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Abstract

The transportation problem is a fundamental problem in Operations Research, where items

need to be transported from supply nodes (each with a given supply) to demand nodes (each

with a given demand) in the cheapest possible way. Here, we are interested in a generalization

of the transportation problem where, each supply node has a (possibly empty) set of conflicting

pairs of demand nodes, and each demand node a (possibly empty) set of conflicting pairs of

supply nodes. Each supply node may only receive supply from at most one demand node

of each conflicting pair. Likewise, each demand node may only send supply to at most one

supply node of each conflicting pair. We call the resulting problem the transportation problem

with conflicts (TPC). We show that the complexity of TPC depends upon the structure of

the so-called conflict graph that follows from the conflicting pairs. More concrete, we show

that for many graph-classes the corresponding TPC remains NP-hard, and for some special

cases we derive constant factor approximation algorithms.

Keywords: Transportation problem, conflict graph, computational complexity, approxima-

tion.

1 Introduction

Consider the classical Transportation Problem, in which we are given suppliers, each having a

supply, and locations, each having a demand. For all possible pairs consisting of a supplier and a

location we are given a unit transportation cost. The goal is to fulfill the demand with minimum

cost. This problem is well-known and efficiently solvable.

Many situations in practice have, as a base, this transportation problem. However, additional

properties are often present. To illustrate this, consider a setting described by Vancroonenburg

1



et al. (2014), where patients (suppliers) have to be allocated to hospital rooms (locations), with

the additional constraint that each room should only contain patients of the same gender. We call

a pair of patients with different gender a forbidden pair, and further, we call the set of forbidden

pairs the conflict set. This example gives rise to the so-called Red-Blue Transportation problem.

Another example, see Cao (1992), comes from storage management where containers (suppliers)

need to be placed in rows of a storage yard (locations), such that costs of operations (search, load)

is minimized. However, some containers are not allowed to be placed in the same row, due to

their content or size. Again, two containers that cannot be placed in the same row are called

a forbidden pair, and the set of forbidden pairs for a particular row form its conflict set. The

resulting situation gives rise to the Transportation Problem with Exclusionary Side Constraints,

which is slightly more general than the Red-Blue Transportation.

Our last example comes from Chen et al. (2016), where companies (suppliers) want to promote

their products to potential customers (locations). On the one hand, a customer wants to limit

the number of promotions received from similar companies, inducing forbidden pairs of companies

for each customer. On the other hand, companies want to geographically spread their promotion

and therefore limit the number of promotions to customers living close to each other, inducing

forbidden pairs of customers. Chen et al. (2016) call this problem the Conflict-aware weighted

Bipartite b-matching problem.

We introduce the so-called Transportation Problem with Conflicts (TPC, see section 1.1 for a

precise description) in which there can be conflict sets consisting of pairs of supply nodes and/or

conflict sets consisting of pairs of demand nodes. Since conflict sets consists of forbidden pairs we

can model a conflict set with a so-called conflict graph. A conflict graph belonging to a specific

graph class indicates a specific structure of the conflict set. In this paper we study the complexity

and the approximability of the TPC depending upon different classes of conflict graphs.

The paper is organized as follows. In the remaining of this section we give a formal problem

description of TPC, introduce some terminology and notation, and provide an overview of the

related literature. In section 2 we focus on so-called conflict graphs, and present an overview of

our results. Section 3 presents hardness results for different types of conflict graphs. Section 4

provides constant-factor approximation algorithms for special cases, and we conclude in Section

5.

1.1 Problem statement

In the Transportation Problem with Conflicts (TPC) we are given a complete bipartite graph

(S ∪D,E), where (see also Figure 1):

S: is the set of supply nodes (suppliers), with for each i ∈ S,

• a supply si ∈ N, and

• a conflict set Ci containing forbidden pairs of demand nodes (locations),

D: is the set of demand nodes (locations), with for each j ∈ D,
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• a demand dj ∈ N, and

• a conflict set Fj containing forbidden pairs of supply nodes,

E: is the complete edge set, with for each i ∈ S and j ∈ D an edge (i, j) ∈ E for which we have,

• a capacity ui,j ∈ N, and

• a weight wi,j ∈ N.

1

s1

2

s2

3

s3

4

s4

5

d5

6

d6

7

d7

8

d8

S D

C1 = ∅

C2 = {(5, 6), (6, 7)}

C3 = {(7, 8)}

C4 = ∅

F5 = {(1, 2)}

F6 = {(2, 3)}

F7 = {(1, 3), (2, 3), (2, 4)}

F8 = {(2, 3)}

Figure 1: Transportation Problem with Conflicts

Similar to the classical Transportation Problem we assume that
∑
i∈S si =

∑
j∈D dj . A solution

is an integral vector x, with xi,j ∈ N indicating for each edge (i, j) ∈ E, how much supply is sent

from supply node i ∈ S to demand node j ∈ D. The value of a solution equals
∑
i∈S

∑
j∈D wi,j ·xi,j .

Given a solution x, we say that a conflict occurs if xi,j1 > 0 and xi,j2 > 0, while (j1, j2) ∈ Ci
for some i ∈ S. Likewise, a conflict occurs if xi1,j > 0 and xi2,j > 0, while (i1, i2) ∈ Fj . A solution

x is not feasible when a conflict occurs or when xi,j > ui,j for an edge (i, j) ∈ E.

We say that demand (supply) constraints are fulfilled if for all j ∈ D,
∑
i∈S xi,j = dj (for all

i ∈ S,
∑
j∈S xi,j = si). We say that demand (supply) constraints are respected if for all j ∈ D,∑

i∈S xi,j ≤ dj (for all i ∈ S,
∑
j∈S xi,j ≤ si).

We consider two problems:

i) Find a feasible solution fulfilling all demand and supply constraints, while minimizing the

value of a solution (min-TPC), and

ii) Find a feasible solution respecting all demand and supply constraints, while maximizing the

value of a solution (max-TPC).

1.2 Terminology and Notation

An important tool in our analysis are conflict graphs. We build an induced conflict graph GFj

for each demand node j ∈ D as follows: there is a vertex for each supply node and two vertices

are connected if and only if the corresponding supply nodes constitute a forbidden pair in Fj . A
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similar procedure is used to build an induced conflict graph GCi for each supply node i ∈ S. For

an example, we refer to Figures 2 & 3 for the conflict graphs of C1 and F7 from Figure 1.

