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ABSTRACT
In this paper we develop a neural network which learns inter-
modal representations for fashion attributes to be utilized in
a cross-modal search tool. Our neural network learns from
organic e-commerce data, which is characterized by clean
image material, but noisy and incomplete product descrip-
tions. First, we experiment with techniques to segment e-
commerce images and their product descriptions into respec-
tively image and text fragments denoting fashion attributes.
Here, we propose a rule-based image segmentation approach
which exploits the cleanness of e-commerce images. Next,
we design an objective function which encourages our model
to induce a common embedding space where a semantically
related image fragment and text fragment have a high in-
ner product. This objective function incorporates similarity
information of image fragments to obtain better intermodal
representations. A key insight is that similar looking image
fragments should be described with the same text fragments.
We explicitly require this in our objective function, and as
such recover information which was lost due to noise and in-
completeness in the product descriptions. We evaluate the
inferred intermodal representations in cross-modal search.
We demonstrate that the neural network model trained with
our objective function on image fragments acquired with
our rule-based segmentation approach improves the results
of image search with textual queries by 198% for recall@1
and by 181% for recall@5 compared to results obtained by a
state-of-the-art image search system on the same benchmark
dataset.

CCS Concepts
•Information systems → Image search; •Computing
methodologies → Image segmentation; Neural net-
works; Natural language generation; Image representations;
Cluster analysis; •Applied computing → Online shop-
ping;
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1. INTRODUCTION
Fashion e-commerce is a booming business. We currently

witness a shift from physical to digital retail. Therefore,
applications that organize and retrieve fashion items have
great economic value.

Imagine a cross-modal search tool that can be learned
automatically from the organic and noisy data as found in
webshops. Such a cross-modal search tool performs both
tasks of image annotation, i.e., given an image, return suit-
able textual descriptors, and image search, i.e., given textual
descriptors, retrieve images showing the visual characteris-
tics expressed by the textual descriptors. This would not
only alleviate the workload of human annotators, but also
promote increased access to relevant products. Currently,
products are found by matching key terms in the descrip-
tion of the products. Often the product description does
not contain all attributes because they are visible in the ac-
companying image, thereby hampering the search for such
attributes. The only alternative is then to navigate through
the taxonomy of products that is offered by the e-retailer.
Consequently, the cross-modal search tool would provide a
more flexible way for searching products in webshops.

However, building such a cross-modal search tool is def-
initely not straightforward. On the text side, we have e-
commerce product descriptions which are noisy and incom-
plete, making them challenging to learn from. On the im-
age side, we observe that within a clothing category (e.g.
dresses) garments share a high degree of shape similarity.
They only differ in certain details, i.e., in their fashion at-
tributes. For instance, the overall shape of two dresses is
always the same, but they can have different kinds of neck-
lines, sleeve lengths, colors, . . . . Over different seasons and
trends we also notice that it is the fashion attributes which
change appearance, while the overall garment shape remains
constant. Therefore, a cross-modal search tool should oper-
ate on the level of fashion attributes. Based on its knowledge
of fashion attributes, e.g.,“What does a V-neck look like?” or
“How do we call this kind of skirt shape?”, the cross-modal
search tool will be able to search for requested attributes
and to annotate fashion images.

In this paper, we obtain this knowledge of fashion at-
tributes with a neural network which learns to align fashion
attributes in images and texts by embedding them into a
common, multimodal space (Figure 1). We focus on a single
clothing category: dresses. The inferred intermodal repre-



Figure 1: Both the image and text are segmented
into fragments. These fragments represent the fash-
ion attributes. Corresponding fashion attributes in
the image and text are aligned by embedding them
into a common embedding space. (Image reference:
www.amazon.com)

sentations are utilized in a cross-modal search tool, which
we evaluate on image search and image annotation.

The contributions of our work are:

• We propose a neural network alignment model to find
the latent alignment between fashion image regions
and phrases by embedding them into a common, multi-
modal space. The obtained intermodal representations
allow cross-modal search of fashion attributes.

• Our proposed model learns intermodal representations
from organic and noisy data as found in webshops, and
does not rely on manually curated data.

• We illustrate how similarity information of fashion im-
age regions can be used to acquire better intermodal
representations.

