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José Ignacio Orlando,1, 2, a) Karel van Keer,3 João Barbosa Breda,3 Hugo Luis Manterola,1, 2

Matthew B. Blaschko,4 and Alejandro Clausse1, 2, 5
1)Pladema Institute, UNCPBA, Gral. Pinto 399, Tandil, Argentina
2)Consejo Nacional de Investigaciones Cient́ıficas y Técnicas, CONICET, Argentina
3)Department of Ophthalmology, UZ Leuven, Leuven, Belgium
4)ESAT-PSI, KU Leuven, Kasteelpark Arenberg 10, B-3001, Leuven, Belgium
5)Comisión Nacional de Enerǵıa Atómica, CNEA, Argentina

(Dated: 5 October 2017)

Purpose: Diabetic retinopathy (DR) is one of the most widespread causes of preventable
blindness in the world. The most dangerous stage of this condition is proliferative DR (PDR),
in which the risk of vision loss is high and treatments are less effective. Fractal features of
the retinal vasculature have been previously explored as potential biomarkers of DR, yet the
current literature is inconclusive with respect to their correlation with PDR. In this study
we experimentally assess their discrimination ability to recognize PDR cases.
Methods: A statistical analysis of the viability of using three reference fractal characteriza-
tion schemes–namely box, information and correlation dimensions–to identify patients with
PDR is presented. These descriptors are also evaluated as input features for training `1 and
`2 regularized logistic regression classifiers, to estimate their performance.
Results: Our results on MESSIDOR, a public data set of 1200 fundus photographs, indicate
that patients with PDR are more likely to exhibit a higher fractal dimension than healthy
subjects or patients with mild levels of DR (p ≤ 1.3×10−2). Moreover, a supervised classifier
trained with both fractal measurements and red lesion based features reports an area under
the ROC curve of 0.93 for PDR screening and 0.96 for detecting patients with optic disc
neovascularizations.
Conclusions: The fractal dimension of the vasculature increases with the level of DR.
Furthermore, PDR screening using multiscale fractal measurements is more feasible than
using their derived fractal dimensions. Code and further resources are provided at https:
//github.com/ignaciorlando/fundus-fractal-analysis.

Keywords: Proliferative diabetic retinopathy, Fundus imaging, Fractal dimension, Machine
learning

I. INTRODUCTION

Diabetes mellitus (DM) is a highly prevalent metabolic
disorder characterized by insulin deficiency and/or an
inappropriate response to insulin.1 The resulting hyper-
glycemia, through protein glycation, oxidative stress and
other mechanisms, can lead to serious (micro) vascular
and neurological complications. The number of people
suffering from DM is expected to increase from 366 mil-
lion in 2011 to 552 million by 2030,2 with two thirds of the
cases occurring in low to middle-income countries, where
access to an ophthalmological consultation is scarcer.3

One of the major microvascular consequences of DM is
Diabetic Retinopathy (DR), which is one of the leading
causes of preventable blindness in the World.4 As high
glucose levels weaken the vessel walls, microaneurysms5

develop on the vascular surface. When these pathological
regions break, blood and/or lipids leak into the retinal
layers producing hemorrhages, exudates and swelling.1

At the same time, several biomechanical changes also
lead to vessel occlusion, which means that some retinal
areas do not receive enough oxygen. The body reacts to
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this condition by releasing angiogenic factors that lead
to the generation of new vessels to bypass the damaged
ones which grow in a fibrous scaffold. This new fibrovas-
cular proliferation defines proliferative DR (PDR). These
weak new vessels might also break and leak not only to
the retina but also to the vitreous humor. At this stage
patients have a higher risk of suffering retinal detach-
ment, hemovitreous, and other retinal changes that lead
to irreversible vision loss.6

Whereas end-stage DR is the leading cause of ir-
reversible blindness among working-age adults in the
world,4 the disease is completely asymptomatic in its
early stages. However, early and adequate correction of
hyperglycemia and concomitant cardiovascular risk fac-
tor significantly reduces the risk of developing advanced
DR in the first place, justifying the need for screening
programs aimed at detecting DR in early stages of the
disease. Identifying subjects with PDR, though, is es-
sential to start other more urgent treatments such as
laser photocoagulation or anti-VGEF injections to pre-
vent further bleeding and/or neovascularization. Auto-
mated systems for computer-aided diagnosis of DR, in
general, or PDR, in particular, can contribute not only
to improving the efficiency of screening campaigns but
also to reducing the inter-expert variability.7 In general,
these systems are aided by the automated computation
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TABLE I: Summary of statistical studies describing the
fractal geometry of DR.

