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Abstract— This work presents a distributed model predic-
tive control strategy for generating collision-free point-to-point
motions for a formation of multiple vehicles. It extends a syn-
chronous distributed model predictive control (DMPC) scheme
presented in earlier work that allows violations of the formation
requirement when necessary, for example to avoid suddenly
appearing obstacles or to move through narrow passages. In
order to obtain safe motion trajectories during these violations,
the current paper presents an approach for including inter-
vehicle collision avoidance constraints in the DMPC scheme.
The collision avoidance is achieved by separating each pair of
vehicles by a shared hyperplane and two methods are proposed
for updating the separating hyperplane over the DMPC cycles.
Simulations with formations of holonomic vehicles demonstrate
the capability of the presented strategy.

I. INTRODUCTION

Boosted by advances in computational power and com-
munication technologies, formation control of networked
multi-vehicle systems has gained increasing interest over
the last decades. Examples of application areas include
surveillance, search and rescue, distributed sensing and coop-
erative transportation. Although it is desired that the vehicles
move according to a specified formation configuration, in
some cases it is beneficial to allow violations on these
formation requirements. This for example to avoid suddenly
appearing obstacles or to move through narrow passages.
When the vehicles leave the formation they might come in
close contact to one another and therefore it is of major
importance to avoid collisions between them. This work
focuses on the inclusion of inter-vehicle collision avoidance
constraints in a previous presented distributed formation
control approach [1].

Many of the state-of-the-art distributed collision avoidance
approaches are based on the concept of velocity obstacles, or
a generalization hereof [2]–[4]. In these methods the vehicles
decide upon a constant input profile for a certain time horizon
that is as close as possible to their desired inputs but also
guarantees collision avoidance during the horizon. The lack
of considering a free motion trajectory in the prediction
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horizon is a major drawback that reduces the optimality of
the resulting motions.

In contrast, a distributed model predictive control (DMPC)
strategy allows to compute a free trajectory in the control
horizon. The inclusion of inter-vehicle collision avoidance
constraints in a DMPC scheme requires that each vehicle
knows about the planned intentions of the other vehicles in
order to avoid them. Depending on how this is achieved,
three general types of DMPC schemes are distinguished:
sequential, iterative and synchronous DMPC.

In sequential DMPC the vehicles solve their control prob-
lems one after another [5]–[7]. In this way the posterior
vehicle uses communicated information of the anterior ones
in order to avoid them. This however implies a priorization
of the vehicles’ objectives based on the sequence order. In
addition, these strategies often lead to low control rates as the
sequential solving of each vehicle’s control problem should
happen during one MPC update.

An iterative DMPC scheme uses an iterative distributed
optimization approach to solve the multi-vehicle optimal
control problem until convergence during each MPC cy-
cle [8], [9]. Each iteration requires the solution of an op-
timization problem and involves substantial communication
between the vehicles, which typically results in low MPC
update rates.

In synchronous DMPC, each vehicle solves its optimal
control problem once simultaneously in each MPC period.
The inclusion of inter-vehicle collision avoidance in a syn-
chronous DMPC scheme is however not straightforward.
Because the vehicles compute their planned trajectories in
parallel, every vehicle lacks the information on the intentions
of its neighbors in order to avoid them properly. This problem
is addressed in [10], [11] by including a compatibility
constraint that limits the distance between a newly planned
motion trajectory and the trajectory computed during the
previous MPC cycle. Each vehicle has received the previous
planned trajectories of the others and knows the allowed
maximum deviation from them during the current update.
In this way a vehicle can compute a non-colliding motion
trajectory. The approach has as disadvantage that it uses the
distance to the closest neighbor for determining the compati-
bility constraint. This construction is rather conservative and
can deteriorate the control performance.

This paper presents a DMPC approach for generating
collision-free point-to-point motions for a formation of mul-
tiple vehicles. It extends the synchronous DMPC scheme
presented in [1], which provides each vehicle with its own
distinct motion controller while inter-vehicle communica-



tion allows the vehicles to cooperate in order to move
in formation. The scheme allows the vehicles to violate
formation constraints when necessary. In order to obtain safe
motion trajectories during these violations, the current paper
investigates possibilities for including inter-vehicle collision
avoidance constraints in this distributed control scheme.
The collision avoidance is achieved by separating each pair
of vehicles by a shared hyperplane and two methods are
proposed for updating this separating hyperplane over the
DMPC cycles. The result is a novel synchronous DMPC
scheme that outperforms the existing approaches of [10],
[11] as the separating hyperplanes allow a larger space for
the vehicles to optimize their trajectories. The current paper
focuses on holonomic vehicles moving in a two dimensional
plane. The approach can be extended for non-linear and three
dimensional spaces using ideas from [12]. These extensions
do not influence the presented ideas for distributed inter-
vehicle collision avoidance.

