
Efficient Functional Reactive Programming
through Incremental Behaviors

Bob Reynders and Dominique Devriese

imec - DistriNet, KU Leuven
{firstname.lastname}@cs.kuleuven.be

Abstract. Many types of software are inherently event-driven ranging
from web applications to embedded devices and traditionally, such ap-
plications are implemented using imperative callbacks. An alternative
approach to writing such programs is functional reactive programming
(FRP). FRP offers abstractions to make event-driven programming con-
venient, safe and composable, but they come at a price. FRP behaviors
cannot efficiently deal with larger, incrementally constructed values such
as a collection of messages or a list of connected devices. Since these
situations occur naturally, it hinders the use of FRP. We report on a
new FRP primitive: ‘incremental behavior’. We show that the semantics
fit within existing FRP semantics and that their API can be used as a
foundation for more ad-hoc solutions, such as incremental collections and
discrete behaviors. Finally, we present benchmarks that demonstrate the
advantages of incremental behaviors in terms of reduced computation
time and bandwidth.

1 Introduction

Event-driven applications are common in several domains. Traditionally, such ap-
plications are implemented using imperative callbacks. An alternative approach
to writing such programs is functional reactive programming (FRP). It offers
abstractions to make event-driven programming convenient, safe and compos-
able. It has been successfully applied to both GUI programming [5], embedded
devices [23], etc.

FRP semantics define two primitives: events (a stream of values at discrete
times) and behaviors (time-varying values). Let us introduce these with a small
example, an FRP equivalent for the common case of using event handlers to
increase a mutable sum:
val ints: Event[Int] = ... // 3, 5, 2, ...

val sum: Behavior[Int] = ints.fold†(0) { (x, y)⇒ x + y } // 0, 3, 8, 10, ...

We assume the existence of ints, an event that contains integers. We use the
fold† method on events to build up state.1 It takes an initial value (0) and an

1 fold† is marked with † for clarity since a variant named fold is introduced in
Section 2.

2 Bob Reynders and Dominique Devriese

accumulation function ((x, y) ⇒ x + y) as arguments and builds a behavior.
The event’s values are accumulated starting with the initial value.

An FRP application is constructed by composing behaviors and events with a
set of FRP operations. It typically defines a main behavior to describe the entire
application, for example Behavior[UI] as the main value for a GUI application.

While FRP is nice in theory, there are shortcomings that crop up when you
use it in practice. This paper focuses on one of those issues.

Computational Overhead. A practical problem with FRP is that behaviors
containing large incrementally constructed values often behave suboptimally, for
example a chat view:
val msgs: Event[Message] = ...

val chat: Behavior[List[Message]] = msgs.fold†(List.empty[Message]) { (lst, m)⇒ m :: lst }
val chatView: Behavior[List[String]] = chat.map(_.map(_.pretty))

From an event stream of messages (msgs) we accumulate the state of the program
(chat). All the messages are concatenated into a list behavior. A view of the state
is generated through map by pretty printing all elements.

The problem here is that FRP only keeps track of the complete values within
behaviors. It does not keep track of how it changes. In the example above, this
means that a change to chat (through msgs) is propagated to chatView as ‘there is
a new list’. The entire list in the view is then re-mapped every time a new message
is added. This makes the occurrence of a new message take O(n) processing time
instead of a possible O(1).

This is especially problematic since maintaining large collections in behaviors
is common in lots of FRP applications: chat applications have a list of messages,
social networks have news feeds, sensor networks have lists of nodes, etc. In
practice this means that FRP programmers work around the problem by using
events to model concepts that would fit a behavior better, such as representing
the chat view not as a behavior, but as an event of added strings.

Bandwidth Overhead. Computational complexity is not the only area in
which standard behaviors do not perform optimally. Bandwidth intensive oper-
ations such as saving a behavior’s history to disk (for logging or debugging pur-
poses) or sending its data across the network, are directly impacted by knowing
how behaviors change. The multi-tier FRP-based language as proposed in [19]
is a typical example where bandwidth matters. To demonstrate this problem in
our chat example, we extend it to continuously broadcast to clients:
def broadcastToClients(b: Behavior[List[String]]) = ...
broadcastToClients(chatView)

In this case, there is no way to efficiently implement broadcastToClients

since behaviors cannot express when or how values update. Its only options are to
poll for changes followed by either recomputing and transmitting the differences,
or by sending the entire new list. In practice this often means that functions
similar to broadcastToClients are modeled with less appropriate abstractions
such as events:

Incremental Behaviors 3

def broadcastToClients(init: List[String], changes: Event[List[String]])

In addition to reducing computational and bandwidth overhead there are
other reasons to express how behaviors change. For example, in an FRP Html
library the interface may be modeled as a Behavior[Element]. Compared to
completely rewriting the DOM, it would be much more efficient to apply only
the changes of such a behavior.

1.1 Contributions

To summarize, we make the following contributions:

– We define incremental behaviors and their API and show how they fit within
existing FRP semantics.

– We show how our approach is more general than previous work such as incre-
mental collections [14, 17] and discrete behaviors [15, 20, 3] by implementing
them into our framework. Additionally, we show how a joint API between
discrete and incremental behaviors based on manually computing differences
can form a middle ground between them.