Study Conclusions

Daxer, 19938 High fractal dimension observed on
PDR patients.

Cheung et al.,
20099

High fractal dimension observed on
early DR patients.

Grauslund et al.,
201010

Low fractal dimension observed on
PDR patients.

Aliahmad et al.,
201411

High fractal dimension observed on
early DR patients.

Mudigonda et al.,
201512

High fractal dimension observed on
PDR patients.

Huang et al.,
201613

No statistically significant
differences observed in the fractal

dimension of patients with different DR
grades.

of pathology-related radiomics, which are used to train a
classifier.6

Fractal dimensions have been extensively analyzed in
the literature as potential descriptors of pathological
changes in the retinal vasculature (Table I). However,
the inconsistencies in their conclusions have suggested
that they are sensitive to imaging conditions or charac-
terization protocols.13,14 In particular, Huang et al.13,15

observed that fractal dimensions are unstable with re-
spect to factors such as the capture devices, the segmen-
tation method used to retrieve the vessels and the regions
where the fractal properties are analyzed. However, such
a study is guided by the labels provided in the data set
MESSIDOR,16 which were assigned following a diagnos-
tic criterion in which both pre-PDR and PDR cases are
grouped in the same category (Section II). Nevertheless,
the most evident changes in the distribution of the retinal
vessels are expected to occur on the proliferative cases as
a consequence of abnormal vasculogenesis (Fig. 1). On
the other hand, the study was performed in terms of the
absolute values of the fractal features,13 without combin-
ing them with any machine learning technique, which is
the usual practice in developing DR screening systems.6

On the other side, only a few methods for automated
PDR screening can be found in the literature and most
of them are focused on segmenting areas with abnormal
vasculogenesis (Table II). In general, all these approaches
rely on a training phase from patch-level annotations,
which requires an intensive effort to obtain. As a conse-
quence, these methods are usually evaluated on relatively
small data sets with a few images.

This article presents an extensive study of three differ-
ent fractal dimensions and multiscale measurements, ob-
tained from vessel segmentations and their skeletoniza-
tions, for characterizing patients with PDR. For repro-
ducibility purposes, the entire study is conducted on
the publicly available data set of fundus images MES-
SIDOR.16 To this end, the images of MESSIDOR were
relabeled by two experts to separate pre-PDR and PDR
cases. The fractal dimensions are statistically evaluated
for different DR grades, first, reporting a growing ten-
dency for higher levels of retinopathy. Moreover, frac-
tal dimensions retrieved from skeletonizations showed a

TABLE II: Summary of existing methods for PDR
detection. AUC = area under the ROC curve. Se =

sensitivity. Sp = specificity.

Study Methodology Num. images Results

Welikala et
al., 201417

Vascular
features and

dual
classification

60 images (from
MESSIDOR and

a private data set)

AUC =
0.9682, Se =
1, Sp = 0.9

Welikala et
al., 201518

Feature
selection based

on genetic
algorithms

60 images (from
MESSIDOR and

a private data set)

AUC =
0.9914, Se =

1, Sp = 0.9750

Roychowd-
hury et al.,

201619

Texture,
structural and

intensity
features

57 images (from
STARE and a

private data set)

AUC = 0.8291,
Se = 0.864, Sp

= 0.76

Gupta et
al., 201620

Texture
features

776 images (from
STARE,

MESSIDOR,
HRF and a

private data set)

AUC = 0.9597,
Se = 0.922,
Sp = 0.83

better ability to discriminate PDR cases compared with
those extracted from segmentations. Additionally, we in-
vestigate if the typical strategy used for estimating fractal
dimensions from multiscale measurements affects their
true discrimination ability. To this end, `1 and `2 regular-
ized logistic regression classifiers are learned from these
features for PDR screening. The empirical results show
that the estimation of the fractal dimension as the slope
of a fitted line actually reduces the discrimination ability
of the original measurements. Furthermore, performance
is significantly improved when using the raw measure-
ments as features. It was also observed that the com-
bination of fractal measurements with red lesion based
features achieves high performance for PDR screening.
To the best of our knowledge, this study is the first one
reporting results obtained using multiscale fractal mea-
surements for training a PDR screening method. On the
other hand, instead of using patch-level categories, our
approach is trained from the more economical image-
level annotations. Furthermore, the evaluation is per-
formed on a larger set of images compared to existing
approaches (Table II), with a more realistic proportion
of true positive and negative samples.7