• We perform cross-modal search of fashion items, i.e.,
given an image, return suitable textual descriptors,
and given textual descriptors, retrieve images exhibit-
ing the characteristics expressed by the textual de-
scriptors. This is realized with the inferred intermodal
representations, thus without one modality relying on
the other. Unlike previous work [18] that uses inter-
modal representations of full images and texts, our
model works at a finer level and employs intermodal
representations of image regions and phrases.

• We substantially outperform the results of image search
obtained by a state-of-the-art fashion image search sys-
tem. Compared to this state-of-the-art system, we
achieve an increase of 196% on recall@1 and of 181%
and recall@5 on the Amazon Dresses dataset.

The remainder of this paper is structured as follows. In the
next section we review existing work related to the subject.
In Section 3 we explain our model architecture and training
objective in detail. Section 4 presents the experiments con-
ducted in this work. The results of these experiments are
given and discussed in Section 5. Finally, we conclude and
provide the future direction of this work in Section 6.

2. RELATED WORK
Over the past few years, several techniques have been de-

veloped to generate image regions enclosing the objects in
an image. Examples are objectness [1] and selective search
[15]. However, these techniques are developed for detect-
ing straightforward objects in general image scenes, while
we want to detect more fine-grained product attributes in a
fashion context. Recently, there has been a lot of research
on fine-grained image segmentation. Such techniques work
on fine-grained classes (e.g. different bird species) and try
to detect critical regions in the images that allow to discrim-
inate between the fine-grained classes [7, 17]. Regarding the
segmentation of clothing, existing techniques rather focus on
generating image regions containing complete fashion items
(e.g. a t-shirt) instead of fine-grained fashion attributes (e.g.
short sleeves, V-neck) [4].

High-dimensional feature vectors produced by convolu-
tional neural networks (CNNs) are currently the most popu-
lar image representations [5, 8, 16, 18]. CNNs have replaced
techniques like scale-invariant feature transform (SIFT) [9,
18], and become the state-of-the-art image processing tech-
nique.

To segment product descriptions into fashion attributes,
Zoghbi et al. [18] propose to filter them, either by using a
part-of-speech (POS) tagger to only retain adjectives, ad-
verbs, verbs, and nouns or alternatively by using a domain
specific vocabulary and to only retain phrases present in this
vocabulary.

Words and phrases are represented with low-dimensional
feature vectors which capture the syntax and semantics of
that word/phrase. Recently, word vectors acquired with
neural networks have become very popular. In [13, 14] two
simple two-layered neural networks are proposed to get word
representations: the Skip-gram model and the continuous
bag-of-words (CBOW) model. The context information cap-
tured by these models is rather limited though. In contrast,
bidirectional recurrent neural networks (BRNNs)[5] and es-
pecially long short-term memories (LSTMs), are able to cap-
ture long-term dependencies in full sentences and discourses.

Our attribute alignment task falls into a general cate-
gory of learning from multimodal data. However, current
research on learning from multimodal fashion e-commerce
data is still very limited. Techniques have been developed
that, given a real-world fashion image as query, return fash-
ion items on e-commerce websites which are similar [4] or
identical [6] to those in the provided real-world image. While
these techniques result in an image retrieval setting which
is only based on visual analysis, we use both fashion images
and product descriptions to learn a model which performs
cross-modal retrieval of fashion items. In [11, 12] the focus
is on annotating images with keywords, and learning from
noisy and incomplete product descriptions, which is similar
to our work. In contrast with our work, they only use hand-
crafted image features (e.g. SIFT), they do not address the
task of image search, and their dataset is less than half the
size of ours. Most closely related is the work of Zoghbi et
al. [18], who learn a cross-modal search tool from multi-
modal fashion e-commerce data. They experiment with two
different models to infer intermodal correspondences: canon-
ical correlation analysis (CCA), which explicitly models the
correlations between language and visual data, and bilin-
gual latent Dirichlet allocation (BiLDA), a technique that
bridges the two modalities through probabilistic latent top-