C1 = ∅

5 6

7 8

Figure 2: Conflict Graph GC1

F7 = {(1, 3), (2, 3), (2, 4)}

1 2

3 4

Figure 3: Conflict Graph GF7

Clearly, in case of identical conflict sets F , the induced conflict graphs are identical as well; we

then refer to the conflict graph GF .

The use of conflict graphs allows us to easily express special structures occurring in the conflict

sets. For example, consider the previously mentioned Red-Blue Transportation problem, in which

we need to assign male and female patients to hospital rooms. In the Red-Blue Transportation

problem we have an identical conflict set F that contains every pair consisting of a male and a

female patient. Equivalently, the conflict graph induced by F is complete bipartite. Indeed, in

the conflict graph there is an edge between every red supply node (female patient) and every blue

supply node (male patient), see also Figure 4.

s1

1

s2

2

s3

2

s4

1

d1

3

d2

3

F = {(s1, s3), (s1, s4)

(s2, s3), (s2, s4)}

GF :

s1

s2

s3

s4

Figure 4: Red-Blue Transportation

Throughout this paper we will discuss several special cases of TPC. We use a three-field

notation to systematize the different special cases of TPC: TPC(α, β, χ).

Definition 1.1. TPC(α, β, χ) is a special case of TPC where;

α ∈ {Ci, C, ∅} describes the nature of the conflict sets of the supply nodes.

Ci: arbitrary conflict sets, each supply node i ∈ S has a (possible empty) conflict set.

C: identical conflict sets, each supply node i ∈ S has conflict set C.
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∅: no conflict between demand nodes, each supply node i ∈ S has an empty conflict set.

β ∈ {Fj , F, FB , ∅} describes the nature of the conflict sets of the demand nodes.

Fj : arbitrary conflict sets, each demand node j ∈ D has a (possible empty) conflict set.

F : identical conflict sets, each demand node j ∈ D has conflict set F .

FB : identical conflict sets, and its induced conflict graph GF is complete bipartite.

∅: no conflict between supply nodes, each demand node j ∈ D has an empty conflict set.

χ ∈ {ui,j ,∞, 1} describes the nature of the edge capacities.

ui,j : arbitrary capacities.

∞: uncapacitated, or equivalently ui,j ≥ min{si, dj}

1: then ui,j = 1, for every edge (i, j) ∈ E.

We call the TPC one-sided if either Ci = ∅ for all supply nodes i ∈ S, or Fj = ∅ for all demand

nodes j ∈ D.

1.3 Related Literature

1.3.1 Special cases and applications

We first explicitly point out how the three examples mentioned in the Introduction are special

cases of TPC.

Conflict-aware weighted Bipartite b-matching (CA-WBM): Chen et al. (2016) describe

the Conflict-aware weighted Bipartite b-matching problem mentioned in the introduction.

In their most general problem description there is, as input, a threshold t, the number of

conflicts allowed in a feasible solution. The problem with t = 0 is a special case of max-TPC

where we have edge capacities ui,j = 1 for each (i, j) ∈ E, identical conflict sets Ci = C for

each supply node i ∈ S and identical conflict set Fj = F for each demand node j ∈ D, i.e.

max-TPC(C,F, 1).

They prove that their problem is NP-hard even if the problem is one-sided and no conflicts

(t = 0) are allowed. Let d be the maximum degree of both conflict graphs GC and GF .

They present a greedy (2 + d)-approximation for the one-sided case. The same analysis can

be used to give a greedy (2 + 2d)-approximation algorithm for the two-sided case.

Transportation Problem with Exclusionary Side Constraints (TPESC): Cao (1992) de-

scribes the Transportation Problem with Exclusionary Side Constraints mentioned in the

introduction. This problem is a special case of min-TPC where we have one-sided conflicts

and no edge capacities, i.e. min-TPC(∅, Fj ,∞).

Cao (1992) and later Sun (2002) describe Branch and Bound approaches to solve the problem.

Cao and Uebe (1995) and later Sun (1998) use Tabu-Search methods to solve the problem.

5



Syarif and Gen (2003) describe a genetic algorithm. Goossens and Spieksma (2009) prove

that this problem is strongly NP-hard even if the conflict sets are identical, i.e. Fj = F for

all j ∈ D. They also prove that no polynomial time constant factor approximation exists

even if there is only one non-empty conflict set and |D| = 2 (unless P = NP).

Red-Blue Transportation Problem (RBTP): Vancroonenburg et al. (2014) describe the

Red-Blue Transportation Problem mentioned in the introduction. RBTP is defined for both

the minimization as well as the maximization objective. This problem is a special case of

TPC where we have a one-sided identical conflict set F and no edge capacities. Actually,

the conflict set F induces a complete bipartite graph as conflict graph (see also Section 2),

i.e. RBTP can be described as TPC(∅, FB ,∞).

For the minimization objective they prove that no constant-factor approximation algorithm

for RBTP can exist, even if si = 1 and dj = 3 for all i ∈ S, j ∈ D (unless P=NP). For

the maximization objective the problem remains NP-hard and they present three different
1
2 -approximation algorithms.

1.3.2 Other related problems

Max flow with disjunctive constraints: In the maximum flow problem with negative dis-

junctive constraints we are given a directed graph G = (N,A), source s ∈ N , a sink t ∈ N ,

and there is a capacity ui,j for each arc (i, j) ∈ A. In addition there are negative disjunctive

constraints, meaning that pairs of arcs are given, at most one of which is allowed to carry a

positive amount of flow in a feasible solution. The goal is to maximize the amount of flow

sent from s to t while respecting the capacities and the negative disjunctive constraints.

Similar to the construction sketched in Section 1.2 one can build a conflict graph in which

there is a node for each arc (i, j) and there is an edge between two arcs if they are in conflict.

Pferschy and Schauer (2013) prove that this problem is NP-hard, even if the induced conflict

graph consists only of unconnected edges and directed graph G = (N,A) only consists of

disjoint paths of length three.

Notice that this problem is more general than max-TPC due to the arbitrary graph structure.

