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Distributed MPC for multi-vehicle systems moving in formationI

Ruben Van Parysa,∗, Goele Pipeleersa

aMECO Research Group, Department of Mechanical Engineering, Division PMA, KU Leuven, BE-3001 Leuven, Belgium.

Abstract

This work presents a novel distributed model predictive control (DMPC) strategy for controlling multi-vehicle systems
moving in formation. The vehicles’ motion trajectories are parameterized as polynomial splines and by exploiting the
properties of the B-spline basis functions, constraints on the trajectories are efficiently enforced. The computations for
solving the resulting optimization problem are distributed among the agents by the Alternating Direction Method of
Multipliers (ADMM). In order to reduce the computation time and the amount of inter-vehicle interaction, only one
ADMM iteration is performed per control update. In this way the method converges over the subsequent control up-
dates. Simulations for various nonholonomic vehicle types and an experimental validation on in-house developed robotic
platforms prove the capability of the proposed approach. A supporting software toolbox is provided that implements
the proposed approach and that facilitates its use.

Keywords: Distributed Model Predictive Control (DMPC), Nonholonomic multi-vehicle system, Alternating Direction
Method of Multipliers (ADMM), B-spline.

1. Introduction

Boosted by enhancements in communication technolo-
gies and computational power, networked multi-vehicle
systems have received increasing attention over the last
decades. A particular application hereof is formation con-
trol of multi-vehicle systems, which forms the basis for ap-
plications such as cooperative transportation by small au-
tomated guided vehicles or cooperative surveillance. Fur-
thermore, it is well known that the flight efficiency sub-
stantially increases when aerial vehicles fly in close forma-
tion [1].

State-of-the-art formation control approaches for un-
manned vehicles are divided in three main groups: leader-
follower techniques [2, 3], virtual structure approaches
[4, 5] and behavioral methods [6, 7]. Recent research in
these areas mainly focuses on formation stabilization [8, 9]
and formation following a predefined path [10, 11]. Inte-
grating motion planning in the formation control structure
is typically achieved by separating the problem in (i) find-
ing a trajectory for the (virtual) leader and (ii) controlling
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the other vehicles to attain a desired relative position with
respect to the leader [12]. This architecture is however not
robust against failures of the leader. Therefore, this paper
aims for an approach in which all members of the forma-
tion are equal. This implies that each vehicle searches for
its own trajectory. By allowing communication, the vehi-
cles are able to adapt their trajectories in order to satisfy
the formation constraints. Such distributed control struc-
ture benefits from the flexibility to add or discard agents
from the controlled multi-agent system, the possibility to
hide local information and the ability to choose and opti-
mize the information flow between the agents. An appeal-
ing framework allowing for such architecture is distributed
model predictive control (DMPC). It can explicitly ad-
dress input and state constraints, account for multiple con-
trol objectives, and incorporate forecasts of disturbances.
Moreover, DMPC distributes the computational load of
solving the control problem among the different agents.
DMPC has been a very active research area since the end
of the 1990s. The reader is referred to [13, 14, 15, 16] for an
overview and comparison of various existing approaches.

The control of multi-vehicle systems is in general a com-
plex problem. Various existing MPC approaches have only
been applied to the use of linear vehicle dynamics or lack
the flexibility to add arbitrary (nonconvex) constraints to
the problem formulation such as collision avoidance con-
straints [17, 18]. Approaches considering realistic noncon-
vex multi-vehicle problems are mostly limited to solving
offline optimal control problems [19, 20]. Decoupling the
multi-vehicle control problem efficiently imposes an extra
difficulty. Existing DMPC strategies typically solve in ev-
ery update cycle an optimization problem in a distributed
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fashion [21, 22]. This generally involves multiple itera-
tions, each of which requires solving local optimization
problems and substantial communication between neigh-
boring agents. This often results in too slow update rates
in practice as the control law should be implemented on the
vehicle’s embedded hardware, which has restricted compu-
tational power and communication capabilities.

This paper aims at reducing the existing gap in the lit-
erature by presenting a novel DMPC strategy for control-
ling multi-vehicle systems. The approach focuses on re-
alistic complex problems, including nonlinear vehicle dy-
namics and collision avoidance constraints. It applies to a
particular class of vehicles, including holonomic vehicles,
quadrotors and differential wheeled robots. Although var-
ious types of vehicle interaction can be incorporated, this
paper focuses on vehicles moving in formation.

The approach is based on two main ingredients that al-
low to solve the resulting optimal control problem in an
efficient manner. First, the multi-vehicle problem is decou-
pled such that the computational load can be distributed
over the agents. This is achieved by applying the Alter-
nating Direction Method of Multipliers (ADMM) [23]. In
order to reduce the amount of communication, an updat-
ing scheme is proposed that solves only one ADMM itera-
tion per control update. Second, a spline parameterization
for the vehicles’ motion trajectories and a related enforce-
ment of constraints on these trajectories allow an efficient
reformulation of an agent’s local subproblem [24, 25, 26].
This further reduces the computational load of one control
update. Although no formal stability proof is provided,
various numerical results and an experimental validation
demonstrate that the ADMM iterations converge over the
subsequent control updates. These updates are performed
at a sufficiently fast rate with only a limited loss of opti-
mality. As a complement to the paper, a software toolbox
is provided that implements the proposed approach and
that forms a user-friendly interface for modeling and sim-
ulating the considered problems [27]. Furthermore, addi-
tional illustrative examples are supplied in the toolbox.