– We present an implementation of incremental behaviors and incremental
collections as a Scala library.2 We demonstrate the advantages of incremental
behaviors through a performance analysis of our implementation. In the
analysis we compare incremental behavior’s computational and bandwidth
overhead with their non-incremental counterpart.

We start by introducing FRP and incremental behaviors in Section 2, and
we show how incremental collections and discrete behaviors can be implemented
on top of their API in Section 3. In Section 4, we evaluate their performance.
Section 5 discusses incremental behaviors with respect to higher-order FRP se-
mantics. We highlight related work in Section 6 and conclude with future work
in Section 7.

In addition to our own implementation, we also found an independent im-
plementation of similar ideas in the grapefruit-frp Haskell library [12] (their
incremental signals seem similar to our incremental behaviors). This implemen-
tation has not been presented in the literature and lacks some of the features
described here, but we consider it as additional evidence of the value of incre-
mental behaviors.

2 Incremental Behaviors

We present incremental behaviors, an additional primitive for functional reactive
programming (FRP). All code examples use our working proof-of-concept Scala
implementation and we encourage the reader to play around with it.2 As a small
Scala introduction, in this paper it is sufficient to think of a trait as a Java-like
2 Url omitted to stay anonymous, an archive of the project has been added to the
submission.

4 Bob Reynders and Dominique Devriese

trait Event[A] {
def map[B](f: A⇒ B): Event[B]
def filter(p: A⇒ Boolean): Event[A]
def merge(e: Event[A])(f: (A, A)⇒ A): Event[A]

def fold†[B](init: B)(accum: (B, A)⇒ B): Behavior[B]
}

trait Behavior[A] {
def map2[B, C](b: Behavior[B])(f: (A, B)⇒ C): Behavior[C]
def map[B](f: A⇒ B): Behavior[B]
def snapshot[B, C](e: Event[B])(f: (A, B)⇒ C): Event[C]

}
object Behavior { def constant[A]: Behavior[A] }

Fig. 1: Event & Behavior API

interface, object Foo as a collection of static methods for Foo and the case

class A(x: Int) as a data type with field x. Case classes can get constructed
(like regular classes) through either new A(0) or just A(0).

2.1 Functional Reactive Programming: Event & Behavior

We begin with a summary of FRP and its semantics. We focus on first-order
FRP semantics that are very similar to the ones defined in [11, 3]. For readers
interested in higher-order FRP semantics we refer to Section 5. Let us go over
the two main FRP primitives, event and behavior:

Events are sets of discrete values:

JEventτ K = {e ∈ P(Time × JτK) | ∀(t , v), (t ′, v ′) ∈ e. t = t ′ ⇒ v = v ′}

In the denotational semantics above JαK is the ‘denotation’ or meaning of α,
{e ∈ P(α) | P} is the set of elements e from the powerset of α for which P holds.
Events are sets of (Time, JτK) tuples that do not contain values with duplicate
Time components.

Typical examples of these discrete values are mouse clicks or button presses.
There are three core operations: map, filter and merge as shown in fig. 1. We do
not discuss map or filter since they behave just like their well-known collection
counterparts. merge takes two events and returns an event that fires whenever one
of the original events fire. When both fire at the same time, the given function
combines both values into a single new one.

Behaviors can be thought of as values that can vary continuously over time.
Semantically, behaviors of type τ are regular functions from Time to τ :

JBehaviorτ K = {b ∈ Time → JτK}

An example of a behavior is the cursor’s position. A mouse is always some-
where but its position may change continuously as you move your hand. The two

Incremental Behaviors 5

case class Entry(title: String, content: String) { val pretty = s"$title\n$content" }

val submissionE: Event[Entry] = ...

val todoListB: Behavior[List[Message]] =

submissionE.fold†(List.empty) { (lst, msg)⇒ msg :: lst }
val todoListView: Behavior[String] = todoListB.map(_.map(_.pretty).mkString)

def replicate(b: Behavior[String]) = ...
replicate(todoListView)

Fig. 2: FRP Todo List Example

core operations on behaviors are: map2 and constant as shown in fig. 1. constant
creates a behavior that never changes its value. map2 has the ability to combine
two behaviors with a function. Other convenience functions such as map can be
defined in terms of constant and map2.

Behaviors ⇔ Events. Converting from events to behaviors and vice versa is
done through two other operations: Event.fold†3 and Behavior.snapshot, also
shown in fig. 1. Folding an event is similar to folding a list, a starting value and an
accumulation function is given to compute a new value whenever a new element
arises. Its result is a behavior representing the accumulation. Snapshotting a
behavior with an event inspects the value of a behavior at the rate of that event.
The behavior is sampled for every change in the event by applying a combination
function to the event value and the behavior’s value at the time.

The FRP semantics that we just showed make a couple of design decisions
that can differ from others: it is first-order instead of higher-order (see Section 5),
it allows only one event value at a time and behaviors are defined in continuous
time opposed to discrete time (see discrete behaviors in Section 3.2).

2.2 Motivating Example: Todo List

An example FRP program using our Scala library is shown in fig. 2. We imple-
ment a simple todo list. We leave out most of the code and focus only on the
bits that are important to this paper. The user’s intent to submit his message
is modeled by the submissionE event. The state of the todo application itself is
created by accumulating all the submissions into a list behavior (todoListB).

We create todoListView, a string representation of all the entries in the list
by first turning the list of entries into a pretty printed list of strings (_.map(_.
pretty)) and then concatenating all elements with .mkString.