Section II introduces the considered multi-vehicle forma-
tion problem. Section III gives a short overview of the DMPC
scheme presented in [1], while Section IV explains how inter-
vehicle collision avoidance is introduced in this scheme. The
proposed approach is illustrated with numerical examples in
Section V. Finally, Section VI draws concluding remarks.

II. PROBLEM FORMULATION

The problems considered in this work search for position
trajectories xi(·) for N different velocity steered holonomic
vehicles i in order to bring them from an initial position
to a terminal position. Optimal trajectories are obtained by
minimizing the sum of all vehicles’ objectives Ji. In order
to steer a vehicle as close as possible to its destination xT,i
during the control horizon [0, T ], a vehicle’s objective is
formulated as

Ji(xi) =

∫ T

0

‖xi(t)− xT,i‖1dt .

A vehicle’s constraints are divided in a local and a global
set. The local constraints are expressed as xi(·) ∈ Xi and
comprise input constraints, expressed as limitations on a
vehicle’s velocity,

ẋmin,i ≤ ẋi ≤ ẋmax,i ,

and collision avoidance constraints with obstacles in the envi-
ronment. These are constructed by imposing the existence of
a separating hyperplane between the vehicle’s and obstacle’s
shape. Suppose the geometry of vehicle i is approximated
as a circle with radius ri, while the obstacle is represented
by a circle with midpoint xo and radius ro. Demanding the
separation of both circles by a hyperplane {x ∈ R2|aTx = b}
is achieved with the following set of constraints:

−a(t)Txi(t) + b(t) ≥ ri ,
a(t)Txo(t)− b(t) ≥ ro ,

a(t)Ta(t) ≤ 1 ,

∀t ∈ [0, T ] .

(1)

As a vehicle’s position varies over time and possible obsta-
cles move around, the separating hyperplane, and therefore
a and b, is allowed to change over time.

Global constraints ensure the formation preservation and
inter-vehicle collision avoidance. Formation constraints are
imposed by fixing the relation between the positions xi and
xj of respectively a vehicle i and its neighbor j using a
desired relative position ∆xi,j :

gi,j(xi(t), xj(t)) = xi(t)− xj(t)−∆xi,j = 0 ,∀t ∈ [0, T ].
(2)

The set of neighbors that vehicle i shares constraint (2)
with is represented by N f

i . Inter-vehicle collision avoidance
constraints hi,j are formulated similar as (1) with separat-
ing hyperplane parameterized by time-dependent ai,j(·) and
bi,j(·). These constraints are imposed between each pair of
vehicles (i,j). The related neighbor set is therefore chosen
as N c

i = {1, . . . , N} \ {i}.
The resulting optimization problem is summerized as:

minimize
xi(·), ai,j(·), bi,j(·),
i=1,...,N, j∈N ci

N∑
i=1

Ji(xi)

subject to xi(·) ∈ Xi ,
gi,j(xi(t), xj(t)) = 0, ∀j ∈ N f

i ,

hi,j(xi(t), xj(t), ai,j(t), bi,j(t)) ≤ 0 ,

∀j ∈ N c
i ,

∀t ∈ [0, T ], ∀i ∈ {1, . . . , N} .
(3)

III. SPLINE-BASED DMPC
This section briefly recapitulates the DMPC scheme pre-

sented in [1]. First, problem (3) is translated into a nonlin-
ear program by adopting a spline parameterization for the
position trajectories. Second, an approach is presented for
solving the resulting problem in an efficient distributed and
receding-horizon fashion.

A. Spline parameterization
Problem (3) is infinite dimensional, comprising both in-

finitely many optimization variables and constraints, as the
optimization variables are functions and they must satisfy the
constraints at all time instants. To cope with the infinitely
many optimization variables, the trajectory variables are ap-
proximated as piecewise polynomials and are parameterized
in a B-spline basis [13]:

x̂i(t) =

n∑
l=1

xi,lbl(t) ,

with B-spline basis b = [b1, . . . , bn]T and B-spline coeffi-
cients xi = [xi,1, . . . , xi,n]T . The main reason for adopting
the B-spline basis is the so-called convex hull property: as
the B-splines are positive and sum up to 1, a spline is always
contained in the convex hull of its B-spline coefficients.
This way, bounds on a spline function can be enforced by
imposing them on the coefficients:

xi ≤ 0⇒ x̂i(t) ≤ 0 ,∀t ∈ [0, T ] .