Section 2 describes the considered vehicle types and the
multi-vehicle control problem. Section 3 shows how this
problem is reformulated in a small-scale optimization prob-
lem, how it is solved in receding-horizon and how it is de-
coupled over the agents. The proposed approach is further
analyzed and illustrated with simulation and experimental
examples in Section 4. Finally, Section 5 draws concluding
remarks. A preliminary version of this paper considering
only linear vehicle dynamics in simulation was presented
in [28].

2. Problem formulation

This section describes the class of vehicles examined in
this work. Afterwards the multi-vehicle optimal control
problem is presented.

2.1. Vehicle description

The vehicles considered in this work are described by
their states q(t) ∈ Rnq , inputs u(t) ∈ Rnu , ordinary differ-
ential equation

q̇ = f(q, u) , (1)

and state and input constraints over the considered time
horizon

e(q(t), u(t)) ≥ 0 , ∀t ∈ [0, T ] . (2)

In order to describe the vehicle dynamics in a numerical
optimization framework, a classical collocation approach
would parameterize the input u as a piecewise polyno-
mial. The state q is then approximately determined from u
by using a numerical integration scheme. Constraints
on input and states are then imposed on discrete points
in time [29]. In contrast, this work uses a formulation
that implies an exact representation of the system dynam-
ics (1) and that guarantees satisfaction of constraints (2)
over the whole time horizon. Therefore the system is de-
scribed by means of output trajectories y(t) ∈ Rnu similar
as in [30, 31]. These output trajectories are assumed to
satisfy two requirements. First, it is assumed that the sys-
tem is differentially flat [32] sucht that the input u and
state q can be determined from the output y, its deriva-
tives and anti-derivatives:

u = ψu(y, y(1), . . . , y(r)) ,

q = ψq(y
(−p), . . . , y, . . . , y(r)) ,

(3)

where r and p are positive integers. Second, substitut-
ing (3) in the state and input constraints (2), is assumed
to result in constraints that are polynomial in y, its deriva-
tives and anti-derivatives:

e(q, u) ≥ 0 ⇐⇒ h(y(−p), . . . , y(r)) ≥ 0 ,

where h(·) is polynomial. This assumption allows to en-
force constraints at all time instances of the considered
time horizon when using a spline parameterization for y.
This is further explained in Section 3.1.

The above-mentioned assumptions are readily verified
for linear holonomic vehicles, but also hold for various
nonlinear vehicle models. An example hereof is illustrated
in Figure 1a, which represents a first principles quadrotor
model in the vertical plane. The quadrotor is controlled by
two inputs, the total thrust acceleration u1 and the pitch
rate u2, and has three degrees of freedom, the horizontal
and vertical position q1 and q2 and the pitch angle q3. The
equations of motion are

q̈1 = u1 sin q3 ,

q̈2 = u1 cos q3 − g ,
q̇3 = u2 ,

(4)

where g denotes the gravitational acceleration. This sys-
tem is differentially flat with flat output (y1, y2) = (q1, q2).
Indeed, from (4) it follows that the third state q3 and both
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Figure 1: Examples of nonlinear vehicle models that allow poly-
nomial constraints.

inputs can be written as a function of these outputs and
their derivatives:

q3 = arctan
ÿ1

ÿ2 + g
,

u1 =
√
ÿ21 + (ÿ2 + g)2 ,

u2 =

...
y 1(ÿ2 + g)− ÿ1...

y 2

ÿ21 + (ÿ2 + g)2
.

Bounds on the inputs can be formulated polynomially by
squaring the constraint on u1 and multiplying the con-
straint on u2 by its (nonnegative) denominator. When
replacing constraints on q3 by constraints on tan q3 and
multiplying them by (ÿ2 + g), these become polynomial as
well. Note that in the above derivations it is assumed that
u1 ≥ 0 and ÿ2 + g > 0.

Another example of a nonlinear vehicle model that al-
lows polynomial constraints is a differential wheeled robot,
illustrated in Figure 1b. Its inputs are the tangential veloc-
ity u1 and rotational velocity u2. Its states are the position
q1, q2 and orientation q3, and the model is described by

q̇1 = u1 cos q3 ,

q̇2 = u1 sin q3 ,

q̇3 = u2 .

(5)

When using a similar approach as with the two-
dimensional quadrotor, the transformed system would suf-
fer from singularities when u1 = 0. Furthermore, the
relative formation constraints, introduced in Section 4.2,
would not allow a polynomial formulation. Therefore an-
other approach is used. The model is rewritten by intro-
ducing z = tan q3

2 and using relations

cos q3 =
1− z2
1 + z2

, sin q3 =
2z

1 + z2
. (6)

After substituting ũ1 = u1

1+z2 , the first two lines of the
model (5) are transformed to

q̇1 = ũ1(1− z2) , q̇2 = 2ũ1z .

