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Abstract

The popularity of algebraic effect handlers as a programming
language feature for user-defined computational effects is steadily
growing. Yet, even though efficient runtime representations have
already been studied, most handler-based programs are still much
slower than hand-written code.

In this paper we show that the performance gap can be drasti-
cally narrowed (in some cases even closed) by means of type-and-
effect directed optimising compilation. Our approach consists of two
stages. Firstly, we combine elementary source-to-source transforma-
tions with judicious function specialisation in order to aggressively
reduce handler applications. Secondly, we show how to elaborate
the source language into a handler-less target language in a way
that incurs no overhead for pure computations.

This work comes with a practical implementation: an optimiz-
ing compiler from Eff, an ML style language with algebraic effect
handlers, to OCaml. Experimental evaluation with this implemen-
tation demonstrates that in a number of benchmarks, our approach
eliminates much of the overhead of handlers and yields competitive
performance with hand-written OCaml code.
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The popularity of algebraic e�ect handlers as a programming language feature for user-defined computational e�ects is
steadily growing. Yet, even though e�icient runtime representations have already been studied, most handler-based programs
are still much slower than hand-wri�en code.

In this paper we show that the performance gap can be drastically narrowed (in some cases even closed) by means of
type-and-e�ect directed optimising compilation. Our approach consists of two stages. Firstly, we combine elementary
source-to-source transformations with judicious function specialisation in order to aggressively reduce handler applications.
Secondly, we show how to elaborate the source language into a handler-less target language in a way that incurs no overhead
for pure computations.

This work comes with a practical implementation: an optimizing compiler from Eff, an ML style language with algebraic
e�ect handlers, to OCaml. Experimental evaluation with this implementation demonstrates that in a number of benchmarks,
our approach eliminates much of the overhead of handlers and yields competitive performance with hand-wri�en OCaml
code.
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1 INTRODUCTION
Algebraic e�ect handlers (Plotkin and Power 2003; Plotkin and Pretnar 2013) are quickly maturing from a
theoretical model of computational e�ects to a practical (functional) language feature for user-defined side-
e�ects.
Now that a bevy of implementations are available, runtime performance is becoming more and more of a

concern. So far, most implementations come in the form of libraries (Brady 2013; Kammar et al. 2013; Kiselyov
et al. 2013; Kiselyov and Sivaramakrishnan 2016) and interpreters (Bauer and Pretnar 2015; Hillerström et al.
2016). As a consequence, much of the e�ort to improve performance has been directed towards improving the
runtime representation of computations with handlers and associated operations (Dolan et al. 2015; Hillerström
et al. 2016; Kiselyov and Ishii 2015). Yet, we see that in practice e�ect handlers still incur a significant performance
overhead compared to hand-wri�en code and native side-e�ects.
With an end-to-end overview of a compiler for the Koka language, Leijen (2017) has recently demonstrated

that compilation is a valid alternative avenue for implementing algebraic e�ects and handlers. We believe that
optimising compilation in particular is interesting because it can further narrow the performance gap with native
e�ects.
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To substantiate this belief we present our approach to the optimised compilation of Eff, a basic functional
language with support for algebraic e�ects and handlers (Bauer and Pretnar 2015). A�er giving a short informal
overview of the proposed approach in Section 2, we begin the formal development in Section 3, which defines
the syntax and semantics of Effy, the core calculus of Eff. The rest of the paper describes our contributions:

• First, we present source-to-source transformations and selective function specialisation with the aim of
eliminating explicit uses of handlers and the resulting overhead (Section 4).

• Next, we give a basic monadic elaboration of Effy into OCaml, where e�ectful computations of Effy are
translated into pure computations of OCaml that generate elements of the free monad (Section 5).

• We further refine this translation into one that exploits the purity of computations to generate pure
OCaml expressions where possible, resulting in mostly idiomatic OCaml code (Section 6). This stage
crucially relies on the information from Effy’s type-and-e�ect system to do its job.

• Finally, we discuss our implementation of the Eff compiler (Section 7), and present an experimental
evaluation, which clearly demonstrates the e�ectiveness of this approach on a number of benchmarks.
(Section 8).

Section 9 discusses related work and Section 10 concludes.

2 OVERVIEW
This section motivates the need for optimised compilation on a small example. We explain the relevant concepts
of algebraic e�ects and handlers, though we encourage the reader to look at (Pretnar 2015) for a more detailed
introduction. As we are working with both OCaml and Eff, whose syntax closely follows OCaml, we use colors
to distinguish between OCaml code and Eff code.

2.1 Programming with Algebraic E�ect Handlers
Our running example is a simple loop that repeatedly increments an implicit integer state. We first declare two
e�ectful operations to manipulate the state and then define a recursive function that increments the state a
given number of times.

operation Put: int -> unit

operation Get: unit -> int

let rec loop n =

if n = 0 then () else (Put (Get () + 1); loop (n - 1))

Applying loop “as is” to any positive integer results in a runtime error similar to one of an uncaught exception, for
we have so far given no meaning to Put and Get. To do so, we use handlers. Like exception handlers, which replace
the meaning of raised exceptions, algebraic e�ect handlers determine how to interpret operations when they
appear in a computation (the operation cases) and how to interpret the final result of a computation (the return
case). But in contrast to exceptions, which abort any further computation, operations can have continuations, i.e.
the remainder of the computation waiting for the result of the operation, and the handler can access them.
A standard way of implementing stateful behaviour is to treat computations as functions from the initial to

the final value of the state. This is achieved by the following handler:

let state_handler = handler

| Put s' k -> (fun _ -> k () s')

| Get () k -> (fun s -> k s s)

| return _ -> (fun s -> s)

Let us first take a look at the Put case, which is defined in terms of the parameter s' (the new value of the state)
and the continuation k. We handle Put as a function that accepts (though ignores) the initial state, and then

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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resumes the continuation by passing it the expected result () : unit. The handlers we present in this paper are
deep, meaning that the handler implicitly continues handling further operations in the continuation. Thus k ()

is again a function of the initial state, and we pass it the new state s'.
The case for Get is similar, except that we pass the initial state s to the continuation k twice: first as the

result of the lookup, and second as the new (unmodified) initial state. Finally, the return case ignores the final
result of a computation and instead returns the current value of the state. Note that by modifying the handled
computation into a function, the handler changes the computation’s type.
To tie everything together, we define the function main, which applies the handler to loop and provides the

initial state 0 to the resulting function:

let main n =

(with state_handler handle loop n) 0

2.2 Basic Compilation to OCaml
The basic idea behind compiling algebraic e�ects to OCaml, which does not support them, is to define a type
'a computation to represent the free monad of computations that call algebraic e�ects and return values of type
'a. We postpone the discussion of the exact implementation of this type to Section 5.

We then build computations using the following constructors: a value embedding return : 'a -> 'a computation

or basic operations put : int -> unit computation and get : unit -> int computation. We compose e�ectful
computations using a monadic bind >>=, which evaluates an e�ectful computation of type 'a computation and
passes its result to a continuation of type 'a -> 'b computation, resulting in a 'b computation.

It is important to note here that functions can have e�ectful bodies. Thus an Eff function of a type 'a -> 'b is
translated into a OCaml function of type 'a -> 'b computation. This applies equally to (curried) multi-argument
functions. So an Eff function f : 'a -> 'b -> 'cmust be translated as f : 'a -> ('b -> 'c computation) computation,
and an application f x y must be translated as f x >>= fun g -> g y.
Using the above definitions, the presented compiler translates the loop function into the following code

(manually reforma�ed for presentation purposes):

let rec loop n =

equal n >>= fun f ->

f 0 >>= fun b ->

if b then return () else

get () >>= fun s ->

plus s >>= fun g ->

g 1 >>= fun s' ->

put s' >>= fun _ ->

minus n >>= fun h ->

h 1 >>= fun n' ->

loop n'

where equal, plus and minus are translations of Eff’s arithmetic operations into predefined OCaml constants of
the appropriate function type. For example, we define

let plus = fun x -> return (fun y -> return (x + y))

We can translate state_handler as

let state_handler = handler {

put_case = (fun s' k -> return (fun _ -> k () >>= fun f -> f s'));

get_case = (fun () k -> return (fun s -> k s >>= fun f -> f s));
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return_case = (fun _ -> return (fun s -> return s));

}

where the record specifying handler cases are of a predefined type

type ('a, 'b) handler_cases = {

put_case : int -> (unit -> 'b computation) -> 'b computation;

get_case : unit -> (int -> 'b computation) -> 'b computation;

return_case : 'a -> 'b computation;

}

and handler : ('a, 'b) handler_cases -> ('a computation -> 'b computation) is a function that takes han-
dler cases and returns a handler, represented as a function between computations. Finally, the main function
may be translated as

let main n =

state_handler (loop n) >>= (fun f -> f 0)

2.3 Purity Aware Compilation
Obviously, the continual composition and decomposition of computations incurs a substantial overhead. By
identifying pure computations and generating regular OCaml code for them, as proposed by Leijen (2017), we
can avoid some of that overhead. For instance, since the arithmetic operators used in loop are pure, we can
translate them directly into OCaml’s arithmetic operations and bind their result with let rather than with the
more expensive >>=.

let rec loop n =

let f = (=) n in

let b = f 0 in

if b then return () else

get () >>= fun s ->

let g = plus s in

let s' = g 1 in

put s' >>= fun _ ->

let h = minus n in

let n' = h 1 in

loop n'

Nevertheless, the backbone of the computation still makes use of >>= to sequence the e�ectful get and put

operations. Hence, the overall impact of this optimisation on this example is limited.