II. MATERIALS

All experiments were carried out on the publicly avail-
able data set of retinal images MESSIDOR,16 which is a
benchmark set for evaluating computer-assisted methods
for DR assessment. It comprises 1200 eye color fundus
photographs provided by 3 medical institutions in France,
captured using a Topcon TRC NW6 (Topcon, Japan) de-
vice. The original file format is TIF, and 3 different im-
age resolutions can be found in the data set: 1440× 960,
2240×1488 and 2304×1536. In our study, all images were
standardized to an approximate resolution of 909 × 909
pixels so that the vessel calibre relatively matches that
of the DRIVE data set.21 This is required for segmenting
the vasculature, as detailed in Section III A. Images are
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 1: Retinal vasculature segmentation and postprocessing. First row: non-proliferative case. Second row:
proliferative case. From left to right: green band of the original color image (a, e), vessel segmentation (b, f),

postprocessing removing spurius detections (c, g) and skeletonized vasculature (d, h).

labeled in 4 DR grades–R0, R1, R2 and R3–following the
diagnostic criterion indicated at the top of Table III.

The R3 category originally provided in the set corre-
sponds to both pre-proliferative and proliferative cases.
As the purpose of this work is to estimate the ability
of fractal features to identify patients suffering from ab-
normal vasculogenesis, images belonging to R3 were re-
labeled by two ophthalmologists, assigning the R3 grade
to pre-proliferative cases (without neovessels) and the R4
label to PDR subjects (with neovessels) (second part of
Table III). Neovascularization was labelled as neovessels
in the optic disc and neovessels elsewhere in the retina,
to follow the clinically used grading of neovasculariza-
tion. A total number of 59 images with neovasculariza-
tion (15 of them with neovessels in the optic disc area)
were identified. The first human grader was used in all
the experiments as the ground truth reference, while the
second observer was used to estimate the inter-expert
variability, as made in previous studies.21 All these la-
bels are made publicly available in the project website
for reproducibility purposes.

III. METHODS

Fractal objects are structures that are characterized
by self-similarity, which means that a pattern persists at
multiple scales.13 Branching structures such as roots or
lightning bolts are natural examples of these objects.22

The property of self-similarity is generally quantified
by means of fractional dimensions. Retinal vasculature
is known to constitute a fractal object as well, which
means it can be characterized using standard fractal
dimensions.23 In order to study such properties, it is nec-
essary to first segment the vascular structure from an im-
age. In this study, we made use of fundus photographs,

which are projective color images of the inner surface of
the human eye that can be obtained non-invasively at a
relatively economical cost.6 Given a fundus photograph,
the retinal vasculature is segmented and skeletonized as
explained in Section III A. Afterwards, a fractal analysis
procedure based on the box-counting method24 is per-
formed to retrieve different fractal dimensions and multi-
scale measurements (Section III B). Finally, two different
regularized logistic regression classifiers (Section III C)
are trained to assess these features for proliferative DR
detection.

A. Vessel segmentation and skeletonization

Fractal characterization schemes are usually based on
raw binary maps obtained from a manual or an auto-
mated vessel segmentation strategy, or using their skele-
tonizations. Fig. 1 presents examples of segmentations
and skeletonizations obtained from two images sampled
from the MESSIDOR data set.16 Fractal features com-
puted from vessel segmentations are expected to charac-
terize not only their distribution patterns but also the rel-
ative caliber of the vascular segments. On the contrary,
those features obtained from vessel skeletonizations are
more likely to describe only the general organization of
the vascular tree.

In the present study the retinal vessels are recovered
by means of a fully-connected conditional random field
model learned with a structured output support vector
machine.25,26 In particular, we follow the same config-
uration reported in Orlando et al.,27 which resulted in
a more connected representation of the general vascular
structure. As a preprocessing step, the green channel of
the RGB images is taken as it is the one that exhibits the
best contrast between vessels and the remaining struc-
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TABLE III: DR grades in the MESSIDOR data set. Top: diagnostic criterion provided in the set. Bottom:
redefined criterion used in this study. N: number of lesions. Subindices: MA = microaneurysms, HE = hemorrhages

and NV= neovascularization.

