
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

On Constraints, Optimisation,
Probability and Data Mining

Behrouz Babaki

Dissertation presented in partial
fulfillment of the requirements for the

degree of Doctor of Engineering
Science (PhD): Computer Science

September 2017

Supervisors:
Prof. dr. Luc De Raedt
Prof. dr. Tias Guns

On Constraints, Optimisation, Probability and Data
Mining

Behrouz BABAKI

Examination committee:
Prof. dr. ir. Paul Van Houtte, chair
Prof. dr. Luc De Raedt, supervisor
Prof. dr. Tias Guns, supervisor
Prof. dr. Patrick De Causmaecker
Dr. ir. Anton Dries
Prof. dr. Siegfried Nijssen
(Université catholique de Louvain)

Prof. dr. Christel Vrain
(University of Orléans)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Computer Science

September 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Behrouz Babaki, Celestijnenlaan 200A box 2402, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Abstract

Constraint satisfaction and optimization (CSP(O)), probabilistic inference, and
data mining are three important subdomains of artificial intelligence. CSP(O)
investigates methods for efficiently solving combinatorial problems, probabilistic
inference deals with answering queries about uncertain knowledge bases, while
data mining aims at finding and modeling regularities in the data. Even though
these domains have been developed independently, there are strong connections
and interactions between them. Studying and extending their interactions is
the main theme of this thesis.

This thesis has five contributions. First, we build on existing methods in
probabilistic inference and constraint programming and propose a method
for adding probabilities to the CSP(O) models. This allows us to constrain
or optimize over probability values. Second, we develop a novel algorithm
for optimizing the expected utility in stochastic constraint programs. Unlike
earlier works that assume independence of random variables, we assume a joint
distribution represented by a Bayesian network. Third, we develop an algorithm
for obtaining the exact solution of the constrained clustering problem with the
maximum sum of squares objective. By using the column-generation framework,
we decompose the problem into two components: one that generates candidate
clusters that adhere to user constraints, and one that tries to find the optimal
solution among combinations of the generated candidates. Fourth, we develop
an exact algorithm to solve a special class of graph clustering problems. The
formulation of this problem involves an exponential number of constraints. We
propose a mechanism to incrementally include only a subset of these constraints
in the problem. Fifth, we develop a mechanism for learning the distribution of
taxi requests from large datasets of taxi trip records.

We show that combining techniques from multiple domains can yield
improvements in addressing a number of existing and new problems. We
conclude by a review of directions for future work.

i

Beknopte samenvatting

Constraint satisfaction en optimisatie (CSP(O)), probabilistische inferentie
en data mining zijn drie belangrijke subdomeinen van artificiële intelligentie.
CSP(O) onderzoekt methoden om efficiënt combinatoriële problemen op te
lossen, probabilistische inferentie behandelt het beantwoorden van queries
betreffende onzekere knowledge bases en data mining tenslotte heeft als doel
het vinden en modelleren van regelmatigheden in data. Hoewel deze domeinen
onafhankelijk ontwikkeld zijn, zijn er desalniettemin sterke verbanden en
interacties aanwezig. Het bestuderen en uitbreiden van deze interacties is
het hoofdonderwerp van deze thesis.

Deze thesis bestaat uit vijf contributies. Ten eerste bouwen we verder op
bestaande methoden in probabilistische inferentie en constraint programming en
stellen we een methode voor om probabiliteiten toe te voegen aan CSP(O)
modellen. Dit laat ons enerzijds toe om om te gaan met constraints op
probabiliteitswaarden, anderzijds om te optimaliseren over probabiliteitswaarden.
Ten tweede ontwikkelen we een nieuw algoritme om het verwachte nut in
stochastische constraint programma’s te optimaliseren. In tegenstelling tot
eerdere studies die onafhankelijkheid van willekeurig variabelen veronderstellen,
nemen wij een gezamenlijke verdeling aan, voorgesteld door een Bayesiaans
netwerk. Ten derde ontwikkelen we een algoritme om tot de exacte oplossing
komen van het constrained clustering probleem met maximum sum of squares
objective. Door het gebruik van het kolom-generatie framework, bereiken we
een decompositie van het probleem in twee componenten: één dat kandidaat
clusters, die voldoen aan constraints van de gebruiker, genereert, en één dat
probeert de optimale oplossing te vinden tussen combinaties van de gegenereerde
kandidaten. Ten vierde ontwikkelen we een exact algoritme om een speciale
klasse van problemen op te lossen in het domein van grafenclustering. Het
formuleren van dit probleem vereist een exponentieel aantal constraints. Wij
stellen een mechanisme voor om op incrementele wijze slechts een subset van
deze constraints te moeten beschouwen in het probleem. Ten vijfde ontwikkelen

iii

iv BEKNOPTE SAMENVATTING

we een mechanisme om de distributie van taxiverzoeken te leren uit grote
datasets van taxirit opnamen.

We tonen aan dat het combineren van technieken uit verschillende domeinen
voordelen biedt bij een aantal bestaande en nieuwe problemen. We besluiten
met een bespreking van mogelijke onderzoeksrichtingen voor toekomstig werk.

Acknowledgements

First, I have to thank my promoters Luc De Raedt and Tias Guns for their
supervision during the course of my PhD. After five years of research, I find
myself heavily influenced by their perspective. Having an established notable
researcher and a rising star as promoters is a rare opportunity that I was
lucky to enjoy. I am thankful to Paul Van Houtte for chairing the private and
public defences. I also thank the jury members Siegfried Nijssen, Patrick De
Causmaecker, Anton Dries, and Christel Vrain, for the time that they devoted
to reading this thesis and providing feedback.

Even though Siegfried is not officially listed as a promoter, he has had a
significant role in supervising my research, in particular with respect to the
work presented in chapters 3 and 5 of this thesis. Talking to him has always
been an enlightening and motivating experience, and some of the most pleasant
times of my PhD were the times during which we collaborated closely.

A number of other people helped me in my research, too. The research presented
in chapter 7 was conducted in collaboration with Anton. He has also answered
my numerous questions on programming tools and techniques. Ever since
Anton shares an office with Wannes Meert, I have divided my questions between
the two of them to reduce the load. I am thankful to Guy Van den Broeck
for discussions that helped me better define some of my research questions.
Angelika Kimmig and Jonas Vlasselaer patiently answered my questions about
probabilistic inference and probabilistic logic programming. I am also thankful
to Dries Van Daele and Anna Latour for the pleasant collaboration experience
that I had with them.

I started my PhD sharing an office with Anton Dries and Benjamin Negrevergne.
Those who know them will confirm that how delightful it is to have the
simultaneous company of them. They continued to provide a much-needed
atmosphere of joy and humor for years. Sharing an office with three postdocs
gave me the privilege of having access to expert advice at the first steps of my

v

vi ACKNOWLEDGEMENTS

research career. In those early years, on most Fridays we headed to a meeting
room to discuss matters related to the ICON project. Besides Luc and Siegfried,
we were accompanied by other members of the ICON team, namely Vladimir
Dzyuba, Thanh Le Van, and Sergey Paramonov. I fondly remember the coffee
breaks that we had right after these meetings.

Vladimir and I started our PhD almost at the same time and were in the same
class of MAI program right before. During our PhD, we participated in the
ICON challenge, taught exercise sessions of the data mining course, and together
with Jan Van Haaren delivered a project on technology and knowledge transfer.
I also enjoyed the long discussions on technical and general topics that we had
on several occasions. Behind his dark humor, I found Vladimir a kind and
compassionate person.

In my first year, even a short talk with Irma Ravkic, Martin Znidarsic, or
Mathias Verbeke was enough to change my mood. What they shared was their
big smiles and kind hearts. I owe much more than that to Irma. Being a year
senior to me, she was always there to guide me through the administrative steps
of my PhD.

In the final years of my PhD, I shared an office with Davide Nitti and Francesco
Orsini. Sharing an office with two nice and passionate Italian colleagues is
already a pleasure. In addition to that, I learned a lot from them about
subsymbolic machine learning. We never ran out of topics for technical
discussions. These discussions became even more interesting when another
Italian fellow, Stefano Teso, joined DTAI. Francesco and I supervised a master
thesis, taught the UAI exercise sessions, and together with Dimitar Shterionov
and Daniele Alfarone, organized the Fluffy workshop. Thanks for all the good
memories!

Speaking of subsymbolic machine learning, I have to mention the coursera lunch
sessions that we had going for a while. Together with Golnoosh Farnadi, Geert
Heyman, Tuur Leeuwenberg, Aparna Nurani Venkitasubramania and Niraj
Shrestha, we learned a lot about the trendy topic of deep neural networks.

Very Recently, I have been sharing office with two researchers from the latest
generation of DTAI researchers: Gust Verbruggen and Arcchit Jain. I am
amazed and delighted by their passion and energy. I hope that they do a better
job in taking care of the office plants than what I did when Benjamin put me
in charge upon his departure.

Another highlight of my last years was having lunch at the cafeteria with
Jessa Bekker, Sebastijan Dumancic, Toon Van Craenendonck, Antoine Adam,
Evgeniya Korneva, Vincent Vercruyssen, Pedro Miguel Zuidberg Dos Martires,
Gust Verbruggen and Elia Van Wolputte. Gust and Elia also helped me by

ACKNOWLEDGEMENTS vii

translating the abstract of my thesis into Dutch.

In my difficult times over the past five years, I depended on friends that
were there to hear my story and give me hope to overcome the obstacles that
appeared in my way. Nasim Zand always knew how to cheer me up. Shiva
Tehrani supported me during a large part of my PhD. In particular at times
close to a submission deadline, I depended on her help in all matters of life.
Ashkan Tabibian has done me more favors than I can ever return.

The workload of PhD research left me with little time to develop social
relationships outside the department. In this situation, my close connection to
two colleagues was of special value. In my first years, it was Benjamin with whom
I shared my passions, frustrations, confusions and questions about research.
His understanding and sympathy were always comforting. I also enjoyed his
deliberately unorthodox views which were an invitation to reconsider the widely
accepted traditions. I am also thankful for his so-called pearls of wisdom
which were observations about the research activity and scientific community
formulated as short and amusing phrases. I found these observations quite
accurate. In the later years, Jessa was the friend that I knew I can always rely
on. I’m thankful to her in particular for encouraging me to take part in more
social activities. A notable example was the international kitchen experience
with some DTAI members and Nikolina Sostaric which I truly enjoyed.