Maximum matching with disjunctive constraints: Another well-known problem related

to the classical Transportation problem is maximum matching. In the Maximum Matching

problem with negative disjunctive constraint we are given a graph G = (V,E) with edge

weights and negative disjunctive constraints on the edges. The goal is to find a matching with

maximum weight. Darmann et al. (2011) show that the maximum matching problem with

negative disjunctive constraints is NP-hard even for conflict graphs where every connected

component is a single edge.

Again, this result does not apply to TPC due to the fact that the graph in TPC is a bipartite

graph.
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Two-to-one assignment problem: Goossens et al. (2012) describe the two-to-one assignment

problem (2-1-AP) as follows. We are given a set X of 2n elements and a set Y of n elements.

A feasible triple cost ci1,i2,j is associated to two distinct elements i1, i2 ∈ X and an element

j ∈ Y ; the goal is to select n feasible triples of minimum total cost such that each element

occurs once in a selected triple.

They prove that the existence of a PTAS would imply P=NP and they provide a constant-

factor approximation for the special case of decomposable costs satisfying the triangle in-

equality.

It is not difficult to see that min-TPC(∅, F,∞) with si = 1 for all i ∈ S and dj = 2 for

all j ∈ D is a special case of 2-1-AP. Indeed, observe that any feasible solution of min-

TPC(∅, F,∞) with dj = 2 also consists of triples, where a triple consists of a demand node

and two supply nodes that are not in conflict. Given an instance of min-TPC, we create an

instance of the 2-1-AP as follows. Let set X contain all supply nodes and set Y all demand

nodes. Consider now a triple consisting of a node j ∈ Y and two nodes i1, i2 ∈ X, that are

not in conflict for demand node j ∈ D. We set its cost to be ci1,i2,j = wi1,j +wi2,j ; the cost

of any other feasible triple is set to a large number. This shows that min-TPC is a special

case of 2-1-AP. The costs we define however are not decomposable in the sense of Goossens

et al. (2012).

2 A Preview

Let us first informally argue why max-TPC in case of a single demand node is an NP-hard problem.

Clearly, in any feasible solution, the set of supply nodes i ∈ S that send flow to a particular demand

node j ∈ D (i.e. those i ∈ S with xi,j > 0) form an independent set in the induced conflict graph

of that demand node j ∈ D. Indeed, since apparently none of the supply nodes assigned are

in conflict, there is no edge connecting them in the conflict graph. This shows that Maximum

Independent Set (MIS) is a special case of the TPC. Indeed, given an instance of MIS, i.e. a graph

G = (V,E) with |V | = n, we can construct an instance of max-TPC with n supply nodes each

with supply 1 and a single demand node with demand n whose induced conflict graph is equivalent

to the graph G (see also Figure 5), all edge weights are 1.

This means that max-TPC with a single demand node is at least as difficult the maximum

independent set problem.

Note that for min-TPC the above construction does not work, as min-TPC requires that all

supply and demand constraints are fulfilled. In the above construction supply constraints can only

be fulfilled if the graph G of the MIS instance contains no edges, i.e. no pair of supply nodes is in

conflict. However, with a similar reduction, it is shown that no PTAS exists for TPC(∅, Fj ,∞),

even with |D| ≥ 2 and exactly one demand node having a non-empty conflict set (unless P=NP),

(Goossens and Spieksma, 2009).

We now review the existing complexity results for TPC.

Goossens and Spieksma (2009) prove that:
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G = (V,E)

u v

t w

Independent Set size k ⇐⇒

.i(u)

1

.i(v)

1

.i(w)

1

.i(t)

1

d

4

F = {(i (u) , i (v)) , (i(u), i(w)),
(i (v) , i (w)) , (i(t), i(w)}

Assignment with profit k

Figure 5: MIS and Max-TPC

(i) min-TPC(∅, F,∞) is weakly NP-hard for |D| = 2,

(ii) min-TPC(∅, Fj ,∞) is weakly NP-hard for each fixed |S| ≥ 2, and

(iii) min-TPC(∅, F,∞) is strongly NP-hard for each fixed |D| ≥ 3.

These results do not assume any structure on the conflict graph GF . Motivated by an appli-

cation, Vancroonenburg et al. (2014) assume that GF is a complete bipartite graph; they prove

that:

(i) both min-TPC(∅, FB ,∞) and max-TPC(∅, FB ,∞) remain NP-hard even if si = 1 for all

i ∈ S and dj = 3 for all j ∈ D, and

(ii) min-TPC(∅, FB ,∞) remains NP-hard, even if edge set E is complete, all edge weights are

equal and there are only 2 supply nodes with equal supply.

Our results focus on the nature of the conflict graph GF . First, we point out that, in the

extreme cases where either F is empty (i.e. GF contains no edges), or F contains all pairs (i.e.

GF is a clique), the resulting problem TPC(∅, F, ui,j) is easily seen to be polynomial solvable.

Second, it is clear from our previous discussion that any graph class for which MIS is NP-hard,

the corresponding problem TPC(∅, F,∞) is NP-hard as well. However, there are graph classes for

which independent set is easy, i.e. polynomial solvable; thus, for these graph classes the previous

argument does not allow us to conclude that the corresponding special case of TPC is NP-hard.

To deal with these graph classes, we provide the following results.

(i) TPC(∅, F,∞) remains NP-hard, even if GF is a bipartite graph, an interval graph or a planar

graph (Theorem 3.1, notice that MIS is an easy problem for these graph classes);

(ii) TPC(∅, F,∞) remains NP-hard, even if GF is a simple path (tree) or a matching (forest)

(Theorem 3.2);
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Further, in case of a complete bipartite conflict graph, we close the gap between polynomial

and NP-complete cases of TPC(∅, FB ,∞):

(iii) TPC(∅, FB ,∞) remains NP-hard, even if supply si = 1 for each supply node i ∈ S and

all demand dj = 2 for each demand node j ∈ D, thereby settling a case left open by

Vancroonenburg et al. (2014) (Theorem 3.3).

