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Abstract

With the emergence of isogeometric analysis (IGA), the Galerkin rotation-free
discretization of Kirchhoff-Love shells is facilitated, enabling more efficient thin
shell structural analysis. High-order shape functions used in IGA also allow the
collocation of partial differential equations, avoiding the time-consuming numeri-
cal integration of the Galerkin technique. The goal of the present work is to apply
this method to NURBS-based isogeometric Kirchhoff-Love plates and shells, un-
der the assumption of small deformations.

Since Kirchhoff-Love plate theory yields a fourth-order formulation, two bound-
ary conditions are required at each location on the contour, generating some con-
flicts at the corners where there are more equations than needed. To remedy this
overdetermination, we provide priority and averaging rules that cover all the possi-
ble combinations of adjacent edge boundary conditions (i.e. the clamped, simply-
supported, symmetric and free supports). Greville and alternative superconver-
gent points are used for NURBS basis of even and odd degrees, respectively. For
square, circular, and annular flat plates, convergence orders are found to be in
agreement with a-priori error estimates. The proposed isogeometric collocation
method is then validated and benchmarked against a Galerkin implementation by
studying a set of problems involving Kirchhoff-Love shells.
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1. Introduction

First introduced by Hughes et al. [1, 2], isogeometric analysis (IGA) aims
at bridging the gap between computer aided design (CAD) and finite element
analysis (FEA), by considering an isoparametric approach for which the basis
functions used for the geometry representations in CAD systems are also used to
approximate the field variables. These shape functions are usually non-uniform
rational B-splines (NURBS) and their continuity can be augmented through the k-
refinement procedure, improving the accuracy and robustness of the simulations
[2]. High-order continuous shape functions allow also direct solutions to high-
order partial differential equations (PDEs) such as the incompressible elasticity
with stream functions [3], the Cahn-Hilliard phase-field model [4], the Laplace-
Beltrami triharmonic problem [5], and the Navier-Stokes equations [6]. In struc-
tural mechanics, rotation-free formulations can be obtained for beams [7–9] as
well as for shells, the focus of the present manuscript.

Starting from the pioneering works of Kiendl et al. [10], isogeometric Kirchhoff-
Love shell formulations have been extended to non-linear material models [11,
12], analysis of through-the-thickness cracks [13], damage models [14], and bi-
ological membranes [15]. Due to the rotation-free nature of these formulations,
multi-patch coupling deserves special attention [12, 16–20].

High-order continuous shape functions allow also the collocation of the strong
form, leading to the field of isogeometric collocation methods initially investi-
gated by Auricchio et al. [21]. A cost comparison with the Galerkin method
can be found in [22]. In [23, 24], a hybrid collocation-Galerkin method is in-
troduced to weakly enforce Neumann conditions, avoiding spurious oscillations
of the purely collocated solutions. Isogeometric collocation has been applied to
elastostatics and explicit dynamics [25], phase-field models [26, 27], contact prob-
lems [23, 24, 28], Timoshenko beams [29–34], Reissner-Mindlin plates and shells
[35–37] and Kirchhoff-Love plates [38, 39]. It is the goal of the present paper to
extend the work of [38] to Kirchhoff-Love shells.

Greville abscissae (C-GP) are often chosen as collocation points, and for second-
order PDEs, the L2-error decays asO(hp) andO(hp−1) for even and odd NURBS
degree p, respectively, whereas the Galerkin method converges at an optimal order
of O(hp+1) (h being the mesh size). It has been recently shown that for uniform
meshes, the optimal convergence order with the collocation method can be ob-
tained by using Cauchy-Galerkin points also called superconvergent points [40–
42]. However, the number of these points is about two times higher than the
number of control points for a univariate spline. This overdetermined system can

3



be solved using the least-squares approximation at superconvergent points (LS-
SP) [40]. Another approach, as proposed in [42], is to select a subset formed
by every other point; these points are referred to as alternating superconvergent
points (C-ASP). However, for odd degrees, the L2-error decays as O(hp+1) with
the use of LS-SP, whereas C-ASP provide a convergence order of only O(hp). It
is shown in [42] that a more appropriate subset can be defined based on element
symmetries, and this method is referred to as clustered superconvergent points
(C-CSP). While the use of LS-SP or C-CSP provides an optimal convergence for
odd degrees, the convergence for even degrees is suboptimal and remains an open
challenge [42]. Because C-CSP are only given for second-order problems in [42],
the present manuscript uses C-ASP instead; their definition for fourth-order prob-
lems is detailed in [41].

The paper is organized as follows. In Section 2, the Kirchhoff-Love shell the-
ory is summarized. In Section 3, after a short introduction to NURBS-based IGA,
the Galerkin discretization of the strong and weak forms are presented, followed
by the different strategies to collocate the strong form. Section 4 then illustrates
a number of numerical case studies, allowing a comparison between the Galerkin
and the collocation methods.

2. Kirchhoff-Love shell

Before introducing the Kirchhoff-Love shell theory, differential geometry of
surfaces is summarized based on [43].

2.1. Differential geometry of surfaces
In the following, Einstein’s summation convention is used and indices in Greek

and Latin letters take the values {1, 2} and {1, 2, 3}, respectively. Assuming a thin
shell, its mid-surface can be described by a general mapping

x = x
(
θ1, θ2

)
, (1)

where θ1 and θ2 are the convective curvilinear coordinates of the surface. With
the covariant base vectors

aα = x,α =
∂x

∂θα
, (2)

the covariant metric coefficients of the surface (first fundamental form of the sur-
face) are defined as

aαβ = aβα = aα · aβ, (3)
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and the contravariant base vectors are obtained by

aα = aαβaβ with
[
aαβ
]

= [aαβ]−1 , (4)

where [aαβ] is the 2 × 2 matrix formed by the coefficients aαβ . The curvature
tensor coefficients are defined by the second fundamental form of the surface

bαβ = bβα = aα,β · a3, (5)

where a3 = a3 is the unit normal vector of the mid-surface:

a3 =
ã3

ā3

with ã3 = a1 × a2 and ā3 =
√
ã3 · ã3. (6)

The parametric derivatives of aα are expressed in the covariant basis as

aα,β = aβ,α =
∂aα
∂θβ

= Γραβaρ + Γ3
αβa3, (7)

where the Christoffel symbol Γραβ is defined by

Γραβ = aα,β · aρ and Γ3
αβ = aα,β · a3. (8)

The curvature and metric tensor coefficients are linked to the non-symmetric ten-
sor coefficients bαβ such that

bαβ = bαρa
ρβ with bαβ = bβρa

ρα. (9)

The mean and Gaussian curvatures are defined from the first and second funda-
mental forms of the surface, respectively, as

H =
1

2
bαα =

1

2
aαβbαβ, (10)

and

K =
det[bαβ]

det[aαβ]
. (11)

Note that for a flat surface, bβα = Γραβ = 0, whereas for a uniformly curved one
(e.g. a cylinder or a sphere), (bβα),α = (bβα),β = 0.
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2.2. Kirchhoff-Love shell theory
In the Kirchhoff-Love theory, the shell thickness t = t(θ1, θ2) is assumed

to be small such that transverse shear strains have only a negligible contribution
to elastic energy which is stored in the deformed shell. Consequently, a vector
normal to the mid-surface remains normal in the actual configuration and the shell
parametrization is reduced to its mid-surface. Displacement of the shell mid-
surface at the position (θ1, θ2) reads [43]

u(θ1, θ2) = x(θ1, θ2)−X(θ1, θ2), (12)

whereX and x are the position vectors in the reference and the actual configura-
tion, respectively. Whereas aα, a3, aαβ and bαβ are derived in the actual config-
uration, equivalent quantities in the reference configuration are derived similarly
and are denoted respectivelyAα,A3, Aαβ and Bαβ .