Above all, I am thankful to Golnoosh. From the early days of my PhD all the
way to its end, she was there to hear me, sympathize with me, and encourage
me. Our tea breaks and occasional lunches were the highlights of my days. I
consider myself lucky to have her by my side throughout this journey.

Finally, I am thankful to my parents for constantly supporting me, especially
at times that they did so despite not fully agreeing with my choices.

Contents

Abstract i

Contents ix

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Constraint Satisfaction and Optimization 1

1.2 Probabilistic Reasoning . 3

1.3 Data Mining . 4

1.4 Connections between Subdomains of Artificial Intelligence . . . 6

1.5 Contributions . 8

1.6 Structure of the thesis . 9

1.6.1 Part I: Probabilistic Models in Constraint Satisfaction
and Optimization . 10

1.6.2 Part II: Constrained Clustering using Integer Linear
Programming . 11

1.6.3 Part III: Learning Taxi Passenger Demand 11

2 Background 13

ix

x CONTENTS

2.1 Bayesian Networks . 13

2.2 Probabilistic Inference by Knowledge Compilation 15

2.3 Constraint Programming . 18

2.4 Mixed Integer Linear Programming 20

2.4.1 Branch-and-bound search 21

2.4.2 Cutting planes . 22

2.4.3 Column Generation . 23

2.5 Pattern Mining . 24

2.5.1 Constraint-based pattern mining 25

2.5.2 Frequent pattern mining using constraint programming 26

I Probabilistic Models in Constraint Satisfaction and
Optimization 29

3 Constraint-Based Querying for Bayesian Network Exploration 30

3.1 Introduction . 30

3.2 Examples of Bayesian Network Exploration 31

3.3 BN query framework . 33

3.4 Formulating BN Pattern Queries As Constraint Programming
Problems . 36

3.5 Experiments . 39

3.6 Related work . 41

3.7 Conclusions . 42

4 Stochastic Constraint Programming with And-Or Branch-and-Bound 45

4.1 Introduction . 46

4.2 Stochastic Constraint Programming 47

4.3 Method: branch-and-bound And-Or search 52

CONTENTS xi

4.4 And-Or search in a constraint solver 57

4.5 Experiments . 58

4.6 Related work . 62

4.7 Conclusion and future work . 62

II Constrained Clustering using Integer Linear Pro-
gramming 65

5 Constrained Clustering using Column Generation 66

5.1 Introduction . 66

5.2 MSSC . 68

5.3 Column generation framework 72

5.4 Column generation with constraints. 74

5.4.1 Subproblem solving . 75

5.4.2 Reducing the number of candidates 76

5.4.3 Pruning using a bound on the objective function 77

5.5 Practical considerations . 79

5.5.1 Initialisation . 79

5.5.2 Branching . 79

5.5.3 Slow convergence . 80

5.6 Experiments . 80

5.7 Related work . 84

5.7.1 Recent developments . 86

5.8 Conclusions . 86

6 A Branch-and-Cut Algorithm for Constrained Graph Clustering 87

6.1 Introduction . 87

6.2 Related work . 89

xii CONTENTS

6.3 Motivating application . 90

6.4 Problem and MIP formulation 91

6.5 Extensions and improvements 93

6.5.1 Overlapping clusters . 94

6.5.2 Breaking symmetries . 94

6.5.3 Obtaining the set of Pareto optimal solutions 94

6.6 Enforcing connectivity . 95

6.6.1 Enumerating all simple paths 96

6.6.2 A cutting plane approach 96

6.7 Experiments . 98

6.7.1 Results and discussion 100

6.8 conclusions and future work . 105

III Learning Taxi Passenger Demand 107

7 Feature-based Taxi Request Prediction 108

7.1 Introduction . 108

7.2 Related work . 109

7.3 Problem setting . 111

7.3.1 Exploiting peripheral features 112

7.3.2 Specificity of the model 113

7.3.3 Recency of the data . 113

7.4 Traditional approaches . 114

7.4.1 Poisson processes . 114

7.4.2 Time-series analysis . 115

7.5 Feature-based taxi prediction 115

7.5.1 Feature-based Poisson processes 116

CONTENTS xiii

7.5.2 Direct prediction . 116

7.5.3 Decomposition-based prediction 117

7.6 Evaluation . 119

7.6.1 Data . 120

7.6.2 Evaluation metric . 121

7.6.3 Decomposition . 122

7.6.4 Prediction using historic data 124

7.6.5 Prediction using historic data and recent observations . 126

7.6.6 Prediction on unseen regions 127

7.7 Conclusions and future work 129

8 Conclusions and Future Work 131

8.1 Summary and Conclusions . 131

8.2 Discussion and Future Work . 133

8.2.1 Probabilistic Models in Constraint Satisfaction and
Optimization . 134

8.2.2 Constrained Clustering using Integer Linear Programming135

8.2.3 Learning Taxi Passenger Demand 136

8.3 Concluding Remarks . 136

List of publications 139

Bibliography 139

Curriculum Vitae 141

List of Figures

1.1 The connections between subdomains of artificial intelligence. . 2

1.2 Existing and new research on connections between multiple
domains: Probability Theory (PR), Probabilistic Graphical
Models (PGM), Data Mining/Machine Learning (DM/ML), and
Constraint Satisfaction/Optimization (CSP(O)). 6

2.1 A Bayesian network over five variables 14

2.2 Left: a Bayesian network with three variables. Right: The arithmetic
circuit obtained by compiling the Bayesian network on the left (figure
from (Darwiche 2009)) . 16

2.3 The result of circuit evaluation and differentiation for the query
P (X1 = 2, X3 = 1) by algorithm 1. The vr values are shown in
the left boxes and the dr values are shown in the right boxes. . . . 17

2.4 Branching decomposes problem Q into two subproblems Q1 and Q2.
These subproblems are constructed by adding constraints xj ≤ bx̂jc
and xj ≥ bx̂jc to Q. Figure from (Achterberg 2007). 22

2.5 To strenghten the LP, a cut separates the solution of LP relaxation x̂
from the convex hull of the integer program. Figure from (Achterberg
2007) . 23

3.1 The car insurance network (Binder et al. 1997). 32

3.2 Arithmetic circuit for a BN with 3 variables with domain {1, 2} with
X1 the parent of X2 and X3. Square boxes represent CP variables. . 37

xv

xvi LIST OF FIGURES

4.1 Left: Bayesian network with 2 observed and 2 hidden variables.
Right: a policy tree for Example 6 with D(V1) = D(S1) =
D(V2) = D(S2) = {1, 2}. 48

4.2 The And-Or search tree for the problem of Example 6. 51

4.3 Effect of depth of bounds on instances of the knapsack problem (top)
and investment problem (bottom). 60

4.4 The effect of tightening the knapsack constraint on runtime in a 6-stage
problem. 61

5.1 Run times on the Iris data set. 80

6.1 Left: A small subgraph extracted from the interaction network.
Dashed lines represent the can-not-link constraints. Middle: the
pathways obtained from non-overlapping clusters. Right: the
pathways obtained from overlapping clusters. 91

6.2 The sets {2, 5} and {3, 5} belong to Γ(1, 4), but the set {2, 3, 5}
does not because it is not minimal. 97

6.3 Impact of γ on smallest cluster size (left) and total co-occurrence
penalty (right) for instance 250_750. 101

6.4 The Pareto optimal set for overlapping clustering on instance
250_750 with three values for number of clusters. 102

6.5 Number of patients which are a member of each cluster, per
PAM50 subtype. 102

6.6 Number of patients with specific PAM50 subtype, per cluster. . 104

7.1 Distribution of taxi rides for three days in February 2010: a
regular Wednesday (17/02), a regular Sunday (14/02) and a
Wednesday during a blizzard (10/02). 112

7.2 Components discovered by NMF (c = 6). 119

7.3 Distribution of all trips between 5 April and 30 May 2010. Trips
are aggregated to show distribution over a one week period. . . 120

7.4 Map of New York regions with high activity. 121

LIST OF FIGURES xvii

7.5 Average component weights for three datasets for 6 components
obtained from NYC10 (components shown in Figure 7.2). SFC10
scaled up by a factor of 10. 123

7.6 Reconstruction error of NYC10 components by number of
components. 123

7.7 Prediction error for components by number of components for
NYC10 to NYC10. Error bars indicate one standard deviation. 126

List of Tables

2.1 An itemset database . 25

3.1 The example queries expressed using constraints over pattern A. . . 34

3.2 Constraints for BN pattern queries over patterns A, B, and
C and network G. Constraints are represented by three-letter
codes Prb: probability(A,G, θ); Mxp: maxprobability(A,G, θ);
Sbs: subset(A,B); Sps: superset(A,B); Exc: exclude(A,B);
Fre: free(A,G); Max: maximal(A,G, θ); Cls: closed(A,G);
Dif: difference(A,Ga,Gb, β); Ddf: DB-difference(A,G,D, β);
and Vdf: ev-difference(A,G, B,C, β). 35

3.3 Probability queries over three benchmarks network, with #BN-n:
number of BN nodes; c.Time: compilation time; #AC-n/e: number
of AC nodes/edges; θ: probability threshold; #Sols: number of
solutions, and s.Time: solving time. 40

3.4 (a) Execution times of example queries, and (b) Quality of results of
sampling method as compared against the solutions of exact method. . 41

4.1 Comparing the runtime (s) of our method (AOB&B) with scenario-
based approaches (CP and ILP) on the knapsack problem. The
unsuccessful cases either ran out of time (T) or memory (M) during
generation of scenario-based problem (G) or solving the problem (S). 58

4.2 Comparing the runtime (s) of our method (AOB&B) with scenario-
based approaches (CP and ILP) on the investment problem. The
unsuccessful cases either ran out of time (T) or memory (M) during
generation of scenario-based problem (G) or solving the problem (S). 59

xix

xx LIST OF TABLES

4.3 The effect of tightening the knapsack constraint (C) on the number of
nodes and failures in a 6-stage problem. 61

5.1 MSS clustering . 71

5.2 An ILP model for MSS clustering 71

5.3 Dual of the optimization problem. 73

5.4 Model with stabilization included (N = {1, . . . , n}). 73

5.5 Description of datasets . 81

5.6 Clustering with 3 clusters and ’#c’ constraints, Iris dataset.
*optimality proven . 82

5.7 Clustering with 5 clusters and ’#c’ constraints, Iris dataset.
*optimality proven . 83

5.8 Clustering with 3 clusters and ’#c’ constraints, Wine dataset.
*optimality proven . 83

5.9 Clustering with 5 clusters and ’#c’ constraints, Wine dataset.
*optimality proven . 84

5.10 Soybean, different k and number of clusters (#c); GC gap =
difference between best solution quality of cop-kmeans and the
solution of CG, INF = infeasible. 84