In addition, we give approximation results depending on the approximation factor for finding

a certain independent set, for the following special cases of max-TPC:

(i) max-TPC(∅, Fj ,∞) with supply si = 1 for each i ∈ S (Theorem 4.2);

(ii) max-TPC(∅, Fj , 1) (Theorem 4.3);

(iii) max-TPC(C,Fj ,∞) with supply si = 1 for each i ∈ S and a valid q-colouring on the conflict

graph induced by C (Theorem 4.4);

(iv) max-TPC(C,Fj , 1) with a valid q-colouring on the conflict graph induced by C (Theo-

rem 4.5).

3 Proofs of our complexity results

As announced above, in this section we show that TPC(∅, F,∞) is NP-hard in case GF is a

bipartite, planar or interval graph (Section 3.1), a simple path or a matching (Section 3.2). In

Section 3.3, we show that TPC(∅, FB ,∞) remains NP-hard even if si = 1 for all i ∈ S and dj = 2

for all j ∈ D.

All proofs in this section assume a one-sided conflict set F (thus, conflict sets Ci are empty)

and there is an infinite capacity on the edges. In fact, observe that to specify an instance of the

resulting TPC problem it is sufficient to specify S (the set of supply nodes), D (the set of demand

nodes), F (the conflict set), and w (the edge weights, edge set E is complete).

3.1 The Conflict Graph is a Bipartite, Planar, or Interval graph

In this section we show that for every graph class G for which the so-called minimum sum colouring

problem is NP-hard, the TPC restricted to conflict graphs from G is also NP-hard. In particular,

this means that TPC for bipartite graphs, planar graphs and interval graphs remains NP-hard.

The minimum sum colouring problem is defined as follows.

Given: A graph G = (V,EG) with |V | = n.

Goal: Find a colouring c : V → {1, . . . , n} of minimum weight
∑
v∈V c(v) such that if (v, u) ∈ EG,

then c(v) 6= c(u).

This problem is NP-hard even for bipartite graphs (Bar-Noy and Kortsarz, 1998), planar graphs

(Halldórsson and Kortsarz, 2002) and interval graphs (Marx, 2005; Szkaliczki, 1999). However,

minimum sum colouring is known to be polynomial solvable for trees (Kubicka and Schwenk,

1989).

9



Theorem 3.1. Let G be a graph class for which the minimum sum colouring problem is NP-hard.

Min-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph GF ∈ G.

Proof. Given an instance of the minimum sum colouring problem, specified by a graph G =

(V,EG), we construct an instance of min-TPC(∅, F,∞) as follows (see also Figure 6).

S: For each vertex v ∈ V we have supply node i(v) with supply 1. We also have an additional

dummy node s with supply n(n− 1). Hence, we have n+ 1 supply nodes.

D: We have n demand nodes each with demand n (one for each colour). Hence, we have D :=

{1, . . . , n}.

F : We have a forbidden pair in (i(v), i(u)) ∈ F for each edge in (v, u) ∈ EG, i.e. F := EG. Hence,

the induced conflict graph GF is equivalent to graph G = (V,EG).

E: The weights on the edges are defined as follows:

• for each i(v) ∈ S \ s and for each j ∈ D: wi(v),j = j;

• for each j ∈ D: ws,j = 0.

The goal is to find a feasible solution of minimum cost. This specifies the instance of min-TPC.

G = (V,E)

u v

t w

S D

.i(u)
1

.i(v)
1

.i(w)
1

.i(t)
1

.s

4 · (4− 1)

1

4

2

4

3

4

4

4

F = {(i (u) , i (v)) , (i(u), i(w)),
(i (v) , i (w)) , (i(t), i(w)}

Figure 6: Example of reduction, where n = 4

We will now argue that a solution of minimum sum colouring with cost Z corresponds to a

solution of min-TPC with cost Z and vice versa.

Suppose we have a feasible solution for the minimum sum colouring problem instance. Meaning

that there is a colour c(v) assigned to each v ∈ V ; the resulting cost of this solution is Z =∑
v∈V c(v). In the corresponding instance of min-TPC we send the single unit of supply of node

i(v) ∈ S to node j ∈ D if vertex v is coloured with colour j, i.e. if c(v) = j; the weight of this

flow equals j. Further, we distribute the supply from node s to all nodes j ∈ D such that all
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supply and demand constraints are fulfilled; the weight of this flow equals 0. Since the colouring

is a valid colouring in G = (V,E), we know that vertices adjacent in G received distinct colours;

in other words, no demand node receives supply from two supply nodes that are a forbidden pair

in F . Also, the total value of this solution equals Z.

Now, suppose we have a feasible solution for our min-TPC instance with a total value Z. Then

each i(v) ∈ S sends a single unit of flow to exactly one demand node j ∈ D (supply equals 1); the

weight of this flow equals j. In the corresponding minimum sum colouring instance we give vertex

v ∈ V colour j if supply node i(v) ∈ S sends supply to demand node j ∈ D. Since no conflicts are

allowed in our assignment, we know that no two vertices adjacent in G receive the same colour,

and the total cost of this solution,
∑
v c(v), equals Z.

Corollary 3.1. Let G be a graph class for which the minimum sum colouring problem is NP-hard.

Max-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph GF ∈ G.

Proof. For max-TPC the reduction is basically the same, the only change is the edge-weights. For

max-TPC we define weight on the edges as follows:

• for each i(v) ∈ S \ s and for each j ∈ D: wi(v),j = n− j.

• for each j ∈ D: ws,j = 0.

Note that in this case the profit of the assignment in max-TPC does not equal the cost of

the solution to the minimum colouring problem. However, it still holds that, if we are able to

solve max-TPC in polynomial time, we will find an optimal solution to minimum sum colouring

in polynomial time as well.

3.2 The Conflict Graph is a Matching or Simple Path

In this section we show that even if the induced conflict graph GF is a perfect matching or a simple

path, both max-TPC and min-TPC remain NP-hard. This implies that the problem remains NP-

hard for trees and forests. We first prove that max-TPC and min-TPC remain NP-hard even if

the induced conflict graph of F is a matching (only contains disconnected edges); after that we

show that it is not difficult to extend the proof such that the results holds for a simple path as

well.

To prove the theorem below we make a reduction from monotone 1-in-3SAT, which is known

to be NP-Complete (Garey and Johnson, 1979). An instance is defined as follows.