Without going into details of its implementation, we assume the replicate

function that takes a behavior and replicates it to a different application, such
as in client/server applications.
3 Note that to have a definable semantics for fold an extra restriction on events (which
we omitted for brevity) is required. The occurrences in an event must be ‘uniform
discrete’, that is, the amount of events before any time t must be finite.

6 Bob Reynders and Dominique Devriese

This example demonstrates the computation and bandwidth issues for large
values that we discussed before. Each new submission accumulates into the appli-
cation’s state (todoListB), and the mapping to todoListView always recomputes
the entire pretty printed string since todoListB does not contain information
about how it changes. Furthermore, the replicate function is impossible to
implement efficiently since the newly created todoListView behavior does not
contain information about how it changes either. persist has to detect changes
and either recompute the differences between two behavior values, or send the
entire behavior’s state.

Depending on the amount of submissions, both problems can impact the
user experience. A programmer has to either accept an underperforming appli-
cation or remodel his code with less appropriate abstractions such as events as
a workaround.

2.3 Incremental Behaviors

The purpose of our new FRP primitive, incremental behaviors, is to capture
when behaviors change and how they change. Semantically we interpret them as
a triple of an event (e), an initial value (v0) and an accumulation function (f):

JIBehaviorτ,δK = {(e, v0, f) ∈ JEventδK× JτK× (JτK× JδK→ JτK)}

An incremental behavior has two type parameters, τ denotes the behavior’s
value while δ is the type of its increments. The event component in the semantics
refers to the increment responsible for the change in a behavior’s value. The type
signature of the fold† operation on events in fig. 1 is the motivation behind the
semantics. From now on we replace fold† (which creates Behaviors) with fold

to create incremental behaviors:
trait Event {
...
def fold[B](init: B)(accum: (B, A)⇒ B): IBehavior[B]

}

Generally, an incremental behavior is a behavior that has been, or could have
been, defined using fold. In other words, it can be seen as a reified fold. To
work with incremental behaviors we provide the following functions: constant,
incMap, incMap2, snapshot and toBehavior, shown below:
trait OneOrBoth[+A, +B]

case class Left[A](l: A) extends OneOrBoth[A, Nothing]
case class Right[B](r: B) extends OneOrBoth[Nothing, B]
case class Both[A, B](l: A, r: B) extends OneOrBoth[A, B]

object IBehavior {
def constant[A, DA](init: A): IBehavior[A, DA]

}
trait IBehavior[A, DA] {
def deltas: Event[DA]
def incMap[B, DB](valueFun: A⇒ B)(deltaFun: (A, DA)⇒ DB)

(accumulator: (B, DB)⇒ B): IBehavior[B, DB]
def incMap2[B, DB, C, DC](b: IBehavior[B, DB])(valueFun: (A, B)⇒ C)

(deltaFun: (A, B, OneOrBoth[DA, DB])⇒ Option[DC])

Incremental Behaviors 7

(accumulator: (C, DC)⇒ C): IBehavior[C, DC]
def snapshot[B, C](ev: Event[B])(f: (A, B)⇒ C): Event[C]
def toBehavior: Behavior[A]

}

constant and snapshot work exactly as they do on regular behaviors by cre-
ating constants and allowing behaviors to be sampled at the rate of events. The
chosen semantics for incremental behaviors make their semantic implementation
trivial, but the complexity of folding events is moved to toBehavior.

It executes the fold and turns an incremental behavior into a continuous one
(Time → τ):

toBehavior : IBehaviorτ,δ → Behaviorτ

JtoBehaviorK((e, v0, f)) = λt . f (f (...(f (v0, d1), ...), dn−1)dn)

if (t1 < ... < tn ≤ t < tn+1 < ...) ∧ {(t1, d1), ..., (tn, dn), (tn+1, dn+1)...} = e

toBehavior defines a behavior that, upon evaluation at a time t , returns the
accumulation (using f) of all event values up to time t , starting from the initial
value (v0).4 Note that while toBehavior is an explicit method in this paper,
a subclass relation between incremental behaviors and behaviors is completely
reasonable.

incMap has the same purpose as a behavior’s map, that is, provide a way to
apply a function over the data. In the case of incremental behaviors we require
three things. (1) f is the function that maps the old value of an incremental
behavior to the new. (2) fδ maps old deltas to new deltas, and (3) accumulator
tells us how to put new values and new deltas back together. Note that we expect
the programmer to take care of a proper relation between the old accumulator
accold, fδ, f and the new accumulator accnew:

f (accold(α, δα)) = accnew(f (α), fδ(δα)) ∀α ∈ A.∀δα ∈ DA

incMap2 is also more complex than a behavior’s map2. But its purpose is also
the same, that is, provide a way to combine two behaviors into one. Its main
parameters are a second behavior and a combination function, but two addi-
tional parameters are required to produce an incremental behavior. The first,
deltaFun, takes two values of the incoming behaviors as well as a value of type
OneOrBoth[DA, DB]. This type contains either an increment of the first or the
second behavior (of type DA resp. DB) or both. deltaFun’s task is to compute an
increment of type DC that represents the change (if any) that the given changes
cause in the value of the resulting behavior. The final parameter accumulator

tells us how to apply the new type of increments to previous values, it is the fold
function for the new incremental behavior.