2.4 Optimising Compilation
However, with the help of more aggressively optimised compilation, which replaces operation calls in a handled
operation with their corresponding operation cases, we can obtain altogether much tighter code:

let main n = (

let rec state_handler_loop m =

if m = 0 then (fun s -> s) else (fun s -> state_handler_loop (m - 1) (s + 1))

in

state_handler_loop n) 0

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Here, all of the handler, the explicit operations get and put, and their explicit sequencing with >>= have been elim-
inated. The recursive function loop has been locally specialised for the particular interpretation of state_handler.
The resulting code is very close to the hand-wri�en equivalent, the only di�erence being that a human program-
mer would hoist the abstractions out of the two branches of the conditional expression.

3 THE CALCULUS
This section presents Effy, a basic functional calculus with support for algebraic e�ect handlers, which forms
the core language of our optimising compiler. We describe the relevant concepts, but refer the reader to
Pretnar’s (2015) tutorial, which explains essentially the same calculus in more detail.

3.1 Syntax
Terms. There are two main kinds of terms, given in Figure 1: (pure) values v and (dirty) computations c ,

which may call e�ectful operations. We assume a given set of constants k, such as true, false, integer literals,
arithmetic functions +,−,=, <, >, or similar, and of operations Op, such as Get or Put.

value v ::= x variable
| k constant
| fun x 7→ c function
| { handler

return x 7→ cr , return case
Op1 x k 7→ cOp1 , . . . , Opn x k 7→ cOpn operation cases

}
computation c ::= v1v2 application

| let rec f x = c1 in c2 recursive definition
| return v returned value
| Opv operation call
| do x ← c1 ; c2 sequencing
| handle c with v handling

Fig. 1. Terms of Effy

We o�en abbreviate Op1 x k 7→ cOp1 , . . . , Opn x k 7→ cOpn as [Opx k 7→ cOp]Op∈O , and write O to denote the set
of handled operations {Op1, . . . , Opn }.

Types. Similarly, we distinguish between two kinds of types: the pure types A,B of values and the dirty types
C,D of computations, described in Figure 2. Type A→ C is given to functions that take an argument of type A
and perform a computation of type C , while the type C ⇒ D is given to handlers that turn a computation of
type C into one of type D. The dirty type A ! ∆ is assigned to a computation returning values of type A and
potentially calling operations from the set ∆.

3.2 Type System
3.2.1 Subtyping. The dirty type A ! ∆ is assigned to a computation returning values of type A and potentially

calling operations from the set ∆. This set ∆ is always an over-approximation of the actually called operations,
and may safely be increased, inducing a natural subtyping judgement A ! ∆ ≤ A ! ∆′ on dirty types. As dirty
types can occur inside pure types, we also get a derived subtyping judgement on pure types. Both judgements
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(pure) type A,B ::= bool | int basic types
| A→ C function type
| C ⇒ D handler type

dirty type C,D ::= A ! ∆
dirt ∆ ::= {Op1, . . . , Opn }

Fig. 2. Types of Effy

Subtyping

Sub-bool

bool 6 bool

Sub-int

int 6 int

Sub-→
A′ 6 A C 6 C ′

A→ C 6 A′ → C ′

Sub-⇒
C ′ 6 C D 6 D ′

C ⇒ D 6 C ′ ⇒ D ′

Sub-!
A 6 A′ ∆ ⊆ ∆′

A ! ∆ 6 A′ ! ∆′

Fig. 3. Subtyping for pure and dirty types

are defined in Figure 3. Observe that, as usual, subtyping is contravariant in the argument types of functions
and handlers, and covariant in their return types.

3.2.2 Typing. Figure 4 defines the typing judgements for values and computations with respect to a standard
typing context Γ.

Values. The rules for subtyping, variables, and functions are entirely standard. For constants we assume a
signature Σ that assigns a type A to each constant k, which we write as (k : A) ∈ Σ.
A handler expression has type A ! ∆ ∪ O ⇒ B ! ∆ i� all branches (both the operation cases and the return

case) have dirty type B ! ∆ and the operation cases cover the set of operations O. Note that the intersection
∆ ∩ O is not necessarily empty. The handler deals with the operations O, but in the process may re-issue some
of them (i.e., ∆ ∩ O).

When typing operation cases, the given signature for the operation (Op : AOp → BOp) ∈ Σ determines the type
AOp of the parameter x and the domain BOp of the continuation k . As our handlers are deep, the codomain of k
should be the same as the type B ! ∆ of the cases.

Computations. With the following exceptions, the typing judgement Γ ` c : C has a straightforward definition.
The return construct renders a value v as a pure computation, i.e., with empty dirt. An operation invocation
Opv is typed according to the operation’s signature, with the operation itself as its only operation. Finally, rule
With shows that a handler with type C ⇒ D transforms a computation with type C into a computation with
type D.

3.3 Big-Step Operational Semantics
Figure 5 defines the big-step operational semantics of Effy. The judgement c ⇓ r states that computation c
reduces to result r . A result is either a returned value, return v , or an unhandled operation, Opv (y.c ), where v
is the operation’s parameter and y.c is its continuation.

The rules Eval-App and Eval-LetRec are straightforward. Next, the value result is generated by the return v
computation (Eval-Ret), while the unhandled operation (with trivial continuation y.return y) is generated
by the Opv computation (Eval-Op). If the intermediate result of a sequential do is a value (Eval-Do-Ret), it is
substituted into the second computation. If it is an unhandled operation (Eval-Do-Op), the second computation
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typing contexts Γ ::= ϵ | Γ,x : A
Expressions

SubVal
Γ ` v : A A 6 A′

Γ ` v : A′

Var
(x : A) ∈ Γ
Γ ` x : A

Const
(k : A) ∈ Σ
Γ ` k : A

Fun
Γ,x : A ` c : C

Γ ` fun x 7→ c : A→ C

Hand

Γ,x : A ` cr : B ! ∆
[
(Op : AOp → BOp) ∈ Σ Γ,x : AOp,k : BOp → B ! ∆ ` cOp : B ! ∆

]
Op∈O

Γ ` {return x 7→ cr , [Opx k 7→ cOp]Op∈O } : A ! ∆ ∪ O ⇒ B ! ∆
Computations

SubComp
Γ ` c : C C 6 C ′

Γ ` c : C ′

App
Γ ` v1 : A→ C Γ ` v2 : A

Γ ` v1v2 : C
LetRec
Γ, f : A→ C,x : A ` c1 : C Γ, f : A→ C ` c2 : D

Γ ` let rec f x = c1 in c2 : D

Ret
Γ ` v : A

Γ ` return v : A ! ∅
Op
(Op : A→ B) ∈ Σ Γ ` v : A

Γ ` Opv : B ! {Op}

Do
Γ ` c1 : A ! ∆ Γ,x : A ` c2 : B ! ∆

Γ ` do x ← c1 ; c2 : B ! ∆

With
Γ ` v : C ⇒ D Γ ` c : C
Γ ` handle c with v : D

Fig. 4. Typing

is appended to its continuation. When a handled computation evaluates to a value (Eval-With-Ret), this value is
substituted into the handler’s return case. Finally, an unhandled operation is passed to the appropriate operation
case, if there is one (Eval-With-Handled-Op), or propagated further, if there is not (Eval-With-Unhandled-Op).
In either case, the continuation y.c ′ is handled by the same handler.

3.4 Reasoning
To facilitate equational reasoning about programs with algebraic e�ect handlers, Bauer & Pretnar (2014) establish
several observational equivalences, which we adapt to Effy in Figure 6 (we omit structural equivalences that
make ≡ a congruence). The meta-variables v, c stand for arbitrary values and computations that make the le�-
and right-hand sides of the equivalences well-typed with the same type.
Moreover, algebraic e�ects validate an induction principle (Bauer and Pretnar 2014; Plotkin and Pretnar

2008) (see (Pretnar 2015) for a more detailed explanation): to show that a property ϕ holds for all computations
Γ ` c : A ! ∆, it su�ices to show that 1) ϕ (return v ) holds for all values v , and 2) that ϕ (do x ← Opv ; c ′) holds
for all operations Op ∈ ∆, values v and computations c ′, given that ϕ (c ′) holds.

These equivalences and induction principle will turn out to be useful in the next section to prove the soundness
of the optimisations.
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result r ::= return v | Opv (y. c )

Evaluation
Eval-App

c[v/x] ⇓ r
(fun x 7→ c )v ⇓ r

Eval-LetRec
c2[(fun x 7→ let rec f x = c1 in c1)/f ] ⇓ r

let rec f x = c1 in c2 ⇓ r
Eval-Ret

return v ⇓ return v

Eval-Op

Opv ⇓ Opv (y. return y)

Eval-Do-Ret
c1 ⇓ return v c2[v/x] ⇓ r

do x ← c1 ; c2 ⇓ r

Eval-Do-Op
c1 ⇓ Opv (y. c ′1)

do x ← c1 ; c2 ⇓ Opv (y. do x ← c ′1 ; c2)

Eval-With-Ret
c ⇓ return v cr [v/x] ⇓ r

handle c with h ⇓ r

Eval-With-Handled-Op
c ⇓ Opv (y. c ′) cOp[v/x , (fun y 7→ handle c ′ with h)/k] ⇓ r

handle c with h ⇓ r
Eval-With-Unhandled-Op

c ⇓ Op′v (y. c ′) Op′ < O
handle c with h ⇓ Op′v (y. handle c ′ with h)

Fig. 5. Operational semantics (in the last three rules, h = {return x 7→ cr , [Opx k 7→ cOp]Op∈O })

(fun x 7→ c )v ≡ c[v/x] (1)

fun x 7→ v x ≡ v (2)

let rec f x = c1 in c2 ≡ c2[(fun x 7→ let rec f x = c1 in c1)/f ] (3)

do x ← return v ; c ≡ c[v/x] (4)

do x ← c ; return x ≡ c (5)

do x2 ← (do x1 ← c1 ; c2) ; c3 ≡ do x1 ← c1 ; (do x2 ← c2 ; c3) (6)

handle c1 with {return x 7→ c2} ≡ do x ← c1 ; c2 (7)

handle (return v ) with h ≡ cr [v/x] (8)

handle (do y ← Opv ; c ) with h ≡ cOp[v/x , (fun y 7→ handle c with h)/k] (9)

handle (do y ← Op′v ; c ) with h ≡ do y ← Op′v ; handle c with h (Op′ < O) (10)

Fig. 6. Basic Equivalences (in the last three rules, h = {return x 7→ cr , [Opx k 7→ cOp]Op∈O })

4 SOURCE-LEVEL OPTIMISATIONS
This section discusses the heart of our optimising compiler, which consists of source-to-source transformations
that aim to improve the runtime performance of the program.

