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Abstract

Many industrial experiments involve some factors that are hard to change. In this
situation, experimenters often choose to perform an experiment with restricted ran-
domization, such as a split-plot or a strip-plot experiment. In this paper, we discuss
the analysis of an experiment concerning the adhesion between steel tire cords and
rubber. Besides an ordinal response, the experiment also involves one hard-to-
change factor. Therefore, the experimenters performed a split-plot experiment. An
additional complication of the experiment is that there is also a blocking factor. A
proper analysis of the experiment requires the inclusion of random effects in the
model to account for its split-plot nature and its blocked nature. The need for
random effects and the ordinal response necessitate the use of a mixed cumulative
logit model.

Keywords: split-plot design, random and fixed blocks, cumulative logit regression,
generalized linear mixed model

1 Introduction

Many industrial experiments involve some factors that are hard to change. Due to time
and/or budget constraints, in this situation, a completely randomized experiment is no
longer desired and experimenters resort to experiments with restricted randomization,
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such as split-plot and strip-plot experiments.

In the last decades, a lot of research effort has been spent on the design and analysis of
these types of experiments (see, for example, Arnouts, Goos and Jones (2010), Bingham,
Schoen and Sitter (2004), Bingham and Sitter (1999), Goos and Gilmour (2012), Goos,
Langhans and Vandebroek (2006), Goos and Vandebroek (2001, 2003, 2004), Jones and
Goos (2007, 2012), Letsinger, Myers, and Lentner (1996), Mee and Bates (1998), My-
lona, Goos and Jones (2014), Panigua-Quiñones and Box (2009), Parker, Kowalski and
Vining (2006, 2007a, 2007b), Vivacqua and Bisgaard (2009), and Vining, Kowalski and
Montgomery (2005)). Most of these papers assume that the response in the experiment
is normally distributed, which implies the use of a linear mixed model to analyse the
experimental data. However, in many industrial experiments, the response is categorical,
which requires the use of another model. In situations with non-normal response data, it
has become standard to use generalized linear mixed models (see, for example, Robinson,
Myers and Montgomery (2004), Robinson et al. (2006), and Goos and Gilmour (2012)).
In this article, we focus on an experiment involving an ordinal response. This kind of
response has received virtually no attention in the split-plot literature. To a large extent,
this is due to the fact that the ordinal scale is often ignored and the data are analysed
using a linear mixed model, with which practitioners are more familiar. Ignoring the
ordinal character of data and treating the data as though it were interval-scale data is a
common mistake mentioned in many books on basic statistics when discussing the pos-
sible measurement scales of data and their consequences. In the case of ordinal data, it
is basically incorrect to use a linear model in the responses. Due to the availability of
modern software and powerful PCs, it is also no longer necessary to be restricted to linear
models. It is possible now, in various software packages, to use more sophisticated models
that adequately deal with the nature of ordinal responses.

In this paper, we discuss an experiment that studies the adhesion between steel tire cords
and rubber. In the experiment, different types of steel cords are produced and subse-
quently vulcanized into a block of rubber. After that, the cords are pulled out of the
rubber and the rubber coverage of the steel cords is rated visually on an ordinal, integer-
valued, scale from 1 up to 7. Besides the ordinal response, the experiment also involves
one hard-to-change factor which made the experimenters use a split-plot design. An ad-
ditional complication of the experiment is the fact that there is also a blocking factor,
i.e. the block of rubber in which the steel cords are vulcanized. A proper analysis of any
split-plot experiment with an additional blocking factor requires the inclusion of random
effects in the model. The various complications of the experiment suggest the use of a
model such as a mixed cumulative logit model from the class of generalized linear mixed
models.

The aim of this paper is to provide a tutorial on how to analyse data from this type
of experiment. Therefore, the paper is constructed as follows. In the next section, we
describe the steel tire cord experiment, the motivating example for this paper, in detail.
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In Section 3, we present a diagram, called a Hasse diagram, to identify the structure of
the experimental units. The cumulative logit model, which is used in this paper to deal
with the ordinal response in the experiment, is discussed in Section 4. Finally, in Section
5, the data of the experiment are analysed.

2 The Steel Tire Cord Experiment

The steel tire cord experiment was conducted at a large company producing steel cords,
mainly for the automotive industry. In this specific situation, the steel cords were used
in the production of tires. Here, it is crucial that there is a strong adhesion of the steel
cord to the rubber. More particularly, the adhesion of the steel cord to the rubber should
be greater than the cohesion of the rubber.