ics. Their BiLDA model constitutes the state-of-the-art for
cross-modal search of fashion items. However, while their
model is based on the intermodal correspondences of full
images and texts, we try to find the intermodal correspon-
dences of image regions and phrases. Additionally, we will
focus on neural networks to bridge the two modalities. Our
objective function is inspired by the one of Karpathy et al.
[5], who train a neural network which projects objects in vi-
sual indoor and outdoor scenes and their textual descriptions
into a common embedding space to discover their latent
alignment. This objective function uses local co-occurrence
information of image regions and words and global image-
text correspondence to infer the unknown alignment at the
level of image regions and words, which is what we try to
achieve in this work. However, while their model expects
clean and complete textual annotations with general con-
tent of visual scenes composed of prominent objects, our
model works with organic fashion e-commerce data as found
in webshops, where fashion products are characterized by a
multitude of fashion attributes, and where product descrip-
tions barely have grammatical structure, use a sector specific
vocabulary, and are often noisy and incomplete. Moreover,
in order to learn a better alignment, we propose to incorpo-
rate similarity information of detected image regions across
all images of our collection. In the past, including image
similarity information has proved to be effective in visual
relationship detection [10] and in label propagation [2].

3. METHODOLOGY
In this paper we propose a model to align image regions

and phrases denoting fashion attributes (Figure 2).
First, we discuss how we detect fashion attributes in fash-

ion images and product descriptions. Next, we elaborate on
the objective function that is used to learn to align fash-
ion attributes across different modalities. Finally, we de-
scribe how cross-modal search of fashion images and texts is
achieved with the acquired intermodal representations.

3.1 Image Segmentation and Representation

3.1.1 Selective Search Segmentation
First, we use selective search [15] to get the regions of

the image showing the fashion attributes. We consider all
generated image regions and the full image as the image
fragments. Consequently, each image has a different number
of image fragments.

3.1.2 Rule-based Segmentation
Images on e-commerce websites show clothing items either

on their own or worn by a model in different poses. In either
case, the item is shown clearly and fully, usually on a white
background. Hence, when the item is worn by a model, we
assume that independently of the pose, the model always
faces the camera and stands straight.

We experiment with a rule-based segmentation approach
based on the geometry of garments in a clothing category.
We start from the insight that the geometry of garments in a
certain clothing category (e.g. dresses) gives us information
about where to find the fashion attributes. More precisely,
when we have the information that the garment is displayed
in a straight position and in frontal view, we know the ap-
proximate location of each garment part and thus of each
fashion attribute. Therefore, to find the fashion attributes

Table 1: Expected locations of the parts and fashion
attributes of a dress. A location is a rectangle rep-
resented as (x, y), w, h with (x, y) the coordinates of
the upper left corner, w the width and h the height
of this rectangle. W and H refer to respectively the
width and the height of the bounding box surround-
ing the full dress.
Dress part Approximate location Expected fashion attributes
top (0, 0), W , 0.35H neckline, sleeve length, top

shape, color/print, accessories
full skirt (0, 0.30H), W , 0.70H skirt shape, skirt length,

color/print, accessories
skirt above knee (0, 0.25H), W , 0.40H skirt shape, skirt length,

color/print, accessories
neckline (0, 0), W , 0.20H kind of neckline,

color/print, accessories
left sleeve (0, 0), 0.50W , 0.50H sleeve length, sleeve form,

color/print, accessories
right sleeve (0.50W , 0), 0.50W , 0.50H sleeve length, sleeve form,

color/print, accessories

in an image of a dress, we first find a bounding box enclosing
the full dress. We do this by transforming the image to the
Lab color space and thresholding the image to see which pix-
els belong to the dress and which to the background. Then,
the bounding box is spanned by the leftmost, upmost, right-
most and downmost pixel belonging to the dress. If the area
of this bounding box is more than 5 times smaller than the
area of the complete image, we take the bounding box en-
closing the complete image instead, since in this case usually
something has gone wrong when thresholding. The region
inside the bounding box serves as the first image fragment.
Next, we use our knowledge about the geometry of a dress to
segment the region inside the bounding box in 6 more image
fragments containing respectively the top, the full skirt, the
part of the skirt above the knee, the neckline, the left sleeve
and the right sleeve (Table 1). With this rule-based seg-
mentation approach each image has 7 image fragments cor-
responding to locations where fashion attributes are likely
to be found.