4.1 Term Rewriting Rules
We use the information of the type and e�ect system and the syntactic structure of the terms to perform
a number of optimisations. We mainly target optimisations that (help) remove handlers. We denote these
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Simplification

App-Fun

(fun x 7→ c )v { c[v/x]

Do-Ret

do x ← return v ; c { c[v/x]

Do-Op

do x ← (do y ← Opv ; c1) ; c2 { do y ← Opv ; (do x ← c1 ; c2)
Handler Reduction

With-LetRec

handle (let rec f x = c1 in c2) with v { let rec f x = c1 in (handle c2 with v )

With-Ret
h = {return x 7→ cr , [Opx k 7→ cOp]Op∈O }
handle (return v ) with h { cr [v/x]

With-Handled-Op
h = {return x 7→ cr , [Opx k 7→ cOp]Op∈O }

handle (Opv ) with h { cOp[v/x , (fun x 7→ cr )/k]

With-Pure
h = {return x 7→ cr , [Opx k 7→ cOp]Op∈O } Γ ` c : A ! ∆ ∆ ∩ O = ∅

handle c with h { do x ← c ; cr

With-Do
h = {return x 7→ cr , [Opx k 7→ cOp]Op∈O }

h′ = {return y 7→ (handle c2 with h), [Opx k 7→ cOp]Op∈O }
handle (do y ← c1 ; c2) with h { handle c1 with h

′

Fig. 7. Term Rewriting Rules

optimisations in terms of semantics-preserving rewrite rules of the form c1 { c2, listed in Figure 7. The rewriting
rules are divided into two groups:

Simplification. These three rules simplify the structure of the program in the hope of exposing opportunities
to eliminate handlers. The first two, App-Fun and Do-Ret, are static counterparts of the semantic rules Eval-App
and Eval-Do-Ret. The last rule, Do-Op, exploits the associativity of do to bring an operation to the front, where
it can potentially be reduced by a handler.

Handler Reduction. These rules reduce terms of the form (handle c with h) for di�erent shapes of computation
c and are the heart of our optimization. Rule With-LetRec moves the handler into the main subcomputation.
Rules With-Ret and With-Handled-Op are the static counterparts of the semantic rules Eval-With-Ret and
Eval-With-Handled-Op.

Next, rule With-Pure applies when the computation c is pure relative to the handler h. This is the case when
the intersection of the operations that may be called by c with the operations handled by h is empty. In this
case, only the handler’s return case is relevant. Hence, we insert it at the end of c .

Finally, the most unusual rule is With-Do which reduces the handling of a sequence of two computations to a
form where the two computations are handled separately. The validity of this transformation becomes more
obvious when we split it into two steps:
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(1) We replace the sequential do with a handler:

do y ← c1 ; c2 { handle c1 with {return y 7→ c2}
The intuition is that both forms express that the value returned by c1 gets bound to y in c2.

(2) We change the association of the handlers:

handle (handle c1 with {return y 7→ c2}) with {return x 7→ cr , [Opx k 7→ cOp]Op∈O }
{

handle c1 with {return y 7→ (handle c2 with {return x 7→ cr , [Opx k 7→ cOp]Op∈O }), [Opx k 7→ cOp]Op∈O }
The intuition is that any operations generated by c1 are forwarded anyway from the inner handler to the
outer handler. However, any return case is first handled by the inner handler, and the computation that
results is further processed by the outer handler. The rewri�en form accomplishes the same workflow
with a single handler around c1. The hope is that the handler around c2 can be specialised independently
from specialising the handler around c1.

Soundness. The rewrite rules preserve observational equivalence.

Theorem 4.1.
∀c, c ′, Γ,A,∆ : Γ ` c : A ! ∆ ∧ c { c ′ ⇒ c ≡ c ′

The proof of this theorem, given in Appendix A, makes use of the equivalences and induction principle
presented in the previous section.

4.2 Function Specialisation
The rewrite rules above deal with most computations of the form (handle c with h) where h is a handler
expression, either dropping the handler altogether or pushing it down in the subcomputations. However, one
important case is not dealt with: the case where c is of the form f v with f the name of a user-defined recursive
function.1

Consider this small example of the above situation:

let rec go n = go (Next n) in

handle (go 0) with

| return x -> x

| Next n k -> if n > 100 then n else k (n * n + 1)

The non-terminating recursive function go seems to diverge. Yet, with the provided handler, its argument steadily
increases and evaluation eventually terminates when the argument exceeds 100.
In order to optimise this situation, we create a specialised copy of the function that has the handler pushed

into its body. In other words, for any recursive definition let rec f x = cf in c , we perform the following
general rewrite inside c :

handle f v with h { let rec f ′ x = handle cf with h in f ′v

The expectation is that, by exposing the handler to the body of the function (cf ), further optimizations succeed
in eliminating the explicit handler. A critical step involved in the post-processing is to “tie the knot”: a�er
several rewrite steps in cf , the handler is applied to the (original) recursive call, so we have a term of the form
handle f v ′ with h, which we can replace by f ′v ′. This eliminates the handler entirely and turns the original
example into

1If f is a function parameter of a higher-order function, we don’t do anything.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.



E�icient Compilation of Algebraic E�ects and Handlers • 1:11

let rec go n = ... in

let rec go ' n = if n > 100 then n else go ' (n * n + 1) in

go ' 0

Generalization to Non-Tail Recursion. The above basic specialisation strategy only works when the recursive
call has a tail position. Yet, that is o�en not the case. Take for instance the following example.

let rec range n =

match n with

| 0 -> []

| _ -> Fetch () :: range (n - 1)

in

handle (range 5) with

| return x -> x

| Fetch _ k -> k 42

The function range creates a list of given length, filling it with elements obtained by the Fetch operation. To
keep the example small we use a handler that always yields the value 42.
With the basic specialisation strategy, further optimisation does not succeed in tying the knot. Instead, we

obtain this partially optimised form:

let rec range n = ... in

let rec range ' n =

match n with

| 0 -> []

| _ -> handle (range (n - 1)) with

| return x -> 42 :: x

| Fetch _ k -> k 42

in

range ' 5

In the tail position, the rewrite rule With-Do has kicked in to pull the call’s continuation into the return case
of the handler. This has turned the call into a tail call, but the return case of the new handler around this call
di�ers from the original handler’s return case. This prevents us from tying the knot.

We could create a second specialised function definition for this new handler, but the same problemwould arise
at its recursive call and so on, yielding an infinite sequence of specialised functions. Instead, we use generalisation
to break out of this diverging process. Instead of specialising the function for one specific handler in this diverging
sequence, we specialise it for what they all have in common (the operation cases) and parametrise it in what is
di�erent (the return case).

This yields the following general rewrite rule: for any recursive definition let rec f x = cf in c , we perform
the following general rewrite inside c :

handle f v with {return x 7→ cr , [Opx k 7→ cOp]Op∈O }
{

let rec f ′ (x ,k ) = handle cf with {return x 7→ k x , [Opx k 7→ cOp]Op∈O } in f ′ (v, fun x 7→ cr )

and replace each handled recursive call handle f v ′ with {return x 7→ c ′r , [Opx k 7→ cOp]Op∈O } with f ′ (v ′, c ′r ).
This strategy enables us to tie the knot in the range example and obtain this form
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let rec range ' (n, k) =

match n with

| 0 -> k []

| _ -> range ' (n - 1, fun x -> k (42 :: x))

in

range ' (5, fun x -> x)

Note that in e�ect this approach selectively CPS-transforms recursive functions to specialise them for a
particular handler.

Termination. If le� unchecked, function specialisation can diverge. This is illustrated by the following small
example program:

let rec go n =

if n = 0 then Fail

else if Decide then go (n-1) else go (n-2)

in handle (go m) with

| Decide _ k ->

handle k true with

| Fail _ _ -> k false

A�er specialisation for the top-level handler, we obtain

let rec go n =

if n = 0 then Fail

else if Decide then go (n-1) else go (n-2)

in let rec go1 n1 =

if n1 = 0 then Fail

else handle go1 (n1 -1) with

| Fail -> go1 (n1 -2)

in go1 m

Note that the specialised function go1 still contains the second handler, which is now applied to a recursive call.
Hence, we can continue by specialising this handled call to obtain

let rec go n =

if n = 0 then Fail

else if Decide then go (n-1) else go (n-2)

in let rec go1 n1 =

if n1 = 0 then Fail

else let rec go2 n2 =

if n2 = 0 then go1 (n1 -2)

else handle (handle go1 (n2 -1) with

| Fail -> go1 (n2 -2)) with

| Fail -> go1 (n1 -2)

in go2 (n1 -1)

in go1 m

Now the resulting code contains two nested handlers around a recursive call. However, the inner of those
two handlers is distinct from any of the previous handlers because it refers to the new variable n2. Hence,
we can specialise again and again without end. This is non-termination is obviously undesirable and so we
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currently enforce termination by not re-specialising any already specialised function. We leavemore sophisticated
solutions, e.g., abstracting over the variation among the specialised handlers, to future work.

