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Abstract. The extraction of spatial semantics is important in many
real-world applications such as geographical information systems, robot-
ics and navigation, semantic search, etc. Moreover, spatial semantics are
the most relevant semantics related to the visualization of language. The
goal of multimodal spatial role labeling task is to extract spatial informa-
tion from free text while exploiting accompanying images. This task is
a multimodal extension of spatial role labeling task which has been pre-
viously introduced as a semantic evaluation task in the SemEval series.
The multimodal aspect of the task makes it appropriate for the CLEF
lab series. In this paper, we provide an overview of the task of multi-
modal spatial role labeling. We describe the task, sub-tasks, corpora,
annotations, evaluation metrics, and the results of the baseline and the
task participant.

1 Introduction

The multimodal spatial role labeling task (mSpRL) is a multimodal extension
of the spatial role labeling shared task in SemEval-2012 [5]. Although there
were proposed extensions of the data and the task in more extensive schemes in
Kolomiyets et al. [4] and Pustejovsky et al. [13], the SemEval-2012 data was more
appropriate for the goal of incorporating the multimodality aspect. SemEval-
2012 annotates CLEF IAPRTC-12 Image Benchmark [1], which includes touristic
pictures along with a textual description of the pictures. The descriptions are
originally provided in multiple languages though we use the English annotations
for the purpose of our research.

The goal of mSpRL is to develop natural language processing (NLP) meth-
ods for extraction of spatial information from both images and text. Extraction
of spatial semantics is helpful for various domains such as semantic search, ques-
tion answering, geographical information systems, and even in robotic settings
when giving robots navigational instructions or instructions for grabbing and
manipulating objects. It is also essential for some specific tasks such as text to
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scene conversion (or vice-versa), scene understanding as well as general informa-
tion retrieval tasks when using a huge amount of available multimodal data from
various resources. Moreover, we have noticed an increasing interest in the extrac-
tion of spatial information from medical images that are accompanied by natural
language descriptions. The textual descriptions of a subset of images are anno-
tated with spatial roles according to spatial role labeling annotation scheme [7].
We should note that considering the vision and language modalities and combin-
ing the two media has become a very popular research challenge nowadays. We
distinguish our work and our data from the existing research related to vision
and language (inter alia, [3,11]) in considering explicit formal spatial semantics
representations and providing direct supervision for machine learning techniques
by our annotated data. The formal meaning representation would help to exploit
explicit spatial reasoning mechanisms in the future. In the rest of this overview
paper, we introduce the task in Sect. 2; we describe the annotated corpus in
Sect. 3; the baseline and the participant systems are described in Sect. 4; Sect. 5
reports the results and the evaluation metrics. Finally, we conclude in Sect. 6.

2 Task Description

The task of text-based spatial role labeling (SpRL) [8] aims at mapping natural
language text to a formal spatial meaning representation. This formal representa-
tion includes specifying spatial entities based on cognitive linguistic concepts and
the relationships between those entities, in addition to the type of relationships
in terms of qualitative spatial calculi models. The ontology of the target con-
cepts is drawn in Fig. 1 and the concepts are described later in this section. The
applied ontology includes a subset of concepts proposed in the scheme described
in [7]. We divide this task to three sub-tasks. To clarify these sub-tasks, we use
the example of Fig. 2. This figure shows a photograph and a few English sen-
tences that describe it. Given the first sentence “About 20 kids in traditional
clothing and hats waiting on stairs.”, we need to do the following tasks:

– Sub-task 1: The first task is to identify the phrases that refer to spatial
entities and classify their roles. The spatial roles include (a) spatial indica-
tors, (b) trajectors, (c) landmarks. Spatial indicators indicate the existence
of spatial information in a sentence. Trajector is an entity whose location is
described and landmark is a reference object for describing the location of
a trajector. In the above-mentioned sentence, the location of about 20 kids
that is the trajector has been described with respect to the the stairs that
is the landmark using the preposition on that is the spatial indicator. These
are examples the spatial roles that we aim to extract form the sentence.

