
Shift-and-invert iteration for purely

imaginary eigenvalues with application

to the detection of Hopf Bifurcations in

large scale problems

Karl Meerbergen Alastair Spence

Report TW533, December 2008

n Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A – B-3001 Heverlee (Belgium)



Shift-and-invert iteration for purely

imaginary eigenvalues with application

to the detection of Hopf Bifurcations in

large scale problems

Karl Meerbergen Alastair Spence

Report TW533, December 2008

Department of Computer Science, K.U.Leuven

Abstract
The detection of a Hopf bifurcation in a large scale dynamical

system that depends on a physical parameter often consists of com-
puting the right-most eigenvalues of a sequence of large sparse eigen-
value problems. This is not only an expensive operation, but the
computation of right-most eigenvalues is often not reliable for the
commonly used methods for large sparse matrices. In the literature
a method has been proposed that computes a value of the param-
eter that corresponds to a Hopf point without actually computing
right-most eigenvalues. This method utilises the Kronecker product
and involves the solution of matrices of squared dimension, which is
impractical for large scale applications.

However, if good starting guesses are available for the parameter
and the purely imaginary eigenvalue at the Hopf point, then efficient
algorithms are available. In this paper, we propose a method for
obtaining such good starting guesses, based on finding purely imag-
inary eigenvalues of a two-parameter eigenvalue problem (possibly
arising after a linearisation process). The problem is formulated as
an inexact inverse iteration method that requires the solution of a
sequence of Lyapunov equations with low rank right hand sides. It is
this last fact that makes the method feasible for large systems. The
power of our method is tested on three numerical examples, one of
which is a discretised PDE with two space dimensions.

Keywords : Hopf bifurcations, dynamical systems, eigenvalue problem, Lya-
punov equation.
MSC : Primary : 37M20, 65F15, Secondary: 65P30, 65P40



SHIFT-AND-INVERT ITERATION FOR PURELY IMAGINARY
EIGENVALUES WITH APPLICATION TO THE DETECTION OF

HOPF BIFURCATIONS IN LARGE SCALE PROBLEMS

KARL MEERBERGEN AND ALASTAIR SPENCE

Abstract. The detection of a Hopf bifurcation in a large scale dynamical system that depends
on a physical parameter often consists of computing the right-most eigenvalues of a sequence of large
sparse eigenvalue problems. This is not only an expensive operation, but the computation of right-
most eigenvalues is often not reliable for the commonly used methods for large sparse matrices. In the
literature a method has been proposed that computes a value of the parameter that corresponds to a
Hopf point without actually computing right-most eigenvalues. This method utilises the Kronecker
product and involves the solution of matrices of squared dimension, which is impractical for large
scale applications.

However, if good starting guesses are available for the parameter and the purely imaginary
eigenvalue at the Hopf point, then efficient algorithms are available. In this paper, we propose a
method for obtaining such good starting guesses, based on finding purely imaginary eigenvalues of
a two-parameter eigenvalue problem (possibly arising after a linearisation process). The problem
is formulated as an inexact inverse iteration method that requires the solution of a sequence of
Lyapunov equations with low rank right hand sides. It is this last fact that makes the method
feasible for large systems. The power of our method is tested on three numerical examples, one of
which is a discretised PDE with two space dimensions.

1. Introduction. This paper introduces a numerical procedure for the determi-
nation of the smallest λ for which the eigenvalue problem

(A + λB)x = µMx(1.1)

has a pair of purely imaginary µ’s. Here λ is to be thought of as a physical parameter
and µ denotes the eigenvalue of the generalised eigenvalue problem (1.1), and we are
assuming the matrices are large and sparse.

This work is motivated by the bifurcation analysis of the non-linear dynamical
system

du

dt
= f(u, λ) , u(0) = u0

where f is an operator in (Rn,R) 7→ Rn with n large. Such analysis includes the
computation of bifurcation diagrams, and more particularly, the stability analysis and
detection of Hopf bifurcations, which lead to the birth of periodic solutions (see, for
example, [33]. In many situations (e.g. nonlinear finite element computations), we
have an equation of the form

M
du

dt
= f(u, λ)

where M is a large sparse symmetric positive definite mass matrix. In the case of
steady state solutions, i.e. du/dt = 0, often the values of λ are sought for which
the solution u changes from a stable to an unstable regime. In a linearized stability
analysis, the steady state is said to be stable when the eigenvalues µ of

J(λ)x = µMx(1.2)

have strictly negative real parts, with J(λ) denoting the Jacobian matrix evaluated at
the steady state u(λ), namely, J(λ) = ∂f

∂u (u(λ), λ). Values of λ where eigenvalues of
1



(1.2) cross the imaginary axis indicate a transition from a stable to unstable regime.
When stability is lost due to a real eigenvalue µ passing through zero there are many
techniques available to determine the critical value of λ, see, for example [13]. In
contrast, at a Hopf bifurcation on a path of stable steady states, (1.2) has two purely
imaginary eigenvalues, with the other eigenvalues having negative real parts. The
detection of Hopf bifurcations is a particularly difficult task for large scale dynamical
systems. However, if good starting values for λ and µ are known then there are good
methods, usually based on Newton’s Method, for their accurate determination, see,
for example, [13]. The contribution of this paper is the determination of good starting
values with which to start the Hopf calculation.

Perhaps the most straightforward method to detect Hopf points is to monitor the
right-most eigenvalues of (1.2) for a discrete set of λ’s. This requires the solution of an
eigenvalue problem for each selected λ, which can be quite expensive, especially when
the system size is large. The solution of large scale eigenvalue problems in this context
has been studied intensively the last fifteen years. We refer to [2] for an overview of
eigenvalue solvers, and [25] for an overview on methods for computing right-most
eigenvalues. The shift-invert Arnoldi method [28] [32] with zero shift seems to be the
most attractive approach since a matrix factorization of J(λ) is available anyway. If
a matrix factorization is not feasible, the JDQZ method [7], inexact rational Krylov
[22] or Arnoldi’s method with inexact shift-invert can be used. All these methods are
quite reliable for computing eigenvalues near a point or target, but sometimes fail to
compute the right-most eigenvalue. Therefore, an expensive validation phase can be
employed to ensure that the right-most eigenvalue is indeed computed [26] [24].

A novel technique for the detection of Hopf bifurcation points in small scale
dynamical systems was first introduced by Guckenheimer and co-workers, [16], [17],
who introduced the bialternate product of J(λ), defined as (J(λ) ⊗ I + I ⊗ J(λ))/2,
which is an n2 × n2 matrix, but which has a pair of zero eigenvalues when J(λ) has
a pair of purely imaginary eigenvalues. This approach was also used in [21], and [14],
and expounded further in [13, §§4.4–4.5]. This construction forms the first theoretical
step in our method, but we emphasise that we do not compute with the Kronecker
product forms.

In this paper, we consider the situation where

J(u, λ) = (A + λB) .