5 BASIC TRANSLATION TO OCAML

5.1 Translating Types
As a concrete target for translating Effy, we pick a small subset of OCaml that includes standard constructs such
as booleans, integers, functions and local definitions (both non-recursive and recursive). Its types are given in
Figure 8, and in addition to the standard ones, they include a predefined type T computation, which represents
computations returning values of type T , and a type (T1,T2) handler cases, which lists all cases of a handler
that takes computations of type T1 computation into T2.

type T ::= bool | int | T1 → T2 | T computation | (T1,T2) handler cases

Fig. 8. Types of (a subset of) OCaml

JboolK = bool

JintK = int

JA→ CK = JAK→ JCK
JC ⇒ DK = JCK→ JDK

JA ! ∆K = JAK computation

Fig. 9. Compilation of Effy types to OCaml

We translate types of Effy into OCaml by means of the compilation function J·K listed in Figure 9. Primitive
types and function types are straightforwardly mapped onto their OCaml counterparts. The handler type is
translated to a function type that turns one type of computation into another.
Computation types are mapped to the predefined computation type, defined by default as a datatype repre-

sentation of a free monad (where Opi : Ai → Bi ranges over the signature of all Effy operations):

type 'a computation =

| Return: 'a -> 'a computation

| Op1: JA1K * (JB1K -> 'a computation) -> 'a computation

| ...

| Opn : JAnK * (JBnK -> 'a computation) -> 'a computation

Here Return x represents a value x as a (pure) computation, and Op x k denotes an impure computation that calls
operation Op with argument x and continuation k. We can interchange the implementation of 'a computation to
obtain di�erent runtime representations, though in this paper, we fix the free monad representation, as it is both
simple and e�icient enough for our purposes.
Note that the translation erases the dirt ∆ from computation types A ! ∆, for lack of a convenient way to

represent it in OCaml. The algebraic e�ect handlers implementation of Multicore OCaml (Dolan et al. 2015) has
made a similar choice not to reflect the set of possible operations in the type.
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expression E ::= x
| k
| fun x 7→ E
| E1 E2
| let x = E1 in E2
| let rec f x = E1 in E2
| {return = E; op1 = E1; . . . ; opn = En }
| return
| op1 | · · · | opn
| handler
| >>=

Fig. 10. Terms of (a subset of) OCaml

Finally, the type of all handler cases is defined to be the record type:

type ('a, 'b) handler_cases = {

return: 'a -> 'b;

op1: JA1K -> (JB1K -> 'b) -> 'b;

...

opn : JAnK -> (JBnK -> 'b) -> 'b

}

Here the operation cases are represented by a function that takes the argument and the continuation of the
operation and then performs the operation’s corresponding behaviour. (Note that the domain 'b is not necessarily
of the form _ computation. We exploit this fact in Section 6 to allow handlers that handle all computations into
a pure value.)

5.2 Translating Terms
OCaml terms, given in Figure 10, include the standard ones: variables, constants (corresponding to ones in
Effy), function abstractions & applications, and both non-recursive & recursive local definitions. Next, we
include records that list handler cases and a number of predefined functions for value embedding, operations,
handler definitions and sequencing. Both Effy values and computations are translated to OCaml expressions as
described in Figure 11. With several notable exceptions, most forms have a direct counterpart in OCaml.
A handler value is translated to an application of the handler function to a record value that gathers the

return and operation cases. For the default free monad representation, handler is defined as follows:

let rec handler (h : ('a, 'b) handler_cases) : ('a computation -> 'b) =

function

| Return x -> h.return x

| Op1 (x, k) -> h.op1 x (fun y -> handler h (k y))

...

| Opn (x, k) -> h.opn x (fun y -> handler h (k y))

In case a handler does not provide a handling case for an operation Opi , we fill it in with a default case that
propagates it outwards, in which case 'b needs to be of the form _ computation. Note that this is always the
case with the basic translation presented in this section.
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JxK = x

JkK = k

Jfun x 7→ cK = fun x 7→ JcK
J{return x 7→ cr , [Opx k 7→ cOp]Op∈O }K = handler {return = fun x 7→ Jcr K; op1 = E1; . . . ; opn = En }

where Ei =

fun x k 7→ JcOpi K Opi ∈ O
fun x k 7→ opi x>>=k otherwise

Jv1v2K = Jv1K Jv2K
Jlet rec f x = c1 in c2K = let rec f x = Jc1K in Jc2K

Jreturn vK = return JvK
JOpi vK = opi JvK

Jdo x ← c1 ; c2K = Jc1K>>=(fun x 7→ Jc2K)
Jhandle c with vK = JvK JcK

Fig. 11. Compilation of Effy terms to OCaml

Building a computation from a value, from an operation or by binding two computations together all happens
in terms of the corresponding operations on the underlying free monad representation.

let return (x : 'a) : 'a computation = Return x

let op1 (x : JA1K) (k : JB1K -> 'a computation) : 'a computation = Op1 (x, k)

...

let opn (x : JAnK) (k : JBnK -> 'a computation) : 'a computation = Opn (x, k)

let rec (>>=) (c : 'a computation) (f : 'a -> 'b computation) : 'b computation =

match c with

| Return x -> f x

| Op1 (x, k) -> Op1 (x, (fun y -> (k y) >>= f))

...

| Opn (x, k) -> Opn (x, (fun y -> (k y) >>= f))

Finally, handling a computation with a handler is simply translated as applying the handler to the computation.
This translation is type-preserving.

Theorem 5.1.

Γ ` c : C =⇒ JΓK ` JcK : JCK (∀c, t , Γ)

The proof of this theorem is given in Appendix B; it proceeds by induction on the typing derivation.
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Sub-bool

(bool 6 bool) { (fun x 7→ x )

Sub-int

(int 6 int) { (fun x 7→ x )

Sub-→
(A′ 6 A) { E1 (C 6 C ′) { E2

(A→ C 6 A′ → C ′) { (fun f x 7→ E2 ( f (E1 x )))

Sub-⇒
(C ′ 6 C ) { E1 (D 6 D ′) { E2

(C ⇒ D 6 C ′ ⇒ D ′) { (fun h x 7→ E2 (h (E1 x )))

Sub-!-Pure
(A 6 A′) { E

(A ! ∅ 6 A′ ! ∅) { E

Sub-!-PureImpure
(A 6 A′) { E ∆′ , ∅

(A ! ∅ 6 A′ ! ∆′) { (fun x 7→ return (E x ))

Sub-!-Impure
(A 6 A′) { E ∆ ⊆ ∆′ ∆ , ∅

(A ! ∆ 6 A′ ! ∆′) { (fmapE)

Fig. 12. Subtyping induced coercions

6 PURITY-AWARE TRANSLATION TO OCAML
The basic compilation scheme’s free monad representation introduces a substantial performance overhead for
pure computations. This section presents an extended compilation scheme that avoids this overhead for pure
computations.

The main aim of our extended compilation scheme is to di�erentiate between pure and impure computations.
This is nicely summarised in the more nuanced compilation of computation types:

JA ! ∆K =

JAK ∆ = ∅
JAK computation ∆ , ∅

At the term level we express the extended compilation by means of type-and-e�ect-directed elaboration
judgements that extend the declarative type system with a target OCaml expression. The crucial ingredient
are judgements that elaborate subtyping of value types A ≤ B or computation types C ≤ D into functions that
coerce between the two types (Figure 12).

The reflexive cases for bool and int yield an identity coercion, while function and handler types give rise to pre-
and post-composition of the coercions. We distinguish three di�erent cases for the coercion between computation
types. If both computations are pure, the coercion is just that between the values. A pure computation is coerced
to an impure one by composing the value coercion with the return embedding. Finally, if the first computation
is impure, so is the other one, and we map the coercion over the free monad with the predefined function

let rec fmap (f : 'a -> 'b) : ('a computation -> 'b computation) =

function

| Return x -> f x

| Op1 (x, k) -> Op1 (x, (fun y -> fmap f (k y)))

...

| Opn (x, k) -> Opn (x, (fun y -> fmap f (k y)))
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Lemma 6.1. For all pure types A and B, and for all computation types C and D we have that:

(A 6 B) { E =⇒ ` E : JAK→ JBK
and

(C 6 D) { E =⇒ ` E : JCK→ JDK
The elaboration judgement (Γ ` v : A) { E yields a corresponding OCaml expression E for the value v (see

Figure 13). There are two noteworthy cases. Firstly, SubVal applies the subtyping coercion to the elaborated term.
Secondly, HandPure singles out the case where the handler maps pure expressions to pure expressions, which
is only possible when there are no operation cases. In this case, we elaborate the handler into its elaborated
value case. The impure case, HandImpure, works similar to the basic translation. For each operation Opi , we
need to provide a case Ei . If an operation is handled by a handler, we take the corresponding elaboration. If the
operation is not handled, but is still listed in the outgoing dirt ∆, we propagate it as before. Finally, the case
when the operation is neither handled nor listed in ∆ can never occur at runtime, so we may safely raise an
(OCaml) exception. Such treatment ensures that a handler with empty ∆ and non-empty O is translated with a
pure co-domain.

The elaboration judgement (Γ ` c : C ) { E yields a corresponding OCaml expression E for the computation c .
There are three di�erences with the basic compilation scheme. Firstly, a pure return v computation is translated
just like the value v , i.e., without the return wrapper. Secondly, we distinguish between pure and impure do
computations. The la�er are translated in terms of the auxiliary >>= operator like before, but the former can be
simplified to a more e�icient OCaml let expression. Finally, computation subtyping is handled in the same way
as expression subtyping, by applying the coercion function.

Just like the basic compilation scheme, this more advanced elaboration is type-preserving.

Theorem 6.2.
Γ ` c : C { E =⇒ JΓK ` E : JCK (∀Γ, c,C,E)

The proof of this theorem is given in Appendix C.

7 IMPLEMENTATION IN EFF
To test the presented ideas in practice, we have implemented an optimising compiler for Eff, a prototype
functional programming language with algebraic e�ects and handlers. This section describes the practical
aspects of transforming Eff source code into e�icient OCaml code, and points out the main di�erences between
the idealised representation and the actual implementation.

