
scheduled alone with all resources available. Note that the MISTA Challenge
2013 instances employ projects from the PSPLib3, and therefore some lower
bounds are available.

|T | = max
p∈P

CPp + TPD−
∑

p′∈P :p′ 6=p
LBp′

 (4.8)

3http://www.om-db.wi.tum.de/psplib/library.html

http://www.om-db.wi.tum.de/psplib/library.html


INTEGER PROGRAMMING FORMULATION 89

Table 4.1 details the number of projects |P | and total number of jobs |J | for
each instance in addition to the generated model’s dimensions. The number
of variables, constraints and non-zero coefficients are also displayed. The table
presents the results obtained by both CPLEX 12.7 and Gurobi 7.5. Column
‘Gap’ shows the best gap obtained considering the runtime limit of eight hours,
while columns ‘Trelax’ and ‘Ttotal’ present the runtime for solving the root linear
relaxation and the total runtime, respectively. For compactness, runtimes are
presented in different time units: seconds (s), minutes (m) and hours (h).

Note from Table 4.1 that both IP solvers were capable of quickly finding optimal
solutions for the first three instances. The fourth instance was solved by Gurobi
after 7.5h. For the remaining instances, the solvers either obtained poor results
(high gap values) or did not find a feasible solution at all. For instances B-9 and
B-10 Gurobi was incapable of solving the linear relaxation within eight hours.
This confirms the difficulty of the problem.

Table 4.1: Experiments with IP formulation

Inst. Problem Model Dimensions CPLEX 12.7 Gurobi 7.5

|P | |J| Variables Constrs Non-zeros Gap Trelax Ttotal Gap Trelax Ttotal

A-1 2 24 687 183 8,716 0.0% 0.0s 0.1s 0.0% 0.0s 0.1s
A-2 2 44 7,752 378 121,675 0.0% 0.1s 14.7s 0.0% 0.0s 2.8s
A-3 2 64 12,110 477 207,167 0.0% 0.1s 3.0s 0.0% 0.0s 1.0s
A-4 5 60 9,507 950 136,350 10.4% 0.2s 8.0h 0.0% 0.1s 7.5h
A-5 5 110 43,569 1,285 655,140 - 8.2s 8.0h - 4.5s 8.0h
A-6 5 160 149,491 2,545 2,019,375 - 44.0s 8.0h - 32.4s 8.0h
A-7 10 120 165,291 1,416 2,287,198 - 3.4m 8.0h 76.3% 2.0m 8.0h
A-8 10 220 201,465 1,396 2,759,682 - 2.7m 8.0h - 1.5m 8.0h
A-9 10 320 306,071 4,886 4,239,473 - 2.3m 8.0h - 1.7m 8.0h
A-10 10 320 750,061 10,217 11,626,885 - 24.9m 8.0h - 57.3m 8.0h

B-1 10 120 114,773 4,412 1,581,784 27.2% 17.9s 8.0h 49.9% 16.2s 8.0h
B-2 10 220 223,630 1,436 2,984,698 - 5.6m 8.0h - 3.6m 8.0h
B-3 10 320 419,744 6,255 6,867,559 - 10.5m 8.0h - 11.6m 8.0h
B-4 15 180 397,623 13,982 5,790,186 - 4.5m 8.0h 71.6% 4.7m 8.0h
B-5 15 330 587,780 11,414 8,473,331 - 9.9m 8.0h - 38.1m 8.0h
B-6 15 480 737,034 10,387 11,663,620 - 29.6m 8.0h - 18.5m 8.0h
B-7 20 240 398,163 14,034 4,984,221 - 3.0m 8.0h 70.6% 1.9m 8.0h
B-8 20 440 1,486,984 3,858 19,166,272 - 8.0h 8.0h - 2.4h 8.0h
B-9 20 640 4,405,295 52,707 65,528,163 - 7.9h 8.0h - - 8.0h
B-10 20 460 1,345,014 3,450 19,623,133 - 2.4h 8.0h - - 8.0h

X-1 10 120 126,233 1,168 1,584,486 52.3% 1.7m 8.0h 66.6% 22.4s 8.0h
X-2 10 220 310,399 6,392 4,459,465 - 3.3m 8.0h - 1.6m 8.0h
X-3 10 320 334,415 5,261 5,429,664 - 6.1m 8.0h - 5.8m 8.0h
X-4 15 180 254,992 1,629 3,495,502 - 3.1m 8.0h 73.0% 2.0m 8.0h
X-5 15 330 982,377 18,216 14,598,595 - 30.5m 8.0h - 2.9h 8.0h
X-6 15 480 938,782 12,715 12,942,495 - 14.2m 8.0h - 28.0m 8.0h
X-7 20 240 435,077 15,243 5,497,018 - 2.5m 8.0h 71.3% 1.7m 8.0h
X-8 20 440 1,150,713 21,249 16,352,555 - 18.2m 8.0h - 58.8m 8.0h
X-9 20 640 3,539,176 42,814 49,364,174 - 3.8h 8.0h - 4.6h 8.0h
X-10 20 450 1,819,489 31,863 24,207,867 - 2.2h 8.0h - 43.3m 8.0h



90 PROJECT SCHEDULING PROBLEM

4.3 Decomposition-based heuristic

The poor performance of Formulation (4.1)-(4.7) coupled with the well-known
difficulty of the GPSP justifies addressing the problem with heuristic methods.
In this section a decomposition-based heuristic algorithm is proposed, consisting
of constructive and local search phases.

The major obstacles for building feasible GPSP solutions are the non-renewable
resources. While the use of renewable resources only impacts a project’s duration,
the use of non-renewable resources may produce infeasible solutions. In the
proposed algorithm, job execution modes are defined beforehand so that they
respect the limits of non-renewable resources. Once a set of feasible modes
is obtained, a decomposition-based heuristic utilizes it to iteratively build an
initial feasible solution. This initial solution is subsequently refined by a local
search, which employs the same decomposition. This local search consists of a
Forward-Backward Improvement (FBI) (Li and Willis, 1992) method hybridized
with an IP model to modify the schedule. These methods are integrated within
an Iterated Local Search (ILS) (Lourenço et al., 2010) metaheuristic framework
employing a biased rebuild procedure to perturb solutions. Figure 4.1 presents
an outline of the developed algorithm. More details are presented in the following
sections.

Mode Selection 
(ModeSel)

Constructive 
Algorithm

Forward-Backward 
Improvement

Instance

Initial Solution Final Solution

Subproblem opt. or
Solution Biased Rebuild

Figure 4.1: Outline of the developed algorithm

4.3.1 Constructive algorithm

The generation of an initial solution is conducted in two steps, as outlined
in Figure 4.1. First, a feasible set of execution modes is obtained. Then a
subproblem optimization procedure iteratively creates a feasible solution using
these execution modes as guidance.



DECOMPOSITION-BASED HEURISTIC 91

Obtaining a feasible set of execution modes

In contrast to Asta et al. (2016) and Geiger (2013), an exact algorithm is
employed to obtain a feasible set of execution modes considering non-renewable
resources. This approach resembles that of Coelho et al. (2011), with the
difference being they model the problem as a Boolean Satisfiability Problem
(SAT) and solve it using the DPLL algorithm from Davis and Loveland (1962).
One drawback of the SAT approach is that an exponential number of clauses
is required to model non-renewable resources constraints and the authors
encountered difficulties in explicitly handling them.

The problem of selecting the initial modes is denoted henceforth as ModeSel.
The ModeSel is solved by an IP model which defines, for each job, a mode such
that total non-renewable resource consumption limits are always respected. The
model itself is as hard as the m-dimensional knapsack problem and essentially
consists of the original model without the renewable resources constraints.

To present the ModeSel formulation, the same nomenclature (input data) from
Section 4.2 is considered. The following decision variables are employed:

xj,m : binary variable that is equal to 1 when job j is executed in mode m
and 0 otherwise;

tj : integer variable indicating the start time of job j;

The objective function of the ModeSel formulation, presented by Equation (4.9),
minimizes two parcels. For each parcel a weight is assigned, indicating its priority.
These weights are defined hierarchically such that ω1 � ω2. The first parcel
minimizes the sum of project completion times by considering the start time of
each project’s last (dummy) job. The second parcel is responsible for minimizing
job durations. Note that a heuristic strategy is employed, whose principle is
to prioritize jobs with a higher number of direct precedence constraints, |Bj |,
since these jobs may potentially become bottlenecks within the schedule.

Minimize:
ω1
∑
p∈P

tj+
p

+ ω2
∑
j∈J

∑
m∈Mj

|Bj |dj,mxj,m (4.9)

Subject to: ∑
m∈Mj

xj,m = 1 ∀j ∈ J (4.10)



92 PROJECT SCHEDULING PROBLEM

∑
j∈J

∑
m∈Mj

uk,j,mxj,m ≤ ok ∀k ∈ K (4.11)

tj +
∑
m∈Mj

dj,mxj,m ≤ tl ∀(j, l) ∈ B (4.12)

tj ≥ tej ∀j ∈ J (4.13)

xj,m ∈ {0, 1}, tj ∈ Z+ ∀j ∈ J,m ∈Mj (4.14)

Constraints (4.10) guarantee that only one mode is selected for each job
while Constraints (4.11) ensure that non-renewable resource capacities are
respected. The start time of a job is limited by Constraints (4.12) and (4.13).
Constraints (4.12) states that a job can only begin after all its predecessors
finishes while Constraints (4.13) prevents jobs from beginning before their
release time by considering the earliest start times from the critical path.
Finally, Constraints (4.14) define variables xj,m as binary and variables tj as
integer.

Building an initial solution

As stated before, the use of non-renewable resources may lead to infeasible
solutions. The feasible execution mode set provided by the ModeSel solution is
employed within the constructive schedule algorithm to circumvent this issue.
Since the use of renewable resources only impacts project durations, and these
durations are not bounded, the constructive procedure always results in a
feasible solution.

The constructive algorithm employs an IP decomposition-based heuristic to
construct an initial feasible solution. First the projects are grouped according to
their estimated completion times. These estimations are obtained by a simple
greedy constructive algorithm, which considers a topological ordering of the
jobs and allocates them according to their renewable resource consumption.
Following the obtained estimations, projects are divided into sets, such that
each project set is scheduled sequentially by the constructive algorithm. The
principle is to first schedule projects whose completion times tend to be earlier,
since finishing these projects as soon as possible potentially contributes to
minimizing the TPD. Moreover, subproblems which consider only a subset of
the projects are generally easier to solve, given the smaller number of jobs to



DECOMPOSITION-BASED HEURISTIC 93

schedule.

The problem is decomposed into sequential and non-overlapping time windows
for each project set. At each iteration, a time window is solved by an IP
model to allocate jobs within this window. Once a project set is allocated, the
procedure restarts with the next set. The algorithm finishes when all jobs are
allocated. Original constraints such as precedence and resource consumption
are considered by this model. Beyond the input data presented in Section 4.2,
five additional parameters are required:

J∗ : subset of jobs j ∈ J that must be scheduled within the time window;
this is the case for jobs belonging to projects scheduled in a previous
algorithm iteration;

m̃j : execution mode established by ModeSel for job j;

δj,m,t : estimated gain in completion time for job j achievable by scheduling
it using mode m at timeslot t. Jobs j ∈ J∗ have δj,m,t set to zero,
while other jobs j have δj,m,t = max(1, (t0 + η+ dj,m̃j )− (t+ dj,m)),
signifying the difference of (i) the sum of the first timeslot after the
current time window and the job’s duration in mode m̃j and (ii) the
job’s completion time in mode m if it starts at time t. The principle
here is that the sooner job j finishes, the higher the value for δj,m,t.

ϕj : estimated finish time for job j’s project if job j is not scheduled.
This estimation is given by the end of the current time window
summed with the time between the start of j and the dummy job
representing the end of its project. The critical path with execution
modes established by ModeSel is utilized. If some t+ dj,m (t within
the subproblem’s time window) is larger than ϕj , then ϕj is updated
such that it surpasses all possible finishing times for jobs allocated
within the time window.

Note that estimations δ and ϕ are necessary as there is no precise information
concerning the objective function value when constructing the solution. The
completion time of a project is only known after all its jobs are scheduled.

The following decision variables are defined:

xj,m,t : binary variable that is equal to 1 if job j is processed in mode m
and starts at time t and 0 otherwise;



94 PROJECT SCHEDULING PROBLEM

yp : integer variable indicating the estimated finish time for project p –
in general, the greater the number of allocated jobs of project p, the
lower the value of yp;

z : integer variable indicating the latest estimated finished time of
projects.

The objective function, given by Equation (4.15), consists of three parcels. As
before, hierarchical weights are assigned to the parcels, such that ω1 � ω2 � ω3.
The first parcel minimizes a heuristic estimation of each project’s completion
time. This estimation considers jobs which cannot be allocated in the current
time window. The second parcel is responsible for maximizing the number of
allocated jobs, taking into consideration the priorities established by δ. Finally,
the last parcel aims at minimizing the overall completion time, also based on
the estimations previously defined.

Formulation (4.15)-(4.23) permits scheduling multiple projects at once.
Experiments revealed, however, that optimizing one project at a time during
the constructive phase resulted in higher-quality initial solutions on average.
Therefore, each project set contains one project. Note, however, that a general
version of the formulation is presented.

Minimize:
ω1
∑
p∈P

yp − ω2
∑
j∈J

∑
m∈Mj

∑
t∈Tj,m

δj,m,txj,m,t + ω3z (4.15)

Subject to:∑
m∈Mj

∑
t∈Tj,m

xj,m,t ≤ 1 ∀j ∈ J\J∗ (4.16)

∑
m∈Mj

∑
t∈Tj,m

xj,m,t = 1 ∀j ∈ J∗ (4.17)

∑
j∈J

∑
m∈Mj

t∑
t′=t−dj,m+1

vr,j,mxj,m,t′ ≤ qr ∀r ∈ R, t ∈ T (4.18)

∑
j∈J

∑
m∈Mj

∑
t∈Tj,m

uk,j,mxj,m,t +
∑
j∈J

uk,j,m̃j

1−
∑
m∈Mj

∑
t∈Tj,m

xj,m,t

 ≤ ok
∀k ∈ K (4.19)



DECOMPOSITION-BASED HEURISTIC 95

∑
m∈Mj

∑
t∈Tj,m

(t+ dj,m)xj,m,t ≤
∑
m∈Ml

∑
t∈Tl,m

txl,m,t

+

1−
∑
m∈Ml

∑
t∈Tl,m

xl,m,t

M ∀(j, l) ∈ B (4.20)

∑
m∈Mj

∑
t∈Tj,m

xj,m,t ≥
∑
m∈Ml

∑
t∈Tl,m

xl,m,t ∀(j, l) ∈ B (4.21)

ϕj +
∑
m∈Mj

∑
t∈Tj,m

(t+ dj,m − ϕj) xj,m,t ≤ yp ∀p ∈ P, j ∈ Jp (4.22)

z ≥ yp ∀p ∈ P (4.23)

xj,m,t ∈ {0, 1} ∀j ∈ J,m ∈Mj , t ∈ Tj,m (4.24)

yp ∈ Z+, z ∈ Z+ ∀p ∈ P (4.25)

Constraints (4.16) ensure each job is allocated at most once. Constraints (4.17)
ensure that jobs which must be scheduled are allocated within the time window.
Note that sets Tj,m are preprocessed to ensure precedence constraints are not
violated for jobs in J∗. Constraints (4.18) and (4.19) ascertain that the available
amounts of renewable and non-renewable resources are not exceeded, respectively.
Values for qr ok are set according to the current solution and ModeSel to
guarantee a feasible solution is obtained. Constraints (4.20) and (4.21) guarantee
the precedence relations between the jobs. Two constraints are required, since
it is possible that a job may remain unallocated in a solution. Therefore,
precedence constraints should only hold for allocated jobs. Constraints (4.22)
set a project’s finish time to be larger than or equal to the estimation previously
described whenever jobs related to the project remain unallocated. Note that
estimation ϕ is not utilized when all jobs are allocated. Constraints (4.23)
compute the final completion time of all projects based on the aforementioned
estimations. Finally, Constraints (4.24) and (4.25) define variables x as binary
and variables y and z as integer.

The pseudo-code for generating an initial solution is presented in Algorithm 4.1.
The algorithm takes as input data: (i) the set J of all problem’s jobs, (ii) an
ordered list P̃ of project sets, (iii) the set of feasible execution modes M̃ and
(iv) the window size, given by η.

First the solution is initialized (line 1). The algorithm then proceeds by building
a solution for each project set P ′ ∈ P̃ (line 2). The beginning of the first



96 PROJECT SCHEDULING PROBLEM

Algorithm 4.1: Decomposition-based constructive algorithm
Input: Set of jobs J , ordered list of project sets P̃ , ModeSel solution M̃ , and

subproblem size η
Constructive(J, P̃ , M̃ , η)

1 S ← empty solution
2 for each set of projects P ′ ∈ P̃ do
3 t0 ← minimum release time for projects in P ′
4 while S does not contain all jobs from P ′ do
5 J ′ ← unallocated jobs in P ′ feasible for a time in {t0, ..., t0 + η − 1}
6 J∗ ← jobs allocated in S with start time within {t0, ..., t0 + η − 1}
7 R′ ← renewable resource availability considering S
8 K′ ← non-renewable resource availability considering S and M̃
9 S′ ← solution for subproblem defined by t0, η, J ′, J∗, R′ and K′

10 S ← S ∪ S′ // update solution
11 t0 ← t0 + η // move to the next time window

12 return S

time window is selected (line 3) and the algorithm iterates until all jobs from
projects in P ′ are allocated (line 4). At each iteration the algorithm selects the
unallocated jobs within P ′ which have the earliest start time in {t0, ..., t0 +η−1}
(line 5). Jobs already scheduled in S within this time window are also considered
(line 6). After selecting these jobs, the amount of renewable resources available
at each time-slot is calculated (line 7). A minimum amount of non-renewable
resources must be reserved for jobs which are not included within the subproblem.
Therefore, non-renewable resource limits are defined so as to guarantee that a
feasible solution will be generated (line 8). ModeSel solution M̃ is employed to
calculate such limits. Next, the subproblem is created and solved (line 9) and
its solution is included in solution S (line 10). The time window is subsequently
advanced (line 11). Finally, once a feasible solution is generated, it is returned
(line 12).

It is important to note that a time limit is imposed upon the solver since
it is necessary to guarantee that a feasible solution will be generated. To
speed up the solution process, a greedy feasible solution for each subproblem is
created and passed to the IP solver before optimization. The greedy algorithm
considers a topological ordering of the jobs and allocates them according to
their renewable resource consumption. Jobs are allocated to be processed with
the modes defined by the ModeSel solution.

Another critical aspect of the algorithm concerns the time window size. As also



DECOMPOSITION-BASED HEURISTIC 97

observed in Chapters 2 and 3, defining the value for η is not straightforward.
Time windows must be small enough to ensure that subproblems are easily
solved and, at the same time, large enough to indicate relevant allocations.

4.3.2 Local Search algorithm

The local search employs a similar decomposition to that employed by the
constructive algorithm. A time window is defined and only jobs currently
allocated within this window are considered eligible to have their modes and
starting times modified. However, modifications in the beginning or middle of
the schedule cannot improve solution quality in most cases. Note that solution
quality, given by project completion times, can only be altered if the timeslot of
a project’s last job is modified. This is clearly not the case for most iterations
of the local search. To circumvent this issue, the local search is combined with
the Forward-Backward Improvement (FBI) procedure, which is described next.

Forward-Backward Improvement Procedure

The FBI is an improvement method proposed by Li and Willis (1992) which is
commonly applied to scheduling problems, consisting of two steps: forward and
backward. In the forward step, jobs are right-justified in the schedule, meaning
that except for the first and last jobs, all job allocations are shifted to the right,
beginning from the final job’s immediate predecessors until the initial job’s
immediate successors. This step generates a schedule wherein no job may finish
later without advancing some other job or increasing the makespan. Since the
final job is not shifted, the current makespan is maintained. If a slack (window
with no jobs being executed) in the schedule is generated, the backward step
attempts to reduce the makespan by eliminating such slack. In this step, jobs
are left-justified in the schedule. Therefore, except for the initial job, all job
allocations are shifted to the left, beginning from the initial job’s immediate
successors until the final job. This step generates a schedule wherein no activity
can be started earlier without violating constraints.

Figure 4.2 illustrates an example of this process. In this figure, the dummy jobs
(first and last ones) are marked with a “D”. The first graph represents the initial
solution and the following two graphs depict the schedules generated after the
forward and backward steps, respectively.



98 PROJECT SCHEDULING PROBLEM

D
1.0

Time

% of Resources

D
t1 - (t3 - t2)

D
1.0

Time

% of Resources

D
t2 t3 t1

D
1.0

Time

% of Resources

D
t1

Figure 4.2: Forward-Backward Improvement (FBI) example

Note that the schedule remains feasible throughout the entire process, since
precedence relations and resource consumption constraints are satisfied. Each
shift is performed employing a Serial Generation Scheme (SGS).

After the FBI is applied, some jobs may have not been shifted in any direction
and may therefore constitute the problem’s bottleneck. A third improvement
step is proposed, which marks these stationary jobs and then randomly changes
each marked job’s mode. Next, a left-shift is applied using the SGS.

These three steps are performed repeatedly while there is an improvement in
solution quality and until the time limit has not been reached.



DECOMPOSITION-BASED HEURISTIC 99

Subproblem optimization scheme

In essence, the subproblem optimization modifies the solution for the FBI
procedure to improve it. Given that most time windows do not include any
project’s last job, the FBI procedure is employed to propagate modifications
which potentially do not include the schedule’s end.

To modify the solution, two hierarchical objective functions are considered. The
first minimizes the sum of completion times for each project’s last job within the
time window. The second objective aims at altering the solution by employing
a heuristic multiplier wj,m,t, which defines the priority for allocating job j in
mode m at timeslot t. The principle is to assign high priority – low values
for wj,m,t – to different allocations. Therefore, current allocations within the
solution have high wj,m,t values. Other allocations have their priority multiplied
by a random factor, within the range [0, 1[. In general, this approach results in
different solutions without deteriorating the objective value. In practice, this
helps the FBI procedure to avoid many local optima, thereby enabling it to
continue improving the solution.

Note that, in contrast to our approach which competed in the challenge (Toffolo
et al., 2013), the objective function does not focus solely on modifying job
execution modes. In fact, focusing on execution modes would render the
subproblem optimization local search inappropriate to address problem instances
with single execution modes.

The subproblems are solved by an IP model. A significant amount of
preprocessing is applied to make the model as compact as possible. Moreover,
sets J , Jp, T and Tj,m are restricted to consider only the subproblem’s time
window. Two decision variable sets are considered:

xj,m,t : binary variable that is equal to 1 when job j is processed in mode
m and starts at timeslot t, and 0 otherwise;

yp : auxiliary variable which indicates the completion time of the last
job of project p within the considered time window.

The objective function, given by Equation (4.26), is responsible for changing
the modes and start times of the jobs whenever possible. Again, hierarchical
weights ω1 and ω2 are employed, with ω1 � ω2.



100 PROJECT SCHEDULING PROBLEM

Minimize:
ω1
∑
p∈P

yp + ω2
∑
j∈J

∑
m∈Mj

∑
t∈Tj,m

wj,m,txj,m,t (4.26)

Subject to:∑
m∈Mj

∑
t∈Tj,m

xj,m,t = 1 ∀j ∈ J (4.27)

∑
j∈J

∑
m∈Mj

∑
t∈Tj,m

uk,j,mxj,m,t ≤ ok ∀k ∈ K (4.28)

∑
j∈J

∑
m∈Mj

t∑
t′=t−dj,m+1

vr,j,mxj,m,t′ ≤ qr ∀r ∈ R, t ∈ T (4.29)

∑
m∈Mj

∑
t∈Tj,m

(t+ dj,m)xj,m,t ≤
∑
m∈Ml

∑
t∈Tl,m

txl,m,t ∀(j, l) ∈ B (4.30)

∑
m∈Mj

∑
t∈Tj,m

(t+ dj,m)xj,m,t ≤ yp ∀p ∈ P, j ∈ Jp (4.31)

xj,m,t ∈ {0, 1} ∀j ∈ J,m ∈Mj , t ∈ Tj,m (4.32)

yp ∈ Z+ ∀p ∈ P (4.33)

Constraints (4.27) are responsible for ensuring that each activity is allocated
exactly once. Constraints (4.28) and (4.29) guarantee the limits for non-
renewable and renewable resources are respected, respectively. Constraints (4.30)
ensure precedence relations are enforced. Constraints (4.31) set variables yp to
indicate the last completion time of project p’s jobs within the time window.
Finally, Constraints (4.32) declare variables x binary while Constraints (4.33)
set variables y as integer.

4.3.3 Metaheuristic framework integration

In contrast to the TUP and NRP (Chapters 2 and 3), the GPSP imposes an
additional challenge for time-window based subproblem optimization. Note
that jobs are spread across all available timeslots. By optimizing time-windows



DECOMPOSITION-BASED HEURISTIC 101

of size η individually, it is unlikely that jobs scheduled in a late timeslot will
be reallocated to much earlier timeslots during the search, unless η is large
enough. Given the computational hardness of the GPSP, η tends to be set to a
small value, meaning that significant modifications in the projects’ schedules
are improbable. To handle this situation and enable large alterations in the
schedule, the local search algorithm is hybridized within an Iterated Local
Search (ILS) framework.

The ILS metaheuristic was introduced by Lourenço et al. (2010) and relies
upon perturbations to escape from local optima. Note that the subproblem
optimization scheme presented in Section 4.3.2 may also be interpreted as a
special local perturbation: one that never worsens the solution. It is not the
case of the proposed biased solution rebuild, whose objective is to make large
alterations in the schedule. These alterations (or perturbation) may considerably
worsen the solution, which may require re-optimization afterwards.

Biased solution rebuild

A biased rebuild solution method that perturbs a guidance (initial) solution
method is proposed and works as follows. First, jobs are put in a set sorted
according to their start times in the guidance solution and a new solution, S′,
is created. Then, the jobs are added to S′ one at a time into the smallest start
time that does not violate precedence or renewable resources constraints. Non-
renewable resources constraints are always satisfied because the jobs’ execution
modes in the guidance solution are re-utilized in the allocations.

Each job’s selection probability is given by a Heuristic-Biased Stochastic
Sampling (HBSS) (Bresina and Bresina, 1996). Any job may be selected,
but the first jobs have far greater probabilities of being selected. The chances
of selecting a job is given by f(r) = e−r, where r is the position of the job in
the sorted set. After being selected, the job is added to S′ only if it does not
violate any precedence constraints. Once added to the solution, the job leaves
the sorted set. The method returns after all jobs are added to S′.

ILS algorithm

The ILS algorithm’s pseudo-code is presented in Algorithm 4.2. The algorithm
takes as input data: (i) an initial solution; (ii) the maximum number of



102 PROJECT SCHEDULING PROBLEM

iterations; (iii) the maximum number of runs of the IP model per iteration;
(iv) the time window minimum size, ηmin; and (v) the time window maximum
size ηmax.

FBI first is applied to the initial solution, which is copied to S∗ and S (line 1),
and counters p and iter are initialized (line 2). Next, the solution is changed
by the IP model described in Section 4.3.2. The algorithm iterates until the
time limit is reached (line 3). At each iteration, counter iter is incremented
(line 4) and the IP model is solved ρ times considering solution S and random
time windows, returning a modified solution (lines 5-8). Afterwards, the FBI
procedure is executed again (line 9) to improve solution S. If a new best
solution is obtained, it is stored and counters ρ and iter are reset (lines 10-12).
Eventually, iter may reach the value itermax causing ρ to be incremented (lines
13-14). After a certain number of iterations without improvement, the solution
is perturbed using the biased rebuild method (lines 15-17). In this process,
the best solution produced so far is employed to guide the generation of a new
solution. The algorithm output is a possibly improved solution (line 18).

Algorithm 4.2: Decomposition-based local search algorithm for the GPSP
Input: Initial solution S0, maximum number of iterations without

improvements itermax, maximum number of IP subproblems solved
ρmax, and bounds on the time window size, ηmin and ηmax

ILS(S0, itermax, ρmax, ηmin, ηmax)
1 S∗ ← S ← FBI(S0)
2 ρ← iter ← 1
3 while time limit is not reached do
4 iter ← iter + 1
5 for i← 0 to ρ do
6 t0 ← random time-slot utilized in solution S
7 η ← random time window size in {ηmin, ..., ηmax}
8 update S by solving subproblem with time-slots {t0, ..., t0 + η − 1}
9 S ← FBI(S) // FBI is applied to propagate modifications in solution S

10 if S is better than S∗ then
11 S∗ ← S
12 ρ← iter ← 1
13 if iter > itermax then
14 ρ← ρ+ 1 // increasing number of subproblems per iteration

15 if ρ > ρmax then
16 ρ← 1 // ρ is reset when ρmax is exceeded
17 S ← new solution employing the biased rebuild method over S∗

18 return S∗



COMPUTATIONAL EXPERIMENTS 103

4.4 Computational experiments

All algorithms were coded in C++ and the IP models were solved by Gurobi
7.5, which performed better than CPLEX when solving subproblems. The
experiments were executed on Intel(R) Xeon E5-2680v3 CPU @ 2.5GHz
computers with 64GB of RAM memory running Red Hat Enterprise Linux
ComputeNode 6.5. The decomposition-based heuristic was run in parallel on
4 threads, each with different parameters values. Although the implemented
algorithm is clearly sequential, the MISTA Challenge 2013 permitted the use of
up to 4 threads. The values for the parameters, presented in Table 4.2, were
obtained after several empirical tests. The size of the time windows η is the most
critical parameter. After several runs, we observed that subproblems with up to
50 time-slots could be solved by both CPLEX and Gurobi within the runtime
limit. Larger time windows, however, generated subproblems which required
long execution times to be solved. We also took some precautions and included
a thread with a smaller time window size (fourth thread), to ensure the solver
returns a solution within the runtime limit. The number of projects in each
project set of P̃ , given by P̃size, was set to one. This enabled quickly solving
large subproblems during the constructive phase, which ultimately resulted in
improved initial solutions. The final algorithm is not very sensitive to the other
parameters.

Table 4.2: Parameters employed during experiments

Thread Constructive Local Search

η P̃size itermax ρmax ηmin ηmax

1 50 1 10 15 10 50
2 40 1 20 10 10 40
3 30 1 40 20 10 30
4 20 1 40 20 10 20

The algorithms were evaluated for two different project scheduling problems: (i)
the Multi-Project Scheduling Problem (MPSP), considering instances from the
MPSPLib4 and (ii) the GPSP, considering instances from the MISTA Challenge
20135. The difference between these two problems lies in the presence of multiple
execution modes for jobs. In contrast to the GPSP, there is only one execution
mode for jobs in the MPSP. This section first presents and discusses results
obtained for the MPSP. Following this, experiments concerning the GPSP
instances are presented.

4http://www.mpsplib.com
5https://gent.cs.kuleuven.be/mista2013challenge/



104 PROJECT SCHEDULING PROBLEM

4.4.1 Multi-project scheduling problem

The MPSPLib consists of 140 different instances varying many characteristics,
such as number of local and global resources, average utilization factor of global
resources, overload factor, among others. A detailed overview of the instances’
characteristics is available at the MPSPLib website4, which provides a user-
friendly interface for uploading new solutions and an updated ranking with
best solutions submitted. The website also enables visualizing solutions, a very
useful feature for assessing resource usage and solution quality.

Table 4.3 presents the results obtained for the complete MPSLib instance set.
The algorithm was executed 10 times for each instance, considering the runtime
limit of 10 minutes. The table presents the best known results (BKS) as reported
on the website, in addition to the best and average results obtained by the
decomposition-based heuristic. Note that the MPSP’s primary objective is to
minimize the Average Project Delay (APD), which is simply the quotient of
TPD and the number of projects, |P |. APD is therefore an objective equivalent
to TPD.

The table demonstrates the efficiency of the proposed decomposition-based
heuristic. From the 140 instances considered, 105 had their best known
solution improved. For the remaining 35 instances, the solution produced
by the proposed algorithm corresponds to the best one in the literature for 13
instances. This result becomes more impressive once one observes that these
best known solutions were collected from the best result of over 20 different
algorithms, according to the MPSPLib website.

Table 4.3: Results for MPSPLib instances

Instance BKS Heuristic best Heuristic avg.

APD TMS APD TMS APD TMS

mp_j30_a2_nr1 13.0 80 11.5 77 12.0 74.2
mp_j30_a2_nr2 15.0 60 15.0 60 15.5 60.4
mp_j30_a2_nr3 3.0 65 3.0 65 3.0 65.0
mp_j30_a2_nr4 10.5 54 10.5 54 10.5 54.0
mp_j30_a2_nr5 8.5 58 8.5 58 8.6 58.2

mp_j30_a5_nr1 11.8 92 10.2 87 10.2 88.8
mp_j30_a5_nr2 14.2 83 12.2 79 12.6 83.0
mp_j30_a5_nr3 31.0 112 26.4 105 28.0 111.0
mp_j30_a5_nr4 0.0 76 0.0 76 0.0 76.0
mp_j30_a5_nr5 14.8 101 15.0 94 15.6 96.8

(continued on next page)



COMPUTATIONAL EXPERIMENTS 105

Table 4.3 continued: Results for MPSPLib instances

Instance BKS Heuristic best Heuristic avg.

APD TMS APD TMS APD TMS

mp_j30_a10_nr1 82.2 197 79.4 196 83.0 189.6
mp_j30_a10_nr2 11.3 119 7.7 109 8.1 109.4
mp_j30_a10_nr3 86.3 259 79.7 246 85.3 254.0
mp_j30_a10_nr4 22.1 169 16.8 154 21.3 152.0
mp_j30_a10_nr5 51.6 202 53.3 197 55.5 197.8

mp_j30_a20_nr1 190.2 441 186.9 432 196.7 426.4
mp_j30_a20_nr2 77.0 305 72.5 294 74.5 294.2
mp_j30_a20_nr3 99.5 327 93.5 328 96.3 318.8
mp_j30_a20_nr4 34.0 212 32.8 190 42.7 194.6
mp_j30_a20_nr5 156.4 464 151.6 448 159.8 444.8

mp_j90_a2_nr1 0.0 88 0.0 88 0.0 88.0
mp_j90_a2_nr2 26.5 127 20.0 117 20.2 118.6
mp_j90_a2_nr3 0.0 114 0.0 114 0.0 114.0
mp_j90_a2_nr4 0.0 92 0.0 92 0.0 92.0
mp_j90_a2_nr5 0.0 121 0.0 121 0.0 121.0

mp_j90_a5_nr1 0.0 79 0.0 79 0.0 79.0
mp_j90_a5_nr2 7.4 114 6.0 114 6.0 114.0
mp_j90_a5_nr3 3.0 141 1.6 138 1.8 138.0
mp_j90_a5_nr4 8.4 133 2.0 123 2.6 123.4
mp_j90_a5_nr5 14.0 155 12.2 153 12.9 154.2

mp_j90_a10_nr1 55.1 201 49.2 176 51.0 169.0
mp_j90_a10_nr2 2.7 137 0.0 128 0.0 128.0
mp_j90_a10_nr3 45.2 235 42.2 225 44.0 224.5
mp_j90_a10_nr4 1.0 150 0.7 150 0.7 150.0
mp_j90_a10_nr5 54.4 250 52.4 278 53.3 271.2

mp_j90_a20_nr1 0.0 97 0.0 97 0.0 97.0
mp_j90_a20_nr2 4.6 168 2.5 164 2.7 163.6
mp_j90_a20_nr3 3.0 122 1.2 122 1.2 122.0
mp_j90_a20_nr4 31.6 208 28.2 195 29.1 195.2
mp_j90_a20_nr5 46.3 255 46.9 244 48.6 252.5

mp_j120_a2_nr1 40.0 182 34.5 173 35.6 168.6
mp_j120_a2_nr2 29.0 137 24.0 133 25.3 135.4
mp_j120_a2_nr3 119.0 295 106.5 277 116.0 276.4
mp_j120_a2_nr4 44.5 152 40.0 148 41.4 164.0
mp_j120_a2_nr5 2.0 111 0.0 108 0.1 108.2

mp_j120_a5_nr1 6.2 81 2.0 75 2.5 76.0
mp_j120_a5_nr2 30.2 178 23.8 164 24.8 166.6
mp_j120_a5_nr3 68.2 233 63.6 247 67.2 227.6
mp_j120_a5_nr4 55.6 226 48.2 197 53.1 201.0
mp_j120_a5_nr5 76.4 284 71.0 278 77.6 276.0

mp_j120_a10_nr1 43.5 152 36.9 139 39.1 137.8
mp_j120_a10_nr2 71.0 275 62.9 297 63.8 290.2
mp_j120_a10_nr3 8.5 155 3.4 154 4.0 149.5
mp_j120_a10_nr4 193.0 416 178.1 400 191.4 397.2
mp_j120_a10_nr5 184.2 520 186.4 504 198.7 507.2

(continued on next page)



106 PROJECT SCHEDULING PROBLEM

Table 4.3 continued: Results for MPSPLib instances

Instance BKS Heuristic best Heuristic avg.

APD TMS APD TMS APD TMS

mp_j120_a20_nr1 6.4 82 2.8 76 3.0 77.7
mp_j120_a20_nr2 33.5 222 26.1 204 30.2 236.4
mp_j120_a20_nr3 40.7 242 32.8 235 33.6 234.6
mp_j120_a20_nr4 25.9 209 17.9 203 18.6 209.2
mp_j120_a20_nr5 24.6 183 15.9 178 16.7 183.2

mp_j90_a2_nr5_AgentCopp1 66.0 200 67.0 190 68.4 188.6
mp_j90_a2_nr5_AgentCopp2 186.5 352 173.5 334 182.1 333.2
mp_j90_a2_nr5_AgentCopp3 45.0 177 36.5 160 39.1 162.0
mp_j90_a2_nr5_AgentCopp4 187.5 346 175.0 329 187.7 332.0
mp_j90_a2_nr5_AgentCopp5 0.0 72 0.0 72 0.0 72.0
mp_j90_a2_nr5_AgentCopp6 69.5 197 66.5 187 69.7 186.2
mp_j90_a2_nr5_AgentCopp7 179.0 338 170.5 330 181.5 330.2
mp_j90_a2_nr5_AgentCopp8 46.5 174 38.0 157 39.2 158.4
mp_j90_a2_nr5_AgentCopp9 185.5 336 179.0 329 192.2 330.6
mp_j90_a2_nr5_AgentCopp10 26.0 117 21.0 109 21.8 108.6

mp_j90_a5_nr5_AgentCopp1 252.0 610 228.4 579 246.4 572.4
mp_j90_a5_nr5_AgentCopp2 291.2 687 263.8 639 284.9 627.0
mp_j90_a5_nr5_AgentCopp3 109.8 357 97.2 330 106.8 326.6
mp_j90_a5_nr5_AgentCopp4 439.8 861 418.6 816 460.3 820.6
mp_j90_a5_nr5_AgentCopp5 98.0 278 88.8 263 99.6 261.4
mp_j90_a5_nr5_AgentCopp6 257.2 613 235.4 574 249.6 566.8
mp_j90_a5_nr5_AgentCopp7 292.0 689 265.4 631 288.5 627.6
mp_j90_a5_nr5_AgentCopp8 115.8 359 101.6 327 107.0 322.8
mp_j90_a5_nr5_AgentCopp9 442.4 838 428.2 808 476.0 818.8
mp_j90_a5_nr5_AgentCopp10 107.4 278 98.4 264 108.4 260.2

mp_j90_a10_nr5_AgentCopp1 266.6 755 246.2 693 266.1 696.6
mp_j90_a10_nr5_AgentCopp2 280.0 786 277.8 744 298.5 744.6
mp_j90_a10_nr5_AgentCopp3 62.3 287 62.4 262 70.2 272.0
mp_j90_a10_nr5_AgentCopp4 303.5 704 290.8 674 321.2 669.0
mp_j90_a10_nr5_AgentCopp5 142.6 393 125.8 365 145.5 365.6
mp_j90_a10_nr5_AgentCopp6 278.3 738 254.5 690 277.4 691.0
mp_j90_a10_nr5_AgentCopp7 135.2 433 134.7 396 142.0 404.0
mp_j90_a10_nr5_AgentCopp8 79.1 295 82.9 282 94.3 287.4
mp_j90_a10_nr5_AgentCopp9 82.3 244 79.1 240 87.5 237.2
mp_j90_a10_nr5_AgentCopp10 63.8 203 51.2 182 58.0 179.6

mp_j90_a20_nr5_AgentCopp1 139.8 474 147.2 456 160.1 465.2
mp_j90_a20_nr5_AgentCopp2 0.0 127 0.0 127 0.0 127.0
mp_j90_a20_nr5_AgentCopp3 15.4 188 10.2 163 11.7 161.5
mp_j90_a20_nr5_AgentCopp4 118.4 366 116.8 363 127.5 359.5
mp_j90_a20_nr5_AgentCopp5 16.4 153 7.5 124 7.8 128.8
mp_j90_a20_nr5_AgentCopp6 62.9 264 65.3 250 68.9 255.4
mp_j90_a20_nr5_AgentCopp7 77.6 300 81.0 298 91.7 284.4
mp_j90_a20_nr5_AgentCopp8 27.1 188 23.5 160 28.1 163.0
mp_j90_a20_nr5_AgentCopp9 171.8 430 171.7 428 186.8 417.2
mp_j90_a20_nr5_AgentCopp10 224.9 525 210.6 485 239.0 489.6

(continued on next page)



COMPUTATIONAL EXPERIMENTS 107

Table 4.3 continued: Results for MPSPLib instances

Instance BKS Heuristic best Heuristic avg.