Fixing Todo List. We fix the overhead issues that were present in the previous
example from fig. 2 by using incremental behaviors in fig. 3. We omit the creation
of submissionE since it is identical to the implementation in fig. 2.
4 This construction assumes that the event fires only a finite amount of times before
any fixed time t (a property we call uniform discreteness).

8 Bob Reynders and Dominique Devriese

val todoListIB: IBehavior[List[Entry], Entry] =
submissionE.fold(List.empty) { (list, entry)⇒ entry :: list }

val todoListViewIB: IBehavior[String, String] =
todoListIB.incMap { _.map(_.pretty).mkString } { _.pretty }

{ (accStr, dStr)⇒ dStr + "\n" + accStr }
def replicate(ib: IBehavior[String, String]) = ...
replicate(todoListViewIB)

Fig. 3: FRP Incremental Todo List Example

We create an incremental todo list with incremental state by using fold to
create todoListIB. In this example we create an incremental version of the pretty
printed todo list (todoListViewIB) by using incMap, the incremental version of
map. It takes three arguments. The first defines how to create a pretty printed
string from a list of entries by mapping it: _.map(_.pretty).mkString. The sec-
ond defines how the deltas should change by pretty printing the old delta: _.
pretty. The final argument tells us how to combine our new values with the new
deltas through string concatenation: (accStr, dStr) ⇒ dStr + "n" + accStr.

The result is a version of the pretty printed todo list that is synchronized with
the actual state through a time complexity of O(1) instead of O(n).5 Similarly,
replicate can now be implemented efficiently since it has access to a behavior’s
fine-grained change. It can directly send just a trace of its changes.

3 Incremental Behaviors as a Foundation

The advantages of incremental behaviors are apparent with performance im-
provements and the ability to model with behaviors where they are appropriate,
such as using a behavior for the string representation of our todo list. However,
they came at a cost, the API of incremental behaviors is more complex than their
non-incremental counterparts. While the general incremental behavior API offers
the most freedom, its complexity can be off-putting.

Other work on different FRP primitives such as incremental collections [14,
17] and discrete behaviors [15, 20, 3] provide similar benefits in certain cases while
having a much simpler API. After our general proposal we now demonstrate
that these other approaches can be seen as specialized versions of incremental
behaviors by implementing them on top of our design.

3.1 Incremental Collections

Compared to regular behaviors, it is harder to create composable incremental
behaviors. Let us use todoListIB from fig. 3 as an example. We create a function
toView that takes an incremental behavior of entries and returns a view such as
todoListViewIB:
5 To keep the code concise we ignore the inefficient string operations here.

Incremental Behaviors 9

trait RSeq[A] {
def map[B](f: A⇒ B): RSeq[B]
def filter(f: A⇒ Boolean): RSeq[A]
def foldUndo[B](init: B)(op: (B, A)⇒ B)(undo: (B, A)⇒ B): Behavior[B]
def flatMap[B](f: A⇒ RSeq[B]): RSeq[B]

}

Fig. 4: Reactive Sequence Core API

def toView(ib: IBehavior[String, String]) =
ib.incMap { _.map(_.pretty).mkString } { _.pretty }

{ (accStr, dStr)⇒ dStr + "\n" + accStr }
val todoListIBF: IBehavior[List[Entry], Entry] =
submissionE.fold(List.empty) { (list, e)⇒ if (e.title.contains("FRP")) e :: list

else list }

Using toView on todoListIB creates an incremental behavior identical to the
previously defined todoListViewIB. We define a second version of todoListIB

that filters out entries that do not contain FRP within their title (todoListIBF).
Using toView on todoListIBF instead does not create a properly pretty-printed
filtered to-do list version. The problem here is that, although todoListIBF also
uses Entry as the type of deltas, toView fails to take into account the different
meaning of the delta type: a delta of type Entry is unconditionally added to the
list in todoListIB, but only under a certain condition in todoListIBF. This ex-
ample illustrates a general issue with incremental behaviors: functions operating
on them are now not just coupled to the representation of data but also to the
representation of deltas.

However, for standard types with standard APIs (like collections), we can
mitigate this problem by defining a standard type of deltas (with a standard
meaning). Both [14] and [17] propose incremental collections in a reactive pro-
gramming environment to get more efficient collection operations without adding
the API complexity that incremental behaviors bring. For this section, we focus
on [14]’s abstraction: an incremental sequence (RSeq[A]) and discuss how it can
be implemented on top of incremental behaviors. From a high level you can think
of it as an efficient version of Behavior[Seq[A]]. Its usage and API is similar to
collection libraries as shown in fig. 4.

A commonly used operation is map, which for reactive sequences returns a new
reactive sequence. The mapped RSeq does not remap the entire list upon change,
instead modifications to the list are processed on their own. Elements that should
be inserted are mapped separately and their results are inserted directly. The
same goes for deletions, which are propagated to the mapped list and directly
remove an element. Other common collection operations work similarly.

