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Spline-Based Motion Planning in an
Obstructed 3D Environment ?

Ruben Van Parys ∗ Goele Pipeleers ∗

∗ MECO research group, Department of Mechanical Engineering,
KU Leuven, Belgium. (e-mail: ruben.vanparys@kuleuven.be).

Abstract: This paper presents a motion planning approach that steers systems in an optimal
way through an obstructed 3D environment. The motion trajectories are parameterized as
polynomial splines and by exploiting the properties of B-spline basis functions, constraints on
the trajectories are efficiently enforced. The approach is applied on two relevant cases. The first
one elaborates a pick and place task for a Cartesian robot which is validated experimentally
on an industrial plate transportation system. Depending on the task, the proposed method can
reduce the motion time with 10 - 30% with respect to the currently applied trajectories. In a
second case the approach is applied on the navigation of Unmanned Aerial Vehicles (UAVs)
flying in an uncertain dynamic environment. This problem is formulated in a receding-horizon
fashion which can update trajectories with a rate of 2.5 Hz. A supporting software toolbox is
provided that implements the proposed approach and facilitates its use.

Keywords: Trajectory planning, obstacle avoidance, splines, Cartesian manipulators,
Unmanned Aerial Vehicles

1. INTRODUCTION

Motion planning considers the problem of steering a mo-
tion system from an initial state to a terminal state as
fast, energy-efficient... as possible while obeying the system
limitations as well as geometric constraints. Geometric
constraints can, for instance, represent workspace restric-
tions and collision avoidance constraints with nearby ob-
stacles. Solving motion planning problems efficiently is key
to unleashing the true potential of autonomous systems in
industrial applications as well as in our daily lives.

This paper focuses on two applications where optimal mo-
tion planning in a three dimensional obstructed environ-
ment naturally comes to mind. The first one deals with the
optimal control of Cartesian robots, which are omnipresent
in industry. Examples are pick and place systems, 3D
printers and CNC milling machines. Cartesian robots con-
sist of three perpendicular linear axes and supply a natu-
ral way of transporting an object in a three dimensional
space. As collisions with other machine parts should be
avoided at all time, steering these systems is a non-trivial
job. Collision avoidance is commonly achieved by using
safe heuristics which introduce sub-optimality. Using a
systematic approach for generating optimal collision-free
trajectories would substantially increase the flexibility of
these systems as well as their productivity and economic
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profit. The second application focuses on the autonomous
navigation of Unmanned Aerial Vehicles (UAVs) in an
obstructed environment. UAVs are commonly used in op-
erations that are too dull or dangerous for humans such as
surveillance, search and rescue operations or the delivery
of supplies in inaccessible regions. The autonomous navi-
gation of UAVs hinges upon the efficient solution of motion
planning problems. A crucial issue in a UAV’s task is the
uncertain environment. It is therefore beneficial to solve
the motion planning online to cope with sudden changes
in the environment. Incorporating predictions concerning
the motion of obstacles can further improve the UAV’s
navigation.

Motion planning problems naturally translate into optimal
control problems. The resulting problems are however hard
to solve. One challenge lies in the non-convexity of the
problem coming from obstacle avoidance requirements and
possible non-linear system dynamics. Due to the complex-
ity of this problem, a decoupled approach is often adopted,
which solves the motion planning problem in two stages
(Shin and McKay, 1985; Bobrow et al., 1985; Verscheure
et al., 2009). In a first step a geometric path is determined
that accounts for obstacle avoidance and other geometric
constraints. In the subsequent path following stage, an
optimal trajectory along the geometric path is determined
taking into account the dynamic constraints. Although
this approach requires lower computational effort, it of-
ten results in sub-optimal solutions. Moreover it is not
straightforward to incorporate a dynamic environment. A
coupled approach that solves the optimal control problem
at once, is more suited for those cases. When solving the
motion planning online, an efficient formulation of this
problem is however crucial in order to retrieve a small-
scale problem that can be solved in a reasonable time.