A typical steel cord experiment involves the production of a roll of steel tire cord; a con-
struction of several thin wires reinforcing the casing of the tire, while keeping it flexible
enough to resist shocks and to improve comfort. The adhesion of steel cord to rubber
is possible through a brass coating (typically, 70% copper, 30% zinc, with chemical ad-
ditives) applied to the wire. The brass coating reacts chemically with the sulfur in the
tire’s rubber.

A typical adhesion experiment in this context studies various tire cords, various coat-
ing compositions (e.g., inorganic and organic phosphates and sulfur-containing rubber
vulcanization accelerating agents) and thicknesses, and various ways to apply the coat-
ing. Commonly, various experimental runs are performed for each roll of steel tire cord,
each with different coating compositions, thicknesses and/or application techniques. As
a result, a typical steel tire cord experiment involves a split-plot design, where factors
defining the steel cord are hard-to-change or whole-plot factors and factors defining the
brass coating are easy-to-change or subplot factors.

The experiment we discuss in this article involved five experimental factors, which, for
reasons of confidentiality, are denoted by A, B, C, D and E. Factor A is related to the
steel tire cord production, whereas the factors B, C, D and E are related to the coating.

The experimenters were interested in the main effects and all two-factor interaction ef-
fects of the five factors on the adhesion of the steel cord to the rubber. When setting
up the experiment, they took into account the fact that the first experimental factor, A,
was hard to change and, therefore, they chose to perform a split-plot experiment. All
five factors were studied at two levels. The available budget allowed them to perform 32
runs, i.e. to produce 32 different pieces of steel cord, for which the hard-to-change factor
A was independently set eight times (in other words, eight rolls of steel tire cord were
produced). The remaining four (easy-to-change) experimental factors were reset indepen-
dently at each run, i.e. 32 times in total. As a result, the design utilized for the first phase
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of the experiment is a split-plot design involving eight whole plots of four runs. Figure 1
provides a graphical representation of the organization of the experiment. In the figure,
the abbreviation WP refers to the whole plots of the experiment.
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Phase Two: Vulcanization into blocks 

Figure 1: Graphical representation of the steel tire cord experiment.

In a next step of the experiment, the 32 produced steel cords were vulcanized into a block
of rubber after which, the cords were pulled out of the blocks. The mold used to produce
the rubber blocks is designed in such a way that it produced four test blocks with the
appropriate dimensions. Each block could contain up to 15 steel cords. Given that the
experiment involved 32 different steel cords, each of the four blocks of rubber eventually
contained only eight steel cords. Because of the blocking, the adhesion qualities of the
steel tire cords that were vulcanized into the same block were possibly correlated, whereas
those of steel tire cords vulcanized into different blocks were not.

Finally, the adhesion quality was judged on the basis of the rubber coverage of the steel
cords after they have been pulled out the rubber block. When the adhesion of the steel
cord to the rubber was indeed greater than the cohesion of the rubber, the steel cord
should still be covered by a large amount of rubber after being pulled out. The amount
of rubber coverage was rated visually on an ordinal, integer-valued, scale from 1 to 7,
with 7 representing the most desirable outcome. In this article, we show how to develop a
model suitable for that ordinal response, taking into account the split-plot nature of the
experiment and the additional blocking factor.
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To conclude, the design configuration used for the steel tire cord experiment along with
the ordinal responses is shown in Table 1. In this design configuration, the higher-order
effects ABC, ADE and BCDE are confounded with the rubber blocks and the interaction
effects BE and CDE together with the main effect of A are used to define the whole
plots. It is possible to construct more a informative design configuration using an optimal
experimental design methodology (for more information on optimal experimental design,
see Goos and Jones (2011)), but this is not the scope of this paper.

3 Hasse diagram

To properly analyse the data from the experiment, it is crucial to identify the structure in
the experimental units in order to determine the random effects necessary in the model.
Goos and Gilmour (2012) suggest the use of Hasse diagrams to gain understanding of
the structure of experimental units. Since the treatment structure in the steel tire cord
experiment is clear, we only visualize the structure in the experimental units. A Hasse
diagram is a simple graph in which the nodes represent the grouping factors (such as
blocks and whole plots) involved in an experiment and the edges represent the nesting
relationships between the grouping factors. The following rules hold when constructing
Hasse diagrams:

• the Hasse diagram starts with a node called the universe, U , representing the entire
experiment,

• if a grouping factor G1 is nested within a grouping factor G2, the node for G1

appears below the node for G2 with an edge connecting both nodes,

• if grouping factors G1 and G2 are crossed, their nodes appear at the same level,

• the Hasse diagram ends with the smallest experimental unit, the individual run.