The components of the Green-Lagrange strain tensor are split into membrane
and bending actions as follows:

E(αβ) = ε(αβ) − θ3κ(αβ), (13)

where θ3 ∈ [−t/2, t/2] is the thickness coordinate. The membrane strain and the
curvature change are respectively defined by

ε(αβ) =
1

2
(aαβ − Aαβ) ,

κ(αβ) = − (bαβ −Bαβ) .
(14)

The linear Hooke’s law is employed for the description of the constitutive
behavior of the elastic material and reads

S̄(αβ) = CαβγδĒ(γδ), (15)

where Cαβγδ is the fourth-order elastic tensor and •̄ indicates that the quantities
are expressed in a local Cartesian system. The symbol •(•) or •(•) indicates that
the tensor is symmetric (i.e. •(αβ) = •(βα)). Using the fact that both S̄(αβ) and
Ē(γδ) are symmetric, and considering an isotropic material with Young’s modulus
E and Poisson ratio ν, Eq. (15) is simplified using Voigt notation as:S̄(11)

S̄(22)

S̄(12)

 = D̄

 Ē(11)

Ē(22)

2Ē(12)

 , with D̄ =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 . (16)
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For more complex materials described by orthotropic or nonlinear stress-strain
relations, we refer the reader to [11, 12]. Expressing the local orthonormal basis
Ēα in the undeformed configuration in terms of the covariant basis Āα such that

Ē1 =
A1

‖A1‖
,

Ē2 =
A2 − (A2 · Ē1)Ē1∥∥A2 − (A2 · Ē1)Ē1

∥∥ , (17)

the stress and strain tensors in the contravariant and covariant basis are respec-
tively linked by

Ē(γδ) = Eαβ(Ēγ ·Aα)(Ēδ ·Aβ),

S̄(γδ) = Sαβ(Ēγ ·Aα)(Ēδ ·Aβ).
(18)

Consequently, the strain-stress relation reads:S(11)

S(22)

S(12)

 = D

 E(11)

E(22)

2E(12)

 , (19)

with

D =
E

1− ν2

1

(A11A22 − A2
12)2 A2

22 (1− ν)A2
12 + νA11A22 −A22A12

(1− ν)A2
12 + νA11A22 A2

11 −A11A12

−A22A12 −A11A12
1
2

((1 + ν)A2
12 + (1− ν)A11A22)

 .
(20)

After integration over the thickness, the stress resultants n(αβ) for normal forces
and m(αβ) for bending moments read:

n(αβ) = t Cαβγδε(γδ),

m(αβ) =
t3

12
Cαβγδκ(γδ).

(21)

2.3. Boundary value problem
Consider a shell that isG1-continuous inside its domain Ω, whereas its contour

Γ can be non-smooth (e.g. corners), as illustrated in Fig. 1. Let τ be the unit vector
tangent to Γ and ν the outward unit vector normal to Γ, and tangent to Ω such that

ν = τ × a3. (22)
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Figure 1: The different prescribed actions applied to a shell (a), and details on the shear corner
force Fc induced by the moment normal to the contour mν (b).

From equilibrium conditions, the Kirchhoff-Love shell boundary value problem
(BVP) reads [43]

nαβ
∣∣
α
− qαbβα + pβ = 0 in Ω, (23a)

nαβbαβ + qα|α + p3 = 0 in Ω, (23b)

u = uΓ on Γ, (23c)

ωτ = ωΓ
τ on Γ, (23d)

n = pΓ on Γ, (23e)

mτ = cΓ
τ on Γ, (23f)

where q = qαaα is the shear force defined by

qβ = mαβ
∣∣
α
, (24)

and

nαβ
∣∣
α

= nαβ,α + nρβΓααρ + nαρΓβαρ,

mαβ
∣∣
α

= mαβ
,α +mρβΓααρ +mαρΓβαρ,

qα|α = qα,α + qρΓααρ.

(25)
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Eq. (23a) and (23b) describe equilibrium of forces in the direction aβ and a3,
respectively. Contrary to mαβ , nαβ is in general not symmetric and it is given by

n(αβ) = nαβ +mαρbβρ ,

m(αβ) = mαβ.
(26)

Inside the domain Ω, p = pαaα + p3a3 is the prescribed body force. At the
contour Γ, Eqs. (23c) and (23d) are Dirichlet boundary conditions enforcing the
displacement uΓ and the rotation ωΓ

τ around the edge τ , whereas Eqs. (23e) and
(23f) represent Neumann boundary conditions with the prescribed force pΓ and
moment (bending) cΓ = cΓ

τ τ which is assumed to be purely around τ . The dis-
placement, rotation, force and moment at the contour are decomposed into

u = uττ + uνν + u3a3,

ω = ωττ + ωνν,

n = nττ + nνν + n3a3,

m = mττ +mνν,
(27)

where

uτ = ταuα = τ · u,
uν = ναuα = ν · u,

ωτ = −du3

dν
− νβbλβuλ = −νβu3,β − νβbλβuλ

= −νβ
(
a3,β + bλβaλ

)
· u− νβa3 · u,β,

(28)

and

nτ = nαβνατβ = nτ
(
ε(αβ), κ(αβ)

)
,

nν = nαβνανβ = nν
(
ε(αβ), κ(αβ)

)
,

n3 = qανα = n3

(
κ(αβ), κ(αβ),γ

)
,

mτ = mαβνανβ = mτ

(
κ(αβ)

)
,

mν = −mαβνατβ = mν

(
κ(αβ)

)
.

(29)

2.4. Weak form
In order to validate the implementation of the different terms, the Galerkin

method applied to the weak form of the fourth and second-order problems is de-
tailed in the following, and the numerical equality between the resulting stiffness
matrices is checked in Section 4.
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As shown in Eq. (29), five boundary conditions have to be enforced which is
not compatible with the BVP order (Eq. (23)). To reduce the number of boundary
equations, integration by parts is used to convert the torsional component of the
moment (mν) into a shear force term [43, 44]. The weak form of the BVP at the
contour then reads:

δWΓ =

∮
Γ

(
(n− pΓ) · δv + (m− cΓ) · δω

)
dΓ

=

∮
Γ

(nτδvτ + nνδvν + n3δv3 +mτδωτ +mνδων) dΓ

−
∮

Γ

(
pΓ
τ δvτ + pΓ

ν δvν + pΓ
3δv3 + cΓ

τ δωτ
)
dΓ

=

∮
Γ

(ñτδvτ + ñνδvν + ñ3δv3 +mτδωτ ) dΓ + [mνδv3]C
+

C−

−
∮

Γ

(
pΓ
τ δvτ + pΓ

ν δvν + pΓ
3δv3 + cΓ

τ δωτ
)
dΓ,

(30)

where δ is the variational symbol, v a test function, ω = ω(v), and

ñτ = nτ + bλβt
βτλmν = nτ + n̂τ = ñτ

(
ε(αβ), κ(αβ)

)
,

ñν = nν + bλβt
βνλmν = nν + n̂ν = ñν

(
ε(αβ), κ(αβ)

)
,

ñ3 = n3 −mν,αt
α = n3 + n̂3 = ñ3

(
κ(αβ), κ(αβ),γ

)
.

(31)

The punctual shear forces FC = [mνu3]C
+

C− are located at the contour discontinu-
ities (e.g. corners), as illustrated in Fig. 1b, and are specific to Kirchhoff-Love
theory [43, 44].