6.1 Instance properties . 100

6.2 Average runtimes of overlapping and non-overlapping clustering
by enumerating all simple paths (AllPaths) and branch and cut
(BnC). Timed-out experiments are counted as 600 seconds (–). 103

7.1 Reconstruction error across datasets. Rows indicate components
used. Columns indicate reconstructed datasets. 124

7.2 sMAPE score for prediction with historic data. Results are
averaged over 11 time blocks. 125

7.3 sMAPE score for prediction with historic data and recent
observations. Results are averaged over 11 time blocks. 127

7.4 sMAPE scores for predicting on unseen regions. 128

Chapter 1

Introduction

Constraint satisfaction and optimization, probabilistic inference, and data
mining are important subdomains of artificial intelligence, each with a long and
rich history and numerous applications. Constraint satisfaction and optimization
investigates methods for efficiently solving combinatorial problems, probabilistic
inference deals with answering queries about uncertain knowledge bases, while
data mining aims at finding and modeling regularities in the data. Despite
the differences in their methods and applications, there are strong connections
and interactions between these three domains. The theme of this thesis is
investigating and extending such interactions. We therefore start with a brief
introduction of these domains. Then we will review some of the existing work
on cross-domain connections, and give an overview of the new connections that
we have established in this thesis.

1.1 Constraint Satisfaction and Optimization

A constraint satisfaction problem (CSP) specifies a set of constraints on a set of
variables. As an example, consider three variables X1, X2, X3 which can take
only values 0 or 1. The constraint X1 +X2 +X3 ≤ 2 restricts the values of these
variables such that their sum does not exceed 2. This problem specification
in terms of variables and constraints is called a model. To solve this CSP, one
must find values for the variables such that the constraint is not violated. The
values X1 = 0, X2 = 1, X3 = 0 make up a solution.

A key idea in constraint satisfaction is to separate the problem specification

1

2 INTRODUCTION

Figure 1.1: The connections between subdomains of artificial intelligence.

from the mechanism that finds the solution. An implementation of such a
solving mechanism is called a solver. The advantage of this separation is that
it offers a declarative approach for solving a problem: the user only needs to
specify the problem as a model, and the solver will take care of finding the
solution.

The central principles employed in constraint programming solvers are search
and propagation. Search is an enumerative procedure that assigns values to
a variable from its domain. Propagation is a means for reducing the number
of values that are examined during search (i.e. the search space). It involves
removing values from the domain of a variable by reasoning over a constraint
that includes that variables and domains of other variables in that constraint.

In a CSP, any assignment that respects the constraints is a valid solution. If
some solutions are preferred to others, we can define a score for solutions and
ask for the solutions with the highest score. This gives a constraint optimization
problem (COP), which is a CSP together with an objective function that maps
each solution to a real number.

Standard constraint programming solvers can solve COPs using the branch and
bound method. If the constraints and the objective function are linear, and the
variables are integer or continuous (e.g. the knapsack problem), then we have a
mixed integer linear programming (MILP) problem.There are solvers dedicated
to finding the optimal solution for MILP problems. The key principle in these
solvers is to use a relaxed version of the problem to obtain bounds during search.
This relaxed problem which is obtained by dropping the integrality condition is
a linear program and can be solved efficiently.

PROBABILISTIC REASONING 3

Knapsack Problem

Given a set of items and their weights and values, we want to collect a
subset of them such that the total weight of collected items does not exceed
the capacity of our knapsack, and their total value is maximized. We can
formulate this problem as a COP:

max .
∑
i

viXi

s.t. ∑
i

wiXi ≤ C

Xi ∈ {0, 1} ∀i

The binary variable Xi encodes our decision about taking or leaving item
i. The constants vi and wi represent the value and weight of item i. The
objective function

∑
i viXi is equal to the total value of collected items,

and the constraint
∑
i wiXi ≤ C ensures that the total weight of collected

items does not exceed the capacity C.

Finding an exact solution for an optimization problem can be difficult. An
alternative to exact search is to use approximation algorithms or heuristics that
produce near-optimal solutions at a lower computational cost. An approximation
algorithm is accompanied by a bound on the ration between the near-optimal
and optimal solutions. There is no such theoretical guarantee for heuristic
search methods, and their effectiveness is evaluated empirically. In this thesis
we follow the convention of AI community in using the term approximate for
any method that does not produce exact solutions.

1.2 Probabilistic Reasoning

It is well known that reasoning only based on deterministic facts and rules is not
enough to address the challenges of the real world, largely due to their inherently
uncertain nature. A response to this problem is to use probability theory as
a basis for reasoning under uncertainty. In general, this is a difficult task as
it can involve visiting an exponential number of possibilities. However, there

4 INTRODUCTION

Bayesian Network

A Bayesian network is a directed acyclic graph that represents a probability
distribution. To each node in the network corresponds a conditional
probability of that node given its parent nodes. The Bayesian network
models the joint distribution over all nodes as the product of these
conditional probabilities. The figure below shows a small Bayesian network.

P (Rain,Sun,Rainbow) =

P (Rain)× P (Sun|Rain)×

P (Rainbow|Sun,Rain)

Rain Sun

Rainbow

There are inference algorithms for answering probability queries in Bayesian
networks, such as P (Rainbow = True) and P (Rain = False,Sun = False).
These algorithms use independence relationships in the Bayesian network
to improve the efficiency in calculation of probability values.

are representations that allow for efficient probabilistic reasoning. Probabilistic
graphical models are a class of such representations that can encode conditional
independence relations between groups of random variables. The reasoning
algorithms use these independencies to decompose the problem into subproblems
that can be solved independently. Depending on the structure of the distribution,
this can lead to significant computational savings. One of the most-studied
types of probabilistic graphical models are Bayesian networks. In this thesis,
we mostly focus on these models.

1.3 Data Mining

Data mining (DM) is concerned with discovering knowledge from data. In
different data mining tasks, the discovered knowledge can have different forms.
The two data mining tasks that we deal with in this thesis are pattern mining
and clustering. In pattern mining, the user is interested in finding substructures
that appear regularly in the data. In clustering, the discovered knowledge is
presented as a grouping of data instances into a number of clusters.

DATA MINING 5

Frequent Itemset Mining

Consider a database of transactions
where each transaction consists of a
set of items. In the toy database on
the right, the first to third transac-
tions are {B}, {E}, and {A,C}. The
problem of frequent itemset mining
is to find subsets of items (called
itemsets) that are included in at
least as many transactions as a given
threshold.

A B C D E
0 1 0 0 0
0 0 0 0 1
1 0 1 0 0
1 0 0 0 1
0 1 1 0 0
0 0 0 1 1
0 0 1 1 1
1 1 1 0 0
1 1 0 0 1
1 1 1 0 1

Some of the frequent itemsets for threshold 2 in this toy database are ∅,
{E}, {B,C}, and {A,B,E}. If we add the constraint that the itemsets
must contain at least two items, the itemsets ∅ and {E} will be excluded.

The goal in the task of frequent pattern mining is to find substructures that
appear more than a certain number of times in the data. Extensive research has
been conducted on efficient algorithms for finding frequent patterns of different
types.

Usually the large number of discovered frequent patterns makes it difficult for
the user to analyze them. This has motivated the research on methods for
reducing these results to a smaller set of patterns. Constraint-based pattern
mining reduces the number of output patterns by requiring the patterns to
satisfy extra constraints other than frequency. Another approach is to use
condensed representations which means to eliminate the redundancies in the
discovered patterns.

Clustering is a descriptive data mining task. The goal in clustering is to create
a model of the data in terms of groups that constitute it. The clustering
algorithms aim to group the data into clusters that have certain properties.
One such property that is common to most clustering algorithms is that the
members of a cluster are similar to each other and different from the members
of other clusters.

The desired properties of clusters can be represented in terms of constraints. A
must-link constraint between two data instances requires that these instances
belong to the same cluster. A can-not-link constraint forbids such a co-
membership. Another example is the size constraint which restricts the number

6 INTRODUCTION

of members of a cluster.

1.4 Connections between Subdomains of Artificial
Intelligence

The connections between constraint satisfaction and optimization (CSP(O)),
probabilistic inference, and DM/ML have been studied before. Figure 1.2
positions our work in relation to the domains of AI and these cross-domain
studies. In this thesis, we propose alternative frameworks for adding probabilistic
models to CSP(O) formulations. Our aim is to exploit both probabilistic
and deterministic structures in solving these problems. Our work on pattern
mining in Bayesian networks (CP4BN in figure 1.2) links three topics of
DM/ML, CSP(O), and PGM. In our work on factored stochastic constraint
programming (FSCP in figure 1.2), we build on an existing work on stochastic
constraint programming (SCP in figure 1.2) which combined CSP(O) with
probabilities(Walsh 2002).

We contribute to topics at the intersection of CSP(O) and DM by formulating
and solving mining and learning tasks using integer linear programming and
constraint programming. Our two works on clustering (CCCG and BNCC in
figure 1.2) are a continuation of a trend on combining DM/ML and CSP(O).
This trend was initiated by a framework (CP4IM in figure 1.2) for solving

Previous work:
N SCP
� CP4IM

Our contributions:
O CP4BN
4 FSCP
� CCCG
� BNCC
◦ TAXI

Figure 1.2: Existing and new research on connections between multiple domains:
Probability Theory (PR), Probabilistic Graphical Models (PGM), Data
Mining/Machine Learning (DM/ML), and Constraint Satisfaction/Optimization
(CSP(O)).

CONNECTIONS BETWEEN SUBDOMAINS OF ARTIFICIAL INTELLIGENCE 7

itemset mining problems by constraint programming (Guns et al. 2011b). We
also extend this framework to pattern mining in Bayesian networks. Finally,
in our work on learning taxi passenger demand (TAXI in figure 1.2), we learn
probabilistic models from the data using standard methods in statistical machine
learning.