3.1.3 Image Representation
We represent the image fragments with the BVLC Caf-

feNet CNN Model1 [3]. This CNN is pre-trained on Ima-
geNet and only differs from the AlexNet model [8] in that
it is not trained with relighting data-augmentation and that
the order of the pooling and normalization layers is switched.
The image fragment representations are acquired as the ac-
tivation weights of the last fully connected layer before the
softmax layer, which have dimension 4096 in the CNN ar-
chitecture.

3.2 Text Segmentation and Representation
We train word embeddings on the product descriptions

in the Amazon Dresses dataset using the Skip-gram model
[13]. These word embeddings allow us to learn a single word
embedding for multiword fashion expressions (e.g. dropped
waist) and to better capture the syntax and semantics of
fashion-related phrases.

Then, to acquire the text fragments, we first convert all
words to lowercase, and remove all non-alphanumeric char-
acters and words which occur less than 5 times in the train-
ing set. Next, we filter the product descriptions to only

1https://github.com/BVLC/caffe/tree/master/models/bvlc
reference caffenet



Figure 2: Model overview. Left: An image is segmented into regions, which together with the full image
function as the image fragments. The image fragments are embedded through a CNN. Right: A product
description is filtered with the Zappos glossary. Each Zappos phrase is a text fragment and is represented
with a word embedding. Middle: The alignment model learns to project semantically related image and text
fragments to vectors into a common embedding space which have a high inner product, as depicted by dark
shades of grey. The resulting intermodal representations form the core building blocks for a cross-modal
search tool.

retain fashion-related phrases. Following the approach of
Zoghbi et al. [18] we use the glossary of the online clothing
shop Zappos2, which contains both single-word (e.g. strap-
less) and multiword expressions (e.g. little black dress) re-
lated to fashion. Although this removes much noise from the
product descriptions, they still remain quite noisy. Remain-
ing phrases might still refer to parts of the garment which
are not visible in the image (e.g. the back or side) or de-
scribe properties of the garment which are not displayed (e.g.
all possible colors). Afterwards, we consider each Zappos
phrase as a text fragment. Hence, the number of text frag-
ments differs for different product descriptions, and some
product descriptions might even have no text fragments.

3.3 Alignment Model
After segmentation, an image-text pair is represented as

a set of image fragments and a set of text fragments. We
know that some image fragments and text fragments in these
sets correspond but it is unknown which ones. Therefore, we
train a neural network to induce a common embedding space
which uncovers the intermodal correspondences.

This neural network learns parameters θ = {Wv, bv,Ws, bs}
to project an image fragment v̂i and text fragment ŝj to re-
spectively vector

vi = Wv v̂i + bv, (1)

and vector

sj = f(Wsŝj + bs). (2)

in the common embedding space, which have a high inner
product if the corresponding image and text fragment are
semantically similar or have a low inner product otherwise.
Hence, we interpret the inner product of an image fragment

2http://www.zappos.com

and text fragment in the common embedding space as a mea-
sure of their semantic similarity. Here, Wv has dimensions
h×4096 and Ws has dimensions h×dim, where h is the size
of the common embedding space and dim is the dimension
of the word vectors. Parameters bv and bs are bias terms.
The activation function f is set to the rectified linear unit
(ReLU)3, which computes f(x) = max(0, x).

To find the intermodal correspondences, the neural net-
work is trained with an objective function consisting of three
different objectives: the fragment alignment objective [5],
the global ranking objective [5] and the image cluster con-
sistency objective.

Following Karpathy et al. [5], we use the fragment align-
ment objective CF (θ) which uses local co-occurrence in-
formation to infer which image fragment and text fragment
should be aligned. This objective is formulated as

CF (θ) = min
yij

C0(θ) (3)

C0(θ) =
∑
i

∑
j

max(0, 1− yijvTi sj) (4)

subject to
∑
i∈pj

yij + 1

2
≥ 1 ∀j (5)

yij = −1 ∀i, j subject to mv(i) 6= ms(j) (6)

and yij ∈ {−1, 1}. (7)

It considers all image fragments vi and text fragments sj
in the training set. Variable yij reflects whether vi and sj
should be aligned (yij = 1) or not (yij = −1), and conse-
quently whether their similarity score vTi sj should be en-
couraged to be more than 1 or less than -1 (Eq. 4). To de-
cide the value for variable yij , the fragment alignment objec-

3Experiments showed that only using the ReLU activation
function at the text side works best.