– Sub-task 2: The second sub-task is to identify the relations/links between
the spatial roles. Each spatial relation is represented as a triplet of (spatial-
indicator, trajector, landmark). Each sentence can contain multiple relations
and individual phrases can even take part in multiple relations. Furthermore,
occasionally roles can be implicit in the sentence (i.e., a null item in the



CLEF 2017: Multimodal Spatial Role Labeling (mSpRL) Task Overview 369

spatial relation

Direction
Distance

Region

PO

EQ
left

right
front

below

above

back

EC

DC

PP

spatial indicator trajector landmark 

is-a

is-a
is-a

is-a

is-a

is-a

is-a

is-a

is-a
is-a

is-a

is-a is-a

composed-of composed-of composed-of

is-a

Fig. 1. Given spatial ontology [9]

triplet). In the above example, we have the triplet ( kids, on, stairs) that form
a spatial relation/link between the three above mentioned roles. Recognizing
the spatial relations is very challenging because there could be several spatial
roles in the sentence and the model should be able to recognize the right
connections. For example (waiting, on, stairs) is a wrong relation here because
“kids” is the trajector in this sentence not “waiting”.

– Sub-task 3: The third sub-task is to recognize the type of the spatial triplets.
The types are expressed in terms of multiple formal qualitative spatial cal-
culi models similar to Fig. 1. At the most course-grained level the relations
are classified into three categories of topological (regional), directional, or
distal. Topological relations are classified according to the well-known RCC
(regional connection calculus) qualitative representation. An RCC5 version
that is shown in Fig. 1 includes Externally connected (EC), Disconnected
(DC), Partially overlapping (PO), Proper part (PP), and Equality (EQ). The
data is originally annotated by RCC8 which distinguishes between Proper
part (PP), Tangential proper part (TPP) and Inverse tangential proper part
inverse (TPPI). For this lab the original RCC8 annotations are used. Direc-
tional relations include 6 relative directions: left, right, above, below, back,
and front. In the above example, we can state the type of relation between the
roles in the triplet (kids, on, stairs) is “above”. In general, we can assign mul-
tiple types to each relation. This is due to the polysemy of spatial prepositions
as well as the difference between the level of specificity of spatial relations
expressed in the language compared to formal spatial representation models.
However, multiple assignments are not frequently made in our dataset.

The task that we describe here is similar to the specifications that are pro-
vided in Kordjamshidi et al. [9], however, the main point of this CLEF lab was
to provide an additional resource of information (the accompanying images) and
investigate the ways that the images can be exploited to improve the accuracy
of the text-based spatial extraction models. The way that the images can be
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Fig. 2. “About 20 kids in traditional clothing and hats waiting on stairs. A house and
a green wall with gate in the background. A sign saying that plants can’t be picked up
on the right.” (Color figure online)

used is left open to the participants. Previous research has shown that this task
is very challenging [8], particularly given the small set of available training data
and we aim to investigate if using the images that accompany textual data can
improve the recognition of the spatial objects and their relations. Specifically, our
hypothesis is that the images could improve the recognition of the type of rela-
tions given that the geometrical features of the boundaries of the objects in the
images are closer to the formal qualitative representations of the relationships
compared to the counterpart linguistic descriptions.

3 Annotated Corpora

The annotated data is a subset of the IAPR TC-12 image Benchmark [1]. It
contains 613 text files with a total of 1,213 sentences. The original corpus was
available without copyright restrictions. The corpus contains 20,000 images taken
by tourists with textual descriptions in up to three languages (English, German,
and Spanish). The texts describe objects and their absolute or relative positions
in the image. This makes the corpus a rich resource for spatial information.
However the descriptions are not always limited to spatial information which
makes the task more challenging. The data has been annotated with the roles
and relations that were described in Sect. 2, and the annotated data can be used
to train machine leaning models to do this kind of extractions automatically.
The text has been annotated in previous work (see [6,7]). The role annotations
are provided on phrases rather than single words. The statistics about the data
is given in Table 1. For this lab, we augmented the textual spatial annotations
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Table 1. The statistics of the annotated CLEF-Image Benchmark, some of the spatial
relations are annotated with multiple types, e.g., having both region and direction
labels.

Train Test All

Sentences 600 613 1213

Trajectors 716 874 1590

Landmarks 612 573 1185

Spatial indicators 666 795 1461

Spatial relations 761 939 1700

Region 560 483 1043

Direction 191 449 640

Distance 40 43 83

with a reference to the aligned images in the xml annotations and fixed some of
the annotation mistakes to provide a cleaner version of the data.