Because (anti-)derivatives and polynomial functions of a
spline are splines as well, also polynomial constraints on
spline trajectories and their (anti-)derivatives can be handled
in the same way. For holonomic vehicles all constraints are
naturally polynomial in the motion trajectories xi and their
derivatives. For details on how to account for nonholonomic
vehicles, the reader is referred to [12], [14]. Finally by using
a spline parameterization for xi(·), ai,j(·) and bi,j(·) and the
constraint replacement, problem (3) is formulated in terms
of the spline coefficients xi, ai,j and bi,j :

minimize
xi, ai,j , bi,j ,

i=1,...,N, j∈N ci

N∑
i=1

Ji(xi)

subject to xi ∈ Xi ,

gi,j(xi, xj) = 0, ∀j ∈ N f
i ,

hi,j(xi, xj ,ai,j ,bi,j) ≤ 0 ,∀j ∈ N c
i ,

∀i ∈ {1, . . . , N} .

(4)

The objective and constraint functions, reformulated in terms
of spline coefficients, are written in Sans-serif font.

B. ADMM-based Distributed MPC

In problem (4), the local constraints only apply to one
specific vehicle while the objective is composed of the
vehicles’ individual objectives. The only coupling is imposed
by the formation constraints gi,j and inter-vehicle colli-
sion avoidance constraints hi,j . This subsection describes
a control scheme that decouples the problem in order to
distribute the computational load of solving the control
problem among the vehicles. As an intermediate step in
deriving an overall DMPC scheme, this subsection presents
the decoupling of the formation constraints. The inter-vehicle
collision avoidance constraints are temporarily omitted and
will be added to the DMPC scheme in Section IV. The
decoupling is derived using the Alternating Direction Method
of Multipliers (ADMM) [15]. Before applying ADMM,
problem (4) is reformulated as the following equivalent one:

minimize
xi, zi, zi,j , i=1,...,N

N∑
i=1

Ji(xi)

subject to xi ∈ Xi
gi,j(zi, zi,j) = 0 , ∀j ∈ N f

i

xi = zi , xj = zi,j , ∀j ∈ N f
i

∀i ∈ {1, . . . , N} ,

(5)

i.e. for each vehicle i slack variables zi and zi,j are intro-
duced that match respectively a vehicle’s own trajectory xi
and the neighbor’s trajectory xj . The idea behind ADMM is
to solve a dual problem of (5), which is obtained by dualizing
equality constraints xi = zi and xj = zi,j . ADMM utilizes
the augmented Lagrangian function which adds an extra
quadratic penalty term in order to improve robustness and
to yield milder convergence assumptions. For problem (5)

Algorithm 1 ADMM based Distributed MPC

1: Initial ADMM iterations to get x0i , z0i , z0j,i, λ
0
i , λ0j,i

2: Repeat every ∆T : k = 0, 1, . . .
3: Start following trajectory xki (t)
4: Estimate x̂ki = xki ((k + 1)∆T )
5: Update horizon and transform xki , zki , zkj,i, λ

k
i , λkj,i

6: Compute xk+1
i , using x̂ki as initial conditions:

xk+1
i := argmin

xi∈Xi(x̂ki )
Lρ,i(xi, zki , λki , xi, zkj,i, λkj,i) (7)

7: Communication with agent j ,∀j ∈ N f
i :

send xk+1
i , receive xk+1

j

8: Compute zk+1
i and zk+1

i,j :(
zk+1
i

zk+1
i,j

)
:=

argmin
zi, zi,j

Lρ,i(xk+1
i , zi, λki , x

k+1
j , zi,j , λki,j)

s. t. gi,j(zi, zi,j) = 0 , ∀j ∈ N f
i

(8)

9: Compute λk+1
i and λk+1

i,j :

λk+1
i := λki + ρ(xk+1

i − zk+1
i )

λk+1
i,j := λki,j + ρ(xk+1

j − zk+1
i,j ) , ∀j ∈ N f

i (9)