tive uses co-occurrence information of the fragments during
training. mv(i) and ms(j) return the index (∈ {1, ..., N}) of
the image and sentence that the fragments vi and sj belong
to. When vi and sj do not belong to the same image-text
pair, they should not be aligned (Eq. 6). For the ones that
do belong to the same image-text pair, the objective tries
to find the variables yij which minimize Eq. 4 (Eq. 3).
Here, the only constraint is that each text fragment should
be aligned with at least one image fragment it occurs with
(i.e., with at least one image fragment in the positive bag
pj of sj) (Eq. 5). Since this objective benefits from a good
initialization of the intermodal representations, this objec-
tive is trained with yij = 1 for all vi and sj of corresponding
image-text pairs during the first 15 epochs. Later, the objec-
tive is changed to Eq. 3 to refine the fragment alignments.

The global ranking objective CG(θ) [5] uses global in-
formation about fragments, and enforces that corresponding
image-text pairs (k = l) should have a higher similarity score
(by a margin ∆) than non-corresponding ones. The global
ranking objective is given by the following equation

CG(θ) =
∑
k

[∑
l

max(0, Skl − Skk + ∆)︸ ︷︷ ︸
rank images

+
∑
l

max(0, Slk − Skk + ∆)︸ ︷︷ ︸
rank texts

]
,

(8)

where the similarity score Skl of an image k and text l is
computed based on the similarity scores of their respective
fragments fk and fl :

Skl =
1

(| fl | + n)

∑
j∈fl

max
i∈fk

vTi sj . (9)

Here, n is a smoothing term to prevent shorter texts of hav-
ing an advantage over longer texts.

The image cluster consistency objective CI(θ) at-
tempts to improve the intermodal representations based on
image fragment similarity information. The objective tries
to exploit the fact that similar image fragments should be
aligned with the same text fragments. We find similar image
fragments by clustering the image fragments in C clusters
based on cosine distance with k-means clustering. Then, we
express the image cluster consistency objective as follows:

CI(θ) =

N∑
n=1

∑
i

∑
j

(1− v̂Ti ĉi
‖v̂i‖‖ĉi‖

)|vTi sj − cTi sj |. (11)

This objective considers all N image-text pairs in the train-
ing set, and for each pair sums over its image fragments
vi and text fragments sj . Then, it encourages the differ-
ence between the similarity score of image fragment vi and
text fragment sj and the similarity score of similar image
fragment ci and that same text fragment to be as small as
possible. Here, we take as similar image fragment ci the
centroid of the cluster of vi

4. We weight the difference in
similarity scores with a factor based on the cosine similarity
of the two image fragments. With this weighting factor, the

4We also experimented with the medoid and the nearest
neighbour in the same cluster.

objective tries to prevent image fragments in the same clus-
ter which are actually not so similar to be aligned with the
same text fragments, and thus guards against introducing
errors because of defects in the clustering.

Ultimately, the complete objective function to train our
neural network is

C(θ) = CF (θ) + γCI(θ) + βCG(θ) + α‖θ‖22, (12)

where θ refers to the network parameters and α, β and γ are
hyper parameters to be cross-validated, which we set based
on a validation set.

3.4 Cross-modal Search
We can use the inferred intermodal representations for

image search and image annotation. In image search we
retrieve images that display the fashion attributes expressed
in a textual query l. We compute the similarity score Skl of
text l with all images k and return the top K images with
the highest similarity scores. In image annotation, we
annotate an image query k with suitable fashion attributes.
We compute the similarity score Skl of image k with all
textual descriptors l and retrieve the top K descriptors with
the highest similarity scores.

4. EXPERIMENTAL SETUP

4.1 Dataset
We train our model on the Amazon Dresses dataset, which

was collected from the Amazon webshop by Zoghbi et al. [18]
between January and February 2015. This dataset consists
of 53 689 images of dresses and their product descriptions.
The images show dresses from different categories, such as
bridesmaid, casual, mother of the bride, night out and cock-
tail, special occasion, wear to work, and wedding. The prod-
uct descriptions consist of the surrounding natural language
text in the webshop, like the title, features and editorial
content. Hence, this dataset contains natural multimodal
e-commerce data, where the product descriptions are noisy,
incomplete and can contain misspellings, incorrect grammar
and incorrect punctuation.