At the domain interior, the weak form of Eqs. (23a) and (23b) reads:

δWΩ = −
∫

Ω

(
N βaβ +Ma3

)
δvdΩ−

∫
Ω

(
pβaβ + p3a3

)
δvdΩ = 0, (32)

where

N β = nαβ
∣∣
α
− mαβ

∣∣
β
bβα = N β

(
ε(αβ), ε(αβ),γ, κ(αβ), κ(αβ),γ

)
,

M = nαβbαβ +
(
mαβ

∣∣
β

)∣∣∣
α

=M
(
ε(αβ), ε(αβ),γ, κ(αβ), κ(αβ),γ, κ(αβ),γ,ζ

)
.

(33)

The total virtual work of the shell is expressed as the sum of Eqs. (30) and
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(32):

δW =−
∫

Ω

(
N βaβ +Ma3

)
δvdΩ−

∫
Ω

(
pβaβ + p3a3

)
δvdΩ

+

∮
Γ

(ñτδvτ + ñνδvν + ñ3δv3 +mτδωτ ) dΓ + [mνδv3]C
+

C−

−
∮

Γ

(
pΓ
τ δvτ + pΓ

ν δvν + pΓ
3δv3 + cΓ

τ δωτ
)
dΓ = 0.

(34)

This is a fourth-order equation that can be reduced to a second-order one [43]:

δW =

∫
Ω

(
ñ(αβ)δε(αβ) + m̃(αβ)δκ(αβ)

)
dΩ−

∫
Ω

(
pβaβ + p3a3

)
δvdΩ

−
∮

Γ

(
pΓ
τ δvτ + pΓ

ν δvν + pΓ
3δv3 + cΓ

τ δωτ
)
dΓ = 0.

(35)

As shown next, the Galerkin discretization of Kirchhoff-Love shells is most of the
time based on this last equation. Before going into this, the following section first
introduces some preliminaries on NURBS-based IGA.

3. Numerical discretization

3.1. NURBS-based IGA
The geometry is represented by means of NURBS [2] and only single patches

are considered here. A B-spline of polynomial degree p is defined by a knot vector
Ξ = {ξ1 ≤ . . . ≤ ξn+p+1}, with n the number of basis functions forming the B-
spline. The ith (i = 1, . . . , n) B-spline basis function Np

i (ξ) is derived from the
knot-vector using the Cox-De Boor recursive formula [45]:

N0
i (ξ) =

{
1 if ξi ≤ ξ < ξi+1,

0 otherwise,

Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ), for p ≥ 1.

(36)

In the following, for the sake of clarity, the knot vectors are open (or clamped),
i.e. the multiplicity of the first and last knot is p + 1, whereas the multiplicity of
the remaining knots is 1, such that the basis functions are Cp−1-continuous. Given
two univariate B-spline bases Np

i (ξ) (i = 1, . . . , n) and M q
j (η) (j = 1, . . . ,m),

respectively of order p and q, and associated to the two knot vectors Ξ = {ξ1 ≤
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. . . ≤ ξn+p+1} andH = {η1 ≤ . . . ≤ ηm+q+1}, a bivariate NURBS basis function
is defined as

Rp,q
i,j (ξ, η) =

Np
i (ξ)M q

j (η)wi,j
n∑

iw=1

m∑
jw=1

Np
iw

(ξ)M q
jw

(η)wiw,jw

, (37)

where wi,j ∈ R is the weight associated to the basis function Rp,q
i,j . NURBS

surfaces S(ξ, η) are defined by

S(ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η)Bi,j =

n·m∑
r=1

Rp,q
r (ξ, η)Br, (38)

where Bi,j are the control points and with r = i + n(j − 1) a single counter
replacing i and j. Using the isogeometric approach, the displacement field u(ξ, η)
is approximated by the same basis functions that represent the geometry such that

u(ξ, η) =
n·m∑
r=1

Rp,q
r (ξ, η)ur, (39)

where ur is the global displacement control variable corresponding to the control
point Br.

3.2. Galerkin method
The Bubnov-Galerkin approach considers as test functions the same shape

functions that describe the solution field:

v(ξ, η) =
n·m∑
r=1

Rp,q
r (ξ, η)vr. (40)

In the present work, for the sake of simplicity, the deformations are assumed to be
small, such that the geometric stiffness is neglected in the linearization of Eqs. (34)
and (35). The resulting stiffness matrix components for the fourth-order problem
(34) read

K(G4)
r,s =

ne∑
e=1

[
−
∫

Ωe

vr

(
aβ N β

s

T
+ a3 MT

)
dΩ

+

∮
Γe

vr
(
τ ñTτ,s + ν ñTν,s + a3 ñ

T
3,s − νβ

(
a3,β + bλβaλ

)
mτ,s

T
)
dΓ

−
∮

Γe

vβ,rν
βa3 mτ,s

TdΓ

]
+
[
vra3 mν

T
]C+

C− ,
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(41)

where •T denotes the transpose and ne the number of element in the patch. The
components of the external force vector are

F(G)
r =

ne∑
e=1

[∫
Ωe

v,r
(
pβaβ + p3a3

)
dΩ

+

∮
Γe

(
v,r
(
pΓ
τ τ + pΓ

νν + pΓ
3a3 − νβ

(
a3,β + bλβaλ

)
cΓ
τ

)
− vβ,rνβa3c

Γ
τ

)
dΓ

]
.

(42)

Since there are 3 displacement degrees of freedom (dofs) per control point, the
size of K

(G4)
r,s and F

(G)
r is 3× 3 and 3× 1, respectively. Moreover,

N β
s = N β

(
ε(αβ),s, ε(αβ),γ,s,κ(αβ),s,κ(αβ),γ,s

)
,

Ms =M
(
ε(αβ),s, ε(αβ),γ,s,κ(αβ),s,κ(αβ),γ,s,κ(αβ),γ,ζ,s

)
,

ñτ,s = ñτ
(
ε(αβ),s,κ(αβ),s

)
,

ñν,s = ñν
(
ε(αβ),s,κ(αβ),s

)
,

ñ3,s = ñ3

(
κ(αβ),s,κ(αβ),γ,s

)
,

mτ,s = mτ

(
κ(αβ),s,κ(αβ),γ,s

)
,

mν,s = mν

(
κ(αβ),s,κ(αβ),γ,s

)
,

(43)

and

ε(αβ),s =
1

2
(aβ aα,s + aα aβ,s) ,

κ(αβ),s = −(a3 aα,β,s + aα,β a3,s),

= −(a3 aα,β,s − i3 × a2 a1,s + i3 × a1 a2,s),

aα =
n·m∑
r=1

Rp,q
r,αBr,

aα,s = Rp,q
s,α,

(44)

where i3 = (I− a3a
T
3 )aα,β/ā3, and I is the identity matrix.

Application of the same linearization procedure to the second-order weak form
(35) gives a force term identical to Eq. (42), whereas the stiffness matrix reads

K(G2)
r,s =

ne∑
e=1

∫
Ωe

(
n(αβ)

,r ε(αβ),s
T +m(αβ)

,r κ(αβ),s
T
)
dΩ, (45)
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with

n(αβ)
,r = n(αβ)

,r

(
ε(αβ),r,κ(αβ),r

)
,

m(αβ)
,r = m(αβ)

,r

(
ε(αβ),r,κ(αβ),r

)
.