The states and inputs can be expressed as a function of

(y1, y2) = (ũ1, z) as follows:

q1(t) =

∫ t

0

y1(τ)(1− y2(τ)2)dτ + q1(0) ,

q2(t) =

∫ t

0

2y1(τ)y2(τ)dτ + q2(0) ,

q3 = 2 arctan y2 ,

u1 = y1(1 + y22) ,

u2 =
2ẏ2

1 + y22
.

When replacing bounds on q3 by constraints on
y2 = tan q3

2 , all state and input constraints can be written
as polynomials in y, its derivatives and anti-derivatives.
Note that this approach does not require u1 to be positive
and allows backwards driving.

2.2. Multi-vehicle optimal control problem

The problems considered in this work search for state
and input trajectories, both included in yi(·), for N dif-
ferent vehicles i in order to steer them from an initial
condition, at t = 0, to a terminal condition, at t = T .
Optimal trajectories are obtained by minimizing the sum
of all vehicles’ objectives Ji while respecting their input
and state constraints hi, which include collision avoidance
constraints. In addition the vehicles should move in for-
mation. This is enforced by constraints gi,j which imply
relations between the outputs yi and yj of respectively a
vehicle i and its neighbor j. As illustrated in Section 4, this
formation can be described in absolute or relative terms,
depending on the definition frame. With Ni the neigh-
bor set of an agent i, this multi-vehicle problem generally
translates into an optimization problem of the following
form:

minimize
yi(·), i=1,...,N

N∑
i=1

Ji(yi)

subject to y
(j)
i (0) = y

(j)
0,i , j ∈ {0, . . . , r − 1}

y
(j)
i (T ) = y

(j)
T,i , j ∈ {0, . . . , r − 1}

hi(y
(−p)
i (t), . . . , y

(r)
i (t)) ≥ 0

gi,j(yi(t), yj(t)) = 0, ∀j ∈ Ni
∀t ∈ [0, T ], ∀i ∈ {1, . . . , N} .

(7)

Collision avoidance constraints, included in hi, are func-
tion of a vehicle’s position and orientation. Position
and orientation are states of a vehicle and are assumed
to depend polynomially on the output trajectories yi,
their derivatives and anti-derivatives. The collision avoid-
ance constraints are formulated by a technique described
in [25, 26], which is recapitulated in Appendix A.

3. Spline-based DMPC

This section describes the proposed approach for solving
the multi-vehicle formation control problem in an efficient
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and distributed fashion. First, problem (7) is translated
into a nonlinear program by adopting a spline parame-
terization for the motion trajectories and an efficient en-
forcement of constraints on these trajectories. Second, a
scheme is proposed for solving the resulting problem in
receding-horizon. Finally, this scheme is further adapted
to a DMPC strategy in order to distribute the computa-
tional load among the vehicles.

3.1. Spline parameterization

Problem (7) is infinite dimensional, comprising both in-
finitely many optimization variables and constraints, as
the optimization variables yi(·) are functions and con-
straints on them are enforced at all time instances. This
problem is transformed into a small-scale optimization
problem along the lines of [24]. To cope with the infinitely
many optimization variables, the trajectories yi(·) are ap-
proximated as piecewise polynomials and are parameter-
ized in a B-spline basis [33]:

ŷi(t) =

n∑
l=1

yi,lbl(t) = yTi b(t) ,

with B-spline basis b = [b1, . . . , bn]T and B-spline coeffi-
cients yi = [yi,1, . . . , yi,n]T . The main reason for adopting
the B-spline basis is the so-called convex hull property:
as the B-splines are positive and sum up to 1, a spline
is always contained in the convex hull of its B-spline co-
efficients. This way, bounds on a spline function can be
enforced by imposing them on the coefficients:

yi ≥ 0⇒ ŷi(t) ≥ 0 ,∀t ∈ [0, T ] .

Because any polynomial function of a spline is itself a
spline, also polynomial constraints on spline trajectories
can be relaxed in the same way. When hi(·) in (7) is a
polynomial, one can write

hi(ŷ
(−p)
i (t), . . . , ŷ

(r)
i (t))

= hi(

n∑
l=1

yi,lb
(−p)
l (t), . . . ,

n∑
l=1

yi,lb
(r)
l (t))

=

m∑
l=1

hi,l(yi)b̃l(t)

= hi(yi)
T b̃(t) ,

with b̃ = [b̃1, . . . , b̃m]T and hi(yi) = [hi,1(yi), . . . , hi,m(yi)]
T

the basis and coefficients of the resulting spline. The con-
vex hull property implies that

hi(yi) ≥ 0⇒ hi(ŷ
(−p)
i (t), . . . , ŷ

(r)
i (t)) ≥ 0 ,∀t ∈ [0, T ] ,

which allows to replace the right-hand side by the more
strict left-hand side. Note that this replacement is how-
ever conservative. Systematic approaches to reduce the
conservatism are discussed in [24].

Algorithm 1 Spline-based MPC

1: Repeat every ∆T : k = 0, 1, . . .
2: Extract qki (t), uki (t) from yki
3: Vehicle i starts following trajectories qki (t), uki (t)
4: Estimate q̂ki = qki ((k+ 1)∆T ), ûki = uki ((k+ 1)∆T )
5: Update horizon and compute ỹki
6: Compute yk+1

i by solving (8), using q̂ki , ûki as initial
conditions and ỹki as hot-start

7: Until target reached

Following these steps, problem (7) is reformulated in
terms of the spline coefficients yi of the agents’ trajectories:

minimize
yi, i=1,...,N

N∑
i=1

Ji(yi)

subject to yi ∈ Yi

gi,j(yi, yj) = 0 , ∀j ∈ Ni
∀i ∈ {1, . . . , N} .