7.1 Converting Source to Core Syntax
The actual source syntax of Eff is based onOCaml’s and features only a single syntactic sort of terms, which lumps
together values and computations. This source syntax is desugared into the core syntax, which is very close to
Effy, in a straightforwardmanner (Bauer and Pretnar 2015). For example, Eff program if f x then 0 else g 5 x

gets elaborated into
do b ← f x ; if b then (return 0) else (do h ← д 5 ; h x )

Our implementation supports standard features such as datatype declarations and control structures (like the
conditional above), which we have omi�ed from Effy to avoid the clu�er.

7.2 Type Inference
In this paper we have assumed that the type-and-e�ect information is available for all (sub)terms. Moreover,
the purity-aware code generation of Section 6 assumes that the typing derivations themselves are also given.
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Values
SubVal
(Γ ` v : A) { E1 (A 6 A′) { E2

(Γ ` v : A′) { (E2 E1)

Var
(x : A) ∈ Γ

(Γ ` x : A) { x

Const
(k : A) ∈ Σ

(Γ ` k : A) { k

Fun
(Γ,x : A ` c : C ) { E

(Γ ` fun x 7→ c : A→ C ) { (fun x 7→ E)

HandPure
(Γ,x : A ` cr : B ! ∅) { Er

(Γ ` {return x 7→ cr } : A ! ∅ ⇒ B ! ∅) { (fun x 7→ Er )

HandImpure
(Γ,x : A ` cr : B ! ∆) { Er[

(Op : AOp → BOp) ∈ Σ (Γ,x : AOp,k : BOp → B ! ∆ ` cOp : B ! ∆) { EOp

]
Op∈O

Ei =


fun x k 7→ JcOpi K Opi ∈ O
fun x k 7→ opix>>=k Opi ∈ ∆ − O
fun x k 7→ assert false otherwise

(Γ ` {return x 7→ cr , [Opx k 7→ cOp]Op∈O } : A ! ∆ ∪ O ⇒ B ! ∆)
{ handler {return = fun x 7→ Er ; op1 = E1; . . . ; opn = En }}

Computations
SubComp
(Γ ` c : C ) { E1 (C 6 C ′) { E2

(Γ ` c : C ′) { (E2 E1)

App
(Γ ` v1 : A→ C ) { E1 (Γ ` v2 : A) { E2

(Γ ` v1v2 : C ) { (E1 E2)

LetRec
(Γ, f : A→ C,x : A ` c1 : C ) { E1 (Γ, f : A→ C ` c2 : D) { E2

(Γ ` let rec f x = c1 in c2 : D) { (let rec f x = E1 in E2)

Ret
(Γ ` v : A) { E

(Γ ` return v : A ! ∅) { E

Op
(Op : A→ B) ∈ Σ (Γ ` v : A) { E

(Γ ` Opv : B ! {Op}) { (opE)

DoPure
(Γ ` c1 : A ! ∅) { E1 (Γ,x : A ` c2 : B ! ∅) { E2

(Γ ` do x ← c1 ; c2 : B ! ∅) { (let x = E1 in E2)

DoImpure
(Γ ` c1 : A ! ∆) { E1 (Γ,x : A ` c2 : B ! ∆) { E2 ∆ , ∅

(Γ ` do x ← c1 ; c2 : B ! ∆) { (E1>>=fun x 7→ E2)

With
(Γ ` v : C ⇒ D) { E1 (Γ ` c : C ) { E2

(Γ ` handle c with v : D) { (E1 E2)

Fig. 13. Type-&-e�ect-directed compilation
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Eff computes the necessary type information through an inference algorithm (Pretnar 2014). For obvious
practical reasons, the e�ect system of Eff is polymorphic, and assigns universally quantified type schemes rather
than plain monomorphic types to terms. Furthermore, to account for subtyping, the inference algorithm is
constraint-based, and a type scheme consists of a type together with a set of constraints between its parameters.
For example, the type of the identity function fun x 7→ return x is:

∀α1,α2,δ .α1 → α2 ! δ | α1 6 α2 (11)

For easier constraint resolution, dirt is represented by dirt parameters δ , and we can recognize a pure computation
if its dirt has no lower bounds.

The existing algorithm of Eff computes the most general type scheme of a given term in a bo�om-up fashion,
where constraints of subterms are joined together with additional constraints determined by the shape of the
term. For example, take the term (fun x 7→ return x ) 1. The algorithm infers that the type of fun x 7→ x is
∀α , β,δ .α → β ! δ | α 6 β , and since the type of 1 is int | ∅, the whole computation has the type

∀α1,α2,δ .α2 ! δ | α1 6 α2, int 6 α1
which can then be simplified to

∀δ .int ! δ | ∅.
Since our translations need access to the full types of all subterms, we extended the algorithm with an additional
phase that propagates the constraints and annotates the whole syntax tree with appropriate types. For example,
the subterm fun x 7→ return x is given the more appropriate scheme ∀δ .int→ int ! δ . In this example, chosen
for simplicity, the additional phase does not impact the translation, but it does so in a majority of e�ectful
computations.
To reduce the number of bugs, we implemented construction of typed terms through the use of “smart”

constructors, which take already typed subterms as arguments, and contain the necessary logic to return the
appropriately annotated term. The inference algorithm then simply traverses the untyped term and applies the
corresponding smart constructors.

7.3 Translating Higher-Order Functions
One of the crucial properties of OCaml, which Eff honours, is that higher-order functions can accept both pure
and impure functions as arguments. But as described in Section 6, these two kinds of functions are translated
di�erently, so higher-order functions need to be translated in a way that accepts both. One possible approach is
to compile multiple versions of each higher-order function, and select the appropriate one depending on the
purity of its arguments. We opted for a simpler approach and labelled all higher-order functions as accepting
impure arguments. If such a function is then applied to a pure argument, we use the coercions described in
Section 6.

7.4 Embedding Pure Computations Into Values
Recall that in Effy, the two subterms of an application are values, whereas the application itself is a computation.
This implies that a nested application f x y must be translated into f x >>= fun g -> g y. With the purity-
aware translation, we can do a bit be�er when f x is pure (the common case for curried functions), and translate
it as let g = f x in g y. However, this still incurs a significant overhead in comparison to f x y. To remedy
that, we extend the core syntax of Eff with a coercion from computations into values, which behaves as a
retraction of the value embedding.
In the basic translation to OCaml, we translate this coercion using a function run : 'a computation -> 'a,

defined as

let run (Return x) = x
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and the above application is translated as (run (f x)) y. Note that this function is partial and causes a runtime
error if applied to an operation call. To avoid that, we make sure we apply coercions only to computations
guaranteed to be pure by the e�ect system. The second thing to note is that this translation is no be�er than
f x >>= fun g -> g y, as both variants need to extract the value, returned by f x.

In the purity-aware translation, we make the coercion invisible, just like the value embedding, and we translate
the nested application simply as f x y, resulting in zero overhead.

7.5 Extensible Set of Operations
In Section 5 we assumed a fixed set of operations. However, users may want declare their own operations, and
Eff enables them to do so through declarations such as:

operation Decide : unit -> bool

To support this extensibility in our translation, we make use of OCaml’s extensible (GADT) variant type feature
to define an initially empty type of operations, indexed by their argument and result type:

type ('arg , 'res) operation = ..

Then, an operation declaration like the one above can be translated to an extension of the operation type:

type (_, _) operation += Decide : (unit , bool) operation

Next, the free monad representation is adapted to:

type 'a computation =

| Return: 'a -> 'a computation

| Call: ('arg , 'res) operation * 'arg * ('res -> 'a computation) -> 'a computation

where instead of multiple constructors, we have a single one that takes the called operation, its argument and
its continuation.

Handler cases are described with two fields: a return case as before, and a function that takes an operation to
its appropriate case:

type ('a, 'b) handler_cases = {

return: 'a -> 'b computation;

operations: 'arg 'res. ('arg , 'res) operation ->

'arg -> ('res -> 'b computation) -> 'b computation

}

A handler {return x 7→ cr , Op1 x k 7→ cOp1 , . . . , Opn x k 7→ cOpn } is translated as:

handler {

return = (fun x -> Jcr K);
operations = (function

| Op1 -> (fun x k -> JcOp1K)
...

| Opn -> (fun x k -> JcOpn K)
| op' -> (fun x k -> Call (op ', x, k))

)

}

where the last case of the operations function reinvokes any operation op' that is not captured by the handler.
The function handler and computation sequencing are redefined analogously:
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let rec handler (h : ('a, 'b) handler_cases) : ('a computation -> 'b computation) =

function

| Return x -> h.return x

| Call (op, x, k) -> (h.operations op) x (fun y -> handler h (k y))

let rec (>>=) (c : 'a computation) (f : 'a -> 'b computation) : 'b computation =

match c with

| Return x -> f x

| Call (op, x, k) -> Call (op , x, (fun y -> (k y) >>= f))

8 EVALUATION
We evaluate the e�ectiveness of our optimizing compiler for Eff on a number of benchmarks. First, we compare
our di�erent compilation schemes with hand-wri�en OCaml code. Then, we measure our compiler’s performance
against other OCaml-based implementations of algebraic e�ects and handlers. All benchmarks were run on a
MacBook Pro with an 2.5 GHz Intel Core I7 processor and 16 GB 1600 MHz DDR3 RAM running Mac OS 10.12.3.