(46)

Considering the Galerkin approach with the Gauss-Legendre quadrature scheme,
the computation of K

(G2)
r,s is much faster than K

(G4)
r,s . Indeed, the expression of

K
(G2)
r,s is symmetric, simpler, and it requires only the computation of second-order

shape-function derivatives, whereas K
(G4)
r,s needs fourth-order ones. Moreover,

K
(G4)
r,s requires the two first derivatives of the constitutive law (D,γ and D,γ,ζ , see

Eq. (20)), as well as the derivatives of aαβ , a3, bαβ , bαβ , and Γραβ . As shown in the
next section, K

(G4)
r,s can be collocated, which avoids the costly numerical integra-

tion steps. The question is then whether this cost reduction can compensate for
the extra operations involved in the strong form.

3.3. Collocation method
The idea of the collocation method is to use as test functions Dirac functions

δ such that

v(ξ, η) =
n·m∑
r=1

δ(ξ − ξ̂i)δ(η − η̂j)vr; {i; j} = {1, . . . , n; 1, . . . ,m}, (47)

where r = i + n(j − 1), and {ξ̂i, η̂j} are collocation point coordinates defined
in Section 3.3.1. As shown in [23, 24], collocating Neumann conditions might
generate some spurious oscillations in the variable field, and to overcome this is-
sue, it is proposed to weakly enforce Neumann conditions, resulting in a hybrid
collocation-Galerkin method. However, since such phenomenon has not been ob-
served in our numerical results (which could be a consequence that only uniform
parametrizations are considered), this method is not introduced here.

3.3.1. Choice of the collocation points
For the sake of clarity, the parametric coordinates are reported here for a uni-

variate NURBS basis, the coordinates for a bivariate basis being obtained by con-
sidering the tensor product of two univariate ones.

Until recently, Greville abscissae (C-GP) were the most common choice of
collocation point positions [21]. They are defined by the mean location of p − 1
consecutive knots in the knot vector:

ξ̂i =
1

p

p∑
k=1

ξi+k; i = 1, . . . , n. (48)
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Table 1: Location of the superconvergent points on the element interval [−1, 1] for a univariate
NURBS of degree p and its first to fourth derivatives.

p Rp Rp
α Rp

α,β Rp
α,β,γ Rp

α,β,γ,ζ

1 −1, 1 0 ∅ ∅ ∅
2 −1, 0, 1 −1, 1 0 ∅ ∅
3 ±

√
225− 30

√
30/15 −1, 0, 1 ±1/

√
3 0 ∅

4 −1, 0, 1 ±
√

225− 30
√

30/15 −1, 0, 1 ±1/
√

3 0

5 ±0.5049185675126533 −1, 0, 1 ±
√

225− 30
√

30/15 −1, 0, 1 ±1/
√

3

6 −1, 0, 1 ±0.5049185675126533 −1, 0, 1 ±
√

225− 30
√

30/15 −1, 0, 1

7 ±0.503221894597504 −1, 0, 1 ±0.5049185675126533 −1, 0, 1 ±
√

225− 30
√

30/15

However, when C-GP are used, the L2-error decays as O(hp) only when the ba-
sis degree is even, whereas it has recently been shown that if the degree is odd,
Cauchy-Galerkin points, also called superconvergent points, should be used in-
stead to get an optimum convergence [40, 41]. They are reported in Table 1.
Note that the dimension of the spline space is lower than the total number of su-
perconvergent points, and therefore the least-square method [40] or a subset that
hits every function should be used [41, 42]. While the subset is formed by every
other point (C-ASP) in [41], resulting to a convergence of O(hp), a better conver-
gence order of O(hp+1) can be obtained using clustered superconvergent points
(C-CSP) [42]. Unfortunately, C-CSP are only given for second-order problems in
[42]. Therefore, the present manuscript uses C-ASP points given for fourth-order
problems in [41].

3.3.2. Equation priority at the contour
The goal of this part is to identify which equations are attributed where. In-

deed, for a flat plate with only transverse displacement of the mid-surface, collo-
cating around the contour generates 4(n+m) equations, whereas only 4(n+m−4)
equations can be settled. In [38], it is proposed for clamped and simply-supported
plates to reduce the number of boundary equations by averaging some of them
close to the corners. We provide the generalization of this work to arbitrary bound-
ary conditions based on the boundary condition type (Dirichlet or Neumann) and
its order (the prescribed displacement, rotation, moment and shear force are com-
posed by derivatives which are of maximum order 0, 1, 2 and 3, respectively).

In order to clarify the following explanations, all possible combinations of
adjacent edges are represented in three different problems in Fig. 2. For a given
plate, the n ·m equations are represented graphically by an array of size n ×m.
An analogy can be made between this array and the location of the control points,
but a difference exists for the second row inward from the contour; the collocation
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Figure 2: Three different plate problems regrouping all possible combinations of adjacent edges.

points at these locations are not considered and instead some equations evaluated
at the boundary (location indicated by an arrow) are attributed to this row.

Prescribed displacement or force equations are attributed to the first row, whereas
prescribed rotation or moment equations are attributed to the second row. Next to
corners, two equations are attributed by default to the same location, creating a
conflict. To this end, a simple rule is followed and illustrated in Fig. 3; if the
two equations have the same order (e.g. they both impose a rotation), they are
averaged, otherwise, one equation has the priority and the remaining one, is either
averaged with an adjacent equation of the same order or discarded if evaluated at
a corner. When two equations are not of the same order, if one is setting Dirich-
let and the other one Neumann boundary condition, the priority is given to the
Dirichlet one, whereas if they are both of Dirichlet or Neumann types, the choice
of the priority has no importance. In the present work, prescribed displacements
and shear forces have the priority with respect to prescribed rotations and mo-
ments, respectively, but numerical tests not reported here have shown that setting
the opposite gives identical results. The performances of the proposed method is
validated numerically in Section 4.2 by testing the three examples presented in
Fig. 2, but before, the extension to shells is provided.

For curved shells, membrane and bending deformations are coupled such that
at the second equation row around the contour, two equations originate from the
interior and one from the boundary (see Fig. 4). The two equations from the
interior are the components tangential to the surface, whereas the equation from
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BCs of same order?

BCs of same type?

Dirichlet BC: location kept
Neumann BC = second BC

Second BC collocated
 at the corner?

Second BC: discardedSecond BC: averaged with and located at next BC of same order

Dirichlet BCs?

Two BCs attributed to 
a same location

Yes

No

No

Yes Yes

No

No

Yes

BCs averaged and location kept

Shear BC: location kept
Moment BC = second BC

Displacement BC: location kept
Rotation BC = second BC

Figure 3: Collocation strategy when two boundary condition (BC) equations are attributed to a
same location.

the boundary is projected to the surface normal, as indicated in the following
paragraphs.

3.3.3. Construction of the stiffness matrix and force vector
Focusing first on the equations inside the domain, the stiffness matrix and the

force vector are derived from Eq. (34) and they read

K(Int)
r,s = −

(
aβ N β

s

T
+ a3 Ms

T
)∣∣∣
{ξ̂i,η̂j}

F(Int)
r =

(
aβ p

β + a3p
3
)∣∣
{ξ̂i,η̂j}

{i; j} = {3, . . . , n− 2; 3, . . . ,m− 2},

K(Int)
r,s = −

(
aβ N β

s

T
)∣∣∣
{ξ̂i,η̂j}

F(Int)
r =

(
aβ p

β
)∣∣
{ξ̂i,η̂j}

{i; j} ={2, . . . , n− 1; {2,m− 1}}
∪{{2, n− 1}; 2, . . . ,m− 1}.

(49)
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Membrane only
(2 dofs/CP)

Bending only
(1 dof/CP)

Membrane + Bending
(3 dofs/CP)

1 equation collocated at the contour
1 equation collocated at the interior

Figure 4: For each collocation point (CP), the number of empty and full circle portions indicates
the number of equations collocated inside and at the contour of the domain, respectively.