We implement reactive sequences as a special kind of incremental behav-
ior: RSeq[A] ' IBehavior[Vector[A], SeqDelta[A]]. Our Scala prototype im-
plementation of incremental behaviors also contains a collection library. It im-
plements incremental collections by using a standard delta that models common
operations such as addition or deletion. Incremental collection APIs are imple-

10 Bob Reynders and Dominique Devriese

type IVector[A] = IBehavior[Vector[A], SeqDelta[A]]

sealed trait SeqDelta[+A] {
def apply(v: Vector[A]): Vector[A]

}
case class Insert[A](element: A, index: Int) extends SeqDelta[A]
case class Remove[A](element: A) extends SeqDelta[A]
case class Update[A](element: A, index: Int) extends SeqDelta[A]
case class Combined[A](d1: SeqDelta[A], d2: SeqDelta[A]) extends SeqDelta[A]

def updated[A](iv: IVector[A], updates: Event[(A, Int)]): IVector[A]
def insert[A](iv: IVector[A], insertions: Event[(A, Int)]): IVector[A]
def remove[A](iv: IVector[A], deletions: Event[Int]): IVector[A]

Fig. 5: Reactive Sequence Implementation

def mapDelta[A, B](d: SeqDelta[A], f: A⇒ B): SeqDelta[B] =
d match {
case Insert(element, i) ⇒ Insert(f(element), i)
case Remove(element) ⇒ Remove(f(element))
case Update(element, i) ⇒ Update(f(element), i)
case Combined(d1, d2) ⇒ Combined(mapDelta(d1, f), mapDelta(d2, f))

}
def map[A, B](rseq: IVector[A])(f: A⇒ B): IVector[B] =
rseq.incMap(v⇒ v.map(f))(d⇒ mapDelta(d, f)) {
(acc: B, delta: SeqDelta[A])⇒ delta.apply(acc)

}

Fig. 6: Map Implementation

mented through incremental behavior operations such as incMap2. It plugs into
the Scala standard library and uses the appropriate collection abstractions such
as traversable and sequence to provide a generic incremental API for the collec-
tion library.

In fig. 5, we demonstrate the model of such an incremental collection. Do
keep in mind that to avoid Scala-specific concepts we focus on a reactive se-
quence implementation for just the vector and that an implementation for generic
traversables or sequences is more complex.

In short, the incremental vector that we build is a vector data structure that
efficiently handles incremental changes based on incremental behaviors. As a
first step we model the different types of incremental changes (SeqDeltas). Each
increment contains a method apply that defines the application of the increment
to a vector, for brevity we assume its implementation. The different types of
increments that we support are: an insertion (Insert), a removal (Remove), an
in-place update (Update) or a combination of other deltas (Combined). Insertions
simply contain the element to be inserted at a specific index, removals contain
the element that should be removed and updates contain an element that should
replace an element on a specific index.

They correspond to the three functions that are available on the incremental
vector: updated, insert and remove as shown in fig. 5.

Incremental Behaviors 11

Using the model from fig. 5, we implement a simple version of an incremental
map in fig. 6. Its created by using the incremental behavior’s incMap function.
The first argument provides a way to transform the initial vector to an initial
result vector. In our case this is a simple map: v ⇒ v.map(f). The second argu-
ment contains the transformation on the increments. For this we defined a helper
function that applies the function f and use it accordingly:d ⇒ mapDelta(d, f).
The final argument defines how new deltas are applied to new values, in our case
it remains the assumed apply method on SeqDelta.

For a discussion about higher order APIs on reactive sequences such as
flatMap we refer to Section 5.

3.2 Discrete Behaviors

Continuous behaviors change unpredictably and continuously and their seman-
tics are simple because their meaning are functions of time (Time → τ). But, in
practice, discrete behaviors are often used [15, 20, 3]. The semantics provide less
freedom but they express discrete changes. Essentially, they capture and expose
when behaviors change. They are represented as an initial value and a stream of
value changes:

JDBehaviorτ K = {(e, v0) ∈ JEventτ K× JτK}

Other than exposing the time at which they change (def changes: Event[A]),
their API is identical to that of continuous behaviors.

It turns out that discrete behaviors can be implemented as a special case
of incremental behaviors (DBehavior[A] ' IBehavior[A, A]) with a trivial im-
plementation for the accumulator. Their simple behavior API is possible since
the accumulator never changes and both types are the same, for example an
implementation of map:
type DBehavior[A] = IBehavior[A, A]
def accumulator[A](oldV: A, newV: A) = newV
def map[A, B](b: DBehavior[A])(f: A⇒ B): DBehavior[B] = b.incMap(f)(f)(accumulator)

Incremental Behaviors through Computing Differences. There are situ-
ations where bandwidth is costly such as saving a behavior’s history to disk (for
logging or debugging) or sending its data across the network. When time com-
plexity is of less concern, the API complexity of incremental methods (such as
incMap2) makes them less desirable, regardless of their computational benefits.

To accommodate these scenarios we propose a way to obtain incremental
behaviors through the simpler discrete behaviors:
trait DBehavior[A] {
def toIBehavior[DA](diff: (A, A)⇒ DA)(patch: (A, DA)⇒ A): IBehavior[A, DA]
def toIBehaviorGeneric[DA](implicit d: Delta[A, DA]): IBehavior[A, DA]

}

We recover increments between values by computing their differences. We require
diff and patch functions to be defined with the following relation:

12 Bob Reynders and Dominique Devriese

patch(v1 , diff (v2 , v1)) = v2 ∀v1 , v2 ∈ A. diff is used to compute differences
that work as deltas and patch completes the incremental behavior by defining
how they fold back into a value. In practice these two functions can often be
derived with generic programming approaches. For example, there is a Scala
library6 which could be integrated; in this case the user would see an API like
DBehavior.toIBehaviorGeneric. Using it is easy, for example, converting rates:
val rates: DBehavior[Set[Rate]] = ...
rates.toIBehaviorGeneric