Next to each node, two numbers are mentioned, i.e. the number of levels of the corre-
sponding grouping factor and, between brackets, the corresponding degrees of freedom.
The Hasse diagram for the steel tire cord experiment is shown in Figure 2. In this ex-
periment, the whole plots are crossed with the rubber blocks, and the experimental runs
are nested within the whole plots and the rubber blocks. The general recommendation
is that each node in the Hasse diagram, except for the universe and the individual runs,
implies a set of random effects in the model. This recommendation is generally accepted
for models with normal responses. Although subject to debate, Gilmour (2011) provides
a randomization-based argument for including a random effect for the individual runs too,
in case the response is not normal. Following his recommendation and given the ordinal
nature of the response, the model for the steel tire cord experiment should therefore con-
tain three sets of random effects, i.e. one set for the whole plots, one set for the rubber
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Table 1: Design configuration of the steel tire cord experiment and response

Run Whole Plot Rubber Block A B C D E Response
1 1 1 −1 −1 −1 −1 −1 2
2 1 2 −1 −1 1 1 −1 3
3 1 3 −1 1 1 −1 1 4
4 1 4 −1 1 −1 1 1 5
5 2 2 1 −1 −1 −1 −1 4
6 2 1 1 −1 1 1 −1 3
7 2 4 1 1 1 −1 1 2
8 2 3 1 1 −1 1 1 3
9 3 1 −1 1 1 −1 −1 4
10 3 2 −1 1 −1 1 −1 5
11 3 3 −1 −1 −1 −1 1 4
12 3 4 −1 −1 1 1 1 3
13 4 2 1 1 1 −1 −1 2
14 4 1 1 1 −1 1 −1 3
15 4 4 1 −1 −1 −1 1 1
16 4 3 1 −1 1 1 1 5
17 5 4 −1 1 −1 −1 −1 4
18 5 3 −1 1 1 1 −1 3
19 5 2 −1 −1 1 −1 1 6
20 5 1 −1 −1 −1 1 1 3
21 6 3 1 1 −1 −1 −1 4
22 6 4 1 1 1 1 −1 5
23 6 1 1 −1 1 −1 1 6
24 6 2 1 −1 −1 1 1 3
25 7 4 −1 −1 1 −1 −1 2
26 7 3 −1 −1 −1 1 −1 3
27 7 2 −1 1 −1 −1 1 4
28 7 1 −1 1 1 1 1 5
29 8 3 1 −1 1 −1 −1 5
30 8 4 1 −1 −1 1 −1 7
31 8 1 1 1 −1 −1 1 2
32 8 2 1 1 1 1 1 3
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blocks and one set for the individual runs.

4    (3) 

U 

Whole plots Rubber Blocks 

Runs 

1    (1) 

32    (20) 

8    (7) 

Figure 2: Hasse diagram for the steel tire cord experiment.

In this approach, we use random instead of fixed effects for the rubber blocks. This is
the approach we prefer since the rubber blocks used in the experiment represent a sample
from the entire population of all possible blocks and we wish to generalize the results to
the entire population.

For some experimental situations it is not always clear what the corresponding Hasse dia-
gram should be. Therefore, Grossmann (2014) has developed an algorithm that automates
the construction of Hasse diagrams.

4 Cumulative Logit Model

In the steel cord experiment, the rubber coverage response (measuring the quality of the
adhesion) is measured on an ordinal, integer-valued, scale from 1 to 7. Clearly, when
the response is categorical, the assumption of normality, crucial for a linear regression
analysis, is violated. The generalized linear model (GLM) framework, which allows the
use of any distribution from the exponential family, offers an alternative in this scenario.
The exponential family includes the normal, binomial, multinomial, Poisson, geometric,
negative binomial, exponential, gamma, and inverse normal distributions.
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A generalized linear model has three components: a response variable distribution, a lin-
ear predictor that involves the effects of the experimental factors, and a link function that
connects the linear predictor to the natural mean of the response variable (Myers, Mont-
gomery and Vining (2002)). One of the assumptions of a GLM is that the observations
are independent. Clearly, this assumption does not hold for the steel tire cord experiment
where the responses are correlated due to their grouping in whole plots and rubber blocks.
To capture that correlation, the linear predictor needs to contain random effects for the
whole plots and the blocks, on top of the fixed effects of the experimental factors. This
implies the use of a generalized linear mixed model (GLMM), which is a statistical model
that extends the class of generalized linear models by incorporating normally distributed
random effects (Robinson, Myers and Montgomery (2004); Robinson et al. (2006); and
Goos and Gilmour (2012)). Instead of specifying a distribution for the response, as in the
case of a GLM, we now have to specify a distribution for the response conditional on the
random effects.