We use 48 689 image-text pairs for training, 4000 for val-
idation and 1000 for testing. During testing, we evaluate
the quality of the inferred intermodal representations in a
cross-modal retrieval setting. For image search, the textual
queries are the complete product descriptions of the test im-
ages. In the absence of a complete ground truth reference
collection, we consider as the ground truth for each tex-
tual query the corresponding test image. Likewise for image
annotation, the visual queries are the test images and the
ground truth for a visual query is the complete product de-
scription of the test image. As such, we follow the exact
same setup as Zoghbi et al. [18].

4.2 Experiments
First, we identify the fashion attributes in the images with

two image segmentation techniques: selective search and
rule-based segmentation based on garment geometry. We
use k-means clustering on the resulting image fragments to
find C groups of similar image fragments. In our experi-
ments C = 500, 2500, 5000, 7500, 10000, 12500, 15000, 17500
and 20000, and we found that C = 10000 works best. Next,



we train 300-dimensional word embeddings with the Skip-
gram model, for which code is publicly available on GitHub5.
We concatenate the product descriptions in the training set
of the Amazon Dresses dataset, convert all words to low-
ercase, and remove non-alphanumeric characters. We train
the Skip-gram model on the resulting text, where we treat
each fashion phrase as a single word. We consider a context
size of 5. Then, we filter the product descriptions with the
Zappos glossary and consider the remaining Zappos phrases
as our text fragments. Afterwards, we input the image and
text fragments in our alignment model, and train it with the
fragment alignment objective and global ranking objective
to induce a 1000-dimensional common embedding space. We
use stochastic gradient descent with mini-batches of 100, a
fixed learning rate of 10−5, a momentum of 0.90, and make
20 epochs through the training data. Here, a smoothing
term n in Skl of 10, a margin ∆ in CG(θ) of 40, and a factor
β in C(θ) of 0.50 were found to work well. Finally, we inves-
tigate the influence of image similarity information on the
quality of the intermodal representations, by including the
image cluster consistency objective in the objective function.
We achieve the best results with γ set to 0.25. We evalu-
ate the inferred intermodal representations in image search
and image annotation, and investigate the performance of
the image segmentation techniques and the proposed novel
objective.

In image search, we retrieve for each textual query the
top K most likely test images. We evaluate by computing
recall@K for K = 1, 5, 10, 20, 40. Precision@K does not say
much about performance, since there is only one relevant
image for each textual query. To qualitatively evaluate our
results, we ourselves construct realistic textual queries ask-
ing for different colors, prints, shapes, fabrics and occasions.
We avoid infrequent attributes, since these might not occur
in the test set. For each textual query, we retrieve the top
5 most likely test images. We consider a retrieved image as
relevant if it exhibits all requested attributes.

In image annotation, we retrieve for each visual query the
top K most likely product descriptions. We evaluate image
annotation by computing recall@K for K = 1, 5, 10, 20, 40.
Precision@K does not say much about performance here ei-
ther, since there is only one relevant product description for
each visual query. To get further insight in the annotation
capabilities of our model, we also show the top 5 most likely
Zappos phrases for some visual queries.

It is important to note that for both tasks, recall com-
puted at the cut-off of K items regards a very strict evalu-
ation. Because this evaluation relies on incomplete product
descriptions, it might be that we retrieve an image or a tex-
tual description for an image, which is not present in the
current incomplete ground truth reference collection, but
which is relevant. Hence, we might retrieve an image, which
satisfies the textual description given as query, or we might
retrieve an annotation, which is not (part of) the original
product description of an image, but still accurately de-
scribes it. Therefore, the actual evaluation results might
be higher than those reported in this paper.

4.3 Comparison with other Models
We compare our alignment model to the CCA model and

BiLDA model of Zoghbi et al. [18], the latter of which con-
stitutes the state-of-the-art for cross-modal search of fashion

5https://github.com/tensorflow/tensorflow

Table 2: Image search results. R@K is recall@K.
The reported results are for C = 10000.