8.1 Eff versus OCaml
Our first evaluation, in Fig. 14, considers four di�erent variations on the looping program from Section 2: 1)
Pure is version without side-e�ects, 2) Latent contains an operation that is never called during the execution of
the benchmark, 3) Incr calls a single increment operation that increments an implicit state, 4) is the version of
Section 2 that increments the implicit state with the Get and Put operations. We compile these programs in
four di�erent ways: 1) basic compilation mode without any optimization (Basic), 2) purity-aware compilation
(Pure), 3) source-to-source optimizations (Opt), 4) the combination of the previous two. Finally, we compare
these di�erent versions against hand-wri�en (Native) OCaml code: 1) a pure loop, 2) a latent OCaml exception,
3) a reference cell increment, and 4) a reference cell read followed by a write. The programs were compiled with
version 4.02.2 of the OCaml compiler.

Figure 14 shows the time relative to the Basic version for running each of the 20 programs for 10,000 iterations.
The results show a substantial gap between the basic compilation scheme and the hand-wri�en OCaml, in
the range of 25×–50×. The source-to-source transformations and purity-aware code generation each have
individually varying success in reducing the gap to a smaller, but still significant level. It is only when the two
optimizations are combined that we obtain performance that is competitive with the hand-wri�en versions
(1×-1.5×). In particular, the combined optimizations succeed in eliminating all trace of the handlers and free
monad from the generated OCaml code.

8.2 Eff versus Other Systems
Our second evaluation features two di�erent versions of the well-known N -�eens problem. Both versions use
the same underlying program to explore the combinatorial space with the operations Decide : unit -> bool
and Fail : unit -> void for non-determinism. The two versions only di�er in which handler they use to
interpret the operations.
The first handler computes all solutions and returns them in a list and the second computes only the first

solution:

let all_solutions = handler let first_solution = handler

| return x -> [x] | return x -> Some x

| Decide _ k -> k true @ k false | #Decide _ k -> match k true with

| Fail _ _ -> [] | Some x -> Some x
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Fig. 15. Results of running N-�eens for all solutions on multiple systems

| None -> k false

| #Fail _ _ -> None

We compare the fully optimized Eff version against similar programs in three other OCaml-based systems
and use the hand-wri�en OCaml program as a baseline. The three systems are Multicore OCaml (Dolan et al.
2015) (Multicore), which provides native lightweight threads for running continuations, but requires expensive
copying of the continuation for the non-linear use of the continuation in the above two handlers. The second
and third system are the Handlers in Action (Kammar et al. 2013) OCaml implementation (MultiCore) and the
E� Directly in OCaml implementation (Kiselyov and Sivaramakrishnan 2016) (EffInOCaml); both are based on
OCaml’s DelimCC libray for delimited control (Kiselyov 2012). Because this library does not support native
compilation, we compile all benchmarks to bytecode and run that instead. We omit a fourth system, the OCaml
backend of Links (Cooper et al. 2006; Hillerström et al. 2016), from the results, because it is 20 times slower than
the hand-wri�en OCaml code and thus would dwarf all other runtimes if we included it.
Figure 15 shows the all solutions runtimes of the di�erent systems for di�erent problem sizes, each time

relative to the hand-wri�en OCaml code. The results clearly show that Eff is consistently the fastest and
competitive with hand-wri�en OCaml code. We see a similar, even more uniform picture in Figure 16, where Eff
is consistently 25-30% faster than the closes competitor Multicore OCaml.
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Fig. 16. Results of running N-�eens for one solution on multiple systems

9 RELATED WORK
Leijen (2017) presents a type-directed compilation approach for the Koka language. His se�ing di�ers from
ours in several ways: Firstly, Koka features row-typing rather than e�ect subtyping. Secondly, Koka’s compiler
directly targets a CPS backend, rather than an intermediate language. The only featured optimisation is that of
selective CPS: pure computations are not translated to direct-style expressions. Unfortunately, no experimental
evaluation is provided to establish the significance of this optimisation. We believe that our source-to-source
transformations can be easily inserted as an additional stage in the Koka compiler and adapted to draw on the
row-typing information.
The Multicore OCaml backend (Dolan et al. 2015) provides supports for algebraic e�ects in terms of the

multicore fibers to e�iciently represent delimited continuations at runtime. These come both in a cheaper one-
shot and more expensive multi-shot form. Several works (Hillerström et al. 2016; Kiselyov and Sivaramakrishnan
2016) have shown that this provides an e�ective compilation target for algebraic e�ects. Yet, as far as we know,
no existing works performs optimising compilation in this se�ing.
Kammar et al. (2013) compare the performance of a number of di�erent encodings of e�ect handlers in

Haskell. Inspired by this comparison, Wu and Schrijvers (2015) show how e�ect handlers can be fused and
inlined when programs are represented with the codensity monad. They explain that, with a careful setup based
on type classes, the GHC Haskell compiler automatically carries out this optimisation as part of (constrained)
polymorphic function specialisation; benchmarks illustrate the e�ectiveness of this approach. While the result
of this approach is similar to our function specialisation, the type-class approach does not readily carry over to
other compilers and languages.
Kiselyov and others (2015; 2013; 2014) investigate a number of di�erent implementations of the free monad

that exhibit good runtime performance and/or algorithmic time complexity. There are several di�erences between
their se�ing and ours. They consider a library in the lazily evaluated language Haskell, while we compile to
eagerly evaluated OCaml. They support so-called shallow handlers and explicit manipulation of the free monad
structure in the source language, while we do not. Hence, we did not adopt their dequeue-based implementation
of the free monad’s bind. Nevertheless we share the same functor construction based on the co-Yoneda lemma
and our free monad is specialised in the same way for this construction.

Saleh and Schrijvers (2016) present a term-rewriting-based approach for optimising an embedding of algebraic
e�ects and handlers in Prolog. They obtain good speed-ups, but their se�ing is simpler and less general. Firstly,
Prolog is essentially a procedure-oriented rather than expression-oriented language. Hence, the rewrites related
to returning values are not relevant in their se�ing. Moreover, they do not support higher-order programming and
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feature only a crude e�ect system. Also, their handlers may only contain lexically visible calls to the continuation.
In addition, they do not perform selective CPS to deal with non-tail recursion. Finally, they do not perform
purity-aware code generation but instead require native support of (Prolog-style) delimited control (Schrijvers
et al. 2013).

Kammar and Plotkin (2012) develop a theory of optimisations valid for e�ectful programs that satisfy a certain
algebraic theory. For example, if we assume symmetry of non-deterministic choice, we may safely exchange the
order in which non-deterministic computations are executed. Bauer and Pretnar (2014) consider a subset of these
optimisations for computations in an absolutely free algebra, i.e., with a trivial equational theory, but under
particular handlers. Some of their work is already subsumed by our rewriting optimisations, but there is still
ample untapped potential for exploiting e�ect information in specialised optimisations through sophisticated
reasoning.

10 CONCLUSION
This paper has presented a two-pronged approach for the optimised compilation of algebraic e�ects and handlers.
First we perform a number of source-to-source transformations, including the specialisation of recursive function
definitions for particular handlers. Then we generate target code in a purity-aware fashion. Our experimental
combination shows that the synergy between these two approaches is e�ective at eliminating handlers from a
number of benchmarks and obtaining performance that is competitive with hand-wri�en code and be�er than
that of existing non-optimising implementations of algebraic e�ects and handlers.

In future work we would like to investigate how to best optimise complex pa�erns like nested handlers. Also
on our agenda is investigating alternative type-and-e�ect systems that are more practical to use for Effy’s
typed intermediate representation. One option is to maintain subtyping, but move to a unification based
algorithm (Dolan and Mycro� 2017). Another option is to consider a simpler e�ect system, for example one
based on row-polymorphism (Leijen 2014, 2017) or one with implicit e�ect polymorphism (Lindley et al. 2017).
As the only point of contact between the e�ect system and translations is determining which computations are
considered pure, we expect our work to migrate relatively smoothly.
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A SOUNDNESS OF REWRITING
Proof of Theorem 4.1. We prove the theorem for each rewrite rule:

• App-Fun: This follows directly from Equation 1.
• Do-Ret: This follows directly from Equation 4.
• Do-Op: This follows directly from Equation 6.
• With-LetRec:

handle (let rec f x = c1 in c2) with v
≡ (Eq. 3)

handle (c2[(fun x 7→ let rec f x = c1 in c1)/f ]) with v
≡ ( f < v )

(handle c2 with v )[(fun x 7→ let rec f x = c1 in c1)/f ]
≡ (Eq. 3)

let rec f x = c1 in (handle c2 with v )

• With-Ret: This follows directly from Equation 8.
• With-Handled-Op:

handle (Opv ) with h
≡ (Eq. 5)

handle (do x ← Opv ; return x ) with h
≡ (Eq. 9)

cOp[v/x , (fun x 7→ handle return x with h)/k]
≡ (Eq. 8)

cOp[v/x , (fun x 7→ cr )/k]

• With-Pure: We prove this property by induction on c .
– Case c = return v :

handle (return v ) with h
≡ (Eq. 8)

cr [v/x]
≡ (Eq. 4)

do x ← return v ; cr

– Case c = do y ← Opv ; c ′ with Op ∈ O:
This cannot happen since ∆ ∩ O = ∅.