Grade Criteria Images Prop.
R0 (NMA = 0) AND (NHE = 0) 546 45.50%
R1 (0 < NMA ≤ 5) AND (NHE = 0) 153 12.75%
R2 (5 < NMA < 15) AND (0 < NHE < 5) AND (NNV = 0) 247 20.58%

Original diagnostic criterion
R3 (NMA ≥ 15) OR (NHE ≥ 5) OR (NNV > 0) 254 21.17%

Redefined diagnostic criterion
R3 (NMA ≥ 15) OR (NHE ≥ 5) AND (NNV = 0) 195 16.25%
R4 (NMA ≥ 15) OR (NHE ≥ 5) AND (NNV > 0) 59 4.92%

tures of the fundus. Afterwards, a series of pixel level
features are computed.27 For vessel skeletonization we
apply an iterative thinning algorithm commonly used for
this task.28

An additional postprocessing stage is introduced after
segmentation to remove spurious detections that usually
occur in highly pathological cases due to the presence
of red lesions, scars of laser photocoagulation treatments
or dark streaks between bright lesions (Fig. 1(f)). This
approach consists of three stages. First, all binary con-
nected components with less than 100 pixels are removed
from the segmentation. A morphological closing28 with
a disk structuring element of 2-pixels radius is applied
afterwards to connect isolated elements with the main
vascular structure, and to remove holes in the main ar-
teries due to the central reflex. Finally, all connected
components with less than 200 pixels are removed. The
resulting segmentations (Figs. 2(c) and 1(g)) exhibit less
spurius structures and a more accurate representation of
the main vascular structure, while preserving the typical
features of the pathological areas like neovascularizations
(Fig. 2).

B. Fractal dimensions and measurements

Fractal dimensions are metrics that quantify the self-
similarity of fractal objects.13 Loosely speaking, the self-
similarity property can be formally described as:

N(r) ∝ r−D, (1)

where N(r) is an appropriate quantification of the pat-
tern (from now on called measurement) at a given scale r,
and D is the so-called fractal dimension. D characterizes
the similarity observed in the object when the scale r is
increased or decreased, and knowing N(r) from Eq. (1)
it can be obtained as:

D = − lim
r→0

logN(r)

log r
. (2)

If the self-similarity property is assumed to approxi-
mately hold, then it is expected that computing the mea-
surement N at two different scales rn and rn−1 yields an
estimate of D as follows:

D ' − logN(rn)− logN(rn−1)

log rn − log rn−1
. (3)

(a) (b)

(c) (d)

FIG. 2: Vessel segmentation on areas with
neovascularizations. (a) Green band of the original
image. (b) Blood vessel segmentation. (c) Refined

segmentation. (d) Skeletonized area.

Based on this relationship between measurements and
scales, one of the simplest strategies to estimate D is
to apply the box-counting method.24 It consists of ana-
lyzing the measurement N as obtained from multiscale
regular grids superimposed over the input object. More
specifically, a binary input image I is divided in different
squares of side-length rn–with n being a given resolution–
and the measurements are taken from the boxes that
overlap with the object to be characterized. This pro-
cess is repeated until r reaches a minimum scale, and a
set of measurements over a wide range of scales is ob-
tained. Finally, a log-log plot is produced to represent
the changes in N with the grid resolution, and the frac-
tal dimension D can be estimated as the slope of the
regression line that fits those points.13

In fundus image analysis, different fractal dimensions
have been applied to characterize the structural patterns
of the retinal vasculature.9,29 In this work we use three
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different estimators of fractal dimension–namely box, in-
formation and correlation dimensions–and their corre-
sponding fractal measurements.

1. Box dimension.

The box dimension DB , also known as the capacity
or the Minkowski-Bouligand dimension,22 is one of the
simplest approaches for fractal characterization. It was
first introduced by Liebovitch et al.,24 and is defined as
the number N(r) of boxes with side-length r that are

needed to cover an object that grows following (1/r)
DB

as r → 0:

DB = lim
r→0

logN(r)

log 1/r
. (4)

where N(r) represents the number of squared boxes with
side-length r which overlap with the binary structure un-
der analysis.

2. Information dimension.

The information dimension DI
13 is defined as:

DI = lim
r→0

H(r)

log 1/r
(5)

where H(r) is the sum of the Shannon entropy of each of
the cells in the grid:

H(r) = −
nr∑
i=1

pi(r) log pi(r) (6)

Here, nr is the total number of cells of side-length r in
the image, pi(r) = qi(r)/M represents the probability
of finding a part of the binary object in the i-th cell of
side-length r, qi(r) is the number of pixels of the object
contained in the i-th cell, and M is the total number of
pixels of the object.