Image search
Model R@1 R@5 R@10 R@20 R@40
CCA model (Zoghbi et al. [18])

2.00 8.10 11.70 17.70 28.00
BiLDA model (Zoghbi et al. [18])

2.50 7.80 12.80 18.00 28.900
selective search, CF (θ) and CG(θ)

6.40 18.60 26.40 36.90 50.10
rule-based segmentation, CF (θ) and CG(θ)

9.10 20.90 29.20 42.70 57.70
rule-based segmentation, CF (θ), CG(θ)
and CI(θ) 7.40 21.90 32.60 43.10 57.70

items. For image annotation, our baseline is a linear sup-
port vector machine (SVM) trained in Zoghbi et al. [18]
with the scikit-learn toolkit6. This SVM is trained on the
CNN representations of the training images of the Amazon
Dresses dataset using a one-vs-rest scheme, i.e., they train
one classifier for each Zappos phrase.

5. RESULTS AND DISCUSSION

5.1 Image Search
Our image search results are presented in Table 2. These

results show that our naive rule-based segmentation tech-
nique outperforms selective search. This proves that our as-
sumptions made about e-commerce fashion images are valid.
Hence, we can rely on the geometry of the garments in a
product category and the cleanness of e-commerce images
to locate fashion attributes in these images.

We also observe that including image similarity informa-
tion in the objective function produces improved intermodal
representations. When the image cluster consistency objec-
tive is incorporated in the objective function, the alignment
model outperforms the one trained with only the fragment
alignment and global ranking objective on all image search
metrics except recall@1. However, users usually want to
see more items than one, so recall@5 or recall@10 are more
relevant metrics in terms of usability.

Hence, our best model is the neural network trained with
an objective function composed of the fragment alignment,
global ranking and image cluster consistency objective on
image fragments acquired with rule-based segmentation. Our
best model outperforms both the CCA model and state-of-
the-art BiLDA model of Zoghbi et al. [18]. Compared to the
state-of-the-art, our best model achieves an increase of 196%
on recall@1, of 181% and recall@5, of 155% on recall@10, of
139% on recall@20, and of 100% on recall@40. The BiLDA
model uses the topic similarity between the textual query
and the target image collection to find the most relevant im-
ages. This makes the image retrieval model rather coarse.
The CCA model explicitly models the correlations between
CNN features and discrete word representations. In con-
trast, our neural network model exploits the expressiveness
of real-valued representations on both the visual and tex-
tual domains via semantic embeddings. Our results indicate
that the common embedding space induced by our neural
network encodes the latent semantic alignment of language
and visual data in a more meaningful way than the space
induced by either cross-modal topics or correlations.

In the absence of a complete ground truth reference col-
lection, recall@K regards a rather strict evaluation. There-

6http://scikit-learn.org



Figure 3: Image search examples. For each textual query, the top 5 retrieved images are shown. (Image
reference: www.amazon.com)

fore, we also present qualitative results to assess our model’s
performance (Figure 3). The query “wedding, dress, short,
sweetheart, lace, white” only returns white wedding dresses.
Four of them are short, the fifth one is medium length. Three
of the dresses have a sweetheart neckline, and two have lace
(the third and fifth dress). The query “sweetheart, A-line,
dress, bridesmaid, homecoming” retrieves four dresses with
a sweetheart neckline. They could all be considered A-line,
but the shape of the first and second dress is somewhat be-
tween A-line and empire. For the query“dress, sleeveless, V-
neck, floral print, orange, sheath” all retrieved dresses have
a floral print and are sleeveless. Two of the dresses have a
sheath model, and only one has a V-neck. Retrieving dresses
in the requested fabric is more difficult, but it seems that our
model has some idea what a certain fabric looks like. When
asked for a denim dress, our model is able to find three.
Of course, denim is a fabric with clear characteristics. But
also when asked for dresses in polyester, it is plausible that
the returned dresses are made of this fabric. However, it is
hard if not impossible to identify the exact fabric from the
images, even for a human. When asked for dresses suitable
for a specific occasion, like ‘summer’ or ‘bridesmaid’, the
model comes up with reasonable suggestions, although this
is rather subjective. Overall, when looking at the query re-
sults from left to right and top to bottom, respectively one,
four, one, no, three and three dresses have all requested
attributes. We conclude that our model is able to retrieve
dresses with the requested color, print and shape. Retrieving
dresses in the correct fabric and distinguishing between sim-
ilar fashion attributes (e.g. ‘empire’ and ‘A-line’ or ‘maxi’
and ‘high low’) appear to be the main difficulties. How-
ever, it is remarkable that such nice results can be achieved
without the matching of terms between the textual query

and product descriptions, but instead through the use of
inferred intermodal representations.