APD TMS APD TMS APD TMS

mp_j120_a2_nr5_AgentCopp1 81.0 238 69.0 215 71.2 215.6
mp_j120_a2_nr5_AgentCopp2 6.0 111 2.5 104 2.8 104.6
mp_j120_a2_nr5_AgentCopp3 69.0 198 56.5 178 60.1 178.4
mp_j120_a2_nr5_AgentCopp4 8.0 106 3.0 105 4.1 105.4
mp_j120_a2_nr5_AgentCopp5 10.0 105 5.5 96 5.8 96.6
mp_j120_a2_nr5_AgentCopp6 81.0 234 70.5 212 71.8 214.2
mp_j120_a2_nr5_AgentCopp7 7.0 113 2.5 104 2.6 104.2
mp_j120_a2_nr5_AgentCopp8 69.5 192 58.5 179 60.7 176.0
mp_j120_a2_nr5_AgentCopp9 7.0 99 1.0 96 1.4 96.6
mp_j120_a2_nr5_AgentCopp10 9.0 102 4.0 93 4.7 93.4

mp_j120_a5_nr5_AgentCopp1 231.2 644 209.4 596 231.5 597.6
mp_j120_a5_nr5_AgentCopp2 82.4 319 70.0 294 77.7 295.4
mp_j120_a5_nr5_AgentCopp3 230.0 570 209.4 531 243.8 531.6
mp_j120_a5_nr5_AgentCopp4 120.8 421 112.2 386 115.6 382.6
mp_j120_a5_nr5_AgentCopp5 218.0 677 193.8 622 215.0 624.8
mp_j120_a5_nr5_AgentCopp6 234.6 634 215.6 591 233.4 591.4
mp_j120_a5_nr5_AgentCopp7 87.4 314 76.4 293 86.3 292.4
mp_j120_a5_nr5_AgentCopp8 232.6 558 215.0 531 248.0 527.6
mp_j120_a5_nr5_AgentCopp9 124.0 401 112.0 371 119.8 370.6
mp_j120_a5_nr5_AgentCopp10 222.4 668 200.8 618 216.0 620.4

mp_j120_a10_nr5_AgentCopp1 268.9 824 260.3 779 275.5 778.8
mp_j120_a10_nr5_AgentCopp2 110.9 413 107.0 401 117.2 394.7
mp_j120_a10_nr5_AgentCopp3 165.0 508 184.9 488 190.9 489.5
mp_j120_a10_nr5_AgentCopp4 122.9 455 118.7 430 127.9 427.7
mp_j120_a10_nr5_AgentCopp5 95.0 435 86.5 420 94.4 417.0
mp_j120_a10_nr5_AgentCopp6 106.6 413 117.9 397 132.5 393.2
mp_j120_a10_nr5_AgentCopp7 19.4 163 16.5 143 17.1 145.5
mp_j120_a10_nr5_AgentCopp8 31.7 184 28.4 184 31.1 182.8
mp_j120_a10_nr5_AgentCopp9 22.7 185 16.8 165 18.1 160.3
mp_j120_a10_nr5_AgentCopp10 21.0 198 18.2 192 18.7 195.0

mp_j120_a20_nr5_AgentCopp1 103.3 421 112.7 419 128.8 391.7
mp_j120_a20_nr5_AgentCopp2 67.4 327 69.2 314 77.1 317.3
mp_j120_a20_nr5_AgentCopp3 355.2 1013 380.1 1037 394.2 1011.8
mp_j120_a20_nr5_AgentCopp4 65.0 346 70.1 326 74.4 325.6
mp_j120_a20_nr5_AgentCopp5 86.0 390 88.0 373 91.1 379.2
mp_j120_a20_nr5_AgentCopp6 313.6 936 346.8 874 366.3 888.4
mp_j120_a20_nr5_AgentCopp7 303.1 886 343.6 839 351.0 846.0
mp_j120_a20_nr5_AgentCopp8 120.0 393 131.2 408 140.4 404.4
mp_j120_a20_nr5_AgentCopp9 76.5 333 80.8 322 86.8 312.8
mp_j120_a20_nr5_AgentCopp10 95.7 394 105.5 361 112.2 361.5

4.4.2 Generalized project scheduling problem

Experiments for the GPSP were performed on the benchmark instances produced
for the MISTA Challenge 2013. Information concerning how these instances
were generated is provided by Wauters et al. (2016). Table 4.4 shows the



108 PROJECT SCHEDULING PROBLEM

instances’ characteristics, presenting the number of projects |P |, number of jobs
|J |, number of precedence relations between jobs |E| and the amount of global
renewable |Rg|, local renewable |Rl| and non-renewable resources |K| for each
instance. The table also reports the average duration 〈dj,m〉 of jobs, the average
number of execution modes 〈Mj〉 per job and, finally, the average critical path
duration of the projects 〈CPD〉.

Table 4.4: Characteristics of the MISTA Challenge 2013 instances

Instance Dimensions Average Dimensions

|P | |J| |E| |Rg| |Rl| |K| 〈djm〉 〈|Mj |〉 〈CPD〉

A-1 2 24 36 1 2 4 5.19 2.67 14.50
A-2 2 44 80 1 2 4 4.90 2.82 22.50
A-3 2 64 116 1 2 4 5.48 2.88 33.50
A-4 5 60 90 1 5 10 5.01 2.67 14.20
A-5 5 110 200 1 5 10 5.62 2.82 23.00
A-6 5 160 290 1 5 10 5.07 2.88 25.60
A-7 10 120 180 2 0 20 5.33 2.67 16.80
A-8 10 220 400 2 0 20 5.26 2.82 24.60
A-9 10 320 580 1 10 20 5.32 2.88 29.60
A-10 10 320 580 1 10 20 5.48 2.88 30.70

B-1 10 120 180 1 10 20 5.23 2.67 12.90
B-2 10 220 400 2 0 20 5.46 2.82 23.90
B-3 10 320 580 1 10 20 5.38 2.88 29.50
B-4 15 180 270 1 15 30 5.35 2.67 15.80
B-5 15 330 600 1 15 30 5.33 2.82 22.53
B-6 15 480 870 1 15 30 5.39 2.88 31.13
B-7 20 240 360 1 20 40 5.15 2.67 15.35
B-8 20 440 800 2 0 40 5.27 2.82 23.65
B-9 20 640 1160 1 20 40 5.46 2.88 30.10
B-10 20 460 816 2 0 40 5.29 2.83 24.45

X-1 10 120 180 2 0 20 5.07 2.67 14.90
X-2 10 220 400 1 10 20 5.32 2.82 23.00
X-3 10 320 580 1 10 20 5.38 2.88 29.90
X-4 15 180 270 2 0 30 5.24 2.67 14.87
X-5 15 330 600 1 15 30 5.19 2.82 23.60
X-6 15 480 870 1 15 30 5.34 2.88 29.93
X-7 20 240 360 1 20 40 4.94 2.67 14.95
X-8 20 440 800 1 20 40 5.34 2.82 24.45
X-9 20 640 1160 1 20 40 5.24 2.88 28.90
X-10 20 450 798 1 20 40 5.30 2.82 24.10

Table 4.5 provides the results obtained after 10 runs of the proposed approach
within the runtime limit established by the MISTA Challenge 2013 organizers
(300 seconds). Solutions and additional data are available online6. The proposed
algorithm was capable of improving seven solutions when compared to the best

6https://benchmark.gent.cs.kuleuven.be/psp

https://benchmark.gent.cs.kuleuven.be/psp


COMPUTATIONAL EXPERIMENTS 109

results from the challenge. Nevertheless, the stochastic local search proposed
by Asta et al. (2016) remains a better overall algorithm for the GPSP.

Table 4.5: Results for MISTA Challenge 2013 instances

Instance MISTA Heuristic best Heuristic avg.

TPD TMS TPD TMS TPD TMS

A-1 1 23 1 23 1.0 23.0
A-2 2 41 2 41 2.0 41.0
A-3 0 50 0 50 0.0 50.0
A-4 65 42 66 47 67.8 48.5
A-5 153 105 154 104 159.9 106.7
A-6 147 96 144 95 150.8 97.5
A-7 596 196 605 190 611.9 197.2
A-8 302 155 280 144 291.4 146.2
A-9 223 119 206 124 216.8 122.8
A-10 969 314 942 304 957.4 310.1

B-1 349 127 358 131 367.3 127.9
B-2 434 160 437 160 449.1 158.5
B-3 545 210 568 204 600.0 202.2
B-4 1274 289 1465 287 1510.6 297.1
B-5 820 254 875 254 896.6 253.8
B-6 912 227 952 221 991.2 225.8
B-7 792 228 876 234 935.0 235.3
B-8 3176 533 3032 513 3097.1 517.6
B-9 4192 746 4523 736 4695.3 753.3
B-10 3249 456 2974 419 3145.7 426.6

X-1 392 142 390 141 401.2 142.7
X-2 349 163 389 166 407.4 168.0
X-3 324 192 325 177 336.0 176.8
X-4 955 213 967 202 980.0 203.6
X-5 1768 374 1871 370 1988.0 369.8
X-6 719 232 777 231 812.4 235.4
X-7 861 237 909 232 930.0 230.0
X-8 1233 283 1328 279 1404.1 288.8
X-9 3268 643 3468 646 3681.8 655.4
X-10 1600 381 1718 377 1793.8 387.9

Figure 4.3 shows the gap between the results of the 10 runs for all instances in
several boxplots. The proposed approach performs very well for some instances,
where the generated solutions are almost 9% better than the best ones from
the MISTA Challenge 2013. For other instances, however, the algorithm is
outperformed by the challenge’s winner. Overall, the algorithm is competitive.



110 PROJECT SCHEDULING PROBLEM

A-1 A-2 A-3 A-4 A-5 A-6 A-7 A-8 A-9 A-10 B-1 B-2 B-3 B-4 B-5
�0.10

�0.05

0.00

0.05

0.10

0.15

0.20

ga
p

fr
om

b
es

t
so

lu
ti
on

B-6 B-7 B-8 B-9 B-10 X-1 X-2 X-3 X-4 X-5 X-6 X-7 X-8 X-9 X-10
�0.10

�0.05

0.00

0.05

0.10

0.15

0.20

ga
p

fr
om

b
es

t
so

lu
ti
on

Figure 4.3: Solution values obtained after 10 algorithm runs on the MISTA
Challenge 2013 instances

4.5 Conclusions and future work

This chapter presented an IP formulation and a decomposition-based heuristic
algorithm with several IP-based components for the Multi-Mode Resource-
Constrained Multi-Project Scheduling Problem, referred to as Generalized Project
Scheduling Problem (GPSP). The decomposition applied is very similar to those
employed in Chapters 2 and 3. However, some additional components were
necessary due to the problem’s characteristics.

Much like previous chapters, strong results were obtained. The algorithm was
proven competitive for the GPSP and obtained remarkable results for the MPSP,
a special case of the GPSP with single execution modes. 75% of the MPSPLib
instances had their best known solution improved.

In contrast to the decomposition-based algorithms proposed in Chapters 2
and 3, here the subproblem optimization scheme was embedded within a
metaheuristic framework. Despite this difference, one special characteristic
was maintained: the employment of IP solvers for solving subproblems. It
should be highlighted that solving large problems is too time consuming for the



CONCLUSIONS AND FUTURE WORK 111

current generation of IP solvers. However, as we keep researching new ways of
addressing these subproblems, the continued evolution of IP solvers significantly
contributes towards solving larger subproblems by the same algorithm. Since
larger subproblems tend to lead to better solutions, the algorithm’s efficiency
will be positively impacted by new findings in the field of integer programming.
In this context, as highlighted by Fischetti et al. (2010), decomposition-based
algorithms such as the one presented in this chapter are very desirable.

Finally, there are several recommendations for future work, as the proposed
approach still has room for improvement. One of the key characteristics of
the algorithm is the heuristic objective function, which relies on estimations
that should be further analyzed. Note how during the constructive phase the
proposed objective function employs the critical path as an estimation of a
job’s schedule impact. The principle is to prioritize jobs that would delay
the project’s completion the most, however the current estimations may be
imprecise. A more precise estimation could consider, for example, other jobs’
resource consumption within the project. It is very likely that more suitable
objective functions will lead the proposed algorithm towards obtaining better
solutions.





Chapter 5

Towards a general solver

Chapters 2, 3 and 4 have proposed different decomposition strategies for optimiz-
ing the TUP, NRP and PSP, respectively. For all three problems, decomposition-
based heuristics relying on each problem’s structure were evaluated, resulting in
improvements over the state-of-the-art algorithms. Although differences may be
observed when applying the heuristic decompositions to these problems, many
similarities are also present. In this chapter, we exploit these similarities to
prototype a general decomposition-based heuristic framework, which may be
employed as a general solver. Our objective is to investigate to which extent
the methods proposed in previous chapters are general.

This chapter provides a starting point for research concerning general
decomposition-based heuristic frameworks. The primary components of such a
framework are first discussed before evaluating a simplified version considering
four different problems. Such a discussion is presented in Section 5.1, which
enumerates the principles behind the framework and relates them with the
knowledge acquired from the previous chapters. Additionally, requirements and
challenges for deriving a general decomposition-based heuristic framework are
considered. Next, Section 5.2 describes the framework’s initial implementation,
presenting its algorithmic components. Preliminary experiments concerning
this initial implementation on different problems are presented in Section 5.3.
Finally, Section 5.4 concludes this chapter, debating challenges and future
research directions for building a competitive general decomposition-based
heuristic solver.

113



114 TOWARDS A GENERAL SOLVER

5.1 Methodology

Chapters 2, 3 and 4 have successfully applied decomposition-based heuristic
procedures to three different problems, resulting in state-of-the-art approaches
for each of them. The decomposition applied in these chapters, while employing
similar concepts, required circumventing different challenges. This section briefly
discusses these challenges, paving the way for a general framework.

The general framework’s scheme is presented by Figure 5.1. Note that it
is composed by input data and a subproblem solver. The principle is to
automatically generate constructive and local search algorithms similar to those
presented in the previous chapters by receiving the follow input: problem,
decomposition(s) and subproblem characteristics. Additionally, a subproblem
solver should be specified (MIP solvers were employed in Chapters 2, 3 and 4).
The output is a solution to the problem.

input data

general decomposition-
based heuristic framework

2017problem

primal solution

2017
 decom-
position

subproblem
information

subproblem solver

Figure 5.1: Illustration of the general framework components

Defining the input data represents one of the challenges in building such a
general framework. These challenges are addressed in the following sections: how
to define the problem, the decomposition and subproblem characteristics? Later
on, we proceed to the description of the framework’s algorithmic components.



METHODOLOGY 115

5.1.1 Defining the problem

As with any general framework, different and often unexpected problems should
be addressable. To that end, it is necessary to define means of formally describing
individual problems. In the general framework discussed throughout this chapter,
problems are described via MIP formulations. On the one hand, this enables
straightforward integration with MIP solvers, meaning that a subproblem solver
is always available. It also reduces the learning curve required to use the
framework for those who are familiar with MIP. On the other hand, however,
requiring a MIP formulation has disadvantages. Different formulations for the
same problem may lead to completely different results. The general framework
therefore becomes dependent on the MIP formulation. Moreover, requiring the
problem to be formulated by linear equations reduces the range of problems the
framework is capable of addressing. There are also disadvantages concerning
memory usage. Given that MIP formulations rarely correspond to the most
compact way of defining a problem, more memory than necessary is often
utilized. Despite these disadvantages, such a design decision enabled quickly
implementing an initial version for the framework.

5.1.2 Defining the decompositions

The approaches proposed for the TUP, NRP and PSP utilize the time structure
of these problems when decomposing them. Despite the novelty of the algorithms
proposed, exploiting such a structure is by no means a new idea. In fact, splitting
a problem into different subproblems using time windows may be considered
a general rule of thumb applied by human planners who manually generate
solutions for these problems. Similar situations also occur within other problems.
Take those related to vehicle routing, for example. Human planners generally
employ the geographic location of customers to heuristically decompose the
problem, thereby reducing its size. Given the vast amount of decomposition
possibilities, it is essential that the framework allows specifying different (and
also unexpected) decompositions.

One of the advantages of employing a MIP formulation to describe the problem
is that it simplifies defining the decomposition(s). Essentially, each minimal
subproblem (smallest possible subproblem) is defined by a set of variables. In
the cases of the TUP, NRP and PSP, each minimal subproblem contains the
variables corresponding to one time (equivalent to a round in the TUP, a day
in the NRP and a time-slot in the PSP).



116 TOWARDS A GENERAL SOLVER

The different minimal subproblems should be connected to each other, so as to
enable the creation of larger subproblems which maintain desired problem
properties. To that end, a simple graph is employed to indicate related
subproblems. In this graph, each minimal subproblem corresponds to a node,
with directed arcs indicating related (connected) subproblems. Priorities are
assigned to both nodes and edges. This way, nodes (subproblems) with higher
priority are explored first. Analogously, arcs with higher priorities are considered
first. Larger subproblems are defined by a best first search (BFS). Let P be
the large problem, defined in terms of a minimal problem Pi. P is initially set
to be equivalent to Pi. Then, the subproblem connected to P by the lowest
priority arc is added to P , increasing its size. The procedure continues until a
limit η on the number of minimal subproblems is reached or there are no more
arcs remaining.

Figure 5.2 illustrates an example considering the TUP, where each node
represents a round. For compactness, only the first four rounds are included.
Note how the initial round has a higher priority p than those succeeding
it. Moreover, all arcs have equal priority, which makes no difference in this
particular example since all nodes have exactly one outgoing arc. Finally, note
how this graph corresponds to a single path. This is the case for all time-based
decompositions proposed throughout the previous chapters.

p = -3

Round Game [Home x Away]

Opponents Matrix

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14

AxE 
AxF 
AxD 
FxA 
HxA 
GxA 
AxH 
AxG 
DxA 
BxA 
CxA 
AxB 
AxC 
ExA

FxB 
BxH 
BxG 
HxB 
GxB 
BxC 
BxF 
BxD 
CxB 
FxC 
BxE 
CxE 
ExB 
DxB

GxC 
ExC 
CxH 
CxG 
CxD 
DxF 
DxC 
CxF 
ExG 
DxE 
HxD 
GxD 
FxD 
HxC

DxH 
DxG 
ExF 
ExD 
FxE 
HxE 
GxE 
ExH 
FxH 
HxG 
GxF 
HxF 
HxG 
FxG

p = 0

p = 0

p = 0

p = 0

Round Game [Home x Away]

Opponents Matrix

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14

AxE 
AxF 
AxD 
FxA 
HxA 
GxA 
AxH 
AxG 
DxA 
BxA 
CxA 
AxB 
AxC 
ExA

FxB 
BxH 
BxG 
HxB 
GxB 
BxC 
BxF 
BxD 
CxB 
FxC 
BxE 
CxE 
ExB 
DxB

GxC 
ExC 
CxH 
CxG 
CxD 
DxF 
DxC 
CxF 
ExG 
DxE 
HxD 
GxD 
FxD 
HxC

DxH 
DxG 
ExF 
ExD 
FxE 
HxE 
GxE 
ExH 
FxH 
HxG 
GxF 
HxF 
HxG 
FxG

p = -1

Round Game [Home x Away]

Opponents Matrix

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14

AxE 
AxF 
AxD 
FxA 
HxA 
GxA 
AxH 
AxG 
DxA 
BxA 
CxA 
AxB 
AxC 
ExA

FxB 
BxH 
BxG 
HxB 
GxB 
BxC 
BxF 
BxD 
CxB 
FxC 
BxE 
CxE 
ExB 
DxB

GxC 
ExC 
CxH 
CxG 
CxD 
DxF 
DxC 
CxF 
ExG 
DxE 
HxD 
GxD 
FxD 
HxC

DxH 
DxG 
ExF 
ExD 
FxE 
HxE 
GxE 
ExH 
FxH 
HxG 
GxF 
HxF 
HxG 
FxG

p = -2

Round Game [Home x Away]

Opponents Matrix

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14

AxE 
AxF 
AxD 
FxA 
HxA 
GxA 
AxH 
AxG 
DxA 
BxA 
CxA 
AxB 
AxC 
ExA

FxB 
BxH 
BxG 
HxB 
GxB 
BxC 
BxF 
BxD 
CxB 
FxC 
BxE 
CxE 
ExB 
DxB

GxC 
ExC 
CxH 
CxG 
CxD 
DxF 
DxC 
CxF 
ExG 
DxE 
HxD 
GxD 
FxD 
HxC

DxH 
DxG 
ExF 
ExD 
FxE 
HxE 
GxE 
ExH 
FxH 
HxG 
GxF 
HxF 
HxG 
FxG

     :

METHODOLOGY 115

in adding P3 to P . The procedure repeats until ÷ = 4, which in this example
ultimately results in P = P1 fi P2 fi P3 fi P4.

Note on automatic decomposition detection

The framework here described assumes the input includes the decomposition(s).
However, automatically detecting the problem’s key characteristics to derive
decompositions is definitely a desired feature of any decomposition-based general
framework. Indeed, some research groups are dedicated to automatic detection
of the structure of problems. It is the case for instance of the Operations
Research’s group from RWTH Aachen University, which investigate automatic
problem structure detection to apply Dantzig-Wolfe decomposition within their
General Column Generation (GCG) solver1 (Gamrath and Lübbecke, 2010). In
a heuristic context, such as the one here considered, automatic detection of the
problem structure raises many research questions, such as:

• How should the problem be represented as to facilitate detecting the
decomposition(s)?

• Which information is mandatory for reasonable detection?

• How to evaluate a decomposition as to (automatically) di�erentiate
profitable and ine�ective ones?

• How to address subproblem specificities?

We believe these and other questions concerning automatic decomposition
detection represent very interesting topics for future research projects. In fact,
this will be indicated as our main future work direction in Section 5.4.

5.1.3 Defining subproblem characteristics

Chapters 2 and 4 demonstrated the importance of defining heuristic objective
functions when applying decomposition-based constructive procedures for the
TUP and PSP, respectively. It is thus desired that the framework implements
some mechanism for defining special subproblem characteristics.

Subproblem characteristics are introduced as an additional (possibly incomplete)
MIP formulation. This additional formulation enables modifying (and increasing)

1http://www.or.rwth-aachen.de/gcg

     :

METHODOLOGY 115

in adding P3 to P . The procedure repeats until ÷ = 4, which in this example
ultimately results in P = P1 fi P2 fi P3 fi P4.

Note on automatic decomposition detection

The framework here described assumes the input includes the decomposition(s).
However, automatically detecting the problem’s key characteristics to derive
decompositions is definitely a desired feature of any decomposition-based general
framework. Indeed, some research groups are dedicated to automatic detection
of the structure of problems. It is the case for instance of the Operations
Research’s group from RWTH Aachen University, which investigate automatic
problem structure detection to apply Dantzig-Wolfe decomposition within their
General Column Generation (GCG) solver1 (Gamrath and Lübbecke, 2010). In
a heuristic context, such as the one here considered, automatic detection of the
problem structure raises many research questions, such as:

• How should the problem be represented as to facilitate detecting the
decomposition(s)?

• Which information is mandatory for reasonable detection?

• How to evaluate a decomposition as to (automatically) di�erentiate
profitable and ine�ective ones?

• How to address subproblem specificities?

We believe these and other questions concerning automatic decomposition
detection represent very interesting topics for future research projects. In fact,
this will be indicated as our main future work direction in Section 5.4.

5.1.3 Defining subproblem characteristics

Chapters 2 and 4 demonstrated the importance of defining heuristic objective
functions when applying decomposition-based constructive procedures for the
TUP and PSP, respectively. It is thus desired that the framework implements
some mechanism for defining special subproblem characteristics.

Subproblem characteristics are introduced as an additional (possibly incomplete)
MIP formulation. This additional formulation enables modifying (and increasing)

1http://www.or.rwth-aachen.de/gcg

     :

METHODOLOGY 115

in adding P3 to P . The procedure repeats until ÷ = 4, which in this example
ultimately results in P = P1 fi P2 fi P3 fi P4.

Note on automatic decomposition detection

The framework here described assumes the input includes the decomposition(s).
However, automatically detecting the problem’s key characteristics to derive
decompositions is definitely a desired feature of any decomposition-based general
framework. Indeed, some research groups are dedicated to automatic detection
of the structure of problems. It is the case for instance of the Operations
Research’s group from RWTH Aachen University, which investigate automatic
problem structure detection to apply Dantzig-Wolfe decomposition within their
General Column Generation (GCG) solver1 (Gamrath and Lübbecke, 2010). In
a heuristic context, such as the one here considered, automatic detection of the
problem structure raises many research questions, such as:

• How should the problem be represented as to facilitate detecting the
decomposition(s)?

• Which information is mandatory for reasonable detection?

• How to evaluate a decomposition as to (automatically) di�erentiate
profitable and ine�ective ones?

• How to address subproblem specificities?

We believe these and other questions concerning automatic decomposition
detection represent very interesting topics for future research projects. In fact,
this will be indicated as our main future work direction in Section 5.4.

5.1.3 Defining subproblem characteristics

Chapters 2 and 4 demonstrated the importance of defining heuristic objective
functions when applying decomposition-based constructive procedures for the
TUP and PSP, respectively. It is thus desired that the framework implements
some mechanism for defining special subproblem characteristics.

Subproblem characteristics are introduced as an additional (possibly incomplete)
MIP formulation. This additional formulation enables modifying (and increasing)

1http://www.or.rwth-aachen.de/gcg

     :

METHODOLOGY 115

in adding P3 to P . The procedure repeats until ÷ = 4, which in this example
ultimately results in P = P1 fi P2 fi P3 fi P4.

Note on automatic decomposition detection

The framework here described assumes the input includes the decomposition(s).
However, automatically detecting the problem’s key characteristics to derive
decompositions is definitely a desired feature of any decomposition-based general
framework. Indeed, some research groups are dedicated to automatic detection
of the structure of problems. It is the case for instance of the Operations
Research’s group from RWTH Aachen University, which investigate automatic
problem structure detection to apply Dantzig-Wolfe decomposition within their
General Column Generation (GCG) solver1 (Gamrath and Lübbecke, 2010). In
a heuristic context, such as the one here considered, automatic detection of the
problem structure raises many research questions, such as:

• How should the problem be represented as to facilitate detecting the
decomposition(s)?

• Which information is mandatory for reasonable detection?

• How to evaluate a decomposition as to (automatically) di�erentiate
profitable and ine�ective ones?

• How to address subproblem specificities?

We believe these and other questions concerning automatic decomposition
detection represent very interesting topics for future research projects. In fact,
this will be indicated as our main future work direction in Section 5.4.

5.1.3 Defining subproblem characteristics

Chapters 2 and 4 demonstrated the importance of defining heuristic objective
functions when applying decomposition-based constructive procedures for the
TUP and PSP, respectively. It is thus desired that the framework implements
some mechanism for defining special subproblem characteristics.

Subproblem characteristics are introduced as an additional (possibly incomplete)
MIP formulation. This additional formulation enables modifying (and increasing)

1http://www.or.rwth-aachen.de/gcg

Figure 5.2: Example of decomposition representation for the TUP

In the example of Figure 5.2, obtaining larger problems is straightforward. Let’s
build a subproblem P with η = 4 nodes, beginning with the first round (or
minimal subproblem P1). P is first set to be equal to P1. Then the node
connected to P with lowest priority is selected (P2), being subsequently added
to P . Next, the procedure considers the updated P = P1 ∪ P2, which results
in adding P3 to P . The procedure repeats until η = 4, which in this example
ultimately results in P = P1 ∪ P2 ∪ P3 ∪ P4.



METHODOLOGY 117

Note on automatic decomposition detection

The framework here described assumes the input includes the decomposition(s).
However, automatically detecting a problem’s key characteristics to derive
decompositions is definitely a desired feature of any decomposition-based general
framework. Indeed, some research groups are investigating the automatic
detection of problem structures. One such example is the Operations Research’s
group from RWTH Aachen University, which investigate automatic problem
structure detection to apply Dantzig-Wolfe decomposition within their General
Column Generation (GCG) solver1 (Gamrath and Lübbecke, 2010). In a
heuristic context, such as the one here considered, automatic problem structure
detection raises many research questions, such as:

• How should the problem be represented so as to facilitate detecting the
decomposition(s)?

• What information is mandatory for reasonable detection?

• How to evaluate a decomposition so as to (automatically) differentiate
profitable and ineffective ones?

• How to address subproblem specificities?

We believe these and other questions concerning automatic decomposition
detection represent very interesting topics for future research projects. In fact,
this will be indicated as our main future work direction in Section 5.4.

5.1.3 Defining subproblem characteristics

Chapters 2 and 4 demonstrated the importance of defining heuristic objective
functions when applying decomposition-based constructive procedures for
the TUP and PSP, respectively. It is therefore desired that the framework
implements some mechanism for defining special subproblem characteristics.

Subproblem characteristics are introduced as an additional (possibly incomplete)
MIP formulation. This additional formulation enables modifying and extending
the formulation for subproblems. Therefore, constraints may be added or
rewritten, additional variables may be introduced and the objective function may
be completely changed. Each subproblem is thus a combination of the problem’s

1http://www.or.rwth-aachen.de/gcg

http://www.or.rwth-aachen.de/gcg


118 TOWARDS A GENERAL SOLVER

original formulation with the additional MIP. Constraints and variables are
identified by their names within the framework, and therefore it is possible to
modify portions of the original formulation within subproblems. Note that this
abstraction is very flexible: it is in fact possible to overwrite the entire original
formulation for subproblems.

Overwriting some subproblem constraints is particularly important when no
feasible solution is available, in which case it may be impossible to fix values
for some variables. Since a subproblem contains only a subset of the problem’s
variables, depending on the constraints enforced this subproblem may result
in an infeasible MIP. In such situations, the introduction of slack variables is
necessary to avoid infeasibility. Additional MIP formulations may be employed
to modify such problematic constraints by introducing slack variables, for
example. Slack (or auxiliary) variables are identified by the framework as
variables not listed within the decomposition, meaning they are not part of
any minimal subproblem. These variables are included as part of a subproblem
whenever it contains constraints which incorporate them.

Consider again the TUP addressed in Chapter 2 (Section 2.5.1) as an example.
An alternative objective function was employed for the subproblems, considering
the number of unvisited locations for each umpire. This required adding slack
variables to certain constraints for both preventing infeasibility and altering the
objective function. This is easily achieved by the inclusion of the incomplete
MIP formulation given by Equations (5.1) and (5.2):

Minimize: ∑
e∈E

∑
u∈U

dexe,u +
∑
i∈I

∑
u∈U

ψu`i,u (5.1)

Subject to: ∑
e∈δ(Hi)

xe,u + `i,u ≥ 1 ∀i ∈ I, u ∈ U (5.2)

In these equations, ψu is a weight that defines the impact of unvisited locations
and `i,u indicates whether umpire u visits location i (`i,u = 0) or not (`i,u = 1)
(see Chapter 2, page 48 for more details). In this example the objective function
is rewritten and Equation (5.2) replaces Equation (2.6). Variable `i,u is identified
as a slack variable, being incorporated into all subproblems including both team
i and umpire u.



ALGORITHMIC COMPONENTS 119

Finally, the framework also permits using information from the algorithm
when solving subproblems. Dedicated keywords may be used within the MIP
formulation to include values such as iteration number, minimal subproblem
index and subproblem size. This enables, for instance, calculating ψu values
without modifying the framework source code.

5.2 Algorithmic components

The framework currently implements decomposition-based constructive and
local search procedures very similar to those presented in Chapters 2 and 3.
Different subproblem MIP formulations may be considered for the constructive
procedure and the local search phase. This distinction is important, for example,
to prevent infeasibility once a feasible solution is generated by the constructive
procedure.

5.2.1 Constructive procedure

Whenever an initial solution is not provided to the framework, a constructive
procedure is executed to generate one. Algorithm 5.1 presents this constructive
procedure as a recursive method. The algorithm requires four arguments: a
solution S (initially empty), the current minimal subproblem (initially one) and
parameters η and step, which define the size and degree of intersection between
subproblems (and therefore number of subproblems), respectively. Here η and
step have the same meaning as in the previous chapters and should be defined
such that step ≤ η. Algorithm 5.1 is very similar to Algorithm 2.3 (presented
in Chapter 2), with some minor differences. Similarly, the stopping criterion is
also a complete feasible solution (lines 1-2). Until the solution is complete, a
subproblem P is defined (line 3) by a BFS on the minimal subproblems graph
beginning with Pi. When searching, the arc with lowest priority is selected next
(see Section 5.1.2). The BFS stops once either η nodes are selected or all arcs
have been considered. The algorithm then proceeds by solving the resulting
subproblem P (line 4). All solutions obtained are stored in a list L, together
with the optimal solution. Beginning with the best solution, the algorithm
iterates over all solutions SP ∈ L (line 5). The assignments in SP are then
included in S (line 6). Afterwards, variable j is initialized and updated so as to
indicate the next minimal subproblem (lines 7-9). Note how j is incremented
until an unsolved subproblem Pj is detected or the value of i+ step is reached.



120 TOWARDS A GENERAL SOLVER

Next, a recursive call is made to solve the remaining subproblems (line 10). If
a feasible solution is obtained, the algorithm returns it (line 11). Otherwise,
it removes subproblem solution SP from S (line 12) and continues with the
next solution. If no subproblem solution in L results in a feasible solution S,
an empty solution is returned (line 13).

Algorithm 5.1: General decomposition-based constructive algorithm
Let P be the ordered list of minimal subproblems given by the decomposition
Input: Solution S (initially empty), minimal subproblem i (initially one),

subproblem size η and intersection parameter step
Constructive(S, i, η, step)

1 if S is a feasible solution then
2 return S // success: feasible solution is returned

3 P ← subproblem defined by BFS on Pi with up to η nodes (subproblems)
4 L← list of feasible solutions for P , sorted by increasing cost
5 for SP ∈ L do
6 S ← S ∪ SP // set values for variables corresponding with subproblem P

7 j ← i+ 1 // pointer j identifies the next minimal subproblem
8 while j < i+ step and S contains solution for Pj do
9 j ← j + 1 // skip the next minimal subproblem (based on parameter step)

10 if Constructive(S, j, η, step) 6= ∅ then
11 return S

12 S ← S\SP // unset values for variables corresponding with subproblem P

13 return ∅ // backtracks since all subproblem solutions resulted in infeasibility

5.2.2 Local search procedure

The local search phase begins after a feasible solution is obtained by the
constructive procedure. The principle behind the local search is to solve
subproblems while fixing values for variables not included in the subproblem.
It is a concept similar to the hard fixation of variables in Relaxation
Induced Neighborhood Search (RINS) (Danna et al., 2003). However, in the
framework subproblems may have different characteristics (Section 5.1.3) and
problem-specific decompositions may lead to higher-quality solutions. Multiple
decomposition strategies may be employed, identified by set D. Parameters
ηd and stepd control the subproblem size and number of subproblems for
decomposition d ∈ D, respectively, while η̄d establishes an upper limit for
ηd’s value. Subproblems are, again, generated by a greedy BFS on the graph
correlating the different subproblems (Section 5.1.2). Once no improvement



ALGORITHMIC COMPONENTS 121

is achievable from subproblems of size ηd, the value of ηd is increased. The
algorithm continues until some stopping criterion is met or a local optimum for
all subproblems is obtained.

The procedure responsible for generating subproblems is described by
Algorithm 5.2. First the list of subproblems S is initialized (line 1). For each
decomposition (line 2), minimal subproblems are sorted with ties on priorities
resolved randomly (line 3). The index of each minimal subproblem is stored in
K (line 4), which is used to sort out ties during the generation of subproblems
by BFS. Variables cj are defined to control subproblem utilization (line 5) and
pointer i is initialized to consider the first minimal subproblem of list Pd (line
6). Afterwards, subproblems are constructed. The algorithm iterates until all
minimal subproblems have been assigned to a subproblem (line 7). Subproblems
are created (line 8) and added to list S (line 9). Variables cj are then updated
(line 10). Next, pointer i is updated to generate the next subproblem (lines 11-
13). Ideally, step minimal subproblems are skipped, however it may be necessary

Algorithm 5.2: Local search subproblems generation
Let Pd, ηd and stepd be properties of decomposition d, where Pd represents
the ordered list of minimal subproblems, ηd the subproblem size and stepd the
intersection parameter

Input: Decompositions D
MakeSubproblems(D)

1 S ← ∅
2 for each decomposition d ∈ D do
3 sort Pd by priority while shuffling elements with equal priorities
4 K ← map of minimal subproblem indices after sorting/shuffling Pd

5 cj ← false for j ∈ {1, ..., |Pd|}
6 i← 1 // pointing to the first minimal subproblem
7 while ∃cj=false for j ∈ {1, ..., |Pd|} do
8 P ← subproblem given by BFS on Pdi with up to ηd nodes using K
9 S ← S ∪ {P}

10 cj ← true for all minimal subproblems indices j included in P
// updating pointer i by skipping at most step subproblems

11 for k ← 1 to stepd do
12 i← (i mod |Pd|) + 1
13 if ci=false then break for-loop

// sorting subproblems: both decomposition and subproblem priorities are considered
14 sort S by priority while shuffling elements with equal priorities
15 return S



122 TOWARDS A GENERAL SOLVER

to ensure that all minimal subproblems are included and, therefore, i may be
increased by a value smaller than step. Once all subproblems were generated,
they are sorted (line 14). Again, ties on priorities are solved by shuffling.
Note that priorities from both the decomposition and minimal subproblems are
utilized. Finally, the list of subproblems is returned by the procedure (line 15).

The decomposition-based local search method is detailed by Algorithm 5.3.
Three arguments are required: a feasible initial solution S, the set of
decompositions D and the re-optimization parameter reopt, which indicates
whether subproblems should be solved more than once. Initially, subproblems
for all decompositions d ∈ D are generated and stored in list P (line 1). The
algorithm iterates until either all subproblems are optimized or a stopping
criterion (generally time or iteration limit) is met (line 2). Next, variable ∆ is
set to zero (line 3) and pointers i and ` are initialized (line 4). The algorithm
then iterates until i = ` or some stopping criteria is met (line 5). Subproblem
Pi is solved (line 6) and ∆ is updated to store the gain in solution quality (line
7). When parameter reopt is true and the solution improves, ` is updated and

Algorithm 5.3: General decomposition-based local search
Let ηd and stepd be properties of decomposition d, where ηd represents the
subproblem size and stepd the intersection parameter

Input: Solution S, list of decompositions D, and parameter reopt
LocalSearch(S, D, reopt)

1 P ←MakeSubproblems(D)
2 while no stopping criteria met do
3 ∆← 0 // indicates improvements upon current solution
4 i← 1, `← |P | // pointers to first and last subproblems, respectively
5 while i 6= ` and no stopping criteria met do
6 update S with optimum solution of subproblem Pi
7 ∆← ∆ + difference in objective value after solving Pi
8 if reopt =true and ∆ < 0 then
9 ∆← 0

10 `← i

11 i← (i mod |P |) + 1
// updating η and step for all decompositions d (up to the limits defined by η̄)

12 if ∆ < 0 or some decomposition d ∈ D may be updated then
13 update all ηd and stepd following rules for their decomposition d
14 P ←MakeSubproblems(D)
15 else break while-loop
16 return S



FRAMEWORK VALIDATION 123

∆ reset (lines 8-10). Next, pointer i is updated to consider the next minimal
subproblem (line 11). Once i = `, all subproblems in P have been resolved.
Therefore new subproblems are generated (lines 12-14) or the loop finishes (line
15). New subproblems are generated when either ∆ indicates some improvement
or there is an η parameter which may be updated. Once one of the stopping
criteria is reached, the best solution obtained so far is returned (line 16).

5.3 Framework validation

The initial version of the general framework was implemented in Java 8. The
problem and its subproblem characteristics are currently defined by MIP
formulations via either lp or mps files. For more information concerning these
files, readers are directed to the documentation of lpsolve2 (Berkelaar et al.,
2017). A json3 file is employed to describe the decompositions and their
properties: minimal subproblem, the graph connecting them (see Section 5.1.2),
minimum and maximum values for η, step, and other parameter values.

The framework implements a modeling layer, which enables employing different
MIP solvers and even avoiding input files (the formulation may be directly
implemented within the framework). Three MIP solvers are currently supported:
CPLEX, Gurobi and SCIP. The experiments presented in this section were
executed with Gurobi 7.5, given that it had the best performance among the
three supported solvers.

To validate the framework, four problems were considered. First, the framework
was employed to implement the decomposition-based heuristics introduced by
the previous chapters of this thesis for the TUP, NRP and PSP. The results
are described in Section 5.3.1. Next, Section 5.3.2 describes how the framework
was employed to address an additional problem.

5.3.1 Validation with the addressed problems

The framework was utilized to solve the problems addressed by Chapters 2, 3
and 4. Experiments considering these problems are described in the following
paragraphs.

2http://lpsolve.sourceforge.net/5.5
3http://www.json.org

http://lpsolve.sourceforge.net/5.5
http://www.json.org


124 TOWARDS A GENERAL SOLVER

Traveling Umpire Problem. Input files were created for the TUP, as described
throughout this chapter. The framework was then executed as a general solver,
considering only the input files, and successfully reproduced the results obtained
by the decomposition-based heuristic presented in Chapter 2. The runtime was
approximately 8% longer on average for the constructive approach, due to the
additional computational effort required for parsing files and creating partial
formulations with the general code. Nevertheless, such small runtime increase
is irrelevant in practice, and thus the general solver may completely replace the
problem-specific code developed for the TUP.

Nurse Rostering Problem. The decomposition-based heuristic for the NRP
employs three decomposition strategies, which consider the problem’s time
structure, subsets of nurses and the different possible shifts. Therefore, three
decompositions were added to the json file: Time, Nurse and Shift. By
employing equal priorities, a random ordering of nurses for the Nurse-based
decomposition was achieved. Decompositions were also given equal priorities.
Additionally, an initial solution produced by the greedy algorithm was passed to
the solver, bypassing the constructive phase. No additional MIP formulations
were employed and the source code required no modification. The results were
successfully reproduced, however longer runtimes were observed to produce
similar solutions, as for the TUP.

Project Scheduling Problem. In contrast to the approaches developed for
the TUP and NRP, the one developed for the PSP is not generalized by
the framework in its current version. The source code had to be modified
and extended to enable the implementation of the decomposition-based
heuristic presented in Chapter 4. The ModeSel formulation and a dedicated
subproblem solver including the Forward-Backward Improvement procedure (see
Section 4.3.2) were implemented and the local search algorithm was adapted to
reflect the metaheuristic described in Section 4.3.3. Furthermore, the heuristic
estimations employed within the MIP formulations also required additional
code. In practice, the modeling layer and parts of the constructive algorithm
were the only completely reused components, with the remainder requiring
several modifications. Such modifications, although not trivial, enabled the
framework to reproduce the results obtained in Chapter 4 with some additional
computational overhead of less than one minute on average, which may be
considered negligible in practice.



FRAMEWORK VALIDATION 125

5.3.2 Validation with another problem

In order to successfully validate the initial implementation of the general
framework, we employed it to solve a problem not addressed by this research.
The Shift Minimization Personnel Task Scheduling Problem (SMPTSP)
explained in full length by Smet et al. (2014) was selected. The SMPTSP may
be described as the problem of assigning J = {1, ..., n} tasks to W = {1, ...,m}
workers while minimizing the number of workers with assigned tasks. Each
task j ∈ J is associated with a duration dj and fixed start and finishing times.
Each worker w ∈ W can perform a subset Tw ⊆ J of the tasks based on his
qualifications and availability. All tasks must be assigned to workers while
ensuring that each worker executes at most one task at a time, meaning overlap
is not permitted.

Smet et al. (2014) presented a MIP formulation for the SMPSTP considering
two variable sets:

xj,w =
{

1 if task j ∈ J is assigned to worker w ∈W
0 otherwise

yw =
{

1 if worker w has at least one task assigned
0 otherwise

Their formulation is presented by Equations (5.3)-(5.7). The objective function
(5.3) minimizes the number of workers with tasks assigned. Constraints (5.4)
ensure each task is assigned to exactly one worker. Constraints (5.5) guarantee
there is no overlap between tasks, meaning each worker executes at most one
task at a time. They also connect variables x and y. These constraints utilize a
conflict graph constructed with tasks as nodes and edges connecting tasks which
overlap. The set of maximal cliques in this graph is defined as C = {K1, ...,Kt},
with every pair of tasks in a clique K ∈ C overlapping in time. Finally,
Constraints (5.6) set the bounds for variables y and Constraints (5.7) declare
variables x as binary.

Minimize: ∑
w∈W

yw (5.3)



126 TOWARDS A GENERAL SOLVER

Subject to: ∑
w∈W :j∈Tw

xj,w = 1 ∀j ∈ J (5.4)

∑
j∈Tw∩K

xj,w ≤ yw ∀w ∈W,K ∈ C (5.5)

0 ≤ yw ≤ 1 ∀w ∈W (5.6)

xj,w ∈ {0, 1} ∀j ∈ J,w ∈W (5.7)

Smet et al. (2014) proposed a constructive matheuristic method in which
the problem is decomposed by assigning each worker to a different minimal
subproblem. Therefore, rather than solving the entire problem, they solve
subproblems which consist of a subset of workers. A different objective is
employed within subproblems: instead of reducing the number of workers with
tasks assigned, subproblems maximize the sum of allocated task durations.
After a solution is constructed, the last subproblem is re-optimized using the
original objective function to reduce the number of workers with assigned tasks.