4 Evaluation

Accompanying our proposed incremental behavior API is a prototype implemen-
tation of our ideas. We evaluate this prototype through some microbenchmarks
to confirm our expected results. Note that neither our FRP implementation nor
our incremental collection implementation were built with performance in mind
and as such, overhead is not as low as it could be.7

Computational Performance. In fig. 7 we demonstrate the results regarding
the computational performance of incremental behaviors. This microbenchmark
is similar to the todo list example of fig. 3. We start with an initial vector of a
certain amount of integers (plotted on the x-axis) and map them with a func-
tion that generates 10 random numbers. Afterwards, we update a single value
in the collection and propagate the change to the mapped collection (time to
update plotted on the y-axis). As a base case we use a regular push-based (dis-
crete) behavior that contains a Scala vector from the collection library (marked
DBehavior[Vector[Int]]). We compare the base case to three different incre-
mental behaviors. First, a hand coded implementation using the fold primi-
tive, exactly as we did in the todo list example from fig. 3 (marked IBehavior[

Vector[Int], Int]). Second, an implementation based on the incremental col-
lection abstraction from Section 3.1 (marked ICollection[Int, Vector[Int]]).
Finally, an implementation which starts from the base case vector and per-
forms a naive diffing comparing all elements of the vectors in order to convert
a discrete behavior into an incremental one as discussed in section 3.2 (marked
DBehavior[Vector[Int]] ⇒ ICollection[Int, Vector[Int]]).

The graphs show that, as expected, the naive approach of the regular behavior
is the slowest. It remaps every element in the vector whenever a change is made
since it does not propagate what changed. The hand coded example has the best
performance, it is hard-coded to handle only one case, modifying the head of
the collection. It maps the element in isolation and then creates a new modified
Scala vector. Similarly, the incremental collections vector also isolates changes,
6 https://github.com/stacycurl/delta
7 To make our benchmarks as accurate and fair as possible on the JVM, the mea-
surements are results over multiple VM invocations, each prepared with warmup
operations.

Incremental Behaviors 13

20 30 40 50

5

10

vector size

m
s/

10
00

up
da

te
s

DBehavior[Vector[Int]]

IBehavior[Int, Vector[Int]]

ICollection[Int, Vector[Int]]

DBehavior[Vector[Int]] =>
ICollection[Int, Vector[Int]]

Fig. 7: Updating mapped vectors

1 10 100

1,000

10,000

vector size

lo
g

si
ze

/
50

ch
an

ge
s

(b
yt

es
)

DBehavior[Vector[Int]]

IBehavior[Int, Vector[Int]]

ICollection[Int, Vector[Int]]

DBehavior[Vector[Int]] =>
ICollection[Int, Vector[Int]]

Fig. 8: Updating logged vectors

however it has to go through an added abstraction layer that handles other
cases than just changing the head of a collection, this causes a bit of overhead.
Finally, the case of recomputing the differences. Recomputing the differences
trades remapping for a difference algorithm, depending on the algorithm the
outcome may be worth it.

Bandwidth Overhead. In fig. 8 we demonstrate the results of a scenario
where bandwidth matters. The goal of the application is to write a trace to
disk from which all versions of values can be recomputed. This mimics scenarios
where bandwidth is important, such as replicating a behavior’s value across
the internet. Its implementation is similar to the todo list example in fig. 3.
We change one element in the collection several times and after every change
we expect to be able to trace a trail of its value on disk. The most efficient
implementation logs the first value in its entirety and adds differences afterwards.

We test the same four cases as the last benchmark. We can immediately
see that no matter the vector’s size, the incremental implementations remains
constant in storage size since their differences remain identical (1 value change).
Again, there is an overhead for the higher abstractions used. Extra information
regarding the change to the collection is encoded by the incremental collections
vector which implies a larger bandwidth footprint. The hand coded result only
supports the specific case of the benchmark and logs the absolute minimum at the
cost of added programmer complexity. The base case is a naive implementation
that logs the entire vector every time.

14 Bob Reynders and Dominique Devriese

5 Discussion: Higher-Order Incremental Behaviors

In the paper we used first-order FRP instead of higher order FRP. Concretely,
this means that we do not provide APIs that are higher-order in the sense that
they work with events of events or behaviors of behaviors. A typical example is:

def join[A](b: Event[Event[A]]): Event[A]

It takes an event that fires new events and returns an event that dynamically
includes other events.

Higher-order APIs is a tricky subject because the natural semantics for APIs
like join cannot be implemented without storing or being able to recalculate all
previous values of any generated behavior or event that is incorporated into the
network. This implies a very high memory usage, which is known in the FRP
literature as time leaks, see [22] for more details. Various solutions have been
proposed for avoiding time leaks, often based on restricting which Events may
fire from an argument of APIs like join. One particular solution which we like
to highlight is [13], an approach that eliminates such leaks by introducing a new
kind of type-based capability that grants the right to allocate memory.