10: Communication with agent j ,∀j ∈ N f
i :

send zk+1
i,j and λk+1

i,j , receive zk+1
j,i and λk+1

j,i

11: Until target reached

this function is

Lρ =

N∑
i=1

(
Ji(xi) + λTi (xi − zi) +

ρ

2
‖xi − zi‖22

+
∑
j∈Ni

(
λTi,j(xj − zi,j) +

ρ

2
‖xj − zi,j‖22

))
,

=

N∑
i=1

Lρ,i(xi, zi, λi, xj , zi,j , λi,j) ,

(6)

where λi and λi,j represent the dual variables associated with
the dualized constraints. ADMM uses an iterative gradient
ascent method to find the dual optimum. In each iteration
the evaluation of the dual function is split in two consecutive
steps where first the Lagrangian function (6) is minimized
over xi and second over zi and zi,j . In this way these two
steps and the gradient update of λi and λi,j can be performed
fully decoupled.

Solving problem (5) until convergence requires various
ADMM iterations. Incorporating this sequence in one MPC
cycle is however not desired in practice as it would involve
too high a computation and communication load. There-
fore [1] proposes a DMPC scheme that executes only one
ADMM iteration per control update starting from the solution
of the previous iterations. The idea is that ADMM converges
while the vehicles are heading towards their destination.

Algorithm 1 summarizes the DMPC strategy. For more
details, the reader is referred to [1]. Important to capture is
that each vehicle i contains two sets of variables: xi, which
are used to drive the vehicle, and zi and zi,j , representing
guesses of respectively xi and xj of its neighbors j. In (7) a



vehicle i solves a local optimal control problem, ensuring
that xki always satisfies the local constraints, represented
by Xi. Problem (8) ensures that zki and zki,j satisfy the
formation constraints. The ADMM iterations let the x and z
variables converge towards each other. Because x variables
are used to drive the vehicle and because equality constraints
between x and z are dualized in the optimal control prob-
lem (7), the formation constraints are imposed in a soft
manner. This allows the vehicles to violate the formation
requirement especially when no other option is available. In
order to guarantee safe motions, it is important to include
collision avoidance constraints between the vehicles.

IV. INTER-VEHICLE COLLISION AVOIDANCE

This section describes how inter-vehicle collision avoid-
ance requirements are included in the formation control prob-
lem. As described in Section II, collision avoidance between
two vehicles i and j is achieved by separating them with
a hyperplane. This hyperplane can change over time and is
parameterized by a set of spline variables ai,j(·) and bi,j(·),
shared by the two vehicles. In order to include inter-vehicle
collision avoidance in the DMPC scheme of Algorithm 1, an
appropriate decoupling should be implemented.

A dual decomposition approach similar as ADMM does
however not work in this case. Such strategy provides each
vehicle with a local copy of their separating hyperplane
and dualizes equality constraints on these local versions.
As in the DMPC scheme of Algorithm 1 only one iteration
per MPC cycle is executed, no guarantee is given that the
trajectories computed in a particular MPC cycle are non-
colliding.

Instead the inter-vehicle collision avoidance is decoupled
in the primal space. Vehicle i and j keep the evolution of
their separating hyperplane, described by ai,j(·) and bi,j(·),
fixed while solving their local optimal control problem (7)
and constraint their position trajectories to stay within one of
the moving halfspaces created by the separating hyperplane.
Separating hyperplanes are imposed between each pair of
vehicles such that a vehicle’s position is constrained to
stay withing a time-varying intersection of halfspaces. With
aki,j(·) and bki,j(·) the fixed separating hyperplane parameters
during iteration k, and using the convention that ai,j = −aj,i
and bi,j = −bj,i, a vehicle i introduces the following
constraints:

−aki,j(t)Txi(t) + bki,j(t) ≥ risi,j(t) ,
aki,j(t)

Taki,j(t) ≤ si,j(t)2 ,
si,j ≥ 0 ,

∀j ∈ N c
i ,∀t ∈ [0, T ] ,

(10)

where si,j(·) are slack spline variables that represent an
upper bound on ‖aki,j(·)‖2. Constraints (10) are reformulated
using the constraint replacement described in Section III-
A and are added to the local constraint set Xi of the local
optimal control problem (7).

The separating hyperplanes should be updated properly
over the MPC cycles. As the introduction of constraints (10)

i

Fig. 1: Determining new separating hyperplanes at a given
time in the prediction horizon for vehicle i using Method A.

with fixed aki,j and bki,j can drastically reduce the feasible
set of the local optimal control problems, it is important to
guarantee recursive feasibility over the MPC updates. This
means that ak+1

i,j and bk+1
i,j should be chosen such that at

least one feasible solution exists for the optimal control
problems of cycle k + 1. In addition it is desired to choose
the separating hyperplanes such that the feasible set of the
vehicle’s optimal control problems is as large as possible,
giving sufficient space to optimize new trajectories. Taking
the aforementioned requirements in mind, two methods are
proposed for updating the separating hyperplanes.