The constructive approach introduced by Smet et al. (2014) is generalized by
the decomposition-based framework proposed in this chapter, being therefore
possible to employ the framework to address the SMPTSP. The framework is
utilized as a solver, with no alterations in its original source code.

Three input files were generated: (i) problem description, (ii) decomposition
and (iii) subproblem characteristics. The problem description is given by
Formulation (5.3)-(5.7). The decomposition is easily described: variables
corresponding to one worker constitute a minimal subproblem. The only
remaining component concerns the subproblem characteristics. It is necessary
to rewrite the objective function and relax Constraints (5.4), as otherwise
subproblems would be infeasible. This is easily achieved by including the
incomplete MIP formulation specified by Equations (5.8)-(5.10). The objective
function is overwritten by Equation (5.8) while Constraints (5.4) are replaced
by Constraints (5.9). Note how Equations (5.8)-(5.10) introduce variables αj
to identify whether task j is executed (αj = 0) or not (αj = 1), and a weight ω
to guarantee that assigning tasks always has higher priority than minimizing
the number of workers. Whenever dj > 1 for all tasks j ∈ J , ω is set to 1.
Otherwise, if there is a task j with duration dj = 1, ω is assigned a value of
2. In contrast to Smet et al. (2014), who optimized the last subproblem twice



CONCLUSIONS AND FUTURE WORK 127

with different objective functions, employing ω prevented this re-optimization
and reduced the number of subproblem optimizations.

Minimize: ∑
w∈W

yw + ω
∑
j∈J

djαj (5.8)

Subject to: ∑
w∈W :j∈Tw

xj,w + αj = 1 ∀j ∈ J (5.9)

0 ≤ αj ≤ 1 ∀k ∈ J (5.10)

Considering these two MIPs and the decomposition description, the framework
acted as a solver and obtained similar results to those reported by Smet et al.
(2014). Note that Smet et al. (2014) did not consider any intersection between
subproblems, and so we considered step = η throughout the experiments. The
graph representation of connected subproblems enabled experimenting upon
all subproblem configurations evaluated by Smet et al. (2014). Furthermore,
the local search implemented within the framework, although different from the
one proposed by Smet et al. (2014), also resulted in optimal solutions for all
137 instances from Krishnamoorthy et al. (2012). Detailed results are available
together with the source code documentation4.

5.4 Conclusions and future work

This chapter presented an initial implementation of a general decomposition-
based heuristic framework that may be utilized as a general solver. The
framework successfully implemented the decomposition-based heuristics pre-
sented for the TUP, NRP and PSP in Chapters 2, 3 and 4, respectively. While
the PSP required extensive modifications to the source code, the algorithms
developed for the TUP and NRP were reproduced by only manipulating input
files. The framework was also evaluated for another problem, one which was
not studied previously in this manuscript. The SMPTSP was considered,
and the constructive matheuristic developed by Smet et al. (2014) was easily
implemented by the framework. Creating input files was sufficient for solving

4https://github.com/tuliotoffolo/jads

https://github.com/tuliotoffolo/jads


128 TOWARDS A GENERAL SOLVER

the SMPTSP, meaning no modification of source code was required to reproduce
the strong results reported by Smet et al. (2014).

In its current form, the framework already constitutes a very useful tool for
quickly investigating different decomposition-based heuristics. It may also be
easily extended to support additional algorithms. There is, however, much work
to be done in terms of transforming it into a truly general solver.

Future work includes implementing alternative constructive and local search
algorithms. Different problem, decomposition and subproblem representations
should also be considered. Still, the primary challenge for future research
remains automatically detecting a problem’s structure. As highlighted in
Section 5.1.2, it is currently unclear what the desired problem structure is
when considering decomposition-based heuristics. Moreover, the subproblem
characteristics should also be automatically detected in such a way that the
framework can be re-structured according to Figure 5.3. This introduces many
interesting questions concerning future research, as discussed in Section 5.1.2.

general decomposition-
based heuristic framework

input data

2017problem

primal solution

 decom-
position

subproblem
information

subproblem solver

future research:
automatic
decomposition
and subproblem
detection

xx

Figure 5.3: Future research directions towards a truly general solver

Finally, in the spirit of reproducible science, the framework’s source code is
available online5 together with input files for the TUP, NRP and SMPTPS.
A tutorial concerning the framework’s utilization is also available. Future
developments will also be included within the online repository.

5https://github.com/tuliotoffolo/jads

https://github.com/tuliotoffolo/jads


Part II

Heuristic subproblem
solutions

129





Introduction to Part II

Part II alters the tone of the thesis. Rather than approaching different problems
with similar decomposition-based strategies, as in Part I, here very specific
problem components are explored. The most noticeable difference is, however,
related to how subproblems are solved. Whereas Part I followed the trend of
optimally solving subproblems, here suboptimal solutions for subproblems are
generally accepted, primarily due to computational performance requirements.

Part II addresses logistic problems concerning routing and packing, and
represents an adaptation of three papers, two published and one which is
currently being prepared for submission. Figures, tables and elements of
these texts were adapted to integrate well into the structure and style of this
thesis. Nevertheless, each chapter remains self-contained and may be read
independently. Figure II illustrates the organizational structure of Part II. In
total, three different logistic problems are investigated within Chapters 6, 7 and
8: one classic and two real-world problems.

Chapter 6 studies a decomposition-based local search for the classic Capacitated
Vehicle Routing Problem (CVRP) in which the different decisions required to
solve the problem are exploited. More specifically, two decision sets are in
play: Assignment and Sequencing. The principle behind the decomposition
is to guarantee that one of the decision sets (Sequencing) is always optimally
solved, with a solution therefore represented solely by decisions for the other set
(Assignment). Nevertheless, a significant computational burden is associated
with such an approach. It is in fact shown to be impractical within the proposed
local search for the CVRP, resulting in the investigation of an intermediary
approach where suboptimal solutions are accepted for Sequencing. Different
levels of Sequencing optimization are studied, resulting in different search
spaces. Extensive experiments are conducted to evaluate all proposed methods,

131



132

Part II
Chapter 6

Capacitated Vehicle 
Routing Problem

6.2 Related literature 

6.5 Conclusions

6.1 Introduction

Chapter 8
Multiple Container 
Loading Problem

8.5 Conclusions

8.3 Decomposition-
based heuristic 

Local search

8.1 Introduction

8.2 Lower bounds

8.4 Computational 
experiments

6.4 Computational 
experiments

6.3 Proposed 
methodology 

Search space analysis

Chapter 7
Swap-Body Vehicle 
Routing Problem

7.6 Conclusions

7.5 Computational 
experiments

7.1 Introduction

7.2 Related literature 

7.4 Neighborhoods 

Subproblem 
optimization scheme

7.3 Local search

Figure II: Organization of Part II

ultimately resulting in a local search algorithm capable of producing new best
known solutions for multiple benchmark instances.

Chapters 7 and 8 employ an alternative methodology. Both chapters investigate
real-world problems which were subject of prestigious international optimization
algorithm challenges. In fact, the proposed algorithms competed in both
challenges, winning one of them and being ranked second in the other one. In
both cases, short runtime limits were imposed for the algorithms to produce
solutions. Therefore, subproblems were not necessarily solved to optimality.
Moreover, with a view to producing high-performing solvers, classical heuristics
were hybridized with decomposition-based ones.

Chapter 7 addresses the Swap-Body Vehicle Routing Problem (SB-VRP), a
generalization of the classical CVRP. Here a subproblem optimization scheme



133

is employed together with classical and problem-specific neighborhoods within
a stochastic metaheuristic local search methodology. The resulting algorithm
won the VeRoLog Challenge and remains the state-of-the-art for the problem,
generating the best known solutions for the majority of SB-VRP instances.

In Chapter 8, a real-world Multiple Container Loading Problem (MCLP)
proposed by a car manufacturing company is considered. The MCLP requires
the packing of three-dimensional boxes into containers subject to a large set
of constraints. The three-dimensional problem is heuristically decomposed
into different two-dimensional subproblems. Multiple algorithms are employed
to solve the subproblems, including a dynamic programming approach and
constructive heuristics. Computational experiments validate the methodology’s
performance, with it capable of quickly producing many best known solutions.





Chapter 6

Capacitated Vehicle Routing
Problem

This chapter addresses the classic Capacitated Vehicle Routing Problem (CVRP),
an extensively studied optimization problem in which a fleet of vehicles with
uniform capacity must be assigned to satisfy customer demands. The objective
is to minimize the sum of travel distances over all vehicles, each of which leaves
from and must return to a single depot after visiting customers. As with the
other problems studied throughout this thesis, benchmark sets are available for
the CVRP.

In contrast to the chapters constituting Part I, a different decomposition
strategy is investigated here, one based upon the decisions that compose a
solution for the problem. Note that a solution for the CVRP is composed of
sequential decisions: (i) assigning customers to vehicles and (ii) sequencing
customer visits for each vehicle. These two decision sets, Assignment and
Sequencing, are exploited to decompose the problem. The idea is to ensure
that optimum Sequencing decisions are taken at all times, essentially reducing
the problem to the Assignment decisions. In this chapter we investigate this
decomposition strategy and its consequences. Local search is applied to explore
different Assignment solutions, therefore only considering the search space of
assignments. However, experimentation revealed that the computational burden
associated with optimally solving the Sequencing decisions is very costly, thereby
justifying the investigation of intermediary approaches in which Sequencing is

135



136 CAPACITATED VEHICLE ROUTING PROBLEM

only partially solved. We employ the neighborhood proposed by Balas and
Simonetti (2001) together with smart computational techniques to represent
such an intermediary approach. We show how this combination results in a
search space that ultimately converges to one in which only Assignment decisions
are considered.

This chapter is a joint work with Thibaut Vidal1. It begins with Section 6.1
introducing the main ideas and motivation behind the present research. Related
literature is presented in Section 6.2, further justifying the proposed approach.
The methodology is detailed in Section 6.3, which presents the primary principles
associated with the proposed approach together with the computational
techniques employed to increase the local search efficiency. Experiments
presented in Section 6.4 evaluate the methodology. Different computational
techniques and parameters are examined. Additionally, the proposed local search
is evaluated within a state-of-the-art metaheuristic, resulting in unexpected
improvements over the best known solutions for both small- and medium-size
instances. Finally, Section 6.5 ends this chapter by presenting conclusions and
future research directions.

6.1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is classically described as a
combination of a Traveling Salesman Problem (TSP) with an additional capacity
constraint which lends a bin packing substructure to the problem (Toth and
Vigo, 2014). It may also be viewed as a set packing problem in which the cost
of each set corresponds to the distance of the associated optimum TSP tour
(Balinski and Quandt, 1964). These problem representations emphasize the two
decision sets at play: customer-to-vehicle Assignment and Sequencing choices
for each route.

Examining the recent progress on metaheuristics for the CVRP, little has
changed in recent years concerning intra-route neighborhood search: Relocate,
Swap and 2-opt neighborhoods and their immediate generalizations are employed,
and these neighborhoods alone are sufficient to guarantee that most CVRP
solutions resulting from a local search contain TSP-optimal routes. This is
generally because classic CVRP instances involve short routes with up to 20 or

1Prof. Dr. Thibaut Vidal (vidalt@inf.puc-rio.br), Informatics Department, Pontifical
Catholic University of Rio de Janeiro, Brazil



INTRODUCTION 137

30 visits. For such small problems, even simple neighborhood search methods
for the TSP tend to produce optimum tours.

Based on this observation, a larger effort dedicated to TSP tour optimization,
as a stand-alone neighborhood, is unlikely to result in further improvements.
For this reason, it is very uncommon to observe the use of larger intra-route
neighborhoods such as 3-Opt in state-of-the-art (meta)heuristics. Nevertheless,
does this mean that Sequencing optimization should be abandoned in favor of
more extensive search concerning Assignment choices? Certainly not. Indeed,
even if local minima exhibit TSP-optimal tours, inter-route moves frequently
lead to TSP-suboptimal tours which are rejected due to their higher cost,
but would otherwise be accepted if such tours were optimized. Such solution
improvements would then not arise from separate Assignment or Sequencing
optimizations, but from a careful combination of both.

Figure 6.1 schematically represents the solution set of the CVRP, whose decision
variables are split into Sequencing decisions (x-axis) and Assignment decisions
(y-axis). The y-axis also represents solutions in terms of their Assignment
decisions solely, ignoring Sequencing choices. These solutions may be viewed
as a projection (Geoffrion, 1970) of the original solutions S on the space SA
defined by a single decision subset (Assignment). Moreover, from a solution
represented in terms of Assignment decisions, it is possible to find the best
associated complete solution by solving each TSP associated with the routes.
This process corresponds to a decoder.

Sequencing decisions

	
TSP optimization

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA
0

2

4

6

8

10

12

G
ap

(%
)

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA
0

1

2

3

4

5

6

7

8

9

G
ap

(%
)

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA

2

4

6

8

10

G
ap

(%
)

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA
0

2

4

6

8

10

12

G
ap

(%
)

Instances with average of at most 10 customers per route

Instances with average of 10 to 20 customers per route

Instances with average of at least 20 customers per route

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA
0

2

4

6

8

10

12

G
ap

(%
)

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA
0

1

2

3

4

5

6

7

8

9

G
ap

(%
)

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA

2

4

6

8

10

G
ap

(%
)

S SB
2 SB

3 SB
4 SB

5 SB
6 SB

7 SB
8 SB

9 SA
0

2

4

6

8

10

12

G
ap

(%
)

Instances with average of at most 10 customers per route

Instances with average of 10 to 20 customers per route

Instances with average of at least 20 customers per route

	

Assignment
decisions

Figure 6.1: Two alternative search spaces for the CVRP

With this picture in mind, it is tempting to conduct a search in space SA rather



138 CAPACITATED VEHICLE ROUTING PROBLEM

than S. After all, the size of SA is exponentially smaller than that of S and the
solutions of SA are, on average, of better quality since they have optimal tours.
However, the obvious drawback is that each move evaluation in SA requires
solving one or several small TSPs to optimality and thus requires significant
computational effort. Still, note that considerable progress has been made in the
past 30 years with regard to the efficient resolution of TSPs, and small problems
with approximately 20 customers are now solvable within a few milliseconds.
Based on these observations, this chapter investigates heuristic search methods
for the CVRP in terms of answering two questions concerning the decision-set
decomposition which results in the search space SA:

1. Is it practical and worthwhile to search in space SA rather than S?

2. If searching in SA requires an excessive effort, is it possible to define
a search space which maintains most of the key properties of SA while
enabling more efficient exploration?

As will be demonstrated later in Section 6.4, experiments led us to answer the
first question as follows: even with non-trivial memory and speedup techniques
(hashtables and move filters) the computational overhead related to the exact
resolution of TSPs during each move evaluation does not appear worth the gain
in terms of solution quality for a complete search in space SA.

By contrast, our answer to the second question is positive. Rather than requiring
a complete exact resolution for each TSP, the dynamic programming approach
of Balas and Simonetti (2001), hereafter referred to as B&S, may be employed to
perform a restricted optimization of routes during local search move evaluations.
Given a range parameter k and an initial tour, the B&S approach is capable
of producing the vertex sequence with minimum cost such that no vertex is
displaced by more than k positions. This defines a search space SBk such that
SB0 = S and SBn−1 = SA, with n representing the total number of customers.
Moreover, even for a fixed k, tunneling techniques are proposed which enable
the exploitation of past solutions to dynamically reshape the search space, in
such a way that SBk converges towards SA as the search progresses.

6.2 Related literature

This section reviews some key milestones concerning the management of
Sequencing and Assignment decisions in vehicle routing heuristics.



RELATED LITERATURE 139

Sequencing and Assignment decisions were first optimized separately in early
constructive heuristics, giving rise to different families of methods. Route-first
cluster-second algorithms (Bodin and Berman, 1979, Beasley, 1983) first produce
a giant TSP tour before subsequently assigning sequences of consecutive visits
into separate trips to produce a complete solution. In cluster-first route-second
methods (Fisher and Jaikumar, 1981), a clustering algorithm is employed to
group customer visits into clusters, followed by TSP optimizations. Finally,
petal algorithms (Foster and Ryan, 1976, Renaud et al., 1996) are based on an
a-priori generation of candidate routes (petals), followed by the resolution of a
set packing or covering problem.

In the development of local search and metaheuristic algorithms which ensued
in the 1990s and thereafter, Assignment and Sequencing optimizations began
to be better integrated via classical neighborhood local search (Relocate, Swap,
2-opt, 2-opt*) which optimize both decision subsets. These neighborhood search
methods form the basis of the vast majority of state-of-the-art algorithms. Petal
algorithms have withstood the test of time and high-quality routes are now
extracted from metaheuristic local minima instead of being listed in advance
(see Muter et al., 2010, Subramanian et al., 2013b).

The variety of vehicle routing problem variant has also triggered studies
concerning problem decompositions. Vidal et al. (2013) established a review of
the classical variants and their associated constraints, objectives, and decision
sets, called attributes. These attributes were classified in relation to their impact
on Sequencing and Assignment decisions and on Route evaluations within
heuristics, a classification which forms the basis of the state-of-the-art results
for dozens of VRP variants. Many known problem attributes come jointly with
new decision subsets when optimizing vehicle routing with packing, timing or
scheduling constraints (Goel and Vidal, 2014, Pollaris et al., 2015), visit choices
(Vidal et al., 2016) or service-mode choices (Vidal et al., 2015). Decision-set
decompositions are employed throughout many of the aforementioned papers
to perform a search in the space of Sequencing and Assignment choices and
optimally determine the remaining decision variables during each route and
move evaluation.

In this chapter, the decision-set decomposition does not result from sup-
plementary problem attributes, but is instead used to define exponential-
size polynomially-searchable neighborhoods and transform the search space.
Exponential-size neighborhoods have a long history in the combinatorial
optimization literature (Deineko and Woeginger, 2000, Ahuja et al., 2002,



140 CAPACITATED VEHICLE ROUTING PROBLEM

Bompadre, 2012). Most of these neighborhoods are based on shortest path or
matching subproblems, as well as specific graph and distance matrix structures
with which some NP-hard problems become tractable (consider, as examples,
Halin graphs or Monge matrices). As a rule of thumb, larger neighborhoods and
faster search procedures are generally desirable. There are, however, theoretical
limitations to the size of polynomially-searchable neighborhoods. Gutin and
Yeo (2003) proved that, for the TSP, no neighborhood of cardinality at least
(n− k)! for a given constant k may be searched in polynomial time unless NP
⊂ P\poly.

The neighborhood of Balas and Simonetti (2001) (B&S) is one such exponential-
size neighborhood for the TSP. Given a tour represented as a permutation σ of
n customers and a value k, it contains all permutations π of σ such that π fulfills
π(1) = 1 and π(i) ≤ π(j) for all i, j ∈ {1, . . . , n} such that i+ k ≤ j. In other
words, if i precedes j by more than k positions in σ, then π(i) precedes π(j). This
neighborhood contains 2Θ(n) solutions and may be explored in O(k22k−2n) time
using dynamic programming. This is a linear time complexity when k is constant
and a polynomial time complexity when k = O(logn). Balas and Simonetti
(2001) performed extensive experiments and demonstrated that this dynamic
programming procedure may be used as a stand-alone neighborhood to improve
high-quality local minima of the TSP and its immediate variants. Later, Irnich
(2008), Hintsch and Irnich (2017), and Gschwind and Drexl (2016) employed this
neighborhood to solve arc-routing problems with possible cluster constraints
and dial-a-ride problems. One common characteristic of these studies is that
they employed B&S as a stand-alone neighborhood for route improvements.
Only one conference presentation (Irnich, 2013) highlighted the possibility of
employing the B&S neighborhood together with some classical CVRP moves,
but the performance of such an approach remained largely unexplored.

We seek to go one step further. Rather than applying this tour optimization
procedure in combination with a single neighborhood, we investigate employing
it in a systematic manner in combination with every move (Swap or Relocate,
for example) within a CVRP local search. This leads to a redefinition of the
search space, which is discussed in the following section.



PROPOSED METHODOLOGY 141

6.3 Proposed Methodology

The methodology is presented as a local search algorithm, which can
later be easily incorporated into any metaheuristic for the CVRP. The
proposed techniques are better described when considering indirect solution
representations. There is, however, no widely accepted term in the literature for
referring to the elements which represent such indirect solutions. To circumvent
this issue, we henceforth employ the term primitive solutions. Before proceeding
to describing the methodology, some basic definitions related to neighborhood
local search and indirect solution representations are recalled:

Definition 6.1. Primitive solutions and search space: consider a combinatorial
optimization problem of the form min

s∈S
f(s), where S is the solution space and

f the objective function to minimize. Let Sp be the set of primitive solutions
and let the decoder z : Sp → S be an injective application that transforms any
primitive solution s′ ∈ Sp into a complete solution s ∈ S. A neighborhood is
defined as a mapping which associates with each primitive solution s′ a set
of neighbors N (s′) ⊂ Sp. A move is an operation that transform a primitive
solution s′ into one of its neighbors in N(s′). The graph induced by Sp and N
is referred to as the search space, in which nodes represent solutions and edges
indicate moves.

Definition 6.2. TSP-optimal tour : a tour σ is TSP-optimal if there exists no
permutation π of σ with a shorter total distance.

Definition 6.3. Bk-optimal tour : a tour σ is Bk-optimal if there exists no
permutation π of σ with smaller cost such that π(i) ≤ π(j) for all i, j ∈
{1, . . . , n} with i+ k ≤ j.

Throughout the following sections, we propose a choice of search space and
introduce techniques for efficiently exploring it.

6.3.1 Search spaces

This section examines the search spaces associated with the set of all solutions, of
those with TSP-optimal tours, and of those with Bk-optimal tours. Afterwards,
we present a discussion justifying the search space choice. Finally, the general
local search algorithm is presented.



142 CAPACITATED VEHICLE ROUTING PROBLEM

Search space S

Classical local search methods for the CVRP do not distinguish between
primitive and complete solutions. In the search space S, solution sets S and Sp

are equal and the decoder z corresponds to the identity function.

Figure 6.2 presents the search space S associated with Relocate moves for a
small asymmetric CVRP with three customers. There are 13 possible solutions
for this problem, each represented by a set of ordered customer visits. Each
vehicle is responsible for one ordered set. Solution ‘[1,2,3]’, for example, employs
one vehicle to visit customers 1, 2 and 3, while solution ‘[1][2][3]’ employs
three vehicles, one per customer. Each node in the graph indicates a solution,
positioned on the x-axis according to its solution quality (the more to the right,
the better a solution is). Outgoing arcs represent moves which transform the
solution into one of its neighbors. Moreover, solutions with identical customer-
route assignments are grouped within dashed areas. Note that, for this instance
size, it is always possible to reach the optimum solution from any starting point
in two successive moves. In a local search that explores the neighborhood in
random order and applies an improving move as soon as it is found, the worst
case corresponds to five moves (when the initial solution is ‘[2][1,3]’ or ‘[1][2][3]’).

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]

Figure 6.2: Search space S for a small asymmetric CVRP instance



PROPOSED METHODOLOGY 143

Search space SA

As discussed earlier in this chapter, CVRP solutions may be represented in
terms of their Assignment decisions, excluding the Sequencing decisions in
the representation and delegating the choices of the best visit sequences to a
decoder. With such a paradigm, one may define a local search in the space Sp

of primitive solutions, where each s′ ∈ Sp represents a partition of the customer
set into subsets whose sums of demands do not exceed the vehicle capacity. The
decoder z is based on an exact TSP solver, responsible for generating the best
visit sequence originating from and finishing at the depot for each subset of
customers. In this sense, the image z[Sp] ⊂ S exclusively contains solutions
with TSP-optimal tours.

The neighborhood used to explore search space SA can remain similar to
classical CVRP neighborhoods, based on relocations or exchanges of customers
between subsets, or involve other families of moves specialized for partition
problems. Figure 6.3 represents the resulting search space with simple Relocate
moves. Only TSP-optimal tours are explored and therefore the size of the search
space reduces down to five solutions. The other solutions and their connections
are represented in light gray. Note, in our small example, that now at most
three successive improving moves may be applied to attain the optimum from
‘[1][2][3]’.

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]

Figure 6.3: Search space SA for a small asymmetric CVRP instance



144 CAPACITATED VEHICLE ROUTING PROBLEM

Search space SA is much smaller than S and our computational experiments
(Section 6.4) demonstrate that a search in this space indeed leads to solutions
with higher quality. However, each move evaluation in this space requires
executing an algorithm with exponential worst-case time complexity, a TSP
solver, in order to decode each primitive solution in the neighborhood for cost
evaluation. Although research on the TSP has culminated in very efficient
algorithms over the past thirty years, thousands (or millions) of small TSP
instances should be solved during a local search in SA, and thus the total
computational effort dedicated towards decoding can grow prohibitively large.
Moreover, bad behavior in a single case is sufficient, without any other safeguard,
to stall the entire algorithm.

Search space SBk

To circumvent the aforementioned issues, we study an alternative search space in
which set Sp contains complete solutions (with their Assignment and Sequencing
decisions), but where the decoder z is nontrivial and consists of applying B&S
multiple times to each route with a fixed k value until all tours are Bk-optimal.
With these assumptions, the image z[Sp] contains exclusively complete solutions
with Bk-optimal tours. Since the primitive solutions form a subset of the
complete solutions, the application of B&S may also be viewed as a post-
optimization step during classical CVRP move evaluations, opening the way
for additional solution improvements. A careful analysis of the resulting search
space gives even more significance to this approach, due to three properties:

Property 6.1. From an initial solution containing a Bk-optimal tour, a local
search in space SBk explores only Bk-optimal tours.

Property 6.2. For a fixed k, the computational effort of decoding a route
grows polynomially with the number of customers and number of calls to B&S.

Property 6.3. The search space SBk is such that SB0 = S and SBn−1 = SA, with
n being the total number of customers.

These three simple properties are all fundamental for the methodology that
follows. Property 6.1 demonstrates how space SBk contains fewer solutions
than S and that the overall quality of these solutions tends to be higher
(since non-Bk-optimal tours are filtered out). Moreover, Property 6.2 offers
some computational time guarantees: even if the computational effort grows



PROPOSED METHODOLOGY 145

quickly with k, the decoder runtime is guaranteed to remain stable when k is
constant, eliminating the possibility of a computational effort peak for specific
TSP instances. Finally, Property 6.3 demonstrates how k balances the effort
dedicated towards the optimization of the Assignment and Sequencing decision
sets, and establishes SBk as an intermediate search space generalizing S and SA.

Figure 6.4 illustrates the search space SBk for the same example as previous
figures when k = 1. It is an intermediate space between those depicted by
Figures 6.2 and 6.3 which correspond to SB0 = S and SB2 = SA, respectively.
Note how solution [1, 2, 3] is now a neighbor of [2][3, 1] and [1][3, 2], as indicated
by the two dotted arcs.

solution quality

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[1,2,3]

[3,1,2]

Figure 6.4: Search space SB1 for a small asymmetric CVRP instance

Discussions and search space choice

In light of these observations, we have conducted computational experiments
on search space SBk employing the dynamic programming algorithm of Balas
and Simonetti (2001) to decode each solution, as well as on search space
SA using the TSP solver Concorde (Applegate et al., 2003). Despite several
speedup techniques (Section 6.3.2), the search in space SA remained inefficient
throughout our experiments, especially for instances with large average route
cardinality (number of customers in the route). We therefore decided to focus



146 CAPACITATED VEHICLE ROUTING PROBLEM

on search space SBk and devised several speedup techniques to enable its efficient
exploration.

6.3.2 Efficient exploration strategies

To efficiently explore space SBk , we developed a local search algorithm employing
multiple speedup techniques: neighborhood size reduction, dynamic move filters,
concatenation techniques and efficient memory structures. Most of these
techniques seek to limit the search effort in SBk .

Neighborhood size reduction

The majority of recent local search based metaheuristics for the CVRP limits
the neighborhood N (s) of an incumbent solution s to solutions generated by
moves which involve vertices close to each other. Based on concepts described
by Johnson and McGeoch (1997) and Toth and Vigo (2003), we restrict the
search to a subset of moves that reconnect at least one vertex i with a vertex j
belonging to the Γ closest vertices of i. The procedure requires a straightforward
preprocessing step. The neighborhood size becomesO(Γn), enabling a significant
speedup for large-scale problem instances.

Dynamic move filters

To further restrict the search to promising moves, each move φ’s feasibility is
evaluated in O(1), in terms of capacity constraints, being discarded if it leads
to an infeasible solution. The total cost f(φ(s)) of the solution generated by φ
prior to its optimization by the B&S decoder is evaluated subsequently. This
cost represents an upper bound for the final cost of the move in SBk after the
application of the decoder. The move evaluation is pursued only if the solution
cost has increased by a factor 1 + ψ or less due to its application, that is, only
if Equation (6.1) is satisfied. Otherwise, the move is discarded.

f(φ(s)) ≤ (1 + ψ)× f(s) (6.1)

Parameter ψ plays an important role in defining how many moves are evaluated.
The higher the value of ψ, the less pruning is induced by Equation 6.1.



PROPOSED METHODOLOGY 147

Contrastingly, when ψ = 0 only immediately improving neighbors are evaluated.
Defining a good value for ψ is not trivial, given it is an instance-dependent
parameter. Since a fixed value would not suit instances with different sizes and
characteristics, we propose an adaptive parameter. The principle consists of
adjusting ψ to ensure a target range [ξ−, ξ+] for the fraction of filtered moves.
After every 1,000 move evaluations, the fraction ξ of filtered moves is collected
and whenever it falls below or surpasses the desired range, ψ is updated. If
this fraction is too large, then ψ is increased by a multiplicative factor α. In
contrast, if ξ is insufficient, then the parameter ψ is decreased:

ψ =


ψ × α if ξ < ξ−,

ψ / α if ξ > ξ+,

ψ otherwise.
(6.2)

Experiments concerning the impact of different target ranges are discussed in
Section 6.4.

Memory structures

The B&S algorithm, employed as a decoder, requires a computational effort
which grows linearly with route cardinality and exponentially with parameter k.
It is therefore essential to restrain the use of this procedure to a strict minimum
and avoid decoding twice the same route over the course of the search. To that
end, we employ a memoization scheme (Michie, 1968) to cache routes that have
been decoded. A hashtable is used to implement the cache since it allows O(1)
queries given the hash value(s) associated with a route.

Two important aspects should be discussed. First, the number of possible routes
grows exponentially with instance size, whereas the available memory space
is finite. Therefore, some strategy is necessary to limit memory consumption.
To that end, only decoded routes are cached, with the original routes being
identified by their associated hash values. Moreover, an upper boundMmax on
the memory usage is defined and each route in the cache is associated with an
utilization counter which is incremented whenever the entry is queried. This
enables removing the least-utilized entries if memory usage reaches the upper
bound. Whenever the bound is reached, a cleaning procedure is executed in
linear time: first the median of entries utilization is obtained and then up to
50% of the elements whose utilization is below or equal to the median are
removed. Next, the utilization counter of all non-deleted entries is reset to zero.



148 CAPACITATED VEHICLE ROUTING PROBLEM

The second aspect to be discussed concerns the effort spent querying the memory.
Querying memory for a given route supposes the availability of hash values
which characterize the associated sequence of visits, but a direct approach that
sweeps through the route to compute this index already takes O(n) time. To
avoid this bottleneck, specific hash functions and calculation techniques based
on concatenations in O(1) are employed. The details of these concepts are
discussed throughout Section 6.3.3.

General local search algorithm

The local search algorithm including all discussed components is presented in
Algorithm 6.1. The algorithm begins by searching in the neighborhood defined
by N (s) involving vertex pairs (i, j) with j ∈ Γ(i) (lines 1-2). The routes
modified by the move are identified (lines 3-4) and the dynamic filters are then
applied (lines 5-8). If the move is considered promising, it is evaluated. First
the cost c is initialized (line 9). Then, each route is decoded (lines 10-16) and
the cost is included in c (line 17). Note that the cache is employed during the
decoding process (lines 11-12). Moreover, the B&S algorithm may be applied
multiple times, until a Bk-optimal tour is obtained. It is in fact applied at least
once to verify that the solution is Bk-optimal. If the evaluated move results in
an improving solution, it is applied (lines 18-20). The procedure repeats until a
local minimum of SBk is reached (line 21), which is immediately returned (line
22).



PROPOSED METHODOLOGY 149

Algorithm 6.1: Efficient local search in space SBk
Input: An initial complete solution s, dynamic move filter parameter ψ and

neighborhood size reduction parameter Γ
LocalSearch(s, ψ, Γ)

1 repeat
// enumerate O(Γn) moves - candidate lists based on vertex proximity

2 for each move φ(s) ∈ N (s) involving vertex pair (i, j), j ∈ Γ(i) do

3 φ modifies at most two routes of s: let σ1 and σ2 be these routes
4 let c0 be the sum of the cost of routes σ1 and σ2 in s

// filter infeasible moves with respect to capacity in O(1)
5 if σ1 or σ2 are infeasible with respect to capacity then
6 continue

// filter non-promissory moves in O(1)
7 if f(s) + f(σ1) + f(σ2)− c0 > (1 + ψ)× f(s) then
8 continue

// finally, decode routes σ1 and σ2 to evaluate move φ in SB
k

9 c← 0
10 for each route σi with i ∈ {1, 2} do

// compute hash key and check cache in O(1):
11 (σ̄i, c̄i)← LookUp(σi1)

// if route not cached, apply B&S dynamic programming to decode it
12 if (σ̄i, c̄i) not found then
13 (σ̄i, c̄i)← BalasSimonetti(σi)
14 while σ̄i is not a Bk-optimal tour do
15 (σ̄i, c̄i)← BalasSimonetti(σ̄i)
16 include (σi → (σ̄i, c̄i)) in the cache
17 c← c+ c̄i

// if move is an improving one in SB
k , it is applied:

18 if c ≤ c0 then
19 s← φ(s)
20 replace routes (σ1, σ2) by (σ̄1, σ̄2) in s

21 until s is a local minimum
22 return s

6.3.3 Constant-time evaluation

The concatenation strategy of Vidal et al. (2016) is employed to perform efficient
cost and load-feasibility evaluation. This strategy exploits the fact that any
route obtained from a classical move φ(s) on a solution s corresponds to a



150 CAPACITATED VEHICLE ROUTING PROBLEM

recombination of a bounded number of visit sequences of s. New routes may
be expressed as a concatenation of sequences σ1 ⊕ · · · ⊕ σb. We extend this
approach to enable constant time computation of hash values.

To efficiently evaluate the cost, load, and other attributes of new routes, we rely
on preliminary preprocessing these attributes on the O(n2) subsequences of
consecutive visits which compose a solution s. Four values are calculated: the
total demand Q(σ) of a sequence σ, its distance C(σ), and hash values Hp(σ)
and Hs(σ). For a sequence σ̄ = [v] containing a single customer v with demand
qv, Q(σ̄) = qv, C(σ̄) = 0, Hp(σ̄) = ρ× v and Hs(σ̄) = ρv, where ρ represents
a prime number. Moreover, Equations (6.3)-(6.5) extend these quantities, by
induction, for any sequence of customers σ1 ⊕ σ2 expressed as the concatenation
of two sequences σ1 and σ2. In these equations dv,w indicates the distance
between customers v and w.

Q(σ1 ⊕ σ2) = Q(σ1) +Q(σ2) (6.3)

C(σ1 ⊕ σ2) = C(σ1) + dσ1
|σ2|

,σ2
1

+ C(σ2) (6.4)

Hp(σ1 ⊕ σ2) = Hp(σ1) + ρ|σ
1| ×Hp(σ2) (6.5)

Hs(σ1 ⊕ σ2) = Hs(σ1) +Hs(σ2) (6.6)

Two hash functions are employed, as a means of reducing chances of two distinct
sequences having identical hashes. Their inductive definitions are presented
by Equations (6.5) and (6.6). The first is a multiplicative hash function Hp

which considers the permutation of visits. Note that when implementing such a
function, it is important to pre-compute and bound values for ρ` (` ∈ Z+, ` ≤ n)
in addition to also bounding hash values so as to prevent overflow during
multiplication. The second is an additive hash function Hs which ignores the
sequence and therefore solely considers the set of visited customers. Functions
Hp and Hs are also defined by Equations (6.7) and (6.8), respectively.

Hp(σ) =
|σ|∑
i=1

ρi × σi (6.7)

Hs(σ) =
|σ|∑
i=1

ρσi (6.8)

These hash functions fit our purposes particularly well due to the aforementioned



PROPOSED METHODOLOGY 151

inductive definition, which offers a means of computing a route’s hash values in
O(1) during move evaluations. To further reduce the risk of two routes having
similar hashes, the hash functions are applied twice employing different values
for ρ, resulting in four hash values. For the first two values, ρ is set to the
smallest prime number greater than n (number of customers) while for the
third and fourth hash values ρ is assigned a value of 31 (multiplier used by
Kernighan and Ritchie, 1988). These hash values serve, along with the distance
of the route and its number of visits, to correctly distinguish a route in O(1).
Note that even with this strategy, a tiny chance of false positives remains. To
prevent issues and wrong solutions, the sequences are double-checked by an O(n)
procedure whenever an improving move is accepted. However, no false positive
was registered within our computational experiments considering multiple runs
on 100 different instances.

Equations (6.3)-(6.6) may be employed iteratively, in lexicographic order, to
obtain information concerning all sequences during the preprocessing phase.
Afterwards, the same equations are used for move evaluations. Since any route
obtained from a classical move corresponds to the concatenation of a bounded
number of sequences, it is possible to obtain the associated load, distance,
and hash values by solving these equations a limited number of times. The
information concerning subsequences is updated every time an improving move
is applied. Although this takes O(n2) time in the worst case, it remains an
efficient approach in practice since the proportion of accepted (improving) moves
is very low and at most two routes are impacted by a move.

6.3.4 Using memory to reshape the search space

The previous section introduced memory structures to limit the search effort in
SBk , including a cache structure that implements a memoization scheme. Here
we propose an alternative cache strategy which goes one step further: it not
only avoids decoding a route twice but also reshapes the search space SBk .

In the cache structure previously presented, henceforth referred to as permutation
cache, the decoded sequence obtained from each route is stored in the cache.
Therefore, even if two sequences σ1 and σ2 contain the same customers permuted
in different orders, two entries will be stored in the cache. This approach has two
significant disadvantages. First, every customer permutation stores a sequence
in the cache, leading to additional memory requirements. Second, improving



152 CAPACITATED VEHICLE ROUTING PROBLEM

sequences for a customer set may be ignored. To circumvent this issue, an
alternative cache strategy is proposed, hereafter called set cache.

In contrast to the permutation cache, within the set cache strategy only the best
tour obtained for a customer set is stored independently of the permutation.
Note that if search space SA was considered, only optimal tours would be stored
in the cache and, therefore, it would be enough to store one tour per customer
set. When producing Bk-optimal sequences with B&S, however, it is important
to ensure each queried permutation is decoded (optimized) at least once, as
otherwise possibly-improving sequences would not be considered. This requires
storing the best sequence for a given customer set and a reference (hash values)
for permutations previously evaluated for this set of customers. Figure 6.5
presents a flowchart detailing both the permutation and set cache strategies for
storing Bk-optimal tours.

Is there a cache entry 
for the customer set?

No

Set cache:

Yes

Add an empty cache 
entry for customer-set 

route !

cached route !
Yes

Return cached route !

entry c

route !

Is permutation (route)
in the cache?

Decode permutation Add route ! to cache

No

Permutation cache:

Add permutation to 
list in c and decode it

Update route in entry
c (if improved by !) 
and return best route

route !

Is permutation (route)
listed in entry c? route !* in c

No

route !*
Return cached route !*

Yes

entry c

Figure 6.5: Permutation and set cache strategies



PROPOSED METHODOLOGY 153

The set cache strategy strongly influences the search space. In fact, it modifies
the search space, causing a tunneling effect. Note that, as the search progresses,
certain solutions are cached causing those with similar customers but inferior
quality to be removed from the search space. In the hypothetical situation where
all permutations have already been decoded (hypothetical due to the exponential
memory size and computational time required), the set cache systematically
returns the TSP-optimal tour for each route and the algorithm behaves as
though it were searching in SA. With this situation in mind, one may informally
state that the tunneling strategy contributes towards reshaping the search space
SBk into a space more and more similar to SA as the search progresses.

Take for instance the small example depicted in Section 6.3.1 (Figures 6.2–6.4).
Figure 6.6 illustrates the effect of including solution ‘[3, 1, 2]’ in the cache when
the set cache strategy is employed. It causes solution ‘[1, 2, 3]’ to be removed,
with its input being redirected to ‘[3, 1, 2]’. Therefore, despite being Bk-optimal,
solution ‘[1, 2, 3]’ is replaced by ‘[3, 1, 2]’, which has identical assignments but
a lower cost due to better Sequencing decisions. Figure 6.6 also demonstrates
how the search space converges towards SA as the search progresses. In fact,
the resulting search space in this example (Figure 6.6) is already equivalent to
SA, presented previously within Figure 6.3.

solution quality

[1,2,3]

[1][2][3]

[1][2,3] [1][3,2]

[2][1,3] [2][3,1]

[3][2,1] [3][1,2]

[1,3,2]

[2,1,3]
[2,3,1]

[3,2,1]

[3,1,2]

Figure 6.6: Dynamic reshaping (tunneling) of the search space



154 CAPACITATED VEHICLE ROUTING PROBLEM

6.4 Computational experiments

In this section we investigate the impact of the primary design choices and
parameters, in addition to measuring the benefits of systematic Sequencing
optimization. The resulting algorithm is also compared against state-of-the-art
algorithms from the literature. The benchmark instances proposed by Uchoa
et al. (2017) are considered throughout the experiments.

The proposed algorithm was coded in C++ and executed on Intel(R) Xeon(R)
E5-2680v3 CPU @ 2.5GHz computers with 64GB of RAM memory running Red
Hat Enterprise Linux ComputeNode 6.5. A memory limit of 8Gb was imposed
for the cache (see Section 6.3.2). Concorde was employed to solve TSP problems
when searching in neighborhood SA, always using memory cache to prevent
decoding twice the same route as much as possible.

6.4.1 Search space and computational effort

Initial experiments were conducted with a simple local search on search spaces
S, SA and SBk to observe the growth of computational time and identify a
range of k values for which the approach remains practical. This local search is
equivalent to that presented in Algorithm 6.1, beginning from an initial solution
generated by the straightforward savings algorithm proposed by Clarke and
Wright (1964). The only noteworthy observation concerns the value of ψ, which
is set to ψ = ∞ within these experiments. The goal is to analyze the results
of exploring the search spaces without the interference of this particular move
filter.

Figure 6.7 presents two boxplot graphs: the first indicates the solution gap
obtained by the local search and the second presents the required runtime. These
graphs consider the different search spaces S, SBk (k ∈ [1, 9]) and SA. Each
boxplot aggregates 2,000 solutions resulting from 20 executions per instance,
each with a different random seed. The dotted lines indicate average values.
Although instances may differ considerably from each other, they could be
aggregated in Figure 6.7 given the homogeneous behavior of the local search for
all instances. Differences are observed, however, in the degree of improvement
observed for different instances. The figure enables one to conclude that
searching in space SA provides, as expected, better solutions on average. It
also reveals how solution quality consistently increases as k is incremented



COMPUTATIONAL EXPERIMENTS 155

(remember that S = SB0 ). Nevertheless, there is a visible gap between SBk
(k ≤ 9) and SA in terms of solution quality for the considered instances.