For the data analysis of the steel tire cord experiment, we apply the cumulative logit
model, as proposed in Goos and Gilmour (2012). The ordinally amount of rubber cover-
age Yij of the observation in whole plot i (i = 1, . . . , 8) and rubber block j (j = 1, . . . , 4),
conditional on the random effects δi, γj and εij (for the concision of the paper we have
omitted this from the equation), is assumed to follow a multinomial distribution with
parameters 1 and πij, where πij = [π1ij, . . . , π7ij]

′ with πkij = P (Yij = k), i.e. the proba-
bility that the observation in whole plot i and rubber block j has a response equal to k.
The link function used is the cumulative logit link function.

This leads to the cumulative logit model in which the cumulative logits are defined as

logit1i = ln

(
P (Yij > 1)

P (Yij ≤ 1)

)
= ln

(
π2ij + . . .+ π7ij

π1ij

)
= β10 + x′

ijβ + δi + γj + εij,

logit2i = ln

(
P (Yij > 2)

P (Yij ≤ 2)

)
= ln

(
π3ij + . . .+ π7ij
π1ij + π2ij

)
= β20 + x′

ijβ + δi + γj + εij,

...

logit6i = ln

(
P (Yij > 6)

P (Yij ≤ 6)

)
= ln

(
π7ij

π1ij + . . .+ π6ij

)
= β60 + x′

ijβ + δi + γj + εij,

(1)

where the parameters βk0 (k = 1, . . . , 6) are the intercept parameters representing the
overall levels falling into each response category, xij represents the model expansion of
the levels of the treatment factors for the ith whole plot and the jth rubber block (as an
example for the main-effects-and-two-factor-interaction-effects model for the steel tire cord
experiment xij =

[
Aij Bij Cij Dij Eij (A ∗B)ij . . . (D ∗ E)ij

]
), β is a vector

of fixed factor effects, δi is the random effect of the ith whole plot, γj is the random effect
of the jth rubber block, and εij is the random error of the individual run in block j and
whole plot i, as suggested by Gilmour (2011). Furthermore, we assume that δi follows
a normal distribution with mean zero and variance σ2

δ , γj is normally distributed with a
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mean of zero and a variance of σ2
γ, εij is normally distributed with a mean of zero and

a variance of σ2
ε , and all random variables δi, γj and εij are pairwise independent. The

quantity x′
ijβ can be viewed as a continuous latent variable quantifying the quality of the

adhesion between the steel cord and the rubber.

Each cumulative logit has its own intercept which increases with k, the cumulative logit
model however assumes that the influence of each experimental factor is the same for each
logit. This assumption is called the proportional odds asssumption. From the model in
Equation (1), we can derive the following probabilities for each of the seven outcomes:

π1 =
elogit1ij

1 + elogit1ij
,

π1 + π2 =
elogit2ij

1 + elogit2ij
,

...

π7 = 1− (π1 + π2 + . . .+ π6).

(2)

To estimate the mixed cumulative logit model in Equation (1), we use the SAS proce-
dure GLIMMIX with residual or restricted maximum likelihood (REML) to estimate the
variance components. For the significance tests, we use the Kenward-Roger degrees of
freedom option. More details about REML and Kenward-Roger degrees of freedom can
be found in Letsinger et al. (1996) and Goos et al. (2006).

5 Data Analysis

In this section, we first analyze the original data involving the 7-level ordinal response.
Next, we present an alternative, simplified analysis using just four outcomes categories
for the ordinal response.

5.1 Original Data Analysis

In the first step of the data analysis, the model contained all the main effects of the five
experimental factors, the two-factor interaction effects, a random effect associated with
each of the whole plots, and a random effect associated with each of the rubber blocks.