Given: A set of n variables {v1, . . . , vn}, and a set of m clauses {c1, . . . , cm}, each containing 3

variables, each variable in positive form (unnegated).

Question: Is there a truth-assignment that satisfies all clauses in C such that in each clause

exactly 1 variable is TRUE?

Theorem 3.2. Min-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph of GF is a

(perfect) matching.

11



C = (v1 ∨ v2 ∨ v3) ∧ (v4 ∨ v2 ∨ v3)

λv1 = λv4 = 1

λv2 = λv3 = 2

Monotone 1-in-3SAT is YES ⇐⇒

.i(v1)
1

.i(v̄1)
1

.i(v4)
1

.i(v̄4)
1

.i(v2)
2

.i(v̄2)
2

.i(v3)
2

.i(v̄3)
2

. j(c1)
1

. j(c̄1)
2

. j(c2)
1

. j(c̄2)
2

. j(v1)
1

. j(v4)
1

. j(v2)
2

. j(v3)
2

F = {(i(v1), i(v̄1)), (i(v2), i(v̄2)),
(i(v3), i(v̄3)), (i(v4), i(v̄4))}
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Figure 7: monotone 1-in-3SAT and TPC(∅, F,∞), only edges with weight 0 are shown

Proof. Given an instance I of monotone 1-in-3SAT, let λv be the number of clauses in which

variable v occurs. We construct an instance of min-TPC(∅, F,∞) as follows (see also Figure 7).

S: For each variable v, we have supply nodes i(v), i(v̄), each with supply λv. Hence we have

2n supply nodes.

D: For each clause c ∈ C we have a demand node j(c) with demand 1, and a demand node j(c̄),

with demand 2. And, for each variable v we have a demand node j(v), with demand λv.

Hence, we have 2m+ n demand nodes.

F : contains forbidden pairs (i(v), i(v̄)), for every variable v. Note that, conflict graph GF is

indeed a perfect matching.

E: The weights on the edges are defined as follows:

– For each variable v that occurs (positively) in clause c we have wi(v),j(c) = 0 and

wi(v̄),j(c̄) = 0.

– For each variable v we have wi(v),j(v) = 0 and wi(v̄),j(v) = 0.

– For any other edge e ∈ E we have we = 1.

We now argue that an instance of monotone 1-in-3SAT is a YES-instance if and only if the

corresponding instance of min-TPC(∅, F,∞) has a solution with cost 0.

Suppose we have a YES-instance of monotone 1-in-3SAT, with a certificate indicating whether

variable v is set to TRUE or FALSE. We create the following solution of the corresponding TPC

instance.
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If variable v is set to TRUE, then:

• For each clause c in which variable v occurs, 1 unit of supply is sent from supply node i(v)

to demand node j(c),

• λv units of supply are sent from supply node i(v̄) to demand node j(v).

If variable v is set to FALSE, then:

• For each clause c in which variable v occurs, 1 unit of supply is sent from supply node i(v̄)

to demand node j(c̄),

• λv units of supply are sent from supply node i(v) to demand node j(v).

It is easy to see that no conflicts occur in this solution. Hence we only need to show that all

supply and demand constraints are fulfilled.

Since λv equals the number of clauses containing variable v, we know that all supply constraints

are fulfilled and that the demand for each demand node j(v) is fulfilled.

We now show that the demand constraints are fulfilled as well. Since we have a YES-certificate,

we know that exactly 1 variable is set to TRUE for each clause c. Hence, the demand for each

demand node j(c) is fulfilled. Furthermore if follows that in each clause c two variables are set

FALSE, hence, the demand for each demand node j(c̄) is fulfilled as well.

Observe that since we only use edges of weight 0, the cost of the solution is 0.

Now, suppose that we have a solution with cost 0 of the TPC instance.

This solution fulfills all supply and demand constraints and only uses edges of weight 0. Thus,

we know that either λv units of supply are sent from i(v) to j(v), or from i(v̄) to j(v). (Since i(v)

and i(v̄) are in conflict, there is no solution in which both i(v) and i(v̄) send supply to j(v).) We

will construct a truth-assignment as follows: for each variable v, if i(v) sends supply to j(v), then

we set variable v to FALSE, else we set variable v to TRUE. We now argue that this is indeed a

YES-certificate for monotone 1-in-3SAT.

It is easy to see that each clause has at least one variable set to TRUE. Indeed, the solution of

the corresponding TPC instance with cost 0 is feasible, hence all demand constraints are fulfilled.

Thus, demand node j(c) receives one unit of supply from one of the supply nodes i(v). Hence, for

each clause at least one variable is set to TRUE.

Likewise, we know that all supply constraints are fulfilled. Thus, each supply node correspond-

ing to a variable v that is set to TRUE distributes λv units of supply over demand nodes j(c).

Hence, the sum of λv of the variables v that are set to TRUE equals m, the number of clauses.

Hence, each clause has exactly one variable set to TRUE.

Corollary 3.2. There is no constant-factor approximation algorithm for min-TPC(∅, F,∞), even

if the induced conflict graph of F is a (perfect) matching, unless P=NP.

Corollary 3.3. Max-TPC(∅, F,∞) is NP-hard, even if the induced conflict graph GF is a (perfect)

matching.
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Proof. For max-TPC(∅, F,∞) the reduction is basically the same, the only change is the edge-

weights. The weights on the edges are defined as follows:

• For each variable v that occurs in clause c we have wi(v),j(c) = 1 and wi(v̄),j(c̄) = 1.

• For each variable v we have wi(v),j(v) = 1 and wi(v̄),j(v) = 1.

• For any other edge e ∈ E we have we = 0.

Note that now we have that a monotone 1-in-3SAT instance is a YES-instance, if and only if

max-TPC(∅, F,∞) has solution of profit
∑
v∈V 2 · λv.