The matter of combining optimization and probabilistic inference has been
studied in the uncertainty reasoning community, for example under the topic
of influence diagrams. However, constraint processing has not received much
attention in these studies. Such a combination has been also studied in the
constraint programming community. But it is common practice in these studies
to either assume that the random variables are independent (Walsh 2002) or
to sample scenarios from the probability distribution and combine them into a
single deterministic constraint program (Manandhar et al. 2003). The former
method assumes strict independence relationships and the latter approach
(called scenario-based stochastic constraint programming) ignores the structure
of the probability distribution. Sampling scenarios has been also a successful
approach for solving stochastic vehicle routing problems (Bent and Hentenryck
2004).

Research at the intersection of DM and CSP(O) has a natural motivation. At
the core of data mining tasks usually lies a search in a hypothesis space for
finding all/best hypotheses according to some criteria. The standard practice
for finding these hypotheses is to develop search algorithms that are targeted at
that specific learning or mining problem. The search space can be discrete or
continuous, and the algorithms can be approximate or exact.

An alternative approach for solving these problems is to formulate them as
CSP(O) models. This approach has multiple advantages: 1) Moving away from
developing algorithms to formulating the problem in a certain language, makes
it easier to rapid-prototype new ideas. 2) Once a good formulation for a task is
developed, variants of it can be obtained by modifying the constraints and/or
the objective function. 3) Advances in constraint solving technologies translate
into improvements in mining and learning tasks.

There are successful examples of using this principle in continuous domain,
such as using mathematical programming solvers for solving the underlying
optimization problem in support vector machines (Schölkopf et al. 2000).
Recently, there has been an interest in using the same approach for problems with
a combinatorial search space. Several pattern mining tasks have been formulated
as constraint satisfaction problems and solved using standard constraint
programming solvers (Guns et al. 2011b; Guns et al. 2011a; Négrevergne
and Guns 2015). A similar approach (although using other constraint solving
frameworks) has been applied to tasks such as structured-output prediction (Teso

8 INTRODUCTION

et al. 2017) and inference in statistical relational learning (Riedel 2008).

An area in DM where using CSP(O) has been popular is constraint-based
learning and mining. In constraint-based learning, the space of valid hypotheses
is expressed in terms of constraints. An example of using CS for constraint-based
supervised learning is structure learning of Bayesian networks, which has been
formulated using integer linear programming (Bartlett and Cussens 2017). In
constrained clustering, which is an example of unsupervised constraint-based
learning, the desired properties of clusters are expressed through constraints.
By formulating the clustering problem as a constraint programming model, a
wide range of such properties can be enforced by adding extra constraints to
the base model (Dao et al. 2017).

Similarly, in constraint-based pattern mining, the desired properties of patterns
are described by constraints such as frequency and closedness. When a pattern
mining task is modeled as a constraint solving problem, such constraints can
be enforced by adding extra constraints, or modifying the existing ones (Guns
et al. 2011b).

1.5 Contributions

This thesis has three parts. In each part we study the connections between
a number of domains in artificial intelligence. In the first part we present
mechanisms for integrating constraint programming and probabilistic inference.
In the second part, we evaluate the potential of integer linear programming for
the task of constrained clustering. In the third part we investigate a learning
problem which is part of a stochastic optimization pipeline. The research
questions that are answered in each of the three parts are:

Q1 How can we use probabilistic graphical models within CSP(O) formulations?

Q2 What is the potential of formulating constrained clustering as integer linear
programming problems?

Q3 How can we use data mining techniques to learn the distribution of passenger
requests from records of taxi trips?

The contributions of this thesis with respect to question Q1 are as follows:

• We developed a way to represent the results of probability queries as
variables in a CSP model. This method uses existing technologies in
probabilistic inference and constraint programming. This method allows
solving CSP(O) problems that have constraints or objective functions that

STRUCTURE OF THE THESIS 9

are defined in terms of the result of a probability query. We illustrate this
technique by applying it to a novel data mining task, namely constraint-
based pattern mining in Bayesian networks.

• We developed a novel algorithm for optimizing the expected utility
in constraint programs which have probabilistic parameters. These
parameters can have a joint distribution represented by a Bayesian network.
We developed a novel bounding mechanism that takes advantage of the
probabilistic structure. Our method outperforms the existing algorithms
for solving such problems.

The contributions obtained in this thesis with respect to question Q2 are the
following:

• We developed an algorithm for obtaining the exact solution for the
constrained clustering problem with the maximum sum of squares (MSS)
objective. This algorithm is based on formulating the clustering problem
as an integer linear program and solving it by using the column generation
method. Our algorithm supports a set of constraints that are common in
constrained MSS clustering.

• Motivated by a data mining application, we developed an exact algorithm
to solve a special class of graph clustering problems. We developed two
integer linear programming formulations of this problem. Our solution
methods are efficient enough for finding the optimal solution of real-world
instances that motivated this problem.

Finally, we have the following contribution with respect to question Q3:

• We developed a mechanism for learning the distribution of taxi requests
from large datasets of taxi trip records. In our experiments, the model
obtained through this mechanism outperformed the existing approaches.

1.6 Structure of the thesis

We first present the background material in Chapter 2. This chapter provides
the background on a number of topics that are used in the subsequent chapters,
namely constraint programming, integer linear programming, and inference in
graphical models.

The structure of rest of the thesis follows the three research questions formulated
above. The three parts of this thesis are as follows:

10 INTRODUCTION

1.6.1 Part I: Probabilistic Models in Constraint Satisfaction
and Optimization

Chapter 3 introduces the new problem of pattern mining in Bayesian networks.
Similar to (Guns et al. 2011b), we use constraint programming to formulate
the problem. One difference between pattern mining in Bayesian networks
and in databases is that in the former the input is represented intensionally in
a compact form. Instead of unfolding this compact form into its extensional
equivalent, we use knowledge compilation to compile this distribution into an
intermediate structure which is then embedded in a constraint program as a
set of constraints. This chapter has been previously published in the following
paper:

• Behrouz Babaki, Tias Guns, Siegfried Nijssen, and Luc De Raedt.
“Constraint-based querying for bayesian network exploration”. In Élisa
Fromont, Tijl De Bie, and Matthijs van Leeuwen, editors, Advances in
Intelligent Data Analysis XIV - 14th International Symposium, IDA 2015,
Saint Etienne, France, October 22-24, 2015, Proceedings, volume 9385 of
Lecture Notes in Computer Science, pages 13–24. Springer, 2015.

Chapter 4 presents a new flavor of stochastic constraint programming. In this
setting, the joint distribution of random variables is represented by a Bayesian
network. Hence we deal with a deterministic and a probabilistic structure.
Existing methods can only exploit one of these two structures. We exploit both
structures by combining two computational tasks of probabilistic inference and
constraint satisfaction in an And-Or search tree. This chapter is based on the
following paper:

• Behrouz Babaki, Tias Guns, and Luc De Raedt. “Stochastic constraint
programming with and-or branch-and-bound”. In Carles Sierra, editor,
Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pages 539–545. ijcai.org, 2017.

1.6.2 Part II: Constrained Clustering using Integer Linear
Programming

The two chapters in this part present applications of CSP(O) in DM.

Chapter 5 The goal in this chapter is to use integer linear programming for
solving a clustering problem. The number of variables in our formulation is

STRUCTURE OF THE THESIS 11

exponential in the number of data instances. We show that this problem can be
solved by adding the variables to the model in a lazy fashion. This results in a
hybrid scheme that allows us to deal with a subset of constraints in a subproblem
outside the integer programming workflow. This chapter is previously published
in this paper:

• Behrouz Babaki, Tias Guns, and Siegfried Nijssen. “Constrained clustering
using column generation”. In Helmut Simonis, editor, Integration of AI
and OR Techniques in Constraint Programming - 11th International
Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,
volume 8451 of Lecture Notes in Computer Science, pages 438–454.
Springer, 2014.

Chapter 6 deals with a clustering problem where the relations among data
instances are represented as a graph. A key requirement in this problem is that
the subgraphs induced by the clusters must be connected. We formulate this
problem as an integer linear program, and express the connectedness property
as a set of constraints. Since the number of these constraints is exponential
in the size of input graph, we solve the problem by including only a sufficient
subset of these constraints. This chapter is published in this paper:

• Behrouz Babaki, Dries Van Daele, Bram Weytjens, and Tias Guns. “A
branch-and-cut algorithm for constrained graph clustering”. Data Science
meets Optimization workshop (colocated with CPAIOR), Padova, Italy,
2017.

1.6.3 Part III: Learning Taxi Passenger Demand

Chapter 7 deals with the problem of learning the passenger request for taxi
trips. The motivation for learning this model is to produce samples to be used
by a scenario-based algorithm for the stochastic routing problem. In this chapter
we study the problem of learning such distributions from large amounts of data.
This chapter is based on the following work:

• Behrouz Babaki, and Anton Dries. Feature-based Taxi Request Prediction.
(manuscript in preparation).

Finally, Chapter 8 concludes this thesis by presenting a summary, conclusions
and directions for future research.

Chapter 2

Background

This chapter provides the background on probabilistic graphical models,
constraint programming, integer programming and constraint-based pattern
mining.

2.1 Bayesian Networks

The idea in probabilistic reasoning is to use probability theory to reason over
uncertain beliefs. This requires the belief to be represented as a probability
distribution. However, the number of possible worlds grows exponentially in
the number of entities that one holds a belief about. This immediately poses a
challenge both in terms of representation and reasoning. In the general case,
one will need to visit all these possibilities and assign a probability to each one.
Similarly, at inference time all these possibilities need to be enumerated.

Probabilistic graphical models address this problem using a basic insight.
Usually, the conditional independencies provide significant information about
beliefs. The language of graphs can easily represent these independencies. Using
these models, it is sufficient to specify these independences as a graph, and only
specify the probability distribution for each factor. Bayesian networks are one
of the most popular types of probabilistic graphical models.

Definition 1. A Bayesian network G is a directed acyclic graph where each
node represents a random variable Xi in X = {X1, . . . , Xn}. Let PaGXi

denote
the parents of Xi in G. A joint distribution P over the set of variables X is said
to factorize according to G if P (X1, . . . , Xn) can be expressed as the product

13

14 BACKGROUND

Winter?
(A)

Sprinker?
(B)

Rain?
(C)

Wet Grass?
(D)

Slippery Road?
(E)

A P1(A)
0 0.4
1 0.6

A B P2(B|A)
0 0 0.25
0 1 0.75
1 0 0.8
1 1 0.2

A C P3(C|A)
0 0 0.9
0 1 0.1
1 0 0.2
1 1 0.8

A C D P4(D|B,C)
0 0 0 1
0 1 0 0
0 0 1 0.2
0 1 0 0.8
1 0 0 0.1
1 1 0 0.9
1 0 1 0.05
1 1 0 0.95

C E P5(E|C)
0 0 1
0 1 0
1 0 0.3
1 1 0.7

Figure 2.1: A Bayesian network over five variables

∏n
i=1 P (Xi|PaGXi

). We denote the distribution factored according to G by PG.
We denote by D(Xi) the domain of variable Xi, that is, the possible values
the variable can take. An assignment of value xi to variable Xi is denoted by
(Xi = xi).

