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Abstract: In this paper we argue that the mechanism of unwinding inflation is naturally

present in warped compactifications of type IIB string theory with local throats. The un-

winding of flux is caused by its annihilation against branes. The resulting inflaton potential

is linear with periodic modulations. We initiate an analysis of the inflationary dynamics

and cosmological observables, which are highly constrained by moduli stabilization. For the

simplified model of single-Kähler Calabi-Yau spaces we find that many, though not all of the

consistency constraints can be satisfied. Particularly, in this simple model geometric con-

straints are in tension with obtaining the observed amplitude of the scalar power spectrum.

However, we do find 60 efolds of inflation with a trans-Planckian field excursion which of-

fers the hope that slightly more complicated models can lead to a fully consistent explicit

construction of large field inflation of this kind.
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1 Introduction

The success of inflationary cosmology in describing the observed cosmic microwave back-

ground (CMB) has led to myriad slow-roll models constructed from an effective field theory

point of view. However, there are various challenges in describing inflation via effective field

theory [1]. Further progress in inflationary cosmology requires an understanding of inflation

in a UV complete theory of gravity. In this paper we present a mechanism for inflation in

string theory that can take place in a standard arena for string phenomenology based on type

IIB flux compacifications using warped Calabi-Yau spaces with three-form fluxes [2–5]. This

work stems from an investigation of whether the mechanism for unwinding inflation [6, 7] can

be embedded into the type IIB context and if so, to what extent must it be modified.

Unwinding inflation is based on the observation [8] that Brown-Bunster bubbles [9] can

be localized inside compact cycles, in which case they cross over the cycle periodically as

they expand. In this way, a single instanton event can discharge many units of flux as the

bubble moves over the periodic domain. This discharge lowers the positive energy stored in

the flux and may generate 60 efolds of inflation [6, 7]. Since this mechanism features universal

ingredients of string theory (fluxes, branes and extra dimensions) it could lead to a natural

model for inflation. Furthermore, this mechanism has the potential to produce large field

inflation, which is notoriously difficult to achieve in string theory.

In unwinding inflation there is a single (p+ 2)-form flux present1, which is discharged by

a p-brane, but the flux backgrounds of [2–5] have multiple fluxes turned on presenting some

1This could equivalently be taken to be the dual (8− p)-form.
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complications to this basic mechanism. Most notably, in the presence of multiple fluxes, one

finds tadpole conditions that require changes in flux quanta to be accompanied by changes in

the net number of brane charges. Particularly, in type IIB the three-form fluxes, H3 and F3,

induce three-brane charge as can be derived from the Bianchi-identity for the five-form field

strength:

dF5 = H3 ∧ F3 +Qδ , (1.1)

where Qδ describes the localized three-brane charge density. Due to Gauss’ law, the integral

of this equation over a compact cycle must be zero. Hence, any change in the three-form

fluxes must be accompanied by the creation or annihilation of three-branes. In other words,

if inflation features the decrease of either F3 or H3 via a five-brane bubble, the number of

three-branes must change across the bubble wall.

The mechanism of brane-flux annihilation [10] provides a process whereby one can reduce

flux quanta and the four-dimensional energy density within a controlled set of approximations.

This process begins when anti-D3 branes are introduced to a background containing three-

form flux. Since the anti-D3 branes carry charge opposite to the charge induced by the

three-form fluxes, they can annihilate such that both are reduced in a way that satisfies

the tadpole condition. Furthermore, as long as the antibranes can be treated as probes, so

that the geometry can be argued to remain sufficiently close to a warped Calabi-Yau, the

antibranes induce a positive energy which is equal to twice their tension [11]. Therefore, as

the flux and the anti-D3 charge decreases together, so does the positive energy. This decrease

in energy can be equivalently regarded as coming from a decrease in the |F3|2 contribution or

from a decrease in the anti-D3 brane tension. Once the anti-D3 charges are annihilated the

process can come to an end.

Anti-D3 branes and their possible annihilation with surrounding fluxes has been the

subject of intensive study in the context of string cosmology. Famously, KKLT [3] argued

that in the presence of a small number of anti-D3 branes there can be a meta-stable de

Sitter state with a tunably small cosmological constant. Shortly thereafter, KKLMMT [12]2

embedded brane inflation [15], in the KKLT background. This model makes use of the

attractive potential between a mobile D3-brane and the aforementioned anti-D3 branes to

give rise to a sufficient period of inflation. These scenarios require that the string-scale energy

of the anti-D3 branes is sufficiently redshifted relative to the scale of moduli stabilization.

This gravitational redshifting occurs inside throats, i.e. regions of large warping that act as

gravitational attractors for anti-D3 branes. We will follow the standard practice of modeling

such throat regions with the Klebanov-Strassler (KS) solution [16].

The dynamical mechanism that we are interested in takes place in the same set-up as

KKLMMT, but in a different region of parameter space. We identify three regions in the

parameter space spanned by the number M of F3 quanta threading the S3 at the bottom of

the KS throat, and the number p of anti-D3 branes. The three regions are

I.
p

M
< 0.08 II.

p

M
∼ 0.08 III.

p

M
� 1 . (1.2)

2See also [13, 14] for related work.
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The KKLMMT model lives in region I where the KKLT vacuum is believed to exist. A

mechanism closely related to the one we propose, the giant inflaton [17], is possible in region

II, where the potential barrier against brane-flux annihilation turns into a shallow plateau.

The resulting potential can generate inflation via brane-flux annihilation3. As we will show,

unwinding inflation can be found in region III. The unwinding mechanism we propose makes

use of a flux cascade arising from the repeated brane-flux annihilation of anti-D3 branes which

are confined to the bottom of the throat.4 The role of the inflaton field in both unwinding

inflation (region III) and the giant inflaton (region II) is played by the position of a fuzzy

NS5-brane which wraps the contractible S2 on the S3 at the bottom of the throat. This fuzzy

brane is the result of the anti-D3 branes polarizing in the flux background via the Myers effect

[19]. The unwinding mechanism corresponds to the periodic motion of the NS5 moving back

and forth from the north pole to the south pole of the S3.