– Case c = do y ← Opv ; c ′ with Op < O:

handle (do y ← Opv ; c ′) with h
≡ (Eq. 10)

do y ← Opv ; handle c ′ with h
≡ (Induction hypothesis)

do y ← Opv ; (do x ← c ′ ; cr )
≡ (Eq. 6)

do x ← (do y ← Opv ; c ′) ; cr

• With-Do: We prove this property by induction on c1.
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– Case c1 = return v :

handle (do y ← return v ; c2) with h
≡ (Eq. 4)

handle (c2[v/y]) with h
≡ (y < h)

(handle c2 with h)[v/y]
≡ (Eq. 8)

handle (return v ) with h′

– Case c1 = do z ← Opv ; c ′1 with Op ∈ O:
handle (do y ← (do z ← Opv ; c ′1) ; c2) with h

≡ (Eq. 6)
handle (do z ← Opv ; (do y ← c ′1 ; c2)) with h

≡ (Eq. 9)
cOp[v/x , (fun z 7→ handle (do y ← c ′1 ; c2) with h)/k]

≡ (Induction hypothesis)
cOp[v/x , (fun z 7→ handle c ′1 with h

′)/k]
≡ (Eq. 9)

handle (do z ← Opv ; c ′1) with h′

– Case c1 = do z ← Opv ; c ′1 with Op < O:
handle (do y ← (do z ← Opv ; c ′1) ; c2) with h

≡ (Eq. 6)
handle (do z ← Opv ; (do y ← c ′1 ; c2)) with h

≡ (Eq. 10)
do z ← Opv ; handle (do y ← c ′1 ; c2) with h

≡ (Induction hypothesis)
do z ← Opv ; handle c ′1 with h′

≡ (Eq. 10)
handle (do z ← Opv ; c ′1) with h′

�

B TYPE PRESERVATION OF BASIC COMPILATION
To support the proof, we give the type system for the targeted subset of OCaml in Figure 17. To simplify the proof,
and omit unnecessary details, the type system contains a number of “derived rules” for the OCaml functions
used in the elaboration. This way we can also avoid the additional complexity of object-level polymorphism.

Before we prove the main lemma, we prove a lemma about subtyping.

Lemma B.1. For all pure types A and B, and for all computation types C and D we have that:

A 6 B ⇒ JAK = JBK
and

C 6 D ⇒ JCK = JDK
Proof. The proof proceeds by mutual induction on the derivation of subtyping for pure and dirty types.

Sub-bool: bool 6 bool
In this case the lemma holds trivially.
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O-Var
(x : T ) ∈ Γ
Γ ` x : T

O-Const
(k : A) ∈ Σ
Γ ` k : JAK

O-Fun
Γ,x : T1 ` E : T2

Γ ` fun x 7→ E : T1 → T2

O-App
Γ ` E1 : T1 → T2 Γ ` E2 : T1

Γ ` E1 E2 : T2
O-Let
Γ ` E1 : T1 Γ,x : T1 ` E2 : T2

Γ ` let x = E1 in E2 : T2

O-LetRec
Γ, f : T1 → T2,x : T1 ` E1 : T2 Γ, f : T1 → T2 ` E2 : T3

Γ ` let rec f x = E1 in E2 : T3

O-HandlerCases

Γ ` E : T1 → T2

[
Γ ` Ei : JAOpK→ (JBOpK→ T2) → T2

]
(Opi :Ai→Bi )∈Σ

Γ ` {return = E; op1 = E1; . . . ; opn = En } : (T1,T2) handler cases

O-Ret

Γ ` return : T → T computation

O-Operation
(Op : A→ B) ∈ Σ

Γ ` op : JAK→ JBK computation

O-Handler

Γ ` handler : (T1,T2) handler cases→ (T1 computation→ T2)

O-Bind

Γ ` (>>=) : T1 computation→ (T1 → T2 computation) → T2 computation

O-FMap

Γ ` fmap : (T1 → T2) → (T1 computation→ T2 computation)

Fig. 17. Typing of (a subset of) OCaml

Sub-int: int 6 int
In this case the lemma holds trivially.

Sub-→: A→ C 6 A′ → C ′.
From the rule’s first hypothesis we have that A′ 6 A. Thus by the induction hypothesis we have that
JA′K = JAK. From the rule’s second hypothesis we have that C 6 C ′. Thus by the induction hypothesis
we have that JCK = JC ′K. Hence, we have that JAK→ JCK = JA′K→ JC ′K. As JA→ CK = JAK→ JCK and
JA′ → C ′K = JA′K→ JC ′K, we thus conclude that JA→ CK = JA′ → C ′K.

Sub-⇒: C ⇒ D 6 C ′ ⇒ D ′.
From the rule’s first hypothesis we have that C ′ 6 C . Thus by the induction hypothesis we have that
JC ′K = JCK. From the rule’s second hypothesis we have that D 6 D ′. Thus by the induction hypothesis
we have that JDK = JD ′K. Hence, we have that JCK → JDK = JC ′K → JD ′K. As JC ⇒ DK = JCK → JDK
and JC ′ ⇒ D ′K = JC ′K→ JD ′K, we thus conclude that JC ⇒ DK = JC ′ ⇒ D ′K.

Sub-!: A ! ∆ 6 A′ ! ∆′.
The rule’s first hypothesis is A 6 A′. Thus by the induction hypothesis we have JAK = JA′K. Moreover,
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we have that JA ! ∆K = JAK computation and JA′ ! ∆′K = JA′K computation. Hence, we conclude
JA ! ∆K = JA′ ! ∆′K.

�

Now follows the proof of the main theorem.

Proof of Theorem 5.1. We prove the preservation of typing for the basic elaboration by mutual induction on
the typing derivations for values and computations.

(SubVal): Γ ` v : A′
The rule’s first assumption is that Γ ` v : A. By the induction hypothesis we thus have that JΓK ` JvK : JAK.
The rule’s second assumption is that A 6 A′. From Lemma B.1 we then have that JAK = JA′K. Thus we
conclude JΓK ` JvK : JA′K.

(Var): Γ ` x : A
From the hypothesis of the rule, we have that (x : A) ∈ Γ. It follows that (x : JAK) ∈ JΓK. Hence, by rule
Var we have JΓK ` x : JAK. Because JxK = x , we conclude JΓK ` JxK : JAK.

(Const): Γ ` k : A
We have that (k : A) ∈ Σ. Hence, by rule O-Const we have JΓK ` k : JAK. Because JkK = k we conclude
JΓK ` JkK : JAK.

(Fun): Γ ` fun x 7→ c : A→ C
From the rule it follows that Γ,x : A ` c : C . By the induction hypothesis, we thus have JΓ,x : AK ` JcK :
JCK. Because JΓ,x : AK = JΓK,x : JAK we thus have from rule O-Fun that JΓK ` fun x 7→ JcK : JAK→ JCK.
As JA→ CK = JAK→ JCK and Jfun x 7→ cK = fun x 7→ JcK, we conclude JΓK ` Jfun x 7→ cK : JA→ CK.

(Hand): Γ ` {return x 7→ cr , [Opx k 7→ cOp]Op∈O } : A ! ∆ ∪ O ⇒ B ! ∆
From the first hypothesis of the rule and the induction hypothesis we have that JΓ,x : AK ` Jcr K : JB ! ∆K.
We can simplify this to JΓK,x : JAK ` Jcr K : JBK computation.

From the second hypothesis and the induction hypothesis we have that JΓ,x : AOp,k : BOp → B ! ∆K `
JcOpK : JB ! ∆K for each Op ∈ O. This simplifies to JΓK,x : JAOpK,k : JBOpK → JBK computation ` JcOpK :
JBK computation.

For any Op < O, we have that JΓK,x : JAOpK,k : JBOpK → JBK computation ` (opx>>=k ) :
JBK computation by O-Operation, O-Bind and O-Apply.

Hence, by rule O-Fun and O-HandlerCases, we may conclude that JΓK ` {return = fun x 7→
Jcr K; op1 = E1; . . . ; opn = En } : (JAK, JBK computation) handler cases. Finally, by O-Handler
and O-Apply we have that JΓK ` handler {return = fun x 7→ Jcr K; op1 = E1; . . . ; opn = En } :
JAK computation→ JBK computation, implying JΓK ` J{return x 7→ cr , [Opx k 7→ cOp]Op∈O }K : JA ! ∆ ∪ O ⇒ B ! ∆K.

(SubComp): Γ ` c : C ′
The proof proceeds analogously to one for rule SubVal.

(App): Γ ` e1 e2 : C
From the rule’s two hypotheses and the induction hypotheses, we have that JΓK ` Je1K : JA→ CK and
JΓK ` Je2K : JAK. Because JA→ CK = JAK → JCK we have by rule O-App that JΓK ` Je1K Je2K : JCK.
Because Je1 e2K = Je1K Je2K, we conclude JΓK ` Je1 e2K : JCK.

(LetRec): Γ ` let rec f x = c1 in c2 : D
From the rule’s first hypothesis and the induction hypothesis we have JΓ, f : A→ C,x : AK ` Jc1K : JCK.
We can simplify this to JΓK, f : JAK → JCK,x : JAK ` Jc1K : JCK. From the rule’s second hypothesis
and the induction hypothesis we have JΓ, f : A→ CK ` Jc2K : JDK. We can simplify this to JΓK, f :
JAK → JCK ` Jc2K : JDK. By rule O-LetRec we then have JΓK ` let rec f x = Jc1K in Jc2K : JDK. Since
Jlet rec f x = c1 in c2K = let rec f x = Jc1K in Jc2K, we conclude JΓK ` Jlet rec f x = c1 in c2K :
JDK.
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(Ret): Γ ` return v : A ! ∅
From the rule’s assumption and the induction hypothesis we have that JΓK ` JvK : JAK. Hence, by means
of rules O-Ret and O-App we have JΓK ` return JvK : JAK computation. As Jreturn vK = return JvK
and JA ! ∅K = JAK computation, we conclude JΓK ` Jreturn vK : JA ! ∅K.

(Op): Γ ` Opv : B ! {Op}
From the first hypothesis of the rule, we have (Op : A → B) ∈ Σ. From the second hypothesis of the
rule and the induction hypothesis, we have that JΓK ` JvK : JAK. By rules O-Operation and O-App we
then have JΓK ` op JvK : JBK computation. As JOpvK = op JvK and JB ! {Op}K = JBK computation, we
conclude JΓK ` JopvK : JB ! {Op}K.