(8)

The objective Ji and constraint functions gi,j are formu-
lated in terms of spline coefficients of ŷi. The set Yi rep-
resents the initial and terminal condition constraints and
state and input constraints hi for an agent i.

3.2. Spline-based MPC

This subsection describes how the multi-vehicle prob-
lem (8) is solved in an MPC fashion. Hence, at every
sample period, an optimal control problem needs to be
solved over an updated control horizon, starting from the
estimates of the current vehicles’ states and inputs. As in
our optimal control approach the solution of the optimiza-
tion problem is formulated as a spline, care must be taken
in transferring the solution of the previous MPC iteration
to a hot-start for the subsequent iteration.

The overall MPC procedure is summarized in Algo-
rithm 1. At the start of an MPC iteration k, a vehicle
starts following its state and input trajectories computed
during the previous iteration (steps 2-3). Meanwhile, the
initial conditions for the current optimal control problem
are determined (step 4), the trajectories of the previous
iteration are transformed into a hot-start for the current
problem (step 5), and the optimal control problem (8) is
solved (step 6).

To account for the computational delay of an MPC iter-
ation, the approach of [34] is adopted to start the optimal
control problem from a state and input estimate q̂ki , ûki at
the time the control signal will be applied. As a trajec-
tory computed during the kth iteration is applied at the
start of iteration k + 1, q̂ki and ûki are estimates for respec-
tively qki ((k + 1)∆T ) and uki ((k + 1)∆T )) (step 4). These
estimates are used to determine the initial conditions for
yi in the problem of step 6.

An updated control horizon and a corresponding spline
basis are defined during step 5. In order to use the results
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(a)

0 T

(b)

0 ∆T T

(c)

0 ∆ξ T +∆ξ

Figure 2: First three updates of the control horizon, repre-
sented by the gray area. The nominal horizon time and con-
trol period are represented by respectively T and ∆T while
∆ξ = 2∆T is the nominal width of the polynomial interval, i.e.
the time interval between two consecutive breakpoints. The
crosses indicate the breakpoints. When ∆T is smaller than the
first polynomial interval, the latter is shrunk over ∆T , as in (b).
When this is not the case, the first polynomial interval is dis-
carded and an extra interval of length ∆ξ is added at the end,
over which the previous computed trajectory is extrapolated,
as in (c).

computed in a previous iteration as a hot-start for the
current iteration, these results, which correspond to spline
trajectories, are first expressed in the new basis. This
means that coefficients ỹki are computed such that

n∑
l=1

yki,lb
k−1
l (t) =

n∑
l=1

ỹki,lb
k
l (t), ∀t ∈ T k ,

where T k is the control horizon considered at iteration k
and bk = [bk1 , . . . , b

k
n]T the corresponding B-spline basis.

These transformed coefficients are then used as hot-start
for the problem solved in step 6.

The way of updating the control horizon cannot be cho-
sen freely. On the one hand it should be possible to express
the future part of previous trajectories in the new basis.
As a spline consists of polynomial pieces glued together
with some continuity conditions at certain breakpoints, it
is required to preserve the location of future breakpoints
of bk−1 in bk. On the other hand it is desired to keep the
dimension of the bases constant over the updates. Practi-
cally this allows building the optimization problem in ad-
vance, which is a time-consuming task. Both desires are
fulfilled by using the update scheme illustrated in Figure
2.

3.3. ADMM based Distributed MPC

Step 6 of Algorithm 1 requires the solution of the cou-
pled problem (8). In this problem, many of the con-
straints only apply to one specific agent while the objec-
tive is composed of the individual objectives of the dif-
ferent agents. The only coupling is imposed by the in-
teraction constraint gi,j . This subsection describes how
the problem can be decoupled in order to distribute the

computational load of solving the optimal control problem
among the agents. The decoupling is derived using tech-
niques from distributed optimization. Various approaches
were compared with respect to convergence speed. It turns
out that the Alternating Direction Method of Multipliers
(ADMM) [23] generally results in the best performance.
The underlying derivations are formulated for ADMM but
can equivalently be listed for other approaches.

Before applying ADMM on problem (8), the problem is
first reformulated as the following equivalent one:

minimize
yi, zi, zi,j , i=1,...,N

N∑
i=1

Ji(yi)

subject to yi ∈ Yi

gi,j(zi, zi,j) = 0 , ∀j ∈ Ni
yi = zi , yj = zi,j , ∀j ∈ Ni
∀i ∈ {1, . . . , N} ,

(9)

i.e. for each vehicle i slack variables zi and zi,j are intro-
duced that match respectively a vehicle’s own trajectory
yi and the trajectory of its neighbor yj . Furthermore, each
formation constraint is replicated for the two correspond-
ing agents, i.e. when a vehicle i defines its position relative
to vehicle j by means of constraint gi,j , vehicle j define its
position with respect to i with a compatible constraint gj,i.
This implies bi-directional interactions:

j ∈ Ni ⇔ i ∈ Nj . (10)