The joint probability of variables in a Bayesian network is fully specified by
its graph and the distributions P (Xi|PaGXi

). When the variables are discrete,
each of these distributions can be represented extensionally as a conditional
probability table (CPT) (Pearl 1989).

A probabilistic query is a question about probability of events according to a
distribution. These queries are answered by probabilistic inference algorithms.
There are several types of such algorithm (for a detailed discussion of these
algorithms, see (Darwiche 2009)). The common principle among them is to
take advantage of the conditional independencies to decompose the inference
problem.

Example 1. Consider the graph in figure 2.1. It shows that the joint probability
of random variables A,B,C,D,E factorizes as follows:

P (A,B,C,D,E) = P1(A) · P2(B|A) · P3(C|A) · P4(D|B,C) · P5(E|C)

The joint probability distribution is fully described by this graph and the
conditional probability tables for P1, . . . , P5. The query P (A = 1) in example 1

PROBABILISTIC INFERENCE BY KNOWLEDGE COMPILATION 15

can be decomposed and solved as follows:

P (A = true) =
∑

B,C,D,E

P (A = 1, B,C,D,E)

=
∑

B,C,D,E

P1(A = 1) · P2(B|A = 1) · P3(C|A = 1) · P4(D|B,C) · P5(E|C)

=
∑

B,C,D

P1(A = 1) · P2(B|A = 1) · P3(C|A = 1) · P4(D|B,C) ·
∑

E

P5(E|C)︸ ︷︷ ︸
=1

=
∑
B,C

P1(A = 1) · P2(B|A = 1) · P3(C|A = 1) ·
∑

D

P4(D|B,C)︸ ︷︷ ︸
=1

=
∑

B

P1(A = 1) · P2(B|A = 1) ·
∑

C

P3(C|A = 1)︸ ︷︷ ︸
=1

= P1(A = 1) ·
∑

B

P2(B|A = 1)︸ ︷︷ ︸
=1

= P1(A = 1) = 0.6

2.2 Probabilistic Inference by Knowledge Compila-
tion

One of the methods for inference in Bayesian networks is to first compile it to
an arithmetic circuit and then evaluate the query on the circuit. Compilation is
an offline step and has to take place only once for each network. The resulting
circuit can be used for answering multiple queries (Darwiche 2003).

Consider the Bayesian network in left side of figure 2.2. Compiling this network
results in the circuit depicted in the right side of the figure. We will now see how
this circuit can be used to answer probability queries. The circuit has two types
of leaves: parameters which are set according to the probability values in the
network CPTs, and the λ variables, which are called indicators. The indicator

16 BACKGROUND

X1

X2 X3

X1 P (X1)
1 0.5
2 0.5

X1 X2 P2(X2|X1)
1 1 1
1 2 0
2 1 0
2 2 1

X1 X3 P2(X3|X1)
1 1 0.8
1 2 0.2
2 1 0.2
2 2 0.8

+ 0.5

××

++ λ2,2λ1,2λ1,1 λ2,1

×× ××

λ3,2 λ3,10.8 0.2

×

Figure 2.2: Left: a Bayesian network with three variables. Right: The arithmetic
circuit obtained by compiling the Bayesian network on the left (figure from (Darwiche
2009))

variables are set according to the query that the user wants to evaluate. Once
these variables are set, the circuit can be evaluated using a bottom-up pass.

For each variable Xi and value j ∈ D(Xi) there exists an indicator variable
denoted by λij . To evaluate the query P (Xi1 = j1, . . . , Xik = jk), the indicator
variables should be set as follows:

• If a variable is assigned to a value in the query, set the indicator variable
corresponding to that assignment to 1, and those corresponding assignment
to other values of that variable to 0. For example in the query above, the
indicator variables λi1,j1 should be set to 1 and all other λi1,j for j 6= j1
should be set to 0.

• If a variable is not mentioned in the query (i.e. it is marginalized over),
the indicator variables corresponding to all values of this variable should
be set to 1.

Figure 2.3 shows how the query P (A = 1, C = 0) is evaluated.

An arithmetic circuit can be seen as a function f over indicator variables.
Consider a partial assignment A, Bayesian network variable Xi and the value
j ∈ D(Xi). It has been shown that the following equality holds:

∂f

∂λi,j
(A) =

{
P (A ∪ {(Xi = j)}) if Xi is not assigned in A
P (A\{(Xi = k)}) ∪ {(Xi = j)}) if (Xi = j) ∈ A

PROBABILISTIC INFERENCE BY KNOWLEDGE COMPILATION 17

It has also been shown that the derivatives of f with respect to all λij variables
can be computed in a single top-down pass. Algorithm 1 shows how the value
of f and its derivatives are computed in two passes through the circuit. It takes
the arithmetic circuit AC and two arrays vr and dr for storing the value and
derivative in each node. The value and derivative corresponding to node v in
the circuit are represented by vr(v) and dr(v). It is assumed that the values of
leaf nodes are initialized in vr(v). Let us denote the root node of the circuit by
r. The function TwoPass computes the value of circuit output in the vr(r). It
also computes the derivatives of leaf nodes v in dr(v). The computed derivatives
for the circuit of figure 2.2 are shown in figure 2.3.

+0.50.2 0.5 0.20.5

×

0.50.2

×

0.50

+

0.50.2

+ 00.8 λ2,2

0.11

λ1,2

0.11

λ1,1

0.40

λ2,1

01

×
0.50

×

00

× 0.50.2×00.8

λ3,2

0.40

λ3,1

0.11

0.8

00.8

0.2

0.50.2

× 10.1

Figure 2.3: The result of circuit evaluation and differentiation for the query P (X1 =
2, X3 = 1) by algorithm 1. The vr values are shown in the left boxes and the dr values
are shown in the right boxes.

18 BACKGROUND

Algorithm 1 Evaluating and differentiating an arithmetic circuit (from
Darwiche 2009)

1: function TwoPass(AC, vr, dr)
2: for each circuit node v (visiting children before parents) do
3: compute the value of v and store it in vr(v)
4: end for
5: dr(v)← 0 for all non-root nodes v
6: dr(r)← 1 . r is the root node
7: for each circuit node v (visiting parents before children) do
8: for each parent p of node v do
9: if p is an addition node then

10: dr(v)← dr(v) + dr(p)
11: else
12: dr(v)← dr(v) + dr(p)

∏
v′ 6=v

vr(v′), where v′ is a child of parent p
13: end if
14: end for
15: end for
16: end function

2.3 Constraint Programming

Constraint programming is an instance of the declarative programming paradigm.
Like other declarative methods, in constraint programming the user only specifies
the problem and not the solution method. Constraint programming systems
are equipped with solvers that decide how to search for solutions to the given
problem. A constraint satisfaction problem is a triple (V, D, C) in which V is a
set of variables, D is a set of domains which map every variable v ∈ V to a set
of values D(v), and C is a set of constraints which further limit values from D
that can be assigned to V (F. Rossi et al. 2006).

Example 2. We have three items with weights 10, 15, and 20. Each item has
a value. The values of these three items are 5, 1, and 10. We want to pick two
of these items while respecting the following conditions: 1) The sum of weights
of selected items should not exceed 35, and 2) If we pick the first item, we can
not select the third one.

To formulate this problem in constraint programming, we introduce discrete
variables x1, x2, and x3 as indicators for selection of each of three items. We
also introduce the real variable s which represents the total weight of selected
items. So V = {x1, x2, x3, s}. The domain of discrete variables is the finite set
{0, 1}, and the domain of continuous variable is the interval [0, 45]. In other
words, D(x1) = D(x2) = D(x3) = {0, 1} and D(s) = [0, 45]. Finally, set C

CONSTRAINT PROGRAMMING 19

consists of following constraints:

x1 + x2 + x3 = 2 (2.1)

s = 10x1 + 15x2 + 20x3 (2.2)

s ≤ 35 (2.3)

(x1 = 1)→ (x3 = 0) (2.4)

Constraint 2.1 reflects that we want to pick exactly two items. Constraint 2.2
specifies that s is sum of selected items. Constraints 2.3 and 2.4 reflect the two
conditions specified in the problem description1.

The two main operations of a constraint solving system are search and
propagation. Search is the act of trying different values (or ranges of values)
for variables. For discrete variables, this is done by assigning values from the
domain of that variable. For continuous variables, search is done by partitioning
the domain into disjoint intervals. The intervals that have a size smaller than a
predefined precision will not be partitioned anymore.

Propagation is the act of removing values (or ranges) from the domain of
variables that given the domains of other variables and the model constraint,
cannot be part of a solution. Given a constraint c defined over variables
x1, . . . , xn with domains D1, . . . , Dn, we define the set of admissible values for
variable x1 as:

{a1 ∈ D1 : ∃a2 ∈ D2, . . . ,∃an ∈ Dn such that C(a1, . . . , an) holds}

For continuous variables, the propagation mechanism computes a superset,
namely the smallest interval enclosing this set.

Example 3. Consider a simple model consisting of three continuous variables
x1, x2, and y with domains [a, b], [c, d], and [−∞,∞], respectively. Propagation
according to the constraint y = x1 + x2 will reduce the domain of variable y to
[a+ c, b+ d]. If we replace this constraint by y = x1 ∗ x2, the domain of y will
be reduced to [min(ac, ad, bc, bd),max(ac, ad, bc, bd)].

If we reduce the domains of variables in a CSP in such a way that all constraints
hold for each value in the domain of each variable, we have found a solution for
that CSP.

1This problem can be modeled without using continuous variables. However, we have
included variable s for the sake of demonstration.