Another challenge is the infinite dimensionality of the re-
sulting problem, which holds in general for all optimal con-
trol problems. Indeed, the variables of an optimal control
problem are input and state trajectories and geometric and
dynamic constraints are imposed at each time instance.
A final dimensional variable set is typically retrieved by
parameterization of the trajectories as e.g. polynomials or
splines. A classical approach for reformulating trajectory
constraints in a finite way is time gridding (Louembet
et al., 2009; Milam et al., 2000). However, this approach
does not guarantee constraint satisfaction in between the
grid points. When imposing safety critical constraints such
as collision avoidance, this is unacceptable. The grid spac-
ing should therefore be sufficiently fine to avoid constraint
violations, which results in a large number of constraints.

The method used in this work is a coupled approach. It
uses the idea from (Van Loock et al., 2015) for retrieving
a finite dimensional small-scale problem with guaranteed
constraint satisfaction by using a B-spline parameteriza-
tion of the motion trajectories and an efficient enforcement
of constraints on these trajectories. This paper builds
on previous work presented in (Mercy et al., 2016) and
demonstrates the capability of the framework when used
for complex motion planning tasks in a three dimensional
obstructed environment. It validates the approach exper-
imentally on an industrial Cartesian robot and applies
the method on a challenging non-linear quadrotor model.
As a complement to the paper, a software toolbox is
provided that implements the proposed approach and that
forms a user-friendly interface for modeling, simulating
and embedding spline-based motion planning problems
(Van Parys and Mercy, 2016). It provides a library of
different system models and contains an extensive list of
illustrative examples.

Section 2 gives an overview of the spline-based motion
planning approach and applies it to the optimal control
of a Cartesian robot and the navigation of a UAV. Results
on both cases are presented in Section 3. Finally, Section 4
draws concluding remarks.

2. SPLINE-BASED MOTION PLANNING

This section briefly recapitulates the used methodology
which is adopted from early work described in (Van
Loock et al., 2015). The subsequent subsections apply this
approach on two three-dimensional motion planning cases:
point-to-point trajectory generation for a Cartesian robot
and optimal UAV navigation.

2.1 General methodology

The motion planning problem considered in this work
searches for motion trajectories q(·) ∈ Rnq , in order to
steer a system from an initial condition, at t = 0, to a ter-
minal condition, at t = T . Both conditions are expressed
as conditions on q and its derivatives q(j). Optimal trajec-
tories are obtained by minimizing an objective J while
respecting constraints h over the considered time hori-
zon [0, T ]. These represent system limitations and collision
avoidance constraints. This problem generally translates
into an optimization problem of the following form:

minimize
q(·)

J(q)

subject to q(j)(0) = q
(j)
0 , j ∈ {0, . . . , r} ,

q(j)(T ) = q
(j)
T , j ∈ {0, . . . , r} ,

h(q, t) ≥ 0 , ∀t ∈ [0, T ] .

(1)

Problem (1) is infinite dimensional, comprising both in-
finitely many optimization variables and constraints, as
the optimization variables q(·) are functions and the con-
straints h are enforced at all time instances. To cope with
the infinitely many optimization variables, the trajectories
q(·) are approximated as piecewise polynomials and are
parameterized in a B-spline basis (Boor, 2001):

q̂(t) =

n∑
l=1

qlbl(t) ,

with B-spline basis b = (b1, . . . , bn) and B-spline coeffi-
cients q = (q1, . . . , qn), which become the new optimiza-
tion variables. The main reason for adopting the B-spline
basis is the so-called convex hull property: as the B-splines
are positive and sum up to 1, a spline is always contained
in the convex hull of its B-spline coefficients. This way,
bounds on a spline function can be enforced by imposing
them on the coefficients:

q ≥ 0⇒ q̂(t) ≥ 0 ,∀t ∈ [0, T ] .

Because derivatives, anti-derivatives and any polynomial
function of a spline are splines, also polynomial con-
straints on spline trajectories and its derivatives and anti-
derivatives can be relaxed in the same way.

Using this approach requires finding a set of trajectories
q(·) that characterizes the motion of a system and from
which state and input trajectories can be derived. Further-
more, it should be possible to reformulate trajectory con-
straints as polynomial constraints in q, its derivatives and
anti-derivatives. This is possible for many two-dimensional
cases as indicated in (Van Loock et al., 2015; Mercy et al.,
2016) and is illustrated for two three-dimensional motion
planning cases below.