One might expect that the limit of large p/M is problematic because a large number of

antibranes may produce a strong backreaction on the geometry. However, it is possible to

retain the limit in which the size of the three-cycle, R2
S3 = `2sgsM , is much larger than the

radius of anti-D3 brane backreaction given by R2
D3 = `2s

√
gsp. This only requires

p

gsM2
� 1 , (1.3)

which is compatible with p/M � 1. In section 2 we will also consider the effect of the

antibranes and the flux cascade on the complex structure and Kähler moduli. Using the

simplified model of KKLT in which non-perturbative corrections are used to stabilize a single

Kähler modulus, we are able to achieve a sufficient period of inflation. However, because in

this set-up the antibranes provide the energy which uplifts the supersymmetric AdS4 vacuum

to de Sitter, we see that if all of the antibranes annihilate against flux the cascade will end in

a vacuum with negative cosmological constant. In section 5 we briefly discuss some possible

dissipative effects that could serve to stop the cascade before all of the antibrane charge is

gone.

Setting aside questions of reheating and focusing only on the period of 60 efolds, we find

that in the KS throat the curvature of the S3 leads to large oscillations in the second slow

roll parameter, η. While the first slow roll parameter, ε remains small, these oscillations are

translated into the power spectrum. A priori, large oscillations in the power spectrum are not

incompatible with the observed CMB as long as their frequency is large enough. However,

these oscillations complicate the use of the usual slow roll techniques and we are forced to

solve the system numerically. Initial investigations show a tension between fixing the correct

amplitude of the power spectrum and satisfying all geometrical constraints. A more complete

study of parameter space is necessary in order to find an acceptable realization of the power

spectrum, or robustly rule out this version of our mechanism.

3Although, the authors of [17] conclude that it is not possible to get the requisite 60 efolds within the

validity of their approximations.
4A study of non-perturbative brane-flux annihilation in the KKLT setup was first carried out in [18].
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In order to avoid these issues, in section 4 we discuss our mechanism in a more speculative

background where the cycle at the tip of a throat is a torus. This background is speculative

because we do not know of an explicit example of a geometry that fits this description, however

there are explicit examples of compact Calabi-Yau manifolds that contain three-cycles that

are topologically tori (e.g. [20]). In this case the same process works using a D5/anti-D5

pair (or NS5/anti-NS5 pair) moving periodically over a one-cycle in the torus. Because the

torus is flat, the troublesome oscillations can be made small allowing for standard slow roll

inflation and agreement with CMB observations.

Of particular importance is the fact that this mechanism naturally allows for a trans-

Planckian inflaton field range. This occurs because the inflaton is identified with the position

of a five-brane which moves repeatedly over the same fundamental domain of a compact

cycle, and in each pass fluxes are annihilated against antibrane charges. Therefore, there is

no physical obstruction to achieving a large field range. The monodromy effect is similar to

axion monodromy inflation [21, 22] (see also [23–25]): the periodic brane position is unfolded

by the change in charge and energy. The resemblance to axion monodromy extends to the

effective potentials which are linear plus oscillations. A further discussion of the relation to

the models of [21, 22], and particularly how the present model differs, is contained in section

5.

Finally, we note that for the de Sitter vacuum of KKLT, or the inflationary scenario of

KKLMMT to be valid, the anti-D3 branes have to be protected against direct brane-flux

annihilation by a potential barrier. The reliability of this potential barrier is currently under

debate5. One of the primary objections to these scenarios is the use of the probe NS5 brane

action at weak coupling [10]. This action is obtained by S-dualizing the D5 brane action

and is strictly only valid at strong coupling. In this paper we avoid this issue by placing our

mechanism in the S-dual of KS at weak coupling. The unwinding process process is then

mediated by a D5-brane, rather than an NS5, moving many times over an S3 in the S-dual of

the KS throat. This may ameliorate some of the concerns regarding NS5 backreaction, and

futhermore, in section 5 we will argue that the antibrane backreaction is expected to improve

the agreement with the CMB spectrum.

2 The flux background

In this section we review the technical details of the flux background and discuss under what

approximations the background remains stable during the cascade. Because we are ultimately

interested in an inflationary solution that could describe our universe, we need to begin with

a compactification that exhibits a separation of scales between the compact directions and

the length scales accessible to a four–dimensional observer. We work in the well-studied type

IIB supergravity compactifications of [2] (see also [31–34] for related earlier work) where the

ten–dimensional geometry is a warped product of a four–dimensional spacetime and a six–

dimensional conformal Calabi-Yau manifold X. Denoting the Calabi-Yau metric by gmn we

5See the following biased selection of recent papers [26–30] and references therein.
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write the full metric as

ds2 = `2s
(
e2Ads2

4 + e−2Agmndymdyn
)
. (2.1)

The warp factor eA only depends on the internal coordinates ym, and ds2
4 denotes the metric

on the four–dimensional spacetime. The compactification on gmn leads to an effective N = 1

supergravity theory in four dimensions which is specified by the Kähler potential K and the

superpotential W. The tree-level superpotential is given by [35]

W =

∫
X
G3 ∧ Ω , (2.2)

where Ω is the holomorphic (3, 0)-form on X and G3 is the type IIB complex three-form

G3 = F3 − τH3 . (2.3)

Here F3 and H3 are the RR and NSNS three-forms respectively and the axio-dilaton τ is

defined by

τ = C0 + ie−φ . (2.4)

The three-form fluxes give rise to masses for the many complex-structure moduli of X. These

fluxes satisfy a quantisation condition, which in our convention takes the form

Mi ≡
1

(2π`s)2

∫
Σi

F3 ∈ Z , Ki ≡ −
1

(2π`s)2

∫
Σ̃i

H3 ∈ Z , (2.5)

where the integrals run over a three-cycle Σi and its Poincaré dual Σ̃i. Each complex structure

modulus – which is roughly associated with a three-cycle – receives a mass associated with

the flux that is threaded on the Poincaré dual cycle. The superpotential (2.2) also provides

a stabilization mechanism for the axio-dilaton through the appearance of τ in G3.