At first, we looked at the estimation of the three different variance components in the
model, i.e. the whole-plot variance σ2

δ , the block variance σ2
γ, and the error variance σ2

ε .
A first striking result from Table 2 is the fact that the block variance is estimated to be
zero, suggesting that the responses of observations coming from the same rubber block are
not more alike than observations coming from different rubber blocks. This could mean
that there is little variation between the different rubber blocks, which could be viewed as
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Table 2: Point estimates and standard errors of the whole-plot variance, the block variance
and the error variance.

Variance Estimate Stand. Err.

WP 4.5353 9.7073

Block 0.0000 -

Error 27.9532 17.8780

a desirable result for further experimentation. However, another possible explanation is
mentioned by Gilmour and Goos (2009) and Goos and Gilmour (2012). A block variance
estimated to be zero can also be due to the small number of blocks in the experiment
and thus the small number of degrees of freedom to estimate this variance component. A
possible solution could be to perform a Bayesian analysis which takes into account the
fact that the experiment contains little information concerning the block variance and
uses a priori information concerning that variance. Such a Bayesian analysis is, however,
beyond the scope of this paper.

Next, the variance ratio σ2
δ/σ

2
ε is estimated to be only 4.5353/27.9532 = 0.1622, suggest-

ing a weak correlation between observations conducted in the same whole plot. Based on
the results in Table 2, we decided to leave the random block effect out of the model and
to redo the analysis. This led to the estimated parameters and significances in Table 3.
To identify significant effects, we use a significance level equal to 0.10. Our significance
level is more liberal than usual due to the small size of the experiment and the ordinal
nature of the response.

The table clearly shows that the intercepts of the cumulative logit model indeed increase
with k, i.e. the outcome category. In the initial model, there are two significant effects
involving the hard-to-change factor A, namely the interaction effect between the hard-to-
change factor A and the easy-to-change factors B and E. The interaction effect between
the easy-to-change factors C and E is also significant. To further fine tune this model, we
apply a backward elimination procedure and eliminate the non-significant effects, start-
ing with the one that has the highest p-value. In Table 3, the main effect of E turns out
to be least significant with a p-value of about 0.95, but, since its interaction effect with
A is significant, we leave the main effect in the model to preserve the marginality of the
model. The first effect that is eliminated from the model is therefore the interaction effect
between D and E.

Further fine tuning eventually leads to the estimated model in Table 4 and the estimated
variance components in Table 5. It turns out that there are only three significant effects in
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Table 3: Parameter estimates, standard errors and significance test results for a cumulative
logit model containing all main effects and two-factor interaction effects.

Effect Estimate Stand. Err. DF Sign.
Intercept 1 -12.7848 3.4416 11 0.0034
Intercept 2 -8.9368 2.4330 11.000 0.0037
Intercept 3 -4.1352 1.8393 11.000 0.0460
Intercept 4 0.1885 1.6451 11.000 0.9108
Intercept 5 6.2548 2.2281 11.000 0.0171
Intercept 6 12.0943 3.5424 11.000 0.0058

A -0.4369 1.3119 4.026 0.7557
B -0.2293 1.0701 8.323 0.8355
C 0.6331 1.0672 8.194 0.5690
D 1.0648 1.0889 8.581 0.3549
E -0.0591 1.0642 8.119 0.9571

A*B -2.844 1.2233 11.000 0.0402
A*C 0.6713 1.073 8.359 0.5482
A*D 1.0401 1.0907 8.759 0.3659
A*E -2.6388 1.2058 11.000 0.0511
B*C -1.2766 1.0796 8.430 0.2693
B*D 0.8724 1.0785 8.497 0.4406
B*E -0.7289 1.3247 4.181 0.6102
C*D -1.1667 1.0941 8.841 0.3145
C*E 2.2027 1.1377 9.849 0.0821
D*E -0.4912 1.0791 8.458 0.6604
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Table 4: Parameter estimates, standard errors and significance test results for the final cumu-
lative logit model.

Effect Estimate Stand. Err. DF Sign.
Intercept 1 -8.6064 2.2443 19.000 0.0011
Intercept 2 -5.9626 1.4886 19.000 0.0008
Intercept 3 -2.8234 1.1369 19.000 0.0225
Intercept 4 0.0888 1.0479 19.000 0.9334
Intercept 5 4.2527 1.3086 19.000 0.0042
Intercept 6 8.1204 2.0209 19.000 0.0007

A -0.3020 0.8476 4.598 0.7373
B -0.1510 0.7263 10.760 0.8392
C 0.4259 0.7240 10.650 0.5686
E -0.0346 0.7210 10.540 0.9626

A*B -1.9220 0.8008 14.140 0.0307
A*E -1.7760 0.7855 13.340 0.0411
C*E 1.4792 0.7574 11.960 0.0746

Table 5: Point estimates and standard errors of the whole-plot variance σ2δ and the error vari-
ance σ2ε in the final cumulative logit model.