20 BACKGROUND

Example 4 (Example 2 continued). For solving the problem formulated in
example 2, we start by assigning value 1 for x1. This assignment, together
with constraint 2.2 triggers a propagation step which reduces the domain of s
to [10, 45]. A similar propagation step based on constraint 2.4 removes value 1
from the domain of x3. This in turn changes the domain of s to [10, 25]. We
continue by assigning value 0 to x2. As a result, the domain of s reduces to
[10, 10]. At this point, all variables are assigned a value from their domain, and
all constraints hold for these values. This means that we have found a solution.

Note that in the previous example, we did not have to search for the value of
s, as its value was determined by propagation. In other words, our previous
assignments to other variables, dictated that s should be equal to 10.

Global constraints A global constraint is a constraint over a non-fixed number
of variables. Global constraint are often semantically redundant; meaning
that they can be represented by a set of simpler constraints. However, a
global constraint provides better access to the structure of the problem. A
famous example is the alldifferent(x1, . . . , xn) constraint which enforces
that each pair of variables x1, . . . , xn should take different values. Consider
alldifferent(x1, x2, x3). This constrain can be replaced by three inequality
constraints x1 6= x2, x1 6= x3, x2 6= x3. Now consider a situation where the
domain of all three variables is {1, 2}. The alldifferent constraint can
reason over these domains and issue a failure. However, the inequality constraints
do not have access to this global view and can not detect the failure.

Constraint optimization A constraint optimization problem is a CSP together
with a function f defined over V. The goal is to find a solution S∗ such that
f(S∗) ≤ f(S) for all solutions S to the problem. This problem can be solved
using a CSP solver using a simple procedure. Initially a solution S is obtained
by backtracking search. Then the constraint f(V) < S is added to the constraint
set C. Solving this problem will give a solution with a smaller objective function.
These steps are repeated until no solution is found. The solution obtained last
is optimal.

2.4 Mixed Integer Linear Programming

Amixed integer linear programming (MILP) problem is a constraint optimization
problem with linear constraints and objective function. This class of optimization
problems has been extensively studied and sophisticated solvers have been

MIXED INTEGER LINEAR PROGRAMMING 21

developed for solving this type of problems (Achterberg 2007). These problems
can contain both integer and continuous variables. A MILP problem can be
specified by the tuple (A, b, c, I) where A ∈ Rm×n is the coefficient matrix, b ∈
Rm is the right-hand-side vector, c ∈ Rn is the cost vector, and I ⊆ {1, . . . , n} is
the set of indices of integer variables. The vector of decision variables is denoted
by x. By definition, xj ∈ Z,∀j ∈ I and xj ∈ R,∀j /∈ I. Further restrictions on
domains of variables can be specified as bound constraints lj ≤ xj ≤ uj which
are a special case of linear constraints. The problem is to find values for xj
variables from their domains such that the objective function cTx is minimized
and the constraints Ax ≤ b hold.

Given a constraint optimization problem P , a relaxation PR is an optimization
problem such that each solution of P is a valid solution for PR. A linear
programming (LP) relaxation of a MILP problem is obtained by turning the
integer variables into continuous variables. This gives a linear programming
problem that can be solved efficiently. MILP solvers heavily rely on solving
these LP relaxations. These solvers employ a range of sophisticated mechanisms.
We will review the two most important mechanisms, namely branch-and-bound
search and the cutting planes method.

2.4.1 Branch-and-bound search

As indicated by its name, branch-and-bound search relies on two principles.
Branching is the practice of dividing a problem into smaller instances. In MILP
solvers, these subproblems are generated by adding constraints to the base
problem. Note that the disjunction of these constraints should not remove any
solutions from the base problem. This process resembles the search in CSP
solvers. The bounding mechanism is employed in order to avoid the enumeration
of all solutions of a problem. During the search, the smallest objective value
among all discovered solutions up to that moment produces an upper bound. If
the lower bound for a subproblem exceeds this upper bound, that subproblem
can be safely ignored. The lower bound is obtained by solving the LP relaxation
of the subproblem. An important factor that determines the strength of this
bound is how close the constraints of the relaxed problem are to the original
constraints. The strength of an LP relaxation is the degree to which this holds.
Besides providing a bound, the LP relaxation can also guide the branching
decisions. The most-commonly used branching strategy in MILP solvers is to
pick an integer variable xj which has a fractional value x̂j in the solution of
the LP relaxation. The two branches are created by adding the constraints
xj ≤ bx̂jc and xj ≥ bx̂jc. This branching mechanism is depicted in figure 2.4.

22 BACKGROUND
2.1. Branch and Bound 17

Q Q1 Q2

x̌x̌

Figure 2.2. LP based branching on a single fractional variable.

subproblems in L increase. They influence the bounding in Step 5, which should
cut off subproblems as early as possible and thereby prune large parts of the search
tree. Even more important for a branch-and-bound algorithm to be effective is the
type of relaxation that is solved in Step 4. A reasonable relaxation must fulfill two
usually opposing requirements: it should be easy to solve, and it should yield strong
dual bounds.

In mixed integer programming, the most widely used relaxation is the LP relax-
ation (see Definition 1.5), which proved to be very successful in practice. Currently,
almost all efficient commercial and academic MIP solvers are LP relaxation based
branch-and-bound algorithms. This includes the solvers mentioned in Section 1.3.

Besides supplying a dual bound that can be exploited for the bounding in Step 5,
the LP relaxation can also be used to guide the branching decisions of Step 7.
The most popular branching strategy in MIP solving is to split the domain of an
integer variable xj , j ∈ I, with fractional LP value x̌j /∈ Z into two parts, thus
creating the two subproblems Q1 = Q ∩ {xj ≤ ⌊x̌j⌋} and Q2 = Q ∩ {xj ≥ ⌈x̌j⌉}
(see Figure 2.2). Methods to select a fractional variable as branching variable are
discussed in Chapter 5.

In constraint programming, the branching step is usually carried out by selecting
an integer variable xj and fix it to a certain value xj = v ∈ Dj in one child node and
rule out the value in the other child node by enforcing xj ∈ Dj \ {v}. In contrast
to MIP, constraint programs do not have a strong canonical relaxation like the LP
relaxation. Although there might be good relaxations for special types of constraint
programs, there is no useful relaxation available for the general model. Therefore,
CP solvers implement the bounding Step 5 of Algorithm 2.1 only by propagating
the objective function constraint f(x) < ĉ with ĉ being the value of the current
incumbent solution. Thus, the strength of the bounding step heavily depends on the
propagation potential of the objective function constraint. In fact, CP solvers are
usually inferior to MIP solvers on problems where achieving feasibility is easy, but
finding the optimal solution is hard.

The branching applied in SAT solvers is very similar to the one of constraint
programming solvers. Since all variables are binary, however, it reduces to selecting
a variable xj and fixing it to xj = 0 in one child node and to xj = 1 in the other child
node. Actually, current SAT solvers do not even need to represent the branching

Figure 2.4: Branching decomposes problem Q into two subproblems Q1 and Q2.
These subproblems are constructed by adding constraints xj ≤ bx̂jc and xj ≥ bx̂jc to
Q. Figure from (Achterberg 2007).

2.4.2 Cutting planes

The performance of the branch and bound scheme depends on the strength of
the LP relaxations that are solved during the search. These LP relaxations can
be strengthened using the cutting plane method (Wolsey 1998). Given solution
x̂ for an LP relaxation of a MILP problem, a cutting plane is an additional
linear constraint that is violated by x̂ but does not cut off any solution from
the original MILP problem. This constraint separates x̂ from the convex hull of
integer solutions and thereby strengthens the LP relaxation. This concept is
depicted in figure 2.5. There are general methods for generating cutting planes
for integer programs.

In addition to the cuts automatically generated by the solver, the user can
also provide cuts throughout the branch and bound tree. These cuts can be
added each time that the linear relaxation is solved, or when a new feasible
solution for the MILP problem is obtained. This approach is typically used
when the number of constraints in problem formulation is huge. In this method
two steps are iteratively repeated: 1) A model that includes only a subset of the
constraints is solved. 2) A constraint that is violated by the current solution,
a cut, is added to the model. These steps are repeated until no constraint is
violated. To use this method, we need an oracle that given an assignment x can
check if x satisfies all constraints and if not, finds a constraint that is violated
by x. Since in the latter case the added constraint separates x from the feasible
region, the problem solved by the oracle is called the separation problem.

MIXED INTEGER LINEAR PROGRAMMING 23
18 Algorithms

Q QI

x̌x̌

Figure 2.3. A cutting plane that separates the fractional LP solution x̌ from the convex hull QI

of integer points of Q.

decisions in a tree. Because they apply depth first search, they only need to store
the nodes on the path from the root node to the current node. This simplification
in data structures is possible since the node selection of Step 3 is performed in a
depth-first fashion and conflict clauses (see Chapter 11) are generated for infeasible
subproblems that implicitly lead the search to the opposite fixing of the branching
variable after backtracking has been performed.

As SAT has no objective function, there is no need for the bounding Step 5 of
Algorithm 2.1. A SAT solver can immediately abort after having found the first
feasible solution.

2.2 Cutting Planes
Besides splitting the current subproblem Q into two or more easier subproblems by
branching, one can also try to tighten the subproblem’s relaxation in order to rule
out the current solution x̌ and to obtain a different one. Since MIP is the only
of the three investigated problem classes that features a generally applicable useful
relaxation, this technique is in this form unique to MIP.

The LP relaxation can be tightened by introducing additional linear constraints
aT x ≤ b that are violated by the current LP solution x̌ but do not cut off feasible
solutions from Q (see Figure 2.3). Thus, the current solution x̌ is separated from
the convex hull of integer solutions QI by the cutting plane aT x ≤ b, i.e.,

x̌ /∈ {x ∈ R | aT x ≤ b} ⊇ QI .

Gomory presented a general algorithm [102, 103] to find such cutting planes for in-
teger programs. He also proved [104] that his algorithm is finite for integer programs
with rational data, i.e., an optimal IP solution is found after adding a finite number
of cutting planes. His algorithm, however, is not practicable since it usually adds an
exponential number of cutting planes, which dramatically decreases the performance
and the numerical stability of the LP solver.

To benefit from the stronger relaxations obtained by cutting planes without
hampering the solvability of the LP relaxations, today’s most successful MIP solvers

Figure 2.5: To strenghten the LP, a cut separates the solution of LP relaxation x̂
from the convex hull of the integer program. Figure from (Achterberg 2007)

2.4.3 Column Generation

Column generation is a method for solving linear programs that have a huge
number of variables. It has a principle similar to the cutting plane method. In
cutting planes method we incrementally include a subset of constraints in the
model. Similarly, in column generation we incrementally add variables to the
model until a proof of optimality is obtained. This method makes it possible
to obtain the optimal solution by only including a manageable subset of the
variables in the model (Feillet 2010).