(Do): Γ ` do x ← c1 ; c2 : B ! ∆
From the rule’s first hypothesis and the induction hypothesis we have JΓK ` Jc1K : JA ! ∆K. We can
simplify this to JΓK ` Jc1K : JAK computation. From the rule’s second hypothesis and the induction hy-
pothesis we have JΓ,x : AK ` Jc2K : JB ! ∆K. We can simplify this to JΓK,x : JAK ` Jc2K : JBK computation.
Using rule O-Fun we have JΓK ` fun x 7→ Jc2K : JAK→ JBK computation. Using rules O-Bind and O-App
we then have JΓK ` Jc1K>>=(fun x 7→ Jc2K) : JBK computation. As Jdo x ← c1 ; c2K = Jc1K>>=(fun x 7→
Jc2K), we conclude JΓK ` Jdo x ← c1 ; c2K : JBK computation.

(With): Γ ` handle c with v : D
From the rule’s first assumption and the induction hyptothesis we have that JΓK ` JvK : JC ⇒ DK.
Because JC ⇒ DK = JCK→ JDK we thus have JΓK ` JvK : JCK→ JDK. From the rule’s second assumption
and the induction hypothesis we also have JΓK ` JcK : JCK. By rule O-App we then have JΓK ` JvK JcK : JDK.
Because Jhandle c with vK = JvK JcK we thus conclude JΓK ` Jhandle c with vK : JDK.

�

C TYPE PRESERVATION OF PURITY-AWARE COMPILATION
We first prove an variant of the earlier subtyping lemma.

Proof of Lemma . The proof proceeds by mutual induction on the derivation for pure and dirty types.
Sub-bool: (bool 6 bool) { (fun x 7→ x )

In this case the lemma holds trivially.
Sub-int: (int 6 int) { (fun x 7→ x )

In this case the lemma holds trivially.
Sub-→: (A→ C 6 A′ → C ′) { (fun f x 7→ E2 ( f (E1 x ))).

From the rule’s first hypothesis we have that (A′ 6 A) { E1. Thus by the induction hypothesis
we have that ` E1 : JA′K → JAK. From the rule’s second hypothesis we have that (C 6 C ′) { E2.
Thus by the induction hypothesis we have that ` E2 : JCK → JC ′K. Hence, we have that f : JAK →
JCK,x : JA′K ` E2 ( f ′ (E1 x )) : JC ′K from rules O-Var and O-App. Hence, by rule O-Fun we have that
` fun f x 7→ E2 ( f

′ (E1 x )) : JC ′K : (JAK → JCK) → (JA′K → JC ′K). Using the definition of J·K we
conclude ` fun f x 7→ E2 ( f

′ (E1 x )) : JC ′K : JA→ CK→ JA′ → C ′K.
Sub-⇒: (C ⇒ D 6 C ′ ⇒ D ′) { (fun h x 7→ E2 (h (E1 x ))).

From the rule’s first hypothesis we have that C ′ 6 C { E1. Thus by the induction hypothesis we
have that ` E1 : JC ′K → JCK. From the rule’s second hypothesis we have that D 6 D ′ { E2. Thus
by the induction hypothesis we have that ` E2 : JDK → JD ′K. Hence, we have that h : JCK →
JDK,x : JC ′K ` E2 (h′ (E1 x )) : JD ′K from rules O-Var and O-App. Hence, by rule O-Fun we have that
` fun h x 7→ E2 (h

′ (E1 x )) : (JCK → JDK) → (JC ′K → JD ′K). Using the definition of J·K we conclude
` fun h x 7→ E2 (h

′ (E1 x )) : JC ⇒ DK→ JC ′ ⇒ D ′K.
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Sub-!-Pure: (A ! ∅ 6 A′ ! ∅) { E.
From the rule’s hypothesis and the induction hypothesis we have that ` E : JAK → JA′K. Because
JA ! ∅K = JAK and JA′ ! ∅K = JA′K we conclude ` E : JA ! ∅K→ JA′ ! ∅K.

Sub-!-PureImpure: (A ! ∅ 6 A′ ! ∆′) { (fun x 7→ return (E x )).
From the rule’s hypothesis and the induction hypothesis we have that ` E : JAK → JA′K. From
rules O-Retue, O-App and O-Var we have x : JAK ` return (E x ) : JA′K computation. From rule O-
Fun we have ` fun x 7→ return (E x ) : JAK → JA′K computation. Because JA ! ∅K = JAK and
JA′ ! ∆′K = JA′K computation (as ∆′ , ∅ from the rule’s second hypothesis) we conclude that ` fun x 7→
return (E x ) : JA ! ∅K→ JA′ ! ∆′K.

Sub-!-Impure: (A ! ∆ 6 A′ ! ∆′) { (fmapE).
From the rule’s hypothesis and the induction hypothesis we have that ` E : JAK→ JA′K. From rules O-
FMap and O-App we have that ` fmapE : JAK computation→ JA′K computation. As ∆ , ∅ and ∆′ , ∅,
we have that JA ! ∆K = JAK computation and JA′ ! ∆′K = JA′K computation. Hence we conclude
` fmapE : JA ! ∆K→ JA′ ! ∆′K.

�

Now follows the proof of the main theorem.

Proof of Theorem 6.2. We prove the preservation of typing for the basic elaboration by mutual induction on
the elaboration derivations for values and computations.

(SubVal): (Γ ` v : A′) { E2 E1
The rule’s first assumption is that (Γ ` v : A) { E1. By the induction hypothesis we thus have that
JΓK ` E1 : JAK. The rule’s second assumption is that (A 6 A′) { E2. From Lemma C we then have that
` E2 : JAK→ JA′K. Thus we conclude by rule O-App JΓK ` E2 E1 : JA′K.

(Var): (Γ ` x : A) { x
The proof proceeds analogously to one in Theorem 5.1.

(Const): (Γ ` k : A) { k
The proof proceeds analogously to one in Theorem 5.1.

(Fun): (Γ ` fun x 7→ c : A→ C ) { (fun x 7→ E)
The proof proceeds analogously to one in Theorem 5.1.

(HandPure): (Γ ` {return x 7→ cr } : A ! ∅ ⇒ B ! ∅) { (fun x 7→ Er )
From the first hypothesis of the rule and the induction hypothesis we have that JΓ,x : AK ` Er : JB ! ∅K.
This simplifies to JΓK,x : JAK ` Er : JB ! ∅K. Hence, by rule O-Fun we have JΓK ` fun x 7→ Er : JAK →
JB ! ∅K. As JA ! ∅K = JAK we conclude JΓK ` fun x 7→ Er : JA ! ∅K→ JB ! ∅K.

(HandImpure): (Γ ` {return x 7→ cr , [Opx k 7→ cOp]Op∈O } : A ! ∆ ∪ O ⇒ B ! ∆) { handler {return =
fun x 7→ Er ; op1 = E1; . . . ; opn = En }}
From the first hypothesis of the rule and the induction hypothesis we have that JΓ,x : AK ` Jcr K : JB ! ∆K.
We can simplify this to JΓK,x : JAK ` Jcr K : JB ! ∆K.

Next, we consider three possible cases for each Ei .
• First, if Opi ∈ O, we get JΓK,x : JAOpi K,k : (JBOpi K → JB ! ∆K) ` JEOpi K : JB ! ∆K. Hence, by rule
O-Fun we have that JΓK ` Ei : JAOpi K→ (JBOpi K→ JB ! ∆K) → JB ! ∆K.

• Next, if Opi ∈ ∆ − O, we need to consider two options. If ∆ = ∅, the case is vacuous. If not, we have
JB ! ∆K = JBK computation, and it is easy to see by rules O-Operation, O-Bind, O-App and O-Var
that JΓK,x : JAOpi K,k : (JBOpi K → JB ! ∆K) ` (opi x>>=k ) : JB ! ∆K. Hence, by rule O-Fun we have
that JΓK ` Ei : JAOpi K→ (JBOpi K→ JB ! ∆K) → JB ! ∆K.

• Finally, in the last case, we have that assert false has an arbitrary type due to polymorphism,
thus again JΓK ` Ei : JAOpi K→ (JBOpi K→ JB ! ∆K) → JB ! ∆K.
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Analogously to the proof in Theorem 5.1, we conclude that JΓK ` {return = fun x 7→ Jcr K; op1 =
E1; . . . ; opn = En } : (JAK, JB ! ∆K) handler cases and JΓK ` handler {return = fun x 7→ Jcr K; op1 =
E1; . . . ; opn = En } : JAK computation→ JB ! ∆K, implying JΓK ` J{return x 7→ cr , [Opx k 7→ cOp]Op∈O }K :
JA ! ∆ ∪ O ⇒ B ! ∆K.

(SubComp): (Γ ` c : C ′) { E2 E1
The proof proceeds analogously to one for rule SubVal.

(App): (Γ ` e1 e2 : C ) { E1 E2
The proof proceeds analogously to one in Theorem 5.1.

(LetRec): (Γ ` let rec f x = c1 in c2 : D) { let rec f x = E1 in E2
The proof proceeds analogously to one in Theorem 5.1.

(Ret): Γ ` return v : A ! ∅ { E
The proof proceeds analogously to one in Theorem 5.1.

(Op): Γ ` Opv : B ! {Op} { operation OpE
The proof proceeds analogously to one in Theorem 5.1.

(DoPure): Γ ` do x ← c1 ; c2 : B ! ∅
From the rule’s first hypothesis and the induction hypothesis we have JΓK ` E1 : JA ! ∅K. We can
simplify this to JΓK ` E1 : JAK. From the rule’s second hypothesis and the induction hypothesis we have
JΓ,x : AK ` E2 : JB ! ∅K. We can simplify this to JΓK,x : JAK ` E2 : JBK. Using rule O-Let we conclude
JΓK ` let x = E1 in E2 : JBK.

(DoImpure): Γ ` do x ← c1 ; c2 : B ! ∆ { E1 >>= fun x 7→ E2
The proof proceeds analogously to one for Do in Theorem 5.1.

(With): Γ ` handle c with v : D { E1 E2
The proof proceeds analogously to one in Theorem 5.1.

�
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