Variance Estimate Stand. Err.

WP 1.5270 3.6518

Error 11.9819 7.2300

the final model, i.e. the two-factor interaction effects between A and B, A and E, and C
and E. Besides that, the final model also contains the main effects of these experimental
factors. As shown in Table 5, the different variance components are estimated slightly
differently in the reduced model than in the original model. However, the variance ratio
σ2
δ/σ

2
ε remains small with an estimated value of only 1.5270/11.9819 = 0.1274. In a last

step of the model selection procedure, we re-introduced a random effect for the rubber
block. This is because it may happen that, in the reduced model, the smaller number
of fixed effects frees up degrees of freedom for estimating certain variance components,
resulting in nonzero estimates. However, the reduced model with random block effect
again led to an estimated block variance equal to zero.

As a final step in the data analysis, we use the model estimates of Table 4 to create a
prediction formula for the probability that an observation results in a response level of at
least five, which is desirable. The prediction formula was implemented in the Prediction
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Profiler in the JMP software. This gave us some more insight in the level settings of the
five experimental factors that maximize this probability. From Figure 3, it is clear that
a maximum probability of 94.77% is obtained when the easy-to-change factors B, C and
E are set at their high level while the hard-to-change factor A is set at its low level.

Figure 3: Maximum probability that the response level is at least five

5.2 Alternative Data Analysis

When there is a highly uneven distribution of the responses over the different categories,
this may lead to problems with fitting the mixed cumulative logit model. Therefore, it is
sometimes interesting to group some response outcomes to get a more even distribution.
Another possible beneficial consequence of this grouping is that fewer intercepts need to
be estimated (remember that each cumulative logit has its own intercept) and that more
degrees of freedom become available for estimating the remaining fixed effects and vari-
ance components.

When we take a look at the frequencies of the seven outcomes in the steel tire cord ex-
periment in Table 6, there is indeed a quite uneven distribution of the responses over the
various outcomes. Although this did not lead to fitting problems in the previous section,
we grouped some of the response outcomes in order to have a larger number of degrees of
freedom available to estimate the fixed effects and the variance components. The steel tire
cord experiment involves only 32 observations, i.e. 31 degrees of freedom. In the analysis
of Section 5.1., six degrees of freedom were necessary to estimate the different intercepts,
leaving at most 25 degrees of freedom to estimate the remaining 15 factor effects and 3
variance components.
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Table 6: Frequency table of the response outcome in the steel tire cord experiment

Response Total Freq.
1 1
2 5
3 10
4 7
5 6
6 2
7 1

Table 7: Point estimates and standard errors of the whole-plot variance, the block variance
and the error variance when response outcomes are grouped.

Variance Estimate Stand. Err.

WP 0.000 -

Block 0.0000 -

Error 20.8973 12.2536

Taking the frequencies of Table 6 into account, it might be interesting to group response
categories 1 and 2, and response categories 5, 6 and 7. This would lead to a more even
distribution of the response and result in a cumulative logit model with only three dif-
ferent intercepts to estimate. A drawback of grouping some response outcomes is, of
course, the fact that part of the information on the response is lost. For the steel tire cord
experiment, this alternative analysis with fewer outcome categories led to the variance
component estimates in Table 7 and the fixed effect estimates in Table 8.

From Table 7, we can see that the estimate of the error variance is of the same order of
magnitude as that in the original analysis in Table 2. Also, the block variance is estimated
to be zero, as was the case in the original analysis. The difference, however, is that the
whole-plot variance is now estimated to be zero as well, whereas, in the original analysis,
it had a positive estimate. Comparing the results of Table 8 with the ones of Table 3, we
notice, for example, that, although there are fewer intercepts to estimate and the degrees
of freedom available for testing the factor effects increase, we obtain a smaller number of
significant effects. We still find the interaction effects between A and B, and, between
A and E, to be significant at the 10% level, but the interaction effect between C and E
is no longer significant after merging the outcome categories. This shows that merging
outcome categories may make it more difficult to detect significant effects.
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Table 8: Parameter estimates, standard errors and significance test results for a cumulative
logit model containing all main effects and two-factor interaction effects when response
outcomes are grouped.