We do not go into more details on higher-order FRP or the ways to avoid time
leaks, because we believe incremental behaviors are orthogonal to the problem. If
we assume the existence of a naive higher-order flatMap API for standard events
(as used by [7]), then we can implement a higher-order primitive for incremental
behaviors. Concretely, we assume a higher-order API with the following function
that lets us flatten nested events:

def flatMap[A, B](e: Event[A], f: A⇒ Event[B]): Event[B]

In this setting, we can implement a higher-order operation for incremental be-
haviors that looks as follows:

trait IBehavior[A, DA] {
private val initial: A
def incFlatMap[DB, B](fa: A⇒ IBehavior[B, DB])

(fb: (A, DA)⇒ Event[DB])
(accumulator: (B, DB)⇒ B): IBehavior[B, DB] = {

val newDeltas: Event[DB] = this.deltas.flatMap(fb)
val newInitial: B = fa(this.initial).initial
newDeltas.fold(newInitial)(accumulator)

}
}

Similarly to incMap, the first argument maps the old values to the new,
while the last argument redefines the accumulator. But, the second argument
allows new increment events to be inserted (DA ⇒ Event[DB]). In other words,
it enables dynamic insertion of deltas into the incremental behavior. Use of
incFlatMap is only correct if fa’s behavior and fb’s event have the following
relation: ∀a.∀da. fb(a, da) = fa(applyDelta(a, da)).changes

Interestingly, this incFlatMap on incremental behaviors and join on events is
all that is required to implement the missing higher order methods from reactive
sequences in Section 3.1.

Incremental Behaviors 15

6 Related Work

We split our related work section into two categories: (1) functional reactive pro-
gramming and its semantics, and (2) incremental computing, and more specifi-
cally self-adjusting computations (SAC).

Functional reactive programming was first introduced in FRAN [6] to write
composable reactive animations. However, its proposed semantics are inherently
leaky in the higher-order primitives [see 22, sec. 2]. Since then multiple revisions
of the semantics were proposed [see among others, 10, 7, 13, 21, 22].

In contrast, our work focuses on extending the first-order semantics with
support for explicit incremental computations. The incremental behaviors that
we propose are a generalization of patterns that appear in other work like in-
cremental lists [14, 17] or discrete behaviors [15, 20, 3]. An implementation of
incremental behaviors that is, as far as we can tell, close to the semantics pro-
posed in this paper can be found in the grapefruit library [12], but its semantics
are not written down in documentation or an accompanying paper.

Incremental Computation is a way of implementing programs that do not
redo entire calculations after a change in input. We divide this work based on
how much manual work a programmer has to do.

Some approaches based on memoization [18] and self-adjusting computations
(SAC) [1] minimize manual interference by using dependency graphs and propa-
gation algorithms to efficiently react to input changes. In practice, this has sev-
eral similarities with FRP, which is also frequently implemented by propagating
changes through dependency graphs. However, their focus and granularity differ.
SAC focuses on efficiently reacting to small changes in input while FRP focuses
on providing simple denotational semantics for event-driven programs. Our FRP
work with incremental behaviors is a middle ground which allows programmers
to manually express a finer granularity compared to traditional FRP. It allows
incremental computations that use the FRP implementation’s propagation and
dependency tracking to be defined by the user. [4] describes a different approach
to automated incremental computations. They define ILC, a static and extend-
able program-to-program transformation that lifts incremental computations on
first-order programs to incremental computations on higher-order programs.

A different approach to automated solutions are frameworks that help pro-
grammers with writing incremental computations. Instead of trying to automate
the encoding of incremental algorithms it aims to make such computations easier
to write such as the reactive sequences [14]. We discuss two other examples in
detail:

i3QL [16] proposes relational algebra as a suitable API for incremental com-
puting. i3QL operators are a high-level abstraction for incremental computing
implemented on top of a low-level Observable-like change-propagation framework
that supports events for adding, removing and updating values. Incremental be-
haviors are an addition to traditional FRP to further capture when and how

16 Bob Reynders and Dominique Devriese

values change, it’s more akin to the lower-level implementation of i3QL’s propa-
gation framework (which supports ’when’ and ’how’ natively). It would be very
interesting to see to which extent incremental behaviors and FRP can be used
to implement i3QL’s relational algebra operators.

[8] describes a general framework in which incremental changes and their
propagation are made to compose through typeclasses. They define a type class
for changes:
class Change a where
type Value p :: *
($$) :: p -> Value p -> Value p

A change of some type has a value to which it can be applied using the $$

function. Incremental operations can be defined as transformation from one
type to another. A transformation in its simplest form is a pair of two functions:
data Trans p q = Trans (Value p -> Value q) (p -> q)

The similarity between these transformations and our incMap on behaviors is
interesting. incMap takes three functions as arguments, one turns a state A into
another, a change DA into another and finally a function that defines how the
new change and the new state can be combined. This corresponds exactly to the
Trans and Change functionality. Trans defines how to convert both values and
changes from one type to another while Change makes sure that there is a way
to apply changes to a value.

Note that they propose several more complicated versions of Trans, e.g.:
data Trans p q = forall s. Trans (Value p -> (Value q, s)) (p -> s -> (q, s))
data Trans p q = Trans (forall s. Value p -> ST s (Value q, p -> ST s q))

The first provides access to a local pure state. Something that can be emulated
with incMap. The second version provides safe access to local mutable state,
something for which we do not have an alternative. Given the similarites be-
tween the two approaches a logical step for future work seems to incorporate
the typeclass-based framework for incremental computing into the incremental
behavior API which could give us alternative definitions such as:
trait ITBehavior[A: Change] {
def incMap[B: Change](trans: Trans[A, B]): ITBehavior[B]

}

As a final note, Several SAC papers [2, 9] refer to FRP and point out op-
portunities to combine the two, for example, [2] says “Although FRP research
remained largely orthogonal to incremental computation, it may benefit from
incremental computation, because computations performed at consecutive time
steps can be similar.”. Incremental behaviors may be a stepping stone towards a
better integration of incremental computations in FRP.