We will first introduce some notations. Consider the linear programming problem
with objective function min cx subject to m linear constraints represented by
inequalities Ax ≤ b. For a variable xi, we denote the corresponding column in
A by ai. Let I denote the set of indices of variables that are already included in
the LP model. Let xI and cI denote the vector of included variables and their
cost in the objective function. Let AI be the matrix composed of columns in A
that correspond to xI . For variables that have not been added to the model,
we similarly define the index set E, vectors xE and cE and the matrix AE .

The first step in the column generation algorithm is to solve the restricted
problem min cIxI subject to constraints AxI ≤ b. After solving this problem
to optimality, besides the solution to the restricted problem, we obtain the
vector of values λ ∈ Rm. In the standard simplex method, these values are
used for checking the optimality or proceeding with the next iteration of the
algorithm. Following the same principle, in column generation we use these
values for verifying optimality or adding a new variable.

24 BACKGROUND

To verify optimality, we first try to find a variable with a negative reduced cost,
i.e. a variable xj for which cj − λaj < 0. If such a variable exists, then it is
moved from xE to xI and this procedure is repeated. Otherwise, the obtained
solution is optimal and the algorithm terminates.

Since there are a large number of variables in xE , the task of finding the variable
with the smallest reduced cost gives rise to another search problem, called the
pricing problem. The efficiency of a column generation algorithm is heavily
affected by the efficiency of this pricing subproblem.

Branch and price The column generation algorithm solves linear programming
problems. To solve a MILP problem with a large number of variables, the
column generation method can be used within a standard branch and bound
algorithm for solving the LP relaxations. This combination is called the branch
and price method.

2.5 Pattern Mining

The goal of pattern mining is to find all patterns π in a dataset D that have
certain properties. These properties are specified as a set of constraints p. The
set of all patterns is described by a language L. The pattern mining problem is
concerned with finding all patterns in language L that satisfy p, that is the set
{π ∈ L|p(π,D) holds} (Mannila and Toivonen 1997). A well-known example is
the problem of finding frequent itemsets which we now define formally.

Definition 2 (Frequent itemset mining). Assume a set of entities I =
{i1, . . . , in}, called items. Let D be a set of transactions, such that each
T ∈ D is a set of items (i.e. T ⊆ I). An itemset is a set of items. Assuming
that we are given a threshold θ, a frequent itemset is an itemset which is a
subset of at least θ transactions. Frequent itemset mining is the problem of
finding such itemsets.

Frequent itemsets are a building block for some data mining tasks which have
a focus on finding patterns in databases. The most prominent application of
frequent itemsets is in finding association rules, which express how frequently
two (sets of) items appear together in the data (Agrawal and Srikant 1994).
For example, in a database of customer purchases, an association rule
({wine,cheese} → {grapes} (70%)) states that 70 percent of customers who
have bought wine and cheese, have also bought grapes.

PATTERN MINING 25

D Itemsets
T1 {A,B}
T2 {C}
T3 {A,D}
T4 {A,B,C}

Table 2.1: An itemset database

Example 5. Table 2.1 shows a database D over items {A,B,C,D}. For θ = 2,
itemsets {A}, {B}, {C}, and {A,B} are frequent. A rule that can be extracted
using these itemsets is {{A} → {A,B} : (66%)}.

The size of the search space of all itemsets is 2|I|. This means that even for
moderate number of items, simple generate-and-test methods are not sufficient.
Over the past two decades, considerable effort has been invested in developing
efficient methods for enumerating the solutions. The proposed methods vary
along aspects such as search space traversal (depth-first search and breath-
first search) and database representation (row-based, column-based, and tree-
based) (Aggarwal et al. 2014).

2.5.1 Constraint-based pattern mining

A problem of frequent itemset mining is that usually the number of discovered
patterns is too large. This number can be reduced if we set the frequency
threshold too high; but then only the well-known patterns will be discovered.
This indicates that the frequency constraint is not sufficient for discovering
the interesting patterns. The general idea in constraint-based pattern mining
is to resolve this problem by adding other types of constraints (Nijssen and
Zimmermann 2014).

An important class of constraints concern the ones that restrict the set of
discovered patterns to condensed representations. They are meant to reduce
the redundancy in the discovered patterns. A pattern is redundant if other
discovered patterns imply that this pattern conforms to the constraints. An
example condensed representation in frequent itemset mining is maximal itemset.
A frequent itemset is maximal if all its supersets are infrequent. Maximal
itemsets form a border between the frequent and infrequent itemsets. The
problem of mining maximal can be formally defined as follows.

Definition 3 (Maximal Frequent Itemset Mining). Given an itemset database
D and a threshold θ. Let frequencyD(I) denote the frequency of itemset I
in this database. The maximal frequent itemset mining problem consists of

26 BACKGROUND

computing the set

{I|I ⊆ I, frequencyD(I) ≥ θ,∀I ′ ⊃ I : frequencyD(I ′) < θ}

The naive way of enforcing these constraints is to first discover the frequent
itemsets and then filter the discovered patterns according to the rest of
constraints. However, if the frequency is low, a large number of patterns
will be first generated and later disposed. The alternative approach is to
enforce the constraints during search. This has motivated various algorithms for
solving pattern mining problems subject to different classes and combinations
of constraints.

2.5.2 Frequent pattern mining using constraint programming

A recent trend for solving frequent itemset mining problems is to formulate
them as constraint programming problems (Guns et al. 2011b). This approach
follows the declarative programming paradigm, as the itemset mining problem
is expressed by specifying a set of variables, their domains, and a number
of constraints over them. It is then up to the constraint solving system to
find solutions for the problem. In contrast to typical itemset mining methods
that only address a certain variant of itemset mining problems (or have to
be substantially modified to extend to another variant), adapting a constraint
programming formulation of this problem to a new setting is often possible
by adding or modifying a set of constraints. It has also been demonstrated
that computational efficiency of this solving technique can be improved by
introducing new means of data representation and novel propagation schemes.

Let S be the set of transactions in the databse D and I be the set of items.
To model the problem of frequent itemset mining in constraint programming,
we use a boolean variable Ii for each item and a boolean variable Tt for each
transaction. A solution will correspond to a frequent itemset which is represented
by Ii variables that are set to one. A variable Tt will be equal to one if the
corresponding transaction contains this itemset. The following constraints
establish the relationship between the variables Ii and Tt:

Tt = 1↔
∧
i∈I

(Dti = 1 ∨ Ii = 0) ∀t ∈ S

where the parameter Dti is equal to one if transaction t contains item i and
is equal to zero otherwise. The frequency constraint can be expressed as the
following CP constraint:

PATTERN MINING 27

∑
t∈S

Tt ≥ θ

This formulation can be easily extended to model the problem of maximal
frequent itemset mining. By adding the following constraints to the model, the
set of solutions will only include the maximal itemsets:

Ii = 0→
∑
t∈S

TtDti < θ ∀i ∈ I

This concludes our review of probabilistic graphical models, constraint
programming, integer programming and constraint-based pattern mining. In
this review, we treated these domains independently, as they have been quite
independent of each other in their development. In the consequent chapters we
will see some of the connections between these domains and the ways in which
they interact.

Part I

Probabilistic Models in
Constraint Satisfaction and

Optimization

29

Chapter 3

Constraint-Based Querying
for Bayesian Network
Exploration

In this chapter, we introduce a novel general framework and tool for answering
exploratory queries over Bayesian networks. The framework is inspired by
queries from the constraint-based mining literature designed for the exploratory
analysis of data. This chapter is based on the following paper:

• Behrouz Babaki, Tias Guns, Siegfried Nijssen, and Luc De Raedt.
“Constraint-based querying for bayesian network exploration”. In Élisa
Fromont, Tijl De Bie, and Matthijs van Leeuwen, editors, Advances in
Intel- ligent Data Analysis XIV - 14th International Symposium, IDA
2015, Saint Etienne, France, October 22-24, 2015, Proceedings, volume
9385 of Lecture Notes in Computer Science, pages 13–24. Springer, 2015.

3.1 Introduction

Understanding a Bayesian network is not always easy. In particular users who
are faced with a large network for the first time, or with networks that are
dynamically updated when new data arrives, may not understand the knowledge
encoded in such a network. It has been argued that BN’s (especially those used

30

EXAMPLES OF BAYESIAN NETWORK EXPLORATION 31

for diagnosis) should be extensively evaluated before being used in practice
(Przytula et al. 2003).

While the Bayesian network literature already provides a set of queries
and corresponding inference techniques that are helpful in gaining a better
understanding of a network, most of the standard queries specify (and fix) the
variables of interest, and then either ask for a most likely assignment to the
variables or the computation of a particular probability.

This contrasts with common practice in the field of exploratory data mining,
where one aims at understanding data by discovering and analyzing patterns.
Since the seminal work on frequent itemset mining by Agrawal et al. (Agrawal,
Imielinski, et al. 1993), numerous techniques for exploratory mining of patterns
under constraints have been developed (Nijssen and Zimmermann 2014). The
notions of frequency and pattern in constraint-based pattern mining actually
correspond to the notions of probability and explanation in a Bayesian network.
In pattern mining, one typically searches over a space of possible patterns. In
Bayesian networks, this corresponds to searching over subsets of variables and
their values. In this paper, we exploit the similarities between these two fields
and introduce constraint-based queries for Bayesian networks.

The contribution of this chapter is three-fold. First, inspired by constraint-
based mining, we introduce an expressive set of exploratory queries for Bayesian
networks. Secondly, we identify how these queries can be expressed as constraints
over the variables and joint distribution of the Bayesian network. Finally, we
show how these constraints can be expressed as a generic constraint program,
combining ideas from constraint programming, itemset mining and knowledge
compilation, in particular CP4IM (Guns et al. 2011b) and arithmetic circuits
(AC) (Darwiche 2003). Our method operates on the arithmetic circuit directly
and can hence be applied to any graphical model that can be compiled into an
AC. By doing so, we bridge the gap between constraint-based pattern mining and
graphical models and contribute towards more intelligent analysis of Bayesian
networks.

3.2 Examples of Bayesian Network Exploration

After introducing a BN pattern, we show examples of exploratory queries over
a Bayesian network in an illustrative scenario.