We are interested in an inflationary scenario that discharges some flux to gradually lower

the four-dimensional vacuum energy; a natural candidate is one of the three-form fluxes,

either F3 or H3. However, it is important that discharging such a flux does not upset the

stabilization of the complex structure moduli. Therefore, we will require that the amount of

flux discharged is small compared to the total number of flux units.

As discussed above, these fluxes enter the right hand side of the Bianchi identity (1.1) on

the same footing as standard D3-branes. Integrating the Bianchi identity over the compact

manifold X leads to the tadpole cancellation condition

1

(2π`s)4

∫
X
H3 ∧ F3 +ND3 =

χ

24
, (2.6)

where ND3 counts the total quantized D3 brane charge and χ accounts for D3-charges of 7-

branes in F-theory compactifications and is given by the Euler number of the F-theory fourfold

[2]. To accommodate the tadpole condition while discharging flux in the compactifications of

[2] (which include non-zero H3-flux) we will employ the brane-flux annihilation mechanism of
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[10]. In section 3 we will explain the details of this mechanism, and how it can lead to a flux

cascade giving rise to 60 efolds of inflation. The cascade simultaneously decreases the number

of units F3 flux6, M , and the number of antibranes present which we denote by p. For each

unit of F3 that is discharged, the number of antibranes decreases by K, such that the tadpole

condition is satisfied. The change in M throughout the cascade will then be given by p/K,

thus in order not to upset the complex structure stabilization we require:

p < KM . (2.7)

In addition to the complex structure moduli, we must ensure that our mechanism does

not upset the stability of the Kähler moduli, which are not stabilized by fluxes. One can

stabilize the Kähler moduli via non-perturbative quantum corrections [3] or a combination

of perturbative and non-perturbative as in [4]. In this paper we use the simple example of

a single modulus, ρ, stabilized by non-perturbative effects as in [3]. The non-perturbative

effects give rise to a correction to the superpotential

W =W0 +AKeiaKρ , (2.8)

where W0 is given by (2.2). The modified superpotential leads to a nontrivial potential for

the Kähler modulus [3, 12]

VK =
aKAKe−aKσ

2σ2

(
1

3
σaKAKe−aKσ +W0 +AKe−aKσ

)
+
z4/3

g2
sσ

2

2pµ3

gs
, (2.9)

where σ = Imρ and z is the redshift factor discussed below. When no antibranes are present,

the potential has a minimum in which the moduli are stabilized in a supersymmetric AdS4

vacuum. Including p anti-D3 branes provides the well-known uplift effect that can raise the

vacuum energy density to positive values [3]. In the p � K regime of parameter space the

antibranes are not stable and their decay gives rise to inflationary dynamics. This will result

in 2pµ3/gs in the last term of (2.9) being replaced by a function that depends on the position

of the inflaton.

Ensuring the stability of the Kähler moduli throughout inflation constitutes one of the

main challenges for any proposal for inflation in string theory (see e.g. the discussion in [12].)

Since we are interested in a large number of antibranes annihilating against many units of

flux to ensure a long-lasting cascade, it would seem that stability is severely compromised.

However, by placing the branes inside a deep warped throat where z is small, the energy of

the antibranes can be redshifted to a small value such that all geometric moduli remain stable

throughout the process. This constraint is in tension with an arbitrarily large inflaton field

range, however in the example discussed in section 3.4 by a delicate tuning of the parameters

in (2.9) we achieve a trans-Planckian field range and 60 efolds of inflation in a controlled

setting.

6We are currently discussing the mechanism in the S-dual of KS where F3 flux is discharged and the regions

described in (1.2) are characterized by the value of p/K.
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2.1 The Klebanov-Strassler throat and its S-dual

As noted above, it is desirable that the brane-flux annihilation be contained in a highly

warped region of the internal manifold. Since the branes carry anti-D3 brane charge, they will

naturally be attracted to such regions and the dynamics will therefore be confined in warped

throats. We devote this section to a summary of a commonly used local representation of

such a throat: the Klebanov-Strassler (KS) solution [16]. We also briefly discuss the S-dual

of the KS solution which is used throughout section 3.

The KS solution is a non-compact example of a background that fits into the description

of [2, 34]. In the throat region the type IIB axio-dilaton is constant

τ =
i

gs
. (2.10)

In the bulk of the Calabi-Yau, this need not be true: the presence of seven-branes wrapping

cycles of the internal manifolds leads to dynamical axio-dilaton. In this case the proper

framework to describe the background is F-theory. However, these details will be unimportant

for our purposes as we are only interested in dynamics taking place deep in the throat where

the dilaton is constant. The remaining type IIB supergravity fields satisfy the equations

e4Ag−1
s = α , (2.11)

?6G3 = iG3 , (2.12)

in the gauge

C4 = α vol4 , (2.13)

where vol4 is the volume form of ds2
4.

The KS solution describes a deformation of the singular conifold [36]:

ds2
6 = dr2 + r2ds2

T 1,1 , (2.14)

where ds2
T 1,1 is the metric on the Sasaki-Einstein manifold T 1,1, which is topologically S2×S3.

In the presence of three-form fluxes the deformation of the conifold replaces the singular region

of the conifold metric (r → 0) with a smooth space by blowing up the S3 at the tip to a finite

size. In this tip region the metric takes the form

ds2
6 → dr̃2 + dΩ2

3 + r̃2dΩ2
2 . (2.15)

The full type IIB solution on the deformed conifold with a metric that interpolates between

the tip region (2.15) and the cone region (2.14) is known [16] but we will not require its

precise form as the antibrane dynamics are confined to the tip region. The warp factor in the

tip region is constant and fixed to be:

e−2Atip 'Mgs , (2.16)

where henceforth M refers to the F3 threaded through the three-sphere at the tip.
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The KS solution can be embedded in compact space by sewing it to a compact Calabi-

Yau. The description of the throat breaks down and the bulk Calabi-Yau description takes

over when e2A reaches the value determined by the hierarchy between the tip and the bulk.