Concerning the collocation of the boundary conditions, if the displacement tan-
gential to the edge surface is provided,{

K
(BCτ)
r,s =

(
τ uτ,s

T
)∣∣
{ξ̂i,η̂j}

F
(BCτ)
r =

(
τ uΓ

τ

)∣∣
{ξ̂i,η̂j}

{i; j} ={1, . . . , n; {1,m}}
∪{{1, n}; 1, . . . ,m}, (50)

whereas if the tangential displacement is free,{
K

(BCτ)
r,s =

(
τ nτ,s

T
)∣∣
{ξ̂i,η̂j}

F
(BCτ)
r =

(
τ pΓ

τ

)∣∣
{ξ̂i,η̂j}

{i; j} ={1, . . . , n; {1,m}}
∪{{1, n}; 1, . . . ,m}. (51)

Similarly, a Dirichlet boundary condition to the direction tangential to the surface
but normal to the edge reads{

K
(BCν)
r,s =

(
ν uν,s

T
)∣∣
{ξ̂i,η̂j}

F
(BCν)
r =

(
ν uΓ

ν

)∣∣
{ξ̂i,η̂j}

{i; j} ={1, . . . , n; {1,m}}
∪{{1, n}; 1, . . . ,m}, (52)

whereas imposing a Neumann boundary condition gives:{
K

(BCν)
r,s =

(
ν nν,s

T
)∣∣
{ξ̂i,η̂j}

F
(BCν)
r =

(
ν pΓ

ν

)∣∣
{ξ̂i,η̂j}

{i; j} ={1, . . . , n; {1,m}}
∪{{1, n}; 1, . . . ,m}.. (53)
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For the case of a given transverse displacement, one reads{
K

(BC3)
r,s =

(
a3 u3,s

T
)∣∣
{ξ̂i,η̂j}

F
(BC3)
r =

(
a3 u

Γ
3

)∣∣
{ξ̂i,η̂j}

{i; j} ={1, . . . , n; {1,m}}
∪{{1, n}; 1, . . . ,m}. (54)

For a prescribed rotation{
K

(BC3)
r,s =

(
a3 ωτ,s

T
)∣∣
{ξ̂k,η̂l}

F
(BC3)
r =

(
a3 ω

Γ
τ

)∣∣
{ξ̂k,η̂l}

{i; j; k; l} ={1, . . . , n; {2,m− 1}; i; lj}
∪{{2, n− 1}; 1, . . . ,m; ki; j},

(55)

and for a prescribed moment,{
K

(BC3)
r,s = (a3 mτ,s)|{ξ̂k,η̂l}

F
(BC3)
r =

(
a3 c

Γ
τ

)∣∣
{ξ̂k,η̂l}

{i; j; k; l} ={2, . . . , n− 1; {2,m− 1}; i; lj}
∪{{2, n− 1}; 2, . . . ,m− 1; ki; j},

(56)

where

ki =

{
1 if i = 2,

n if i = n− 1,
lj =

{
1 if j = 2,

m if j = m− 1.

Finally, for a prescribed shear force not located at a free corner{
K

(BC3)
r,s =

(
ν n̂Tν,s + τ n̂Tτ,s + a3 n̂

T
3,s

)∣∣
{ξ̂i,η̂j}

F
(BC3)
r =

(
a3 p

Γ
3

)∣∣
{ξ̂i,η̂j}

{i; j} ={1, . . . , n; {1,m}}
∪{{1, n}; 1, . . . ,m},

(57)

whereas at free corners (intersection of two adjacent free-free edges),K
(BC3)
r,s =

([
a3 mν

T
]C+

C−

)∣∣∣
{ξ̂i,η̂j}

F
(BC3)
r =

(
a3 p

Γ
3

)∣∣
{ξ̂i,η̂j}

{i; j} = {{1, n}; {1,m}}. (58)

The total stiffness matrix and force vector are then the sum of the different
contributions:{

K(C) = K(Int) + K(BCτ ) + K(BCν) + K(BC3) + K(BC3),

F(C) = F(Int) + F(BCτ ) + F(BCν) + F(BC3) + F(BC3).
(59)

Note that K(BC3) and F(BC3) are written twice since in the transverse direction of
the surface, two boundary conditions are required.
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4. Numerical results

Before investigating the collocation method, the implementation of the stiff-
ness matrix including the effects of the boundary conditions has been tested on all
the examples which are treated in the following section, by making sure that the
Galerkin method applied to the fourth-order problem is identical to the second-
order one (i.e. Eq. (41) yields identical results as Eq. (45)). It is worth noting
that in order to get an equality up to the machine precision, a large number of
Gauss quadrature points should be selected, especially for coarse meshes). For
instance, for the problem presented in Section 4.3 with the same mesh used to
plot Fig. 9a-b, with p + 3 Gauss points per element and per direction, it is found
that max|K(G4) −K(G2)|/max|K(G2)| < 1.10−13.

In what follows, for the sake of simplicity, the degrees of the NURBS are
considered identical in the two parametric directions (p = q). We denote by IGA-
G the classical Galerkin method applied to the second-order weak form (Eq. (45)),
whereas IGA-C refers to the collocation method using C-GP and C-ASP for even
and odd p, respectively. “C”, “S”, “G” and “F” denote the clamped, simply-
supported, symmetric (guided) and free boundary conditions, respectively. All
simulations in this work are performed with an in-house MATLAB code that makes
use of some functionalities of the open source NURBS toolbox [46, 47].

This section applies the collocation method to different benchmarks, involving
in a first part rectangular, circular and annular flat plates, and in a second part
curved shells. But before presenting the results, an a-priori L2-error estimate is
introduced, which will be used to validate the convergence orders.

4.1. A-priori error estimation: convergence order
Convergence plots under h-refinement are obtained by computing the approx-

imated solution and the exact one of a PDE problem, and the convergence order
can be verified by using a-priori error estimates for instance in the L2 (L2 ≡ H0)
error norm [6]:

‖u− uh‖L2(Ω) =

(∫
(u− uh)2 dΩ

)1/2

. (60)

When considering PDEs of order 2m with m ≥ 1 and its exact solution u ∈
Hr(Ω) (r is the regularity), the error in the normL2 for a Cp−1-continuous NURBS
basis can be estimated as:

‖u− uh‖2
L2(Ω) ≤ Chβ‖u‖Hr(Ω), (61)
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Table 2: Estimated convergence orders β in the L2 norm , for a globally Cp−1-continuous NURBS
basis of degree p, and for a PDE problem of order 2m with r =∞.

m\p 1 2 3 4 5 6 7

βIGA-G 1 2 3 4 5 6 7 8
βIGA-G 2 0 2 4 5 6 7 8

βIGA-C 1 0 2 3 4 5 6 7
βIGA-C 2 0 0 0 2 3 4 5

where h is the characteristic mesh size of the elements, and C a constant inde-
pendent of u and h; β gives a lower bound for the convergence order estimate
and depends on the discretization procedure. When the PDE is solved using the
Galerkin method [6],

βIGA−G = min{δ, 2(δ −m)}, (62)

with δ = min{r, p + 1}. For the collocation method, a-priori error estimates are
really challenging and where only proved so far for one-dimensional second-order
problems with C-GP [21]. When the collocation method is used with C-GP and C-
ASP for even and odd p, respectively, we state based on observations and without
proving it in a mathematical framework that

βIGA−C = δ − (2m− 1). (63)

While form = 1, this statement can be found in [21, 22, 41, 42, 48], form = 2 this
estimate is only based on the convergence order observed and reported in [38, 41],
and confirmed by the present work. Estimated convergence orders for NURBS
basis of degree up to p = 7 are given in Table 2 for both discretization methods,
for second as well as fourth-order problems. Note that the values reported in this
table assume that the regularity of the exact deflection is infinite, which is not
valid for some Kirchhoff-Love shell configurations.