5.2 Image Annotation
On image annotation, our best model exceeds the SVM

baseline, but is surpassed by both the CCA and BiLDA
model of Zoghbi et al. [18]. Image annotation seems to
benefit from a probabilistic topic representation. Given an
unseen image, the BiLDA model infers its topic distribution
and generates descriptive words via the topics, in a proba-
bilistic fashion. In contrast, our model projects every unseen
image onto an algebraic multimodal space and finds the clos-
est text fragments. Our induced common, multimodal space
has been proved quite useful for image search, as discussed
in the previous section, however for image annotation, al-
gebraically searching for close-by words might not encode
enough semantic expressiveness to retrieve the relevant text
fragments. In the future, we may explore how to combine
these two modelling paradigms, probabilistic topics and al-
gebraic spaces, into one framework that exploits the benefits
of both.

We show examples of image annotations generated by our
model in Figure 4. We see correct annotations regarding
colors, prints, shapes and accessories. As for image search,
finding the correct fabric and distinguishing between similar
fashion attributes are things our model still struggles with.
Even so, these examples demonstrate that even if our im-
age annotation results are lower than the state-of-the-art,
our model is nevertheless capable of generating meaningful
annotations.

5.3 Image Segmentation
Figure 5 shows and compares the image fragments gener-



Figure 4: Image annotation examples. For each visual query, the top 5 annotations are shown. In green:
annotations which are part of the original product description. In blue: annotations which are not in the
original product description, but which are correct. In black: annotations which are incorrect or unknown
based on what is displayed in the image. (Image reference: www.amazon.com)

Figure 5: Image segmentation results. Left: Image segmentations acquired with rule-based segmenta-
tion. Right: Image segmentations of the same images, but when using selective search. (Image reference:
www.amazon.com)



ated with selective search and our rule-based segmentation
technique.

While our rule-based segmentation technique is rather
naive, it works very nicely on the e-commerce fashion im-
ages. By exploiting our knowledge of garment geometry and
the fact that e-commerce images are usually very clean, we
are able to acquire more meaningful and complete image seg-
mentations than those produced by the selective search algo-
rithm. Additionally, our rule-based segmentation approach
has the benefit of generating the same number of regions
for each image, where we approximately know which fash-
ion attributes can be observed in each region. In contrast,
selective search [15] segments an image in regions based on
color similarity, texture similarity and goodness of fit. The
resulting regions can focus on smaller regions of interest than
in rule-based segmentation. However, we observe that with
selective search multiple fashion attributes are not enclosed
in any region (e.g. no fragment of the top or neckline) and
that some regions show parts of the image that are irrel-
evant (e.g. only the head). In addition, selective search
also produces many near duplicates. Therefore, we prefer
our proposed rule-based approach over selective search to
segment e-commerce fashion images.

6. CONCLUSION
In this paper, we have proposed a neural network that

learns intermodal representations for fashion attributes from
organic e-commerce data. We illustrated how we can rely
on the cleanness of e-commerce images and the geometry
of garments to locate fashion attributes in fashion images.
Our proposed rule-based segmentation technique to segment
e-commerce images of dresses into regions outperforms se-
lective search. Additionally, we have demonstrated how
similarity information of fashion image regions can be used
to acquire better intermodal representations for fashion at-
tributes. We introduced the image cluster consistency objec-
tive, which encourages similar image fragments to be aligned
with the same text fragments, and report increased results
when adding this objective to our objective function. The
obtained intermodal representations allow cross-modal search
of fashion attributes, and we have shown the quality of
these representations in image search and image annota-
tion. In image search, our model substantially outperforms a
state-of-the-art fashion image search system. Generally, we
showed nice search results for colors, prints, shapes, and ac-
cessories, but the identification and retrieval of fabrics needs
further refinement.

In the future, we want to experiment with other ways to
optimize the intermodal representations. While including
image similarity information is one way to compensate for
errors caused by the noise and incompleteness of product
descriptions, we also plan to investigate other ways to deal
with this.
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