This hierarchy was calculated in [2] and is

e2(Atip−Abulk) ∼ z2/3 ∼ (Mgs)
−1e
− 4πK

3Mgs , (2.17)

where K is the number of units of H3 that must have legs along the r̃ and S2 directions

perpendicular to the S3 such that the imaginary self-dual (ISD) condition (2.12) is satisfied.

A very similar background can be obtained by S-dualizing the KS solution (SDKS). Since

the dilaton in [16] is a modulus we can dial it to large values, perform the SL(2) transformation

and end up with a weakly coupled background. The physical difference between KS and its

S-dual is therefore only in the fluxes. The KS solution has M units of F3 flux threading the S3

at the tip whereas SDKS has K units of H3-flux at the tip. This will be important for us as

the difference will result in a flux cascade involving an NS5 brane in KS [10] or D5 branes in

SDKS. We expect that both throat backgrounds should be common in the landscape of type

IIB compactifications, and so we discuss both possibilities. While the behavior of the metrics

in both solutions is virtually identical, the different role of the three-form fluxes translates

into different expressions for (2.16) and (2.17)

SDKS: e−2Atip ' K , (2.18)

e2(Atip−Abulk) ∼ K−1e−
4πMgs

3K . (2.19)

Since the flux cascade is confined to the tip region, we must make sure that the branes

that mediate the cascade do not destabilize the local geometry of the tip. This simply means

keeping the horizon radius of the antibranes small compared to the local geometry of the tip.

The size of the tip geometry is set by (2.16) and (2.18) in KS and SDKS respectively whereas

the horizon radius of the antibranes is determined by gsp. Therefore, the probe approximation

will be valid as long as the following are satisfied:

KS: R2
S3 = `2sMgs � `2s

√
gsp = R2

D3 , (2.20)

SDKS: R2
S3 = `2sK � `2s

√
gsp = R2

D3 . (2.21)

3 Inflation from cascading brane-flux annihilation

In this section we describe in detail how the brane-flux annihilation of [10] proceeds when a

large number, p� 1, of anti-D3 branes are placed into a throat region. We will see that in this

case the five-brane must pass over the sphere many times before reaching the supersymmetric

vacuum. In contrast to [10] we begin SDKS where the anti-D3 branes polarize into a D5-

brane that wraps an S2 inside the S3 at the tip of the throat (c.f. figure 1). This three-sphere

carries K units of H3-flux, and as the D5 moves in the S3, F3 flux is discharged in the dual

cycle.
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M

M−1

D5

Figure 1: Schematic representation of the polarized five-brane on an S3. The flux cascade corre-

sponds to the periodic motion of the brane between the two poles.

Througout this section we will only be interested in the tip region of the throat where

the antibranes are confined. The metric there takes the local form

ds2 = `2s
(
e2Ads2

4 + e−2A
(
dψ2 + sin2(ψ) dΩ2

2 + ds2
M3

))
. (3.1)

For now, we will continue using the generic warp factor e2A, as opposed to restricting to the

value fixed by the deformation of the conifold given in (2.16) or (2.18).

3.1 The action

We start with the probe action of a D5:

S =
−µ5

gs

∫
d6ξ

[
−det(G‖) det(G⊥ −F2)

]1/2 − µ5

∫
{C6 + F2 ∧ C4} , (3.2)

where G⊥ is the induced metric along the S2, G‖ is the metric along the non-compact and

ψ directions, and F2 = 2π`sF2 +B2. To use this action to solve for the dynamics of the D5,

we simply need to compute each component as a function of the position of the D5 in the

compact space.

Starting with the Chern-Simons action, we note that in the gauge chosen in (2.13),

F7 = − ?10 F3 = H ∧ C4 . (3.3)

Since F7 = dC6 +H∧C4, this implies that C6 is pure gauge and can be set to zero. The other

term in the Chern-Simons action,
∫
F2∧C4, is the coupling that allows the D5-brane to carry

D3 charge. Schematically, whatever sits in front of C4 is the effective D3 charge – therefore

at the beginning of the cascade this should be −µ3p. Looking at F2 we see that because K

units of H3-flux thread the three-sphere spanned by ψ, flux quantization (2.5) gives:

B2 = −K`2s
(
ψ − 1

2
sin(2ψ)

)
vol2 , (3.4)
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where vol2 is the volume form on S2. At the beginning of the cascade ψ ≈ 0 and this term

vanishes. This allows us to fix the world volume field strength, F2 = p`s
2 vol2. Integrating over

the S2 in the Chern-Simons action one can check

QD3 = −µ5

∫
S2

F2 = −(2π`s)
2µ5K

π
U(ψ) . (3.5)

Here, we have defined U(ψ), which measures the D3 charge:

U(ψ) =
πp

K
− ψ +

1

2
sin(2ψ) . (3.6)

Since µ3 = (2π`s)
2µ5, we see that when ψ = 0 we start with the correct amount of anti-

D3 charge, and this charge decreases by K units each time ψ increases by π. The tadpole

condition (2.6) is satisfied by decreasing M by one unit as the D5 passes across the S3. It is

in this sense that the anti-D3 branes annihilate against the F3 flux. It is clear that in order

to achieve a flux cascade we will need:

p

K
� 1 . (3.7)

Next, we need to evaluate the kinetic term in (3.2). As mentioned above, G⊥ is simply

the metric on the S2 (c.f. eq. (3.1).) Using the values for F2 from above we can write:√
det(G⊥ −F2) =

√
e−4A sin4(ψ) +K2U2(ψ)

√
gS2 . (3.8)

The metric G‖ is the induced metric in the spacetime directions. The D5 should be thought

of as a bubble in the three extended spatial directions and the ψ direction (while it trivially

wraps the S2.) Then, neglecting perturbations, an observer at a fixed position in spacetime

will see ψ as a function of t alone:√
−det(G‖) = `4se

4Aa3(t)

√
1− e−4Aψ̇2 , (3.9)

where a(t) is the scale factor of a Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime.