7 Conclusion & Future Work

Functional Reactive Programming in theory is nice and simple, but in practice
there are some shortcomings that prevent general use. This paper tackles one

Incremental Behaviors 17

such problem, the ability to efficiently deal with large incrementally constructed
values.

We presented incremental behaviors, a new FRP primitive that can express
how and when values change. We show that it can be used as a foundation for
other abstractions and demonstrate that its benefits are noticeable by executing
a performance analysis and comparing it to traditional FRP.

As future work, applying ideas from self-adjusting computations to further
automate the writing of incremental programs sounds promising. An automatic
and efficient replacement to our diff function which converts discrete to incre-
mental behaviors efficiently would be the ideal case.

Acknowledgments. Bob Reynders holds an SB fellowship of the Research
Foundation - Flanders (FWO). Dominique Devriese holds a postdoctoral fellow-
ship of the Research Foundation - Flanders (FWO).

Bibliography

[1] Acar, U.A., Blelloch, G.E., Harper, R.: Adaptive functional programming.
TOPLAS 28(6), 990–1034 (2006)

[2] Acar, U.A., Blume, M., Donham, J.: A Consistent Semantics of Self-
Adjusting Computation. J. Funct. Program. 23(03), 249–292 (2013)

[3] Blackheath, S.: Denotational semantics for Sodium. http://blog.
reactiveprogramming.org/?p=236 (2015)

[4] Cai, Y., Giarrusso, P.G., Rendel, T., Ostermann, K.: A theory of changes for
higher-order languages: Incrementalizing λ-calculi by static differentiation.
In: PLDI. vol. 49, pp. 145–155. ACM

[5] Czaplicki, E., Chong, S.: Asynchronous Functional Reactive Programming
for GUIs. In: PLDI. pp. 411–422. ACM (2013)

[6] Elliott, C., Hudak, P.: Functional Reactive Animation. In: ICFP. pp. 263–
273. ACM (1997)

[7] Elliott, C.M.: Push-pull Functional Reactive Programming. In: Haskell. pp.
25–36. ACM (2009)

[8] Firsov, D., Jeltsch, W.: Purely Functional Incremental Computing. In:
Brazilian Symposium on Programming Languages. pp. 62–77. Springer
(2016)

[9] Hammer, M.A., Dunfield, J., Headley, K., Labich, N., Foster, J.S., Hicks, M.,
Van Horn, D.: Incremental computation with names. In: OOPSLA. vol. 50,
pp. 748–766. ACM (2015)

[10] Jeltsch, W.: Signals, Not Generators! Trends Funct. Program. 10, 145–160
(2009)

[11] Jeltsch, W.: Strongly Typed and Efficient Functional Reactive Program-
ming. Ph.D. thesis, Universitätsbibliothek (2011)

[12] Jeltsch, W.: Grapefruit-frp: Functional Reactive Programming Core.
https://hackage.haskell.org/package/grapefruit-frp (2012)

[13] Krishnaswami, N.R.: Higher-order functional reactive programming without
spacetime leaks. In: ICFP. vol. 48, pp. 221–232. ACM, http://dl.acm.
org/citation.cfm?id=2500588

[14] Maier, I., Odersky, M.: Higher-Order Reactive Programming with Incre-
mental Lists. In: ECOOP. pp. 707–731. Springer-Verlag (2013)

[15] Maier, I., Rompf, T., Odersky, M.: Deprecating the observer pattern. Tech.
rep. (2010)

[16] Mitschke, R., Erdweg, S., Köhler, M., Mezini, M., Salvaneschi, G.: i3ql:
language-integrated live data views. In: Proceedings of the 2014 ACM Inter-
national Conference on Object Oriented Programming Systems Languages
& Applications. pp. 417–432. ACM

[17] Prokopec, A., Haller, P., Odersky, M.: Containers and Aggregates, Mutators
and Isolates for Reactive Programming. In: SCALA. pp. 51–61. ACM (2014)

[18] Pugh, W., Teitelbaum, T.: Incremental Computation via Function Caching.
In: POPL. pp. 315–328. ACM (1989)

Incremental Behaviors 19

[19] Reynders, B., Devriese, D., Piessens, F.: Multi-Tier Functional Reactive
Programming for the Web. In: Onward! pp. 55–68. ACM (2014)

[20] Salvaneschi, G., Hintz, G., Mezini, M.: REScala: Bridging between object-
oriented and functional style in reactive applications. In: MODULARITY.
pp. 25–36. ACM (2014)

[21] van der Ploeg, A.: Monadic Functional Reactive Programming. Haskell
48(12), 117–128 (2014)

[22] van der Ploeg, A., Claessen, K.: Practical Principled FRP: Forget the Past,
Change the Future, FRPNow! In: ICFP. pp. 302–314. ACM (2015)

[23] Wan, Z., Taha, W., Hudak, P.: Real-time FRP. In: ICFP. pp. 146–156.
ACM (2001)