Let us now discuss the version of TPC(∅, F,∞) for which the induced conflict graph of F is a

simple path. Given an instance of TPC(∅, F,∞), of which the induced conflict graph of F only

contains disconnected edges, it is easy to create an instance of TPC(∅, F,∞) of which the induced

conflict graph F is a simple path. We can simply add n−1 dummy supply nodes, each with supply

1, and 1 dummy demand node with demand n− 1 (recall that n is the number of variables in the

monotone 1-in-3SAT instance). In edge set E we add the edges that connect each dummy supply

node to the dummy demand node with weight 0. Edge set E is by definition a complete edge set,

so we add the missing edges connecting the newly added dummy nodes. The edges connecting

the dummy supply nodes to the dummy demand node with have weight 0, al other added edges

will have weight 1. In the induced conflict graph we simply connect the dummy supply nodes to

the other non dummy supply nodes, such that the induced conflict graph becomes a simple path

(see Figure 8). Observe that this does not affect the equivalence as described in the proof of the

theorem above.

Corollary 3.4. TPC(∅, F,∞) is NP-hard, even if the induced conflict graph of GF is a simple path.

Corollary 3.5. There is no constant-factor approximation algorithm for min-TPC(∅, F,∞), even

if the induced conflict graph of F is a simple path (unless P=NP).

3.3 A Complete Bipartite Conflict Graph with si = 1 and dj = 2

As mentioned before TPC(∅, FB ,∞) is also known as the Red-Blue Transportation Problem

(RBTP). Recall that for RBTP we know that the problem is NP-hard even if all supply si = 1

for all supply nodes i ∈ S and all demand dj = 3 for all demand nodes j ∈ D.

Vancroonenburg et al. (2014) state that it remains open whether the problem is still NP-hard

even if all demand equals 2. We prove here that this problem remains NP-hard. To do so we make

a reduction from a special case of SAT, known as (2,2)-SAT, which is proven to be NP-hard by

Ratner and Warmuth (1990). An instance I of (2,2)-SAT is defined as follows.

Given: A set of n variables {v1, . . . , vn} and a set of m clauses C = {c1, . . . , cm}, such that every

variable occurs exactly twice in positive form and exactly twice in negative form.

Question: Is there a truth-assignment that satisfies all clauses in C?

Theorem 3.3. Min-TPC(∅, FB ,∞) is NP-hard, even if si = 1 and dj = 2 for all i ∈ S and

j ∈ D.
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C = (v1 ∨ v2 ∨ v3) ∧ (v4 ∨ v2 ∨ v3)

λv1 = λv4 = 1

λv2 = λv3 = 2

Monotone 1-in-3SAT is YES ⇐⇒

.i(v1) . i(v̄1)

.i(v2) . i(v̄2)
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.
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2

min-TPC = 0

Figure 8: monotone 1-in-3SAT and TPC with simple path as induced conflict graph

Proof. We stress that (2,2)-SAT does not impose any bound on the size of the clauses. Without

loss of generality we assume that |C| is even.

Recall that the induced conflict graph GFB is a complete bipartite graph. Hence, it is sufficient

to define two sets of supply nodes, SR and SB . Then, the conflict set FB contains a conflict for

each pair of nodes with one node in SR and one node in SB . We shall split the set of supply nodes

S into red supply nodes, SR, and blue supply nodes, SB .

Given instance I of (2,2)-SAT we construct an instance of min-TPC(∅, FB ,∞), where all supply

is 1 and all demand is 2, as follows.

SR: For each clause c ∈ C we have a supply node r(c), and for each variable v occurring positively

in clause c we have supply node r(v, c).

SB : For each clause c ∈ C we have a supply node b(c), and for each variable v occurring negatively

in clause c we have supply node b(v̄, c).

D: For each clause c ∈ C we have demand node j(c), and for each variable v we have demand

node j(v), and we m have dummy nodes ji, for i = 1, . . . ,m.

E: The weights on the edges are defined as follows:
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C = {(v1 ∨ v̄2 ∨ v3), (v1 ∨ v2 ∨ v3),
(v̄1 ∨ v̄2 ∨ v̄3), (v̄1 ∨ v2 ∨ v̄3),

The instance is a YES-instance:

For example:

v1 = FALSE
v2 = TRUE
v3 = TRUE

(2,2)-SAT is YES ⇐⇒

.r(c1)

.r(c2)

.r(c3)

.r(c4)

.r(v1, c1)

.r(v1, c2)
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.r(v2, c4)

.r(v3, c1)

.r(v3, c2)

.b(c1)

.b(c2)

.b(c3)

.b(c4)

.b(v̄1, c3)

.b(v̄1, c4)
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2

. j(v2)
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. j(v3)

2

F = {(i(v1), i(v̄1)), {(i(v2), i(v̄2)),
(i(v3), i(v̄3)), {(i(v4), i(v̄4))}

min-TPC = 0

Figure 9: Example solution for (2,2)-SAT and TPC(∅, FB ,∞)

– For each variable v that occurs in positive form in clause c we have wr(v,c),j(v) = 0 and

wr(v,c),j(c) = 0.

– For each variable v that occurs in negative form in clause c we have wb(v̄,c),j(v) = 0 and

wb(v̄,c),j(c) = 0.

– For every clause c we have wr(c),j(c) = 0 and wb(c),j(c) = 0.

– Any edge connecting a supply node to a dummy demand node ji (i = 1, . . . , n) has

weight 0.

– For any other edge e ∈ E we have we = 1.

Note that each of the sets SR, SB and D contain 2n + m nodes, which is even, because we

assumed that the number of clauses, m, is even.

We now argue that the (2,2)-SAT instance is a YES-instance, if and only if min-TPC(∅, FB ,∞)

has solution of value 0 (see also Figure 9).

First, suppose that we have a solution with value 0 of the corresponding TPC instance.
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This solution fulfills all supply and demand constraints and only uses edges of weight 0. Hence,

we know that a demand node j(v) receives supply either from the two red supply nodes repre-

senting the two positive occurrences of variable v in a clause, or from the two blue supply nodes

representing the two negative occurrences of variable v in a clause. If it receives supply from the

two blue supply nodes we set variable v to be TRUE; otherwise we set variable v to be FALSE.

We now argue that this is a satisfying truth-assignment. Consider an arbitrary clause c ∈ C
and the corresponding demand node j(c). Demand node j(c) receives supply from at least one

supply node representing the occurrence of a variable v in that clause. Suppose that supply node

r(v, c) sends supply to j(c) and therefore no supply to j(v). Hence variable v is set to TRUE and

clause c in which v occurs in positive form is satisfied. Suppose b(v̄, c), sends supply to j(c) and

therefore no supply to j(v). Hence variable v is set to FALSE and clause c in which it occurs in

negative form is satisfied.