In a general setting, A and B ∈ Rn×n could arise from a linearization of f around a
specific value of u and λ. Here, A and B are usually nonsymmetric matrices and B
can be singular. In this paper, we assume the following situation: λ = 0 corresponds
to a stable steady state solution, i.e. all eigenvalues of Ax = µMx lie in the stable
half plane. The goal is to compute the smallest λ for which the eigenvalue problem
(1.1) has purely imaginary µ’s. Generically, the µ’s will be continuous functions of λ
and the first λ for which there are µ’s on the imaginary axis (including the case when
µ = 0), must correspond to a transition from a stable to unstable steady state, or to
a Hopf point (or at least, to approximations of such points for the full Jacobian). A
validation phase as in [26] [24] would no longer be required in this case.

First, note that if (1.1) has purely imaginary eigenvalues then

(A + λB)⊗M + M ⊗ (A + λB)(1.3)

has a double eigenvalue zero. Mathematically, this translates into the following order
2



n2 linear eigenvalue problem

(A⊗M + M ⊗A)z + λ(B ⊗M + M ⊗B)z = 0 ,(1.4)

whose solution gives the values of λ for which (1.1) has purely imaginary eigenvalues
µ. Although this is a nice mathematical property, it should only be used in this form
for problems of small size. This paper is about the characterisation of the solutions
of (1.4) and its efficient solution when A, B and M are large and sparse.

For the sake of completeness, we should mention the connection with the two-
parameter eigenvalue problem. The problem that we discuss in this paper can also
be written in the form

Ax + λBx − µMx = 0
Ax̄ + λBx̄ + µMx̄ = 0

where the second equation is the complex conjugate of the first and we have assumed
that µ is purely imaginary. Such problems can be solved with the Jacobi-Davidson
method [20] [19], which seeks (λ, µ) pairs near a target point (σ, τ), often with τ = 0,
since a good starting guess for µ typically won’t be known. However, for the detection
of a Hopf bifurcation this is a dangerous strategy and a situation that we want to
avoid. This paper shows an alternative approach, where a starting guess for µ isn’t
required, but where the computation of µ is hidden in the method.

The plan of the paper is as follows. We first show properties of the eigenvalue
problem (1.4) in §2. We show connections between (1.1) and (1.4) and prove that
the λ of interest is a simple eigenvalue of (1.4) restricted to an appropriate subspace.
In §3, we present an inverse iteration method for solving (1.4). Inverse iteration is
an obvious choice, since we want to compute λ nearest zero. A starting guess of µ
is not required, but the final value of µ can be computed as a by-product once λ
and an eigenvector are known. Equation (1.4) is written as a Lyapunov-like equation,
where the eigenvectors are matrices of low rank. The fact that we work with low rank
matrices utilizes the efficiency of traditional solvers for large scale Lyapunov equations
with low rank right-hand sides. We chose a Lyapunov solver using Arnoldi’s method
in our numerical tests. This method can be viewed as an inexact inverse iteration
method and we can use convergence results for simple eigenvalues in the case that the
solution λ corresponds to a Hopf bifurcation. The details of the algorithm that we
used in our numerical experiments are explained in §4. Numerical examples, including
two physical applications, are given in §5 and support the theory in this paper.

2. Two eigenvalue problems. In this section, we discuss the properties of the
n2×n2 generalised eigenvalue problem (1.4) and describe the relationship between its
solutions and the solutions of (1.1). We also discuss a reformulation to an equivalent
n× n problem which is more suitable for computations.

We first define the n2 × n2 matrices:

∆0 = B ⊗M + M ⊗B

∆1 = A⊗M + M ⊗A

and rewrite (1.4) as

(∆1 + λ∆0)z = 0 .(2.1)

The following theorem relates the solutions of (1.4) with those of (1.1).
Theorem 2.1. For a given λ, let (µj , xj) be an eigenpair of (1.1). Then

3



1. if µ1 = 0 is a simple eigenvalue and there are no other eigenpairs of the form
±βi or ±α, then λ is a simple eigenvalue of (2.1) with eigenvector z = x1⊗x1;

2. if µ1,2 = ±βi ∈ I are two simple purely imaginary eigenvalues and there are
no other eigenpairs of the form ±γi or ±α, and no zero eigenvalue, then λ
is a double eigenvalue with eigenvector z = ξ1x1 ⊗ x̄1 + ξ2x̄1 ⊗ x1 for any ξ1,
ξ2 ∈ C;

3. if µ1,2 = ±α ∈ R are two simple real eigenvalues and there are no other
eigenpairs of the form ±βi or ±γ, and no zero eigenvalue, then λ is a double
eigenvalue with eigenvector z = ξ1x1 ⊗ x2 + ξ2x1 ⊗ x2 for any ξ1, ξ2 ∈ C.

Proof. If µ = 0, then

(∆1 + λ∆0)x1 ⊗ x1 = (A + λB)x1 ⊗Mx1 + Mx1 ⊗ (A + λB)x1 = 0 ,

which proves item 1. Items 2 and 3 follow from that (A + λB)x1 = µMx1 and
(A + λB)x2 = −µMx2, where µ = µ1 = −µ2. We can write

(∆1 + λ∆0)x1 ⊗ x2 = (A + λB)x1 ⊗Mx2 + Mx1 ⊗ (A + λB)x2

= (A + λB + µM)x1 ⊗Mx2 + Mx1 ⊗ (A + λB − µM)x2

= 0⊗Mx2 + Mx1 ⊗ 0 = 0 .

We now show that the converse of this theorem holds if M is nonsingular.
Theorem 2.2. Let (λ, z) be an eigenpair of (2.1) and M be non-singular. Then

one of the following situations is true.
1. If λ is simple, then z = x⊗ x where (µ = 0, x) is an eigenpair of (1.1).
2. If λ is a double eigenvalue, then there are µ ∈ C and x1 and x2 ∈ Cn so

that (µ, x1) and (−µ, x2) are simple eigenpairs of (1.1) and there are ξ1 and
ξ2 ∈ C so that z = ξ1x1 ⊗ x2 + ξ2x2 ⊗ x1.

Proof. Let A+λB = MXΓX−1 be a Jordan canonical form associated with (1.1),
where X = [x1, . . . , xn] and µ1, . . . , µn are the main diagonal elements of Γ, then (2.1)
is equivalent to

(MX ⊗MX)(Γ⊗ I + I ⊗ Γ)(X−1 ⊗X−1)z = 0 .

Since MX ⊗MX and X−1 ⊗X−1 have full rank,

Γ⊗ I + I ⊗ Γ

has at least one zero main diagonal element. The main diagonal elements of Γ⊗I+I⊗Γ
are µj + µi where µj are eigenvalues of (1.1). Since Γ⊗ I + I ⊗Γ is upper triangular,
µj +µi are eigenvalues of (A+λB)⊗M +M ⊗ (A+λB) with associated eigenvectors
z = xi ⊗ xj and z = xj ⊗ xi.

If λ is a double eigenvalue, the two eigenvalues correspond to µ1 + µ2 = 0 and
µ2 + µ1 = 0. Since A, B and M are real, we must have that µ1,2 = ±α or µ1,2 = ±βi
(possibly zero). The eigenvectors of the double eigenvalue zero must have the form
ξ1x1 ⊗ x2 + ξ2x2 ⊗ x1. If µ1,2 = ±βi, then x2 = x̄1.