4 System Descriptions

We, as organizers of the lab, provided a baseline inspired by previous research
for the sake of comparison. The shared task had one official participant who
submitted two systems. In this section, we describe the submitted systems and
the baseline.

– Baseline: For sub-task 1 and classifying each role (Spatial Indicator, Tra-
jector, and Landmark), we created a sparse perceptron binary classifier that
uses a set of lexical, syntactical, and contextual features, such as lexical sur-
face patterns, headwords phrases, part-of-speech tags, dependency relations,
subcategorization, etc. For classifying the spatial relations, we first trained
two binary classifiers on pairs of phrases. One classifier detects Trajector-
SpatialIndicator pairs and another detects Landmark-SpatialIndicator pairs.
We used the spatial indicator classifier from sub-task 1 to find the indicator
candidates and considered all noun phrases as role candidates. Each combina-
tion of SpatialRole-SpatialIndicator candidates considered as a pair candidate
and the pair classifiers are trained on. We used a number of relational features
between the pairs of phrases such as distance, before, etc. to classify them. In
the final phase, we combined the predicted phrase pairs that have a common
spatial indicator in order to create the final relation/triplet for sub-task 2.
for example if (kids, on) pair is classified as Trajector-SpatialIndicator and
(stairs,on) is predicted as Landmark-SpatialIndicator then we generate the
triplet, (on,kids,stairs) as a spatial triplet since both trajector and landmark
relate to the same preposition ‘on’. The features of this baseline model are
inspired by the work in [9]. For sub-task 3 and training general type and spe-
cific value classifiers, we used a very naive pipeline model as the baseline. In
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this pipeline, the predicted triplets from the last stage are used for training
the relations types. For these type classifiers, simply, the phrase features of
each argument of the triplets are concatenated and used as features. Obvi-
ously, we miss a large number of relations at the stage of spatial relation
extraction in sub-task 2 since we depend on its recall.

– LIP6: The LIP6 group built a system for sub-task 3 that classifies rela-
tion types. For the sub-task 1 and 2, the proposed model in Roberts and
Harabagiu [14] was used. Particularly, an implementation of that model in
the Saul [10] language/library was applied. For every relation, an embedding
is built with available data: the textual relation triplet and visual features
from the associated image. Pre-trained word embeddings are used [12] to rep-
resent the trajector and landmark and a one-hot vector indicates which spa-
tial indicator is used; the visual features and embeddings from the segmented
regions of the trajectors and landmarks are extracted and projected into a low
dimensional space. Given those generated embeddings, a linear SVM model
is trained to classify the spatial relations and the embeddings remain fixed.
Several experiments were made to try various classification modes and discuss
the effect of the model parameters, and more particularly the impact of the
visual modality. As the best performing model ignores the visual modality,
these results highlight that considering multimodal data for enhancing nat-
ural language processing is a difficult task and requires more efforts in terms
of model design.

5 Evaluation Metrics and Results

About 50% of the data was used as the test set for the evaluation of the systems.
The evaluation metrics were precision, recall, and F1-measure, defined as:

recall =
TP

TP + FN
, precision =

TP

TP + FP
, F1 =

2 ∗ recall ∗ precision

(recall + precision)

where, TP (true positives) is the number of predicted components that match
the ground truth, FP (false positives) is the number of predicted components
that do not match the ground truth, and FN (false negatives) is the number of
ground truth components that do not match the predicted components. These
metrics are used to evaluate the performance on recognizing each type of role,
the relations and each type of relation separately. Since the annotations are
provided based on phrases, the overlapping phrases are counted as correct pre-
dictions instead of exact matchs. The evaluation with exact matching between
phrases would provide lower performance than the reported ones. The relation
type evaluation for sub-task 3 includes course- and fine-grained metrics. The
coarse-grained metric (overall-CG) averages over the labels of region, direction,
and distance. The fine-grained metric (overall-FG) shows the performance over
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Table 2. Baseline: classic classifiers and linguistically motivated features based on [9]

Label P R F1

SP 94.76 97.74 96.22

TR 56.72 69.56 62.49

LM 72.97 86.21 79.04

Overall 74.36 83.81 78.68

Triplets 75.18 45.47 56.67

Overall-CG 64.72 37.91 46.97

Overall-FG 47.768 23.490 26.995

all lower-level nodes in the ontology including the RCC8 types (e.g., EC) and
directional relative types (e.g., above, below).