Second, suppose we have a satisfying truth-assignment.

If variable v is set TRUE, then demand node j(v) receives supply from the two blue supply

nodes representing the two negative occurrences of variable v. Furthermore, for each clause c in

which variable v occurs in positive form, both r(v, c) and r(c) send supply to demand node j(c).

If variable v is set FALSE, then demand node j(v) receives supply from the two red supply

nodes representing the two positive occurrences of variable v. Furthermore, for each clause c in

which variable v occurs in negative form, both b(v̄, c) and b(c) send supply to demand node j(c).

So far we have assigned an even number of red supply nodes and an even number of blue supply

nodes. The remaining supply nodes can therefore be assigned to the remaining dummy demand

nodes, such that each demand node receives supply of only one colour.

Corollary 3.6. There is no constant-factor approximation algorithm for min-TPC(∅, FB ,∞), even

if si = 1 and dj = 2, unless P=NP.

Corollary 3.7. Max-TPC(∅, FB ,∞) is NP-hard, even if si = 1 and dj = 2.

Proof. For max-TPC the reduction is basically the same, the only change is the edge-weights. The

weights on the edges are defined as follows:

• For each variable v that occurs in positive form in clause c we have wr(v,c),j(v) = 1 and

wr(v,c),j(c) = 1.

• For each variable v that occurs in negative form in clause c we have wb(v̄,c),j(v) = 1 and

wb(v̄,c),j(c) = 1.

• For every clause c we have wr(c),j(c) = 1 and wb(c),j(c) = 1.

• Any edge connecting a supply node to a dummy demand node has weight 1.

• For any other edge e ∈ E we have we = 0.

Note that now we have that (2,2)-SAT instance is a YES-instance, if and only if max-TPC(∅, FB ,∞)

has solution of value 2(2n+m).
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4 Approximation for max-TPC

From the previous section we conclude that there exists no constant-factor approximation for

min-TPC (unless P=NP). When it comes to max-TPC, we have shown in Section 2 that for any

instance of the Maximum Independent Set Problem, there exists an equivalent instance of Max-

TPC(∅, F,∞). For the maximum independent set problem on graph G = (V,E) with |V | = n, it

is known that it is hard to approximate in polynomial time within a factor n1−ε, for any ε > 0,

unless P = NP (H̊astad, 1996). Hence for max-TPC(∅, F,∞) we know that no constant-factor

approximation algorithm exists, even if |D| = 1, unless P=NP.

Theorem 4.1. Max-TPC(∅, F,∞), with n := |S|, is hard to approximate in polynomial time

within a factor n1−ε, for any ε > 0, even if supply si = 1 for each supply node i ∈ S, and |D| = 1

with d1 = n (unless P=NP).

We now describe the so-called Separable Assignment Problem and show how existing approx-

imation results can be applied to max-TPC.

4.1 Max-TPC meets the Separable Assignment Problem

The Separable Assignment Problem (SAP) generalizes several well-known assignment problems.

An informal description of the SAP is as follows. We are given a set of bins, a set of items and

a profit for assigning a certain item to a certain bin. We are also given a packing constraint for

each bin. Such a packing constraint must be such that every subset of a feasible packing is also

feasible. So, for example, a packing constraint cannot state that each bin contains exactly 4 items,

because a subset of 3 items would no longer be feasible. A packing constraint can state that each

bin contains at most 4 items. The goal is to find an assignment of items to bin that maximizes

total profit.

Suppose that, for a single bin, there is a β-approximation algorithm for finding the maximum

profit assignment. Fleischer et al. (2011) present the following results for SAP:

(i) a β(1− 1
e )-approximation algorithm (based on Randomized LP-Rounding), and

(ii) a ( β
β+1 − ε)-approximation algorithm (based on Local Search).

Thus, with γ = max{β(1− 1
e ), ( β

β+1−ε)}, we summarize the results of Fleischer et al. (2011) by

saying that they provide a γ-approximation algorithm for SAP. Note if β ≥ 1
e−1 then γ = β(1− 1

e ),

else γ = β
β+1 − ε.

Let us now consider the following special case of max-TPC(∅, Fj ,∞), where all supply si = 1

for each supply node i ∈ S. We now show that we can describe this problem as a special case of

SAP.

To do so, we view each supply node i ∈ S in max-TPC as an item vi in SAP and we view each

demand node j ∈ D with demand dj in max-TPC as a bin bj in SAP.

The packing constraint of each bin bj states that;

(i) the total number of packed items does not exceed dj , and

(ii) a pair of items vi1 , vi2 can only be packed in bin bj if the corresponding pair of supply

nodes does not occur in the conflict set of the corresponding demand node, i.e. if (i1, i2) /∈ Fj .
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Note that, in our setting, finding the maximum profit solution for a single demand node j ∈
D is equivalent to finding a maximum weighted independent set of size at most dj in conflict

graph GFj
, where the weight of a node i ∈ S equals edge weight wi,j . Finding a maximum

weighted independent set of size at most a given cardinality d (called MWIS-d) is an interesting

combinatorial optimization problem in its own right; notice that this problem is more general

than the well-studied maximum weight independent set problem (MWIS). Indeed, Kalra et al.

(2017) study MWIS-d, and show that for bipartite graphs, MWIS-d is NP-complete (while MWIS

is well-known to be solvable in polynomial time for bipartite graphs (Ahuja et al., 1993)). In

addition, Kalra et al. (2017) give a 1
2 -approximation algorithm for MWIS-d on bipartite graphs.

Such approximation results can be used to obtain constant factor approximation algorithm for

a single bin, which in turn leads to approximation results for special cases of max-TPC using

Fleischer et al. (2011).

Likewise, we can use the results of a generalization of SAP, called k-SAP. In k-SAP we are given a

set of bins, a set of items I, a profit for assigning an item to a certain bin and a packing constraint

for each bin. Now each item i ∈ I may be assigned to at most ki different bins, but at most once

to each bin. The goal is to find an assignment of items to bins that maximizes total profit.