3. Correlation dimension.

The correlation dimension DC is relatively similar to
the box dimension, defining N as the average number
of points contained in a box of size r. This is usually
approximated by the probability density:13

C(r) =
1

nr2

nr∑
i=1,j=1,i6=j

Θ (r − ||pi − pj ||) '
nr∑
i=1

p2i (r),

(7)
where Θ(x) is the Heaviside step function, pi is the posi-
tion of the i-th pixel belonging to the fractal object, and
pi(r) is the probability of finding an object in the i-th
cell as defined in Section III B 2. Then, the correlation
dimension of a binary object is obtained as:

DC = lim
r→0

logC(r)

log 1/r
. (8)

C. Regularized logistic regression

Proliferative DR detection can be modeled as a binary
classification task that can be solved by means of a super-
vised machine learning approach. In particular, in this
study the procedure will be guided by regularized logistic
regression classifiers with two different regularizers,30,31

and both fractal dimensions and measurements will be
explored as potential features for training these classi-
fiers.

Let S be a training set composed of n training in-
stances {(xi, yi), i = 1, ..., n}. Each xi ∈ Rd is a d-
dimensional feature vector extracted from the i-th im-
age, and yi ∈ {−1,+1} corresponds to its class label (+1
if proliferative DR or −1 if healthy or non-proliferative
DR). Features in xi are standardized to zero mean and
unit variance before training the classifier.

Logistic regression can be written as a regularized risk
minimization with logistic loss.27 The objective function
to minimize is given by the following expression:

β̂ = argmin
β

λΩ(β) +

n∑
i=1

log (1 + e−yi〈β,xi〉) (9)

where β is a coefficient vector of the linear discriminant
function, λ ≥ 0 is a scalar parameter controlling the de-
gree of regularization by the regularizer Ω : Rd 7→ R+

and 〈·, ·〉 is the canonical inner product in Rd. Two dif-
ferent regularizers were used as Ω, the `1 = ‖ · ‖1 and
`2 = ‖ · ‖2 norms.30 `1 imposes the sum of the absolute
values of the parameters β to be small, resulting in sparse
parameter vectors.31 This setting makes this regularizer
suitable for simultaneous learning and feature selection.
We are interested in this specific ability as we want to
identify relevant scales when using fractal measurements
as features. By contrast, `2 regularization might not be
effective when only a few features are relevant. Finally,
the likelihood of a given image with feature vector xi
being proliferative DR is obtained by applying:

p(yi = 1|xi) =
1

1 + e−〈β,xi〉
. (10)

IV. EXPERIMENTAL SETUP

To estimate the multiscale fractal measurements, all
the vessel masks and their skeletonizations are extended
using zero padding up to a regular resolution of 1024 ×
1024 pixels. Thus, as the analyzed scales are powers of
2, a vector of 10 (= log2 1024) different measurements is
obtained for each image.

Since MESSIDOR is not divided into training and
test sets, we evaluated each classifier using k-fold cross-
validation,32 with k = 5. For this purpose, the data set
is randomly divided into k folds, preserving almost the
same proportion of positive and negative samples. At
each iteration, k − 1 folds are used as a training set for
learning the classifier, and the remaining one is used for
testing. A validation set comprising a randomly sam-
ple of 30% of the training set samples is used at each
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TABLE IV: Correlation analysis between different
fractal dimensions, for each fractal object (top) and
between fractal objects (bottom). ρ stands for the

Pearson correlation coefficient.

Fractal dimensions
Fractal object

Vessel segmentation Skeletonized vasculature
(DB , DI) ρ = 0.9766 ρ = 0.9908
(DB , DC) ρ = 0.9451 ρ = 0.9768
(DI , DC) ρ = 0.9897 ρ = 0.9954

Fractal dimension Correlation between fractal objects
DB ρ = 0.9109
DI ρ = 0.9284
DC ρ = 0.9048

iteration for model selection. The best value for the reg-
ularization parameter λ = 10i, i ∈ {−10,−9, ..., 0, ..., 10}
is selected by maximizing the area under the receiver-
operating characteristic (ROC) curve as measured on the
validation set. The best model is then applied on the i-th
test fold, and the process is repeated for each fold until
k = i. Then, the overall performance of the classifier is
estimated as the mean area under the ROC curve, aver-
aged for all the k test folds.33

V. RESULTS

A. Statistical analysis

A first experiment was performed on the entire data
set, using all fractal dimensions, to analyze their pair-
wise linear correlation. Two different comparisons were
made: one contrasting fractal dimensions retrieved from
the same object, and a separate one comparing the same
fractal dimension but obtained from the different struc-
tures. The Pearson correlation coefficient ρ was used to
quantify the relationship between variables. The results
are presented in Table IV. Independently of the fractal
object to be characterized, ρ values higher than 0.9 are
always observed. The highest linear correlation occurs
between DI and DC , while the lowest one is between DB

and DC . Moreover, the correlation between fractal di-
mensions extracted from different objects are lower, yet
high enough to assume that the features are strongly as-
sociated to each other.