Indeed, it is demonstrated in [49–51] that at a corner of a Kirchhoff-Love plate,
when its surrounding is loaded by a pressure (not a point force), the exact deflec-
tion has a critical regularity r (u3 ∈ Hr). This value is reported in Table 3 for
different adjacent boundary conditions. In addition, the corresponding estimated
convergence orders are reported for r < p+ 1, and they are going to be used next
to validate a set of different benchmarks.

4.2. Flat plates
These first examples investigate flat plates to validate the collocation strategy.

As this decouples the membrane and bending deformations, only the transverse
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Table 3: The critical corner regularity r (u3 ∈ Hr) for ν = 0.3, an angle of 90◦, and different ad-
jacent edge boundary conditions [49]. Estimated convergence orders β in the L2 norm, assuming
r < p+ 1 and m = 2.

Adjacent edges CC CS CF SS, SF FF
r 4.74 4 3.07 3 3.76

βIGA−G min{4.74, 5.48} 4 min{2.14, 3.07} min{2, 3} min{3.52, 3.76}
βIGA−C 1.74 1 0.07 0 0.76

displacements are considered here, as thus component dominates structural re-
sponse of the structural member. The bending stiffness isD = Et3/12/(1−ν2) =
1 Nm and the Poisson ratio ν = 0.3. Moreover, for all benchmarks involving a
uniform loading, the pressure is p3 = 1 Nm−2.

4.2.1. Square plates under distributed loads
A fully-clamped and a fully simply-supported square plate ([0 L]2, L = 1 m)

are first considered under a sinusoidal loading, such that for the clamped plate, the
pressure and the resulting deflection are given respectively by [44]

p3(x, y) =

(
1− cos

2πx

L

)(
1− cos

2πy

L

)
,

u3(x, y) = −16π4

DL4

(
cos

2πx

L
− 4 cos

2πx

L
cos

2πy

L
+ cos

2πy

L

)
,

(64)

whereas for the fully simply-supported plate

p3(x, y) = sin
2πx

L
sin

2πy

L
,

u3(x, y) = −16π4

DL4
sin

2πx

L
sin

2πy

L
.

(65)

Taking advantage of symmetry, only one quarter of the plate is modeled, resulting
in the plate problems CCGG and SSGG. Convergence curves under h-refinement
for different NURBS degree p are shown in Figs. 5a-b. For IGA-G and IGA-C,
it is observed that the convergence orders are in good agreement with Eqs. (62)
and (63), respectively (see also Table 2), such that for IGA-C, this confirms the
previous convergence orders reported in the literature [38, 41] and from which
Eq. (63) has been stated.

We consider now exactly the same problems, except that the sinusoidal load-
ing is replaced by a uniform pressure. Analytical solutions for both problems
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can be found in [52] and they are expressed as a sum of a particular (upar) and a
homogeneous (uhom) solution such that

u3(x, y) = upar(x) + uhom(x, y), (66)

where

uhom(x, y) =
p3

D

∞∑
n=0

(−1)n
((

An
coshαny

′

coshαna
+Bn

y′

a

sinhαny
′

coshαna

)
cosαnx

′

+

(
Cn

coshαnx
′

coshαna
+Dn

x′

a

sinhαnx
′

coshαna

)
cosαny

′
)
,

(67)

with αn = (2n+ 1)π/L, a = L/2, x′ = x−L/2, and y′ = y−L/2. For the fully
simply-supported plate,

upar(x) =
p3

24D

(
x′4 − 6a2x′2 + 5a4

)
,

and

An = −Bn

(
tanhαna+

2

αna

)
, Bn =

1

α4
n

, Cn = Dn = 0,

whereas for the fully clamped plate, different coefficients hold for An, Bn, Cn,
Dn and upar [52] (not reported here for the sake of brevity). Convergence plots
are shown in Figs. 5c-d, and convergence orders tend towards the ones reported
in Table 2, up to p = 4 for IGA-G and up to p = 6 for IGA-C. For p ≥ 5
(IGA-G) and p ≥ 7 (IGA-C), the convergence orders do not increase with p,
which can be explained by the critical regularity of the exact solution (Table 3).
Moreover, the convergence orders are found to be superconvergent with respect to
their estimates, in agreement with the a-priori error estimate given in Eq. (63).

A uniformly loaded CSFS plate is then considered (analytical solution in [53]1),
which is reduced using symmetries to the CSFG plate presented in Fig. 2b. Simi-
larly to previous examples with uniform loading, convergence orders (Fig. 6a) are
the estimated ones with r =∞ up to p = 4 for IGA-G and p = 6 for IGA-C. For

1In [53], concerning the CSFS plate, α in the nominator of Eq. (38) should be replaced by a,

and in Eq. (54),
∞∑
n=1

should be replaced by
∞∑

n=1,3,5,...
.
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Figure 5: Relative L2-error versus normalized mesh size h/h0 for the CCGG (a,c) and the SSGG
(b,d) square plates under sinusoidal (a,b) and uniform (c,d) loading.

higher degrees, the convergence orders remain constant and they are supercon-
vergent with respect to the estimated ones when considering the corner regularity
(r = 3 for adjacent SF edges in Table 3).

Up to this point, all possible combinations of adjacent edges have been vali-
dated, except two of them: adjacent FF edges and adjacent CF edges. The free
corner is investigated by studying a SSFF plate under a uniform pressure [54]2.
Convergence curves are shown in Fig. 6b, and the convergence orders are 0.76 for
IGA-C, and 2 (p = 2) or 3.76 (p ≥ 3) for IGA-G. These values are relatively low,
but they coincide with the estimated ones reported for adjacent FF edges (Table 3).

The remaining boundary combination is the adjacent CF edges, which is in-

2In [54], π should be replaced by π3 in the denominator of Eqs. (48) and (49).
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vestigated from the uniformly loaded CCFF plate presented in Fig. 2c (analytical
solution in [54]). Convergence plots are shown in Fig. 6c, and whatever the de-
gree p is, convergence orders do not converge to constant values. One possible
reason is the following; focusing on the free edge, the torsional component of the
moment at the contour (mν) is not zero at the clamped corner, whereas it is zero
just beyond it (along the free edge). This means that mν is discontinuous, and so
its first derivative, required in the Kirchhoff-Love theory (see Eq. (30)), is locally
not defined. The convergence is then driven by this ill-conditioning, and not by
the mesh size. Anyway, the convergence orders are superconvergent with respect
to their estimates (βIGA−G = 2.14 and βIGA−C = 0.07). Note that for a CFCF
plate (analytical solution in [52]), only adjacent clamped-free edges are involved
and the convergence plots are similar — although they are not reported here for
the sake of brevity.

Finally, a uniformly loaded square plate supported at its corners is investigated,
for which an analytical solution can be found in [55]. To the best of the authors’
knowledge, regularity of the deflection at the corners for this configuration has not
been investigated yet, and we simply note that the convergence orders (Fig. 6d)
are higher than the ones reported for a plate with a free corner (SSFF, see Fig. 6b).

4.2.2. Square plates under point loads
Imposing point loads with the collocation method is not straight forward [28,

39] and the strategy used in this work is discussed next, but before, the particular
case of a point load applied at a free-free corner is presented.