S SB
1 SB

2 SB
3 SB

4 SB
5 SB

6 SB
7 SB

8 SB
9 SA

10�2

10�1

100

101

102

103

104

R
u
nt

im
e

(s
ec

on
d
s)

S SB
1 SB

2 SB
3 SB

4 SB
5 SB

6 SB
7 SB

8 SB
9 SA

0

2

4

6

8

10

12

G
ap

(%
)

G
ap

 (%
)

Figure 6.7: Results (solution quality and runtime) of local search solution on
different search spaces

The computational times required by the local search to converge considering the
different search spaces are also presented in Figure 6.7. The runtime includes
the computational time required by B&S and Concorde. The boxplots are
presented in log-scale given the enormous difference when searching in S and
SA. When exploring space SBk , the runtime was always below two seconds
for k ≤ 2. When applying Concorde solver (space SA), however, the average
runtime was approximately 500 seconds, with runtimes for large instances
exceeding 1 hour. Clearly, the additional runtime required to run Concorde in
this case prohibits embedding the proposed local search within metaheuristic
algorithms in practice.

The impact of searching in different spaces on both solution quality and
runtime was also analyzed for instances with different average route cardinalities.
Figure 6.8 presents four boxplot graphs concerning two instance subsets. The
first instance subset (Figure 6.8a) is composed of the 20% instances with
smallest average route cardinality. This results in instances with average route
cardinalities in the range [3.0, 4.55]. The second instance subset (Figure 6.8b)
represents the other extreme, constituted by the 20% instances with largest



156 CAPACITATED VEHICLE ROUTING PROBLEM

S SB
1 SB

2 SB
3 SB

4 SB
5 SB

6 SB
7 SB

8 SB
9 SA

10�2

10�1

100

101

102

103

R
u
nt

im
e

(s
ec

on
d
s)

S SB
1 SB

2 SB
3 SB

4 SB
5 SB

6 SB
7 SB

8 SB
9 SA

10�2

10�1

100

101

102

103

104

R
u
nt

im
e

(s
ec

on
d
s)

S SB
1 SB

2 SB
3 SB

4 SB
5 SB

6 SB
7 SB

8 SB
9 SA

0

2

4

6

8

10

12

G
ap

(%
)

S SB
1 SB

2 SB
3 SB

4 SB
5 SB

6 SB
7 SB

8 SB
9 SA

0

1

2

3

4

5

6

G
ap

(%
)

(a) Instances with average route cardinality in range [3.0, 4.55]:

(b) Instances with average route cardinality in range [16.47, 24.43]:

G
ap

 (%
)

G
ap

 (%
)

Figure 6.8: Results (solution quality and runtime) of local search on different
search spaces for instances with different route cardinalities



COMPUTATIONAL EXPERIMENTS 157

average route cardinality. For these instances, the average route cardinality is
within the range [16.47, 24.43]. In total, each boxplot represents 400 solutions.

Figure 6.8 enables us to draw many conclusions. First, it is clear that the
impact of searching in SBk (for k ≥ 1) and SA on solution quality is far less
noticeable for instances with small route cardinalities. Although some difference
may be noticed even in Figure 6.8a, it is far from being as evident as in
Figure 6.8b. As one would expect, the impact on solution quality is much
higher on instances with more customers per vehicle. The same is true for the
impact on computational time when considering search spaces SBk (k ≤ 9). For
search space SA, solving the TSP (via Concorde) remains an obstacle in terms
of runtime for all instances.

6.4.2 Parameters and speedup techniques

Given that exploring SA with the proposed techniques resulted in prohibitively
long runtimes, we proceed by considering only search spaces S and SBk within
an advanced metaheuristic: the Unified Hybrid Genetic Search (UHGS). The
UHGS employed is described in full length by Vidal et al. (2014). The local
search within the UHGS was replaced by the one proposed in this chapter (see
Algorithm 6.1). The split method and moves applied remained the same (Swap,
Relocation, 2-opt, 2-opt*, and immediate generalizations such as Swap1-2 and
Relocate2 ). Note that the UHGS accepts infeasible solutions due to capacity,
penalizing them in the objective function. A penalty of 100 is applied to each
capacity unit extrapolated.

The parameters require calibration to establish a good balance between
runtime and solution quality. Within preliminary experiments, we obtained
a configuration which represents a reasonable balance: k = 2, set cache
(tunneling) activated and ψ computed dynamically to filter 90%-95% of the
moves. In this section we analyze the impact of modifying these parameters,
examining each parameter in turn while keeping the others fixed. The
experimentation is restricted to a set of 30 medium-scale CVRP instances
with n ∈ {195, ..., 311}, as they require limited computational time while being
simultaneously representative of borderline cases and challenging for current
state-of-the-art heuristics (which not necessarily obtain the optimal solution
on all runs). For each instance, ten runs have been conducted with different
random seeds. The maximum number of iterations without improvements in
the UHGS was set to 20,000 for all experiments in this section.



158 CAPACITATED VEHICLE ROUTING PROBLEM

Impact of cache strategy and parameter k

Figure 6.9 presents the impact of the cache strategy (set and permutation cache)
and parameter k concerning both solution quality and computational time. It
enables one to conclude that searching in SBk (k > 0) results in better solutions
than searching in S for these instances. Increasing the value of k leads to
better solutions, particularly when permutation cache is employed. When set
cache is employed, the impact of k’s value (k ∈ [1, 4]) on solution quality is less
noticeable for these instances. Nevertheless, larger k values come at a high cost:
runtime grows considerably.

Figure 6.9 also shows that the set cache is an overall better strategy than
permutation cache. Note how it resulted in both better solutions and smaller
runtimes for all k values considered. This is an expected result, given the set
cache effects: it shapes SBk into a space closer to SA during the search and
enables better memory management by storing at most one route per customer
set.

S SBS
1 SBS

2 SBS
3 SBS

4 SBS
1 SBS

2 SBS
3 SBS

4

0
50

100
150
200
250
300
350
400

R
u
nt

im
e

(m
in

u
te

s)

S SBS
1 SBS

2 SBS
3 SBS

4 SBS
1 SBS

2 SBS
3 SBS

4

�0.4
�0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

G
ap

(%
)

set cache permutation cache

Ru
nt

im
e 

(m
in

ut
es

)
G

ap
 (%

)

S SBS
1 SBS

2 SBS
3 SBS

4 SBS
1 SBS

2 SBS
3 SBS

4

�0.4
�0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

G
ap

(%
)

Figure 6.9: Results (solution quality and runtime) of UHGS for different cache
strategies and k values



COMPUTATIONAL EXPERIMENTS 159

Impact of the dynamic move filter

Figure 6.10 shows the impact of different dynamic move filter values [ξ−, ξ+], in
addition to filtering all non-proving moves (ψ = 0). These experiments employ
the set cache strategy and k = 2. It is noticeable from Figure 6.10 that filtering
all moves which do not immediately improve the solution (ψ = 0) results in
worse solutions. Filtering 95%-97.5% leads to better results in terms of solution
quality. Further reducing the filter leads to higher-quality solutions. This is an
interesting finding: moves generally discarded in regular local search methods,
when applied in combination with B&S lead to better solutions on average.
In this particular example, some negative gaps are also witnessed, indicating
improvements over the best known solution for some instance(s). However, the
runtime increases considerably when less moves are filtered, revealing an evident
trade-off. Seeking balance between solution quality and runtime, we selected
the range [90%, 95%] as default.

[80%, 85%] [85%, 90%] [90%, 95%] [95%, 97.5%]  = 0
0

50

100

150

200

250

R
u
nt

im
e

(m
in

u
te

s)

[80%, 85%] [85%, 90%] [90%, 95%] [95%, 97.5%]  = 0
�0.4
�0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

G
ap

(%
)

G
ap

 (%
)

Ru
nt

im
e 

(m
in

ut
es

)

Figure 6.10: Results (solution quality and runtime) of UHGS for different
[ξ−, ξ+] values

6.4.3 Final results

Results for all 100 instances proposed by Uchoa et al. (2017) are reported in
this section. These instances, as indicated by Table 6.1, are grouped into three



160 CAPACITATED VEHICLE ROUTING PROBLEM

categories: small, medium and large.

Table 6.1: Instance groups

Category Customers Instances # Instances

small 100 – 250 X-n101-k25 – X-n247-k47 32
medium 250 – 500 X-n251-k28 – X-n491-k59 36
large 500 – 1000 X-n502-k39 – X-n1001-k43 32

Tables 6.2, 6.3 and 6.4 present the results obtained with the proposed approach,
comparing it against the state-of-the-art algorithms in the literature:

ILS : Iterated Local Search method proposed by Subramanian et al. (2013a).

UHGS : Unified Hybrid Genetic Search algorithm proposed by Vidal et al.
(2014).

ASB-RR : Adjacent string removal and greedy insertion with blinks heuristic
developed by Christiaens and Vanden Berghe (2016).

The tables present the average runtime (in minutes), and average and best
solution values for all methodologies. ILS, UHGS and ASB-RR were executed 50
times for each instance. The proposed approach, however, was executed 10 times
due to its elevated runtime for some instances, and a runtime limit of 24 hours
was imposed for each execution. The maximum number of iterations without
improvements within the UHGS was set to 50,000, mimicking Uchoa et al.
(2017). Moreover, best results are highlighted in the table, with ~ indicating
an improvement over the best solution produced by ILS, UHGS and ASB-RR.
Finally, the average gap to the best solution (including those generated during
this research) is presented for each algorithm in each table’s final row.

Tables 6.2, 6.3 and 6.4 highlights how exploring SB2 resulted in several
improvements over the best solutions obtained by the state-of-the-art methods
considered. The methodology clearly improves upon the state-of-the-art when
small and medium instances are considered. Moreover, searching in SB2 rather
than S (column UHGS) consistently improved final solution quality. The best
results for large instances, however, were obtained by ASB-RR. In terms of
runtime, the proposed approach performed worse than the other heuristics, as
expected, reaching the runtime limit of 24h in a few executions.

Among the results, we highlight some unexpected improvements upon the
best known solutions for rather small instances. When analyzing the improved
solution for X-n256-k16, for example, one interesting characteristic was observed:



CO
M
PUTATIO

N
AL

EXPERIM
EN

TS
161

Table 6.2: Results for small instances from Uchoa et al. (2017)

# Instance ILS UHGS ASB-RR Proposed algorithm

Time Average Best Time Average Best Time Average Best Time Average Best

1 X-n101-k25 0.1 27591.0 27591 1.4 27591.0 27591 0.8 27591.0 27591 2.4 27591.0 27591
2 X-n106-k14 2.0 26375.9 26362 4.0 26381.8 26378 1.3 26381.5 26362 17.6 26374.3 26362
3 X-n110-k13 0.2 14971.0 14971 1.6 14971.0 14971 1.0 14971.1 14971 3.9 14971.0 14971
4 X-n115-k10 0.2 12747.0 12747 1.8 12747.0 12747 0.2 12747.0 12747 6.4 12747.0 12747
5 X-n120-k6 1.7 13337.6 13332 2.3 13332.0 13332 1.6 13332.0 13332 38.3 13332.0 13332
6 X-n125-k30 1.4 55673.8 55539 2.7 55542.1 55539 3.1 55556.3 55542 6.1 55540.0 55539
7 X-n129-k18 1.9 28998.0 28948 2.7 28948.5 28940 1.5 28948.8 28940 8.4 28940.0 28940
8 X-n134-k13 2.1 10947.4 10916 3.3 10934.9 10916 2.8 10940.1 10916 20.2 10916.0 10916
9 X-n139-k10 1.6 13603.1 13590 2.3 13590.0 13590 2.0 13595.4 13590 8.9 13590.0 13590

10 X-n143-k7 1.6 15745.2 15726 3.1 15700.2 15700 2.1 15705.8 15700 33.1 15700.0 15700
11 X-n148-k46 0.8 43452.1 43448 3.2 43448.0 43448 2.8 43469.2 43448 5.1 43448.0 43448
12 X-n153-k22 0.5 21400.0 21340 5.5 21226.3 21220 5.6 21229.4 21220 15.2 21225.6 21220
13 X-n157-k13 0.8 16876.0 16876 3.2 16876.0 16876 3.7 16878.6 16876 28.4 16876.0 16876
14 X-n162-k11 0.5 14160.1 14138 3.3 14141.3 14138 3.4 14157.1 14138 12.2 14138.0 14138
15 X-n167-k10 0.9 20608.7 20562 3.7 20563.2 20557 3.2 20560.8 20557 36.1 20557.0 20557
16 X-n172-k51 0.6 45616.1 45607 3.8 45607.0 45607 5.3 45619.2 45607 5.7 45607.0 45607
17 X-n176-k26 1.1 48249.8 48140 7.6 47957.2 47812 5.2 47849.6 47812 16.2 47830.7 47812
18 X-n181-k23 1.6 25571.5 25569 6.3 25591.1 25569 5.5 25579.8 25569 13.9 25569.4 25569
19 X-n186-k15 1.7 24186.0 24145 5.9 24147.2 24145 4.0 24178.4 24149 20.2 24145.0 24145
20 X-n190-k8 2.1 17143.1 17085 12.1 16987.9 16980 9.1 16984.9 16980 161.9 16985.3 16980
21 X-n195-k51 0.9 44234.3 44225 6.1 44244.1 44225 6.1 44298.5 44241 9.3 44283.8 44225
22 X-n200-k36 7.5 58697.2 58626 8.0 58626.4 58578 6.7 58636.1 58578 12.0 58615.1 58578
23 X-n204-k19 1.1 19625.2 19570 5.4 19571.5 19565 4.9 19662.3 19565 15.7 19567.0 19565
24 X-n209-k16 3.8 30765.4 30667 8.6 30680.4 30656 6.0 30669.4 30656 35.7 30671.3 30656
25 X-n214-k11 2.3 11126.9 10985 10.2 10877.4 10856 8.7 10908.6 10873 52.3 10872.1 10856
26 X-n219-k73 0.9 117595.0 117595 7.7 117604.9 117595 8.0 117650.4 117595 18.2 117600.5 117595
27 X-n223-k34 8.5 40533.5 40471 8.3 40499.0 40437 7.6 40529.9 40448 18.6 40478.4 40437
28 X-n228-k23 2.4 25795.8 25743 9.8 25779.3 25742 10.5 25790.9 25744 29.0 25768.0 25743
29 X-n233-k16 3.0 19336.7 19266 6.8 19288.4 19230 8.1 19269.7 19232 34.0 19276.5 19230
30 X-n237-k14 3.5 27078.8 27042 8.9 27067.3 27042 7.2 27089.7 27042 32.2 27048.8 27042
31 X-n242-k48 17.8 82874.2 82774 12.4 82948.7 82804 9.9 82884.4 82775 18.1 82920.9 82751 ~
32 X-n247-k47 2.1 37507.2 37289 20.4 37284.4 37274 18.4 37323.2 37274 27.7 37388.9 37274

Average gap: 0.31% 0.12% 0.07% 0.00% 0.11% 0.01% 0.05% 0.00%



162
CAPACITATED

VEH
ICLE

RO
UTIN

G
PRO

BLEM
Table 6.3: Results for medium instances from Uchoa et al. (2017)

# Instance ILS UHGS ASB-RR Proposed algorithm

Time Average Best Time Average Best Time Average Best Time Average Best

33 X-n251-k28 10.8 38840.0 38727 11.7 38796.4 38699 9.8 38791.0 38687 20.2 38778.7 38684 ~
34 X-n256-k16 2.0 18883.9 18880 6.5 18880.0 18880 11.5 18888.9 18880 23.0 18867.7 18839 ~
35 X-n261-k13 6.7 26869.0 26706 12.7 26629.6 26558 11.8 26642.3 26558 48.6 26618.1 26558
36 X-n266-k58 10.0 75563.3 75478 21.4 75759.3 75517 10.8 75617.8 75478 29.9 75710.7 75478
37 X-n270-k35 9.1 35363.4 35324 11.3 35367.2 35303 11.4 35362.2 35323 18.9 35314.6 35303
38 X-n275-k28 3.6 21256.0 21245 12.0 21280.6 21245 13.3 21268.6 21245 22.7 21255.0 21245
39 X-n280-k17 9.6 33769.4 33624 19.1 33605.8 33505 17.7 33628.1 33529 136.2 33587.9 33503 ~
40 X-n284-k15 8.6 20448.5 20295 19.9 20286.4 20227 15.3 20286.6 20240 97.7 20282.1 20228
41 X-n289-k60 16.1 95450.6 95315 21.3 95469.5 95244 14.3 95352.2 95233 41.7 95447.2 95211 ~
42 X-n294-k50 12.4 47254.7 47190 14.7 47259.0 47171 14.7 47274.5 47210 27.0 47272.7 47161 ~
43 X-n298-k31 6.9 34356.0 34239 10.9 34292.1 34231 14.5 34276.0 34234 20.7 34276.3 34231
44 X-n303-k21 14.2 21895.8 21812 17.3 21850.9 21748 17.3 21776.5 21751 48.4 21811.2 21744 ~
45 X-n308-k13 9.5 26101.1 25901 15.3 25895.4 25859 25.7 26207.7 25931 112.8 25897.3 25861
46 X-n313-k71 17.5 94297.3 94192 22.4 94265.2 94093 18.9 94182.4 94063 30.6 94280.4 94045 ~
47 X-n317-k53 8.6 78356.0 78355 22.4 78387.8 78355 22.0 78392.4 78355 50.3 78385.3 78355
48 X-n322-k28 14.7 29991.3 29877 15.2 29956.1 29870 16.9 29927.6 29849 27.7 29892.5 29834 ~
49 X-n327-k20 19.1 27812.4 27599 18.2 27628.2 27564 21.6 27631.4 27608 68.7 27590.8 27532 ~
50 X-n331-k15 15.7 31235.5 31105 24.4 31159.6 31103 20.4 31128.2 31122 102.1 31126.7 31103
51 X-n336-k84 21.4 139461.0 139197 38.0 139534.9 139210 22.8 139373.4 139209 66.0 139460.1 139303
52 X-n344-k43 22.6 42284.0 42146 21.7 42208.8 42099 21.5 42158.5 42079 39.7 42156.1 42056 ~
53 X-n351-k40 25.2 26150.3 26021 33.7 26014.0 25946 26.5 25982.1 25938 51.5 25981.8 25938
54 X-n359-k29 48.9 52076.5 51706 34.9 51721.7 51509 23.1 51577.8 51505 112.0 51640.7 51555
55 X-n367-k17 13.1 23003.2 22902 22.0 22838.4 22814 36.1 22833.4 22814 117.3 22876.2 22814
56 X-n376-k94 7.1 147713.0 147713 28.3 147750.2 147717 32.0 147783.6 147721 70.3 147740.5 147714
57 X-n384-k52 34.5 66372.5 66116 40.2 66270.2 66081 25.9 66107.4 65963 56.8 66170.3 65997
58 X-n393-k38 20.8 38457.4 38298 28.7 38374.9 38269 30.4 38394.1 38331 49.3 38309.3 38260 ~
59 X-n401-k29 60.4 66715.1 66453 49.5 66365.4 66243 38.0 66248.5 66189 110.2 66359.0 66212
60 X-n411-k19 23.8 19954.9 19792 34.7 19743.8 19718 58.4 19768.5 19731 126.0 19736.7 19721
61 X-n420-k130 22.2 107838.0 107798 53.2 107924.1 107798 47.9 107879.2 107817 87.7 107913.7 107798
62 X-n429-k61 38.2 65746.6 65563 41.5 65648.5 65501 35.0 65593.6 65485 65.6 65661.6 65470 ~
63 X-n439-k37 39.6 36441.6 36395 34.6 36451.1 36395 42.1 36473.8 36426 57.1 36410.1 36395
64 X-n449-k29 59.9 56204.9 55761 64.9 55553.1 55378 38.0 55411.2 55272 132.6 55432.7 55330
65 X-n459-k26 60.6 24462.4 24209 42.8 24272.6 24181 56.5 24242.2 24175 92.9 24226.0 24145 ~
66 X-n469-k138 36.3 222182.0 221909 86.7 222617.1 222070 48.0 222227.1 221984 142.3 222427.5 222235
67 X-n480-k70 50.4 89871.2 89694 67.0 89760.1 89535 50.5 89559.2 89458 73.1 89744.7 89513
68 X-n491-k59 52.2 67226.7 66965 71.9 66898.0 66633 51.4 66645.5 66517 81.9 66794.1 66607

Average gap: 0.57% 0.21% 0.28% 0.05% 0.23% 0.05% 0.20% 0.02%



CO
M
PUTATIO

N
AL

EXPERIM
EN

TS
163

Table 6.4: Results for large instances from Uchoa et al. (2017)

# Instance ILS UHGS ASB-RR Proposed algorithm

Time Average Best Time Average Best Time Average Best Time Average Best

69 X-n502-k39 80.8 69346.8 69284 63.6 69328.8 69253 60.9 69274.7 69243 177.7 69277.1 69247
70 X-n513-k21 35.0 24434.0 24332 33.1 24296.6 24201 77.1 24292.1 24238 99.4 24256.2 24201
71 X-n524-k137 27.3 155005.0 154709 80.7 154979.5 154774 151.4 154807.2 154651 207.3 155038.1 154787
72 X-n536-k96 62.1 95700.7 95524 107.5 95330.6 95122 74.7 95173.2 95006 144.5 95335.4 95112
73 X-n548-k50 64.0 86874.1 86710 84.2 86998.5 86822 64.5 86798.0 86710 136.6 86881.0 86778
74 X-n561-k42 68.9 43131.3 42952 60.6 42866.4 42756 73.8 42868.1 42774 77.2 42860.0 42733 ~
75 X-n573-k30 112.0 51173.0 51092 188.2 50915.1 50780 113.0 50804.6 50737 782.4 50876.9 50801
76 X-n586-k159 78.5 190919.0 190612 175.3 190838.0 190543 86.3 190600.7 190484 234.3 190752.4 190442 ~
77 X-n599-k92 73.0 109384.0 109056 125.9 109064.2 108813 75.4 108688.6 108548 166.9 108993.3 108576
78 X-n613-k62 74.8 60444.2 60229 117.3 59960.0 59778 88.1 59731.3 59585 103.6 59859.7 59654
79 X-n627-k43 162.7 62905.6 62783 239.7 62524.1 62366 89.3 62317.1 62219 543.1 62442.9 62254
80 X-n641-k35 140.4 64606.1 64462 158.8 64192.0 63839 92.5 63850.3 63750 304.4 64105.6 63859
81 X-n655-k131 47.2 106782.0 106780 150.5 106899.1 106829 109.6 106844.6 106813 253.2 106855.6 106804
82 X-n670-k126 61.2 147676.0 147045 264.1 147222.7 146705 198.9 146720.4 146451 267.7 147663.9 147163
83 X-n685-k75 73.9 68988.2 68646 156.7 68654.1 68425 135.1 68369.0 68271 177.0 68596.0 68496
84 X-n701-k44 210.1 83042.2 82888 253.2 82487.4 82293 122.5 82065.4 81974 368.0 82409.2 82174
85 X-n716-k35 225.8 44171.6 44021 264.3 43641.4 43525 158.3 43483.8 43426 437.2 43599.9 43498
86 X-n733-k159 111.6 137045.0 136832 244.5 136587.6 136366 143.2 136389.3 136255 334.2 136607.4 136424
87 X-n749-k98 127.2 78275.9 77952 313.9 77864.9 77715 146.3 77509.2 77380 308.3 77862.8 77605
88 X-n766-k71 242.1 115738.0 115443 383.0 115147.9 114683 174.4 114761.1 114590 330.5 115115.9 114812
89 X-n783-k48 235.5 73722.9 73447 269.7 73009.6 72781 170.2 72660.7 72492 351.2 72892.4 72738
90 X-n801-k40 432.6 74005.7 73830 289.2 73731.0 73587 137.1 73436.7 73347 424.0 73651.6 73466
91 X-n819-k171 148.9 159425.0 159164 374.3 158899.3 158611 172.5 158423.0 158305 675.6 158849.0 158592
92 X-n837-k142 173.2 195027.0 194804 463.4 194476.5 194266 166.8 193976.9 193824 634.9 194504.0 194356
93 X-n856-k95 153.7 89277.6 89060 288.4 89238.7 89118 160.0 89131.3 89050 314.6 89220.0 89020 ~
94 X-n876-k59 409.3 100417.0 100177 495.4 99884.1 99715 217.4 99483.2 99388 543.1 99780.3 99610
95 X-n895-k37 410.2 54958.5 54713 321.9 54439.8 54172 212.5 54085.8 53993 500.2 54407.4 54254
96 X-n916-k207 226.1 330948.0 330639 560.8 330198.3 329836 215.3 329509.5 329299 1082.5 330153.2 329866
97 X-n936-k151 202.5 134530.0 133592 531.5 133512.9 133140 412.7 133117.3 133014 1022.2 133729.3 133376
98 X-n957-k87 311.2 85936.6 85697 432.9 85822.6 85672 202.4 85620.0 85546 307.9 85681.5 85555
99 X-n979-k58 687.2 120253.0 119994 554.0 119502.1 119194 276.6 119120.4 119065 928.4 119527.7 119188

100 X-n1001-k43 792.8 73985.4 73776 549.0 72956.0 72742 284.3 72528.1 72415 952.8 72903.3 72629

Average gap: 0.90% 0.63% 0.43% 0.19% 0.14% 0.01% 0.38% 0.16%



164 CAPACITATED VEHICLE ROUTING PROBLEM

only 16 vehicles are used, with the impressive average capacity usage of 99.6%.
Clearly, this is a difficult solution to obtain since no other algorithm was capable
of generating it before.

6.5 Conclusions and future work

This chapter studied decision-set decompositions for the classic CVRP. It was
shown that decomposing the problem into Assignment and Sequencing and
conducting local search in the Assignment space (SA) consistently generates
better results than searching in the complete search space S. The Sequencing
was solved by the Concorde solver. However, the additional runtime required for
decoding primitive solutions (assignments) into complete solutions prohibited
employing this technique within state-of-the-art metaheuristic algorithms.
To circumvent this issue the B&S neighborhood was employed to derive an
intermediate search space (SBk ). It was shown that searching in SBk also provides
better solutions than searching in S for a simple local search method.

Different techniques were proposed and evaluated for efficiently exploring space
SBk : neighborhood size reduction, dynamic move filters, concatenation techniques
and efficient memory structures. Moreover, memory was also employed to
reshape SBk into a search space more and more similar to SA as the search
progresses. The combination of these techniques within the UHGS solver
exploring space SBk resulted in an improved algorithm. Multiple instances
from the literature had their best known solution improved. When compared
against the state-of-the-art for the CVRP, the proposed algorithm within UHGS
obtained higher-quality solutions for small- and medium-size instances.

Future work includes further investigating computational techniques to efficiently
explore search space SA. Employing Concorde resulted in extremely long
runtimes. However, the resolution of the TSP may be avoided via lower bounds
which can be quickly computed. Moreover, Concorde is not optimized to handle
millions of small cardinality routes and therefore implementing a dedicated
TSP-solver also represents one future research direction. Finally, the proposed
approach should also be evaluated for immediate generalizations of the CVRP.



Chapter 7

Swap-body Vehicle Routing
Problem

This chapter investigates the Swap-Body Vehicle Routing Problem (SBVRP),
a generalization of the classical Vehicle Routing Problem (VRP) based on
real problems faced by industry. The SBVRP was proposed by the EURO
Working Group on Vehicle Routing and Logistics Optimization (VeRoLog) and
the PTV Group during the First VeRoLog Solver Challenge (Heid et al., 2014).
It is a generalization of the classical Vehicle Routing Problem (VRP) in which
customers are served by vehicles whose sizes may be enlarged via the addition
of a swap body (trailer). The inclusion of a swap body doubles vehicle capacity
while also increasing its operational cost. However, not all customers may be
served by vehicles consisting of two bodies. Therefore swap locations are present
where one of the bodies may be temporarily parked, enabling double body
vehicles to serve customers requiring a single body. Both total travel time and
distance incur costs that should be minimized, while the number of customers
visited by a single vehicle is limited both by its capacity and by a maximum
travel time.

This chapter is a minor adaptation of Toffolo et al. (2018)1 and presents the
stochastic local search method that won the First VeRoLog Solver Challenge.
State of the art VRP approaches do not accommodate SBVRP generalizations

1Toffolo, T. A. M., Christiaens, J., Van Malderen, S., Wauters, T., Vanden Berghe,
G. (To appear). Stochastic local search with learning automaton for the swap-body vehicle
routing problem. Computers & Operations Research. 89:68–81 (In press)

165



166 SWAP-BODY VEHICLE ROUTING PROBLEM

well, motivating the investigation of algorithms which take advantage of the
swap body characteristic. The proposed algorithm combines both general and
dedicated heuristic components with a learning scheme. Classical, problem-
specific and subproblem optimization neighborhoods are employed to efficiently
explore the solution space. The algorithm improves the best known solution
for the majority of the instances proposed during the challenge. Results are
also presented for a new set of instances with the aim of stimulating further
research on the SBVRP.

This chapter is divided into 5 sections. Section 7.1 introduces the problem,
providing a detailed description. Section 7.2 presents a literature overview
about the SBVRP and related work. The algorithm is proposed and described
within Section 7.3. The neighborhood structures considered for the local search
are discussed in Section 7.4, with particular emphasis on those employing
subproblem optimization. Section 7.5 presents computational experiments and,
finally, Section 7.6 summarizes the conclusions and indicates future research
directions.

7.1 Introduction

The classical VRP is one of the most studied problems in combinatorial
optimization and is defined under capacity and route length constraints (Cordeau
et al., 2007). The SBVRP primarily differs from the VRP insofar as vehicles
consist of either one or two bodies (trailers). The lengthened vehicles are called
trains and have exactly twice the capacity of the regular vehicles (trucks).
Figure 7.1 shows an example of a truck, a swap body (with a trailer) and a
train, respectively.

+ =
Truck Truck Swap body Train

Figure 7.1: Vehicle type examples

Customers have individual demands and must be served by exactly one vehicle.
Three types of customers are considered: those who can only be reached by
trucks, those who can be served by both trains and trucks, and those whose
demands exceed the capacity of a truck and must be attended to by trains.



INTRODUCTION 167

Customers are geographically dispersed. Travel times and distances between all
locations are given.

In addition to the depot and customers’ locations, swap locations are present,
where one of the bodies of a train may be temporarily left, enabling the vehicle
to serve customers with a single body (truck).

The SBVRP considers both total time and distance to derive costs that should
be minimized. These costs vary depending on whether the considered vehicle is
a train or truck. Furthermore, additional costs for operations at swap locations
are also considered. Vehicles routes are limited by both their capacity and a
maximum travel duration.

This chapter proposes a stochastic local search heuristic approach to the
problem. Initially, a naive solution is quickly built. Different intensification and
diversification strategies are subsequently applied to improve the solution. These
strategies include a subproblem optimization scheme and different neighborhood
structures, both of which are embedded in a metaheuristic framework. A
preprocessing procedure reduces the solution space and thus dramatically
increases the heuristic’s efficiency. The stochastic local search won the First
VeRoLog Solver Challenge and continues to outperform all other proposed
approaches for the problem.

The approach has significant practical relevance for a range of business activities
including production, distribution and also the transportation sector more
generally. The delivery of both perishable and urgently-required goods (fuel, for
example), which almost always necessitates transportation by road, becomes
greatly optimized. Indeed, very often the transportation costs associated with
such products are disproportionate when compared against the cost of the
products themselves. Furthermore, the approach ensures efficiency with regard
to a number of important economic and ecological factors such as: the number
of vehicles, number of drivers, travel distance and time, and the environmental
impact.

7.1.1 The VeRoLog challenge problem

The SBVRP proposed during the First VeRoLog Solver Challenge is a
generalization of the classical VRP and, by consequence, is anNP-Hard problem.
It can be defined on a graph G = (V,A), where the vertices V are the locations
and the arcs A are the connections between these locations. Three vertex



168 SWAP-BODY VEHICLE ROUTING PROBLEM

categories are considered: depot, customers and swap locations. A single depot
vertex is defined.

The customers, represented by the subset C ⊂ V , are divided into three groups:
truck-only (C1 ⊆ C), flexible (C2 ⊆ C) and train-only (C3 ⊆ C). These groups
are defined according to the types of vehicle that can be employed to visit the
customers. Truck-only customers can only be attended to by trucks, flexible
customers can have their demands satisfied by both trucks and trains, and
train-only customers require trains.

All customers i ∈ C have an associated demand qi and service time si. These
demands must be satisfied with exactly one visit. Since the capacity of a
swap body is given by constant Q, truck-only and flexible customers’ demands
must be bounded by Q, such that qi ≤ Q ∀i ∈ C1 ∪ C2. Contrastingly, train-
only customers have demands that trucks cannot satisfy, therefore implying
Q < qi ≤ 2Q ∀i ∈ C3.

Swap locations, represented by the subset S ⊂ V , are associated with neither
demand nor service time. Nevertheless, depending on the operation executed
at a swap location, a certain amount of time is consumed. In total, three
operations are possible at a swap location, each consuming varying amounts of
time:

park : leaves the back swap body of the train at the swap location;

pickup : picks up the swap body that was left at a swap location;

swap : leaves the currently attached swap body and picks up the swap
body that was left at the swap location.

The First VeRoLog Solver Challenge organizers also defined a fourth possible
operation: exchange, which consists of leaving the front swap body of the train
at the swap location. However, as Miranda-Bront et al. (2017) have highlighted,
the consumed capacity of the bodies may be distributed across routes such that
the first action on a swap location is always park. Since exchange generally
requires more time than park, it is never utilized.

Each arc (i, j) ∈ A connects location i to location j, has a distance di,j and
a travel time ti,j . Note that the distances and travel times are asymmetric,
meaning di,j and ti,j are not guaranteed to be equal to dj,i and tj,i respectively.



INTRODUCTION 169

Figure 7.2 shows a graph representation of a small SBVRP instance. Triangles
represent swap locations, squares indicate truck-only customers, filled circles
denote flexible customers and, finally, open circles identify train-only customers.

Depot

Figure 7.2: Graph representation of a small SBVRP instance

Vehicles must leave and return to the depot with the same swap bodies. Crucially,
routes must begin and end in the depot and swap bodies may not be exchanged
between vehicles. Therefore, if a vehicle leaves a swap body in a swap location,
the body must be retrieved later by the same vehicle. Henceforth, the part of
the route that comprises of the customers between the two swap location visits
will be referred to as a sub-route.

All routes must respect capacity constraints and a maximum duration T . Each
route’s duration is given by the sum of its travel times, service times and swap
operation times.

In the SBVRP considered the objective is to minimize the total operation cost,
given by the sum of two components:

vehicle/driver costs : consisting of a fixed cost for using a vehicle, a cost per
kilometer traveled and a cost per hour (driver’s cost);

swap body costs : consisting of a fixed cost per additional swap body
and a cost per kilometer traveled with it.



170 SWAP-BODY VEHICLE ROUTING PROBLEM

A sample solution for the problem depicted by Figure 7.2 is shown in Figure 7.3.
This example employs three vehicles: one truck and two trains. Note that one of
the routes (route 3) contains a sub-route, therefore indicating it utilizes a swap
location. The swap location temporarily stores one of the vehicle’s swap bodies,
while it visits two truck-only customers. After visiting these two customers (or
directly before finishing the sub-route), the vehicle reattaches the parked body
and continues towards the next customers.

Depot

route 3

route 1

route 2

Figure 7.3: Example of a SBVRP solution

7.2 Literature review

The SBVRP considered by this work was introduced recently in the literature.
Huber and Geiger (2014) addressed the SBVRP with an iterative Variable
Neighborhood Search (VNS) procedure. They employed a cluster-first route-
second approach to produce initial solutions. Both sequential and parallel
versions of the algorithm were evaluated. Lum et al. (2015) applied a VRP-
Reduce algorithm to the SBVRP. They first transform the SBVRP into a
classical VRP and then solve the classical problem employing a Simulated
Annealing (SA) algorithm. Afterwards, a post-processing procedure produces
solutions to the SBVRP, which are subsequently improved with a Variable
Neighborhood Descent (VND) method. Miranda-Bront et al. (2017) combined a



LITERATURE REVIEW 171

cluster-first route-second approach with a Greedy Randomized Adaptive Search
Procedure (GRASP). Different constructive heuristics were studied. Absi et al.
(2017) proposed a relax-and-repair approach to the SBVRP in which the problem
is initially solved as a heterogeneous-fleet VRP with a memetic algorithm. Next,
the results are repaired to produce valid solutions for the SBVRP. During the
optimization process all solutions are stored to be later used as input to a set-
partitioning problem aiming at deriving better solutions. Finally, Todosijević
et al. (2017) proposed a method that resembles the one proposed by Huber and
Geiger (2014). A cluster-first, route-second constructive heuristic for generating
an initial solution, and two General Variable Neighborhood Search (GVNS)
heuristics. Both sequential and parallel versions were evaluated. Todosijević
et al. (2017) also introduced a mixed integer programming formulation for the
SBVRP. Recently, Huber and Geiger (2017) presented a study on the importance
of the neighborhoods and their ordering within the VNS algorithm proposed by
Huber and Geiger (2014). It was shown that the sequence of neighborhoods
matters. In addition, the impact of the synchronization frequency during the
parallel execution was also evaluated. Improved results were reported.

Table 7.1 summarizes the characteristics of the published SBVRP methods.
Each column represents a different approach: HG2014/2017 (Huber and Geiger,
2014, 2017), Lum2015 (Lum et al., 2015), THUJG2017 (Todosijević et al.,
2017), MB2017 (Miranda-Bront et al., 2017) and Absi2017 (Absi et al., 2017).
Note how all studies addressed the SBVRP with heuristic-based methods.
Moreover, although some classic neighborhoods were adapted to consider
SBVRP characteristics, the limited number of neighborhoods exploiting problem-
specific features is noteworthy.

Other problems bearing many similarities with the SBVRP have been studied
by various authors. Gerdessen (1996), for instance, presented a study on the
Vehicle Routing Problem with Trailers (VRPT). Like the SBVRP, the VRPT
considers two vehicle configurations: trucks and trucks with an attached trailer
(trains). Although all customers may be served by trains in the VRPT, it proves
inconvenient to visit some customers with a large vehicle, such as those located
in the city center. The degree of inconvenience is measured by what Gerdessen
calls manoeuvring time, which consists of the additional time required by trains,
as opposed to trucks, when serving a specific customer. Trailers can be parked
at any customer site with two additional simplifications considered: firstly, each
trailer is parked exactly once and, secondly, all customers have unit demands.
Gerdessen proposed three constructive heuristic algorithms and an improvement
heuristic based on local search.



172
SW

AP-BO
D
Y
VEH

ICLE
RO

UTIN
G
PRO

BLEM

Table 7.1: Overview of previous SBVRP strategies in the literature

Feature / characteristics

Challenge participants Others

HG2014/2017 Lum2015 THUJG2017 MB2017 Absi2017

Construction heuristic Cluster-first
route-second SA (VRP) Cluster-first

route-second
Cluster-first
route-second

Heterogeneous
fleet VRP

Metaheuristic strategy VNS SA, VND GVNS GRASP Multiple
strategies

Population based - - - - X
Parallel computing X - X X X

Intra-route neighborhoods
relocate X - X - X
swap - - - - X
2-opt X X X X X
3-opt X - - - -

Inter-route neighborhoods
relocate X - X X X
swap X X X X X
multiple swap - X X - -
3-exchange X - - - -
or-opt - X - X -

Problem-specific neighborhoods
Change swap location X - - - -
Truck-only customer migration - X - - -
Route downgrade (single truck) - - - X -
Repair procedure(s) - - - - X



LITERATURE REVIEW 173

Another similar problem is the Truck and Trailer Routing Problem (TTRP),
introduced by Chao (2002). The TTRP is a real-world extension of the VRP in
which a limited fleet of trucks and trailers with fixed capacities serve a set of
customers from a central depot. Note that, in contrast to the SBVRP, obtaining
a feasible solution for the TTRP is not trivial, on account of the limited number
of vehicles. The objective is to satisfy customers’ demands while minimizing the
total travel distance. Similarly to the SBVRP, customers are divided in groups:
(i) vehicle customers, reachable by either a complete vehicle (truck and trailer)
or by a truck alone, and (ii) truck customers, reachable only by trucks alone. As
with the SBVRP and the VRPT, trailers may be temporarily parked, enabling
truck customers to be served exclusively by trucks. Any customer site may serve
as a parking place for trailers. Chao (2002) proposed a three-step constructive
heuristic and a Tabu Search (TS) method for the TTRP. The algorithm obtained
feasible solutions for all instances, despite the high demand-to-capacity ratio
(above 90%).

Several papers elaborate upon the TTRP literature. Scheuerer (2006) proposed
two constructive algorithms and a TS method, improving the best known results
for all instances. Later, Lin et al. (2009) proposed a Simulated Annealing
algorithm with a two-level solution representation which employed dummy
depots/roots, in conjunction with random neighborhood structures employing
three different types of moves. Lin et al. (2009) further improved the best
known results for several instances. Caramia and Guerriero (2009) proposed
a very interesting hybrid approach based on local search and mathematical
programming. They heuristically decompose the problem and use CPLEX
to solve two subproblems sequentially. First, each customer is assigned to a
route with the objective of minimizing the fleet size. Next, by considering
the customers assigned to each vehicle, the individual routes are optimized by
minimizing their total tour length. The hybrid algorithm adds constraints to
the formulation during each iteration while using a tabu-like customer-route
matrix to avoid previously analyzed allocations. Some new best results were
produced, in addition to lower bounds for assessing solution quality. Villegas
et al. (2013) present a two-phase matheuristic approach to the TTRP which
employs locally optimal routes as columns in a set-partitioning formulation.
Routes are generated with a metaheuristic consisting of a hybrid GRASP and
ILS. Route pool sizes may be controlled, offering a trade-off between solution
quality and running time. Very competitive results were obtained compared to
previous methods.

Other papers focus on variants of TTRP such as the relaxed TTRP with



174 SWAP-BODY VEHICLE ROUTING PROBLEM

unlimited availability of trucks and trailers and the TTRP with Time Windows
(TTRPTW), introduced by Lin et al. (2010) and Lin et al. (2011) respectively.
Recently, the TTRPTW was further studied by Parragh and Cordeau (2017),
who proposed a tailor-made branch-and-price algorithm capable of optimally
solving instances of up to 100 customers.

Much like with the SBVRP, the majority of the literature on the VRPT and
the TTRP address the problem with local search based algorithms. In fact, the
majority of the best results for these problems were obtained by metaheuristics
relying on local search. This observation, coupled with the NP-hardness of the
SBVRP, further motivated the development of local search algorithms when
approaching the problem.

7.3 Local search algorithm

A stochastic local search based algorithm is proposed for the SBVRP. The
algorithm begins by building a naive feasible solution. Once an initial solution is
obtained, the algorithm proceeds to the local search phase that considers several
neighborhood structures. A learning algorithm is responsible for choosing the
neighborhood to apply at each iteration. To enable escaping from local optima,
a hybridization of the metaheuristics Iterated Local Search (ILS) (Lourenço
et al., 2003) and Late Acceptance Hill-Climbing (LAHC) (Burke and Bykov,
2017) is considered.

The algorithm’s components are explained throughout the following sections.
Section 7.3.1 details the constructive algorithm while Section 7.3.2 introduces
the hybrid algorithm combining ILS and LAHC. The neighborhood structures
employed and the learning mechanism are discussed later in Section 7.4.

7.3.1 Constructive algorithm

A simple and straightforward constructive algorithm is considered for quickly
producing a feasible solution. The algorithm generates separate routes from the
depot to each customer. Both truck-only and flexible customers are initially
served by trucks, whereas train-only customers are served by trains.