The distribution of theDB fractal dimension computed
from vessel segmentations and skeletonizations, and for
each DR grade, are represented with boxplots in Fig-
ure 3. The remaining fractal dimensions are not included
as they are highly correlated with DB and have similar
distributions.

To assess the level of significance of the differ-
ences in the inter-group distributions, a non-parametric
Kolmogorov-Smirnov test (α = 0.05) was performed
for every combination of DR grades. ANOVA,
Kruskal-Wallis and Wilcoxon sign rank tests were dis-
carded because the variances of each grade are not
homogeneous34,35 (Levene test, p < 0.013). In gen-
eral, it is observed that the differences between pa-
tients with PDR (R4) and those with mild (R1-2) or
no DR (R0) are statistically significant, specially when

(a) Vessel segmentations. (b) Vessel skeletonizations.

FIG. 3: Distribution of DB per risk level as obtained
from (a) vessel segmentations and (b) skeletonized

vessels.

(a) Vessel segmentations. (b) Vessel
skeletonizations.

FIG. 4: Distribution of DB fractal dimensions for
healthy and non proliferative DR (R0-3) vs.

proliferative DR (R4), as obtained from (a) vessel
segmentations and (b) skeletonized vessels.

the fractal features are computed from skeletonizations
(p < 7.1 × 10−4). Furthermore, if R3 is contrasted with
R4, the differences are also significant (p < 1.9 × 10−2).
On the other hand, the fractal dimensions are extracted
from the vessel segmentations, most of the differences are
also statistical significant (p < 1.2 × 10−2). The differ-
ences in DB and DC between R1 and R4, and in all the
fractal dimensions between R3 and R4, are not signifi-
cant, though (p ≥ 0.07 and p > 0.33, respectively).

Figure 4 compares the distribution of DB for the R4
label with respect to all the other DR grades grouped
together, to analyze the reliability of fractal dimensions
to identify patients with PDR. It can be seen that the
differences between groups are statistically significant in-
dependently of the fractal objects to be characterized
(p ≤ 1.3× 10−2 for vessel segmentations, p ≤ 9.7× 10−5

for skeletonizations).
Finally, to evaluate the contribution of each fractal

dimension for detecting PDR, their raw responses were
thresholded at different values to construct ROC curves,
and the area under each of the curves (AUCs) was used
to quantitatively measure their performance. Two dif-
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FIG. 5: AUC values obtained using each fractal
dimension as a score to detect proliferative DR. Left:

PDR screening (R0-3 vs. R4). Right: detection of
patients with neovessels in the OD area.

ferent experiments were performed for this purpose: one
estimating their ability for detecting all types of neovas-
cularizations (R4 vs. all the other grades), and a sepa-
rate one evaluating their ability to identify patients with
neovessels only within the optic disc (OD) area. The
resulting AUC values are depicted as bar charts in Fig-
ure 5. Despite the high correlation observed between
fractal dimensions extracted from vessels and skeletoniza-
tions, higher AUC values are obtained with the latter.
For PDR detection, the best performance is achieved us-
ing the DB (AUC= 0.6462), while DI outperformed all
the other approaches for detecting optic disc neovascu-
larizations (AUC= 0.8118).

B. Fractal dimensions and measurements as features for
PDR screening

As previously indicated in Section III, fractal dimen-
sions are normally obtained as the slope of a regression
line that best fit a given set of multiscale fractal mea-
surements. In order to study whether the linear regres-
sion step affects the discrimination ability of the original
measurements, a first experiment was conducted train-
ing `1 and `2 regularized logistic regression classifiers us-
ing these features computed from segmentations or skele-
tonizations. Figure 6 depicts with bar charts the av-
erage AUC values obtained using 5-fold cross-validation
for each specific configuration, for PDR detection and
for detecting OD neovascularizations. Error bars corre-
spond to the standard error through folds. In general,
it is possible to see that the multiscale measurements re-
ported higher performance than the fractal dimensions
derived from them, with skeletonizations being more ef-
fective than segmentations for most of the comparisons.
Comparing `1 and `2 regularization, the latter gives bet-
ter results, which suggest that all the scales provide valu-
able information to the classifier. The best discriminat-
ing feature for both PDR screening and detecting OD
neovascularizations, is H(r) obtained from skeletoniza-
tions (AUC= 0.8455 and 0.9165, respectively).