Combining the kinetic terms and the Chern-Simons action and integrating over the S2

we write the four-dimensional action for the D5:

S = −A0

∫
d4x a3(t) e4A

(
V2(ψ)

√
1− `2se−4Aψ̇2 + U(ψ)

)
, (3.10)

with

V2(ψ) =

√
e−4A

K2
sin4(ψ) + U(ψ)2 , A0 =

µ3K

gsπ
. (3.11)

In (3.10) we have rescaled the four-dimensional coordinates by a factor of `s such that they

are now dimensionful. The position of the D5 in the ψ-direction will play the role of the

inflaton. Setting the inflaton kinetic energy to zero, we find the inflaton potential (figure 2):

VD5(ψ) = A0 e4A

[√
e−4A

K2
sin4(ψ) + U(ψ)2 + U(ψ)

]
. (3.12)
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ψ

V
D
5
/A
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Figure 2: The D5 potential neglecting the overall dimensionful factor. The only relevant parameters

are the ratio p/K (or p/M if you consider the NS5), which we set to 50. Here we have specialized to

the SDKS case where e−4A = K2.

In the following sections we will examine the dynamics of the cascading brane-flux anni-

hilation that takes place in region III, p� K (c.f. (1.2)). We are interested in seeing whether

the resulting cascade process can give rise to inflationary dynamics, and furthermore, when

inflation is possible, what are the CMB observables predicted by this model.

3.2 Regime of validity and comparison to NS5 in KS

Before moving on to the inflationary dynamics, it is interesting to note what happens if we

look at this process in KS, rather than its S-dual. If we re-do the calculation of this section

in the KS background, the resulting potential is the potential for an NS5 brane [10]:

VNS5(ψ) =
µ3

gsπ
M

[√
e−4A

(Mgs)2
sin4(ψ) + Ũ(ψ)2 + Ũ(ψ)

]
,

Ũ(ψ) =
πp

Mgs
− ψ +

1

2
sin(2ψ) .

(3.13)

The potentials in both cases are subject to the following string of inequalities:

KS : (Mgs)
2 � gsp�Mgs ,

SDKS : K2 � gsp� gsK ,
(3.14)

where the first inequality follows from making the antibrane backreaction small compared to

the size of the cycle, and the second inequality is the condition for having a cascade. The

cascade condition changes between KS and SDKS because in the S-dual case that we consider,
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we discharge the F3-flux, whereas in the original case of [10], which takes place in KS, the H3

flux is discharged.

3.3 A canonically normalized approximation

To solve the system described by (3.10) it is necessary to use numerics, however in order to gain

some intuition we will first make several approximations that allow us to canonically normalize

the scalar field and make analytic estimates for the cosmological observables. First, we expand

the DBI kinetic term for small velocity, keeping terms up to second order, O
(

e−4Aψ̇2
)

. Then

we expand in large p/K - this is the quantity that counts the number of steps in the cascade.

In the second expansion we keep terms at next to leading order, which is (p/K)0, but drop

terms of order (p/K)0ψ̇2 as they are also next to leading order in the velocity expansion.

These expansions will ultimately need to be justified by comparison to the full numerical

solution, and we find that for a certain range of parameters they are appropriate.

These approximations allow us to write the action for a canonically normalized scalar,

φ =
√
`2sA0πp/Kψ ≡ fψ:

S =

∫
d4xa3(t)

(
1

2
φ̇2 − 2A0e4A

(
πp

K
− φ

f
+

1

2
sin
(2φ

f

))
− Λ

)
. (3.15)

Here we have added the negative cosmological constant corresponding to the supersymmetric

vacuum for the Kähler moduli prior to adding antibranes. In the next subsection we will

present a numerical solution that generates 60 efolds of inflation and Λ is calculated via the

potential (2.9).

We can apply standard methods to calculate inflationary observables for a scalar field

with a linear potential plus oscillations (3.15). Particularly, we will be interested in finding

at least 60 efolds of inflation that result in a power spectrum in agreement with the observed

value. These quantities are given by the standard formulae7 [37]:

N =

∫
H

φ̇
dφ Pζ =

H2

8π2M2
plε

ε =
Ḣ

H2
. (3.16)

While the potential of (3.15) is monotonically decreasing, the oscillations are not small in

that ∂φV (φ = nπf) = 0, where n is an integer. The fact that the derivative of the potential

goes to zero means that we cannot be in the traditional slow roll regime where one makes

the approximation that acceleration is negligible and φ̇ ≈ V ′/3H. In this regime our inflaton

gets stuck at the first pole where φ̇ → 0 and we do not see a cascade. However, scenarios

in which the second slow roll parameter, η = ε̇/(εH), is large are not ruled out as long as η

oscillates and ε remains small. In these cases acceleration is not negligible and the inflaton

will not get stuck.

7The DBI kinetic term results in non-trivial speed of sound, cs. However, for all realizations of this model

we find cs ∼ 1 and cs varies adiabatically such that Pζ in (3.16) is valid.
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Despite these issues we will continue by dropping the oscillating term in the potential:

Vlin = 2A0e4A(πp/K − φ/f) . (3.17)

This will obviously cause us to miss the oscillations in both the field velocity and also the

resulting power spectrum, however we will be able to attain the average behavior, which is

useful for the order of magnitude estimates we seek. Subtleties arising due to the oscillations,

as well as cases that have large η will be discussed in section 3.4 where we examine the full

numerical solutions that these approximations are meant to capture.

Using the simplified linear model and the slow roll approximations,

Hlin =
√
Vlin/(3M

2
pl) and φ̇lin = −∂φVlin/(3Hlin) , (3.18)

one can calculate the total number of efolds, as well as the value of φ that corresponds to 60

efolds before the end of inflation

Ntot '
f2

2Mpl2

(
πp

K
+

e−4AΛ

2A0

)2

φ∗ = f

(
πp

K
+

e−4AΛ

2A0

)
− 2
√

30Mpl , (3.19)

where the end of inflation is set to be the point where the potential energy reaches zero.