The idea behind ADMM is to solve an appropriate dual
problem of (9). There are many ways to formulate this
problem, depending on which constraints are dualized.
Based on rules formulated in [19], which aim at reducing
the duality gap, only the constraints yi = zi and yj = zi,j
are dualized. ADMM makes use of the augmented La-
grangian function which adds an extra quadratic penalty
term in order to improve robustness and to yield milder
convergence assumptions. For problem (9) this function is

Lρ =

N∑
i=1

(
Ji(yi) + λTi (yi − zi) +

ρ

2
‖yi − zi‖22

+
∑
j∈Ni

(
λTi,j(yj − zi,j) +

ρ

2
‖yj − zi,j‖22

))
,

=

N∑
i=1

Lρ,i(yi, zi, λi, yj , zi,j , λi,j) ,

=

N∑
i=1

Lρ,i(yi, zi, λi, yi, zj,i, λj,i) ,

where λi and λi,j represent the dual variables associated
with the dualized constraints. The last equality is true
because of the bi-directional interaction (10). The dual
function is written as:

q(λi, λi,j) = inf
∀i: yi∈Yi

∀i,∀j∈Ni: gi,j(zi,zi,j)=0

Lρ .
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By maximizing this dual function, the optimum is found.
ADMM solves this dual problem by using gradient ascent.
The gradient of q with respect to the dual variables is eval-
uated by first searching for y+i , z+i and z+i,j that minimize
Lρ. In this way, the gradient is evaluated as:

∇λiq = y+i − z+i ,

∇λi,j
q = y+j − z+i,j .

In ADMM, the search for y+i , z+i and z+i,j is split in two
consecutive steps. First Lρ is minimized over yi and in a
second step it is minimized over zi and zi,j . In this way,
both steps can be decoupled over the agents.

Solving problem (8) until convergence requires various
ADMM iterations. Incorporating this sequence in step 6
of Algorithm 1 is however not desired in practice as it
would involve too high a computation and communication
load. Therefore a DMPC scheme is proposed that executes
only one ADMM iteration per control update starting from
the solution of the previous iteration. The idea is that
ADMM converges while the vehicles are heading towards
their destination.

Algorithm 2 summarizes the DMPC strategy. The algo-
rithm starts with executing a number of ADMM iterations
before the start of the MPC sequence in order to have a
good initial trajectory to follow (step 1). In the exam-
ples of Section 4, five initial ADMM iterations are used.
The steps during an MPC iteration are similar as those
listed in Algorithm 1, apart from solving the global opti-
mal control problem. This is replaced by the steps of one
ADMM iteration. These steps include the solution of two
optimization problems in step 7 and 9 and two commu-
nication cycles with the neighbors during step 8 and 11.
As an ADMM iteration depends on results computed in a
previous iteration, these results are first expressed in the
basis corresponding to the new control horizon. This is
done in step 6 by computing ỹki , z̃ki , z̃kj,i, λ̃

k
i and λ̃kj,i.

Each agent i now contains two sets of variables: yi,
which are used to drive the vehicle, and zi and zi,j , repre-
senting guesses of respectively yi and yj of its neighbors j.

Step 7 implies that yki satisfy at all time the local con-
straints, represented by Yi, while step 9 ensures that zki
and zki,j satisfy the formation constraints. The ADMM it-
erations let the y and z variables converge towards each
other.

4. Examples

The proposed DMPC strategy is illustrated and ana-
lyzed by means of three example cases. The first one con-
siders the numerical simulation of a formation of quadro-
tors flying in a changing environment. The second one
considers differential wheeled robots moving in relative for-
mation. The third example validates the DMPC approach
experimentally on three robotic platforms. Additional ex-
amples are found in the supporting toolbox [27].

Algorithm 2 ADMM based Distributed MPC

1: Perform n ADMM iterations and get y0i , z0i , z0j,i, λ
0
i ,

λ0j,i
2: Repeat every ∆T : k = 0, 1, . . .
3: Extract qki (t), uki (t) from yki
4: Start following trajectories qki (t), uki (t)
5: Estimate q̂ki = qki ((k+ 1)∆T ), ûki = uki ((k+ 1)∆T )
6: Update horizon and compute ỹki , z̃ki , z̃kj,i, λ̃

k
i , λ̃kj,i

7: Compute yk+1
i , using q̂ki , ûki as initial conditions:

yk+1
i := argmin

yi∈Yi(q̂
k
i ,û

k
i )

Lρ,i(yi, z̃
k
i , λ̃

k
i , yi, z̃

k
j,i, λ̃

k
j,i)

8: Communication with agent j ,∀j ∈ Ni:
send yk+1

i , receive yk+1
j

9: Compute zk+1
i and zk+1

i,j :

(
zk+1
i

zk+1
i,j

)
:=

argmin
zi, zi,j

Lρ,i(yk+1
i , zi, λ̃

k
i , y

k+1
j , zi,j , λ̃

k
i,j)

s. t. gi,j(zi, zi,j) = 0 , ∀j ∈ Ni

10: Compute λk+1
i and λk+1

i,j :

λk+1
i := λ̃ki + ρ(yk+1

i − zk+1
i )