Again, assume that we are given a β-approximation algorithm for finding the maximum profit

assignment for a single bin, and let k = mini∈I ki. Bender et al. (2015) prove that there exists a

β(1− 1
ek

)-approximation algorithm based on Randomized LP-Rounding.

4.1.1 One-sided max-TPC

Let us first consider only one-sided constraints. The above discussion will give us the following

result.

Theorem 4.2. Suppose there is a βj-approximation for finding a maximum weighted independent

set of size at most dj on the conflict graph GFj induced by Fj for each j ∈ D, let β = minj∈D βj

and let γ = max{β(1− 1
e ), ( β

β+1 − ε)}.
Then there exists a γ-approximation algorithm for max-TPC(∅, Fj ,∞) with supply si = 1 for

each supply node i ∈ S.

As mentioned before, suppose that in each of the conflict graphs GFj
induced by Fj for each

j ∈ D we can find a maximum weight independent set of size at most dj in polynomial time (i.e.

β = 1 and γ = (1− 1
e )), then we have a (1− 1

e )-approximation algorithm. For example, this is the

case when for all j ∈ D we have that demand dj is constant, i.e. not part of the input.

We can also apply the above result to max-TPC(∅, FB ,∞), where the conflict graph is a

complete bipartite graph G = (R,B,E) (the Red-Blue Transportation problem). To find the

most profitable assignment for a single demand node with demand dj we compute the most

profitable assignment with supply nodes in R, the most profitable assignment with supply nodes

in B and choose the most profitable assignment of the two. Hence, we can find a maximum

weighted independent set of size at most dj in polynomial time (i.e. β = 1 and γ = (1− 1
e )). From

the theorem above it follows we have an (1− 1
e )-approximation algorithm, thereby improving the

1/2 approximation factor found by Vancroonenburg et al. (2014).
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Recall that one of the applications of the Red-Blue Transportation Problem is the assignment

of male and female patients to hospital rooms, while keeping in mind that a room is either male-

only or female-only. Suppose now, for example, that a male and female patient would like to share

a room, because they are married. This gives rise to a TPC instance with a conflict graph which

is bipartite, but not complete. As mentioned before, finding an Independent Set of size at most dj

of maximum weight in a bipartite graph is NP-hard and a greedy 1/2-approximation exists (Kalra

et al., 2017) (i.e. β = 1
2 and γ = 1

3 − ε). Thus, Theorem 4.2 implies the existence of a ( 1
3 − ε)

approximation algorithm for max-TPC(∅, Fj ,∞) with bipartite conflict graphs and si = 1 for all

i ∈ S.

In case the supply nodes have a supply of si ≥ 1 for all i ∈ S, and all edge capacities equal 1,

we can use existing results for k-SAP to derive approximation results.

Theorem 4.3. Suppose there is a βj-approximation for finding a maximum weighted independent

set of size at most dj on the conflict graph GFj
induced by Fj for each j ∈ D. Let k be the

minimum of all supply, i.e. k = mini∈S si, and let β = minj∈D βj.

Then there exists a β(1− 1
ek

)-approximation algorithm for max-TPC(∅, Fj , 1).

4.1.2 Two-sided max-TPC

Recall that we require the conflicts to be one-sided in order to be able to use the results known

for SAP. However, we can be slightly less restrictive. Assume that the demand nodes are coloured

either red or blue and that each supply node may send flow to either only red demand nodes or only

blue demand nodes. One approach is to solve the problem once while ignoring the blue demand

nodes and once while ignoring the red demand nodes, and select the best of both solutions; this

is a 1/2 · γ-approximation algorithm.

More generally, suppose we have two-sided conflicts, but one of the sides has identical conflicts,

w.l.o.g. conflict set Ci = C for all supply nodes i ∈ S. If we have a valid q-colouring on the induced

conflict graphGC , then we can split the problem into q one-sided max-TPC problems, which we can

solve independently. A valid q-colouring on a graph G = (V,E), is a function c : V → {1, . . . , q},
such that for all (v, u) ∈ E we have c(v) 6= c(u).

Note that, to find a q-colouring, it need not be sufficient to know that a graph is q-colourable,

since it is NP-hard to color a q-colourable graph with q(log q)/25 colours, for a sufficiently large

constant q (Khot, 2001).

Theorem 4.4. Suppose there is a βj-approximation for finding a maximum weighted independent

set of size at most dj on the conflict graph GFj induced by Fj for each j ∈ D, and a valid q-colouring

on the conflict graph induced by C, let β = minj∈D βj and let γ = max{β(1− 1
e ), ( β

β+1 − ε)}.
Then there exists a 1/q ·γ-approximation algorithm for max-TPC(C,Fj ,∞) with supply si = 1

for each supply node i ∈ S.

Again, we can strengthen these results if we allow supply nodes to have a supply si ≥ 1 for

i ∈ S, but restrict that each supply node is assigned at most once to each demand node, i.e. edge

capacity ui,j = 1. This allows us to use the results for k-SAP.
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Theorem 4.5. Suppose there is a βj-approximation for finding a maximum weighted independent

set of size at most dj on the conflict graph GFj
induced by Fj for each j ∈ D, and a valid q-colouring

on the conflict graph induced by C. Let k be the minimum of all supply, i.e. k = mini∈S si, and

let β = minj∈D βj.

Then there exists a 1/q · β(1− 1
ek

)-approximation algorithm for max-TPC(C,Fj , 1).

5 Conclusion

In this paper we have introduced the Transportation Problem with Conflicts (TPC), which is

a natural generalization of the classical Transportation problem. TPC is able to model several

applications that have restrictions on the set of suppliers supplying a demand node and vice

versa. Since in general TPC is at least as difficult as Maximum (Weighted) Independent Set,

we are interested in establishing the complexity of TPC when the restrictions satisfy particular

structures that we capture using a conflict graph.

In particular, we have looked at the structure of the conflict graph induced by the conflict sets.

We show that one-sided identical TPC remains NP-hard even if its conflict graph is a bipartite

graph, planar graph, interval graph or a simple path, thereby answering an open problem stated

by Vancroonenburg et al. (2014).

Finally we use results known for the Separable Assignment Problem, and MWIS-d, to find

approximation algorithms for special cases of max-TPC.
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