The presented optimal control problem (1) can be further
adapted to a receding-horizon formulation in order to ac-
count for disturbances or a dynamic environment. Hence,
at every sample period, an optimal control problem needs
to be solved over an updated control horizon, starting from
estimates of the current system state and input. As in the
optimal control approach the solution of the optimization
problem is formulated as a spline, care must be taken
in transferring the solution of the previous iteration to
a hot-start for the subsequent iteration. In (Van Parys
and Pipeleers, 2016) an update scheme is presented that
overcomes this problem.

2.2 Point-to-point motion for a Cartesian robot

A Cartesian robot is composed of three perpendicular
independently driven linear axes that control the motion
of an object in the three dimensional space. This work
considers an industrial case illustrated in Figure 1. It
examines the transportation of a plate by a Cartesian
robot from an initial storage place (A) towards a table (B)
of a punching machine. After a punching process the
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Fig. 1. Simplified representation of the plate transporta-
tion case. The plate is translated from an initial
storage place (A) towards the table (B) of a punch-
ing machine. After the punching process the plate is
transported to a final storage plate (C). The Cartesian
robot carrying the plate is omitted in the figure for
reasons of clearness.

plate is transported to a final storage place (C). The
transportation should always happen as fast as possible.

The Cartesian robot can freely translate the plate in the
three dimensional space and the system has therefore
three degrees of freedom which are chosen as the posi-
tion (x, y, z) of the plate center. An available controller can
track given reference trajectories for the plate’s position
provided that these are sufficiently smooth and that they
do not violate actuator limitations. In order to accomplish
this the trajectories should be continuous up to accel-
eration level and kinematic constraints are provided for
velocity, acceleration and jerk. In order to meet the con-
tinuity requirement, the position trajectories q = (x, y, z)
are parameterized as cubic splines. Kinematic constraints
are applied by constraining the time derivatives of q.

The transportation of the plate happens in an obstructed
environment as illustrated in Figure 1. Apart from bounds
on the position q that prevent to cross machine boundaries,
extra constraints should be included to avoid collisions
with the obstacles α, β and γ. These are constructed by
implying the existence of a separating plane between the
plate and an obstacle. Note that this construction can only
separate convex shapes (Boyd and Vandenberghe, 2004).
When both the plate and an obstacle i are represented by
convex polyhedra with vertices vj and wi,k, respectively,
the anti-collision constraints between the plate and obsta-
cle i are expressed as

ai(t)
T vj(q(t))− bi(t) ≥ rv , ∀j ∈ {1, . . . , nv} ,
ai(t)

Twi,k − bi(t) ≤ −rwi
, ∀k ∈ {1, . . . , nwi

} ,
ai(t)

Tai(t) ≤ 1 ,

(2)

where nv and nwi
indicate the number of vertices for

plate and obstacle. The parameters rv and rwi
are positive

numbers that express the minimal distance between the
separating plane and respectively the plate and obstacle.
These can be used as safety margins for collision avoidance.
The separating plane {x ∈ R3|aTi x = bi} can change over
time. Both ai(·) and bi(·) are introduced as new time-
dependent variables in the optimization problem and are
also parameterized as splines. The set of constraints (2)
should be introduced for each pair of plate and obstacle.
These can however be simplified by only including the
vertices of the obstacle’s faces the plate can collide with.
Because of the limited motion freedom (e.g. the plate
can not tilt) and bounds on q, the plate can only collide
with the faces indicated in gray on Figure 1. The vertices

introduced in the anti-collision constraints are indicated by
the black dots. The plate itself is modeled as a rectangular
polygon where the corresponding rv parameter expresses
its thickness and an extra safety margin. Note that the
Cartesian robot itself is not included in the collision
avoidance as this is resolved by workspace restrictions and
the collision avoidance constraints of the plate.

The generated trajectories should be time-optimal. There-
fore the objective is chosen as the motion time T . In order
to make the B-spline basis functions independent of the
variable T , the splines are expressed with respect to a
scaled time τ = t

T running from 0 to 1. The variable T is

then introduced in constraints on the time derivatives q(j).