If λ is a simple eigenvalue, µ1 +µ2 can only be simple and zero when µ1 = µ2 = 0.
The associated eigenvector is z = x ⊗ x where x is the corresponding eigenvector of
(1.1).

This proves the theorem.
4



Theorems 2.1 and 2.2 show the correspondence between purely imaginary eigen-
pairs of (1.1) and solutions of (2.1). By first writing the eigenvectors of (2.1) as n×n
matrices so that z = vec(Z), where vec is a function that puts all columns of Z in a
vector, we can write (2.1) as

MZAT + AZMT + λ(MZBT + BZMT ) = 0 .(2.2)

Although we do not solve this equation directly, the introduction of the matrix nota-
tion of the eigenvector is going to be useful for the inverse iteration method that we
introduce further. In the remainder of the text, we call both z and Z an eigenvector.

Theorem 2.3. Assume that λ is a real eigenvalue of (2.1), and the conditions
of Theorem 2.1 are satified. Then:

1. if µ = 0 is simple, Z is a symmetric matrix of rank 1, i.e. Z = xxT ;
2. if µ = ±βi, there is a real symmetric eigenvector of rank two Z = xx∗+ x̄xT ,

which is unique up to a scalar factor.
3. if µ = ±α is real, there is a symmetric eigenvector of rank two Z = x1x

T
2 +

x2x
T
1 , which is unique up to a scalar factor;

If Z is rank 2, it is indefinite.
Proof. The proof for µ = 0 follows from z = x⊗ x and so Z = xxT . For µ real or

purely imaginary, we know that the eigenvectors take the form

Z = ξ1x1x
T
2 + ξ2x2x

T
1 ,

where x1 and x2 are not parallel. If ξ1 or ξ2 is zero, Z has rank one. We now
prove that for a real symmetric Z, the rank is two. From Z − ZT = 0 we derive
(ξ1 − ξ2)x1x

T
2 + (ξ2 − ξ1)x2x

T
1 = 0 so that ξ1 = ξ2. This implies that for a real

symmetric Z, we always have a rank two matrix. Note that for case 2, x1 = x and
x2 = x̄.

We can rewrite

Z = x1x
T
2 + x2x

T
1(2.3)

= (x1 + x2)(x1 + x2)T − (x1 − x2)(x1 − x2)T ,(2.4)

which has one positive semi-definite term and one negative semi-definite term, so
Z has one positive and one negative eigenvalue (and n − 2 zero eigenvalues), which
concludes the proof of the theorem.

The observation of Theorem 2.3 is very significant for our work. From the theorem
we may conclude that for the three cases considered in Theorems 2.1, 2.2 and 2.3, λ is
a simple eigenvalue when (2.1) is restricted to the subspace of symmetric eigenvectors
Z. This observation is important, since theory for eigenvalue solvers is significantly
easier for simple than for double eigenvalues.

The solution of (2.1) restricted to the symmetric eigenvector space is related
to, but distinct from, the method discussed in [17] and [13, §§4.4–4.5], where it is
suggested to solve (2.1) restricted to the anti-symmetric eigenvector space. The ad-
vantage is that a simple zero µ cannot produce an eigenvalue λ in this space, since
its corresponding eigenvector, Z, is always symmetric (Theorem 2.3, case 1). Hence,
solving (2.1) restricted to the anti-symmetric eigenvector space avoids the computa-
tion of a simple zero µ. In contrast, we have chosen the restriction to symmetric
eigenvectors, since the inverse iteration method is then related to the solution of a
Lyapunov equation, which is a rather well-known problem.

5



A natural representation of a low rank symmetric matrix is its truncated eigen-
decomposition. In practice, we will write Z as Z = V DV T where D is a diagonal
matrix and V T V = I. For a rank two Z, D is a 2× 2 matrix and V is n× 2.

Once Z and λ are computed, the computation of µ readily follows from the
solution of the two by two problem

V T (A + λB)V y = µV T MV y .(2.5)

Indeed, since

Z = xx∗ + x̄xT = V DV T ,

x and x̄ are spanned by the columns of V .
When ∆0 is singular, λ = ∞ is an eigenvalue with the nullspace of ∆0 as

eigenspace. Note that in case of a singular B, µ can take any finite value where
the eigenvectors lie in the common nullspace. Here is a simple example.

Example 1. Let

A =

 2 −1
1 2

3

 B =

 1 0 0
0 1 0
0 0 0

 M = I .

The eigenvalues of the pencil ∆0 + λ∆1 are −2 (double eigenvalue), −2 ± i (double
eigenvalues), −5 ± i (double eigenvalues), and ∞. For λ = −2, we have µ = ±i
(which indicates a Hopf point), For λ = −2+ i, we have µ = 2i, i. Complex λ have no
physical meaning and are discarded. With the infinite λ, we can associate any finite
µ with eigenvector e3 ⊗ e3.

Eigenvectors associated with λ = −2 are (1,−i, 0)⊗(1, i, 0) and (1, i, 0)⊗(1,−i, 0).

3. Inverse iteration. In this section we describe the inverse iteration method
(Algorithm 3.2) [11, §7.6.1] to find the solution to (2.1) (equivalently (2.2)) nearest
to zero. The algorithmic details are given in §4.

As is standard, the accuracy of an approximate eigenpair is measured by the
residual norm. Let r = ∆1z + λ∆0z and

R = (A + λB)ZMT + MZ(A + λB)T(3.1)

so that r = vec(R). The eigenvalue approximation λ is, as usual, computed by the
Rayleigh quotient

λ =
z∗∆1z

z∗∆0z
.(3.2)

Algorithm 3.1 (Inverse iteration).
1. Given z0 ∈ Cn2

.
2. For j = 1, 2, . . . , do:

2.1. Solve yj from ∆1yj = ∆0zj−1.
2.2. Normalize: zj = yj/‖yj‖.

However, applying inverse iteration directly to (2.1) is obviously a bad idea, since
we work with n2-vectors, which is not feasible when n is large.

To overcome this difficulty, we convert the inverse iteration method into one for n-
dimensional problems using the Lyapunov notation that we introduced in last section,

6



see (2.2). We shall see that this allows the opportunity for significant computational
savings. Using zj = vec(Zj). Step 2.1 in Algorithm 3.1 becomes

AYjM
T + MYjA

T = BZj−1M
T + MZj−1B

T .(3.3)

By inverting M or A, this becomes a Lyapunov equation. Let us assume that we
invert A, we then obtain

YjS
T + SYj = TZj−1S

T + SZj−1T
T(3.4)

where S = A−1M and T = A−1B. Note that the right-hand side in (3.4) is symmetric.
This leads to a recasting of Algorithm 3.1 as follows:

Algorithm 3.2 (Inverse iteration).
1. Given x0 ∈ Cn.
2. Let Z0 = x0x

T
0 .

3. For j = 1, 2, . . . , do:
3.1. Compute the right-hand side Fj−1 = TZj−1S

T + SZj−1T
T

3.2. Solve Yj from YjS
T + SYj = Fj−1

2.2. Normalize: Zj = Yj/‖Yj‖F

In the first iteration of Algorithm 3.2, the right-hand side

F0 = (Tx0)(Sx0)T + (Sx0)(Tx0)T

has rank two (assuming that Bx0 6= Mx0) and is symmetric. Note that F0 is indefi-
nite, since it can be written as

F0 =
1
2
(Tx0 + Sx0)(Tx0 + Sx0)∗ − 1

2
(Tx0 − Sx0)(Tx0 − Sx0)∗ .