1) Method A: The first approach uses the position tra-
jectories xki (·) computed during cycle k to determine the
separating hyperplane parameters ak+1

i,j (·) and bk+1
i,j (·) used

in cycle k + 1. At each time instant the new separating
hyperplane is chosen to lie in the middle of two vehicles,
perpendicular to the line connecting them:

ak+1
i,j (·) = xkj (·)− xki (·) ,

bk+1
i,j (·) =

1

2
(xkj (·)− xki (·))T (xkj (·) + xki (·)) .

In this way, at each time instant the space is equally divided
between the two vehicles to optimize their new trajectories.
Figure 1 illustrates the hyperplanes separating a vehicle i
with its three neighbors at a particular time instant t. The
hyperplanes create the gray surface wherein the vehicle’s
circle shape is allowed when computing a new position
xk+1
i (t) for time t. Note how method A guarantees recursive

feasibility as previous computed trajectories are always a
feasible solution for the optimal control problem of the next
MPC cycle.

2) Method B: The second approach updates the previous
hyperplane parameters using the sensitivities of the optimal
objective function of a vehicle’s local optimal control prob-
lem to the hyperplane parameters. With Lk∗ρ,i the optimal
objective value of a vehicle i’s optimal control problem (7)
during MPC cycle k, the coefficients of the separating
hyperplane parameters are updated using a gradient step:

ak+1
i,j = aki,j − αki,j(

dLk∗ρ,i
daki,j

−
dLk∗ρ,j
dakj,i

) ,

where sensitivities
dLk∗ρ,i
dai,j

are computed using optimal dual
variables of (7) [16]. The sensitivities express how vehicles i
and j want to adapt the shared separating hyperplane in order
to improve their local objectives. Both sensitivities are taken
equally into account for updating the separating hyperplane.
The step size αki,j is determined such that recursive feasibility



Algorithm 2 DMPC with inter-vehicle collision avoidance

1: Get initial x0i , a0
i,j , b0

i,j , z0i , z0j,i, λ
0
i , λ0j,i

2: Repeat every ∆T : k = 0, 1, . . .
3: Start following trajectory xki (t)
4: Estimate x̂ki = xki ((k + 1)∆T )
5: Update horizon and transform

xki , aki,j , bki,j , zki , zkj,i, λ
k
i , λkj,i

6: Compute xk+1
i using (7) including constraints (10)

with aki,j and bki,j
7: Communication with agent j ,∀j ∈ N f

i ∪N c
i :

send xk+1
i (

dLk∗ρ,i
daki,j

), receive xk+1
j (

dLk∗ρ,j
dakj,i

)

8: Compute zk+1
i and zk+1

i,j using (8)
9: Compute λk+1

i and λk+1
i,j using (9)

10: Compute ak+1
i,j and bk+1

i,j using method A or B
11: Communication with agent j ,∀j ∈ N f

i :
send zk+1

i,j and λk+1
i,j , receive zk+1

j,i and λk+1
j,i

12: Until target reached

is guaranteed. A line search on αki,j is performed such
that previous trajectories xki (·) and xkj (·) allow a separation
by the updated hyperplane. The parameters bk+1

i,j are not
determined using sensitivity information but are chosen such
that the hyperplane crosses the point in the middle of the
line connecting the two vehicles. Experiments have revealed
that using sensitivity information for updating bki,j gives poor
results.

Algorithm 2 presents the resulting scheme when incorpo-
rating method A or B in the steps of Algorithm 1. Method A
requires a vehicle to know the computed trajectories of its
neighbors. This information is available as it was already
provided by the communication during step 7. Method B
also requires this information in order to perform the line
search on αki,j and needs in addition to communicate a
neighbor’s sensitivity information (step 7). Both method A
and B assume that previous sets of separating hyperplanes
allow feasible motion trajectories. This implies that the
DMPC algorithm should start from feasible hyperplanes
a0
i,j and b0

i,j . These can be generated for instance using
a sequential approach. Each vehicle solves a point-to-point
problem sequentially. Posterior vehicles use communicated
position trajectories of anterior ones to determine a collision-
free trajectory x0i and separating hyperplanes a0

i,j , b0
i,j . Any

priorization imposed by this sequential scheme is eliminated
by the further steps of Algorithm 2.