At a free corner, a singularity in the shear force field exists and is quantified
by Eq. (58), such that this equation can be directly used to balance a concen-
trated load. Using the fact that at the free corner of a unit-length square plate, the
punctual shear force is FC = −2D(1− ν) ∂

2u3
∂x∂y

[44], an analytical solution of the
deflection for a square plate simply supported at the sides x = 0 and y = 0, and
free at x = 1 and y = 1 with a prescribed corner force FC at {x, y} = {1, 1} can
be computed easily:

u3(x, y) =
−FC

2D(1− ν)
xy. (68)

Since this solution is only a second-order polynomial, it is verified that the numer-
ical solution is patch-test compliant (i.e. the machine precision is obtained for all
mesh size).

In order to analyze the more general case of a point load not located at a free
corner, the fully simply supported square plate with a point load (FM ) in its middle
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Figure 6: Relative L2-error versus normalized mesh size h/h0 for uniformly loaded CSFG (a),
SSFF (b), CCFF (c) and corner-supported FFFF (d) square plates.

is investigated. The plate deflection is given by [56]

u3(x, y) = −4FML
2

Dπ4

∞∑
n=1

∞∑
m=1

sin nπ
2

sin mπ
2

sin nπx
L

sin mπy
L

(n2 +m2)2
. (69)

To process the singularity, the strategy developed in [39] is used which as-
sumes that a collocation point (ξ̂k, η̂l) is present at the location of the point force.
Assuming the pressure at the collocation points to be

ph3(ξ̂i, η̂j) =

{
FM
λp

if i = k and j = l,

0 otherwise,
{i; j} = {1, ..., n; 1, ...,m}, (70)

solving this system gives the discrete pressure field ph3 , where the scaling constant
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λp is determined after integrating∫
Ω

ph3
∣∣
λp=1

dΩ = λp. (71)

The convergence curves are shown in Fig. 7a for both the collocation and the
Galerkin methods, and it is observed that the maximum convergence order is 3,
driven by the load singularity (it is 2 for IGA-G p = 2 and for IGA-C p = 4 in
agreement with Table 2). Note that for a uniform mapping, any C-ASP is located
at the mid-span, justifying why the collocation method with the order p = 5, 7
are not provided in this analysis. This limitation could have been removed by
distributing the concentrated load to several collocation points located around the
mid-span, as proposed in [28], but is not considered here for the sake of brevity.

Since the problem is symmetric, this case study is reconsidered restricting the
analysis to one quarter of the plate. Consequently, the point force is now located
at a non-free corner. At this location and along the sides, the shear force has the
unit of a linear pressure, which may suggest that the same strategy applied to the
pressure field can be used to obtained the linear shear force. However, there are
two major differences:

• The linear shear force is not defined everywhere a priori: there are more
equations than unknowns. Indeed, as shown in Fig. 2a, at a corner of ad-
jacent symmetric edges, two times two equations describing shear forces
are averaged. It means that in order to get the shear force at those posi-
tions, a “scaled” displacement field has to be computed first from which a
“scaled”shear force field can be retrieved.

• The pressure is zero at the collocation points inside the plate, but is not
defined at its contour. Again, it can only be computed a posteriori from the
scaled displacement field.

The proposed strategy is then the following. Denoting (ξ̂n, η̂m) the collocation
point at the corner, the shear forces and the pressure field are respectively defined
by

pΓ,h
3 (ξ̂i, η̂j) =

{
FC
λ

if i = n and j = m,

0 otherwise,
{i; j} ={1, . . . , n;m}

∪{n; 1, . . . ,m},
ph3(ξ̂i, η̂j) = 0, {i; j} = {3, . . . , n− 2; 3, . . . ,m− 2},

(72)
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where FC = FM/4. Since λ is not known a priori, an auxiliary problem (uh3
∣∣
λ=1

)
is solved choosing λ = 1. Using Eqs. (31) and (33), the resulting total pressure
and shear force are respectively∫

Γ

a3n̂3(uh3
∣∣
λ=1

)dΓ = λs, (73)

∫
Ω

a3 MT (uh3
∣∣
λ=1

)dΩ = λp. (74)

Finally, one gets λ = λs + λp, and since the problem has been assumed linear in
the present manuscript (small deformations), uh3 = uh3

∣∣
λ=1

/λ.
The convergence curves are shown in Fig. 7b and all the convergence orders

are found to be equal to 2 for IGA-C and IGA-G with p = 2, whereas it is 3 for
IGA-G with p > 2. Moreover, for IGA-C, it is observed that the error is smaller
for basis of even degrees than for odd ones: C-ASP might not be optimum for the
enforcement of point loads.

While results converge, a critical drawback of the proposed method is the
computation time, as it is going to be shown in Section 4.5. Indeed, the term
M involves fourth-order derivatives of the displacement field, and needs to be
integrated. A first solution to save some computation time would consist in using a
reduced Gauss-Lobatto quadrature rules for the numerical integration, as proposed
in [57]. Another idea is to limit the integration area around the point of the load
application and could be the topic of future research.

4.2.3. Circular plates
In this section, fully clamped and simply supported versions of a uniformly

load circular plate of radius Ro = 1 m are investigated. Analytical solutions can
be found in [44], and the deflection at a distanceR from the center for the clamped
case reads

u3(R) =
p3

64D

(
R2
o −R2

)2
, (75)

whereas for the simply-supported circular plate

u3(R) =
p3R

4
o

64D

(
R4

R4
o

− 2
3 + ν

1 + ν

R2

R2
o

+
5 + ν

1 + ν

)
. (76)

The mapping is such that each edge of the parameter space corresponds to a quar-
ter of circle, resulting to four singular points in the isogeometric mapping at the
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Figure 7: Relative L2-error versus normalized mesh size h/h0 for a SSSS plate with a point load
in its middle (a), and a SSGG plate with a point load at the GG corner (b).

parametric space corners [58]. Convergence plots are shown in Figs. 8a-b and
convergence orders are found in good agreement with estimated ones (r = ∞),
validating the collocation strategy, even in the presence of singular points, as al-
ready illustrated in [38].

4.2.4. Annular plates
Analytical solutions for an annular plate with a simply-supported outer edge

and a free inner one are also available in [44]. With Ro = 1 m and Ri = 0.5 m
denoting the outer and inner radius, respectively, the deflection for an annular
plate under a constant linear force (pΓ

3 = 1 Nm−1) applied at the inner edge is
given by

u3(R) =
pΓ

3R
2
oRi

4D

((
1− R2

R2
o

)(
3 + ν

2(1 + ν)
− R2

i

R2
o −R2

i

ln
Ri

Ro

)
+
R2

R2
o

ln
R

Ro

+
2R2

i

R2
o −R2

i

1 + ν

1− ν ln
Ri

Ro

ln
R

Ro

)
,

(77)

whereas the deflection of the same plate under a distributed moment cΓ = 1 Nm/m
prescribed at the inner edge reads

u3(R) =
cΓR2

i

D(R2
o −R2

i )

(
R2 −R2

o

2(1 + ν)
+

R2
o

1− ν ln
R

Ro

)
. (78)
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Figure 8: Relative L2-error versus normalized mesh size h/h0 for a uniformly loaded clamped (a)
or simply-supported (b) circular plate, and for an annular plate simply supported at the outer edge,
and free with a prescribed force (c) or moment (d) at the inner edge.

Taking advantage of symmetry, the model is restricted to one quarter of the an-
nulus. Note that for the annular plate under a constant linear force, the solution
has to be computed a posteriori, as detailed in Section 4.2.2. Convergence orders
are found in good agreement with the a-priori estimated ones considering r =∞
(Figs. 8c-d), except for high values of p, which can be the topic of future research.

