
A mixed-integer linear program formulation

for fast matrix multiplication

Laurent Sorber, Marc Van Barel

April 30, 2017

1 Introduction

Multiplying N×N matrices naively costs N3 floating point (FP) multiplications.
Strassen formulated a multiplication tensor T of size N2 × N2 × N2 whose
polyadic decomposition of rank R in factor matrices with elements in {−1, 0, 1}
corresponds to multiplying N × N matrices with only R FP multiplications.
Furthermore, Strassen found a solution for N = 2 with R = 7 [9], which was
later shown to be both a canonical polyadic decomposition [2, 5, 10] (there is
no polyadic decomposition with smaller R) and essentially unique [3] (all other
solutions of the same rank are equivalent to Strassen’s solution).

Strassen’s algorithm is most effective when applied at the block level in-
stead of the scalar level, thereby saving one block-matrix multiplication in the
multiplication of 2 × 2 block matrices. Applying this recursively leads to a
complexity of O(N log2(7)≈2.80735...) floating point operations for matrix multi-
plication. In practice, only a few iterations of Strassen’s algorithm would be
applied before the additional sums and differences are more expensive than the
block-multiplication savings.

Multiplying 3 × 3 matrices naively costs 27 multiplications, while the cur-
rent best known polyadic decompositions do it in only R = 23 multiplica-
tions. However, recursive application of such solutions lead to a complexity
of O(N log3(23)≈2.85405...), which is worse than Strassen’s 2 × 2 solution. We
would have to find a solution of at most R = 21 to improve on Strassen’s algo-
rithm. It is currently not known whether R = 23 is the lowest rank that can
be attained, nor is it the case that solutions of that rank are essentially unique.
This leads us to some interesting questions. Do lower rank solutions exist? If
so, are those essentially unique? If not, is the most sparse solution (i.e., the
solution with the least number of sums and differences) essentially unique?

While local optimization methods can be useful to generate candidate solu-
tions, they cannot be used to prove that no solutions of a certain rank exist,
nor that no better solutions exist (whether it be of lower rank, or more sparse
solutions). In this note, we translate the polyadic decomposition into a mixed-
integer linear program (MILP), which, if tractable, can provide answers to the
above questions.

1

2 Fast matrix multiplication as a nonlinear pro-
gram

2.1 Problem statement

The {0, 1} multiplication tensor T associated with the matrix multiplication
A ·B = C where A is of size M ×P , B is of size P ×N and C is of size M ×N
is defined by the equation

T ·1 vec(AT) ·2 vec(BT) = vec(C) (1)

where ·n is the mode-n tensor-vector product and vec(·) is the column-wise vec-
torization operator. The multiplication tensor is sometimes written as 〈M,P,N〉
to specify the problem dimensions. In this note, we consider only square ma-
trix multiplication and set M = P = N , although much of our discussion also
applies to rectangular matrices and other bilinear operators.

The tensor T can be decomposed into a sum of R rank-one tensors:

Tijk =

R∑
r=1

Uir · Vjr ·Wkr ∀i, j, k = 1 . . . N2 (2)

where U , V , and W are the so-called factor matrices of size N2 ×R. Equation
(2) is called a polyadic decomposition (PD) of T , and specifically a canonical
polyadic decomposition (CPD) if R is minimal. The naive matrix multiplication
algorithm corresponds to a PD of rank R = N3, where each rank-one tensor
contributes one nonzero element to the sum.

Each rank-one matrix U:r · V T
:r corresponds to a single multiplication of a

linear combination of elements of the matrix A and a linear combination of the
elements of B. The entry Wkr then determines how much the resulting scalar
contributes to the kth entry of vec(C). To see this, we rewrite (1) using (2) as:

vec(C)k = T::k ·1 vec(AT) ·2 vec(BT) (3)

=

(
R∑

r=1

(U:r · V T
:r) ·Wkr

)
·1 vec(AT) ·2 vec(BT) (4)

=

R∑
r=1

〈vec(AT), U:r〉 · 〈V:r, vec(BT)〉 ·Wkr (5)

With factor matrices U , V , and W that satisfy the equality (2) and a rank
R < N3, we refer to (5) as a fast matrix multiplication algorithm.

