Snowfall over Antarctica: First evaluation of Cloudsat snowfall rates by ground-based remote sensing (Micro Rain Radar)

N. Souverijns, A. Gossart, S. Lhermitte, I.V. Gorodetskaya, J. Grazioli, A. Berne, C. Duran-Alarcon, C. Genthon, N.P.M. van Lipzig

Introduction

- Direct snowfall observations over Antarctica are limited
 - Cloudsat: mainly used to get statistics on snowfall rates over Antarctica (Palerme et al., 2015)
 - Not evaluated over Antarctica up to now
 - Two permanent Micro Rain Radars:
 - Princess Elisabeth (PE)
 - Dumont D'Urville (DDU)
 - Parsival / PWD
 - One year campaign at McMurdo

Cloudsat

Palerme et al., 2015

Cloudsat

MRR

- Operational since 2006
- Since 2010 only austral summer measurements
- Overpass frequency = 5 days
 - Level 2 data product (Granules)
- 94 GHz radar

- Blind zone of 1.5 km (Maahn et al., 2014)
- Snowfall rates are derived by analyzing snow particle properties for each profile (Wood et al., 2013)

- Operational since 2010 / 2015
- Mostly austral summer measurements
- Measures every 10 sec
- 24 GHz radar
 - Up to -15 dBz (=0.0031 mm w.e./h)
- Blind zone of 300m
- Snowfall rates are calculated based on relations specifically obtained for both locations (Souverijns et al., 2017; Grazioli et al., 2017)

Methodology

- Find overpasses Cloudsat and the stations
 - All overpasses within 1° latitude and 3° longitude of the MRR

- Average of all profiles within the box
- Closest profile
- Compare snowfall rates of the lowest bins of both MRR and Cloudsat
 - For the MRR we take the average precipitation within 5 hours since the overpass to account for displacement of precipitation systems

Overpasses Cloudsat and MRR (average)

- The same snowfall rate threshold is used by both instruments
- PE (dry ~ Sahara)
 - 381 overpasses between 2010-2016 of which in 203 cases both instruments were active

	Cloudsat Prec	Cloudsat No		Evente missed
MRR Prec	15% (31)	5% (9)	by Cloudsat	
MRR No	11% (22)	69% (141)		

Small-scale local events that not passed the station

- DDU (wet ~ London)
 - 19 overpasses at which both instruments were active

	Cloudsat Prec	Cloudsat No
MRR Prec	26% (5)	11% (2)
MRR No	16% (3)	47% (9)

Overpasses Cloudsat and MRR (closest overpass)

- The same snowfall rate threshold is used by both instruments
- PE (dry ~ Sahara)
 - 381 overpasses between 2010-2016 of which in 203 cases both instruments were active

	Cloudsat Prec	Cloudsat No	Events missed by Cloudsat	Events missed
MRR Prec	14% (28)	6% (11)		
MRR No	10% (20)	70% (143)		

Small-scale local events that not passed the station

- DDU (wet ~ London)
 - 19 overpasses at which both instruments were active

	Cloudsat Prec	Cloudsat No
MRR Prec	28% (5)	11% (2)
MRR No	6% (1)	55% (10)

Snowfall rate (average)

PE DDU

MRR = 9.1 mm w.e. Cloudsat = 8.9 mm w.e.

MRR = 2.2 mm w.e. Cloudsat = 1.6 mm w.e.

Snowfall rate (closest overpass)

Snowfall rate (mm/h), average over 5 hours 10⁰ 10⁻² 10⁻²

DDU

MRR = 8.9 mm w.e. Cloudsat = 8.6 mm w.e.

 10^{-1}

Cloudsat

10⁰

10¹

10⁻²

10⁻³

10⁻³

MRR = 2.2 mm w.e.Cloudsat = 1.7 mm w.e.

Cloudsat sees it all? No need for MRR?

- Compare time periods in which both MRR and Cloudsat were measuring for a long time instead of individual events!
- In total:
 - 20 months of concurrent data for PE
 - More than 3 months for DDU
 - Mostly summer data!
- Goal: Calculate statistics on this

Princess Elisabeth

- Total amount of precipitation
 - MRR: 466 mm w.e.
 - Cloudsat: 328 mm w.e. (average)
 - Cloudsat: 242 mm w.e. (closest overpass)
 - Local peaks and lows in precipitation?
- Frequency of snowfall (using the same detection limit)
 - MRR: 14 %
 - Cloudsat: 28 % (average)
 - Cloudsat: 22 % (closest overpass)

Dumont D'Urville

- Total amount of precipitation
 - MRR: 119 mm w.e.
 - Cloudsat: 110 mm w.e. (average)
 - Cloudsat: 114 mm w.e. (closest overpass)
- Frequency of snowfall (using the same detection limit)
 - MRR: 24 %
 - Cloudsat: 41 % (average)
 - Cloudsat: 35 % (closest overpass)

Summary

- Overall, a good correspondence between Cloudsat and MRR snowfall rates
 - An underestimation of total accumulation at the inland station
 - The amount of small-scale snowfall events detected by MRR that are missed by Cloudsat is small (~ Palerme et al., 2015)
- Cloudsat generally overestimates snowfall frequency
 - A lot of small-scale snowfall events are detected by Cloudsat, which may not be present at a specific location
- Future work
 - Doing a similar analysis for McMurdo instruments
 - Include snowfall rate distributions
 - Adding uncertainties in both MRR and Cloudsat

References

- Grazioli, J., Genthon, C., Boudevillain, B., Duran-Alarcon, C., Del Guasta, M., Madeleine, J.-B., Berne, A., 2017. Measurements of precipitation in Dumont d'Urville, Terre Adélie, East Antarctica. The Cryosphere, in review.
- Maahn, M., Burgard, C., Crewell, S., Gorodetskaya, I.V., Kneifel, S., Lhermitte, S., Van Tricht, K., van Lipzig, N.P.M., 2014. How does the spaceborne radar blind zone affect derived surface snowfall statistics in polar regions? Journal of Geophysical Research: Atmospheres 119, 13604-13620.
- Palerme, C., Kay, J.E., Genthon, C., L'Ecuyer, T., Wood, N.B., Claud, C., 2014. How much snow falls on the Antarctic ice sheet? The Cryosphere 8, 1577-1587.
- Souverijns, N., Gossart, A., Lhermitte, S., Gorodetskaya, I.V., Kneifel, S., Maahn, M., Bliven, F.L., van Lipzig, N.P.M., 2017. Estimating radar reflectivity snowfall rate relationships and their uncertainties over Antarctica by combining disdrometer and radar observations. Atmospheric Research, accepted.
- Wood, N.B., L'Ecuyer, T., Vane, D.G., Stephens, G.L., Partain P., 2013. Level 2C Snow Profile process description and interface con- trol document, version 0.
 http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2C-SNOW-PROFILE_PDICD.P R04.20130210.pdf.