4.3. A non-uniformly curved shell
In this example, the objective is to validate the formulation for non-uniformly

curved geometries. The geometry is illustrated in Fig. 9 and it is constructed from
the Coons patch of four C3-continuous B-spline curves, all based on the follow-
ing 2D B-spline: knot vector {0 0 0 0 0 1 1 1 1 1}, control points { {0, 0}
{L/6,−L/2} {L/2, 0} {5L/6, L/2} {L, 0} }, with L = 1 m. All sides are
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Figure 9: Component in the z direction of the displacement field of the non-uniformly curved shell
of thickness 5 mm (a,b) and 0.1 mm (c,d,e), computed for IGA-G (a,c) and IGA-C (b,d,e) with
p = 6, h0/h = 26 + 1 (a-d) and h0/h = 28 + 1 (e).

clamped. The shell thickness is t = 5 mm, the Young modulus is E = 200 GPa,
and the Poisson ratio is ν = 0.3. The shell is loaded by a uniform pressure
p3 = 1× 105 Nm−2.

The vertical displacement is reported for both IGA-G (Fig. 9a) and IGA-C
(Fig. 9b) based on the same discretization, and they are found visually in agree-
ment. Result validations are completed by a convergence analysis, and since no
analytical solution is available for this problem, a reference is generated using
IGA-G with a sufficiently fine mesh (h0/h = 27 + 1) and shape functions of de-
gree p = 7. Convergence plots for the IGA-G and IGA-C methods provided in
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Figure 10: Relative L2-error versus normalized mesh size h/h0 (a) and versus computation time
(b) of the non-uniformly curved shell of thickness 5 mm. Results obtained with an Intel Core i7
4720HQ and taking advantage of sparse matrices.

Fig. 10a show that both methods converge, validating the implementation. Note
that for IGA-C, the convergence is better for the even degrees than for the odd
ones, but no proper explanation has been found yet.

Concerning the computation time, (Fig. 10b), the collocation method is about
one order of magnitude faster than the Galerkin one for this application.

To complete this case study, the same problem with a smaller thickness (t =
0.1 mm) has been tested with p = 6 and h0/h = 26 + 1. While the solution with
IGA-G seems realistic (Fig. 9c), spurious oscillations (large peaks) are observed
in the case of IGA-C (Fig. 9d). Note that if the mesh is refined (p = 6 and
h0/h = 28 + 1), the correct solution is obtained (Fig. 9e), such that a possible
explanation could be membrane locking, as observed in [59].

4.4. Scordelis-Lo roof
In this example, the Scordelis-Lo roof [10, 16, 17, 19, 20] is investigated,

demonstrating the application of the collocation method to a curved geometry
with Neumann boundary conditions. The Scordelis-Lo roof is an 80◦ cylinder
section of length L = 50 m and radius R = 25 m, loaded by a uniform body force
of −90 Nm−2 along the vertical direction (z axis, see Fig. 11). The thickness is
t = 0.25 m, the Young modulus is E = 432 MPa, and the Poisson ratio is ν = 0.

The vertical deflection field for IGA-C is reported in Fig. 11. Contrary to
previous works on collocation where Neumann boundary conditions are investi-
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Figure 11: Component in the z direction of the displacement field of the Scordelis-Lo roof, com-
puted with the IGA-C with p = 6 and h0/h = 26 + 1.

gated, no oscillation on the displacement field is observed, avoiding the use of
the hybrid collocation-Galerkin method [23, 24]. The convergence curves of the
relative displacement error at the mid-span of the free edge (using as reference
−0.300592457 m [20]) are reported in Fig. 12a, and both discretization methods
are found to converge. Moreover, while the error in terms of the computation
time seems to be optimal with p = 4 for IGA-G, for IGA-C, this order is much
higher and is around p = 10 (Fig. 12b). However, contrary to the previous ex-
ample IGA-C is no more attractive in terms of computation cost, except if really
accurate results are required.

4.5. The pinched cylinder
In this example, the pinched cylinder [10, 12, 16, 17] is investigated, demon-

strating the application of the collocation method to a curved geometry with point
loads. The pinched cylinder is supported by rigid diaphragms at the extremities
and is loaded by opposite radial concentrated forces of magnitude P = −1 N at
its mid-span. The cylinder has a section of length L = 600 mm and radius R =
300 mm, the thickness is t = 3 mm, the Young modulus is E = 3000000 Nmm−2,
and the Poisson ratio is ν = 0.3.

To illustrate the computation cost differences between a concentrated force
applied inside the span and at its corner, the symmetries of the problem are used
to generate two models. One made of one half of the full cylinder with the point
force located at its mid-span, and one modeled by an eighth of the full cylinder
with the force at one of its corner (see Fig. 13). Note that for the “half” model,
the half circle curve is generated from a cubic single NURBS patch defined by the
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Figure 12: Relative error at the mid-span versus normalized mesh size h/h0 (a) and versus com-
putation time (b) of the Scordelis-Lo roof. Results obtained with an Intel Core i7 4720HQ and
taking advantage of sparse matrices.
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Figure 13: Radial displacement field scaled by a factor 5× 106 of the pinched cylinder modeling
only its half (a) and its eighth (b), computed with the IGA-C with p = 6 and h0/h = 26 + 1.

control points {{0,−R}, {2R,−R}, {2R,R}, {0, R}} and the weights {1, 1/3,
1/3, 1}.

The convergence curves of the relative displacement error at the point load
are reported in Figs. 14a and 14c for the half and the eighth models, respectively.
As a reference, ur = 1.8248 × 10−5 mm has been initially used in the literature
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Figure 14: Relative error at the point load versus normalized mesh size h/h0 (a,c) and versus
computation time (b,d) of the half (a,b) and the eighth (c,d) pinched cylinder. Results obtained
with an Intel Core i7 4720HQ and taking advantage of sparse matrices. Note that for (a-b), odd
NURBS degrees are not considered for IGA-C, since it has been assumed in Section 4.2.2 that a
collocation point has to be present at the point force location, which is not the case with CSP and
a regular mesh.

[10], but it is shown in [12] that a better estimation is ur = 1.82715797 × 10−5

mm. However, as stressed in [12], this last value results from an infinite series
that converge in theory but not numerically due to the Gibbs effect [60]. For this
reason, we use here a value directly computed with IGA-G, p = 7 and h0/h =
27 + 1 which is ur = 1.828140× 10−5 mm.

In Fig. 14, all the curves are found to converge but better results are obtained
when the load is applied directly at the corner, since at that point, the mapping is
interpolatory.
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For the computation time, while the use of IGA-C is competitive with respect
to IGA-G when the load is located in the middle of the mid-span (Fig. 14b), IGA-
C turns out to be more than one order of magnitude slower than IGA-G when the
load is at the corner. This is explained by the strategy used to solve this problem
which requires the integration of the fourth-order problem (Eq. (74)), combining
the disadvantage of both the Galerkin and the collocation methods. More efficient
solutions could be the topic of further research.

5. Conclusions

We proposed the isogeometric collocation of Kirchhoff-Love shells under the
assumption of small deformations. This method is valid for all possible combina-
tions of adjacent edge boundary conditions, after the implementation of priority
and averaging rules based on the boundary types. Greville and alternative super-
convergent points are used for NURBS basis of even and odd degrees, respec-
tively. The convergence orders in the L2-error norm are found to be in agreement
with a-priori error estimates.

Despite a higher degree of complexity of the collocation method, compu-
tational gains may prove very attractive for some specific Kirchhoff-Love shell
problems, with respect to the classical Galerkin approach and its costly numerical
integration steps. However, we believe that taking advantage of the most recent
improvements in reduced quadrature rules would make the Galerkin method com-
putationally more attractive [61–65].
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