2

2.2 Formulation as an optimization problem

An optimal polyadic decomposition of the multiplication tensor (2) can be for-
mulated as the discrete non-linear program (NLP)

minimize
U,V,W

3N2R

N2∑
i,j,k=1

∣∣∣∣∣Tijk −
R∑

r=1

Uir · Vjr ·Wkr

∣∣∣∣∣
+
∑
i,r

|Uir|+
∑
j,r

|Vjr|+
∑
k,r

|Wkr|

s.t. U, V,W ∈ {−1, 0, 1}N
2×R

(6)

where the entries of the factor matrices U , V , and W are constrained to be −1,
0 or 1 so that they act as selection operators in the fast matrix multiplication
algorithm (5). The objective function’s primary goal is to minimize the L1 norm
of the residual and is multiplied by a factor of 3N2R so that it doesn’t conflict
with its secondary objective, which is to maximize sparsity of the solution.
Other norms, distance metrics, or even equalities, could be considered for the
primary goal. However, we choose the L1 norm here since it will be closest to
our translation into a MILP.

3 Fast matrix multiplication as a mixed-integer
linear program

3.1 Motivation

Much like eigenvalue decomposition algorithms, MILP solvers have seen decades
of progress and are now able to solve problems that were previously considered
unsolvable [7]. For example, the commercial solver Gurobi v7.0 claims a 43x
speedup since it was released 7 years ago [8]. IBM’s CPLEX v12.7 solver claims
a 37x speedup since its v10 release 10 years prior [6]. Modern MILP solvers use
a number of building blocks to achieve those speedups:

1. Presolve: Tighten formulation and reduce problem size.

2. Solve continuous relaxations: Ignores integrality and gives a bound on the
optimal integral objective.

3. Cutting planes: Cut off relaxation solutions.

4. Branching variable selection: Intelligently explore search space.

5. Heuristics: Find integer feasible solutions.

A MILP’s convex relaxation as a linear program (LP) is what allows us to
explore the search space of candidate solutions effectively and find a globally
optimal solution. The root LP can be solved efficiently in polynomial time

3

and will provide us with both a solution that is (hopefully) close to feasible,
and a lower bound on the objective function. In the subsequent branch and
bound phase of the solver, variables that were not integral but should be can
be selected for branching. Nodes in this search tree can provide better upper
bounds (when new feasible solutions are found) and lower bounds (when the best
unexplored node’s LP objective value is higher than the current lower bound)
on the objective value. When the gap between the upper and lower bound is
reduced to zero, we have obtained a globally optimal solution in the sense that
there are no solutions with a better objective value.

3.2 MILP formulation

We parametrize the factor matrices with two binary components that repre-
sent whether the factor matrices’ entries are strictly negative, strictly positive,
or neither. With these components in hand, we show that linear constraints
can emulate the multilinear character of the objective function. To improve
convergence to a global minimum, additional constraints could be formulated.
However, let us begin by describing compact MILP with the same solutions as
the NLP (6):

4

minimize 3N2R

N2∑
i,j,k=1

COST ijk

+
∑
i,r

ABSALTU ir +
∑
j,r

ABSALTV jr +
∑
k,r

ABSALTW kr

+
1

3N2R

∑
i,r

ABSDIFFU ir +
∑
j,r

ABSDIFFV jr +
∑
k,r

ABSDIFFW kr

s.t. // COST is the absolute value of T − [[U, V,W]]

− COST ijk ≤ Tijk −
R∑

r=1

VALijkr ≤ COST ijk

// U = [U > 0]− [U < 0]

U = POSU −NEGU

V = POSV −NEGV

W = POSW −NEGW

// |U | = [U > 0] + [U < 0]

ABSU = POSU + NEGU

ABSV = POSV + NEGV

ABSW = POSW + NEGW

// Alternate definition of |U |, |V |, and |W |
−ABSALTU ≤ U ≤ ABSALTU

−ABSALTV ≤ V ≤ ABSALTV

−ABSALTW ≤W ≤ ABSALTW

// Distance between two measures of absolute values

−ABSDIFFU ≤ ABSU −ABSALTU ≤ ABSDIFFU

−ABSDIFFV ≤ ABSV −ABSALTV ≤ ABSDIFFV

−ABSDIFFW ≤ ABSW −ABSALTW ≤ ABSDIFFW

// Force VAL for the case (1,1,1) and (-1,-1,-1)