Finally, fractal dimensions and/or measurements were

evaluated as features for training classifier for PDR
screening and for detecting patients with OD neovascu-
larizations. In particular, we trained `1 and `2 regular-
ized logistic regression classifiers with all the dimensions
and measurements extracted from segmentations and
skeletonizations. Additionally, we incorporated the max-
imum red lesion probability (obtained with our method
for red lesion detection5) as a feature, to further assess
if fractal features improve their performance when com-
bined with it. Finally, the combination of the red lesion
based feature and the best fractal measurement observed
in Figure 6 (i.e. H(r) from the skeletonized vascula-
ture) was also evaluated. 5-fold cross-validation was used
in all the experiments, as described in Section IV. Fig-
ure 7 presents the average ROC curves obtained for each
configuration, including the mean AUC values and their
standard deviations, and the second human observer sen-
sitivity and specificity. The AUC values are also summa-
rized in Table V. The best configurations reported AUCs
of 0.93 and 0.96 for PDR screening and detecting pa-
tients with OD neovascularizations, respectively. It is
worth noting that the results of our method for PDR de-
tection are quantitatively similar to the performance of
the second observer.

VI. DISCUSSION

It was experimentally observed that, for low DR
grades, fractal dimensions are distributed almost equally
(Fig. 3). This result is in line with previous studies,13

and is supported by the fact that red lesions, which are
the earliest signs of the disease, are not expected to affect
the overall distribution of the retinal vasculature. How-
ever, when PDR cases are separated from the original
R3 grade in the data set, an increased fractal dimension
value is more likely to be obtained, independently of the
type of dimension considered. If healthy, mild and pre-
proliferative subjects are grouped into the same category,
the differences are more evident (Fig. 5), which in prin-
ciple indicate that fractal dimension is a good feature for
PDR screening.

Despite the fact that a high linear correlation is ob-
served among different types of fractal dimensions (Ta-
ble IV), the AUC values reported by the features ex-
tracted from the skeletonized vasculature are higher than
those obtained using the segmentations (Fig. 5) for both
PDR screening and for detecting OD neovascularizations.
This can be explained by the fact that areas with ag-
glomerations of abnormal vessels are better characterized
by skeletonizations, because this postprocessing method
does not take into account the caliber of the vessels. An-
other interesting result is that the multiscale measure-
ments used as features for logistic regression produced
higher AUC values than their associated fractal dimen-
sions, as seen when comparing Figs. 5 and 6. This char-
acteristic is a first indication that the linear regression
model used for estimating the dimension from the frac-
tal measurements weakens the discrimination ability of
the latter by filtering valuable information. On the other
hand, the regularization parameter slightly affects the
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(a) PDR detection (b) OD neovascularizations

FIG. 6: Mean area under the ROC curves (AUCs) obtained by `1 and `2 regularized logistic regression classifiers,
trained using multiscale fractal measurements for (a) PDR detection and (b) detection of OD neovascularizations,

using 5-fold cross-validation. Error bars represent the standard error.

(a) PDR detection. (b) OD neovascularizations.

FIG. 7: Mean ROC curves obtained by `1 and `2 regularized logistic regression classifiers trained using different
combinations of features, for (a) proliferative DR detection and (b) detection of optic disc (OD) neovascularizations.

TABLE V: Mean AUC values (± standard deviation) obtained for proliferative DR (PDR) detection and for
detecting OD neovascularizations.

Method Detection task

Features Reg. PDR detection
OD neovascular-

ization

Fractal dimensions
`1 0.6647 ± 0.14 0.8977 ± 0.13
`2 0.6702 ± 0.14 0.8955 ± 0.13

Fractal measurements
`1 0.8344 ± 0.07 0.7647 ± 0.23
`2 0.8225 ± 0.07 0.8295 ± 0.21

Fractal dimensions and measurements
`1 0.8444 ± 0.06 0.7650 ± 0.23
`2 0.8220 ± 0.07 0.8246 ± 0.22

Max. red lesion probability `1 / `2 0.8592 ± 0.02 0.8641 ± 0.05
Max. red lesion probability and all the
fractal features

`1 0.9162 ± 0.02 0.9118 ± 0.08
`2 0.9062 ± 0.02 0.8936 ± 0.11

Max. red lesion probability and H(r)
`1 0.9231 ± 0.02 0.9574 ± 0.04
`2 0.9291 ± 0.02 0.9409 ± 0.05

results (Fig 6), with the `2 norm reporting better perfor- mance in most of the experiments. This suggests that,
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in principle, all the scales are partially relevant for the
analysis. In any case, the best fractal measurement for
both PDR and OD neovascularization detection is the
H(r) obtained from skeletonizations.