Given these assumptions, the power spectrum, Pζ , is simply given by:

Pζ |φ∗ =
40
√

30A0e4A

π2M3
plf

. (3.20)

The challenge now is to determine whether there exists a set of parameters in which Ntot & 60,

Pζ |φ∗ ∼ 10−9 and we are within the regime of validity of the probe approximation and other

requirements for a stabilized geometry.

The four-dimensional Planck scale, Mpl, can be expressed in terms of the other parame-

ters:

M2
pl = 2

∫
d6ye−4A√g6

(2π)7`2sg
2
s

≡ 2
V

(2π)7`2sg
2
s

, (3.21)

where g6 is the unwarped metric and the spacetime coordinates are dimensionful while the

internal coordinates are not. In writing the parametric dependence of Mpl, we introduced a

new parameter, the warped volume of the Calabi-Yau denoted by V. We require that the

total warped volume is greater than the warped volume of the throat region which is:

Vthroat '
√

27π9(gsKM)3/2e
4πMgs

3K . (3.22)

The exponential factor in this expression results from the exponential hierarchy between the

warp factor at the bottom of the throat and the bulk of the Calabi-Yau (2.19). This volume

is also computed for the KS throat in [17]8.

One is left with a six-dimensional parameter space spanned by p, gs, M , K, Λ and V.

One of these can be fixed by requiring that the power spectrum (3.20) to its observed value

∼ 10−9. However, the remaining five-dimensional parameter space must satisfy our collection

of constraints:
8The differing exponential factor here is due to the fact that we use warped units, whereas [17] does not.
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• The probe approximations: M,K � 1, MK � p, and
√
gsp/K2 � 1

• The inflaton is the only light scalar during inflation requires H �MKK = V−1/6, where

MKK is the mass of the bulk Calabi-Yau Kaluza-Klein modes. Additionally the masses

of the infrared modes, z1/3MKK , must be heavier than the Hubble scale.

• In order to stabilize the geometry the magnitude of Λ cannot be much less than the

uplift energy from the antibranes:

|Λ| . 2µ3p

gsK2
. (3.23)

• The warped volume of the Calabi-Yau is larger than the warped volume of the throat:

V > Vthroat . (3.24)

Due to the large hierarchy required to redshift the energy of the antibranes, the throat

volume (3.22) must be large in string units. This means that the Kähler modulus σ

which is related to the unwarped volume should be stabilized at a large value. In this

paper, we take the warped volume of the Calabi-Yau to be a free parameter and do

not directly relate it to σ. This is not strictly valid, however, due to the large warping

the relationship between V and σ is non-trivial (see references [38–41]). We leave a full

computation of the relationship between these parameters for future work.

• There are at least 60 efolds: Ntot/60 > 1.

• The cascade occurs: p/K > 1 and η & 1. Although the slow roll approximations push

us into the regime of small η, if it is too small the brane gets stuck at the poles and

there is no cascade.

It is possible to find examples which satisfy all of these constraints, however we have not

been able to simultaneously satisfy all constraints and find an observationally valid power

spectrum. Until a systematic exploration of this high-dimensional, highly-constrained pa-

rameter space has been carried out, we cannot either rule out or accept this model.

3.4 Full numerical solutions

In this subsection we will use the analysis of the previous subsection to find a set of parameters

which satisfy all constraints. Using these parameters and the intuition given by analytic

estimates, we take into account proper stabilization of the Kähler modulus and solve the

system numerically. We begin by considering the effect of the cascade on the potential for σ

given in (2.9) [3, 12]. The uplift term is proportional to the potential energy of p stationary

anti-D3 branes, 2µ3p/gs. During the flux cascade this potential energy is replaced by the

potential energy (3.12):
2µ3p

gs
→ e−4AVD5(ψ) = K2VD5(ψ) , (3.25)
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Figure 3: The evolution of the Kähler potential throughout the cascade. It is important that the

modulus is stable and that its value, σ∗, does not evolve significantly. Although the minimum of the

potential at ψ = 0 looks dangerously shallow, the reader should bear in mind that the ψ−direction of

the potential is unstable.

where here and throughout the rest of this section we specialize to SDKS where e−4A = K2.

Instead of solving the coupled system of the Kähler modulus and the position of the D5

simultaneously, we will first find a stable potential for σ, and then check that its value does

not evolve too much (or destabilize) throughout the cascade. In figure 3 we show the evolution

of the Kähler potential throughout the cascade for the parameters given in table 1. Using

these values we can read off the negative energy density in the supersymmetric vacuum and

add this Λ to the D5 brane action, (3.10).

Once the Kähler modulus is stabilized, we are ready to solve the inflationary dynamics.

Following [17] we pass to the Hamiltonian formalism and solve the system of first order

equations. We give the parameters and the degree to which they satisfy our constraints for a

typical example in table 1, and show the resulting dynamics figure 4. There is an additional

caveat regarding these parameters. The product KM at the end of inflation is O(106) and

should be cancelled by χ/24 in (2.6). This implies that the Euler number of our fourfold is

an order of magnitude larger than the largest known Euler number of an elliptically fibered

fourfold9. While it is not impossible that a Calabi-Yau with larger Euler number exists, it

would be preferable to find a set of parameters with smaller KM .

As mentioned in the previous section, this example has large oscillations in the slow roll

parameters which translate into large oscillations in the power spectrum. Although the first

slow roll parameter, ε = Ḣ/H2, is always small, the second slow roll parameter, η = ε̇/(εH)

is oscillating with a large amplitude. This is not the typical η-problem, where η becomes

large, drives ε to become large, and ends inflation before 60 efolds, however it is still a

9We thank Liam McAllister and Alexander Westphal for pointing this out to us.