λk+1
i,j := λ̃ki,j + ρ(yk+1

j − zk+1
i,j ) , ∀j ∈ Ni

11: Communication with agent j ,∀j ∈ Ni:
send zk+1

i,j and λk+1
i,j , receive zk+1

j,i and λk+1
j,i

12: Until target reached

4.1. Quadrotor formation flight

The first use case considers a formation of two-
dimensional quadrotors as described in Section 2.1. This
formation should move between two vertical walls in or-
der to reach a desired destination, as is presented in the
first snapshot of Figure 3. Using the output trajectories
yi = [qi,1, qi,2]

T
, the objective of a vehicle i at iteration k

is chosen as

Ji(yi) =

∫
T k

‖yi(t)− yT,i‖1dt (11)

in order to steer it as fast as possible to its destination yT,i.
The formation constraints are described in absolute terms
meaning that they are expressed with respect to a fixed
inertial frame:

gi,j(yi, yj) = yi − yj −∆yi,j = 0 ,

where ∆yi,j represents the desired relative position be-
tween a vehicle i and j. The interconnection between
the vehicles is circular. This means that each agent has
two neighbors, one on the left and one on the right. The
nominal control horizon length equals T = 5 s, the control
period ∆T = 0.1 s and nominal width of the polynomial
interval ∆ξ = 0.5 s. Applied to this example, step 7 of Al-
gorithm 2 is a nonconvex nonlinear program, while step 9
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t = 0.7 s t = 0.9 s t = 1.2 s t = 1.8 s t = 2.4 s

Figure 3: Motion trajectories for a formation of three quadrotors in a dynamic environment. At t = 0.8 s, the vehicles observe
an obstacle approaching with a constant velocity. The proposed DMPC approach allows to avoid this obstacle while flying in
formation.

is a quadratic program with linear equality constraints.
The former is solved with Ipopt [35], the latter is solved
in one step by directly solving the KKT system. For both
problems CasADi [36] is used as symbolic framework, algo-
rithmic differentiation tool and interface to the numerical
solvers.

A receding-horizon algorithm is especially beneficial in
the presence of disturbances. This is illustrated for a for-
mation of three quadrotors that suddenly encounter a mov-
ing object in their airspace. The resulting motion is illus-
trated in Figure 3. At t = 0.8 s, the aerial vehicles ob-
serve the object and determine its position and (constant)
velocity. This information is used to adapt the trajecto-
ries in order to avoid collisions during the considered con-
trol horizon. The first adapted trajectories are applied at
t = 0.9 s. One can observe in Figure 3 that these trajecto-
ries contain large formation violations. This is possible as
these constraints are implicitly relaxed in the augmented
Lagrangian. However, as the updates proceed, these tra-
jectories converge towards a new optimum such that the
quadrotors can avoid the object while attaining the for-
mation.

The convergence is monitored in Figure 4 by means of
the combined residual ck and formation error εkF. The
combined residual measures both the primal and the dual
residual simultaneously [37] and is formulated as

ck =

N∑
i=1

(
ρ‖yki − zki ‖22 +

∑
j∈Ni

ρ‖ykj − zki,j‖22+

ρ‖zki − z̃k−1i ‖22 +
∑
j∈Ni

ρ‖zki,j − z̃k−1i,j ‖22
)
.

The formation error is computed as the average relative
deviation of a vehicle with respect to the formation cen-
ter. With ykc (t) = 1

N

∑
i y
k
i (t) the formation center of the

planned trajectories during iteration k and ∆yi,c the ideal
relative position of a vehicle i with respect to the formation
center, this becomes

εkF =
1

|T k|

∫
T k

1

N

N∑
i=1

‖yki (t)− ykc (t)−∆yi,c‖2
‖∆yi,c‖2

dt ,

where T k indicates the considered control horizon at it-
eration k and |T k| represents its length. At t = 0.9 s, a

100

10−3

10−6

ck

0 0.5 1 1.5 2 2.5 3

100

10−2

10−4

t (s)

εk F

Figure 4: Combined residual ck and formation error εkF as a
function of time for a formation of three quadrotors in a dy-
namic environment. At t = 0.9 s, a jump occurs in the residual
and formation error due to a change in the environment. From
that point, the DMPC approach converges to a new optimum.

jump occurs in both the residual and formation error due
to the change in the environment. From that point, the
DMPC approach converges to the new optimum and the
formation error is quickly reduced during the subsequent
iterations.

Solving the quadrotor formation problem with the pro-
posed DMPC approach takes on average 57 ms per control
update1. As a comparison, solving this problem with a
central MPC approach as described in Algorithm 1, takes
187 ms per update.