The produced solution is expected to be very poor in terms of cost.
However, it can be generated quickly in O(|C|), where |C| is the number



LOCAL SEARCH ALGORITHM 175

of customers. Additionally, providing good feasible solutions to threshold
acceptance algorithms, such as the LAHC, may limit the search space and result
in poor final solutions, especially if the initial solution happens to be a local
optimum. It is possible to avoid this drawback by feeding the LAHC with a cost
larger than the initial solution’s. This may, however, result in several worsening
modifications at the execution’s beginning, eventually wasting the additional
effort required to produce a good initial solution.

7.3.2 Hybrid local search algorithm

The proposed algorithm is a hybridization of ILS and LAHC procedures. The
ILS metaheuristic was introduced by Lourenço et al. (2003) and relies upon
perturbations to escape from local optima. The main principle behind the
hybridization is to apply these ILS-like perturbations to the best solution
obtained by the LAHC, before re-executing LAHC on the perturbed solution.

The LAHC is a metaheuristic introduced by Burke and Bykov (2008) and
further discussed by Burke and Bykov (2017). It is an adaptation of the
classic Hill-Climbing heuristic in which the quality of a late solution, obtained l
iterations before the current, determines whether a new solution is accepted or
rejected. This permits the algorithm to accept worsening solutions, enabling it
to eventually escape from local optima. Successful applications of the LAHC
have been reported by Özcan et al. (2009), Verstichel and Vanden Berghe (2009),
Abuhamdah (2010), Goerler et al. (2013) and Yuan et al. (2015), among others.

The LAHC approach to the SBVRP is presented in Algorithm 7.1. Three
arguments are required: (i) an initial solution S, (ii) the list size l and (iii) the
maximum number of consecutively rejected neighbors m. The algorithm begins
by filling the late acceptance list, F , with the initial solution cost (lines 1-2).
Following this, the best solution is stored and counters p and r are initialized
(lines 3-4), where p is a cyclic pointer to a position in the late acceptance list and
r the current number of consecutive rejections. The main loop (line 5) begins
by selecting a neighborhood (line 6). The learning algorithm is responsible for
this selection. Afterwards, a new neighboring solution is generated (line 7). If
this solution is at least as good as the previous or has a lower objective value
than the considered entry in the late acceptance list, it is accepted (line 8).
Note that counter r is reset only if S′ is an improving solution over S (lines
9-10). Solution S is then updated (line 11). If the best solution S∗ is improved,
it is also updated (lines 12-13). Next, the late acceptance list is updated (line



176 SWAP-BODY VEHICLE ROUTING PROBLEM

14) as well as counters p and r (lines 15-16). Finally, the best solution obtained
is returned once the main loop finishes (line 17).

Algorithm 7.1: Late Acceptance Hill-Climbing
Input: Initial solution S, list size l and maximum consecutive rejections m
LAHC(S, l, m)

1 foreach p ∈ {0, ..., l − 1} do
2 Fp ← f(S) // LAHC list is initialized with initial solution’s cost

3 S∗ ← S
4 p← r ← 0
5 while r ≤ m and time limit is not reached do
6 N ← selected neighborhood structure
7 S′ ← random neighbor N(S)
8 if f(S′) ≤ f(S) or f(S′) ≤ Fp then
9 if f(S′) < f(S) then

10 r ← 0 // since solution is an improvement, r is reset

11 S ← S′

12 if f(S) < f(S∗) then
13 S∗ ← S

14 Fp ← f(S) // LAHC list is updated with current solution’s cost
15 p← (p+ 1) mod l // p is updated to point to the next list position
16 r ← r + 1
17 return S∗

The hybrid algorithm combining ILS and LAHC is presented in Algorithm 7.2.
It begins by producing the initial solution (line 1) and setting the perturbation
level ρ to 1 (line 2). The main loop (line 3) first calls the LAHC algorithm (line
4). If the solution produced by LAHC is better than the current best solution,
the best solution is updated and the perturbation level is reset to 1 (lines
5-7). Otherwise, the current solution is reset to the best solution (lines 8-9).
Afterwards, the perturbation is executed (lines 10-12), which corresponds to
applying ρ random moves to the current solution. Next, the perturbation level ρ
is increased and the loop repeated. Note that the given maximum perturbation
level ρmax is never exceeded: ρ is reset to 1 after ρmax is reached. Once the
time limit is reached, the best solution produced is returned.

7.4 Neighborhood structures

Several neighborhoods were developed to explore the search space of the
SBVRP, being categorized within three groups: (i) neighborhood structures
based on classical VRP moves, (ii) neighborhood structures based on SBVRP



NEIGHBORHOOD STRUCTURES 177

Algorithm 7.2: Hybrid Algorithm (ILS and LAHC)
Input: LAHC list size l, maximum consecutive rejections m and maximum

perturbation level ρmax
SBVRP_Solver(l, m, ρmax)

1 S∗ ← S ← initial naive solution
2 ρ← 1
3 while time limit is not reached do
4 S ← LAHC(S, l,m)
5 if f(S) < f(S∗) then
6 S∗ ← S
7 ρ← 1 // perturbation level is reset

8 else
9 S ← S∗ // solution S is rejected and therefore replaced by S∗

10 for i = 0 to ρ do
11 N ← selected neighborhood structure
12 S ← random neighbor N(S)
13 ρ← (ρ mod ρmax) + 1
14 return S∗

specific moves and, finally, (iii) neighborhood structures based on subproblem
optimization. On the one hand, the first two groups generate neighbors by
applying move(s) to the solution. These neighborhoods are sampled randomly
rather than being fully explored. The neighborhoods based on subproblem
optimization, on the other hand, generate neighbors by solving a subproblem.
In this case, randomization occurs when generating the subproblem.

All different neighborhoods are considered together as possible approaches
in generating new (neighboring) solutions. The probability of selecting each
neighborhood in a given iteration is determined by a learning automaton.

Section 7.4.1 begins by introducing the neighborhood size reduction procedure,
responsible for pruning away potentially less attractive neighbors. Next, the
different neighborhood structures are explained. Classical VRP neighborhoods
are discussed in Section 7.4.2, those based on SBVRP specific moves are
presented in Section 7.4.3 and those based on subproblem optimization are
described in Section 7.4.4. Finally, Section 7.4.5 details the learning automaton.

7.4.1 Neighborhood size reduction

A neighborhood size reduction procedure is applied to limit the number of
solution neighbors. This procedure is equivalent to that presented in Chapter 6



178 SWAP-BODY VEHICLE ROUTING PROBLEM

(see Section 6.3.2, page 146) and avoids considering solutions in which certain
pairs of customers are visited consecutively in one route. The primary motivation
behind this approach is that two geographically distant customers tend not to
be visited one after the other, and thus analyzing them as consecutive customers
in a route likely results in wasted time.

The procedure requires a preprocessing step. First, a list of possible preceding
and succeeding customers in the same route is computed for each customer.
Both time and capacity constraints are considered. For instance, two train-only
customers can never be in the same route since the sum of their capacities
exceeds the capacity of a train. Once the list is built, it is sorted according to
the cost of traveling either from or to each other customer, whichever is smaller.
This cost is computed as the weighted sum of time and distance costs.

Once the ordered lists are built for each customer, neighborhood reduction may
be applied. The procedure limits possible customer allocations to the first Γ
in each customer list (ignoring the other possibilities). Note that Γ ∈ Z+ with
Γ ≤ |C|. Clearly, no neighborhood reduction is applied when Γ = |C|.

During ILS perturbations, Γ is always set to |C|. This disables neighborhood
reduction and may lead to diverse solutions, which is the primary objective of
the perturbation. In the other contexts, each neighborhood may have a different
value for Γ. Depending on its value and on the instance characteristics, the
procedure may cut the optimal solution away from the search space. Hence,
setting an appropriate value for Γ is crucial for the proposed algorithm’s
efficiency.

A neighborhood is defined by both its structure and the value of Γ. Therefore,
one neighborhood structure is considered in multiple neighborhoods, each with
a different value for the neighborhood reduction parameter Γ. The principle
behind this is that the learning algorithm should select the most appropriate
neighborhoods, giving very low probabilities for inefficient selections.

7.4.2 Classical neighborhood structures

Neighborhood structures based on four classical VRP moves are considered.
Whenever possible, neighborhood reduction (Section 7.4.1) is applied. The
moves are as follows:



NEIGHBORHOOD STRUCTURES 179

Relocate move. This move consists of relocating one or more customers into
random routes and positions.

Swap move. The swap move consists of simply swapping two customers in
the solution. The customers may belong to the same or to different routes.

2-opt move. This move is the classical 2-opt move proposed by Croes (1958).
It is important to note, however, that when dealing with the SBVRP both routes
and sub-routes are considered, with sub-routes being treated as independent
routes.

Ejection-chain move. This move is a standard ejection-chain (Glover, 1991,
1996), and consists of re-arranging a chain of consecutive customers in a route.
The size of the chain is given as a parameter.

7.4.3 Problem-specific neighborhood structures

Five neighborhood structures were developed to explore specific characteristics of
the SBVRP. Again, neighborhood reduction (Section 7.4.1) is applied whenever
possible. The neighborhood structures are based on the following five moves:

Change swap location move. Given a route that includes a swap location,
this move essentially changes the vertex (location) of one of the route’s swap
locations. Note that moving to certain swap locations may render the solution
infeasible due to the limit imposed on route durations. To circumvent this issue,
only swap locations close enough (so as to maintain feasibility) are considered.
The new vertex is randomly selected from one of these locations.

Convert to route move. This move consists of converting a sub-route into
a new (truck) route. The improvement probability of this move is limited,
nevertheless it proves useful as a diversification tool.

Add sub-route move. The add sub-route move consists of adding a swap
location to a train route, resulting in a new sub-route inside the route. Two
steps must be executed: (i) defining the vertex (location) of the swap location
and (ii) defining the positions in which the swap location will be added. This
move requires all customers within the sub-route to be truck-only or flexible



180 SWAP-BODY VEHICLE ROUTING PROBLEM

customers. Two operations are performed at the swap location: (i) park and
then (ii) pickup. Capacity and time constraints must also be checked.

Split to sub-routes move. This move is similar to the add sub-route move,
but instead of adding one sub-route, it adds two sub-routes at the same swap
location, such that each sub-route is conducted with a different swap body.
Three operations are defined at the swap location: (i) park, (ii) swap, and
finally (iii) pickup.

Merge routes move. This move consists of merging two truck routes into a
train route. Initially, two truck routes are selected. Then the swap location
closest to both routes is selected and a new route including this swap location is
created. Afterwards, the two truck routes are added to the route as sub-routes.
As with the split to sub-routes move, three operations are performed at the
swap location: (i) park, (ii) swap, and finally (iii) pickup.

7.4.4 Subproblem optimization scheme

Additional neighborhood structures based on a subproblem optimization scheme
have been developed. The subproblems require the reallocation of a subset
P ∈ C of the customers while minimizing the solution cost. In other words,
subproblems are SBVRP problems in which a subset P̄ of customers, P̄ = C\P ,
have their routes predefined.

Two questions arise from this approach. Firstly, how many customers may be
added to P without negatively impacting on the subproblem computation time?
Secondly, which customers should be added to P ? Both questions are addressed
in this section.

The initial idea of the subproblem optimization was to solve the subproblems to
optimality employing an MIP approach. However, only very small subproblems
(small P ) appear solvable in short runtimes by currently available MIP solvers
such as CPLEX and Gurobi. Experiments revealed that heuristic (sub-optimal)
solutions for larger subproblems yielded much better final results than optimal
solutions for very small problems. The difference is more profound when the
runtime limit imposed by the VeRoLog challenge of 600 seconds is considered.
Hence, the approach proposed in this chapter does not guarantee optimality
of subproblem solutions. They are produced by a straightforward best-fit
constructive heuristic, henceforth called Cheapest Inserter procedure.



NEIGHBORHOOD STRUCTURES 181

The Cheapest Inserter procedure operates as follows. First, P is defined as an
ordered set and its customers are removed from the solution. Next, they are
sequentially inserted following P ’s order into the routes and positions incurring
the lowest cost increase. This procedure executes O(|P | × |P̄ |) operations
in the worst case. When applying the neighborhood reduction presented in
Section 7.4.1, only the Γ closest customers are considered by the Cheapest
Inserter. This speeds up the procedure by considerably reducing the number
of comparisons. The size of P therefore does not prevent the algorithm from
quickly producing a solution to the subproblem.

Six strategies have been developed for customer selection in a subproblem. Each
strategy requires the maximum number of customers (η) as a parameter in
addition to the value for the neighborhood size reduction Γ, applied within
the Cheapest Inserter. Note that all strategies have a certain degree of
randomization.

Ruin and recreate strategy. This strategy randomly selects η customers and
adds them to P .

Remove chains strategy. In this strategy, small chains of consecutive
customers are added to P . The total number of customers is bounded by
the parameter η, while the number of chains is bounded by the parameter
k. The customers may be added to P in three possible orders: (i) random,
(ii) original, or (iii) inverse original route. One of the three sorting criteria is
randomly selected.

Remove route strategy. All customers from one or more randomly selected
routes are added to P . Similar to the previous strategy, customers may be
disposed in three possible orders: (i) random, (ii) route, and (iii) inverse route.

Remove sub-routes strategy. This strategy is similar to the remove routes
strategy except that, instead of routes, only sub-routes are considered.

Limited ruin and recreate strategy. This strategy is similar to the ruin and
recreate strategy, but only routes close to one another are considered when
selecting customers. Note that the parameter Γ (Section 7.4.1) is employed
when defining close routes, meaning that only routes containing geographically-
nearby customers are selected. This strategy has two parameters: η, which
indicates the number of customers to be added to P , and k, which indicates



182 SWAP-BODY VEHICLE ROUTING PROBLEM

the maximum number of routes to be considered.

Ruin and randomized recreate strategy. This strategy is similar to the ruin
and recreate strategy except for the differing behavior of the Cheapest Inserter.
Rather than always selecting the cheapest insertion, the algorithm may select
another insertion based on a probability given by a Heuristic-Biased Stochastic
Sampling (HBSS) (Bresina and Bresina, 1996). Any customer may potentially
be chosen, with the best ones having a much higher probability of selection.
The chances of selecting the i-th cheaper insertion is given by f(i) = e−i.

7.4.5 Learning automaton

A learning automaton (Narendra and Thathachar, 1989) provides a simple
reinforcement learning approach commonly used in single state environments.
It maintains and updates a probability distribution γ for all possible actions.

In the proposed algorithm, the learning automaton determines the probabilities
of selecting each of the available neighborhoods. Therefore, for each
neighborhood k a probability γk,e is assigned to each event (or iteration) e.
The value of γk,e is updated according to the feedback provided by the local
search algorithm from the previous event, e − 1. Generally, the probabilities
are updated according to Equations (7.1) and (7.2). Equation (7.1) is applied
to update the probability of selecting the current neighborhood while Equation
(7.2) is applied to update the probabilities of the remaining neighborhoods.

γk,e+1 = γk,e + α+βe(1− γk,e)− α−(1− βe)γk,e (7.1)

γk,e+1 = γk,e − α+βeγk,e + α−(1− βe)
(

1
|N | − 1 − γk,e

)
(7.2)

In Equations (7.1) and (7.2), constants α+ ∈ [0, 1] and α− ∈ [0, 1] are the reward
and penalty parameters, respectively. βe ∈ [0, 1] indicates the improvement
gained by event e and, finally, |N | is the number of available neighborhoods. The
objective of this update scheme is to increase the probability of a neighborhood
in case of success and to decrease it in case of failure. A linear reward-penalty
(LR−P ) strategy is employed, meaning that the reward and penalty parameters
are equal: α+ = α−. The improvement gain calculation is also simplified: βe
is defined such that βe ∈ {0, 1}. It assumes a value of one if successful and



COMPUTATIONAL EXPERIMENTS 183

zero in case of failure. This approach was shown to be successful for improving
heuristic search algorithms by Wauters (2012).

7.5 Computational Experiments

The proposed algorithm was coded in Java 1.8 and executed on Intel(R) Xeon
E5-2680v3 CPU @ 2.5GHz computers with 64GB of RAM memory running
Red Hat Enterprise Linux ComputeNode 6.5. All computational experiments
were performed according to the VeRoLog challenge rules: the running time
was limited to 600 seconds per instance and at most 4 CPU cores were used
per execution.

The LAHC list size and the maximum number of consecutively rejected neighbors
were manually tuned. After a significant number of experiments considering
different values for the parameters, four sets were selected based on their
performance: (i) l=5000 andm=5000; (ii) l=12500 andm=12500; (iii) l=25000
and m=25000; (iv) l=25000 and m=50000. Each set is considered by the solver
in a different thread.

This section begins by presenting the instances provided by the VeRoLog Solver
Challenge in Section 7.5.1. Section 7.5.2 presents a study comparing the impact
of the different neighborhood groups. Section 7.5.3 shows the behavior induced
by the learning automata by presenting the evolution of certain neighborhood
selection probabilities. The results obtained for the VeRoLog datasets are
presented in Section 7.5.4 and, finally, Section 7.5.5 introduces new SBVRP
instances aimed at stimulating future research.

7.5.1 VeRoLog challenge datasets

In total, six instance sets have been published by the VeRoLoG challenge
committee: small, medium, large, presel, final and final_random datasets. The
first three datasets were introduced prior to the challenge. The presel dataset was
used to evaluate algorithms during the pre-selection phase, while the remaining
two datasets, final and final_random, were considered to determine the challenge
winner. Each dataset contains three instances: one in which all customers can
be visited by trains (all_with), one containing all customer types (normal) and
one in which no customer can be visited by trains (all_without). Table 7.2



184 SWAP-BODY VEHICLE ROUTING PROBLEM

shows the characteristics of these instances. The nomenclature presented during
Section 7.1.1 is employed and

∑
qi represents the sum of the demands of all

customers i ∈ C. Note that the number of train-only customers (|C3|) is either
one or zero. All instance files are available online2.

Table 7.2: Characteristics of the VeRoLog challenge instances

Instance |C| |C1| |C2| |C3| |S| T Q
∑

qi

small_all_with 57 0 56 1 20 8h 500 8445
small_normal 57 15 41 1 20 8h 500 8445
small_all_without 57 57 0 0 20 8h 500 7950

medium_all_with 206 0 206 0 41 11h 1000 24790
medium_normal 206 20 186 0 41 11h 1000 24790
medium_all_without 206 206 0 0 41 11h 1000 24000

large_all_with 548 0 548 0 99 11h 1000 65080
large_normal 548 50 498 0 99 11h 1000 65080
large_all_without 548 548 0 0 99 11h 1000 63090

presel_all_with 550 0 550 0 101 11h 1000 58845
presel_normal 550 50 500 0 101 11h 1000 58845
presel_all_without 550 550 0 0 101 11h 1000 58845

final_normal_all_with 549 0 549 0 102 18h 1000 58785
final_normal 549 50 499 0 102 18h 1000 58785
final_normal_all_without 549 549 0 0 102 18h 1000 58785

final_rand_all_with 549 0 549 0 102 18h 1000 327388
final_rand 549 50 499 0 102 18h 1000 331239
final_rand_all_without 549 549 0 0 102 18h 1000 325815

7.5.2 Neighborhood groups

Experiments isolating each neighborhood group (Section 7.4) were performed
to evaluate their impact on the final solution quality, thereby enabling one to
assess the importance of the subproblem optimization scheme. Let N be the set
containing all developed neighborhoods. These neighborhoods are divided into
three subsets: N1 represents the classical VRP neighborhoods, N2 the problem-
specific neighborhoods, and N3 the subproblem optimization neighborhoods.
Table 7.3 compares the results obtained by the algorithm considering different
combinations of neighborhood subgroups. The average gap to the solutions
obtained with all neighborhoods are presented. The values are aggregated by
instance type: all_with, normal and all_without. Each line shows the average

2The VeRoLog Challenge organizers gently provided the instance files and permitted us
to publish them at http://benchmark.gent.cs.kuleuven.be/sbvrp



COMPUTATIONAL EXPERIMENTS 185

gap for 60 executions, 10 for each instance. A runtime limit of 600 seconds was
imposed for all executions. The overall average gap is also presented providing
a rough ranking with regard to the different strategies.

Table 7.3: Average gap obtained by employing different neighborhood group
combinations

Neighborhoods Results per instance group Average
all_with normal all_without

N1 ∪N2 ∪N3 0.00% 0.00% 0.00% 0.00%

N1 ∪N2 0.90% 2.29% 9.06% 4.08%
N1 ∪N3 -0.06% 1.21% 9.45% 3.54%
N2 ∪N3 0.15% 0.21% 0.42% 0.26%

N1 0.76% 2.09% 9.72% 4.19%
N2 66.90% 68.81% 74.41% 70.04%
N3 0.12% 1.56% 10.21% 3.97%

Table 7.3 enables one to draw some interesting conclusions. Firstly, considering
the entire neighborhood set appears to be the best strategy on average. Secondly,
it is clear that the subset of problem-specific neighborhoods is incapable of
independently producing good quality solutions, as expected. Thirdly, the
characteristic of the instances largely impact the relationship between the
neighborhoods. Note how excluding the problem-specific neighborhoods was
beneficial when dealing with “all_with” instances. These instances enable
visiting all customers with trains and therefore the swap locations tend to be
less frequently employed, since swap operations become optional. Contrastingly,
huge gaps were obtained when the problem-specific neighborhood set was ignored
for the “all_without” instances. These instances prohibit visiting customers
with trains. Swap locations consequently become essential for storing bodies of
trains, as without them only trucks may be used. Finally, the table reveals how
including neighborhoods employing decomposition and performing subproblem
optimization were on average more beneficial than including classical VRP
neighborhoods in almost all situations.

7.5.3 Learning automaton and neighborhoods

The learning automaton algorithm presented in Section 7.4.5 has been employed
in two different contexts: first as an offline tuning tool to assess the initial
probabilities of selecting each neighborhood, and second as an online fine-tuning
tool to update these probabilities.



186 SWAP-BODY VEHICLE ROUTING PROBLEM

The learning automaton has one parameter: reward-penalty α, also known as the
learning rate. This parameter defines how much the probabilities may change in
each iteration. For offline tuning the reward-penalty was set to α = 10−5 and the
resulting probabilities were employed to help determining initial neighborhood
probabilities. Two main criteria were considered for each neighborhood: its
time complexity, given by the number of operations executed to generate a
neighbor, and the average probability given by the learning automaton after
several rounds of LAHC. The principle behind this is that fast and relatively
efficient neighborhoods should initially have higher chances of selection than
slow ones. Due to very low probabilities resulting from the offline tuning phase,
some neighborhoods were dropped.

Table 7.4 shows the selected neighborhoods and their respective importance,
given by v. The probability of each neighborhood is given by its importance
divided by the sum of all neighborhoods’ importance. The initial importance
values considered are v ∈ {1, 5, 10, 20, 50, 100}. The table also details the values
for parameters η, k and Γ, when required by a neighborhood. If the value for Γ
is hidden, then no neighborhood reduction is applied (Γ = |C|).

Table 7.4: Initial probabilities and considered neighborhoods

Neighborhood v Neighborhood v

Relocate(η=1) 50 RuinRecreate(10, Γ=50) 5
Relocate(η=2) 100 RuinRecreate(15, Γ=50) 5
Relocate(η=3) 50 RuinRecreate(20, Γ=50) 5
Relocate(η=4) 10 RuinRecreate(25, Γ=50) 5
Swap(Γ=50) 5 RuinRecreate(35, Γ=50) 5
TwoOpt() 10 RuinRecreate(50, Γ=50) 5
ChangeSwapLocation() 10 RemoveRoute(Γ=150) 1
ConvertToRoute() 10 RemoveSubRoute() 10
AddSubRoute(Γ=50) 10 RemoveSubRoute(Γ=150) 10
SplitToSubRoute() 10 RemoveChains(η=1, k=100, Γ=50) 10
MergeRoutes() 10 RemoveChains(η=2, k=100, Γ=50) 10
EjectionChain(η=3, Γ=50) 20 RemoveChains(η=3, k=100, Γ=50) 10
EjectionChain(η=4, Γ=50) 20 RemoveChains(η=4, k=100, Γ=50) 10
EjectionChain(η=5, Γ=50) 20 RemoveChains(η=5, k=100, Γ=50) 10
EjectionChain(η=10, Γ=50) 20 RemoveChains(η=6, k=100, Γ=50) 10
EjectionChain(η=15, Γ=50) 10 RemoveChains(η=7, k=100, Γ=50) 10
EjectionChain(η=20, Γ=75) 10 RemoveChains(η=8, k=100, Γ=50) 10
EjectionChain(η=25, Γ=75) 10 LimRuinRecreate(η=4, k=4, Γ=50) 10
EjectionChain(η=30, Γ=75) 10 LimRuinRecreate(η=2, k=5, Γ=50) 10
RuinRecreate(η=1, Γ=50) 5 LimRuinRecreate(η=5, k=2, Γ=50) 10
RuinRecreate(η=2, Γ=50) 5 RuinRandRecreate(η=1) 5
RuinRecreate(η=3, Γ=50) 5 RuinRandRecreate(η=2) 5
RuinRecreate(η=4, Γ=50) 5 RuinRandRecreate(η=3) 5
RuinRecreate(η=5, Γ=50) 5 RuinRandRecreate(η=4) 5

The online fine-tuning phase, present in the final algorithm, considers a
lower reward-penalty α = 10−6. The goal is to avoid drastic changes in the



COMPUTATIONAL EXPERIMENTS 187

probabilities while still fine-tuning them. After each execution of the LAHC
algorithm, the probabilities are reset to their initial values.

7.5.4 Results

Table 7.5 presents the average and best results from 20 algorithm executions
for all instances published by the First VeRoLog Challenge. These results are
compared against the best results reported in the literature:

HG2014 : Huber and Geiger (2014) executed their approach 30 times on an
Intel Xeon X5650 2.66 GHz;

Lum2015 : Lum et al. (2015) reported the best results obtained on a 2012
MacBook Air (precise computer unspecified);

Absi2017 : Absi et al. (2017) employed an Intel Xeon 2.8 GHz and ran their
relax-and-repair heuristic 10 times;

THUJG2017 : Todosijević et al. (2017) experimented both their Parallel and
Sequential GVNS on an Intel i7-4900MQ 2.80 GHz;

MB2017 : Miranda-Bront et al. (2017) executed their algorithm 10 times on an
Intel Core i5-3320M;

HG2017 : Huber and Geiger (2017) utilized an Intel Xeon X5650 2.66 GHz.
They report the best solutions out of a very large set of experiments
considering different parameters and algorithm versions. Each of
these experiments consists of 30 algorithm executions.

With the exception of Absi et al. (2017), who included results from 20-minute
runs, runtimes were limited to 10 minutes by all other authors. Table 7.5
highlights how the algorithm proposed here clearly outperforms all approaches
described in the literature. For the majority of the instances, the average
over all runs provides a better value than the best solution generated by other
algorithms. The produced solutions are available online3.

Figure 7.4 presents boxplot graphs illustrating the proposed approach’s
performance for all instance groups. The dashed lines indicate previous best
solutions. For 12 out of 18 instances, every solution produced by the proposed
algorithm are at least as good as the previous best solution, while for 9 of these
instances every solution lies below the dashed line, meaning all solutions improve
upon the previous best. This further supports the claim that the proposed
approach outperforms all methods in the literature. Figure 6 also enables one to

3http://benchmark.gent.cs.kuleuven.be/sbvrp



188
SW

AP-BO
D
Y
VEH

ICLE
RO

UTIN
G
PRO

BLEM

Table 7.5: Results for VeRoLog challenge instances

Instance Proposed Algorithm HG2014 Lum2015 Absi2017 THUJG2017 MB2017 HG2017
Average Best

small_all_with 4716.50 4715.78 4730.92 4873.05 4716.58 4731.02 4728.93 4716.58
small_normal 4797.69 4797.55 4804.97 4959.00 4802.38 4847.63 4806.97 4797.55
small_all_without 4858.53 4839.64 4839.64 5356.36 4981.70 5249.18 4855.62 4839.64

medium_all_with 7745.80 7708.63 7755.43 8335.57 7763.13 7754.39 7847.30 7734.61
medium_normal 7818.29 7803.54 7817.83 8297.25 7810.93 7834.78 7942.22 7795.98
medium_all_without 8007.11 7980.01 8045.47 8628.37 8058.89 8382.80 8169.69 7982.76

large_all_with 19851.04 19806.75 20215.26 21317.00 20495.70 20066.40 20516.70 20058.99
large_normal 20039.92 19985.88 20524.54 22051.40 20760.30 20496.40 20738.50 20298.82
large_all_without 20728.43 20640.72 21255.51 22419.40 21580.60 22310.60 21522.50 21003.51

presel_all_with 24475.56 24402.67 25072.36 26658.10 25021.70 24965.10 25573.20 24767.63
presel_normal 24859.76 24800.16 25425.85 26712.40 25529.50 25443.20 25894.40 25069.86
presel_all_without 25510.38 25448.55 25835.85 26712.40 25975.50 26515.90 26524.50 25719.19

final_all_with 33118.08 33014.03 - - - - 34997.90 33753.48
final_normal 34254.51 33927.04 - - - - 36305.80 34649.78
final_all_without 36574.23 36347.28 - - - - 38826.20 36814.84

final_random_all_with 129356.15 129049.18 - - - - 131445.00 129257.44
final_random 132758.74 132341.83 - - - - 135509.00 132295.68
final_random_all_without 144588.22 144331.84 - - - - 152587.00 144725.57

Gap from best result: 0.33% 0.01% 1.36% 6.83% 1.97% 2.93% 3.28% 0.81%



COMPUTATIONAL EXPERIMENTS 189

all with normal all without
33000

33500

34000

34500

35000

35500

36000

36500

37000

final

all with normal all without
128000

130000

132000

134000

136000

138000

140000

142000

144000

146000

final random

all with normal all without
19800

20000

20200

20400

20600

20800

21000

21200

large

all with normal all without
24400

24600

24800

25000

25200

25400

25600

25800

presel

all with normal all without
4700

4750

4800

4850

4900

4950

small

all with normal all without
7700

7750

7800

7850

7900

7950

8000

8050

medium

Figure 7.4: Boxplots comparing the solutions obtained with the proposed
approach and the best results reported in the literature for all instances



190 SWAP-BODY VEHICLE ROUTING PROBLEM

conclude that the algorithm is very robust. In fact, the maximum gap between
two solutions obtained by the algorithm after 600 seconds is 1.5% (instance
small_all_without: costs of 4839.64 and 4913.39). The average gap to the best
solution when considering all 360 solutions produced for the 18 instances is only
0.33%.

7.5.5 Additional instances

New instances are proposed to stimulate additional research in the field, varying
many characteristics in contrast to those proposed by the VeRoLog Solver
Challenge. These new instances are generated from Uchoa et al. (2017)’s
benchmark CVRP instances which are produced by distributing customers
within a 1000× 1000 grid in accordance with various strategies. Uchoa et al.
(2017)’s instances are modified via the addition of either 4, 20 or 100 swap
locations and the definition of costs for trains and trucks. Swap locations are
generated by first selecting a random customer before randomly selecting a point
on a circle of radius 100 from the selected customer’s location. If this point
lies within the CVRP’s 1000× 1000 grid then the point is accepted as a swap
location. This process continues until the required number of swap locations
have been added to the instance. The cost of a truck is fixed at one per distance
unit. The cost of a train is given by c per distance unit, with c ∈ {1.2, 1.4, 1.6}.
Customers are distributed within truck-only and flexible customers, such that
|C1| = bk × |C|c and |C2| = |C| − |C1|, where |C1| and |C2| are the number of
truck-only and flexible customers, respectively. No train-only customers are
generated. Moreover, swap body capacity simply corresponds to a vehicle’s
capacity in the CVRP instances.

Note that these new instances have significant differences from those proposed
during the VeRoLog Solver Challenge. The instances proposed here have
symmetric distances, impose no limits on route durations and do not include
service times at customers or operation times at swap locations.

An example4 comparing CVRP and SBVRP is shown in Figure 7.5. Instance
sbvrp-n936-s4 adds four swap locations to instance X-n936-k151. Customers
may be visited only by trucks, and the train’s cost is set to 120% of the truck’s
cost. Note how the four swap locations are utilized extensively within this

4For more examples, the reader is directed to http://benchmark.gent.cs.kuleuven.be/sbvrp,
where solution files and the software for visualizing them are provided.



COMPUTATIONAL EXPERIMENTS 191

(a) CVRP solution for X-n936-k151 (b) SBVRP solution for sbvrp-n936-s4

Figure 7.5: Example of CVRP and SBVRP solutions

example, resulting in a 2.5% reduction in the objective function value (129633.4
against 132926.0).

Table 7.6 presents the characteristics of the generated instances (including
characteristics of the original CVRP instances). The columns indicate:
|C| : number of customers;
Dep : placement of the depot, which can be at the center (C), at a random position

(R) or at the corner of the grid (E);
Cust : placement of the customers, which may be random (R), in n clusters (C(n)),

or “randomly-clustered” (RC(n));
Dem : demand distribution, which may be completely unitary (U), uniformly

distributed in a range between n1 and n2 (n1-n2), depending on quadrant
(Q) or with “many small and few large values” (SL);

Q : vehicle capacity (or capacity of each swap body);
|S| : number of swap locations;
c : cost of a train (trucks have cost fixed to 1.0 per distance unit);
k : coefficient of customers categorization, |C1| = bk×|C|c and |C2| = |C|−|C1|.

Detailed information concerning the characteristics of the original CVRP
instances may be found within Uchoa et al. (2017). Table 7.6 also presents the
average and best results out of 20 algorithm executions with a runtime limit
of 10 minutes and 1 hour, respectively. Note that the proposed algorithm was
executed using the same parameters as those employed in the experiments of
Section 7.5.4.



192
SW

AP-BO
D
Y
VEH

ICLE
RO

UTIN
G
PRO

BLEM
Table 7.6: Characteristics of the proposed instances and computational results for 10min and 1h

# Instance Characteristics (Uchoa et al., 2017) SB-VRP Results (10min) Results (1h)

|C| Dep Cust Dem Q |S| c k Avg. Best Avg. Best

1 sbvrp-n101-s100 100 R RC(7) 1-100 206 100 1.2 0.9 22540.70 22494.80 22506.68 22492.80
2 sbvrp-n106-s20 105 E C(3) 50-100 600 20 1.6 1.0 23661.37 23615.40 23643.09 23629.60
3 sbvrp-n110-s4 109 C R 5-10 66 4 1.4 0.5 15920.79 15891.60 15897.86 15891.60
4 sbvrp-n115-s100 114 C R SL 169 100 1.4 0.1 12302.95 12191.00 12223.85 12186.20
5 sbvrp-n120-s4 119 E RC(8) U 21 4 1.6 0.0 13503.40 13484.20 13486.12 13390.60
6 sbvrp-n125-s20 124 R C(5) Q 188 20 1.2 0.1 36515.15 36461.60 36476.56 36439.20
7 sbvrp-n129-s4 128 E RC(8) 1-10 39 4 1.6 1.0 30469.39 30386.60 30408.99 30355.40
8 sbvrp-n134-s100 133 R C(4) Q 643 100 1.4 0.9 9960.20 9896.60 9918.03 9890.40
9 sbvrp-n139-s20 138 C R 5-10 106 20 1.2 0.0 12679.34 12647.60 12660.45 12647.60

10 sbvrp-n143-s100 142 E R 1-100 1190 100 1.4 0.5 14824.00 14736.40 14754.40 14736.40
11 sbvrp-n148-s4 147 R RC(7) 1-10 18 4 1.6 0.9 45448.99 44096.80 44030.44 43252.00
12 sbvrp-n153-s20 152 C C(3) SL 144 20 1.2 0.0 14815.98 14770.80 14797.89 14773.20
13 sbvrp-n157-s20 156 R C(3) U 12 20 1.6 0.1 15477.34 15426.80 15417.12 15376.00
14 sbvrp-n162-s100 161 C RC(8) 50-100 1174 100 1.4 0.5 13807.98 13719.40 13745.48 13719.40
15 sbvrp-n167-s4 166 E R 5-10 133 4 1.2 1.0 19815.63 19767.20 19777.78 19695.20
16 sbvrp-n172-s100 171 C RC(5) Q 161 100 1.2 0.0 30032.52 30024.00 30026.21 30024.00
17 sbvrp-n176-s4 175 E R SL 142 4 1.6 0.9 49130.29 46707.60 46866.35 45484.00
18 sbvrp-n181-s20 180 R C(6) U 8 20 1.4 0.5 22143.19 22091.00 22104.73 22056.80
19 sbvrp-n186-s4 185 R R 50-100 974 4 1.2 1.0 25651.45 25553.40 25491.21 25131.80
20 sbvrp-n190-s100 189 E C(3) 1-10 138 100 1.6 0.1 15463.47 15359.40 15372.54 15301.00
21 sbvrp-n195-s20 194 C RC(5) 1-100 181 20 1.4 0.1 37900.65 37695.80 37658.32 37471.20
22 sbvrp-n200-s100 199 R C(8) Q 402 100 1.6 1.0 50723.48 50592.40 50579.62 50427.00
23 sbvrp-n204-s4 203 C RC(6) 50-100 836 4 1.2 0.5 20133.14 20068.60 20079.93 20043.40
24 sbvrp-n209-s20 208 E R 5-10 101 20 1.4 0.0 26738.25 26658.80 26668.98 26622.40
25 sbvrp-n214-s100 213 C C(4) 1-100 944 100 1.6 0.9 10822.29 10758.00 10763.21 10704.80
26 sbvrp-n219-s4 218 E R U 3 4 1.2 0.9 101295.38 100729.00 100978.25 100649.00
27 sbvrp-n223-s20 222 R RC(5) 1-10 37 20 1.4 0.5 36704.39 36459.00 36516.64 36417.00
28 sbvrp-n228-s20 227 R C(8) SL 154 20 1.2 1.0 22649.59 22431.20 22515.39 22427.60
29 sbvrp-n233-s4 232 C RC(7) Q 631 4 1.4 0.1 19258.70 18954.60 19107.78 18941.80
30 sbvrp-n237-s100 236 E R U 18 100 1.6 0.0 25454.56 25234.20 25279.33 25205.40
31 sbvrp-n242-s20 241 E R 1-10 28 20 1.2 1.0 62482.20 62171.20 62266.32 62108.60
32 sbvrp-n247-s100 246 C C(4) SL 134 100 1.4 0.1 28221.79 28058.60 28058.08 27911.40
33 sbvrp-n251-s4 250 R RC(3) 5-10 69 4 1.6 0.9 41014.91 37218.60 37626.60 37010.80

(continued on next page)



CO
M
PUTATIO

N
AL

EXPERIM
EN

TS
193

Table 7.6 continued: Characteristics of the proposed instances and computational results for 10min and 1h

# Instance Characteristics (Uchoa et al., 2017) SB-VRP Results (10min) Results (1h)

|C| Dep Cust Dem Q |S| c k Avg. Best Avg. Best

34 sbvrp-n256-s4 255 C C(8) 50-100 1225 4 1.6 0.5 22023.10 21687.80 21639.21 19426.80
35 sbvrp-n261-s100 260 E R 1-100 1081 100 1.2 0.0 21136.92 20986.60 21041.61 20986.80
36 sbvrp-n266-s20 265 R RC(6) 5-10 35 20 1.4 1.0 63312.60 63079.20 63118.29 62917.80
37 sbvrp-n270-s20 269 C RC(5) 50-100 585 20 1.2 0.5 31361.16 31195.00 31243.23 31118.80
38 sbvrp-n275-s4 274 R C(3) U 10 4 1.4 0.0 18940.07 18888.80 18903.71 18871.80
39 sbvrp-n280-s100 279 E R SL 192 100 1.6 0.9 32197.82 31886.20 31959.69 31722.20
40 sbvrp-n284-s100 283 R C(8) 1-10 109 100 1.6 0.1 19381.85 19202.60 19235.35 19110.60
41 sbvrp-n289-s20 288 E RC(7) Q 267 20 1.4 0.0 71748.75 71639.00 71542.48 71434.60
42 sbvrp-n294-s4 293 C R 1-100 285 4 1.2 0.9 50338.40 47632.80 47703.31 45380.20
43 sbvrp-n298-s100 297 R R 1-10 55 100 1.4 1.0 31715.41 31502.60 31485.55 31246.20
44 sbvrp-n303-s4 302 C C(8) 1-100 794 4 1.6 0.1 22832.06 22711.40 22717.58 22645.20
45 sbvrp-n308-s20 307 E RC(6) SL 246 20 1.2 0.5 23563.78 23324.00 23185.37 22928.60
46 sbvrp-n313-s4 312 R RC(3) Q 248 4 1.2 0.5 75694.01 73087.00 72755.57 72562.20
47 sbvrp-n317-s100 316 E C(4) U 6 100 1.4 0.0 58438.25 58312.80 58380.68 58279.40
48 sbvrp-n322-s20 321 C R 50-100 868 20 1.6 0.1 31153.38 30819.20 30791.26 30634.00
49 sbvrp-n327-s4 326 R RC(7) 5-10 128 4 1.2 1.0 26987.69 26801.80 26763.68 26489.60
50 sbvrp-n331-s100 330 E R U 23 100 1.4 0.9 28513.69 28260.20 28105.76 27788.20
51 sbvrp-n336-s20 335 E R Q 203 20 1.6 0.5 123044.32 122533.40 122361.76 121921.00
52 sbvrp-n344-s4 343 C RC(7) 5-10 61 4 1.2 0.9 45302.97 41666.20 43216.76 40842.00
53 sbvrp-n351-s20 350 C C(3) 1-100 436 20 1.6 1.0 26112.07 26021.00 26010.77 25919.00
54 sbvrp-n359-s100 358 E RC(7) 1-10 68 100 1.4 0.0 42537.92 42286.60 42303.67 41983.60
55 sbvrp-n367-s20 366 R C(4) SL 218 20 1.6 0.1 22322.04 22101.60 21996.53 21656.80
56 sbvrp-n376-s100 375 E R U 4 100 1.4 0.1 111893.74 111476.20 111517.40 111264.00
57 sbvrp-n384-s4 383 R R 50-100 564 4 1.2 0.0 45656.69 45470.40 45441.98 45304.80
58 sbvrp-n393-s100 392 C RC(5) 5-10 78 100 1.6 1.0 36832.35 36519.40 36552.43 36286.60
59 sbvrp-n401-s20 400 E C(6) Q 745 20 1.4 0.9 53737.96 53452.00 53495.55 53338.80
60 sbvrp-n411-s4 410 R C(5) SL 216 4 1.2 0.5 19278.39 18803.60 18770.09 18603.60
61 sbvrp-n420-s4 419 C RC(3) 1-10 18 4 1.2 0.5 95750.59 93630.60 91132.09 90620.80
62 sbvrp-n429-s100 428 R R 50-100 536 100 1.4 0.9 56865.53 56636.00 56494.73 56307.80
63 sbvrp-n439-s20 438 C RC(8) U 12 20 1.6 0.0 35549.16 35016.40 35294.73 35009.60
64 sbvrp-n449-s100 448 E R 1-100 777 100 1.2 0.1 41953.47 41570.80 41412.53 40982.20
65 sbvrp-n459-s20 458 C C(4) Q 1106 20 1.4 1.0 25046.39 24685.40 24520.72 24187.20
66 sbvrp-n469-s4 468 E R 50-100 256 4 1.6 0.1 190409.37 189868.80 189656.37 189426.60
67 sbvrp-n480-s4 479 R C(8) 5-10 52 4 1.6 0.5 97438.81 89458.20 87876.17 86695.20

(continued on next page)



194
SW

AP-BO
D
Y
VEH

ICLE
RO

UTIN
G
PRO

BLEM
Table 7.6 continued: Characteristics of the proposed instances and computational results for 10min and 1h

# Instance Characteristics (Uchoa et al., 2017) SB-VRP Results (10min) Results (1h)

|C| Dep Cust Dem Q |S| c k Avg. Best Avg. Best

68 sbvrp-n491-s20 490 R RC(6) 1-100 428 20 1.2 0.0 46023.17 45883.40 45806.53 45679.60
69 sbvrp-n502-s100 501 E C(3) U 13 100 1.4 1.0 54480.57 54261.80 54327.01 54200.00
70 sbvrp-n513-s100 512 C RC(4) 1-10 142 100 1.6 0.9 24686.73 24472.40 24460.20 24326.80
71 sbvrp-n524-s4 523 R R SL 125 4 1.4 0.5 133072.77 131259.60 129852.68 128261.40
72 sbvrp-n536-s20 535 C C(7) Q 371 20 1.2 0.9 71373.16 71191.00 71130.96 70945.80
73 sbvrp-n548-s100 547 E R U 11 100 1.2 0.1 63100.78 62789.20 62610.65 62343.00
74 sbvrp-n561-s4 560 C RC(7) 1-10 74 4 1.6 1.0 52142.10 51781.60 51764.28 51511.60
75 sbvrp-n573-s20 572 E C(3) SL 210 20 1.4 0.0 39728.09 39521.00 39515.33 39401.00
76 sbvrp-n586-s20 585 R RC(4) 5-10 28 20 1.2 0.9 145081.50 144678.00 144430.92 144269.80
77 sbvrp-n599-s4 598 R R 50-100 487 4 1.6 0.0 96508.84 96209.40 95975.48 95793.60
78 sbvrp-n613-s100 612 C R 1-100 523 100 1.4 1.0 54242.47 53891.00 53516.76 53113.40
79 sbvrp-n627-s4 626 E C(5) 5-10 110 4 1.6 0.1 60551.98 59217.40 58944.11 58026.20
80 sbvrp-n641-s20 640 E RC(8) 50-100 1381 20 1.4 0.5 56985.91 56630.00 56207.74 55939.40
81 sbvrp-n655-s100 654 C C(4) U 5 100 1.2 0.5 73269.46 73186.60 72968.71 72824.00
82 sbvrp-n670-s4 669 R R SL 129 4 1.2 0.1 98832.02 98178.20 98238.34 97818.20
83 sbvrp-n685-s20 684 C RC(6) Q 408 20 1.6 0.0 64405.40 63970.60 63740.19 63284.20
84 sbvrp-n701-s100 700 E RC(7) 1-10 87 100 1.4 0.9 69105.02 68307.80 68172.87 67454.60
85 sbvrp-n716-s20 715 R C(3) 1-100 1007 20 1.4 1.0 39078.70 38738.60 38450.13 38168.20
86 sbvrp-n733-s4 732 C R 1-10 25 4 1.6 0.9 155822.25 141618.40 146352.27 135869.80
87 sbvrp-n749-s100 748 R C(8) 1-100 396 100 1.2 0.1 56116.02 55881.00 55723.82 55502.80
88 sbvrp-n766-s100 765 E RC(7) SL 166 100 1.6 1.0 106061.99 105462.80 104980.10 104365.80
89 sbvrp-n783-s4 782 R R Q 832 4 1.4 0.0 61655.59 61231.80 60879.23 60608.80
90 sbvrp-n801-s20 800 E R U 20 20 1.2 0.5 61576.71 60632.80 60179.16 59891.00
91 sbvrp-n819-s100 818 C C(6) 50-100 358 100 1.4 0.5 125217.12 124521.60 124092.90 123375.80
92 sbvrp-n837-s4 836 R RC(7) 5-10 44 4 1.2 0.1 134346.01 133712.00 132976.66 132397.20
93 sbvrp-n856-s20 855 C RC(3) U 9 20 1.6 1.0 88029.31 87743.80 86955.92 85840.20
94 sbvrp-n876-s20 875 E C(5) 1-100 764 20 1.6 0.9 90739.96 90187.60 89977.46 89734.80
95 sbvrp-n895-s4 894 R R 50-100 1816 4 1.2 0.0 42107.46 41907.60 41747.53 41656.80
96 sbvrp-n916-s100 915 E RC(6) 5-10 33 100 1.4 0.0 241110.22 240702.40 240140.84 239844.80
97 sbvrp-n936-s4 935 C R SL 138 4 1.2 1.0 158350.03 154993.20 133332.20 129633.40
98 sbvrp-n957-s100 956 R RC(4) U 11 100 1.4 0.9 73653.74 73133.60 72926.08 72555.80
99 sbvrp-n979-s20 978 E C(6) Q 998 20 1.6 0.5 109252.51 107932.20 107572.13 106815.60

100 sbvrp-n1001-s4 1000 R R 1-10 131 4 1.6 0.1 76996.90 76172.80 75520.17 74188.80



CONCLUSIONS AND FUTURE WORK 195

7.6 Conclusions and future work

This chapter investigated the SBVRP, a relevant VRP generalization which poses
interesting challenges with respect to developing optimization approaches. The
stochastic local search algorithm for the SBVRP that won the First VeRoLog
Solver Challenge was presented.