Note how the use of separating hyperplanes allows a much
larger space to reoptimize trajectories when compared to the
distance restriction used in [10], [11]. This is illustrated in
Figure 1. While method A allows a new position xk+1

i (t) to
lie in the gray surface constructed by the separating lines, the
method of [10], [11] restricts xk+1

i (t) to lie in the hatched
circle.

V. NUMERICAL RESULTS

This section illustrates the proposed DMPC scheme with
two collision critical formation maneuvers. Animations of
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Fig. 2: Comparison of method A and B based on the
convergence of the objective Jk and formation error εkF .

both examples are uploaded on the readme of a spline-based
motion planning toolbox1developed by the authors.

A. Formation moving through a narrow passage

A first example considers a formation of three vehicles that
should move through a narrow passage to reach the destina-
tion. This example is used to compare the two methods for
updating the separating hyperplanes described in Section IV.
The comparison is made by monitoring the convergence of
the distributed method of Algorithm 2 when employing it
to iteratively solve an optimal control problem. This means
that the control horizon and the initial conditions used in (7)
are not updated over the iterations. The convergence is
monitored in Figure 2 by means of the total objective value
Jk =

∑N
i=1 Ji(x

k
i ) and the formation error εkF . The latter is

computed as the average relative deviation of a vehicle with
respect to the formation center. With xkc (t) = 1

N

∑
i x

k
i (t)

the formation center of the planned trajectories during iter-
ation k and ∆xi,c the ideal relative position of a vehicle i
with respect to the formation center, this becomes

εkF =
1

T

∫ T

0

1

N

N∑
i=1

‖xki (t)− xkc (t)−∆xi,c‖2
‖∆xi,c‖2

dt .

As seen in Figure 2 both methods have a similar convergence.
Also from other examples it was noticed that no method is
clearly outperforming the other. Based on performance the
choice between both methods is hard to make. However as
method B requires additional communicated information and
needs to execute a line search, which can be computational
demanding, method A is the preferred choice from practical
viewpoint. Figure 3 demonstrates the formation’s motion
after performing 30 iterations. In the snapshot at t = 3.5 s
the allowed regions, defined by the separating hyperplanes,
are illustrated for each vehicle.

B. Formation in a dynamic environment

Using an MPC algorithm is especially beneficial in the
presence of disturbances. This is illustrated in Figure 4 for
a formation of five vehicles that suddenly encounter two
moving obstacles. At t = 1.1 s and t = 1.3 s the vehicles

1https://github.com/meco-group/omg-tools



t = 0.0 s t = 2.6 s t = 3.5 s t = 4.4 s t = 5.4 s

Fig. 3: Motion trajectories for a formation of three vehicles moving through a narrow passage. The gray lines indicate
predicted trajectories while black lines represent covered trajectories. The gray surfaces in the third snapshot illustrate the
allowed region for each vehicle at t = 3.5 s defined by the separating hyperplanes.

t = 0.6 s t = 1.3 s t = 2.1 s t = 2.3 s

t = 2.5 s t = 2.8 s t = 3.3 s t = 4.9 s

Fig. 4: Motion trajectories for a formation of five vehicles in a dynamic environment. At t = 1.1 s and t = 1.3 s the vehicles
observe respectively the blue and red object. The proposed approach allows the vehicles to adapt their trajectories to avoid
the obstacles. Adapted trajectories violate the formation requirements but remain collision-free.

observe respectively the blue and red object and determine
its position and (constant) velocity. This information is taken
into account in order to avoid them. Adapted trajectories
violate the formation requirements but remain collision-free.

VI. CONCLUSION

This paper presents a DMPC approach for steering a
formation of vehicles with guaranteed inter-vehicle colli-
sion avoidance. It extends a previously presented DMPC
approach that decouples the formation constraints based on
the Alternating Direction Method of Multipliers (ADMM)
and that only executes one ADMM iteration per MPC cycle.
This allows the vehicles to violate the formation constraints
when necessary and requires the inclusion of inter-vehicle
anti-collision constraints to guarantee safe motions. These
constraints are based on the separation of each vehicle pair
by a shared hyperplane and are decoupled in the primal
space. Two methods are proposed for updating the shared
hyperplane over the MPC cycles and numerical simulations
show that both methods allow similar performance. The
possibilities of the presented approach are demonstrated by
numerical examples with formations of holonomic vehicles
moving through static and dynamic environments.
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