Finally, the plate transportation case is expressed as the
following optimal control problem:

minimize
q(·) ,ai(·) ,bi(·) ,T

T

subject to q(0) = q0 , q(1) = qT ,

q(j)(0) = 0 , q(j)(1) = 0 , ∀j ∈ {1, 2} ,
T jq

(j)
min ≤ q

(j)(τ) ≤ T jq(j)max , ∀j ∈ {0, . . . , 3} ,
constraints (2) , ∀i ∈ {α, β, γ} ,
∀τ ∈ [0, 1] .

All constraints are polynomial in q(·), ai(·), bi(·) and their
derivatives. The spline parameterization and constraint
enforcement of Section 2.1 is used to translate this to a
numerical tractable problem.

2.3 Optimal UAV navigation

This case considers the optimal navigation of an Un-
manned Aerial Vehicle (UAV) from an initial position
towards a destination position in an obstructed dynamic
environment. In order to account for disturbances, model-
plant mismatch and changes in the environment, this prob-
lem is formulated in a model predictive control (MPC)
fashion. The update scheme for the control horizon is
adopted from (Van Parys and Pipeleers, 2016).

This work focuses on the navigation of a three dimensional
quadrotor as illustrated in Figure 2. Simplified quadrotor
dynamics are used, which are derived in (Beard, 2008),
by fixing the yaw angle, assuming small roll and pitch an-
gles and neglecting Coriolis forces. This quadrotor model
is controlled by three inputs, the total thrust accelera-
tion f = F

m and the rolling and pitch torque τφ and τθ. The
quadrotor has five degrees of freedom, the position x, y, z
and the roll and pitch angle φ and θ. The equations of
motion are

ẍ = f cosφ sin θ ,

ÿ = −f sinφ ,

z̈ = f cosφ cos θ − g ,

φ̈ =
1

Jx
τφ ,

θ̈ =
1

Jy
τθ ,

(3)

where g denotes the gravitational acceleration and Jx and
Jy the inertia around the axes of the quadrotor’s body
frame.
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Fig. 2. Representation of a three-dimensional quadrotor.

In the considered navigation problem the quadrotor is
subject to bounds on its thrust acceleration, roll and pitch
angles and their derivatives:

fmin ≤ f ≤ fmax ,

φmin ≤ φ ≤ φmax , θmin ≤ θ ≤ θmax ,

φ̇min ≤ φ̇ ≤ φ̇max , θ̇min ≤ θ̇ ≤ θ̇max .

(4)

The quadrotor is steered from an initial condition towards
a terminal condition which are expressed as the following
equality constraints:

ξ(0) = ξ0 , φ(0) = φ0 , θ(0) = θ0 ,

ξ̇(0) = ξ̇0 , φ̇(0) = φ̇0 , θ̇(0) = θ̇0 ,

ξ(T ) = ξT , φ(T ) = φT , θ(T ) = θT ,

ξ̇(T ) = 0 , φ̇(T ) = 0 , θ̇(T ) = 0 ,

(5)

where ξ = (x, y, z) represents the quadrotor’s position.

The objective of the navigation problem is to reach the
target as fast as possible. Here an alternative for the
approach of Section 2.2 is proposed which allows a fixed
motion time T and therefore a reduction of the constraints’
complexity. The objective is formulated as

J =

∫ T

0

‖ξ(t)− ξT ‖1dt , (6)

which will steer the quadrotor as close to the destination
ξT as possible during the control horizon T . As the L1-
norm puts relatively large weight on small residuals, this
objective results in a motion with low overshoot (Boyd and
Vandenberghe, 2004).

As obstacles can be present in the quadrotor’s airspace,
collision constraints similar as (2) are imposed. In general
these can depend on the quadrotor’s orientation φ and θ.
However, in order to simplify the collision constraints, the
quadrotor’s shape is modeled by a sphere with radius
rq and thus independent of φ and θ. To account for
disturbances and model-plant mismatch it is desired to
stay further away from obstacles than strictly necessary for
avoiding collisions. Otherwise trajectory following errors
due to e.g. disturbances could result in collisions. To trade-
off time-optimality against the safety margin to obstacles,
an extra spline variable δi(·) is introduced and an extra
term

γi

∫ T

0

δi(t)dt

is added to the objective, while the anti-collision con-
straints are adapted to:

ai(t)
T ξ(t)− bi(t) ≥ rq + d− δi(t) ,

ai(t)
Twi,k(t)− bi(t) ≤ −rwi

, ∀j ∈ {1, . . . , nwi
} ,

ai(t)
Tai(t) ≤ 1 ,

0 ≤ δi(t) ≤ d .