Now, though F0 has rank two, there is no reason why Y1 should have rank two.
However, we hope the eigenvalues of Y1 quickly decay, so that a good low rank ap-
proximation of Yj is feasible, and it is this feature that provides the computational
savings. The solution of Lyapunov equations often can be approximated by low rank
matrices for applications arising from dynamical systems [30] [1]. The solution of the
Lyapunov equation is not unique when S has eigenvalues of opposite sign. These
correspond indeed to zero eigenvalues of ∆1. Since we assumed that the eigenval-
ues of M−1A lie in the negative half plane, the eigenvalues of A−1M have the same
properties. As a result the solution of (3.4) is unique.

Lemma 3.1. Assume that the solution of (3.4) is unique. In each iteration of
Algorithm 3.2, Zj is real symmetric.

Proof. For j = 1, the right-hand side F0 is symmetric. By transposing (3.4), we
see that Y T

1 is also a solution to (3.4). Since the solution is unique, Y1 = Y T
1 .

By induction, we can now show that all iterates are real symmetric. This proves
the lemma.
If the sequence {Zj}j≥0 converges, it converges to a symmetric matrix. We thus
compute an eigenvector of (2.1) that is symmetric. From Theorem 2.3, we know that
this eigenvector is unique, i.e. the desired eigenvalue is simple. Note that if we have
a random starting vector x0, Algorithm 3.2 converges to the λ nearest zero and its
associated eigenvector.

Since Yj is symmetric, we represent it by its eigendecomposition Yj = VjDjV
T
j ,

where Dj is a diagonal matrix and V T
j Vj = I. The fact that Yj (and Zj) converge

to a rank two matrix and that the solution of Lyapunov equations often have quickly
7



decaying eigenvalues, means that we can truncate the eigendecomposition of Yj and
keep a low rank approximation without introducing large errors. This is the first
approximation that we make in the method. Truncation introduces a residual in the
Lypunov equation (3.4). Let Yj = VpDpV

T
p + Vn−pDn−pV

T
n−p, then (3.4) becomes

S(VpDpV
T
p ) + (VpDpV

T
p )ST = Fj−1 + Gj(3.5)

with

Gj = −{S(Vn−pDn−pV
T
n−p) + (Vn−pDn−pV

T
n−p)S

T } .

The term Gj becomes a residual term in

∆1yj = ∆0zj−1 + vec(Gj) .

From inexact inverse iteration theory [22] [23] [12] [8] [9], we know that inexact inverse
iteration converges to the simple eigenvalue nearest zero when ‖Gj‖F ≤ τ‖rj−1‖2 for
all j ≥ 1 where rj = ∆1zj + λj∆0zj is the eigenvalue residual. We will not discuss in
this paper how the truncation can be carried out to guarantee that ‖Gj‖F is smaller
than the prescribed tolerance. The important point is that the tolerance for ‖Gj‖
decreases when eigenvalue estimates become more accurate.

Assuming that we have n2 independent eigenvectors for (2.1), we can decompose
Zj into

Zj =
n∑

l,m=1

α
(l,m)
j xlx

T
m ,

where xm ⊗ yl for l, m = 1, . . . , n are the eigenvectors of (2.1). At convergence, Zj

has rank two, i.e. with appropriate numbering of the eigenpairs of (2.1), we have

lim
j→∞

Zj = x1x
T
2 + x2x

T
1 .

The error on Zj,

Ξj = Zj − x1x
T
2 − x2x

T
1

is a linear combination of the ‘other’ eigenvectors. The matrix Zj has thus two large
eigenvalues and n − 2 smaller eigenvalues depending on ‖Ξj‖. Since ‖Ξj‖ converges
to zero, truncating small eigenvalues in Zj becomes easier and easier.

Each iteration requires the solution of a Lyapunov equation. Methods for small
dense problems such as the Bartels and Stewart [3] method are not feasible for large
sparse problems of the type we consider here. Other methods are based on ADI and
the Smith method [29]. We refer to [18] for an overview. In the context of this paper,
Krylov methods are perhaps most appropriate since we can perform linear solves with
A and matrix vector products with B and M [34] [35] [31]. Such a Lyapunov solver
introduces an additional residual term in (3.5). The size of this residual term can be
controlled by the Lyapunov solver.

4. Algorithmic details. Here we discuss some of the details of the implemen-
tation of Algorithm 3.2.

We first rewrite Algorithm 3.2 in terms of the eigendecomposition of Zj . The
method now looks as follows:

8



Algorithm 4.1 (Inverse iteration).
1. Given V0 = [x0] ∈ Cn×1 and D0 = 1, i.e. (Z0 = x0x

T
0 )

2. For j = 1, 2, . . . , do:
2.1. Compute the eigendecomposition of the right-hand side

Pj−1Cj−1P
T
j−1 = (TVj−1)Dj−1(SVj−1)T + (SVj−1)Dj−1(TVj−1)T

2.2. Approximate Yj = VjDjV
T
j with YjS

T + SYj = Pj−1Cj−1P
T
j−1

2.3. Truncate to rank p: Yj = VpDpV
T
p using tolerance τ .

2.4. Normalize: Dj = Dj/‖Dj‖F .
2.5. Compute λj by the Rayleigh quotient (3.2).

We now explain the different steps in detail. For Step 2.1, we first write the right-hand
side as

1
2
(TVj + SVj)Dj(TVj + SVj)− 1

2
(TVj − SVj)Dj(TVj − SVj) .

We then decompose

1
2
[SVj + TVj , SVj − TVj ] = QR

by a QR factorization and compute the eigendecomposition of (R · diag(Dj ,−Dj) ·
R∗)U = UCj . Then Pj = QU .

In Step 2.3, we drop the n−p smallest eigenvalues of Yj . This reduces the number
of columns of Vj to p. Let the diagonal elements of Dj be ordered in decreasing
modulus, then we truncate

Yj = [Vp Vk−p]
[

Dp

Dk−p

]
[Vp Vk−p]T ≈ VpDpV

T
p ,

so that ‖Dk−p‖2 ≤ τ‖Dp‖2.
An issue that is also of importance for the inexact inverse iteration method for

the standard eigenvalue problem Ax = λx, is that the error on the iterative solve
should decrease when the residual norm of the approximate eigenpair decreases. For
standard eigenproblems, inverse iteration requires the solution of

Axj = xj−1 .

Clearly, xj−1 would be an excellent starting vector (up to a scalar factor), since at
some point, xj makes a small angle with xj−1. Using an Arnoldi based method, the
Krylov space

span{xj−1, Axj−1, . . . , A
k−1xj−1}

is built. This space contains xj−1, and so the solution xj will pick this up. This implies
that even for a fixed number of iterations the residual norm gradually decreases [23].

We have a similar situation here. The eigendecomposition of the right-hand side
of (3.4) is PjCjP

T
j where

Range(Pj) = Range(SVj) + Range(TVj) .