Combining all the fractal dimensions into the same fea-
ture vector for PDR detection did not seem to be effec-
tive, as seen in the low AUC values reported in Fig. 7.
The combination of fractal measurements, by contrast,
yields a significant improvement in results, with a corre-
sponding reduction in the variability between folds. The
best performance was achieved by the `1 regularizer in
this case, which means that combining all the measure-
ments is suboptimal. Adding the fractal dimensions to
this feature set slightly improves performance if the `1
regularizer is used, as well. The maximum probabil-
ity of the red lesion detector5 achieved a similar AUC
value, although with lower sensitivities under the low
FPR regime. This property is a consequence of the in-
ability of this feature to characterize the presence of neo-
vascularizations. However, results are improved when the
fractal features were added. Finally, it is worth noting
that the highest performance is achieved by combining
the red lesion based feature and H(r) from the skele-
tonized vasculature. Under this setting, the `2 norm is
the best regularizer, which is consistent with the results
observed in Fig 6. In particular, this approach yielded
90% sensitivity for a specificity value of 83%, with the
lowest standard deviation through folds.

A similar evaluation can be made for detecting patients
with OD neovascularizations. In this case, the combina-
tion of all the fractal dimensions reported higher perfor-
mance than the combination of all the fractal measure-
ments, suggesting that the interaction between measure-
ments does not provide valuable information for this task.
Furthermore, the red lesion based feature yielded less ac-
curate results than the combination of fractal dimensions.
Nevertheless, the combination of H(r) with such a fea-
ture also resulted in better performance, reporting 100%
sensitivity for a specificity value of 80%. In this case,
the `1 regularizer is more appropriate, suggesting than
certain scales are avoided when the red lesion feature is
considered.

A comparison with the state of the art in PDR detec-
tion is difficult as most of the available tools were tested
on different data sets (Table II). For example, the works
by Welikala et al.17,18 reported higher AUC values than
our method, although using smaller test sets containing
only a few images from MESSIDOR and others obtained
from private data sets. Similarly, Roychowdhury et al.19

reported an AUC value of 0.8291 for PDR detection on
a smaller data set made with a combination of 40 images
from STARE36 and another 17 images extracted from a
private data set. In the present study we used the whole
set of 1200 images provided in MESSIDOR in order to
produce results as general as possible.31 Even under this
challenging but realistic setting, our combination of frac-
tal features reported higher AUC values than other ex-
isting approaches.

A potential limitation regards the grading of neovas-
cularizations. Neovessels were identified by looking into
fundus images, without access to angiographic leakage in-
formation, which would confirm the diagnosis. However,

experienced graders were responsible for this task, which
makes it more likely to be accurate. Furthermore, the rel-
ative agreement between the two human observers (Fig-
ure 7) suggests a certain consensus regarding the images
that correspond to PDR cases, which supports the relia-
bility of the labels. Further investigation of inter-expert
agreement is an interesting area of future research. On
the other hand, the accuracy of the vessel segmentation is
essential to ensure a proper fractal characterization. In
our experiments, we observed that the method usually
fails when the segmentation contains spurious segments
that were not suppressed by the preprocessing method.
This occurs when the images in MESSIDOR contain large
hemorrhages covering large areas of the images or the
illumination is uneven. In other data sets, it can also
happen when the quality of the images is poor. As fun-
dus photographs are non-invasive and their acquisition is
relatively economical, low quality images could be recap-
tured to mitigate this issue and to ensure a proper input
to the system.

VII. CONCLUSIONS

An extensive study of the reliability of using frac-
tal dimensions to identify patients with proliferative DR
(PDR) was presented. A statistical analysis of their dis-
tribution through different DR grades indicated that pa-
tients with PDR are more likely to have an increased
fractal dimension, which is associated with the presence
of neovascularizations. The statistically significant differ-
ences between R4 and the remaining labels indicate that
fractal properties can be robust enough to characterize
PDR cases with respect to non-proliferative and healthy
subjects. Furthermore, the original multiscale fractal
measurements used for the computation of the fractal
dimensions were assessed as input features for training
logistic regression classifiers. It was observed that this
approach yields better results for PDR screening and for
detecting patients with optic disc neovascularization than
using the raw fractal dimensions. This setting indicates
that the linear combination of fractal measurements per-
forms better than the traditional linear regression model
for PDR detection. Finally, state of the art performance
is obtained for both classification tasks when integrat-
ing fractal measurements with a red lesion based feature.
These settings should be taken into account when design-
ing automated methods for DR grading, as they might
potentially improve results. In conclusion, fractal proper-
ties are shown to be effective radiomics for characterizing
neovacularization processes. Finally, an open source im-
plementation of our experimental setup is made available
online for the sake of contributing to the reproducibility
of our experiments.37
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