(7)

This construction motivates the quadrotor to fly an extra
distance d away from an obstacle. Note that the vertices
wi,k can depend on time t. As the environment is dynamic,
it is beneficial to incorporate predictions concerning an
obstacle’s motion. In this way an obstacle’s vertices are
represented as (known) splines.

In order to use the approach described in Section 2.1,
a set of trajectories q(·) is chosen from which the states
and inputs of the quadrotor can be derived and such that
constraints (4) and (7) can be reformulated as polynomial
constraints in q, its derivatives and anti-derivatives. This
is achieved by introducing the variables zφ = tan φ

2 and

zθ = tan θ
2 and using relations

cosφ =
1− z2φ
1 + z2φ

, sinφ =
2zφ

1 + z2φ

and similar relations for cos θ and sin θ. When choosing
the trajectories q = (q1, q2, q3) as

q1 =
f

(1 + z2φ)(1 + z2θ)
, q2 = zφ , q3 = zθ , (8)

the first three lines of (3) are reformulated as

ẍ = 2q1(1− q22)q3 ,

ÿ = −2q1q2(1 + q23) ,

z̈ = q1(1− q22)(1− q23)− g ,
(9)

and constraints (4) are translated to polynomial con-
straints in q and q̇:

fmin ≤ q1(1 + q22)(1 + q23) ≤ fmax ,

tan
φmin

2
≤ q2 ≤ tan

φmax

2
,

tan
θmin

2
≤ q3 ≤ tan

θmax

2
,

(1 + q22)φ̇min ≤ 2q̇2 ≤ (1 + q22)φ̇max ,

(1 + q23)θ̇min ≤ 2q̇3 ≤ (1 + q23)θ̇max .

(10)

By taking the anti-derivatives of (9), expressions are

retrieved for ξ̇ and ξ that are polynomial in q such that
collision avoidance constraints (7) become also polynomial
in q. Trajectories q are parameterized as splines and spline
constraints (7) and (10) are replaced by constraints on the
coefficients.

The resulting optimization problem is however complex
and takes a rather long time to solve. As these problems
are solved repeatedly in an MPC framework, this is not
desired. One main reason of the problem’s complexity is
the inclusion of the position ξ in the constraints (5) and (7)
and objective (6) which itself is formulated as the 2nd anti-
derivative of expression (9). In order to come up with a

numerically more lightweight problem, trajectories ξ̂(·) are
introduced as slack spline variables in the problem. These
are expressed in a lower dimensional basis than required
for equalities (9) to hold. An approximated equality is

imposed between ξ̂(·) and ξ(·), the position derived as the
2nd anti-derivative of expression (9):

−ε ≤ ξ̂(t)− ξ(t) ≤ ε , ∀t ∈ [0, T ] ,

where ε is a small positive number. The position ξ is

replaced by ξ̂ in (5), (6) and (7).



Fig. 3. Generated motion for the plate unloading task, validated on an industrial plate transportation system.

3. RESULTS

3.1 Validation on a Cartesian plate transportation system

This subsection describes the results obtained for the time-
optimal plate transportation by a Cartesian robot as de-
scribed in Section 2.2. Optimal trajectories are generated
for two tasks: the loading of the plate in the punching
machine (A to B in Figure 1) and the unloading of the
machine (B to C in Figure 1). These trajectories were
validated experimentally on an industrial transportation
system as illustrated in Figure 3 for the loading task. A
video illustrating both tasks is found on the readme file of
the supporting toolbox (Van Parys and Mercy, 2016).