4.2. Relative formation of differential wheeled robots

In order to further illustrate the versatility of the pro-
posed approach, a different example case is presented. It
considers three differential wheeled robots as described in
Section 2.1. They should move in a relative formation.
This means that the formation is defined with respect to
the local robot frames, and acts as if the vehicles were
rigidly attached to each other. This is desired in appli-
cations as cooperative transportation. Each vehicle ex-
presses in its local robot frame its desired relative position

1All simulations are performed on a notebook with Intel Core
i5-4300M CPU @ 2.60 GHz x 4 processor and 8 GB of memory.
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∆qi,c = [∆xi,c,∆yi,c]
T

with respect to the formation cen-
ter, where ∆xi,c and ∆yi,c are expressed along respectively
the longitudinal and lateral direction. The formation cen-

ter qci =
[
qci,1, q

c
i,2

]T
, seen from vehicle i and expressed in

the inertial frame becomes

qci,1 = qi,1 −∆xi,c cos qi,3 + ∆yi,c sin qi,3 ,

qci,2 = qi,2 −∆xi,c sin qi,3 −∆yi,c cos qi,3 .
(12)

The variables qci are introduced as slack (spline) variables
in the optimization problem. After substituting (6), and
relaxing the equality constraint, (12) is reformulated as
polynomial constraints

−ε ≤ (1 + z2i )(qi,1 − qci,1)− (1− z2i )∆xi,c + 2zi∆yi,c ≤ ε ,
−ε ≤ (1 + z2i )(qi,2 − qci,2)− 2zi∆xi,c − (1− z2i )∆yi,c ≤ ε ,

(13)
where ε is a small positive number. The constraint relax-
ation is necessary to find a feasible solution in the pro-
posed spline parameterization. Inequality constraints (13)
are added to the local constraint set Yi of vehicle i. The
formation is implied by enforcing consensus on the forma-
tion center, expressed in the inertial frame:

gi,j(q
c
i , q

c
j) = qci − qcj = 0 .

Using this approach, step 9 of Algorithm 2 is again reduced
to a linear equality constrained quadratic program.

For this example, the proposed DMPC approach is ap-
plied and the resulting point-to-point motion and tangen-
tial velocity ui,1 for each vehicle are presented in Figure 5.
The robots form a rigid triangle that can translate and
rotate in order to reach the destination in an obstructed
environment. Figure 5b illustrates how an outer lying ve-
hicle is constrained by its maximum velocity of 1 m/s while
covering the S-turn. As a similar objective as (11) is used,
this proves the optimality of the solution. Note that the
gradual increase and decrease in velocity at the beginning
and the end is due to the spline parameterization. The
average required time to perform a control update equals
392 ms. Currently ways of reducing this update time are
investigated.

4.3. Experimental validation on holonomic platforms

The presented approach is implemented and demon-
strated on three in-house developed robotic platforms as il-
lustrated in Figure 6. Each platform is equipped with four
independently driven Mecanum wheels, which renders the
system holonomic. The platform contains an Odroid XU4
single board computer on which the DMPC algorithm is
implemented. The platforms’ hardware communicate with
each other over Wi-Fi. The setup also includes a ceiling
camera that detects the platforms’ absolute position and
orientation. Each robot merges this information with its
local encoder measurements for retrieving a fast and accu-
rate state estimate.

The DMPC iterations are performed periodically with
a rate of 4 Hz. The bottleneck for increasing this rate is

(a)

(b)

0 1 2 3 4 5
0

0.5

1

t (s)

u
i,
1

(m
/s

)

Figure 5: Three differential wheeled robots moving in relative
formation. (a) illustrates the the motion, while (b) represents
the corresponding tangential velocity.

solving the non-linear program of step 7 in Algorithm 2 by
Ipopt on the Odroid XU4. The DMPC algorithm gener-
ates state and input trajectories that are provided as refer-
ence to a low-level feedback controller running at 100 Hz.

Figure 7 presents two point-to-point tasks performed on
the robotic platforms illustrated by snapshots taken from
the ceiling camera. In the first example a triangular for-
mation should avoid a static obstacle in the environment.
The target position for the formation center is indicated
by the concentric gray circles. The gray lines indicate the
predicted position trajectories for each platform. The rect-
angles indicate the shapes used for avoiding collisions be-
tween vehicles and obstacle. To account for disturbances
and model-plant mismatch it is desired to stay further
away from obstacles than strictly necessary for avoiding
collisions. Therefore a similar construction as described
in [26] is used to motivate the vehicles to move an extra
distance of 5 cm away from the obstacle. The second ex-
ample considers a formation of two vehicles. The platform
located in the center of the field, indicated by the red rect-
angle, acts as an obstacle which is steered manually with
a gamepad. At t = 1 s it suddenly starts to move down-
wards. The other vehicles are using an estimate of the
obstacle’s position and velocity in order to predict its mo-
tion. In this way they can adapt their trajectories to pass
the vehicle from above in stead of trying to move under-
neath the vehicle, which was the initial plan. The DMPC
algorithm makes sure the two vehicles attain their forma-
tion. A video illustrating the experiments is found in the
readme file of the supporting toolbox [27].

4.4. OMG-tools

The proposed DMPC approach is implemented as part
of a more general spline-based motion control toolbox with
the name Optimal Motion Generation-tools [27]. This
toolbox is written in Python and uses CasADi [36] as
symbolic framework and interface to solvers. The goal
of OMG-tools is to facilitate the modeling, simulation and
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(a)

(b)

Figure 7: Experimental validation of the DMPC approach on a formation of robotic platforms moving (a) in a static environment
and (b) in a dynamic environment.