– 15 –



∆φ/Mpl = 12.1 H/Mpl = 6.5× 10−11 H/MKK = 1.7× 10−4 V = 5.3× 1012`6s

z1/3 = .012 V/Vthroat = 1.1 gsp/K
2 = .06 p/KM = .54

p = 4.5× 106 K = 4500 M = 1852 gs = .27

AK = 3 aK = 2π/31 W0 = 1.31 σ∗ = 10.4

Table 1: One set of parameters that satisfies our constraints. We have chosen the average value of

σ∗ throughout the cascade.
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Figure 4: Left: the position of the D5 as a function of time in the case of parameters given by table

1. The horizontal line marks the end of inflation where the potential energy is zero. Right: The log

of the scale factor with vertical lines showing the observational window and the end of inflation. The

total period of inflation is 69 efolds.

problem in that even oscillations in a small ε translate into large oscillations in the power

spectrum. However, it may be possible to find an acceptable set of parameters in which these

oscillations are fast, i.e. 10 per efold. In this case late time physics can smooth them out in

agreement with observations. These oscillations will also give rise to resonances and resonant

non-Gaussianity [42, 43].

The results presented here are not in agreement with the scale invariant spectrum that we

observe. The magnitude of the power spectrum is smaller than the observed value. This is the

reason that despite having an trans-Planckian field range, the scale of inflation is much lower

than the GUT scale. However, we should stress that the parameter space for this model is far

from being fully explored. In the absence of analytic estimates, which were only available for

a small portion of the parameter space, more sophisticated techniques must be employed to

impose constraints and find acceptable power spectra. We leave this to future work. Despite

the apparent difficulties in KS and SDKS, if one allows for less well-understood geometries,

we are able to find observationally viable realizations. This is the topic of the next section.
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Figure 5: The polarisation of anti-D3 branes on a long thin torus. The sides of the rectangle should

be identified to form the torus. A stack of antibranes first forms a spherical D5-brane that grows and

collides with itself forming a wrapped pair of D5/anti-D5.

4 Brane-flux annihilation on T 3

The large oscillations in the power spectrum that we found in the previous section can be

traced to the curvature of the sphere. Therefore, we expect that if the flux cascade takes place

on an flat internal 3-manifold the power spectrum will not suffer from these large oscillations.

We will consider a cascade that takes place on T3, whose coordinates Ti are intervals from 0 to

Li. Despite the fact that there are no one cycles within Calabi-Yaus, toric special Lagrangian

(sLag) submanifolds are common [20]. In order for the brane dynamics to be confined to the

toric submanifold, we simply need to be in a region of large warping - something that we

already require for the flux cascade. Since branes are attracted to regions of large warping

they will be confined to the submanifold and not “see” the rest of the Calabi-Yau. We are

not aware of any example where such toric sLags appear at the bottom of a warped throat

but we are also not aware of any argument against their existence.

For simplicity, we will also consider an anisotropic torus where L1 > L2 = L3. The reason

for this is so that we can consider the case where the anti-D3 branes does not polarize in an

isotropic way, but rather forms a brane/antibrane pair that wrap the two-cycle over T2,3, but

are localized in the T1 direction (see figure 5). This will simplify the dynamics of the cascade

because the cascade takes place only in the T1 direction where the pair is co-dimension 1.

As shown in [7], if the anti-D3 branes polarize into a spherical D5 that is localized in all

directions on the three-torus, the cascade will continue in all three directions, discharging the

flux faster, and resulting in a different power law for the inflationary potential. This is also

an interesting case to consider, however we will stick to the simplest realization here, where

the cascade is only in a single direction.
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A calculation identical to the one detailed in section 3.1 but using the metric on a torus:

ds2 = h−1/2(dxµdx
µ + h(dT 2

2 + dT 2
3 )) + h1/2(dT 2

1 + dr2 + r2dΩ2
2) , (4.1)

leads us to the action for the D5/anti-D5 pair:

S = −2
µ3K

gs

∫
d4xa3(t)h−1

[√
1− h(∂tT1)2

√(
L2

2π`s

)4 h

K2
+

(
p

K
− T1

L1

)2

−
(
L2

2π`s

)2 h1/2

K
+

p

K
− T1

L1

]
.

(4.2)

There is an overall factor of two to count both the D5 position T1, and its anti-D5 partner

at −T1. Additionally, there is a term that should be included to account for the interaction

of the D5/anti-D5 pair. This can be taken into account by computing the backreaction of

the D5 on the torus geometry, and then placing the anti-D5 into the backreacted geometry

at the probe level. This computation mimics the calculation of the D3/anti-D3 interaction in

the KS throat of [12] and is the S-dual of the NS5/anti-NS5 interaction in [30].

Comparison to the usual backreaction due to the presence of a D brane, ds2 = h−1/2dx2
‖+

h1/2dx2
⊥ implies that the backreaction of the D5 gives h→ h+ δh. Then the system we need

to solve is:

ds2 = h−1/2H−1/2(dxµdx
µ + h(dT 2

2 + dT 2
3 )) + h1/2H1/2(dT 2

1 + dr2 + r2dΩ2
2) ,

F7 = g−1
s d(hH)−1 ∧ vol‖ ,

(4.3)

where the harmonic function, H = H(r, T1) ∼ (1 + δh/h), cannot be the usual harmonic

for the D5-brane because of the periodicity in the T1 direction. The periodic harmonic that

solves this system is:

H = 1 +
π(2π`s)

2

hL1r

sinh
(

2πr
L1

)
cosh

(
2πr
L1

)
− cos

(
2πT1
L1

) . (4.4)

The new action should now be evaluated using the potential resulting from back reaction,

C6 = (hH)−1. Evaluating at r = 0 we find:

µ5

∫
C6 =

µ3K

gs

∫
d4x a3(t)h−1

(
L2

2π`s

)2 h1/2

K

sin2
(
πT1
L1

)
(
π
L1

)2
(2π`s)2 + h sin2

(
πT1
L1

) . (4.5)

This backreacted value for the potential C6 can be substituted into (4.2) to include the mutual

attraction between the brane and the antibrane

We now pass to a to a canonically normalized field. As in section 3.3 we will expand

to second order in velocity and keep next to leading order terms in p/K as long as they
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do not multiply higher derivative terms. This leads to a canonically normalized field: φ =√
2µ3p/gsT1 ≡ fT1/L, with the action:

S =

∫
d4x a3(t)

1

2
φ̇2 − 2Kf2

hpL2
1

 p

K
− φ

f
−
(
L2

2π`s

)2 h1/2

K

sin2
(
πφ
f

)
(
π
L1

)2
(2π`s)2 + h sin2

(
πφ
f

)
 .