− 2 ≤ VALijkr − Uir − Vjr −Wkr ≤ 2

// Force VAL for the case (1,1,-1) and (1,-1,-1)

− 2 ≤ VALijkr − Uir + Vjr + Wkr ≤ 2

− 2 ≤ VALijkr + Uir − Vjr + Wkr ≤ 2

− 2 ≤ VALijkr + Uir + Vjr −Wkr ≤ 2

// Force VAL for the cases (0,*,*), (*,0,*), and (*,*,0)

−ABSU ir ≤ VALijkr ≤ ABSU ir

−ABSV jr ≤ VALijkr ≤ ABSV jr

−ABSW kr ≤ VALijkr ≤ ABSW kr

// Variable bounds

− 1 ≤ U, V,W,VAL ≤ 1

0 ≤ NEGU ,NEGV ,NEGW ,POSU ,POSV ,POSW ≤ 1

0 ≤ ABSU ,ABSV ,ABSW ,ABSALTU ,ABSALTV ,ABSALTW ≤ 1

0 ≤ COST ,ABSDIFFU ,ABSDIFFV ,ABSDIFFW ≤ 1

// Integer variables

NEGU ,NEGV ,NEGW ,POSU ,POSV ,POSW ∈ ZN2×R

(7)

5

The idea of the MILP (7) is to introduce variables VALUE ijkr and force
them to be equal to the multilinear products Uir · Vjr ·Wkr when the entries of
U , V , and W are in {−1, 0, 1}. Herein, forcing VALUE ijkr to be zero when one
of Uir, Vjr, or Wkr is zero is the most difficult constraint since it requires having
access to the absolute values of the factor matrices. To illustrate the problem,
set NEGU ir and POSU ir equal to 0.5. According to our formulation, ABSU ir

will be 0.5 + 0.5 = 1 while Uir itself will be 0.5−0.5 = 0, leading to VALUE ijkr

being free to take on any value in [−1, 1] even though it should clearly be zero.
To help mitigate this problem, we introduced an alternative measure of the

absolute value ABSALTU ir which is at least as large as |Uir|. Minimizing
ABSALTU as a secondary goal in the objective function serves two purposes:
on the one hand we make sure that ABSALTU ir is indeed equal to |Uir|, and on
the other hand we will obtain the most sparse solution among those that have
a residual of zero. The third and final goal of the objective function is then
to also keep the distance between ABSU and ABSALTU as small as possible.
We have noticed that this does indeed lead to a smaller number of non-integer
variables in the solution of the LP relaxation.

3.3 Dimensionality and tractability

Table 1 shows the dimensionality of the MILP (7) for some choices of the matrix
order N and the number of multiplications R. The MIPLIB 2010 benchmark [4]
lists some (mixed) binary problems with up to 1.5M rows, 125k binary variables
and 28M nonzeros that have been solved. Of course that does not necessarily
mean this particular problem can be solved by the current solvers, but at least
the size of the problem still seems to be within reason.

N = 2 N = 3 N = 4
R = 7 R = 23 R = 46

Variables (columns) O(N6R) 448 16767 188416
Binary variables 6N2R 168 1242 4416
Constraints (rows) O(14N6R) 6272 235k 2.638M
Nonzeros O(44N6R) 19712 738k 8.290M

Table 1: MILP problem dimensions for some choices of the matrix order N and
the number of multiplications R.

3.4 Optimizations

Reducing the gap: upper bound. To help speed up the optimization pro-
cess, one effective technique is to try to reduce the gap between the upper and
lower bound on the objective function. The upper bound can be lowered by
providing high quality initial solutions to the solver. For example, we could use
local optimization techniques to generate MILP feasible solutions, or take an

6

existing solution such as for N = 2, R = 7 or N = 3, R = 23 and optionally
truncate it to a lower rank if desired.

Reducing the gap: lower bound. Assuming a solution with zero residual
exists, the lower bound is determined by the number of nonzeros in the factor
matrices. Since the multiplication tensor contains exactly N3 ones in nontrivial
locations, the factor matrices would need to contain at least 3N3 nonzeros to
fill up those ones. Since R < N3, we expect to see at least one sum or difference
and so we can raise the lower bound to 3N3 + 1.