9



Since

Fj = SZjT
T + TZjS

T

= −λ−1
j (SZj + ZjS

T ) + λ−1
j ((I + λjT )ZjS

T + SZj(I + λjT )T

= −λ−1
j (SZj + ZjS

T ) + λ−1
j A−1RjA

−T ,

where Rj is defined by (3.1) with Z = Zj and λ = λj . The last term in Fj is
proportional to the eigenvalue residual norm and decreases to zero, whereas the first
term becomes more and more dominant in the right-hand side Fj .

Suppose that Fj = −λ−1
j (SZj + ZjS

T ), then

Range(Pj) = Range(Vj) + Range(SVj) .

Since Pj is used as starting vectors for the Block Arnoldi method, Vj is in the subspace.
This provides a good starting guess for the Lyapunov solver in the Krylov space itself.
From the numerical examples, we will indeed see a reducing residual norm for the
Lyapunov equation.

The technically most difficult part is Step 2.2. We chose to solve (3.3) by the
Lyapunov equation (3.4). In this paper, we solve (3.4) from the block Krylov space
for the starting vectors Pj and the matrix S.

Methods for solving Lyapunov equations with rank one right-hand sides are some-
times solved by Arnoldi’s method. For rank p right-hand sides, we use the block
Arnoldi method with p starting vectors. The Arnoldi method builds an orthogonal
basis for the Krylov space

span{w1, Sw1, S
2w1, . . . , S

k−1w1}
and a k×k upper Hessenberg matrix Hk = WT

k SWk. Here is an outline of the Arnoldi
algorithm:

Algorithm 4.2 (Arnoldi).
1. Given w1 with ‖w1‖2 = 1
2. For j = 1, . . . , k

2.1. Compute w̃j = Swj .
2.2. Compute hj = W ∗

j w̃j ∈ Rj and ŵj = w̃j −Wjhj

2.3. Compute βj = ‖ŵj‖2 and define wj+1 = ŵj/βj

2.4. Let Wj+1 = [Wj wj+1] .

When we collect the matrices hj in Hk ∈ Rk×k, i.e. Hk = [h1, . . . , hk], then we have

SWk −WkHk = wk+1βkeT
k(4.1)

where ek is the last column of the k × k identity matrix.
Suppose we want to solve the Lyapunov equation

SY + Y S∗ = w1w
∗
1 .(4.2)

Let Wk and Hk be computed by the Arnoldi method with starting vector w1. We
look for a solution of the form Y = WkXW ∗

k . First substituting this into (4.2), and
then using (4.1), we have

(SWk)XW ∗
k + WkX(SWk)∗ = w1w

T
1

Wk(HkX + XH∗
k − e1e

∗
1)W

∗
k = −wk+1βke∗kXW ∗

k −WkXekβkw∗k+1 .

10



Multiplication on the left and the right by W ∗
k and Wk respectively, produces the

Lyapunov equation of order k

HkX + XH∗
k = e1e

∗
1 .

If k is much smaller than n, this is a cheap problem to solve.
In the block Arnoldi method, we build the Krylov space

span{Pj , SPj , . . . , S
k/p−1Pj}

which is a subspace of dimension smaller than or equal to k. The extension to the
block Arnoldi method is easy, although rather technical, and therefore omitted, see
[31] for technical details.

5. Numerical examples. We present three examples to illustrate the theory in
this paper. The first is contrived to illustrate two important points, the second and
third are from physical applications.

5.1. Illustration of the theory by a small problem. We use n×n matrices
with n = 100, M = B = I and A a block diagonal matrix with 2 × 2 blocks on the
main diagonal such that the eigenvalues of A are η1,2 = 1 ± 100i, η2j−1,2j = j ± i
for j = 2, . . . , n/20. Since ∆0 = 2I, the solutions of (1.4) are λ = − 1

2 (ηj + ηi) for
i, j = 1, . . . , n/2. Each eigenvalue has multiplicity two. There are n/2 real λ’s: −j
for j = 1, . . . , n/2. Since we use real arithmetic in the inverse iteration method, we
can only converge to a real eigenvalue. By construction, the λ’s nearest zero are −1
and −2. The corresponding µ’s are ±100i and ±i respectively.

From earlier work [4] [10] [5] [25], we know that detecting right-most eigenvalues
is not an easy task. The reason is that most eigenvalue eigenvalue solvers search for
eigenvalues near a point, called a shift, or a target. A key advantage of the approach
described here is that our method converges to the λ nearest zero (assuming we solve
the Lyapunov equation exactly or, at least, accurately). The actual value of µ is not
important, indeed it isn’t used by the method, but arises as a by-product, described
by (2.5). This is a significant advantage over other methods where a good starting
value of µ is required. If we apply Algorithm 4.1 and solve the Lyapunov equation
exactly, we have the convergence behaviour as is shown in Table 5.1. The results are
in line with the theory in this paper.

The second important point illustrated by this model example concerns the ac-
curacy of the solves in Step 2.2 of Algorithm 4.1. When we use a Krylov method in
Step 2.2 of Algorithm 4.1, convergence behaviour may depend on k, the dimension
of the Krylov subspace, as is shown in Tables 5.2 and 5.3. When we use twenty
Krylov vectors, we converge to the wrong value of λ (namely to −2), and hence would
calculate an incorrect value of µ. The reason for this is that the Lyapunov solver
builds a Krylov space with A−1M , which is rich in the eigenvectors associated with
the eigenvalues near zero. The eigenvalues 1± 100i lie quite far from zero and it may
take a while before they converge. The associated eigenvectors do not participate
in the Lyapunov solution, so the eigenvalue solver does not ‘see’ these eigenvectors.
Indeed, Arnoldi’s method for A−1M , is, as we know, not reliable for computing eigen-
value with large imaginary parts [25]. However, when we repeat the experiment with
k = 40, we recover the behaviour achieved in Table 5.1, and hence converge to the
desired values of λ. As a consequence, the correct value of µ is found.

11



Iteration rank p λ ‖(∆1 + λ∆2)x‖2
1 12 −16.8607 4 · 101

2 13 −1.75552 1.7 · 100

3 13 −1.02289 5.7 · 10−1

4 12 −1.00186 1.3 · 10−1

5 11 −1.00024 4.2 · 10−2

6 10 −1.00004 1.6 · 10−2

7 9 −1.00001 6.6 · 10−3

8 8 −1 3 · 10−3

9 7 −1 1.4 · 10−3

10 7 −1 6.6 · 10−4

11 7 −1 3.2 · 10−4

12 6 −1 1.6 · 10−4

13 6 −1 7.7 · 10−5

14 5 −1 3.8 · 10−5

15 5 −1 1.9 · 10−5

16 4 −1 9.3 · 10−6

17 4 −1 4.6 · 10−6

18 4 −1 2.3 · 10−6

19 4 −1 1.1 · 10−6

20 4 −1 5.7 · 10−7

21 4 −1 2.9 · 10−7

22 4 −1 1.4 · 10−7

23 4 −1 7.1 · 10−8

24 4 −1 3.6 · 10−8

25 2 −1 7.8 · 10−14

Table 5.1
Convergence when using an exact Lyapunov solver

5.2. The Olmstead model. The mathematical model represents the flow of a
layer of viscoelastic fluid heated from below [27] [15]. The equations are

∂u

∂t
= (1− C)

∂2v

∂X2
+ C

∂2u

∂X2
+ Ru− u3

B
∂v

∂t
= u− v

where u represents the speed of the fluid and v is related to viscoelastic forces. The
boundary conditions are u(0) = u(1) = 0 and v(0) = v(1) = 0. After discretization
with central differences with grid-size h = 1/(n/2 + 1), the equations may be written
as ẋ = f(x) with x = [u1, v1, u2, v2, . . . , uN/2, vN/2]T . We consider the Jacobian
A + λB = ∂f/∂x for n = 2, 500, B = 2, C/ = 0.1 and λ = R ∈ [0.6, 5], evaluated in
the trivial steady state solution.