The presented algorithm explores the problem structure and clearly outperforms
all published approaches to the SBVRP. It has improved the best reported
solution in the literature for the majority of the instances introduced during the
First VeRoLog Solver Challenge. For large, presel and final instance sets, the
worst solution obtained after 20 algorithm runs is better than the previous best
known result, indicating the algorithm’s superior performance. To encourage
further research on the SBVRP, the CVRP instances proposed by Uchoa et al.
(2017) were adapted to the SBVRP and an automated benchmark website5 was
produced including instances, solutions and a visualization tool.

Experiments showed the importance of the subproblem optimization in the
final solution quality. Moreover, all algorithmic components were discussed and
analyzed, including the hybrid metaheuristic, the considered neighborhoods,
and the learning automaton. These combined analyses resulted in various
insights concerning the development of competitive local search algorithms to
the SBVRP.

Future research directions include simplifying the presented algorithm. This
chapter described the winning approach of the First VeRoLog Challenge
as it was implemented. However, the large number of neighborhoods and
components hinder the understanding of the algorithm’s behavior and prove a
challenge in terms of reproduction. Additionally, core components such as the
learning automaton may be further explored to prune neighborhoods, enabling
simplification without significant loss in terms of solution quality. Finally, some
of the ideas here presented should be applied to related problems, such as the
VRPT and the TTRP.

5http://benchmark.gent.cs.kuleuven.be/sbvrp

http://benchmark.gent.cs.kuleuven.be/sbvrp




Chapter 8

Multiple Container Loading
Problem

This chapter addresses a real-world unsolved Multiple Container Loading
Problem (MCLP) introduced by Renault and the EURO Special Interest Group
on Cutting and Packing (ESICUP) on the occasion of the 2014/2015 ESICUP
challenge. Renault’s problem requires a large number of different items to be
packed into containers of different types and sizes. Items must be grouped into
stacks and respect the this side up constraint, meaning that items can only
be rotated around the vertical axis. The primary objective is to minimize the
volume of shipped containers.

This chapter is a minor adaptation of Toffolo et al. (2017b)1, and presents a
decomposition approach embedded in a multi-phase heuristic for the problem.
Feasible solutions are generated quickly, and subsequently improved by local
search and post-processing procedures. Experiments revealed that the approach
generates optimal solutions for two instances, in addition to high-quality
solutions for those remaining from the Renault set. The algorithmic contribution
is, however, not restricted to the Renault instances. Experiments on less
constrained container loading problems from the literature demonstrate the
approach’s general applicability and competitiveness.

1Toffolo, T. A. M., Esprit, E., Wauters, T., and Vanden Berghe, G. (2017). A two-
dimensional heuristic decomposition approach to a three-dimensional multiple container
loading problem. European Journal of Operational Research, 257(2):526 – 538.

197



198 MULTIPLE CONTAINER LOADING PROBLEM

This chapter is organized as follows. Section 8.1 presents an introduction on
container loading problems and offers a more detailed definition of the ESICUP
challenge problem. A lower bound methodology is introduced in Section 8.2. The
proposed decomposition-based heuristic is described by Section 8.3. The different
subproblems are enumerated and the algorithm to address them are presented.
The different phases of the proposed algorithm, resulting ultimately in a local
search method incorporating all algorithms is also described. Computational
experiments are presented in Section 8.4. The chapter is concluded by Section 8.5,
which presents a summary and discussions concerning the proposed algorithms
and future research.

8.1 Introduction

Efficient container loading is a key element within the continuously evolving
domain of logistics and transportation. However, most studies tend not to
focus on real-world problems. Bortfeldt and Wäscher (2013) highlighted this
issue by presenting a comprehensive and insightful study of practically-relevant
constraints of container loading problems, identifying and categorizing them.
They argued how research in this field has dealt mainly with standard problems,
often neglecting relevant issues encountered in practice. This claim is further
supported by Zhao et al. (2016).

In this context, this chapter addresses a real-world multiple container loading
problem introduced by Renault for the 2014/2015 ESICUP challenge (Clautiaux
et al., 2015). This problem somewhat differs from those commonly addressed
in the literature. In brief, it considers the merging of items into layers and
combining these layers into stacks before packing these stacks into containers.
Each individual problem defines a set of available container types. Layers
contain rows of similar size items and, likewise, stacks should be composed of
similar size layers. The objective is to minimize the total container volume
required for packing the items, excluding the container with the smallest load
volume, which is left behind for the next shipment.

Besides the constraints commonly associated with container loading, such as
those related to the size and weight of items, a number of specific constraints
must be taken into account. The first set of constraints determines how items
should be packed into stacks. This set includes, among others, ‘this side up’,
guillotine-like and weight bearing constraints. Other constraints restrict the



INTRODUCTION 199

materials that may be combined in a stack. More specific constraints are
associated with the container left behind. Shipment may only be postponed
for a small percentage of the items of each product type and the container left
behind must be the one holding the smallest volume (Clautiaux et al., 2015).

Considering the real-world constraints identified by Bortfeldt and Wäscher
(2013), the problem proposed by Renault includes weight limits, orientation,
stacking, stability and complexity constraints. In the typology suggested by
Wäscher et al. (2007), the problem belongs to the category of input minimization
problems. More specifically, it represents a type of Multiple Stock-Size Cutting
Stock Problem (MSSCSP), since all instances provided by the 2014/2015 ESICUP
challenge consist of weakly heterogeneous sets of items and containers.

Research concerning the MSSCSP is currently scarce, but very desirable. Zhao
et al. (2016) analyzed 113 papers on container loading problems, and declared
that their literature examination highlights three possible fruitful avenues for
future research, with multiple container packing problems being one of them.
Furthermore, the authors also state that “there are significantly fewer papers
examining the multiple container packing problem when compared to the single
container loading problem”.

Most papers addressing the MSSCSP employ heuristic approaches. Ivancic et al.
(1989) presented a placement heuristic based on integer programming in addition
to several benchmarks instances. Eley (2002) developed an approach in which
containers are filled by homogeneous blocks composed of identically-oriented
items. A greedy constructive heuristic together with a tree-search algorithm
improved the results reported by Ivancic et al. (1989). Later, Brunetta and
Grégoire (2005) presented another tree-search heuristic algorithm to maximize
the average volumetric utilization of containers. Their approach was applied to
a real-world problem concerning a biscuit factory in France. Ren et al. (2011a)
presented a priority-considering algorithm and improved some results for the
instances of Ivancic et al. (1989). The algorithm assigns large items a higher
priority to prevent their late placement, thereby improving the containers’
utilization. Che et al. (2011) addressed a multiple container loading cost
minimization problem with heuristics for a set cover formulation that builds on
the work of Eley (2002). They further improved the results for the instances
proposed by Ivancic et al. (1989).

The MSSCSP problem introduced by Renault, henceforth referred to as the
ESICUP challenge problem, may be modeled as a logic decomposition of
subproblems. Note that problem subdivision strategies are commonly applied



200 MULTIPLE CONTAINER LOADING PROBLEM

to container loading problems, as can be seen, for instance, in the approaches
of Araya and Riff (2014), Parreño et al. (2008) and Bortfeldt et al. (2003).
In this chapter a heuristic approach was produced, consisting of constructive
and local search phases. The algorithm incorporates different components,
each dealing with one of the decomposition subproblems. The algorithm’s
primary component is the bin builder, which is responsible for packing stacks
into containers. Provided that a stack’s height does not exceed the container’s
height, this subproblem may be solved as a 2D bin packing problem with
weight constraints. The stack building subproblem, which mainly consists
of piling up layers built by a dynamic programming algorithm, is solved by
another component of the algorithm. Likewise, row building and layer building
are handled by separate components. After a feasible solution is obtained,
different intensification and diversification strategies are applied in parallel.
These strategies include a ruin-and-recreate method for rebuilding parts of
the solution, a multi-start and a procedure to insert or rearrange items in a
container.

The ESICUP challenge had 17 registered participants representing institutions
from 14 different countries. The challenge consisted of two tracks in two phases.
Each track had a different runtime limit for solving a complete instance set: one
hour for the SHORT and six hours for the LONG track. One set of instances
was released for the first phase (InstancesA). For the second phase, another set
of instances (InstancesB) was made public and a hidden set (InstancesX) was
used to evaluate the different approaches. The presented algorithm competed
in both tracks and garnered laudable comments from the organizing committee.
For now, and to the best of our knowledge, it may be considered the strongest
publicly available approach to the ESICUP challenge problem.

8.1.1 The ESICUP challenge problem

The ESICUP challenge problem is a combinatorial optimization problem that
generalizes 3D packing. Given a set of different three-dimensional container
types J , the purpose is to pack a set I of three-dimensional items into these
containers while simultaneously minimizing the sum of the volume of the
containers used.

Container types j ∈ J have three spatial dimensions (Wj , Lj , Hj) and a
maximum allowed weight Rj . Each container type is available in unlimited
quantities. Items i ∈ I have three dimensions (wi, li, hi), weight ri and type



INTRODUCTION 201

ti ∈ {metal, cardboard, wood}. Furthermore, they are associated with a product
pi and their orientation is defined by oi ∈ {fixed, free}, where ‘fixed’ means no
rotation is allowed and ‘free’ means 90o rotation around the z-axis (‘this side
up’ constraint) is permitted.

The problem includes two inherent constraints that must be respected: (i) all
items must lie entirely within a container and (ii) the items must not overlap.
However, the items cannot be put directly into containers. They must be
arranged into rows, layers and stacks. Figure 8.1 presents an example of a row,
layer and stack. Note that a row is a set of items, while a layer is a set of rows
and a stack is a set of layers.

Row StackLayer

Figure 8.1: Representation of Row, Layer and Stack

The row/layer/stack structure introduces guillotine-like constraints, as the
following rules must be considered:

• items within a particular row must have the same width (or length), within
a tolerance;

• rows within a particular layer must have the same width (or length),
within a tolerance;

• there is a limit on the number of items that rows and layers may have;
• the layers forming a stack must have the same width and length, within a

tolerance, except for the stack’s top layer;
• all items within a layer must have the same height, except when the layer

is the top layer of the stack.

Additionally, rules concerning item weight must also be respected:

• stack layers must be sorted by weight, such that heavier layers are under
lighter layers;



202 MULTIPLE CONTAINER LOADING PROBLEM

• the density of non-metal stacks, given by the total weight divided by
ground area, is limited;

• the weight atop the bottom-most layer of non-metal stacks should not
exceed a maximum value.

Most of the aforementioned constraints, such as guillotine, orientation and weight
bearing, are commonplace within packing problems. However the problem also
imposes additional less common constraints, concerning metal items and the
smallest volume container (entitled Bin-0).

Metal items are subject to specific constraints. Firstly, stacks containing metal
products must be formed exclusively by metal items. In these stacks, rows and
layers must contain exactly one item and two constraints are relaxed: there is
no maximum density and there is no maximum weight atop the bottom-most
layer.

The items in Bin-0, the container holding the smallest volume, are left behind.
There is, however, a maximum percentage of each product permitted within
this container.

The problem’s main objective function is the minimization of the total container
volume excluding the volume of Bin-0. The volume in Bin-0 is only considered
as a tie-break, meaning that when two solutions have the same main objective
value then the one with the smallest volume inside Bin-0 is preferred. Two
other tie-breaks are also introduced: (i) to minimize the lengths of the bin
configurations, such that items are compacted at the back of the containers and
(ii) to minimize the weighted sum of the items x-coordinates to also position as
much weight as possible at the back of the container. Generally, however, the
first tie break (Bin-0’s volume) proved enough to resolve most cases of ties.

The official description of the ESICUP challenge problem (Clautiaux et al.,
2015) provides further details concerning the problem and its motivation.

8.2 Lower bounds

In order to measure the solution quality produced by the presented algorithm,
lower bounds for the problem instances have been computed.



LOWER BOUNDS 203

A lower bound on the total container volume of a solution may be computed
considering the set of items and set of available bin types. However, as the
objective is to minimize the total container volume excluding Bin-0, the volume
of Bin-0 should not be included in the lower bound. The maximum number
of items in Bin-0 can be determined for each product type, thus providing an
upper bound for the volume and weight of this bin’s items. Hence, a valid lower
bound for the instance is obtained by subtracting the volume of Bin-0 from the
total required volume.

In certain cases, depending on the instance characteristics, lower bounds may
be determined by the required weight capacity or minimum area. The required
weight is the sum of all items’ weight, while the minimum area is the area of
the bottom layer necessary for satisfying the weight bearing constraint. Some
instances contain very heavy items, with these requiring placement at the
bottom layer.

A simple Mixed Integer Program (MIP) is solved to obtain a lower bound.
Considering a problem with J container types and auxiliary constants nj
indicating the maximum number of containers of type j ∈ J , the following
variables are defined:

xj,k : binary variable that is equal to 1 if the k-th container of type j is
used and 0 otherwise;

aj,k : total area assigned to the k-th container of type j;

yj,k : total volume assigned to the k-th container of type j;

zj,k : total weight assigned to the k-th container of type j;

ba : total bottom area assigned to Bin-0 limited by A+;

by : total volume assigned to Bin-0 limited by V +;

bz : total weight assigned to Bin-0 limited by R+.

Formulation (8.1)-(8.10) presents the lower bound MIP. The following notation
is used: Kj = {1, ..., nj} is the set of available containers of type j; Vj , Aj and
Rj are the volume, total area and weight capacity of containers of type j; Ã
is the minimum area required; and, finally, Ṽ and R̃ denote the sum of the
volume and weight of the items, respectively. Therefore, Ṽ =

∑
i∈I wi li hi and

R̃ =
∑
i∈I ri.



204 MULTIPLE CONTAINER LOADING PROBLEM

Minimize: ∑
j∈J

∑
k∈Kj

Vjxj,k (8.1)

Subject to:∑
j∈J

∑
k∈Kj

aj,k + ba = Ã (8.2)

∑
j∈J

∑
k∈Kj

yj,k + by = Ṽ (8.3)

∑
j∈J

∑
k∈Kj

zj,k + bz = R̃ (8.4)

by ≤ yj,k + max
j∈J

Vj(1− xj,k) ∀ j ∈ J, k ∈ Kj (8.5)

aj,k ≤ Ajxj,k, yj,k ≤ Vjxj,k, zj,k ≤ Rjxj,k ∀ j ∈ J, k ∈ Kj (8.6)

aj,k ≥ aj,k+1, yj,k ≥ yj,k+1, zj,k ≥ zj,k+1 ∀ j ∈ J, k ∈ Kj\{nj} (8.7)

0 ≤ ba ≤ A+, 0 ≤ by ≤ V +, 0 ≤ bz ≤ R+ (8.8)

aj,k ≥ 0, yj,k ≥ 0, zj,k ≥ 0 ∀ j ∈ J, k ∈ Kj (8.9)

xj,k ∈ {0, 1} ∀ j ∈ J, k ∈ Kj (8.10)

The objective function (8.1) exclusively considers the problem’s main objective
(minimizing the total container volume used). Constraints (8.2), (8.3) and (8.4)
ensure that the required area, volume and weight match the allocation to the
containers, respectively. Constraints (8.5) guarantee that Bin-0 is the bin with
the smallest volume. Constraints (8.6) verify that the bottom area, volume and
weight capacities of containers are not exceeded, while linking variables aj,k,
yj,k and zj,k to xj,k. Symmetry among the different containers of each type is
broken by Constraints (8.7). Constraints (8.8) limit the values for ba, by and
bz, and Constraints (8.9) impede negative values for variables aj,k, yj,k and zj,k.
Finally, Constraints (8.10) establish the binary nature of variables xj,k.

The solution of Formulation (8.1)-(8.10) generally provides a weak lower bound,
since many of the complex constraints are simplified or not even taken into
account. Stronger lower bounds can be achieved by treating the problem as a
1D bin packing problem, separately considering the entire set of items in terms



DECOMPOSITION-BASED HEURISTIC 205

of volume, weight and area. However, since the item size is relatively small
compared to the size of the containers, there is little or no gain in terms of
bound quality.

8.3 Decomposition-based heuristic

The row/layer/stack structure presented in Section 8.1.1 is exploited for
heuristically decomposing the problem. The main idea is to consider different
stacks as 2D items, dividing the problem in two subproblems: (i) pack items
into stacks and (ii) pack stacks into containers.

This decomposition enables the creation of a straightforward two-step algorithm:
first produce a set of feasible stacks and then pack them into containers. However,
this approach has certain drawbacks. It may be necessary to build a large
number of candidate stacks, since different container types (and dimensions) are
considered. Furthermore, for a given set of stacks, the algorithm must ensure
that an item is included at most once. Therefore, many produced stacks may
potentially end up not even being considered.

Such drawbacks are managed by changing when stacks are built. Rather than
producing the stacks beforehand, they are produced on-the-fly, while packing
stacks into containers. To enable this, items are initially converted to 2D items,
and a 2D bin packing problem is solved. Then, for each packed item, a stack is
built considering its width and length, in addition to the height of the selected
container. Note that only available items are considered when dynamically
constructing the stacks, thus preventing the addition of an item to multiple
stacks.

The two subproblems resulting from the decomposition are solved by different
algorithms. The stack builder is responsible for packing items into stacks, while
the bin builder is responsible for packing stacks into containers. The stack
builder and bin builder algorithms are presented in Sections 8.3.1 and 8.3.2,
respectively. Next, the local search algorithm is presented in Section 8.3.3.

8.3.1 Stack builder

Building a stack consists of arranging a set of layers with as much volume
as possible, given upper limits for length, width, height and weight, defined



206 MULTIPLE CONTAINER LOADING PROBLEM

according to the stack’s base item and the container type under consideration.
A straightforward constructive algorithm is applied to this problem: layers are
successively built and, for each new layer, the dimensional and updated weight
limits are respected. Whenever a feasible layer is produced, it is added to the
stack. Once no more layers can be produced, the resulting stack is returned.

Building a layer consists in, given a set of items I ′, dimension limits (w, l, h)
and a maximum weight r, returning a feasible subset of positioned items. Note
that these limits are defined according to the current container and stack states
(their remaining height and weight capacity), in addition to the length and
width of the stack base.

Layers are divided in two types: regular and relaxed. Regular layers must consist
of items with equal height, while minimum values for length and width must
be respected. Relaxed layers, however, are not subjected to such constraints.
Note that the construction of relaxed layers is optional, but a relaxed layer may
only be placed at the top of a stack. Therefore, a stack may have at most one
relaxed layer, which must be the lightest layer of the stack, since layers are
sorted by weight.

Building a regular layer

When building regular layers, upper dimensions (w, l, h) and weight (r) limits
are considered, as well as lower limits on width and length. Lower limits are
expressed in terms of a tolerance τ , with 0 ≤ τ ≤ 1. Thus, the width of the
layer must lie between τw and w, and the length between τ l and l. Given that
upper limits are fixed, so are lower limits.

Regular layers are built by a dynamic programming algorithm. This approach
benefits from the limits imposed concerning the size of rows and layers, and also
from the weakly heterogeneous characteristic of the instances. Size limitations
in combination with these characteristics significantly reduces the number of
possible combinations. Nevertheless, it is worthwhile taking a few precautions
by limiting the number of combinations, and thus avoiding a worst case scenario.
This limit is given by a parameter α, with α ∈ Z+.

The algorithm begins by filtering possible items into sets Ch ⊆ I ′, such that
every item i ∈ Ch has height h while simultaneously respecting the dimensional
and weight limits. Once the items are filtered, there are two special scenarios:



DECOMPOSITION-BASED HEURISTIC 207

(1) there is a set Ch containing at least one item i ∈ Ch such that wi ≥ τw

and li ≥ τ l;

(2) there is a set Ch with a subset Ch,l ⊆ Ch, Ch,l 6= ∅ such that li ≥ τ l ∀i ∈ Ch,l
and/or a subset Ch,w ⊆ Ch, Ch,w 6= ∅ such that wi ≥ τw ∀i ∈ Ch,w.

The first special scenario enables one to solve an easier layer building problem
by utilizing the fact that individual items are themselves valid layers. Note that
this is a necessary condition for metal layers, since they must contain exactly
one item. When this scenario arises, the layer is formed by a single item i ∈ Ch
with wi ≥ τw and li ≥ τ l.

The second special scenario also enables simplifying the layer building process.
Note that a subset of items X ⊆ Ch,l with τw ≤

∑
i∈X wi ≤ w forms a valid

layer. Analogously, a subset of items X ′ ⊆ Ch,w also represents a solution if
τ l ≤ ∑i∈X′ li ≤ l. Therefore, there potentially exists a single-row solution
(layer). In this scenario, a dynamic programming algorithm is applied to form a
single-row layer. One of the Ch,l or Ch,w sets for which the condition is true is
randomly selected, and only those items within the selected set are considered.
If a valid layer is produced, it is returned. If not, the procedure is re-executed
considering the remaining possible sets. Figure 8.2 depicts examples of typical
single-row widthwise and lengthwise layers built by this dynamic programming
algorithm.

Widthwise Lenghtwise

Figure 8.2: Example of single-row widthwise and lengthwise layers

The procedure to build single-row layers requires two arguments: a (partial)
layer L and the ordered list of candidate items C. This list is composed of
items with equal height, which is a condition for regular layers. Therefore, C
contains items from the selected set (Ch,l or Ch,w). Crucially, C must be sorted
such that items with larger values for the considered dimension come first. For
instance, if a widthwise layer is being built, then items with the largest width
must come first.



208 MULTIPLE CONTAINER LOADING PROBLEM

The recursive single-row layer building procedure is presented by Algorithm
8.1. The procedure begins by guaranteeing that layer L can be enlarged and
that the set C is not empty (line 1). Afterwards, the first item is removed
from the candidates list (lines 2-3) and added to the layer (line 4). If a valid
layer is obtained while respecting the requirements for dimension and weight, it
is returned (lines 5-6). Otherwise a new set, C ′, is created (line 7). This set
contains the feasible candidates that may be added to layer L without violating
any constraints. The procedure is then recursively called with the new layer and
set C ′. If it succeeds in building a solution, the produced layer L is returned
(lines 8-9). Otherwise, item i is removed from the layer and the next item
is considered for incorporation in a recursive call (lines 10-12). If a solution
is produced, it is returned (line 13). Otherwise, item i is put back into the
candidate list and the algorithm backtracks by returning ∅ (lines 14-15).

Algorithm 8.1: Layer building algorithm
Let L be an empty layer, C be the sorted set of feasible items, and M be the
maximum number of items allowed in a row or layer

BuildSingleRowLayer(L, C):
1 if |L| < M and C 6= ∅ then
2 i← first item in C
3 C ← C\{i}
4 L← L+ {i}
5 if L is a valid layer then
6 return L
7 C′ ← set of items in C that may be added to layer L
8 if BuildSingleRowLayer(L, C′) 6= ∅ then
9 return L

10 else
11 L← L\{i}
12 if BuildSingleRowLayer(L, C) 6= ∅ then
13 return L

14 C ← {i}+ C

15 return ∅

When neither special scenarios arise, Algorithm 8.1 operates within two separate
contexts when creating a multiple-row layer. Initially, it is applied to obtain
the set of base items to form the layer rows. Then it is applied individually to
each of these items, expanding them towards valid rows.

Due to its performance, the creation of multiple-row layers was disabled in the



DECOMPOSITION-BASED HEURISTIC 209

final version of the proposed algorithm. As expected, the creation of these layers
can be very time consuming. Section 8.4 presents an experimental analysis
documenting the impact of disabling multiple-row layers.

Additional pruning

Additional stopping criteria have been developed for building regular layers.
Since the maximum number of items in a row or layer is known, and the
candidate list is sorted, it is possible to prune the search tree at an early stage.
Let di be the considered dimension of the first item in the candidate list, dL
the layer’s current dimension, d the target dimension, M the maximum number
of items in a row or layer and, finally, |L| the number of items in the current
row. If the condition given by Equation (8.11) does not hold, the algorithm
can backtrack by returning ∅. Given that di is the maximum dimension of
the possible items, and if adding (M − |L|) times the dimension di does not
make the layer large enough, then more than M items are necessary. Since this
violates one of the problem’s constraints, the algorithm may backtrack.

dL + (M − |L|)× di ≥ d (8.11)

Building a relaxed layer

The dynamic programming algorithm for regular layers can also be applied
when building relaxed layers. The key differences are that items with different
heights are considered, additional pruning is disabled, and the layer with the
largest area is stored. If a layer with dimensions (w′, l′) where τw ≤ w′ ≤ w and
τ l ≤ l′ ≤ l is obtained, the algorithm returns it. Otherwise, the algorithm stops
when the maximum number of iterations α is reached, returning the produced
layer with largest area.

8.3.2 Bin builder

The bin builder is the highest-level component of the proposed decomposition.
The purpose of the bin builder is to pack stacks in a container in a feasible
manner. This is achieved by solving a classic 2D bin packing problem with
weight constraints. The method relies heavily on the stack builder (Section
8.3.1) for handling the constraints related to layers and stacks.



210 MULTIPLE CONTAINER LOADING PROBLEM

The bin builder consists of a best-fit constructive algorithm (Burke et al., 2004).
The implementation is based on the work of Imahori and Yagiura (2010), to
which multiple sorting rules are added: (i) area, (ii) weight and (iii) volume. A
random ordering of the items is also applied in addition to different placement
policies: leftmost, rightmost, tallest neighbor, smallest neighbor and nearest
neighbor.

Algorithm 8.2 presents the best-fit algorithm. The algorithm considers both
length and width and is applied such that the gap indicates the container’s
largest dimension. Thus, if the length is greater than the width, the algorithm
is applied width-wise with the gap indicating the length. The algorithm begins
by creating an empty bin (line 1). While items may be added to this bin
(line 2), the algorithm searches for one to add to the lowest gap (lines 3-4).
If no item fits, the gap is elevated and the candidate set updated (lines 5-6).
Otherwise, the first perfect fit candidate item is added to the bin (lines 7-9). It
is important to note that Algorithm 8.2 aims at finding a perfect fit candidate,
considering the size of the gap. However, if no perfect fit candidate is available,
the first candidate which fits in the gap is considered. Once a candidate item is
added, the stack builder procedure is called to transform it into a stack (line
10). Finally, the set of candidate items C is updated (line 11) with the items
added and the state of the bin (its lowest gap and available weight capacity).
Once no more items can be added to the bin, the algorithm returns (line 12).

Algorithm 8.2: Best-fit algorithm
Let C be the sorted set of candidate items, j be the container type, and p be
the placement policy

BestFit(C, j, p):
1 b← empty bin with dimensions of container type j
2 while C 6= ∅ do
3 g ← lowest gap in b
4 if no candidate c ∈ C fits in g then
5 elevate g to its shortest neighbor and update the gaps of b
6 C ← items in C that may still fit in b
7 else
8 c← best candidate c′ ∈ C that fits in gap g
9 add candidate c to b according to policy p and update gaps of b

10 call stack builder procedure to turn item c into a stack
11 C ← items in C that were not added and may still fit in b
12 return b



DECOMPOSITION-BASED HEURISTIC 211

8.3.3 Local search algorithm

The local search algorithm can be divided in two phases: (i) a construction
phase and (ii) a refinement phase. The refinement phase consists of either a
multi-start approach, in which new solutions are generated from scratch, or a
ruin-and-recreate local search. Figure 8.3 presents an outline of the algorithm.
Its components are detailed in this section.

Multi-start
approach

Ruin-and-recreate
approach

Select the most 
fractional variable

Construction phase

Run bin builder until 
solution is complete

Run post-processing 
procedure to fix Bin-0

Refinement phase

Get best solution and 
remove some bins

Change algorithms 
rules/weights

Problem Remove all bins from solution

Figure 8.3: Local search algorithm outline

Construction phase

The construction phase begins by packing the first container, applying the bin
builder. This procedure returns a feasibly-packed container configuration. The
algorithm is executed for each available container type. Therefore, given an
instance containing |J | different container types, the result is a set of |J | different
containers filled with items. One item can be placed in multiple containers, but
only one of these filled containers can be included in the solution. The container
with the highest occupation rate ν is greedily selected, while the others are
discarded. Equation (8.12) defines the occupation rate ν of each container, with
Xb representing the set of items in container b, vi the volume of item i and Vb
the volume capacity of container b.

ν =
∑
i∈Xb vi

Vb
(8.12)



212 MULTIPLE CONTAINER LOADING PROBLEM

After a container is added to the solution, the procedure repeats considering the
remaining items, until all items are packed and an initial solution is obtained.

The initial solution is not guaranteed feasible. Bin-0 may contain more items of
a specific product than permitted. When infeasibility occurs, a simple repair
procedure is executed.

Bin-0 repair procedure

The constructive procedure does not avoid infeasible solutions regarding the
Bin-0 constraint, since it does not prohibit Bin-0 from exceeding the permitted
limit of specific products. Whenever such a limit is not respected, the following
procedure is executed. First a non-Bin-0 container b in the solution is randomly
selected. Next, stacks from b are iteratively moved to Bin-0. The stacks to
move are selected such that products causing infeasibility are moved first. Note,
however, that some stacks in b may prove incompatible with the current Bin-0.
For instance, the height or weight of a stack may impede moving it from b to
Bin-0. These stacks are ignored and the procedure continues until no more
stacks can be moved from b to Bin-0. If at this point the volume inside b is
smaller than or equal to the volume inside Bin-0, b becomes the new Bin-0.
If the infeasibility is fixed, the procedure finishes. Otherwise, another bin is
selected and the procedure repeated until the solution is either feasible or all
bins have been investigated. If the solution remains infeasible after investigating
all bins, an empty bin is added to the solution, restoring feasibility at the
expense of deteriorating the objective value. Figure 8.4 illustrates the repairing
procedure.

Try to restore feasibility
by moving items from 
some container b to ‘Bin-0’.

Until no more items can be moved. 
If the volume in b is the smallest 
among all containers, b becomes the 
new (hopefully feasible) Bin-0.

b b

Figure 8.4: Visual example of the Bin-0 repair procedure



COMPUTATIONAL EXPERIMENTS 213

Refinement phase

Once a feasible initial solution is obtained, different intensification strategies
are applied in parallel until the time limit is reached. A simple multi-start
approach continuously rebuilds a solution from scratch in a greedy-randomized
way. The randomization occurs during the container selection. Rather than
greedily choosing the container with the highest occupation rate, the algorithm
employs a roulette approach whereby containers with higher occupation rates
have higher probabilities of being selected.

A ruin-and-recreate method is also applied, which consists of removing a random
subset of containers to be rebuilt later using different container types and
sorting criteria. The number of selected containers γ is chosen according to
Equation (8.13):

γ = 1 + rand(min(B − 1, η)) (8.13)

where η is an upper bound on the number of selected bins and B is the number
of bins in the current solution. The upper bound η was introduced to limit the
calculations on larger instances.

Different refinement strategies are executed in parallel, exchanging best solutions.
This approach intensifies the search for better solutions, but renders the final
algorithm non-deterministic.

8.4 Computational experiments

Computational experiments were performed in accordance with the ESICUP
competition rules. The running time for solving each instance set was limited
to one hour in the SHORT run and six hours in the LONG run. The test
system was an Intel(R) Core(TM) i7-3770 CPU @ 3.4GHz computer with 16GB
of RAM memory running Ubuntu Linux 12.04 LTS2. The maximum number
of bins removed per iteration was set to q = 5 and the maximum number of
iterations of the dynamic programming algorithm was set to α = 10, 000.

This section is organized as follows. The instances and their characteristics are
presented in Section 8.4.1. Section 8.4.2 evaluates the algorithm components

2The challenge organizers used an Intel(R) Core(TM) i5-3570S @ 3.1GHz computer for
the benchmarks.



214 MULTIPLE CONTAINER LOADING PROBLEM

and their impact. The best results obtained for the competition instances are
presented in Section 8.4.3. Section 8.4.4 presents results obtained when applying
the decomposition approach to other container loading problem instances from
the literature.

8.4.1 Instances

The ESICUP challenge sets ‘InstancesA’, ‘InstancesB’ and ‘InstancesX ’,
employed during the experiments, consist of real-world data. For all instances,
at most 10% of each product is permitted in Bin-0, while the maximum weight
on top of the bottom layer is set to 750 weight units. Tables 8.1, 8.2 and 8.3
show the following individual characteristics of these instances:

• the number of different container types (|J |);
• the main characteristics of the items: the average weight, number of item

types (categorized considering the length, width and height), number of
different products and the total number of items;

• the limit imposed on the number of items per row and per layer;
• the lower bounds obtained with the approach described in Section 8.2.

The lower bounds were computed very quickly (less than one second per
instance) using SCIP (Achterberg, 2009). Note that only the set ‘InstancesB’
contains instances with a single container type. The largest instance is
‘ING_RIR_PEX_container’ from set ‘InstancesX ’ with 2,597 items, while
instance ‘CVU_GX_PEX_container’ from set ‘InstancesA’ contains the highest
number of item types (54).



COMPUTATIONAL EXPERIMENTS 215

Table 8.1: Characteristics analysis of InstancesA set

Instance |J| Items Items limit Lower bounds

Weight Types Prods. Total Row Layer Obj1 Obj2

ARG_BUR_STK_container 2 209.0 24 73 219 10 50 228.43 30.85
AVF_RIR_STK_container 2 303.9 25 201 805 10 50 1111.62 32.26
AVF_RIR_STK_truck 2 232.9 19 177 415 10 50 353.12 69.90
AVT_BUR_STK_container 2 180.1 25 67 145 10 50 152.29 33.37
AVZ_RIR_STK_container 2 295.2 17 143 675 10 50 548.23 31.91
AVZ_RIR_STK_truck 2 362.5 21 95 327 10 50 353.12 29.50
CHE_GC_PEX_container 2 169.6 19 63 211 10 50 206.81 25.83
CHE_RIR_STK_container 2 441.0 19 145 482 10 50 371.73 28.27
CME_GC_PEX_container 2 406.1 14 46 259 10 50 239.80 26.99
CVP_GC_PEX_container 2 490.6 29 103 736 10 50 973.45 55.20
CVU_GC_PEX_container 2 266.7 54 543 2447 10 50 4614.06 32.44
FSI_GC_PEX_container 2 284.8 40 316 967 10 50 1198.09 57.97
IND_RIR_STK_container 2 414.3 13 88 202 10 50 206.81 32.22
MED_GC_PEX_container 2 463.8 29 117 320 10 50 449.28 64.23
NSA_BUR_STK_container 2 260.3 21 43 117 10 50 152.29 41.34
NSA_RIR_STK_container 2 298.1 15 82 196 10 50 149.76 58.41
RSM_GC_PEX_container 2 794.5 15 40 151 10 50 332.51 31.12
SOM_BUR_STK_container 2 166.1 9 26 149 10 50 152.29 26.84
SOM_RIR_STK_container 2 182.8 34 219 811 10 50 1048.33 33.66
TNG_RIR_STK_container 2 418.3 15 70 211 10 50 215.73 26.30

Total - 332.0 - - 9845 - - 13057.72 768.60

Table 8.2: Characteristics analysis of InstancesB set

Instance |J| Items Items limit Lower bounds

Weight Types Prods. Total Row Layer Obj1 Obj2

ACI_RIR_PEX_truck 2 607.82 8 19 162 4 12 353.12 1.72
ALG_RIR_PEX_container 1 119.13 26 100 1378 4 12 1797.13 40.06
AVF_RIR_PEX_container 1 373.75 17 145 346 4 12 374.40 43.99
AVZ_RIR_PEX_container 1 297.01 25 79 602 4 12 673.93 36.17
CHE_GC_PEX_container 3 197.94 23 80 315 4 12 275.35 61.05
CHE_RIR_PEX_container 1 206.06 21 85 771 4 12 673.93 49.30
CHE_VLD_PEX_container 1 720.56 10 31 249 4 12 599.04 20.90
CVP_GC_PEX_container 1 309.00 26 81 428 4 12 449.28 45.63
CVU_GC_PEX_container 1 292.46 47 326 863 4 12 1422.73 51.34
CVU_VLD_PEX_container 1 175.44 14 80 506 4 12 449.28 59.29
FSI_GC_PEX_container 1 275.63 37 258 597 4 12 599.04 66.00
FSI_VLD_PEX_container 1 309.12 21 140 705 4 12 898.57 52.11
IKO_RIR_PEX_truck 2 231.14 15 38 359 4 12 353.12 33.80
MED_GC_PEX_container 1 514.57 33 116 321 4 12 449.28 58.23
MJV_VLD_PEX_truck 3 346.31 7 13 172 4 12 264.84 61.72
NSA_RIR_PEX_container 1 351.85 24 142 788 4 12 1198.09 38.62
RSM_GC_PEX_container 1 533.68 18 32 248 4 12 449.28 4.42
SOM_VLD_PEX_container 1 442.79 25 90 1283 4 12 2471.06 2.32
TAK_RIR_PEX_truck 2 78.17 5 8 208 4 12 176.56 30.00

Total - 335.92 - - 9060 - - 13928.04 756.67



216 MULTIPLE CONTAINER LOADING PROBLEM

Table 8.3: Characteristics analysis of InstancesX set

Instance |J| Items Items limit Lower bounds

Weight Types Prods. Total Row Layer Obj1 Obj2

ALG_RIR_PEX_container 2 119.83 20 65 552 4 12 685.29 49.99
ARG_BUR_PEX_container 2 241.92 29 240 825 4 12 913.71 59.37
AVF_RIR_PEX_container 2 362.27 21 118 991 4 12 1066.00 57.98
AVT_BUR_PEX_container 2 154.48 27 112 643 4 12 989.86 35.21
BAX_COR_PEX_container 2 262.90 14 52 616 4 12 821.76 29.56
CHE_RIR_PEX_container 2 385.46 18 129 545 4 12 523.20 31.03
CME_GC_EXP_container 2 406.92 14 54 361 4 12 341.53 30.37
CVP_GC_EXP_container 2 504.43 25 125 700 4 12 989.86 53.29
FSI_GC_EXP_container 2 276.24 39 415 1356 4 12 1725.68 32.54
MED_GC_EXP_container 2 401.13 20 152 648 4 12 911.49 31.18
NSA_RIR_PEX_container 2 341.45 23 91 362 4 12 456.86 68.23
RSM_GC_EXP_container 2 550.24 8 71 176 4 12 284.98 30.89
SOM_GC_EXP_container 2 311.13 17 71 566 4 12 685.29 61.71
SOM_RIR_PEX_container 2 216.43 25 193 1098 4 12 1522.86 66.64
TAN_BUR_PEX_container 2 207.34 20 115 561 4 12 533.00 40.77
TNG_RIR_PEX_container 2 229.29 23 237 2597 4 12 2937.29 32.89
VAX_COR_PEX_container 2 323.04 5 17 159 4 12 228.43 36.75

Total - 311.44 - - 12756 - - 15617.07 748.42

8.4.2 Algorithm components

At the core of the bin builder, a 2D packing algorithm adds items (combined into
stacks) to the bins. This section compares the performance of the implemented
best-fit algorithm (Section 8.3.2) with a default bottom-left-fill algorithm
(Chazelle, 1983), typically used for 2D packing problems. Table 8.4 shows the
gap to the best total Obj1 value obtained when best-fit and bottom-left-fill are
employed as bin-builder algorithms. The results are organized by constructive
phase and refinement phase result after 1 and 6 hours of computation time. All
other components are equal for both runs. The table highlights how the best-fit
algorithm performs significantly better than the bottom-left-fill. In fact, even
after 6 hour of runtime, bottom-left-fill did not reach the quality of the initial
solutions produced by best-fit.