Effect Estimate Stand. Err. DF Sign.
Intercept 1 -4.1828 1.5529 14.000 0.0175
Intercept 2 -0.0394 1.3218 14.000 0.9766
Intercept 3 5.5928 1.8288 14.000 0.0085

A -0.7238 1.0397 13.370 0.4983
B 0.1027 1.0190 12.340 0.9213
C 0.5246 1.0172 12.090 0.6153
D 1.0982 1.0411 13.350 0.3102
E 0.0267 1.0138 11.850 0.9794

A*B -2.9284 1.1789 14.000 0.0263
A*C 0.9317 1.0328 12.730 0.3837
A*D 0.5251 1.0354 13.230 0.6204
A*E -2.2391 1.1423 14.000 0.0702
B*C -1.0680 1.0200 12.140 0.3155
B*D 1.3040 1.0501 13.570 0.2354
B*E -1.0101 1.0548 13.550 0.3550
C*D -0.6131 1.0231 12.390 0.5598
C*E 1.5620 1.0580 13.520 0.1628
D*E 0.0109 1.0170 12.380 0.9916

6 Conclusion

The steel tire cord experiment is a real-life example of a split-plot experiment with an
additional blocking factor. This requires the introduction of an extra random effect in
the original split-plot model, which makes the model for the data analysis similar to that
for a strip-plot experiment (See Arnouts, Goos and Jones (2010)). Moreover, there is the
additional complication that the response is ordinal and, therefore, we suggest to use a
mixed cumulative logit model, which is an example of a generalized linear mixed model.

Analysis of the data suggests that there is no effect of the rubber block used. In addition,
there is only a small correlation between the steel tire cords produced from the same
whole plot (steel cord roll) and only three fixed effects turn out to have a significant effect
on the pull-out force. Finally, the best results regarding the quality of the adhesion are
reached when the hard-to-change factor A is set at its low level and the easy-to-change
factors B, C and E are set at their high level.
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We also looked at two alternative methods to analyse the data of the steel tire cord ex-
periment. However, we do not wish to explicitly report the results of these alternative
analyses since we do not recommend these to be used. First, we ignored the recommen-
dations of Gilmour (2011) and used the cumulative logit model without a random effect,
εij, for the individual runs. For this dataset, the final model of this analysis is the same
as the final model of the original analysis in Section 5.1.

Second, in practice, the ordinal nature of the response in the steel tire cord experiment
is often ignored, which means that the data are analysed as if the response is continuous,
using a linear mixed model. Again, for this dataset, the final model of the linear analysis
is the same as the final model in the original analysis. The main difference is that the
estimate of the variance ratio σ2

δ/σ
2
ε is only 0.0754 in comparison to 0.1274 in the original

analysis.

We do not recommend ignoring the ordinal nature of the response and using a linear
mixed model. On page 5 of his Analysis of Ordinal Categorical Data book, Agresti (2010)
lists five major reasons why using a conventional linear model is not a good idea:

“First, there is usually not a clear-cut choice for the scores. Second, a particular response
outcome is likely to be consistent with a range of values for some underlying latent vari-
able, and an ordinary regression analysis does not allow for the measurement error that
results from replacing such a range by a single numerical value. Third, unlike the methods
presented in this book, that approach does not yield estimated probabilities for the response
categories at fixed settings of the explanatory variables. Fourth, that approach can yield
predicted values above the highest category score or below the lowest. Fifth, that approach
ignores the fact that the variability of the responses is naturally nonconstant for categori-
cal data: for an ordinal response variable, there is little variability at predictor values for
which observations fall mainly in the highest category (or mainly in the lowest category),
but there is considerable variability at predictor values for which observations tend to be
spread among the categories.”

On top of these five reasons, Agresti (2010) also demonstrates the floor effect which
results in spurious interaction effects when treating ordinal outcomes as continuous. This
strongly backs up our preference to avoid using the conventional linear model.
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Appendix: SAS code

proc glimmix;
class wp block;
model response(descending)=
A
B
C
D
E
A*B
A*C
A*D
A*E
B*C
B*D
B*E
C*D
C*E
D*E
/solution ddfm=kr dist=multinomial link=cumlogit;
random wp block wp*block;
run;
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