For both cases different trajectories are computed with a
varying number np of polynomial sub-pieces for the splines.
The polynomial intervals are chosen equidistant over the
total motion time. A higher np implies a higher motion
freedom and results in more time-optimal trajectories. In
general this is at the expense of a higher computational
cost. This trade-off is illustrated in Figure 4. The motion
time T of the original trajectories is indicated in dashed
line. Even with a rather coarse spline parameterization the
presented approach generates more time-optimal trajecto-
ries. The reason for this lies in the heuristic approach for
avoiding collisions used in the generation of the original
trajectories. This is clearly visible in Figure 5, which
illustrates the velocity trajectories for the loading task.
The dashed curves indicate the original trajectories. In
order to avoid collisions, the x axis is not moving while
the y and z axis are. By incorporating collision avoidance
constraints in the proposed approach, these axes can be
steered simultaneous resulting in a lower total motion
time. These trajectories are represented by the black solid
lines

The presented method is further compared with an ap-
proach where trajectory constraints are implied by time
gridding. For this comparison the Greville points are a
natural choice of grid points as they result in as many
constraints as the presented approach and each polyno-
mial interval contains a Greville point. As expected this
approach leads to constraint violations. Figure 5 illustrates
the resulting velocity trajectories in gray. Constraint viola-
tion occurs both on the lower bound of ẋ and upper bound
on ẏ, which are represented by the dotted line. This further
motivates the use of the constraint enforcement described
in Section 2.1 which guaranteers constraint satisfaction
over the whole time domain.
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Fig. 4. Motion time T and solving time ts for varying
number of knot intervals np
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Fig. 5. Velocity trajectories for the plate loading task. The
original trajectories are indicated in dashed line, while
the black lines represent the time-optimal trajectories
for np = 12. The gray lines are trajectories determined
by time gridding of the constraints.

3.2 Quadrotor navigation in a dynamic environment

This subsection illustrates a simulation result of a quadro-
tor navigating in a dynamic environment. The resulting
motion is illustrated in Figure 6. The quadrotor should
avoid two vertical walls in order to reach its destination.
At t = 1.5 s the right wall starts moving downwards with
a velocity of 0.6 m/s. By solving the motion planning
problem in receding-horizon the quadrotor is able to adapt
its trajectory in order to avoid the obstacle. In the motion
1 Optimization problems are solved with Ipopt and modeled in
CasADi. All computations are performed on a notebook with Intel
Core i5-4300M CPU @ 2.60 GHz x 4 processor and 8 GB of memory.



Fig. 6. Quadrotor flying in an obstructed environment. At t = 1.5 s the right wall starts moving downwards. The gray
and black line indicate respectively the predicted and covered trajectories.

planning an exact prediction of the wall’s velocity is used.
The trajectories (8) are parameterized as quadratic splines
with 10 polynomial intervals over a control horizon of
T = 5 s. The average time for solving the motion planning
equals 350 ms. The problem is solved repeatedly with a

rate of 2.5 Hz. An approximated position ξ̂ is introduced
as a 6th degree spline with bound ε = 1 mm. Without this
approximation the average solving time equals 810 ms.

3.3 OMG-tools

The spline-based motion planning approach is imple-
mented as part of software toolbox with the name Op-
timal Motion Generation-tools (Van Parys and Mercy,
2016). This toolbox is written in Python and uses CasADi
(Andersson, 2013) as symbolic framework and interface to
solvers. Apart from the examples presented in this paper,
the toolbox provides more illustrations of the capabilities
of the presented method. For a quick overview, the reader
is referred to the readme file that contains various illustra-
tive animations.

4. CONCLUSION AND FUTURE WORK

This paper presents a motion planning approach for ef-
ficiently steering systems through an obstructed environ-
ment. By using a spline parameterization for the motion
trajectories and an efficient constraint enforcement on
these trajectories, the problem is formulated as a small-
scale optimization problem. This paper specifically treats
two three dimensional cases. In the first case the method is
used to steer an industrial Cartesian Robot time-optimal.
This was validated experimentally on a plate transporta-
tion system. The second case handles the navigation of a
quadrotor in a dynamic environment. In order to cope with
a changing environment and with disturbances in general,
the motion planning is solved repeatedly online. All code
is made available via a user-friendly toolbox (Van Parys
and Mercy, 2016). Future work includes the experimental
validation of the quadrotor navigation and investigating
approaches for further reducing the update time in an
online setting.
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