Cyclic symmetry. Multiplication tensors T corresponding to square matrix
multiplication have the cyclic symmetry property Tijk = Tkij = Tjki. This
means that if [[U, V,W]] is a PD then [[W,U, V]] and [[V,W,U]] are also PDs
of T . Ballard proposed to parametrize the factor matrices in the cyclic in-
variant form U := [ABC D], V := [ADBC], and W := [AC DB], where

A ∈ {−1, 0, 1}N2×S and B,C,D ∈ {−1, 0, 1}N2×T [1]. The rank is therefore
equal to R = S + 3T . This reduces the number of integer variables by a factor
of three. However, there is no guarantee that the minimal rank of the cyclic in-
variant parametrized PD is equal to the rank of the CPD. Still, we are somewhat
optimistic that the two ranks may coincide given that (1) they coincide for the
case N = 2, R = 7, (2) there are cyclic invariant solutions for N = 3, R = 23,
and (3) that Comon’s conjecture on the symmetric PD rank being equal to the
CPD rank has been proven to be true under certain assumptions on the tensor
or its rank.

Factor matrix structure. Some additional forms of structure can be im-
posed as linear constraints on the factor matrices. For example, we could re-
quire the sum of absolute values of each factor matrix column to be at least
one so that the solver does not look for solutions of rank smaller than R. The
same constraint can be applied to the rows of the factor matrices since there
can be no all-zero slices in the multiplication tensor. Finally, we could addition-
ally conjecture that all factor matrices have an equal number of nonzeros (since
this is the case for N = 2, R = 7 and for the cyclically invariant solutions for
N = 3, R = 23). Furthermore, this would raise the lower bound on the objective
function from 3N3 + 1 to the next nearest multiple of three.

Acknowledgements

We thank Nick Vannieuwenhoven for the insightful discussions which have helped
improve this manuscript.

7

References

[1] G. Ballard. Discovering Fast Matrix Multiplication Algorithms via Ten-
sor Decomposition. http://users.wfu.edu/ballard/pdfs/CSE17.pdf,
March 2017. [Online].

[2] R. W. Brockett and D. Dobkin. On the optimal evaluation of a set of
bilinear forms. Linear Algebra and Its Applications, 19(3):207–235, 1978.

[3] H. F. de Groote. On varieties of optimal algorithms for the computation
of bilinear mappings ii. optimal algorithms for 2× 2-matrix multiplication.
Theoretical Computer Science, 7(2):127–148, 1978.

[4] G. G. et al. MIPLIB 2010 - Mixed-binary programs. http://miplib.zib.
de/miplib2010-MBP.php, February 2017. [Online].

[5] J. E. Hopcroft and L. R. Kerr. On minimizing the number of multiplications
necessary for matrix multiplication. SIAM Journal on Applied Mathemat-
ics, 20(1):30–36, 1971.

[6] IBM. CPLEX MIP performance evolution. http://www-01.ibm.

com/software/commerce/optimization/cplex-performance/, Novem-
ber 2016. [Online].

[7] J. Linderoth. Mixed-Integer (Linear) Programming: Recent Advances,
and Future Research Directions. http://www.focapo-cpc.org/pdf/

Linderoth.pdf, January 2017. [Online].

[8] G. Optimization. Gurobi 7.0 Performance Benchmarks. http://www.

gurobi.com/pdfs/benchmarks.pdf, March 2017. [Online].

[9] V. Strassen. Gaussian elimination is not optimal. Numer. Math., 13:354–
356, 1969.

[10] S. Winograd. On multiplication of 2 × 2 matrices. Linear algebra and its
applications, 4(4):381–388, 1971.

8

http://users.wfu.edu/ballard/pdfs/CSE17.pdf
http://miplib.zib.de/miplib2010-MBP.php
http://miplib.zib.de/miplib2010-MBP.php
http://www-01.ibm.com/software/commerce/optimization/cplex-performance/
http://www-01.ibm.com/software/commerce/optimization/cplex-performance/
http://www.focapo-cpc.org/pdf/Linderoth.pdf
http://www.focapo-cpc.org/pdf/Linderoth.pdf
http://www.gurobi.com/pdfs/benchmarks.pdf
http://www.gurobi.com/pdfs/benchmarks.pdf

	Introduction
	Fast matrix multiplication as a nonlinear program
	Problem statement
	Formulation as an optimization problem

	Fast matrix multiplication as a mixed-integer linear program
	Motivation
	MILP formulation
	Dimensionality and tractability
	Optimizations