Table 2 shows the results of our baseline system that was described in the
previous section. Though the results of the roles and relation extraction are
fairly comparable to the state of the art [9,14], the results of the relations type
classifiers are less matured because a simple pipeline, described in Sect. 4, was
used. Table 3 shows the results of the participant systems.

As mentioned before, LIP6 uses the model suggested in [14] and its imple-
mentation in Saul [10] for sub-task 1 and sub-task 2. It has a focus in designing a
model for sub-task 3. The experimental results using textual embeddings alone
are shown under text only in the table, and a set of results are reported by
exploiting the accompanying images and training the visual embeddings from
the corpora. The LIP6’s system significantly outperforms the provided baseline
for relation type classifiers. Despite our expectations, the results that use the
visual embeddings perform worse than the one that ignores images. In addition
to the submitted systems, the LIP6 team improved their results slightly by using
a larger feature size in their dimensionality reduction procedure with their text-
only features. This model outperforms their submitted systems and is listed in
Table 3 as Best model.

Discussion. The previous research and the results of LIP6 team show this task
is challenging, particularly, using this small set of training data. LIP6 was able
to outperform the provided baseline using the textual embeddings for relation
types but the results of combining the images, in the contrary, dropped the
performance. This result indicates that integrating the visual information needs
more investigation otherwise it can only add noise to the learning system. One
very basic question to be answered is whether the images of this specific dataset
can potentially provide complementary information or help resolving ambigui-
ties in the text at all; this investigation might need a human analysis. Although
the visual embeddings did not help the best participant system with the cur-
rent experiments, using other alternative embeddings trained from large corpora
might help improving this task. Given the current interest of the vision and
language communities in combining the two modalities and the benefits that
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Table 3. LIP6 performance with various models for Sub-task 3; LIP6 uses Roberts
and Harabagiu [14] for Sub-tasks 1 and 2.

Label P R F1

SP 97.59 61.13 75.17

TR 79.29 53.43 63.84

LM 94.05 60.73 73.81

Overall 89.55 58.03 70.41

Triplets 68.33 48.03 56.41

Text only Overall-CG 63.829 44.835 52.419

Overall-FG 56.488 39.038 43.536

Text+Image Overall-CG 66.366 46.539 54.635

Overall-FG 58.744 40.716 45.644

Best model Overall-CG 66.76 46.96 55.02

Overall-FG 58.20 41.05 45.93

this trend will have for the information retrieval, there are many new corpora
becoming available (e.g. [11]) which can be valuable sources of information for
obtaining appropriate joint features. There is a separate annotation on the same
benchmark that includes the ground-truth of the co-references in the text and
image [2]. This annotation has been generated for co-reference resolution task
but it seems to be very useful to be used on top of our spatial annotations for
finding better alignment between spatial roles and image segments. In general,
current related language and vision resources do not consider formal spatial
meaning representation but can be used indirectly to train informative repre-
sentations or be used as source for indirect supervision for extraction of formal
spatial meaning.

6 Conclusion

The goal of the multimodal spatial role labeling lab was to provide a benchmark
to investigate how adding grounded visual information can help understand-
ing the spatial semantics of natural language text and mapping language to a
formal spatial meaning representation. The prior hypothesis has been that the
visual information should help the extraction of such semantics because spatial
semantics are the most relevant semantics for visualization and the geometrical
information conveyed in the vision media should be able to easily help in disam-
biguation of spatial meaning. Although, there are many recent research works
on combining vision and language, none of them consider obtaining a formal
spatial meaning representation as a target nor provide supervision for training
such representations. However, the experimental results of our mSpRL lab par-
ticipant show that even given ground truth segmented objects in the images and
having the exact geometrical information about their relative positions, adding
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useful information for understanding the spatial meaning of the text is very chal-
lenging. The experimental results indicate that using the visual embeddings and
using the similarity between the objects in the image and spatial entities in the
text can turn to adding noise to the learning system reducing the performance.
However, we believe our prior hypothesis is still valid, but finding an effective
way to exploit vision for spatial language understanding, particularly obtaining
a formal spatial representation appropriate for explicit reasoning, remains as an
important research question.
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