We used Algorithm 4.1 to solve this problem with the following parameters. We
discretized the problem around R = 4. We used at most k = 40 Krylov vectors in
the solution of the Lyapunov equation. We used the tolerance τ = 10−4 to drop the
singular values of the solution of the Lyapunov equation in Step 3.3 in Algorithm 4.1.

12



Iteration rank(Vj) λj ‖Gj‖F ‖(∆1 + λ∆0)vec(VjDjV
∗
j )‖2

1 10 −17.1375 5.6 · 10−4 3.9 · 101

2 10 −3.16988 4.6 · 10−4 1.9 · 100

3 10 −2.23436 1.2 · 10−3 3 · 100

4 10 −2.67188 6.9 · 10−4 2.2 · 100

5 10 −2.34886 1.8 · 10−4 8.9 · 10−1

6 10 −2.17747 1.4 · 10−5 5.5 · 10−1

7 10 −2.09318 8.4 · 10−7 4.7 · 10−1

8 10 −2.05086 6.3 · 10−8 4.1 · 10−1

9 10 −2.0288 1.4 · 10−8 3.7 · 10−1

10 10 −2.01681 4.2 · 10−9 3.2 · 10−1

11 10 −2.01005 1.3 · 10−9 2.9 · 10−1

12 9 −2.00611 7.2 · 10−10 2.6 · 10−1

13 9 −2.00376 2.2 · 10−10 2.3 · 10−1

14 8 −2.00234 5.4 · 10−10 2.1 · 10−1

15 8 −2.00147 3.9 · 10−11 1.9 · 10−1

16 7 −2.00092 8.5 · 10−10 1.7 · 10−1

17 6 −2.00058 1.3 · 10−9 1.5 · 10−1

18 6 −2.00037 1.2 · 10−10 1.3 · 10−1

19 6 −2.00023 5.9 · 10−11 1.2 · 10−1

20 6 −2.00015 2.8 · 10−11 1.1 · 10−1

21 6 −2.00009 1.3 · 10−11 9.6 · 10−2

22 6 −2.00006 6 · 10−12 8.6 · 10−2

23 6 −2.00004 2.7 · 10−12 7.7 · 10−2

24 5 −2.00002 1.7 · 10−9 6.9 · 10−2

25 5 −2.00002 1.4 · 10−10 6.1 · 10−2

26 5 −2.00001 7.6 · 10−11 5.5 · 10−2

27 5 −2.00001 4.1 · 10−11 4.9 · 10−2

28 4 −2 1.1 · 10−9 4.4 · 10−2

29 4 −2 4.2 · 10−11 3.9 · 10−2

30 4 −2 2.1 · 10−11 3.5 · 10−2

31 4 −2 1 · 10−11 3.1 · 10−2

32 4 −2 5.1 · 10−12 2.8 · 10−2

33 4 −2 2.5 · 10−12 2.5 · 10−2

34 4 −2 1.2 · 10−12 2.3 · 10−2

35 4 −2 6 · 10−13 2 · 10−2

36 4 −2 2.9 · 10−13 1.8 · 10−2

37 4 −2 1.4 · 10−13 1.6 · 10−2

38 4 −2 6.9 · 10−14 1.4 · 10−2

39 4 −2 3.3 · 10−14 1.3 · 10−2

40 4 −2 1.6 · 10−14 1.2 · 10−2

41 4 −2 7.8 · 10−15 1 · 10−2

42 4 −2 3.8 · 10−15 9.2 · 10−3

43 4 −2 2.2 · 10−15 8.2 · 10−3

44 4 −2 9.1 · 10−16 7.4 · 10−3

45 3 −2 2 · 10−9 6.6 · 10−3

46 2 −2 1.7 · 10−9 5.9 · 10−3

47 2 −2 1.1 · 10−11 5.3 · 10−3

48 2 −2 6.7 · 10−12 4.7 · 10−3

49 2 −2 4.3 · 10−12 4.2 · 10−3

50 2 −2 2.8 · 10−12 3.8 · 10−3

Table 5.2
Convergence when using a Krylov Lyapunov solver with k = 20

13



Iteration rank(Vj) λj ‖Gj‖F ‖(∆1 + λ∆0)vec(VjDjV
∗
j )‖2

1 12 −16.8607 3.4 · 10−9 4 · 101

2 13 −1.75552 4.8 · 10−10 1.7 · 100

3 13 −1.02289 5.9 · 10−10 5.7 · 10−1

4 12 −1.00186 8.4 · 10−10 1.3 · 10−1

5 11 −1.00024 1.1 · 10−9 4.2 · 10−2

6 10 −1.00004 9 · 10−10 1.6 · 10−2

7 9 −1.00001 9 · 10−10 6.6 · 10−3

8 8 −1 1.4 · 10−9 3 · 10−3

9 7 −1 2.8 · 10−9 1.4 · 10−3

10 7 −1 3.3 · 10−10 6.6 · 10−4

11 7 −1 1 · 10−10 3.2 · 10−4

12 6 −1 1.3 · 10−9 1.6 · 10−4

13 6 −1 9.8 · 10−11 7.7 · 10−5

14 5 −1 3.8 · 10−9 3.8 · 10−5

15 5 −1 2.3 · 10−10 1.9 · 10−5

16 4 −1 2.3 · 10−9 9.3 · 10−6

17 4 −1 5.5 · 10−11 4.6 · 10−6

18 4 −1 1.7 · 10−11 2.3 · 10−6

19 4 −1 5.3 · 10−12 1.1 · 10−6

20 4 −1 1.7 · 10−12 5.7 · 10−7

21 4 −1 5.2 · 10−13 2.9 · 10−7

22 4 −1 1.6 · 10−13 1.4 · 10−7

23 4 −1 5 · 10−14 7.1 · 10−8

24 4 −1 1.6 · 10−14 3.6 · 10−8

25 2 −1 7.1 · 10−9 9.1 · 10−13

Table 5.3
Convergence when using a Krylov Lyapunov solver with k = 40

Table 5.4 shows rank(Vj), the residual norm

‖(∆1 + λ∆0)vec(VjDjV
∗
j )‖2

versus the iteration count. Note that λ = 0.447833 corresponds to R = 4.447833. The
final value of µ is ±4.18512i. The residual norm

‖Ax + λBx + µMx‖2 = 8.3 10−10 .