(4.6)

We see that there are small periodic perturbations to the linear potential coming from the

interaction terms. These deviations from the linear potential are necessarily small due to both

the supergravity approximations where L1 � `s, and because the size of the cycle should be

fixed by the flux number h ∼ K2 � 1. In this case we see that the oscillations are negligible

and there is no obstruction to the standard slow roll scenario with a linear potential. This is

the same potential as Axion Monodromy - linear with tunably small periodic perturbations.

5 Discussion and outlook

We have argued that the mechanism of unwinding inflation [6, 7] can be embedded in well-

known compactifications of type IIB string theory. The essential mechanism relies on the

perturbative annihilation of antibranes against the surounding fluxes at the bottom of a

warped throat. The inflationary mechanism we point out is based on generic ingredients of

flux compactifications and seems rather natural. The inflaton corresponds to the position of

five-branes that moves back and forth over a compact cycle discharging a fixed amount of

flux in each period of that motion. Therefore the inflaton range is not strickly bounded in

the same way as the axion-monodromy models [21, 22] and large field inflation is possible.

We study this mechanism in two throat geometries, the first is the well known Klebanov-

Strassler solution, whereas the second is a more speculative throat containing a T 3 at its tip.

The four-dimensional effective potentials that we find in these two cases are:

VS3(φ) = 2A0e4A

(
πp

K
− φ

f
+

1

2
sin

(
2φ

f

))
, (5.1)

VT 3(φ) =
2Kf2

hpL2
1

(
p

K
− φ

f
+O(1/K)× oscillations

)
. (5.2)

In both geometries we find a potential that is linear plus oscillatory corrections as was pre-

viously found in axion monodromy models [21, 22]. Despite this similarity the underlying

mechanisms are not the same. In particular, the inflaton in this case is not an axion, but

rather a D-brane modulus. The geometry is also different: whereas the dynamics in the flux

cascade take place on a three-cycle at the bottom of a throat, the axion monodromy scenarios

employ two related throat regions (the bifid throat) that have homologous two-cycles at the

bottom. However, the relation between these models is not fully understood and is something

that we would like to explore in future work.

Using the fully stabilized scenario in the KS throat we are able to achieve a 60 efold

inflationary period in which the inflaton has a trans-Planckian field range, but we have yet
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to find a set of parameters that are also consistent with CMB observations. Relaxing our

control of the geometry and using a speculative toric throat we find no obstacles in finding

observationally valid large field inflation. As this is the first string theory embedding of the

flux cascade, there remain many open questions which are outside the scope of this work. We

list a few here:

• As mentioned in the text, we find that inflation ends when the positive energy from the

anti-D3 branes is no longer large enough to compensate for the negative vacuum energy

for the Kähler modulus σ. If the cascade continues past this point, inflation will end in

AdS and we would need to posit some unknown phase transition or uplift mechanism in

order to restore de Sitter space. However, there is some reason to hope that dissipative

effects will stop the cascade before all the anti-D3 charge is gone. These dissipative

corrections should come from open string production and closed string bremsstrahlung

[44–46]. While there are no current estimates for these effects for spherical branes or

that apply in the presence to RR fields, we expect that these effects become important

where the acceleration becomes large. Indeed, we find a spike in the acceleration directly

before the total vacuum energy becomes negative. Additionally, one might worry that

open string production at the poles of the sphere is large enough to immediately stop

the cascade. However, the fact that the cascade takes place at non-relativistic velocities

means that open string masses should be changing adiabatically, suppressing string

production. Furthermore, because the D5 brane is carrying anti-D3 charge, it cannot

simply annihilate at the poles as one might expect for a spherical brane.

• By going beyond the probe approximation for the five-brane, one can potentially reduce

the amplitude of oscillations in (5.1) . Corrections to the probe potential should come

in powers of RD3/Rcycle. As argued in [17], the probe potential breaks down near the

poles of the three-sphere10 where the oscillations are most prominent. The arguments

in [26, 29, 30] suggest that backreaction suppresses the oscillations. The reasoning is

that the predicted corrections are such that the tendency to create meta-stable states

is lost.

• It is possible that the anti-D3 branes polarize into multiple D5 branes instead of just

one11. These multiple D5 channels are energetically unfavorable, and so we have ne-

glected them here. However the kinetic energy of the D5 during the cascade could cause

these channels to be populated. This would result in an altered inflationary potential

because more units of flux, and therefore more antibrane charges, would be discharged

in each step of the cascade.

• There remain some aspects of moduli stabilization that are not well under control. First,

the relation between the Kähler modulus σ and the warped volume of the Calabi-Yau is

10The potential at small angles should be computed as in Polchinski-Strassler [47] via the world-volume

theory on the system of non-Abelian anti-D3 branes perturbed by fluxes.
11We thank Iosif Bena for bringing this point to our attention
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non-trivial, however the two are not independent. In the absence of warping one finds

σ ∼ V2/3. Using this as an estimate we see that the warped volume in table 1 exceeds

this value by many orders of magnitude. Second, the flux numbers mentioned in table 1

are in conflict with the known Euler numbers for elliptically fibered fourfolds. Although

there may exist a Calabi-Yau with an Euler number large enough to accommodate this

amount of flux, it would be preferable to work with an Euler number that is known to

exist. Alternatively, we could arrange the parameters such that after inflation KM is

significantly reduced. This would require the majority of the fluxes to be discharged

by the cascade. This change in fluxes would backreact in an important way on the

throat geometry and the flux superpotential. Both of these issues require further study

and probably necessitate going beyond the simplest single-Kähler modulus stabilization

mechanism of KKLT.
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