Additional tests were conducted to analyze the effect of the strategies used
to build layers. Table 8.5 presents the impact of: (i) disabling the dynamic
programming and generating only single-item layers, (ii) generating only single-
row layers and (iii) generating layers with multiple rows. The α parameter,
indicating dynamic programming algorithm’s iteration limit, was set to 10, 000
for the experiments. The table shows the gap to the best total Obj1 value of
each execution. Each phase’s best results are highlighted in bold. Disabling the



COMPUTATIONAL EXPERIMENTS 217

Table 8.4: Gap to the best generated solutions among best-fit and bottom-left-fill
as bin builder algorithms

Phase InstancesA InstancesB InstancesX

Best-fit BLF Best-fit BLF Best-fit BLF

Constructive phase 6.72% 21.21% 6.75% 22.40% 8.63% 14.61%
Refinement phase (1h) 0.88% 12.20% 1.27% 15.72% 0.99% 7.59%
Refinement phase (6h) 0.00% 11.32% 0.00% 15.08% 0.00% 6.59%

dynamic programming component causes a considerable increase in the number
of iterations the algorithm can execute within the runtime limit. Nevertheless,
the additional iterations are not sufficient to produce better solutions. In fact,
the algorithm incorporating the dynamic programming procedure for single-
row layers yielded better solutions in 1h than the algorithm considering only
single-item layers did in 6h. The single-row strategy including the dynamic
programming yielded better solutions than the multiple-row approach. The
multiple-row approach tends to produce better layers, while requiring additional
time for their generation. This additional time reduces the number of local
search iterations within the time limit and renders it unworthy, since the single-
row layers approach resulted in better solutions. Results were obtained for sets
‘InstancesA’, ‘InstancesB’ and ‘InstancesX ’.

Table 8.5: Gap to the best generated solutions among single-item, single-row
and multiple-row layers

Phase Strategy InstancesA InstancesB InstancesX

Constructive Phase
Single-item 7.45% 8.99% 9.10%
Single-row 6.72% 6.75% 8.63%
Multiple-row 5.52% 6.28% 7.61%

Refinement Phase (1h)
Single-item 2.13% 1.70% 1.14%
Single-row 0.88% 1.27% 0.99%
Multiple-row 3.46% 3.83% 2.05%

Refinement Phase (6h)
Single-item 1.28% 1.42% 0.32%
Single-row 0.00% 0.00% 0.00%
Multiple-row 3.46% 3.42% 1.43%

Interestingly, most rows formed by the single or multiple-row approach contain
one item. However, cases in which more items are added to a row consistently
impact the solution quality (see Table 8.5). Although the average number
of items in a row is close to 1, some best solutions contain rows that reach



218 MULTIPLE CONTAINER LOADING PROBLEM

the number of items limit. An additional noteworthy observation is that by
reducing the value of α, no multiple-row layers are generated for any of the
considered instances, even with the multiple-row strategy enabled. Therefore,
the multiple-row approach is not indicated for situations where the number of
iterations (or runtime) is very limited.

8.4.3 Results for ESICUP instances

The final results for the ESICUP instances are shown in Tables 8.6, 8.7 and 8.8.
Instances and solution files are available at the automated benchmark website3
we developed for MCLP. These tables present the best known solution (BKS) for
each individual instance, collected from the executions of all different approaches
submitted to the competition4 (including the solver presented in this chapter)
in 1h of runtime, and the values for Obj1 and Obj2 obtained after 1h and 6h
of runtime respectively with the presented approach. Solutions marked with
a ~ were proven to be optimal for the first objective based on the calculated
lower bounds. The best solutions are highlighted. The time dedicated to each
instance is also shown in the tables. Equation (8.14) is employed to partition
the total runtime among the instances, where tk is the total time devoted to
instance k, T is the total runtime, Z is the set of instances, Iz is the set of items
in instance z and vi is the volume of item i.

tk = T

2

 |Ik|∑
z∈Z
|Iz|

+

∑
i∈Ik

vi∑
z∈Z

∑
i∈Iz

vi

 (8.14)

The principle is to allot each instance an amount of computation time
proportional to its number of items and the sum of the items’ volumes, based
on two assumptions: (i) an instance with many items tends to be harder to
solve, and to require more computational time than an instance with fewer
items; and (ii) an instance with a large total item volume generally impacts
the overall objective function more than others with less total item volume.

Tables 8.6, 8.7 and 8.8 enable one to conclude that the presented approach is
very competitive. The proposed approach improved the best known result for
six instances and equaled the best known solution for 30 instances. In addition,

3http://benchmark.gent.cs.kuleuven.be/mclp
4Results extracted from the challenge website, http://challenge-esicup-2015.org, where

the values for Obj1 after 1h of runtime are available.

http://challenge-esicup-2015.org


COMPUTATIONAL EXPERIMENTS 219

the lower bound approach (Section 8.2) enabled proving that three of the best
known solutions are optimal for the first objective function (Obj1).

Table 8.6: Results for InstancesA set

Instance BKS - 1h SHORT - 1h Runtime LONG - 6h Runtime

Obj1 Obj1 Obj2 Time Obj1 Obj2 Time

ARG_BUR_STK_container 284.98 284.98 19.01 109.0 275.18 25.35 654.5
AVF_RIR_STK_container 1312.19 1312.19 21.39 257.0 1312.19 24.47 1542.9
AVF_RIR_STK_truck 441.40 441.40 53.73 147.1 441.40 50.86 882.9
AVT_BUR_STK_container 218.63 218.63 2.72 93.6 208.84 15.32 562.2
AVZ_RIR_STK_container 620.44 653.42 24.10 192.3 644.51 22.86 1154.6
AVZ_RIR_STK_truck 441.40 441.40 39.18 132.8 441.40 33.09 797.6
CHE_GC_PEX_container 224.64 224.64 45.08 105.7 224.64 40.13 634.8
CHE_RIR_STK_container 470.68 494.75 12.28 153.2 470.68 15.75 919.9
CME_GC_PEX_container 281.69 290.61 18.28 114.5 281.69 24.81 687.7
CVP_GC_PEX_container 1157.08 1240.88 8.32 238.6 1231.96 21.25 1432.5
CVU_GC_PEX_container 5159.62 5293.34 12.98 760.3 5255.01 23.76 4564.8
FSI_GC_PEX_container 1347.85 1387.07 25.14 286.4 1375.48 17.47 1719.6
IND_RIR_STK_container 248.71 248.71 25.11 105.2 248.71 23.16 631.6
MED_GC_PEX_container 578.54 587.45 17.23 143.3 587.45 9.25 860.6
NSA_BUR_STK_container 208.84 208.84 22.75 90.9 208.84 21.71 545.9
NSA_RIR_STK_container 215.73 224.64 24.31 101.8 224.64 20.13 611.1
RSM_GC_PEX_container 374.40 374.40 31.88 109.8 374.40 36.15 659.1
SOM_BUR_STK_container ~ 152.29 185.46 26.80 93.6 185.46 26.80 561.7
SOM_RIR_STK_container 1216.81 1228.40 25.62 252.3 1210.57 20.04 1515.1
TNG_RIR_STK_container 248.71 272.78 14.68 106.5 272.78 17.69 639.7

Total 15204.63 15613.99 470.59 3593.9 15475.83 490.05 21578.8

Table 8.7: Results for InstancesB set

Instance BKS - 1h SHORT - 1h Runtime LONG - 6h Runtime

Obj1 Obj1 Obj2 Time Obj1 Obj2 Time

ACI_RIR_PEX_truck ~ 353.12 353.12 1.78 94.2 353.12 1.78 565.5
ALG_RIR_PEX_container 2021.78 2021.78 20.98 378.8 2021.78 10.16 2274.4
AVF_RIR_PEX_container 449.28 449.28 25.32 138.7 449.28 22.01 832.8
AVZ_RIR_PEX_container 823.69 823.69 46.80 193.2 823.69 46.80 1159.8
CHE_GC_PEX_container 342.17 342.17 34.71 128.2 342.17 32.46 769.5
CHE_RIR_PEX_container 748.81 823.69 15.28 213.9 823.69 12.66 1284.5
CHE_VLD_PEX_container 673.93 673.93 27.17 144.5 673.93 27.17 867.5
CVP_GC_PEX_container 524.16 524.16 47.15 154.7 524.16 38.16 928.9
CVU_GC_PEX_container 1572.49 1647.37 2.66 288.2 1572.49 49.77 1730.2
CVU_VLD_PEX_container 524.16 524.16 36.20 164.9 524.16 33.65 990.3
FSI_GC_PEX_container 673.93 748.81 2.48 188.8 673.93 59.67 1133.4
FSI_VLD_PEX_container 1198.09 1198.09 42.07 225.5 1198.09 34.40 1353.9
IKO_RIR_PEX_truck 366.20 441.40 10.16 137.6 372.73 77.82 825.9
MED_GC_PEX_container 599.04 599.04 23.28 143.3 599.04 20.41 860.6
MJV_VLD_PEX_truck 353.12 353.12 32.68 110.7 353.12 31.65 664.6
NSA_RIR_PEX_container 1347.85 1347.85 41.41 259.4 1347.85 31.86 1557.2
RSM_GC_PEX_container 524.16 524.16 28.02 129.9 524.16 28.02 779.7
SOM_VLD_PEX_container 2995.22 3444.51 39.01 395.0 3444.51 20.12 2371.7
TAK_RIR_PEX_truck ~ 176.56 176.56 54.29 104.7 176.56 54.29 628.8

Total 16267.76 17016.89 531.45 3594.2 16798.46 632.86 21579.2



220 MULTIPLE CONTAINER LOADING PROBLEM

Table 8.8: Results for InstancesX set

Instance BKS - 1h SHORT - 1h Runtime LONG - 6h Runtime

Obj1 Obj1 Obj2 Time Obj1 Obj2 Time

ALG_RIR_PEX_container 761.43 761.43 46.28 176.2 761.43 45.42 1057.6
ARG_BUR_PEX_container 1066.00 1073.57 20.40 219.2 1069.78 17.09 1316.0
AVF_RIR_PEX_container 1202.48 1212.27 13.37 245.8 1202.48 23.36 1476.0
AVT_BUR_PEX_container 1136.13 1155.72 8.95 205.9 1132.35 24.22 1236.3
BAX_COR_PEX_container 977.83 987.63 11.24 190.7 983.85 21.02 1144.7
CHE_RIR_PEX_container 599.35 616.71 23.55 162.2 609.14 43.85 974.1
CME_GC_EXP_container 380.71 394.30 25.96 131.6 380.71 43.68 790.2
CVP_GC_EXP_container 1176.87 1243.22 16.63 212.6 1219.84 25.29 1276.4
FSI_GC_EXP_container 1891.55 1911.14 18.89 326.6 1901.34 12.86 1960.6
MED_GC_EXP_container 1063.77 1073.57 20.92 200.4 1073.57 21.08 1202.9
NSA_RIR_PEX_container 579.75 579.75 21.07 142.9 566.17 30.01 858.1
RSM_GC_EXP_container 361.12 361.12 14.75 110.1 361.12 14.01 661.2
SOM_GC_EXP_container 811.97 825.55 19.40 178.3 811.97 22.80 1070.6
SOM_RIR_PEX_container 1864.39 1895.33 18.36 290.0 1871.96 26.39 1740.9
TAN_BUR_PEX_container 665.69 655.90 13.04 165.2 646.10 18.81 991.7
TNG_RIR_PEX_container 3224.49 3232.73 19.80 531.9 3232.73 9.50 3193.1
VAX_COR_PEX_container 298.56 304.57 23.70 104.8 304.57 21.76 629.3

Total 18062.09 18284.51 336.31 3594.4 18129.11 421.15 21579.7

8.4.4 General applicability

To enable a comparison between the proposed algorithm and those proposed
by other container loading studies, experiments were performed on the LN01-
LN15 instances introduced by Loh and Nee (1992) and the MPV instances
by Martello et al. (2000) and Lodi et al. (2002b). These instances are the
most directly comparable to those of ESICUP challenge given how items are
weakly heterogeneous and the presence of the ‘this side up’ constraint, whereby
rotations are not allowed around the horizontal axes. Table 8.9 presents a
comparison between these two instance sets and the ESICUP challenge instances.
The typology by Wäscher et al. (2007) is employed when characterizing them.
Comparisons with other container loading instances is impractical given the
absence of the ‘this side up’ constraint, which is a requirement of the dynamic
programming component developed.

Table 8.9: Characteristics of the different instance sets

Instance set Category Weight Material Support Row/Layer/Stack

ESICUP Challenge 2015 MSSCSP X X X X
Loh and Nee (1992) SLOPP - - - -
Martello et al. (2000) SSSCSP - - - -



COMPUTATIONAL EXPERIMENTS 221

It is important to note that, except for weight and material (metal-related)
restrictions, the proposed approach was applied to these instances respecting all
the constraints present in the ESICUP challenge problem. Therefore, in contrast
to other approaches, the support and row/layer/stack constraints introduced by
the ESICUP challenge (Clautiaux et al., 2015) are respected by the presented
approach for all the other instances. Interestingly, both the addition of these
constraints and the decomposition itself do not appear to considerably affect
the quality of the final solution for some of these instances.

Table 8.10 presents the average number of bins required for each instance group
from Martello et al. (2000) and Lodi et al. (2002b) by both the proposed
algorithm and those in the literature, with the best results highlighted. The
developed algorithm was executed for 10 minutes for each instance. While the
presented approach results in more bins being required, which is expected given
the additional constraints imposed, it is competitive with some approaches from
the literature (Martello et al., 2000, Lodi et al., 2002a), whereas more recent
works resulted in better solutions (Faroe et al., 2003, Crainic and Toulouse,
2008, Crainic et al., 2009).

Table 8.11 compares the volume occupation obtained by the developed approach
against those from the literature for Loh and Nee (1992) instances. The best
results are, again, highlighted. During this experiment, the developed algorithm
was also executed for 10 minutes. An additional container was necessary to
pack all the items for two instances and, therefore, only the occupation of
the most-utilized container is presented. The table shows how the proposed
approach is very competitive with the state-of-the-art (Ngoi et al., 1994, Bischoff
et al., 1995, Bischoff and Ratcliff, 1995, Gehring and Bortfeldt, 1997, Bortfeldt
and Gehring, 2001, Bortfeldt et al., 2003, Moura and Oliveira, 2005, He and
Huang, 2010, Dereli and Das, 2011, Ren et al., 2011b, Lim and Rus, 2012) for
these instances. Optimality was achieved for 13/15 of the instances (all items
were placed in a single container), with occupation rates of over 93% achieved
for the remaining two instances. In fact, only four of the dedicated approaches
perform better: the tabu search methods (CBUSE) by Bortfeldt and Gehring
(1998) and Bortfeldt et al. (2003), the CDFA algorithm by He and Huang (2010),
the tree-search method by Ren et al. (2011b) and the iterated construction with
dynamic prioritization by Lim and Rus (2012).

To facilitate future comparisons with other algorithms, experiments considering
relaxed versions of the ESICUP challenge instances were also performed. Only
three constraints remain: (i) all items must lie entirely within a container, (ii)



222 MULTIPLE CONTAINER LOADING PROBLEM

Table 8.10: Average number of used bins for the MPV instances by Martello
et al. (2000)

# Items
Martello et al. (2000) Lodi

et al.
(2002b)

Faroe
et al.
(2003)

Crainic
and
Toulouse
(2008)

Crainic
et al.
(2009)

Presented
approach
(*)A B C

1
50 15.3 13.6 13.5 13.4 13.4 13.7 13.4 14.1

100 27.4 27.3 29.5 26.6 26.7 27.2 26.7 27.8
150 40.4 38.2 38.0 36.7 37.0 37.7 37.0 38.6
200 55.6 52.3 52.3 51.2 51.2 51.9 51.1 52.3

2
50 - - - 13.8 - - - 14.4

100 - - - 25.7 - - - 26.7
150 - - - 37.2 - - - 38.7
200 - - - 50.1 - - - 51.3

3
50 - - - 13.3 - - - 14.3

100 - - - 26.0 - - - 27.0
150 - - - 37.7 - - - 38.8
200 - - - 50.5 - - - 52.0

4
50 29.8 29.4 29.4 29.4 29.4 29.4 29.4 29.5

100 60.0 59.1 59.0 59.0 59.0 59.0 58.9 59.4
150 87.9 87.2 87.3 86.8 86.8 86.8 86.8 87.3
200 120.3 119.5 119.3 118.8 119.0 118.8 118.8 119.1

5
50 10.2 9.2 9.1 8.4 8.3 8.4 8.3 9.1

100 17.6 17.5 17.0 15.0 15.1 15.1 15.2 15.9
150 24.0 24.0 23.7 20.4 20.2 21.0 20.1 22.1
200 31.7 31.8 31.7 27.6 27.2 28.1 27.4 29.0

6
50 11.2 9.8 11.0 9.9 9.8 10.1 9.8 10.0

100 24.5 19.4 22.3 19.1 19.1 19.6 19.1 21.0
150 35.0 29.6 32.4 29.4 29.4 29.9 29.2 31.0
200 42.3 38.2 40.8 37.7 37.7 38.5 37.7 40.0

7
50 9.3 8.2 8.2 7.5 7.4 7.5 7.4 8.4

100 15.3 15.3 13.9 12.5 12.3 13.2 12.3 13.8
150 20.1 19.7 18.1 16.1 15.8 17.0 15.8 17.9
200 28.7 28.1 28.0 23.9 23.5 25.1 23.5 25.9

8
50 11.3 10.1 9.9 9.3 9.2 9.4 9.2 10.3

100 21.7 20.2 20.2 18.9 18.9 19.5 18.8 20.2
150 28.3 27.3 26.8 24.1 23.9 25.2 23.9 26.3
200 35.0 34.9 34.0 30.3 29.9 31.3 30.0 32.3

Average 33.5 32.1 32.3 30.8 30.4 31.0 30.4 32.0

(*) Note that the presented approach imposes additional constraints.

the items must not overlap and (iii) some items may not be rotated while others
may be rotated around the z-axis only (‘this side up’ constraint). A single
objective function was considered: to minimize the sum of container volume
used. Tables 8.12, 8.13 and 8.14 present the results obtained with the proposed
decomposition approach. Instance names were abbreviated, with co standing
for container, tr for trucks and re for relaxed. Note that the approach considers
the row/layer/stack constraints introduced by the ESICUP challenge, despite
their absence in these instances. The goal is to provide a means for future



CO
M
PUTATIO

N
AL

EXPERIM
EN

TS
223

Table 8.11: Results obtained for the 15 instances from Loh and Nee (1992). Values represent the volume utilization (%).

Ngoi
et al.
(1994)

Bischoff
et al.
(1995)

Bischoff
and
Ratcliff
(1995)

Gehring
and
Bort-
feldt
(1997)

Bortfeldt
and
Gehring
(1998)

Bortfeldt
and
Gehring
(2001)

Moura
and
Oliveira
(2005)

He and
Huang
(2010)

Dereli
and
Das
(2011)

Ren
et al.
(2011b)

Lim
and
Rus
(2012)

Presented
approach
(*)

LN01 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5
LN02 80.7 89.7 90.0 90.7 96.7 89.8 92.6 97.9 86.3 97.9 96.4 93.2
LN03 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4 53.4
LN04 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55.0
LN05 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2 77.2
LN06 88.7 89.5 83.1 91.1 96.3 92.4 91.7 96.7 89.2 96.3 93.5 93.0
LN07 81.8 83.9 78.7 82.7 84.7 84.7 84.7 84.7 83.2 84.7 84.7 84.7
LN08 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4 59.4
LN09 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9 61.9
LN10 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3 67.3
LN11 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2 62.2
LN12 78.5 76.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5
LN13 84.1 82.3 78.1 85.6 85.6 85.6 85.6 85.6 85.6 85.6 84.9 85.6
LN14 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8 62.8
LN15 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5

Average 69.0 69.5 68.6 70.0 70.9 70.1 70.3 71.0 69.6 70.9 70.6 70.4

(*) Note that the presented approach imposes additional constraints.



224 MULTIPLE CONTAINER LOADING PROBLEM

evaluation of the row/layer/stack impact within the decomposition. Expectedly,
the results differ considerably from those obtained for the original instances.
These results, in addition to instances and solutions files, are available online5.

Table 8.12: Results for relaxed InstancesA set

Instance LB UB Instance LB UB

ARG_BUR_STK_co_re 261.60 304.57 CVU_GC_PEX_co_re 4647.04 5329.89
AVF_RIR_STK_co_re 1144.60 1369.24 FSI_GC_PEX_co_re 1258.71 1408.47
AVF_RIR_STK_tr_re 441.40 529.68 IND_RIR_STK_co_re 239.80 281.69
AVT_BUR_STK_co_re 199.04 242.01 MED_GC_PEX_co_re 515.25 623.11
AVZ_RIR_STK_co_re 581.22 656.10 NSA_BUR_STK_co_re 199.04 242.01
AVZ_RIR_STK_tr_re 441.40 454.47 NSA_RIR_STK_co_re 215.73 248.71
CHE_GC_PEX_co_re 239.80 272.78 RSM_GC_PEX_co_re 365.49 407.39
CHE_RIR_STK_co_re 404.71 449.28 SOM_BUR_STK_co_re 185.46 218.63
CME_GC_PEX_co_re 272.78 314.68 SOM_RIR_STK_co_re 1082.20 1276.53
CVP_GC_PEX_co_re 1030.50 1201.65 TNG_RIR_STK_co_re 248.71 281.69

Table 8.13: Results for relaxed InstancesB set

Instance LB UB Instance LB UB

ACI_RIR_PEX_tr_re 176.56 176.56 FSI_GC_PEX_co_re 673.93 748.81
ALG_RIR_PEX_co_re 1872.02 2096.66 FSI_VLD_PEX_co_re 973.45 1272.97
AVF_RIR_PEX_co_re 449.28 524.16 IKO_RIR_PEX_tr_re 441.40 441.40
AVZ_RIR_PEX_co_re 748.81 898.57 MED_GC_PEX_co_re 524.16 673.93
CHE_GC_PEX_co_re 338.74 389.56 MJV_VLD_PEX_tr_re 353.12 441.40
CHE_RIR_PEX_co_re 748.81 823.69 NSA_RIR_PEX_co_re 1272.97 1422.73
CHE_VLD_PEX_co_re 673.93 748.81 RSM_GC_PEX_co_re 449.28 524.16
CVP_GC_PEX_co_re 524.16 599.04 SOM_VLD_PEX_co_re 2171.54 2995.22
CVU_GC_PEX_co_re 1497.61 1647.37 TAK_RIR_PEX_tr_re 264.84 264.84
CVU_VLD_PEX_co_re 524.16 599.04

Table 8.14: Results for relaxed InstancesX set

Instance LB UB Instance LB UB

ALG_RIR_PEX_co_re 735.82 827.77 MED_GC_EXP_co_re 944.66 1106.74
ARG_BUR_PEX_co_re 974.05 1089.38 NSA_RIR_PEX_co_re 526.99 589.55
AVF_RIR_PEX_co_re 1124.11 1235.65 RSM_GC_EXP_co_re 318.15 370.92
AVT_BUR_PEX_co_re 1026.81 1179.10 SOM_GC_EXP_co_re 749.41 845.14
BAX_COR_PEX_co_re 854.94 1017.02 SOM_RIR_PEX_co_re 1590.76 1905.13
CHE_RIR_PEX_co_re 556.38 642.32 TAN_BUR_PEX_co_re 579.75 679.27
CME_GC_EXP_co_re 374.70 427.47 TNG_RIR_PEX_co_re 2970.46 3265.90
CVP_GC_EXP_co_re 1044.18 1216.06 VAX_COR_PEX_co_re 265.39 337.74
FSI_GC_EXP_co_re 1758.85 1934.52

5http://benchmark.gent.cs.kuleuven.be/mclp.



CONCLUSIONS AND FUTURE WORK 225

8.5 Conclusions and future work

This chapter focused on a real-world 3D container loading problem. A
decomposition-based heuristic algorithm was introduced, inspired by the
ESICUP 2014/2015 challenge problem characteristics. Rather than directly
approaching a complex and very constrained 3D container loading problem, the
problem is decomposed into multiple, simpler-to-solve, 2D bin packing problems
whose solutions are combined to generate a solution for the overall problem.

The performance of the algorithm’s individual components was evaluated and
discussed. Furthermore, several experiments were conducted, devoting attention
to both the ESICUP challenge instances and to less constrained container
loading instances from the literature. In both cases, the proposed approach
proved competitive with current best approaches, obtaining best known solutions
for 36 out of 56 ESICUP challenge instances. It was also demonstrated as being
applicable to other instance sets, producing high quality solutions for the
instances of Loh and Nee (1992). All known optimal values were obtained by
the decomposition approach. For the remaining instances, occupation rates
above 93% were reached, despite the incorporation of specific ESICUP challenge
constraints. When considering the instances of Martello et al. (2000) and Lodi
et al. (2002b), obtained solutions were, on average, 5% worse than the best
known.

Future research directions include investigating alternative strategies for building
stacks and layers. The current algorithm, for instance, only considers a single
item’s dimensions as the target width and length of a stack. Other algorithms
for the bin builder should also be analyzed, given the negative impact resulting
from the adoption of bottom-left-fill instead of best-fit constructive heuristics.





Chapter 9

Conclusions

This thesis investigated decomposition-based algorithms for different combinato-
rial problems, resulting in significant scientific and practical contributions
which were thoroughly discussed throughout previous chapters. These
contributions directly impact future research concerning multiple problem
domains, particularly when heuristic algorithms are considered.

While the thesis’ primary focus concerns decomposition-based heuristic
algorithms, the methodologies presented are not restricted to heuristic
approaches. The structure of the TUP, for instance, was exploited to derive a
decomposition-based exact algorithm, which was capable of optimally solving
numerous unsolved problem instances. In fact, instances whose solution
previously required over 24h of computational time were solved within only a few
seconds. However, like any exact approach for the problems studied throughout
this thesis, the exact algorithm proposed was unable to independently generate
good solutions for large instances. Despite presenting superior performance when
compared against commercial MIP solvers, both approaches belong to the same
category due to one particular characteristic: their exponential time complexity
gives the impression they are inadequate for addressing large problems. Such
an impression was, however, disproved throughout the thesis by employing
decomposition techniques.

The generally prohibitively long runtimes required by exact (and exponential
worst-case time complexity) algorithms when solving large combinatorial
problems are often used to motivate the investigation of problem-specific

227



228 CONCLUSIONS

heuristic methods. Indeed, such a motivation is valid. However, this thesis
showed how simple decomposition strategies enable the employment of exact
algorithms for producing high-quality solutions without the burden of extremely
long runtimes. Moreover, the proposed approaches improved upon state-
of-the-art results obtained by problem-specific methodologies. In summary,
exponential-time algorithms are not only applicable for large problems but may
also outperform more conventional methodologies in terms of solution quality.

It is true, however, that when extremely tight runtime limits are imposed, the
role of such exponential-time algorithms may be questioned. We took this
challenge upon ourselves, and implemented algorithms which participated in
two international competitions. The initial goal was to achieve state-of-the-art
performance employing exponential-time algorithms, but the runtime limits
were indeed too tight. It proved necessary to investigate (faster) heuristic
approaches for solving subproblems under this circumstance. Note, however,
that the decomposition approaches were maintained, resulting in state-of-the-
art algorithms even when subproblems are not solved to optimality. The
combination of classic metaheuristic approaches with decomposition strategies
culminated in award-winning algorithms for the two competitions. In both
cases, the best publicly available approaches remain those proposed within this
thesis.

Many combinatorial problems constitute the combination of different intercon-
nected problems. These problems can often be decoupled into different decision
sets, which may be exploited when developing decompositions approaches. One
such example of this type of problem is the CVRP, for which a decision-set
decomposition was studied. Fundamental decisions concerning Assignment and
Sequencing were isolated and investigated. The objective was to evaluate
the impact of taking optimal Sequencing decisions at all times, focusing
instead upon the exploration of different Assignment decisions. Solving
Sequencing subproblems to optimality proved very time consuming, and so
an intermediate heuristic approach to address subproblems was investigated.
Again, improvements over the state-of-the-art were observed.

Besides the aforementioned discussion concerning a problem’s decision sets, this
manuscript also investigated the generality of specific decomposition approaches.
Part I addressed three different problems and proved how the competitive
decomposition-based algorithms developed for the TUP, NRP and PSP are
general. In fact, a general framework was built, one applicable not only to
these three problems. By successfully solving an additional academic problem,



CONCLUSIONS 229

whose decomposition approach employs a few different principles, the generality
of the framework was confirmed. It currently constitutes a powerful tool
for evaluating decomposition strategies for a wide range of combinatorial
optimization problems.

One of the primary conclusions arising from this thesis is that many problem-
specific heuristics are replaceable by general decomposition-based algorithms.
When compared against such problem-specific heuristics, decomposition-based
approaches present interesting advantages. Take for instance the framework
discussed throughout Chapter 5. Problems may be easily modified or extended,
often requiring no algorithmic modifications. Such flexibility is rarely seen
within heuristic algorithms, and constitutes a particularly interesting property
for software developers seeking products capable of addressing a large number
of problem variations. Moreover, the framework directly benefits from advances
concerning the subproblem solver which, in our case, is a general MIP
solver. As the boundaries of what can be optimally solved is pushed forward,
these decomposition-based methodologies may become more relevant. Part
I showed how larger subproblems tend to lead to higher-quality solutions.
Therefore, as subproblem solvers become capable of addressing larger problems,
decomposition-based algorithms tend to produce better and better solutions.

The findings presented by this manuscript resulted in many research questions
which should be addressed in future work. Many questions were discussed
throughout previous chapters, with some in particular deserving additional
attention. One such example concerns the generality of certain decomposition-
based heuristic algorithms. It was shown that the algorithms proposed in Part
I are generalized by the general framework described in Chapter 5, however it
is unclear to what degree this general framework can be extended. Future work
includes investigating the challenges concerning automatic problem structure
detection towards an automatic decomposition-based algorithm. This includes
studying additional problems for further identifying the traits of successful
decompositions. Another question concerns detecting to what extent algorithms
may be simplified without significant loss of performance, both in terms of
solution quality and computational time. The algorithms proposed for the two
international challenges represent two cases in which this research question is
relevant. Furthermore, decision-set decompositions should be investigated in
greater detail. These decomposition approaches are particularly valuable for
real-world industry applications composed of multiple interconnected problems,
in which more than one decision set is present.



230 CONCLUSIONS

Finally, the contributions of this thesis go beyond proposing and evaluating
decomposition methods. They also go beyond the proposition of general
approaches and the development of reusable open source code. This
thesis presented evidence that, rather than immediately proposing problem-
specific heuristics, researchers should consider combining exact algorithms
and decomposition approaches to derive their algorithms. Even when very
constrained environments restrict optimally solving subproblems, the advantages
of decomposition-based algorithms cannot be ignored. They are predominantly
more flexible, general and future-proof. Furthermore, they performed greatly
in terms of solution quality for all the problems addressed throughout this
manuscript.



Bibliography

Absi, N., Cattaruzza, D., Feillet, D., and Housseman, S. (2017). A relax-and-
repair heuristic for the Swap-Body Vehicle Routing Problem. Annals of
Operations Research, 253(2):957–978.

Abuhamdah, A. (2010). Experimental result of late acceptance randomized
descent algorithm for solving course timetabling problems. In IJCSNS -
International Journal of Computer Science and Network Security, volume 10,
pages 192–200.

Achterberg, T. (2009). SCIP: Solving constraint integer
programs. Mathematical Programming Computation, 1(1):1–41.
http://mpc.zib.de/index.php/MPC/article/view/4.

Achterberg, T. and Wunderling, R. (2013). Mixed Integer Programming:
Analyzing 12 Years of Progress, pages 449–481. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Ahuja, R., Ergun, Ö., Orlin, J., and Punnen, A. (2002). A survey of very
large-scale neighborhood search techniques. Discrete Applied Mathematics,
123(1-3):75–102.

Alba, E. and Chicano, J. F. (2007). Software Project Management with GAs.
Information Sciences, (177):2380–2401.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (2003). CONCORDE
TSP Solver. http://www.math.uwaterloo.ca/tsp/concorde.html.

Araujo, J. A. S., Santos, H. G., Baltar, D. D., Toffolo, T. A. M., and Wauters,
T. (2016). Neighborhood composition strategies in stochastic local search.
In Blesa, M. J., Blum, C., Cangelosi, A., Cutello, V., Di Nuovo, A., Pavone,
M., and Talbi, E.-G., editors, Hybrid Metaheuristics: 10th International

231



232 BIBLIOGRAPHY

Workshop, HM 2016, Plymouth, UK, June 8-10, 2016, Proceedings, pages
118–130, Cham. Springer International Publishing.

Araya, I. and Riff, M. C. (2014). A beam search approach to the container
loading problem. Computers and Operations Research, 43(1):100–107.

Artigues, C., Demassey, S., and Néron, E. (2013). Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. ISTE. Wiley.

Asta, S., Karapetyan, D., Kheiri, A., Özcan, E., and Parkes, A. J. (2016).
Combining monte-carlo and hyper-heuristic methods for the multi-mode
resource-constrained multi-project scheduling problem. Information Sciences,
373:476–498.

Awadallah, M. A., Al-Betar, M. A., Khader, A. T., Bolaji, A. L., and Alkoffash,
M. (2017). Hybridization of harmony search with hill climbing for highly
constrained nurse rostering problem. Neural Computing and Applications,
28(3):463–482.

Balas, E. and Simonetti, N. (2001). Linear time dynamic-programming
algorithms for new classes of restricted TSPs: A computational study.
INFORMS Journal on Computing, 13(1):56–75.

Balinski, M. and Quandt, R. (1964). On an integer program for a delivery
problem. Operations Research, 12(2):300–304.

Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W. P., and
Vance, P. H. (1998). Branch-and-price: column generation for solving huge
integer programs. Operations Research, 46:316–329.

Beasley, J. (1983). Route first-cluster second methods for vehicle routing. Omega,
11(4):403–408.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables
programming problems. Numer. Math., 4(1):238–252.

Berkelaar, M., Eikland, K., and Notebaert, P. (2017). Multi-platform, pure
ANSI C/POSIX source code, Lex/Yacc based parsing. Online at http://
lpsolve.sourceforge.net/5.5.

Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., and Vanden Berghe,
G. (2012). One hyper-heuristic approach to two timetabling problems in
health care. Journal of Heuristics, 18(3):401–434.

http://lpsolve.sourceforge.net/5.5
http://lpsolve.sourceforge.net/5.5


BIBLIOGRAPHY 233

Bischoff, E., Janetz, F., and Ratcliff, M. (1995). Loading pallets with non-
identical items. European Journal of Operational Research, 84(3):681–692.

Bischoff, E. and Ratcliff, M. (1995). Issues in the development of approaches to
container loading. Omega, 23(4):377–390.

Błażewicz, J., Lenstra, J., and Kan, A. R. (1983). Scheduling subject to resource
constraints: classification and complexity. Discrete Applied Mathematics,
5(1):11–24.

Bodin, L. and Berman, L. (1979). Routing and scheduling of school buses by
computer. Transportation Science, 13(2):113.

Bompadre, A. (2012). Exponential Lower Bounds on the Complexity of a Class of
Dynamic Programs for Combinatorial Optimization Problems. Algorithmica,
62:659–700.

Bortfeldt, A. and Gehring, H. (1998). Ein tabu search-verfahren für
containerbeladeprobleme mit schwach heterogenem kistenvorrat. Operations-
Research-Spektrum, 20(4):237–250.

Bortfeldt, A. and Gehring, H. (2001). A hybrid genetic algorithm for the
container loading problem. European Journal of Operational Research,
131(1):143–161.

Bortfeldt, A., Gehring, H., and Mack, D. (2003). A parallel tabu search
algorithm for solving the container loading problem. Parallel Computing,
29(5):641–662. Parallel computing in logistics.

Bortfeldt, A. and Wäscher, G. (2013). Constraints in container loading: A state-
of-the-art review. European Journal of Operational Research, 229(1):1–20.

Boschetti, M. A., Maniezzo, V., Roffilli, M., and Bolufé Röhler, A. (2009).
Matheuristics: Optimization, Simulation and Control, pages 171–177. Springer
Berlin Heidelberg, Berlin, Heidelberg.

Bresina, J. and Bresina, L. (1996). Heuristic-Biased Stochastic Sampling. In
AAAI-96 Proceedings, pages 271–278.

Brunetta, L. and Grégoire, P. (2005). A general purpose algorithm for three-
dimensional packing. INFORMS Journal on Computing, 17(3):328–338.

Brunner, J. O. (2010). Flexible Shift Planning in the Service Industry: The Case
of Physicians in Hospitals. Lecture Notes in Economics and Mathematical
Systems. Springer-Verlag Berlin Heidelberg.



234 BIBLIOGRAPHY

Burke, E. K. and Bykov, Y. (2008). A Late Acceptance Strategy in Hill-Climbing
for Exam Timetabling Problems. In Proccedings of PATAT 2008 conference,
Montreal, Canada.

Burke, E. K. and Bykov, Y. (2017). The late acceptance hill-climbing heuristic.
European Journal of Operational Research, 258(1):70–78.

Burke, E. K. and Curtois, T. (2014). New approaches to nurse rostering
benchmark instances. European Journal of Operational Research, 237(1):71–
81.

Burke, E. K., Kendall, G., and Whitwell, G. (2004). A New Placement Heuristic
for the Orthogonal Stock-Cutting Problem. Operations Research, 52(4):655–
671.

Caramia, M. and Guerriero, F. (2009). A heuristic approach for the truck
and trailer routing problem. Journal of the Operational Research Society,
61(7):1168–1180.

Chao, I. M. (2002). A tabu search method for the truck and trailer routing
problem. Computers and Operations Research, 29(1):33–51.

Chazelle, B. (1983). The bottomn-left bin-packing heuristic: An efficient
implementation. IEEE Transactions on Computers, 32(8):697–707.

Che, C., Zhang, Z., and Lim, A. (2011). A memetic algorithm for solving
multiperiod vehicle routing problem with profit. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation, pages 45–46.
ACM.

Christiaens, J. and Vanden Berghe, G. (2016). A fresh ruin & recreate
implementation for the capacitated vehicle routing problem. Technical report,
KU Leuven, Belgium.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central
depot to a number of delivery points. Operations Research, 12(4):568–581.

Clautiaux, F., Nguyen, A., and Brenaut, J.-P. (2015). Model for the challenge
Renault/ESICUP: version 1.3. http://challenge-esicup-2015.org/doc/modele_
renault.pdf.

Coelho, L., Cordeau, J.-F., and Laporte, G. (2011). Consistency in Multi-Vehicle
Inventory-Routing. CIRRELT Working Paper.

http://challenge-esicup-2015.org/doc/modele_renault.pdf
http://challenge-esicup-2015.org/doc/modele_renault.pdf


BIBLIOGRAPHY 235

Cordeau, J.-F., Laporte, G., Savelsbergh, M., and Vigo, D. (2007). Vehicle
Routing. In Barnhart, C. and Laporte, G., editors, Transportation, pages
367–428. Elsevier, North-Holland, Amsterdam.

Crainic, T. and Toulouse, M. (2008). Explicit and Emergent Cooperation
Schemes for Search Algorithms. In Maniezzo, V., Battiti, R., and Watson,
J.-P., editors, Learning and Intelligent Optimization, volume 5315 of LNCS,
pages 95–109, Berlin, Heidelberg. Springer-Verlag.

Crainic, T. G., Le Cun, B., and Roucairol, C. (2006). Parallel Branch-and-Bound
Algorithms, pages 1–28. John Wiley & Sons, Inc.

Crainic, T. G., Perboli, G., and Tadei, R. (2009). TS2PACK: A two-level tabu
search for the three-dimensional bin packing problem. European Journal of
Operational Research, 195(3):744–760.

Croes, G. A. (1958). A method for solving traveling-salesman problems.
Operations Research, 6(6):791–812.

Danna, E., Rothberg, E., and Le Pape, C. (2003). Integrating mixed integer
programming and local search: A case study on job-shop scheduling problems.
In Proceedings Third International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) techniques in Constraint
Programming (CPAIOR’03), Montreal, Canada.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition Principle for Linear
Programs. Operations Research, 8(1):101–111.

Davis, M. and Loveland, D. (1962). A Machine Program for Theorem-Proving.
Communications of the ACM, 5(7):394–397.

de Oliveira, L., de Souza, C. C., and Yunes, T. (2014). Improved bounds for
the traveling umpire problem: A stronger formulation and a relax-and-fix
heuristic. European Journal of Operational Research, 236(2):592–600.

de Oliveira, L., de Souza, C. C., and Yunes, T. (2016). Lower bounds for
large traveling umpire instances: New valid inequalities and a branch-and-cut
algorithm. Computers & Operations Research, 72:147–159.

Deineko, V. G. and Woeginger, G. J. (2000). A study of exponential
neighborhoods for the Travelling Salesman Problem and for the Quadratic
Assignment Problem. Mathematical Programming, 87:519–542.

Demeulemeester, E. L. and Herroelen, W. S. (2002). Project Scheduling: A
Research Handbook. Kluwer Academic Publishers.



236 BIBLIOGRAPHY

Dereli, T. and Das, G. S. (2011). A hybrid bee(s) algorithm for solving container
loading problems. Applied Soft Computing, 11(1):2854–2862.

Eley, M. (2002). Solving container loading problems by block arrangement.
European Journal of Operational Research, 141:393–409.

Faroe, O., Pisinger, D., and Zachariasen, M. (2003). Guided Local Search for the
Three-Dimensional Bin-Packing Problem. INFORMS Journal on Computing,
15(3):267–283.

Fischetti, M. and Lodi, A. (2003). Local branching. Mathematical Programming,
98(1-3):23–47.

Fischetti, M., Lodi, A., and Salvagnin, D. (2010). Just mip it! In Maniezzo,
V., Stützle, T., and Voü, S., editors, Matheuristics, volume 10 of Annals of
Information Systems, pages 39–70. Springer US.

Fisher, M. and Jaikumar, R. (1981). A generalized assignment heuristic for
vehicle routing. Networks, 11(2):109–124.

Fonseca, G. H. G., Santos, H. G., Toffolo, T. A. M., Brito, S. S., and Souza, M.
J. F. (2016). Goal solver: a hybrid local search based solver for high school
timetabling. Annals of Operations Research, 239(1):77–97.

Foster, B. and Ryan, D. (1976). An integer programming approach to the
vehicle scheduling problem. Operational Research Quarterly, 27(2):367–384.