From Table 5.4, we notice that the Lyapunov residual norm ‖Gj‖F tends to zero and
that the rank of the eigenvector goes to two.

We analyse the iterations 3 and 15 in more detail. Iteration three uses a block
Krylov method with a block size 28 = 2×14. We perform only 1 iteration, so that the
number of vectors is bounded by k = 40. Iteration fifteen uses a block Krylov method
with block size 4. We thus perform 10 iterations, which requires k = 40 vectors.
Table 5.5 shows the eigenvalues of Zj for two different iteration numbers: one in the
first iterations, where p is large and one in the last iterations, where p = 2.

5.3. The 2D Brusselator model. The trimolecular reaction scheme in a two-
dimensional square reactor can be studied by the Brusselator model. For more details,
see [6, Chapter 5].

14



Table 5.4
Result for the Olmstead equation for R = 4

Iteration rank(Vj) λj ‖Gj‖F ‖(∆1 + λ∆0)vec(VjDjV
∗
j )‖2

1 14 0.173873 2.5 · 10−3 4.9 · 103

2 10 2.82629 2.8 · 10−5 4.3 · 10−1

3 8 2.67418 2.2 · 10−5 4.1 · 10−1

4 6 1.16866 3.4 · 10−5 1.4 · 100

5 4 0.474148 5.5 · 10−4 9.2 · 10−1

6 4 0.448515 5.9 · 10−5 1.8 · 10−1

7 4 0.447851 1.2 · 10−5 2.9 · 10−2

8 4 0.447834 1.2 · 10−6 4.6 · 10−3

9 2 0.447833 2.1 · 10−5 1.2 · 10−5

10 2 0.447833 1.8 · 10−13 2.1 · 10−6

11 2 0.447833 1.2 · 10−14 1.1 · 10−7

12 2 0.447833 3.3 · 10−15 4.4 · 10−8

13 2 0.447833 4.2 · 10−15 1.1 · 10−8

14 2 0.447833 3.4 · 10−15 1.4 · 10−9

15 2 0.447833 5.2 · 10−15 8.2 · 10−10

Eigenvalues of Zj at iteration j = 3

−0.252217 0.251277 −0.0851209 −0.00119439 −0.000393022
0.000340506 −0.000137845 4.20454 10−5 2.16208 10−5 −6.69661 10−6

1.08423 10−6 −3.45564 10−7 3.14863 10−7 −2.37621 10−7 −3.67591 10−8

3.37953 10−8 1.73052 10−8 −1.24566 10−8 −5.25292 10−9 2.33332 10−9

1.08314 10−9 −1.05302 10−9 −5.54074 10−10 −5.37935 10−11 4.62913 10−11

1.54928 10−11 −2.0519 10−12 4.46693 10−13 5.98481 10−14 −4.35833 10−14

3.68477 10−14 2.28224 10−15 −2.03297 10−15 1.69454 10−16 −8.16802 10−17

1.24491 10−17

Eigenvalues of Zj at iteration j = 15

−2.23276 −0.0309657 6.01592 10−16 −4.9945 10−16 −4.39358 10−16

−4.26782 10−16 4.19653 10−16 4.04914 10−16 −3.96199 10−16 3.37393 10−16

−3.28595 10−16 −2.86148 10−16 −2.80031 10−16 −2.77081 10−16 −2.61391 10−16

2.60575 10−16 2.57387 10−16 −2.40079 10−16 2.27563 10−16 2.16993 10−16

2.06197 10−16 −1.8499 10−16 −1.70789 10−16 1.61236 10−16 −1.6067 10−16

1.31704 10−16 −1.16259 10−16 9.44279 10−17 −8.17497 10−17 7.49816 10−17

5.37598 10−17 3.81614 10−17 2.22188 10−17 3.13134 10−18 5.74329 10−20

9.15542 10−23 −9.15143 10−23 5.5889 10−26 −3.92555 10−26 −6.94225 10−31

Table 5.5
Eigenvalues of Zj before truncation to order p for iterations 3 and 15

In this example, α and β are the concentrations of a continuous input of both
reactants where the unknowns X and Y are the concentrations of the other compo-
nents in the chemical reaction. Under certain conditions of the parameters, a steady
state solution is reached for X ≡ α and Y ≡ β/α. The stability of the steady state
can be analysed by first perturbing the solution into X = α+x and Y = β/α+ y and
then analysing the stability of the linear equations

∂x

∂t
= (β − 1)x + α2y + Dx∇2x

15



Table 5.6
Result for the 2D Brusselator equation

Iteration rank(Vj) λj ‖Gj‖F ‖(∆1 + λ∆0)vec(VjDjV
∗
j )‖2

1 6 −1.9543 5.8 · 10−8 1.6 · 103

2 2 1 2.1 · 10−11 1.3 · 10−3

3 2 1 2.3 · 10−11 1.1 · 10−6

4 2 1 9.5 · 10−16 3.6 · 10−9

5 2 1 1 · 10−15 6.1 · 10−9

∂y

∂t
= −βx− α2y + Dy∇2y

where

∇2 =
∂2

∂r2
+

∂2

∂s2
,

and r and s are the spatial coordinates. The boundary conditions are

∂x(0, s, t)
∂r

=
∂x(r, 0, t)

∂s
=

∂x(L, s, t)
∂r

=
∂x(r, L, t)

∂s
= 0

∂y(0, s, t)
∂r

=
∂y(r, 0, t)

∂s
=

∂y(L, s, t)
∂r

=
∂y(r, L, t)

∂s
= 0

The parameters are chosen as Dx = 1.6 · 10−3, Dy = 8.0 · 10−3, α = 2.0 and β = 4.6.
Discretization by finite differences with gridsize h = L/(N + 1) leads to the linear
system of ODE’s u̇ = (A+λB)u of dimension n = 2N2. Note that for this problem B
is again a singular matrix: it has eigenvalues 0 and 1. We have chosen L = 0.0798443.
In our analysis, we chose λ = β as parameter.

We used k = 40 Arnoldi vectors, tolerance τ = 1. 10−4 and n = 3, 200. Table 5.6
shows the results per iteration. The value of λ = 1 corresponds to β = 5 and µ = ±2i.

6. Conclusions. We have described a method for the computation of good start-
ing values for use in algorithms to compute Hopf bifurcations in large scale dynamical
systems. This work was originally motivated by the use of the bialternate product
in [16] and [13], which has the significant advantage that a good starting guess for
an unknown complex eigenvalue is not required. The disadvantage of the bialternate
product is that it is an n2 dimensional matrix, though the restriction to the anti-
symmetric subspace reduces this to n(n− 1)/2. We overcome this by a reformulation
as an inexact inverse iteration algorithm that requires a sequence of n−dimensional
Lyapunov-type equations, with the key feature that the right hand sides are of low
rank. This results in an efficient procedure, provided the Lyaponuv equations are
solved accurately. Numerical results illustrate the power of the method.

The results of this paper could also be used for computing eigenvalues of Ax =
θMx nearest the imaginary axis. Shift-and-invert based methods are not always
reliable when a rough idea of Im(θ) is unknown. Our method could be applied for
finding the smallest λ for which θ = λ + iµ, λ, µ ∈ R, is an eigenvalue without
computing µ.