Figure 6: In-house developed robotic platform

deployment of spline-based motion problems. The soft-
ware is easily coupled with existing widely used robotic
frameworks such as ROS [38]. An example considering a
formation of three Pioneer P3-DX robots moving in for-
mation and avoiding a fourth independently driven P3-DX
is presented in Figure 8 . In order to generate this exam-
ple, OMG-tools is integrated in ROS and coupled to the
robotic simulator Gazebo [39]. A movie demonstrating the
example is found in the readme file of OMG-tools.

Apart from all examples presented in this paper, the
toolbox provides more illustrations of the capabilities of
the presented method. For a quick overview, the interested
reader is referred to the readme file that contains various
illustrative animations and videos of experiments.

5. Conclusion

This paper presents a novel DMPC strategy for con-
trolling multi-vehicle systems moving in formation. In
contrast to existing approaches we allow to handle real-
istic problems, including nonlinear vehicle dynamics and
obstacle avoidance constraints. In order to retrieve an ef-
ficient algorithm, efforts are made to reduce the compu-
tational and communicational burden. On the one hand
the size of the overall optimization is reduced by using a

Figure 8: Simulation example performed with ROS and Gazebo
illustrating a formation of three Pioneer P3-DX robots avoiding
a fourth independent P3-DX.

spline parameterization for the vehicles’ trajectories. On
the other hand, the computational load of this problem is
distributed over the vehicles by using the Alternating Di-
rection Method of Multipliers (ADMM). A DMPC scheme
is proposed where one ADMM iteration is performed dur-
ing each control update. Numerical simulations with non-
linear vehicle dynamics and an experimental validation on
holonomic platforms show that the ADMM iterations con-
verge sufficiently fast for the considered multi-vehicle ap-
plication. The proposed DMPC approach and various il-
lustrative examples are implemented as part of a spline-
based motion control toolbox.

Appendix A. Collision avoidance constraints

Collision avoidance constraints between a vehicle and
an obstacle are constructed by imposing the existence of a
separating hyperplane between their shapes. Note that
this construction can only separate convex shapes [40].
Figure A.9 illustrates this approach. Suppose the vehi-
cle’s shape is represented by a circle with center v and
radius r while the obstacle is a convex polygon with ver-
tices wi. Demanding the separation of both shapes by a
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{x ∈ R2|aTx = b}

Figure A.9: Separating a circle and a convex polygon by a
separating line.

line {x ∈ R2|aTx = b} is achieved with the following con-
straints:

−aT v + b ≥ r‖a‖2 ,
aTwi − b ≥ 0 , ∀i ∈ {0, . . . , 4} .

The center v of the circle depends on the position of the
vehicle and therefore on the output trajectory y as dis-
cussed in Section 2.1. In order to avoid collisions at all
time, the separating line is allowed to change over time.
Both a(·) and b(·) are introduced as time dependent op-
timization variables and are parameterized as splines. In
the event of a dynamic environment the vertices wi(·) of
the obstacle can be parameterized as (known) spline tra-
jectories in order to incorporate predictions concerning the
obstacle’s motion. After reformulating the constraints to
be differentiable, they are written as

−a(t)T v(y(t)) + b(t) ≥ r ,
a(t)Twi(t)− b(t) ≥ 0 , ∀i ∈ {0, . . . , 4}

a(t)Ta(t) ≤ 1 ,

∀t ∈ [0, T ] .

(A.1)

When v(·) is a polynomial function of y, its derivatives and
anti-derivatives, constraints (A.1) are polynomial in the
spline variables y(t), a(t) and b(t) such that the constraint
enforcement of Section 3.1 can be used to reformulate them
in a finite set of constraints.
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Intlekofer, M. W. Spong, Formation control and collision avoid-
ance for multi-agent non-holonomic systems: Theory and exper-
iments, The International Journal of Robotics Research 27 (1)
(2008) 107–126.

[4] M. A. Lewis, K.-H. Tan, High precision formation control of mo-
bile robots using virtual structures, Autonomous Robots 4 (4)
(1997) 387–403.

[5] R. W. Beard, J. Lawton, F. Y. Hadaegh, A coordination archi-
tecture for spacecraft formation control, IEEE Transactions on
control systems technology 9 (6) (2001) 777–790.

[6] T. Balch, R. C. Arkin, Behavior-based formation control for
multirobot teams, Robotics and Automation, IEEE Transac-
tions on 14 (6) (1998) 926–939.

[7] R. Olfati-Saber, Flocking for multi-agent dynamic systems: Al-
gorithms and theory, IEEE Transactions on automatic control
51 (3) (2006) 401–420.

[8] K. Hengster-Movrić, S. Bogdan, I. Draganjac, Multi-agent for-
mation control based on bell-shaped potential functions, Jour-
nal of intelligent & robotic systems 58 (2) (2010) 165–189.

[9] W. Dong, Robust formation control of multiple wheeled mobile
robots, Journal of Intelligent & Robotic Systems 62 (3) (2011)
547–565.

[10] F. Xiao, L. Wang, J. Chen, Y. Gao, Finite-time formation con-
trol for multi-agent systems, Automatica 45 (11) (2009) 2605–
2611.

[11] J. Ghommam, H. Mehrjerdi, M. Saad, F. Mnif, Formation path
following control of unicycle-type mobile robots, Robotics and
Autonomous Systems 58 (5) (2010) 727–736.
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