Gamrath, G. and Lübbecke, M. E. (2010). Experiments with a Generic Dantzig-
Wolfe Decomposition for Integer Programs, pages 239–252. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Gehring, H. and Bortfeldt, A. (1997). A genetic algorithm for solving
the container loading problem. International Transactions in Operational
Research, 4(5-6):401–418.

Geiger, M. (2013). Iterated variable neighborhood search for the resource
constrained multi-mode multi-project scheduling problem. some comments on
our contribution to the mista 2013 challenge. Multidisciplinary International
Scheduling Conference (MISTA) 2013 Proceedings, 27-29:807–811.

Gendron, B. and Crainic, T. G. (1994). Parallel branch-and-branch algorithms:
Survey and synthesis. Operations Research, 42(6):1042–1066.

Geoffrion, A. (1970). Elements of large-scale mathematical programming: Part
I: Concepts. Management Science, 16(11):652–675.



BIBLIOGRAPHY 237

Gerdessen, J. C. (1996). Vehicle routing problem with trailers. European Journal
of Operational Research, 93(1):135–147.

Glover, F. (1991). Multilevel tabu search and embedded search neighborhoods
for the traveling salesman problem. Technical report, Leeds School of Business,
University of Colorado, Boulder.

Glover, F. (1996). Ejection chains, reference structures and alternating path
methods for traveling salesman problems. Discrete Applied Mathematics,
65(1-3):223–253.

Goel, A. and Vidal, T. (2014). Hours of service regulations in road freight
transport: an optimization-based international assessment. Transportation
Science, 48(3):391–412.

Goerler, A., Schulte, F., and Voß, S. (2013). An application of late acceptance
hill-climbing to the traveling purchaser problem. In Pacino, D., Voß, S., and
Jensen, R., editors, Computational Logistics, volume 8197 of Lecture Notes in
Computer Science, pages 173–183. Springer Berlin Heidelberg.

Gomes, R. A. M., Toffolo, T. A. M., and Santos, H. G. (2017). Variable
neighborhood search accelerated column generation for the nurse rostering
problem. Electronic Notes in Discrete Mathematics, 58:31–38. 4th
International Conference on Variable Neighborhood Search.

Gschwind, T. and Drexl, M. (2016). Adaptive large neighborhood search with a
constant-time feasibility test for the dial-a-ride problem. Technical Report LM-
2016-08, Chair of Logistics Management, Gutenberg School of Management
and Economics, Johannes Gutenberg University Mainz, Mainz, Germany.

Gutin, G. and Yeo, A. (2003). Upper bounds on ATSP neighborhood size.
Discrete Applied Mathematics, 129(2-3):533–538.

Hansen, P. and Jaumard, B. (1997). Cluster analysis and mathematical
programming. Mathematical Programming, 79(1-3):191–215.

Hansen, P., Mladenović, N., and Perez-Britos, D. (2001). Variable neighborhood
decomposition search. Journal of Heuristics, 7(4):335–350.

Hansen, P., Mladenović, N., and Urosević, D. (2006). Variable neighborhood
search and local branching. Comput. Oper. Res., 33(10):3034–3045.

Hartmann, A. and Rieger, H. (2002). Optimization Algorithms in Physics.
Wiley-VCH Verlag GmbH & Co. KGaA.



238 BIBLIOGRAPHY

Haspeslagh, S., De Causmaecker, P., Schaerf, A., and Stø levik, M. (2012). The
first international nurse rostering competition 2010. Annals of Operations
Research, pages 1–31.

He, K. and Huang, W. (2010). A caving degree based flake arrangement approach
for the container loading problem. Computers & Industrial Engineering,
59(2):344–351.

Heid, W., Hasle, G., and Vigo, D. (2014). VeRoLog solver challenge 2014
– VSC2014 problem description. http://verolog.deis.unibo.it/news-events/
general-news/verolog-solver-challenge-2014.

Hintsch, T. and Irnich, S. (2017). Large multiple neighborhood search for the
clustered vehicle-routing problem. Discussion paper number 1701, Johannes
Gutenberg University Mainz, Germany. Available at http://wiwi.uni-mainz.
de/Papers/Discussion_Paper_1701.pdf.

Huber, S. and Geiger, M. (2014). Swap body vehicle routing problem: A
heuristic solution approach. In González-Ramírez, R., Schulte, F., Voß, S.,
and Ceroni Díaz, J., editors, Computational Logistics, volume 8760 of Lecture
Notes in Computer Science, pages 16–30. Springer International Publishing.

Huber, S. and Geiger, M. J. (2017). Order matters - A variable neighborhood
search for the swap-body vehicle routing problem. European Journal of
Operational Research, 263(2):419–445.

Imahori, S. and Yagiura, M. (2010). The best-fit heuristic for the rectangular
strip packing problem: An efficient implementation and the worst-case
approximation ratio. Computers and Operations Research, 37(2):325–333.

Irnich, S. (2008). Solution of real-world postman problems. European Journal
of Operational Research, 190(1):52–67.

Irnich, S. (2013). Efficient local search for the CARP with combined exponential
and classical neighborhood. In VeRoLog Conference 2013, Southampton, U.K.

Ivancic, N., Mathur, K., and Mohanty, B. B. (1989). An Integer Programming
Based Heuristic Approach to the Three-dimensional Packing Problem. Journal
of Operations Management, 2:268–298.

Johnson, D. and McGeoch, L. (1997). The traveling salesman problem: A case
study in local optimization. In Aarts, E. and Lenstra, J., editors, Local search
in Combinatorial Optimization, pages 215–310. University Press, Princeton,
NJ.

http://verolog.deis.unibo.it/ news-events/general-news/verolog-solver-challenge-2014
http://verolog.deis.unibo.it/ news-events/general-news/verolog-solver-challenge-2014
http://wiwi.uni-mainz.de/Papers/Discussion_Paper_1701.pdf
http://wiwi.uni-mainz.de/Papers/Discussion_Paper_1701.pdf


BIBLIOGRAPHY 239

Józefowska, J. and Weglarz, J. (2006). Perspectives in modern project scheduling.
International series in operations research & management science. Springer.

Kelley, Jr, J. E. and Walker, M. R. (1959). Critical-path planning and scheduling.
In Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-
ACM Computer Conference, IRE-AIEE-ACM ’59 (Eastern), pages 160–173,
New York, NY, USA. ACM.

Kendall, G., Bai, R., Błażewicz, J., De Causmaecker, P., Gendreau, M., John,
R., Li, J., McCollum, B., Pesch, E., Qu, R., Sabar, N., Vanden Berghe, G.,
and Yee, A. (2016). Good Laboratory Practice for optimization research.
Journal of the Operational Research Society, 67(4):676–689.

Kernighan, B. and Ritchie, D. (1988). The C programming language, volume 78.
Prentice-Hall, Inc., 2nd edition.

Kerzner, H. (2013). Project Management: A Systems Approach to Planning,
Scheduling, and Controlling. Wiley, 10th edition.

Klein, R. (2000). Scheduling of Resource-Constrained Projects. Operations
research/computer science interfaces series. Kluwer Academic.

Kolisch, R. and Hartmann, S. (1999). Heuristic algorithms for the resource-
constrained project scheduling problem: Classification and computational
analysis. In Węglarz, J., editor, Project Scheduling, volume 14 of International
Series in Operations Research & Management Science, pages 147–178.
Springer US.

Kolisch, R. and Hartmann, S. (2006). Experimental investigation of heuristics
for resource-constrained project scheduling: An update. European Journal of
Operational Research, 174(1):23–37.

Kolisch, R. and Sprecher, A. (1997). PSPLIB - A project scheduling problem
library. European Journal of Operational Research, 96(1):205–216.

Koné, O., Artigues, C., Lopez, P., and Mongeau, M. (2011). Event-based MILP
models for resource-constrained project scheduling problems. Computers &
Operations Research, 38(1):3–13.

Koné, O., Artigues, C., Lopez, P., and Mongeau, M. (2013). Comparison of
mixed integer linear programming models for the resource-constrained project
scheduling problem with consumption and production of resources. Flexible
Services and Manufacturing Journal, 25(1-2):25–47.



240 BIBLIOGRAPHY

Krishnamoorthy, M., Ernst, A., and Baatar, D. (2012). Algorithms for large
scale shift minimisation personnel task scheduling problems. European Journal
of Operational Research, 219(1):34–48.

Krüger, K., Shakhlevich, N. V., Sotskov, Y. N., Werner, F., Kruger, K.,
Shakhlevich, N. V., and Sotskov, Y. N. (2016). A Heuristic Decomposition
Algorithm for Scheduling Problems on Mixed Graphs. Journal of the
Operational Research Society, 46(12):1481–1497.

Land, A. H. and Doig, A. G. (1960). An automatic method of solving discrete
programming problems. Econometrica, 28(3):497–520.

Li, K. and Willis, R. (1992). An iterative scheduling technique for resource-
constrained project scheduling. European Journal of Operational Research,
56(3):370–379.

Lim, S. and Rus, D. (2012). Stochastic motion planning with path constraints
and application to optimal agent, resource, and route planning. 2012 IEEE
International Conference on Robotics and Automation, pages 4814–4821.

Lin, S.-W., Yu, V. F., and Chou, S.-Y. (2009). Solving the truck and trailer
routing problem based on a simulated annealing heuristic. Computers &
Operations Research, 36(5):1683–1692.

Lin, S.-W., Yu, V. F., and Chou, S.-Y. (2010). A note on the truck and trailer
routing problem. Expert Systems with Applications, 37(1):899–903.

Lin, S.-W., Yu, V. F., and Lu, C.-C. (2011). A simulated annealing heuristic
for the truck and trailer routing problem with time windows. Expert Systems
with Applications, 38(12):15244–15252.

Lodi, A., Martello, S., and Monaci, M. (2002a). Two-dimensional packing
problems: A survey. European Journal of Operational Research, 141:241–252.

Lodi, A., Martello, S., and Vigo, D. (2002b). Heuristic algorithms for the
three-dimensional bin packing problem. European Journal of Operational
Research, 141:410–420.

Loh, T. H. and Nee, A. Y. C. (1992). A packing algorithm for hexahedral boxes.
In Proceedings of the Conference of Industrial Automation, pages 115–126.

López-Ibáñez, M., Dubois-Lacoste, J., Stützle, T., and Birattari, M. (2011). The
irace package, iterated race for automatic algorithm configuration. Technical
Report TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles,
Belgium.



BIBLIOGRAPHY 241

Lourenço, H., Martin, O., and T., S. (2010). Iterated local search: Framework
and applications. In Handbook of Metaheuristics, 2nd. Edition, volume
146, pages 363—397. Kluwer Academic Publishers, International Series in
Operations Research & Management Science.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search.
In Glover, F. and Kochenberger, G., editors, Handbook of Metaheuristics,
volume 57 of International Series in Operations Research & Management
Science, pages 320–353. Springer US.

Lü, Z. and Hao, J. K. (2012). Adaptive neighborhood search for nurse rostering.
European Journal of Operational Research, 218(3):865–876.

Lübbecke, M. E. and Desrosiers, J. (2005). Selected Topics in Column Generation.
Operations Research, 53(6):1007–1023.

Lum, O., Chen, P., Wang, X., Golden, B., and Wasil, E. (2015). A Heuristic
Approach for the Swap-Body Vehicle Routing Problem. In 14th INFORMS
Computing Society Conference, pages 172–187.

Maniezzo, V., Stützle, T., and Voß, S. (2010). Matheuristics: Hybridizing
Metaheuristics and Mathematical Programming. Annals of Information
Systems.

Martello, S., Pisinger, D., and Vigo, D. (2000). The Three-Dimensional Bin
Packing Problem. Operations Research, 48(2):256–267.

Martins, A. X., De Souza, M. C., Souza, M. J. F., and Toffolo, T. a. M.
(2009). GRASP with hybrid heuristic-subproblem optimization for the multi-
level capacitated minimum spanning tree problem. Journal of Heuristics,
15(2):133–151.

Michie, D. (1968). “Memo” functions and machine learning. Nature,
218(5136):19–22.

Miranda-Bront, J. J., Curcio, B., Méndez-Díaz, I., Montero, A., Pousa, F., and
Zabala, P. (2017). A cluster-first route-second approach for the swap body
vehicle routing problem. Annals of Operations Research, 253(2):935–956.

Mittelmann, H. (2017). Mixed integer linear programming benchmark. http:
//plato.asu.edu/ftp/milpc.html.

Möhring, R. H., Schulz, A. S., Stork, F., and Uetz, M. (2003). Solving project
scheduling problems by minimum cut computations. Management Science,
49(3):330–350.

http://plato.asu.edu/ftp/milpc.html
http://plato.asu.edu/ftp/milpc.html


242 BIBLIOGRAPHY

Moura, A. and Oliveira, J. F. (2005). A grasp approach to the container-loading
problem. IEEE Intelligent Systems, 20(4):50–57.

Munkres, J. (1957). Algorithms for the assignment and transportation problems.
Journal of the Society for Industrial and Applied Mathematics, 5(1):pp. 32–38.

Muter, I., Birbil, S., and Sahin, G. (2010). Combination of metaheuristic
and exact algorithms for solving set covering-type optimization problems.
INFORMS Journal on Computing, 22(4):603–619.

Narendra, K. S. and Thathachar, M. A. L. (1989). Learning Automata: An
Introduction. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

Ngoi, B. K. A., Tay, M. L., and Chua, E. S. (1994). Applying spatial
representation techniques to the container packing problem. International
Journal of Production Research, 32(1):111–123.

Nonobe, K. (2010). INRC2010: An approach using a general constraint
optimization solver.

Özcan, E., Bykov, Y., Birben, M., and Burke, E. K. (2009). Examination
timetabling using late acceptance hyper-heuristics. In Proceedings of the
Eleventh conference on Congress on Evolutionary Computation, CEC’09,
pages 997–1004, Piscataway, NJ, USA. IEEE Press.

Parragh, S. N. and Cordeau, J.-F. (2017). Branch-and-price and adaptive large
neighborhood search for the truck and trailer routing problem with time
windows. Computers & Operations Research, 83:28–44.

Parreño, F., Alvarez-Valdes, R., Tamarit, J. M., and Oliveira, J. F. (2008).
A maximal-space algorithm for the container loading problem. INFORMS
Journal on Computing, 20(3):412–422.

Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., and Limbourg, S. (2015).
Vehicle routing problems with loading constraints: state-of-the-art and future
directions. OR Spectrum, 37(2):297–330.

Pritsker, A. A. B., Watters, L. J., and Wolfe, P. M. (1969). Multi project
scheduling with limited resources: A zero-one programming approach.
Management Science, 3416:93–108.

Rahimian, E., Akartunalı, K., and Levine, J. (2017). A hybrid integer
and constraint programming approach to solve nurse rostering problems.
Computers and Operations Research, 82:83–94.



BIBLIOGRAPHY 243

Ren, J., Tian, Y., and Sawaragi, T. (2011a). A priority-considering approach
for the multiple container loading problem. International Journal of
Metaheuristics, 1(4):298–316.

Ren, J., Tian, Y., and Sawaragi, T. (2011b). A tree search method for the
container loading problem with shipment priority. European Journal of
Operational Research, 214(3):526–535.

Renaud, J., Boctor, F., and Laporte, G. (1996). An improved petal heuristic for
the vehicle routeing problem. Journal of the Operational Research Society,
47(2):329–336.

Santos, H. G., Toffolo, T. A. M., Gomes, R. A. M., and Ribas, S. (2016).
Integer programming techniques for the nurse rostering problem. Annals of
Operations Research, 239(1):225–251.

Santos, H. G., Toffolo, T. A. M., Ribas, S., and Gomes, R. A. M. (2012). Integer
programming techniques for the Nurse Rostering Problem. 9th International
Conference on Practice and Theory of Automated Timetabling (PATAT) 2012
Proceedings, pages 257–282.

Santos, H. G., Toffolo, T. A. M., Silva, C. L. T. F., and Vanden Berghe, G. (2017).
Analysis of stochastic local search methods for the unrelated parallel machine
scheduling problem. International Transactions in Operational Research, page
(In press).

Scheuerer, S. (2006). A tabu search heuristic for the truck and trailer routing
problem. Computers & Operations Research, 33(4):894–909.

Smet, P., Wauters, T., Mihaylov, M., and Vanden Berghe, G. (2014). The shift
minimisation personnel task scheduling problem: A new hybrid approach and
computational insights. Omega, 46:64–73.

Subramanian, A., Uchoa, E., and Ochi, L. (2013a). A hybrid algorithm for
a class of vehicle routing problems. Computers & Operations Research,
40(10):2519–2531.

Subramanian, A., Uchoa, E., and Ochi, L. S. (2013b). A hybrid algorithm
for a class of vehicle routing problems. Computers & Operations Research,
40(10):2519–2531.

Tassopoulos, I. X., Solos, I. P., and Beligiannis, G. N. (2015). A two-phase
adaptive variable neighborhood approach for nurse rostering. Computers &
Operations Research, 60:150–169.



244 BIBLIOGRAPHY

Todosijević, R., Hanafi, S., Urošević, D., Jarboui, B., and Gendron, B. (2017).
A general variable neighborhood search for the swap-body vehicle routing
problem. Computers & Operations Research, 78:468–479.

Toffolo, T. A. M., Christiaens, J., Spieksma, F., and Vanden Berghe, G. (2016a).
Grouping sport teams into round robin competitions. In Burke, E. K., Gaspero,
L. D., Özcan, E., McCollum, B., and Schaerf, A., editors, Proceedings of
the 11th International Conference of the Practice and Theory of Automated
Timetabling (PATAT 2016), pages 353–369.

Toffolo, T. A. M., Christiaens, J., Spieksma, F. C. R., and Vanden Berghe, G.
(2017a). The sport teams grouping problem. Annals of Operations Research,
(In press).

Toffolo, T. A. M., Christiaens, J., Van Malderen, S., Wauters, T., and Vanden
Berghe, G. (2018). Stochastic local search with learning automaton for
the swap-body vehicle routing problem. Computers & Operations Research,
89:68–81 (In press).

Toffolo, T. A. M., Esprit, E., Wauters, T., and Vanden Berghe, G. (2017b).
A two-dimensional heuristic decomposition approach to a three-dimensional
multiple container loading problem. European Journal of Operational Research,
257(2):526–538.

Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., and Soares, J. (2013). An
integer programming approach for the multi-mode resource-constrained multi-
project scheduling problem. In G. Kendall, G. Vanden Berghe, . B. M., editor,
Proceedings of the 6th Multidisciplinary International Scheduling Conference
(MISTA), pages 840–847.

Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., and Soares, J. A. (2016b).
An integer programming approach to the multimode resource-constrained
multiproject scheduling problem. Journal of Scheduling, 19(3):295–307.

Toffolo, T. A. M., Van Malderen, S., Wauters, T., and Vanden Berghe, G. (2014).
Branch-and-price and improved bounds to the traveling umpire problem. In
Özcan, E., Burke, E., and McCollum, B., editors, Proceedings of the 10th
International Conference on Practice and Theory of Automated Timetabling
(PATAT 2014), pages 420–432, York, UK.

Toffolo, T. A. M., Wauters, T., Van Malderen, S., and Vanden Berghe, G. (2016c).
Branch-and-bound with decomposition-based lower bounds for the traveling
umpire problem. European Journal of Operational Research, 250(3):737–744.



BIBLIOGRAPHY 245

Toth, P. and Vigo, D. (2003). The granular tabu search and its application to the
vehicle-routing problem. INFORMS Journal on Computing, 15(4):333–346.

Toth, P. and Vigo, D., editors (2014). Vehicle Routing: Problems, Methods, and
Applications. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2nd edition.

Trick, M. A. and Yildiz, H. (2007). Bender’s cuts guided large neighborhood
search for the traveling umpire problem. In Van Hentenryck, P. and Wolsey,
L., editors, Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, number 4510 in Lecture Notes in
Computer Science, pages 332–345. Springer Berlin Heidelberg.

Trick, M. A. and Yildiz, H. (2011). Benders’ cuts guided large neighborhood
search for the traveling umpire problem. Naval Research Logistics (NRL),
58(8):771–781.

Trick, M. A. and Yildiz, H. (2012). Locally optimized crossover for the traveling
umpire problem. European Journal of Operational Research, 216(2):286–292.

Trick, M. A. and Yildiz, H. (2013). Traveling umpire problem, benchmark
instances. Available at http://mat.gsia.cmu.edu/TUP/.

Trick, M. A., Yildiz, H., and Yunes, T. (2012). Scheduling major league baseball
umpires and the traveling umpire problem. Interfaces, 42:232–244.

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian,
A. (2017). New benchmark instances for the Capacitated Vehicle Routing
Problem. European Journal of Operational Research, 257(3):845–858.

Uchoa, E., Toffolo, T. A. M., de Souza, M. C., Martins, A. X., and Fukasawa, R.
(2012). Branch-and-cut and hybrid local search for the multi-level capacitated
minimum spanning tree problem. Networks, 59(1):148–160.

Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., and Housos, E. (2012). A
systematic two phase approach for the nurse rostering problem. European
Journal of Operational Research, 219(2):425–433.

Van Den Dooren, D., Sys, T., Toffolo, T. A. M., Wauters, T., and Vanden Berghe,
G. (2017). Multi-machine energy-aware scheduling. EURO Journal on
Computational Optimization, 5(1):285–307.

Vanderbeck, F. and Wolsey, L. (2010). Reformulation and decomposition of
integer programs. In Jünger, M., Liebling, T. M., Naddef, D., Nemhauser,

http://mat.gsia.cmu.edu/TUP/


246 BIBLIOGRAPHY

G. L., Pulleyblank, W. R., Reinelt, G., Rinaldi, G., and Wolsey, L. A., editors,
50 Years of Integer Programming 1958-2008, pages 431–502. Springer Berlin
Heidelberg.

Verstichel, J. and Vanden Berghe, G. (2009). A late acceptance algorithm for
the lock scheduling problem. In Voss, S., Pahl, J., and Schwarze, S., editors,
Logistik Management, Hamburg, 2-4 September 2009, pages 457–478.

Vidal, T., Battarra, M., Subramanian, A., and Erdogan, G. (2015). Hybrid
metaheuristics for the clustered vehicle routing problem. Computers &
Operations Research, 58(1):87–99.

Vidal, T., Crainic, T., Gendreau, M., and Prins, C. (2013). Heuristics for
multi-attribute vehicle routing problems: A survey and synthesis. European
Journal of Operational Research, 231(1):1–21.

Vidal, T., Crainic, T., Gendreau, M., and Prins, C. (2014). A unified solution
framework for multi-attribute vehicle routing problems. European Journal of
Operational Research, 234(3):658–673.

Vidal, T., Maculan, N., Ochi, L., and Penna, P. (2016). Large neighborhoods
with implicit customer selection for vehicle routing problems with profits.
Transportation Science, 50(2):720–734.

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., and Velasco, N. (2013).
A matheuristic for the truck and trailer routing problem. European Journal
of Operational Research, 230(2):231–244.

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology of
cutting and packing problems. European Journal of Operational Research,
183(3):1109–1130.

Wauters, T. (2012). Reinforcement learning enhanced heuristic search for
combinatorial optimization. PhD thesis, KU Leuven.

Wauters, T., Kinable, J., Smet, P., Vancroonenburg, W., Vanden Berghe, G.,
and Verstichel, J. (2016). The multi-mode resource-constrained multi-project
scheduling problem. Journal of Scheduling, 19(3):271–283.

Wauters, T., Van Malderen, S., and Vanden Berghe, G. (2014). Decomposition
and local search based methods for the traveling umpire problem. European
Journal of Operational Research, 238(3):886–898.



BIBLIOGRAPHY 247

Weglarz, J. (1999). Project Scheduling: Recent Models, Algorithms, and
Applications. International series in operations research & management
science. Kluwer.

Xue, L., Luo, Z., and Lim, A. (2015). Two exact algorithms for the traveling
umpire problem. European Journal of Operational Research, 243(3):932–943.

Yildiz, H. (2008). Methodologies and Applications for Scheduling, Routing &
Related Problems. PhD thesis, Carnegie Mellon University.

Yuan, B., Zhang, C., and Shao, X. (2015). A late acceptance hill-climbing
algorithm for balancing two-sided assembly lines with multiple constraints.
Journal of Intelligent Manufacturing, 26(1):159–168.

Zhao, X., Bennell, J. A., Bektaş, T., and Dowsland, K. (2016). A comparative
review of 3D container loading algorithms. International Transactions in
Operational Research, 23(1-2):287–320.





Awards and publications

Awards

2016 Winner of Superminds 2016, Brussels, Belgium.
The imec SuperMinds is a yearly single-track event where state-of-the-art
research and innovation projects are presented in TED-like exhibitions by the
researchers. The 2016 edition counted with approximately 500 researchers
in the audience. Nine pre-selected participants presented their research and
competed to the Superminds 2016 award. The prize was given to the best
presentation, selected in a voting system by the approximately 500 researchers
in the audience. The winning presentation is available online in imec’s website,
Youtube and Vimeo.

2015 Best Presentation Award, Guimarães, Portugal.
Best Presentation Award received with the presentation entitled “Decomposition
approaches to 3D container loading problems and strip packing problems”,
given during the XI International Workshop on Cutting, Packing and Related
Topics, July 2015.

2015 ESICUP Cutting and Packing International Competition,
Portsmouth, UK.
Second place on the ESICUP Cutting and Packing International Competition
2014/2015 with the team CODeS.

2014 International Vehicle Routing Competition, Oslo, Norway.
Winner of the VeRoLog Vehicle Routing Competition 2013/2014 with the
team CODeS.

249



250 AWARDS AND PUBLICATIONS

2013 MISTA Challenge (Project Scheduling Competition), Gent, Belgium.
Third place on the MISTA Project Scheduling Competition 2012/2013 with
the team GOAL.

2012 International Timetabling Competition, Son, Norway.
Winner of the Internation Timetabling Competition 2011/2012 with the team
GOAL.

2006 Brazilian Computer Society Student Award, www.sbc.org.br.
Winner of the prize, given by the organization to the featured students of
different regions of Brazil.

2006 Featured Student Award, Federal University of Ouro Preto, Brazil.
Winner of the prize, given by the University to the graduating student with
highest grades.

Publications

Articles in internationally reviewed academic journals

2017 Toffolo, T. A. M., Christiaens, J., Van Malderen, S., Wauters, T., and
Vanden Berghe, G. (To appear). Stochastic local search with learning
automaton for the swap-body vehicle routing problem. Computers &
Operations Research. 89:68–81. doi:10.1016/j.cor.2017.08.002 (In press)

2017 Toffolo, T. A. M., Christiaens, J., Spieksma, F., Vanden Berghe, G.
(To appear). The sport teams grouping problem. Annals of Operations
Research. doi:10.1007/s10479-017-2595-z (In press)

2017 Toffolo, T. A. M., Esprit, E., Wauters, T., and Vanden Berghe, G.
(2017). A two-dimensional heuristic decomposition approach to a three-
dimensional multiple container loading problem. European Journal of
Operational Research, 257(2):526–538. doi:10.1016/j.ejor.2016.07.033

2017 Van Den Dooren, D., Sys, T., Toffolo, T. A. M., Wauters,
T., and Vanden Berghe, G. (2017). Multi-machine energy-aware
scheduling. EURO Journal on Computational Optimization, 5(1):285–307.
doi:10.1007/s13675-016-0072-0

www.sbc.org.br
http://dx.doi.org/10.1016/j.cor.2017.08.002
http://dx.doi.org/10.1007/s10479-017-2595-z
http://dx.doi.org/10.1016/j.ejor.2016.07.033
http://dx.doi.org/10.1007/s13675-016-0072-0


AWARDS AND PUBLICATIONS 251

2016 Toffolo, T. A. M., Wauters, T., Van Malderen, S., and Vanden Berghe,
G. (2016). Branch-and-bound with decomposition-based lower bounds for
the traveling umpire problem. European Journal of Operational Research,
250(3):737–744. doi:10.1016/j.ejor.2015.10.004

2016 Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., and Soares, J. A.
(2016). An integer programming approach to the multimode resource-
constrained multiproject scheduling problem. Journal of Scheduling,
19(3):295–307. doi:10.1007/s10951-015-0422-4

2016 Santos, H. G., Toffolo, T. A. M., Gomes, R. A. M., and Ribas, S. (2016).
Integer programming techniques for the nurse rostering problem. Annals
of Operations Research, 239(1):225–251. doi:10.1007/s10479-014-1594-6

2016 Santos, H. G., Toffolo, T. A. M., Silva, C. L. T. F., and Vanden
Berghe, G. (To appear). Analysis of stochastic local search methods
for the unrelated parallel machine scheduling problem. International
Transactions in Operational Research. (In press). doi:10.1111/itor.12316

2016 Fonseca, G. H. G., Santos, H. G., Toffolo, T. A. M., Brito, S. S., and
Souza, M. J. F. (2016). Goal solver: a hybrid local search based solver
for high school timetabling. Annals of Operations Research, 239(1):77–97.
doi:10.1007/s10479-014-1685-4

2012 Uchoa, E., Toffolo, T. A. M., de Souza, M. C., Martins, A. X., and
Fukasawa, R. (2012). Branch-and-cut and hybrid local search for the
multi-level capacitated minimum spanning tree problem. Networks,
59(1):148–160. doi:10.1002/net.20485

2009 Martins, A. X., Souza, M. C., Souza, M. J., and Toffolo, T. A. M.
(2009). GRASP with hybrid heuristic-subproblem optimization for the
multi-level capacitated minimum spanning tree problem. Journal of
Heuristics, 15:133–151. doi:10.1007/s10732-008-9079-x

Papers at international scientific conferences and symposia,
published in full in proceedings (during the PhD)

2017 Gomes, R. A. M., Toffolo, T. A. M., and Santos, H. G. (2017).
Variable neighborhood search accelerated column generation for the
nurse rostering problem. Electronic Notes in Discrete Mathematics,
58:31–38. doi:10.1016/j.endm.2017.03.005

http://dx.doi.org/10.1016/j.ejor.2015.10.004
http://dx.doi.org/10.1007/s10951-015-0422-4
http://dx.doi.org/10.1007/s10479-014-1594-6
http://dx.doi.org/10.1111/itor.12316
http://dx.doi.org/10.1007/s10479-014-1685-4
http://dx.doi.org/10.1002/net.20485
http://dx.doi.org/10.1007/s10732-008-9079-x
http://dx.doi.org/10.1016/j.endm.2017.03.005


252 AWARDS AND PUBLICATIONS

2016 Toffolo, T. A. M., Christiaens, J., Spieksma, F., and Vanden Berghe,
G. (2016). Grouping sport teams into round robin competitions. In
Burke, E. K., Gaspero, L. D., Özcan, E., McCollum, B., and Schaerf, A.,
editors, Proceedings of the 11th International Conference of the Practice
and Theory of Automated Timetabling (PATAT 2016), pages 353–369.

2016 Araujo, J. A. S., Santos, H. G., Baltar, D. D., Toffolo, T. A. M.,
and Wauters, T. (2016). Neighborhood composition strategies in
stochastic local search. In Blesa, M. J., Blum, C., Cangelosi, A.,
Cutello, V., Di Nuovo, A., Pavone, M., and Talbi, E.-G., editors, Hybrid
Metaheuristics: 10th International Workshop, HM 2016, Plymouth,
UK, June 8-10, 2016, Proceedings, pages 118–130, Cham. Springer
International Publishing.

2014 Toffolo, T. A. M., Van Malderen, S., Wauters, T., and Vanden Berghe,
G. (2014). Branch-and-price and improved bounds to the traveling
umpire problem. In Proceedings of the 10th International Conference
on Practice and Theory of Automated Timetabling (PATAT 2014), pages
420–432, York, UK.

Conferences and symposia (during the PhD)

Presentations at international conferences and symposia

2017 Toffolo, T. A. M., Wauters, T., Martinez-Sykora, A. A decomposition-
based algorithm for a leather industry cutting problem. XII International
Workshop on Cutting, Packing and Related Topics. IWCPRT 2017, Gent,
Belgium – September 13, 2017.

2017 Toffolo, T. A. M., Wauters, T., Martinez-Sykora, A. Matheuristics
for a real-world leather industry cutting problem. 14th EURO Special
Interest Group on Cutting and Packing Meeting. ESICUP Meeting 2017,
Liège, Belgium – May 05, 2017.

2017 Toffolo, T. A. M. Decomposition-based Branch-and-Bound for the
Traveling Umpire Problem. Escuela Latinoamericana de Verano en
Investiación Operativa. ELAVIO 2017, Buenos Aires and Miramar,
Argentina – February 24, 2017.



AWARDS AND PUBLICATIONS 253

2016 Toffolo, T. A. M., Christiaens, J., Spieksma, F., and Vanden Berghe,
G. Assigning youth football teams to leagues. 28th European Conference
on Operational Research. EURO 2016, Poznan, Poland – July 04, 2016.

2016 Toffolo, T. A. M., Wauters, T., and Vanden Berghe, G. Exact and
heuristic approaches to the Traveling Umpire Problem. 1st Workshop
on Applied Combinatorial Optimization Methods. WACOM 2016, Ouro
Preto, Brazil – March 21, 2016.

2016 Toffolo, T. A. M., Christiaens, J., Spieksma, F., and Vanden Berghe, G.
Grouping sport teams into round robin competitions. 11th International
Conference on Practice and Theory of Automated Timetabling. PATAT
2016, Udine, Italy – August 25, 2016.

2015 Toffolo, T. A. M., Wauters, T., and Vanden Berghe, G. Time-based
Decomposition Strategies for the Traveling Umpire Problem. 7th
Multidisciplinary International Scheduling Conference. MISTA 2015,
Prage, Czech Republic – August 25, 2015.

2015 Toffolo, T. A. M., Wauters, T., Esprit, E., and Vanden Berghe G.
Decomposition approaches to 3D container loading problems and 2D
strip packing problems XI International Workshop on Cutting, Packing
and Related Topics. IWCPRT 2015, Guimarães, Portugal – July 31, 2015.

2015 Toffolo, T. A. M., Wauters, and Vanden Berghe G. Decomposition-
based Branch-and-bound for the Traveling Umpire Problem. Joint
International Meeting Canadian Operational Research Society Institute for
Operations Research and the Management Sciences. CORS/INFORMS
Meeting 2015, Montreal, Canada – June 14, 2015.

2015 Toffolo, T. A. M., Wauters, T., Esprit, E., and Vanden Berghe G.
A heuristic decomposition approach to the ESICUP 2015 Challenge
Container Loading Problem. 12th EURO Special Interest Group on
Cutting and Packing Meeting. ESICUP Meeting 2015, Portsmouth, UK –
March 31, 2015.

2014 Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., Soares, J. A.,
and Vanden Berghe, G. Hybrid Integer Programming Heuristic to a
Generalized Project Scheduling Problem. VIII ALIO/EURO Workshop
on Applied Combinatorial Optimization. ALIO/EURO 2014, Montevideo,
Uruguay – December 08, 2014.



254 AWARDS AND PUBLICATIONS

2014 Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., Soares, J. A.,
Vanden Berghe, G. and Wauters, T. An Integer Programming Approach
for a Generalized Project Scheduling Problem. 5th International
Workshop on Model-Based Metaheuristics. Matheuristics 2014, Hamburg,
Germany – June 12, 2014.

2014 Toffolo, T. A. M., Santos, H. G., Carvalho, M. A. M., Soares, J. A.,
Vanden Berghe, G. and Wauters, T. An Integer Programming Approach
for a Generalized Project Scheduling Problem. New Challenges in
Scheduling Theory. Aussois, France – April 03, 2014.

2014 Toffolo, T. A. M., Van Malderen, S., Wauters, T., and Vanden Berghe
G. Branch-and-Price and Improved Bounds to the Traveling Umpire
Problem. 10th International Conference on Practice and Theory of
Automated Timetabling. PATAT 2014, York, UK – August 27, 2014.

Presentations at other conferences and symposia

2017 Toffolo, T. A. M., Wauters, T., and Martinez-Sykora, A. Integer
programming based heuristics for a leather indystry nesting problem.
31st Annual Conference of the Belgian Operational Research Society.
ORBEL 2017, Brussels, Belgium – February 02, 2017.

2017 Heshmati S., Toffolo T. A. M., Vancroonenburg W., and Vanden
Berghe G. Heuristics for crane scheduling and location assignment
problems in automated warehouses. 31st Annual Conference of the
Belgian Operational Research Society. ORBEL 2017, Brussels, Belgium –
February 02, 2017.

2016 Toffolo, T. A. M.. What’s your problem? SuperMinds 2016. Brussels,
Belgium – October 27, 2016.

2016 Toffolo, T. A. M., Christiaens, J., Spieksma, F., and Vanden Berghe, G.
Geographically grouping youth teams into football leagues. 30th Annual
Conference of the Belgian Operational Research Society. ORBEL 2016,
Louvain-la-Neuve, Belgium – January 28, 2016.

2015 Toffolo, T. A. M., Wauters, T., Van Malderen, S., and Vanden Berghe,
G. Decomposition-based Branch-and-bound for the Traveling Umpire
Problem. 29th Annual Conference of the Belgian Operational Research
Society. ORBEL 2015, Antwerp, Belgium – Febrary 05, 2015.



AWARDS AND PUBLICATIONS 255

2014 Toffolo, T. A. M., Santos, H. G., Martinelli, R., Gomes, R. A. M.,
and Vanden Berghe, G. Integer Programming Techniques for the Nurse
Rostering Problem. 28th Annual Conference of the Belgian Operational
Research Society. ORBEL 2014, Mons, Belgium – January 30, 2014.

Code and data published online (during the PhD)

∗ Traveling Umpire Problem
Source code of the state-of-the-art solvers proposed for the TUP:
– http://github.com/tuliotoffolo/tup

∗ Nurse Rostering Problem
Source code of the state-of-the-art solver proposed for the NRP:
– http://github.com/tuliotoffolo/nrp

∗ General MIP decomposition-based heuristic framework
Source code of the general decomposition-based heuristic framework:
– http://github.com/tuliotoffolo/jads

∗ Robust no-fit polygon library
Source code of a robust no-fit polygon library including a visualization tool:
– http://github.com/tuliotoffolo/jnfp

∗ Unrelated Parallel Machine Scheduling Problem
Source code of a state-of-the-art solver for the Unrelated Parallel Machine
Scheduling Problem (Santos et al., 2017):
– http://github.com/tuliotoffolo/upmsp

∗ Additional data, solver binaries and tools
Additional data (formulation, instance and solution files), solver binaries and
visualization tools published online throughout the PhD:
– https://benchmark.gent.cs.kuleuven.be/mclp
– https://benchmark.gent.cs.kuleuven.be/nrp
– https://benchmark.gent.cs.kuleuven.be/psp
– https://benchmark.gent.cs.kuleuven.be/sbvrp
– https://benchmark.gent.cs.kuleuven.be/stgp
– https://benchmark.gent.cs.kuleuven.be/tup

http://github.com/tuliotoffolo/tup
http://github.com/tuliotoffolo/nrp
http://github.com/tuliotoffolo/jads
http://github.com/tuliotoffolo/jnfp
http://github.com/tuliotoffolo/upmsp
https://benchmark.gent.cs.kuleuven.be/mclp
https://benchmark.gent.cs.kuleuven.be/nrp
https://benchmark.gent.cs.kuleuven.be/psp
https://benchmark.gent.cs.kuleuven.be/sbvrp
https://benchmark.gent.cs.kuleuven.be/stgp
https://benchmark.gent.cs.kuleuven.be/tup






FACULTY OF ENGINEERING TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

COMBINATORIAL OPTIMISATION DECISION SUPPORT (CODES)

Celestijnenlaan 200A box 2402

B-3001 Heverlee


	Acknowledgments
	Abstract
	Abbreviations
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	1 Introduction
	Part I Optimal subproblem solutions
	2 Traveling Umpire Problem
	2.1 Introduction
	2.2 Integer programming formulation
	2.2.1 Computational experiments

	2.3 Dantzig-Wolfe decomposition
	2.3.1 Column generation
	2.3.2 Solving the pricing problems
	2.3.3 Branch-and-price
	2.3.4 Computational experiments

	2.4 Branch-and-bound with decomposition-based lower bounds
	2.4.1 Branch-and-bound
	2.4.2 Decomposition-based lower bounds
	2.4.3 Pruning strategies
	2.4.4 Parallelization
	2.4.5 Computational experiments

	2.5 Decomposition-based heuristic
	2.5.1 Constructive procedure
	2.5.2 Local search
	2.5.3 Computational experiments

	2.6 Conclusions and future work

	3 Nurse Rostering Problem
	3.1 Introduction
	3.2 Integer programming formulation
	3.2.1 Computational experiments

	3.3 Dantzig-Wolfe decomposition
	3.3.1 Column generation
	3.3.2 Computational experiments

	3.4 Decomposition-based heuristic
	3.4.1 Decomposition scheme
	3.4.2 Heuristic algorithm
	3.4.3 Computational experiments
	3.4.4 Best results

	3.5 Conclusions and future work

	4 Project Scheduling Problem
	4.1 Introduction
	4.2 Integer programming formulation
	4.2.1 Computational experiments

	4.3 Decomposition-based heuristic
	4.3.1 Constructive algorithm
	4.3.2 Local Search algorithm
	4.3.3 Metaheuristic framework integration

	4.4 Computational experiments
	4.4.1 Multi-project scheduling problem
	4.4.2 Generalized project scheduling problem

	4.5 Conclusions and future work

	5 Towards a general solver
	5.1 Methodology
	5.1.1 Defining the problem
	5.1.2 Defining the decompositions
	5.1.3 Defining subproblem characteristics

	5.2 Algorithmic components
	5.2.1 Constructive procedure
	5.2.2 Local search procedure

	5.3 Framework validation
	5.3.1 Validation with the addressed problems
	5.3.2 Validation with another problem

	5.4 Conclusions and future work


	Part II Heuristic subproblem solutions
	6 Capacitated Vehicle Routing Problem
	6.1 Introduction
	6.2 Related literature
	6.3 Proposed Methodology
	6.3.1 Search spaces
	6.3.2 Efficient exploration strategies
	6.3.3 Constant-time evaluation
	6.3.4 Using memory to reshape the search space

	6.4 Computational experiments
	6.4.1 Search space and computational effort
	6.4.2 Parameters and speedup techniques
	6.4.3 Final results

	6.5 Conclusions and future work

	7 Swap-body Vehicle Routing Problem
	7.1 Introduction
	7.1.1 The VeRoLog challenge problem

	7.2 Literature review
	7.3 Local search algorithm
	7.3.1 Constructive algorithm
	7.3.2 Hybrid local search algorithm

	7.4 Neighborhood structures
	7.4.1 Neighborhood size reduction
	7.4.2 Classical neighborhood structures
	7.4.3 Problem-specific neighborhood structures
	7.4.4 Subproblem optimization scheme
	7.4.5 Learning automaton

	7.5 Computational Experiments
	7.5.1 VeRoLog challenge datasets
	7.5.2 Neighborhood groups
	7.5.3 Learning automaton and neighborhoods
	7.5.4 Results
	7.5.5 Additional instances

	7.6 Conclusions and future work

	8 Multiple Container Loading Problem
	8.1 Introduction
	8.1.1 The ESICUP challenge problem

	8.2 Lower bounds
	8.3 Decomposition-based heuristic
	8.3.1 Stack builder
	8.3.2 Bin builder
	8.3.3 Local search algorithm

	8.4 Computational experiments
	8.4.1 Instances
	8.4.2 Algorithm components
	8.4.3 Results for ESICUP instances
	8.4.4 General applicability

	8.5 Conclusions and future work


	9 Conclusions
	Bibliography
	Awards and publications
	Awards
	Publications
	Conferences and symposia (during the PhD)
	Source code and data published online (during the PhD)