16



Acknowledgement. This paper presents research results of the Belgian Network
DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuni-
versity Attraction Poles Programme, initiated by the Belgian State, Science Policy
Office. The scientific responsibility rests with its author(s).

The authors also thank Bart Vandereycken for discussions on the solution of
Lyapunov equations.

REFERENCES

[1] A. Antoulas, D. Sorensen, and Y. Zhou, On the decay rate of hankel singular values and
related issues, Systems & Control Letters, 46 (2002), pp. 323–342.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, Templates for the
Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, Philadelphia, PA,
USA, 2000.

[3] R. Bartels and G. Stewart, Algorithm 432: Solution of the matrix equation ax + xb = c,
Comm. ACM, 15 (1972), pp. 820–826.

[4] K. Cliffe, T. Garratt, and A. Spence, Calculation of eigenvalues of the discretised Navier-
Stokes and related equations, in The mathematics of finite elements and applications VII
MAFELAP, J. Whiteman, ed., Academic Press, 1990, pp. 479–486.

[5] , Eigenvalues of block matrices arising from problems in fluid mechanics, SIAM Journal
on Matrix Analysis and Applications, 15 (1994), pp. 1310–1318.

[6] B. De Dier, An investigation of a reaction-diffusion model exhibiting dissipative structures,
PhD thesis, K.U.Leuven, Leuven (Heverlee), Belgium, 1998.

[7] D. Fokkema, G. Sleijpen, and H. van der Vorst, Jacobi-Davidson style QR and QZ al-
gorithms for the reduction of matrix pencils, SIAM Journal on Scientific Computing, 20
(1999), pp. pp.94–125.

[8] M. A. Freitag and A. Spence, Convergence rates for inexact inverse iteration with application
to preconditioned iterative solves, BIT, 47 (2007), pp. 27–44.

[9] , Convergence theory for inexact inverse iteration applied to the generalised nonsymmet-
ric eigenproblem, ETNA, 28 (2007), pp. 40–64.

[10] T. Garratt, G. Moore, and A. Spence, Two methods for the numerical detection of Hopf
bifurcations, in Bifurcation and Chaos : Analysis, Algorithms, Applications, R. Seydel,
F. Schneider, and H. Troger, eds., Birkhäuser, 1991, pp. 119–123.

[11] G. Golub and C. Van Loan, Matrix computations, The Johns Hopkins University Press,
3rd ed., 1996.

[12] G. H. Golub and Q. Ye, Inexact inverse iteration for generalized eigenvalue problems, BIT,
40 (2000), pp. 671a–684.

[13] W. Govaerts, Numerical methods for bifurcations of dynamical equilibria, SIAM, Philadelphia,
PA, USA, 2000.

[14] W. Govaerts, J. Guckenheimer, and A. Khibnik, Defining functions for multiple Hopf
bifurcations, SIAM J Numer. Anal., 34 (1997), pp. 1269–1288.

[15] M. Grinfeld, Dynamics of a model equation in viscoelasticity, in Proceedings Equadiff 91,
Singapore, 1993, World Scientific.

[16] J. Guckenheimer, S. Gueron, and R. Harris-Warrick, Mapping the dynamics of a bursting
neuron, Philos. Trans. Roy. Soc. London Ser B, 341 (1993), pp. 345–359.

[17] J. Guckenheimer, M. Myers, and B. Sturmfels, Computing Hopf bifurcations I, SIAM J.
Numer Anal., 34 (1997), pp. 1–21.

[18] S. Gugercin and J.-R. Li, Smith-type Methods for Balanced Truncation of Large Sparse Sys-
tems, Springer-Verlag, Berlin, Heidelberg, 2005.

[19] M. E. Hochstenbach, T. Kosir, and B. Plestenjak, A Jacobi–Davidson type method for the
two-parameter eigenvalue problem, SIAM J. Matrix Anal. Appl., 26 (2005), pp. 477–497.

[20] M. E. Hochstenbach and B. Plestenjak, A Jacobi–Davidson type method for a right definite
two-parameter eigenvalue problem, SIAM Journal on Matrix Analysis and Applications,
24 (2002), pp. 392–410.

[21] Y. Kuznetsov, Elements of Applied Bifurcation Theory. 2nd ed., vol. 112 of Applied Math.
Sci., Springer-Verlag, New York, 1998.

[22] R. Lehoucq and K. Meerbergen, Using generalized Cayley transformations within an inexact
rational Krylov sequence method, SIAM Journal on Matrix Analysis and Applications, 20
(1998), pp. 131–148.

[23] K. Meerbergen and R. Morgan, §11.2. Inexact methods, in Templates for the solution of

17



algebraic eigenvalue problems: a practical guide, Z. Bai, J. Demmel, J. Dongarra, A. Ruhe,
and H. van der Vorst, eds., Philadelphia, PA, USA, 2000, SIAM.

[24] K. Meerbergen and D. Roose, Finding eigenvalues to the right of a given line, in Proceedings
of the Second IMACS Symposium on Iterative Methods in Linear Algebra, P. Vassilevski
and S. Margenov, eds., vol. 3 of IMACS Series in Computational and Applied Mathematics,
Dept. of Computer Science, Rutgers University, Piscataway, NJ 08855, 1996, IMACS,
pp. 402–412.

[25] , Matrix transformations for computing rightmost eigenvalues of large sparse non-
symmetric eigenvalue problems, IMA Journal on Numerical Analysis, 16 (1996), pp. 297–
346.

[26] K. Meerbergen, A. Spence, and D. Roose, Shift-invert and Cayley transforms for detection
of rightmost eigenvalues of nonsymmetric matrices, BIT, 34 (1994), pp. 409–423.

[27] W. Olmstead, W. Davis, S. Rosenblat, and W. Kath, Bifurcation with memory, SIAM J.
Appl. Math., 46 (1986), pp. 171–188.

[28] B. Parlett and Y. Saad, Complex shift and invert strategies for real matrices, Linear Alg.
Appl., 88/89 (1987), pp. 575–595.

[29] T. Penzl, A cyclic low-rank smith method for large sparse lyapunov equations, SIAM Journal
on Scientific Computing, 21 (2000), pp. 1401–1418.

[30] , Eigenvalue decay bounds for solutions of Lyapunov equations: the symmetric case,
Systems Control Lett., 40 (2000), pp. 139–144.

[31] M. Robbé and M. Sadkane, Use of near-breakdowns in the block arnoldi method for solving
large sylvester equations, Applied Numerical Mathematics, 58 (2008), pp. 486–498.

[32] Y. Saad, Numerical methods for large eigenvalue problems, Algorithms and Architectures for
Advanced Scientific Computing, Manchester University Press, Manchester, UK, 1992.

[33] R. Seydel, From Equilibrium to Chaos. Practical Bifurcation and Stability Analysis, 2nd ed.,
Springer-Verlag, Berlin, 1994.

[34] V. Simoncini, A new iterative method for solving large-scale lyapunov matrix equations, BIT,
36 (1996), pp. 814–830.

[35] V. Simoncini and V. Druskin, Convergence analysis of projection methods for the numerical
solution of large Lyapunov equations, ??, ?? (2007), p. 18. Revised version, April 2008.

18