Definition 4 (BN pattern). Consider a joint probability PG represented by a
Bayesian network G. A pattern A over PG is a partial assignment, that is, an
assignment to a subset of the variables X in G: A = {(X1 = x1), . . . , (Xm =
xm)}, where the Xi are different variables and xi is a possible value in D(Xi).

32 CONSTRAINT-BASED QUERYING FOR BAYESIAN NETWORK EXPLORATION

OtherCarCost

SocioEcon
Age

GoodStudent

ExtraCar
Mileage

VehicleYear
RiskAversion

SeniorTrain

DrivingSkill MakeModel

DrivingHist

DrivQuality
Antilock

Airbag CarValue HomeBase AntiTheft

Theft

OwnDamage

OwnCarCost

PropertyCostLiabilityCostMedicalCost

Cushioning

Ruggedness Accident

Figure 3.1: The car insurance network (Binder et al. 1997).

The probability of a pattern A, denoted by PG(A), is P ((X1 = x1), . . . , (Xm =
xm)), that is, the marginal probability of the assignment. Our queries below
will enumerate all satisfying BN patterns.

Example constraint-based queries

Assume the manager of a New York car insurance company has just obtained a
Bayesian network that describes the factors influencing cost claims of customers,
cf. the network in Figure 3.1. She wants to analyze the network to be able to
assess costs, get more insight and provide recommendations to her personnel. In
order to do so, she is interested in exploring patterns of interest in the network
and poses a number of queries.

Q1. What are likely patterns given the evidence PropertyCost = Million?
These claims impose high costs on the company. Using a minimum probability
of 0.015, she obtains 12 patterns, most of which contain either SeniorTrain =
False or Theft = False. She is not interested in these and excludes them while
lowering the threshold in the next query.

Q2. What are likely patterns that do not contain SeniorTrain=False and
Theft=False given the evidence PropertyCost = Million (with threshold

BN QUERY FRAMEWORK 33

θ = 0.0105)? She now gets 76 patterns, among which the pattern A =
{PropertyCost = Million, DrivingSkill = Substandard, DrivQuality =
Poor, LiabilityCost = Thousand}, which she finds interesting as it indicates a
connection between high property cost, the driving capabilities of the customer,
and the liability cost incurred. However, she wonders whether the pattern
cannot be simplified.

Q3. Is there a simplification of pattern A with the same probability? She
finds a variant of pattern A in which DrivingSkill=Substandard is removed,
indicating that this assignment was implied and that there is some determinism
in the network.

Now, turning her attention to the variable “Age”, our manager wonders:

Q4. Are there any patterns that would allow to distinguish the age groups
Adolescent and Senior? She queries for patterns that have widely varying
conditional probabilities when conditioned on each of these. After excluding the
variables SeniorTrain and GoodStudent, which she already knows about, one of
the top patterns is {RiskAversion = Cautious, OtherCarCost = Thousand}.
Indeed the probability of having a cautious personality and incurring low
third-party costs is nearly 6 times higher in senior customers.

Finally, a machine learning expert suggests to use a network trained on the
company data instead (a simple naïve Bayes model). She wonders:

Q5. What are the patterns that have different probabilities according to the
original and learned network? It turns out that the pattern {Airbag=False,
AntiLock=False, VehicleYear=Older} has the largest difference of probabil-
ities, hence the naïve Bayes model ignores the well-known relation between
these three variables (namely older cars are rarely equipped with these safety
components).

3.3 BN query framework

We now formalize the queries above using constraints over patterns. Many other
queries can be formulated this way, leading to a general querying framework.

Definition 5 (BN Pattern Query). Consider a joint probability distribution
PG represented by a Bayesian network G. We denote the set of all patterns
of PG by I. A BN pattern query Q is a tuple (PG , C) where C : I → {0, 1}
is a conjunction of constraints over a pattern. Pattern A is a solution for

34 CONSTRAINT-BASED QUERYING FOR BAYESIAN NETWORK EXPLORATION

Q1: probability(A,G, θ), superset(A, {PropertyCost=Million})
Q2: probability(A,G, θ), superset(A, {PropertyCost=Million}),

exclude(A, {SeniorTrain, Theft})
Q3: maxprobability(A,G, θ′), free(A,G), subset(A, {PropertyCost = Million,

DrivingSkill = Substandard, DrivQuality = Poor, LiabilityCost =Thousand})
Q4: exclude(A, {SeniorTrain, GoodStudent}),

ev-difference(A,G, {Age=Adolescent}, {Age=Senior}, β)
Q5: difference(A,G1,G2, β)

Table 3.1: The example queries expressed using constraints over pattern A.

Q if C(A) = 1. The result of a query consists of all patterns that satisfy the
constraints.

The queries used in the examples in Section 3.2 are given in Table 3.1. Most
constraints have close counterparts in the constraint-based pattern mining
literature. The main difference is that the notion of (relative) frequency of a
pattern in a database is replaced by the probability of the pattern in the BN.
The constraints and their definitions are listed in Table 3.2 and explained below.

Probability constraint. Query Q1 requires that the probability of a pattern
A according to PG should be larger than a threshold θ. We call this constraint
probability(A,G, θ) and a pattern that respects it θ-probable. This definition is
similar to the definition of a frequency constraint in frequent pattern mining.

Sub/superset and exclusion constraints Query Q1 also requires that patterns
include given assignments. We enforce this with a superset constraint. Similarly,
we can use exclude(A, V) to exclude variables from the pattern as in query Q2.
The definition is given in Table 3.2, where vars(A) are the variables occurring
in A.

Note that a superset constraint is conceptually similar to adding evidence in
Bayesian networks, only that in our setting the computed probabilities will need
to be normalized by the probability of the evidence to obtain the conditional
probability.

Freeness, maximality and closedness constraint Query Q3 requires that a
pattern does not contain redundant variable assignments. This is similar to the
well-studied problem of simplifying explanations by excluding irrelevant variables
(Shimony 1993), e.g. because of deterministic relations between assignments
(Druzdzel and Suermondt 1994). For pattern A = B ∪ C (where B ∩ C = ∅),

BN QUERY FRAMEWORK 35

code mathematical notation CP formulation
Prb PG(A) ≥ θ F1 ≥ θ
Mxp PG(A) ≤ θ F1 ≤ θ
Sbs A ⊆ B ∀i : Qi 6= 0 =⇒ (Xi = Qi) ∈ B
Sps B ⊆ A ∀(Xi = xi) ∈ B : Qi = xi

Exc B ∩ vars(A) = ∅ ∀Xi ∈ vars(B) : Qi = 0
Fre ∀(X = x) ∈ A : PG(A\(X = x)) > PG(A) ∀i : Qi 6= 0→

(∑
j

Di,j

)
> F1

Max
∀X /∈ vars(A), ∀x ∈ D(X) :

PG(A ∪ {(X = x)}) < θ
∀i : Qi = 0→

∧
j
(Di,j < θ)

Cls
∀X /∈ vars(A), ∀x ∈ D(X) :

PG(A ∪ {(X = x)}) < PG(A)
∀i : Qi = 0→

∧
j
(Di,j < F1)

Dif |PGa (A)− PGb (A)|≥ β |F1
a − F1

b|≥ β
Ddf |PG(A)− rD(A)|≥ β |F1 − R|≥ β
Vdf |PG(A ∪B)/PG(B)− PG(A ∪ C)/PG(C)|≥ β |F1

a/ca − F1
b/cb|≥ β

Table 3.2: Constraints for BN pattern queries over patterns A, B, and
C and network G. Constraints are represented by three-letter codes
Prb: probability(A,G, θ); Mxp: maxprobability(A,G, θ); Sbs: subset(A,B);
Sps: superset(A,B); Exc: exclude(A,B); Fre: free(A,G); Max:
maximal(A,G, θ); Cls: closed(A,G); Dif: difference(A,Ga,Gb, β); Ddf: DB-
difference(A,G,D, β); and Vdf: ev-difference(A,G, B,C, β).

if variable assignments in B determine those in C, i.e., PG(A) = PG(B), we
consider those in the set C irrelevant. We call a pattern free if none of its
assignments is irrelevant. This definition is similar to the definition of free
patterns in data mining (Boulicaut and Jeudy 2001). In the presence of a
superset constraint, the free constraint should only consider variables that are
not required by the superset constraint.

Inspired by the related notions of maximality and closedness in frequent itemset
mining, we introduce these for BN patterns too. They enforce that a pattern A
does not have any superset that is θ-probable (i.e. maximal(A,G, θ)) or has the
same probability as A (i.e. closed(A,G)).

Difference constraints Queries Q4 and Q5 both ask for patterns that
demonstrate a difference between two probabilistic models. Let PG1(A) and
PG2(A) be the probability of pattern A according to networks G1 and G2. The
constraint difference(A,G1,G2, β) requires that the difference of the probability
of a pattern in these two networks is larger than β. In Q4, the two networks

36 CONSTRAINT-BASED QUERYING FOR BAYESIAN NETWORK EXPLORATION

are obtained by assigning a variable in the original network to different
values (B={Age=Adolescent} and C={Age=Senior} respectively). This can
be formulated over network G using the constraint ev-difference(A,G, B,C, β).
This constraints compares the conditional probability of A given evidence B or
C.

Another variation can be used for testing the correlations between a Bayesian
network and an actual dataset. This constraint compares the probability of a
pattern in network G with the relative frequency of the corresponding itemset
in the database D. We call this constraint DB-difference(A,G,D, β).

3.4 Formulating BN Pattern Queries As Constraint
Programming Problems

In the Bayesian network literature, typically algorithms that search in the
space of assignments are developed for specific constraints and scoring functions,
which limits their general applicability (see Section 7.2 for a discussion of related
work). In data mining, a recent trend is the use of generic solvers for handling
a wide range of constraints in a uniform way.

We observe that there is a relationship between itemsets and BN patterns, as
each variable assignment (Xi = xi) can be seen as one item, and hence a BN
pattern can be seen as an itemset. Using this insight, we adapt the constraint
programming for itemset mining framework (Guns et al. 2011b) to reason over
Bayesian networks. This framework has proven to support a wide range of
constraints and exploratory queries over itemsets. Building on this framework,
and hence the use of CP solvers, enable us to address a wide range of queries
without the need to develop multiple specialized algorithms.

We first explain how Bayesian networks can be encoded in CP in the form of an
arithmetic circuit. We then explain how the constraints identified in Table 3.2
can be expressed in this framework.

BN pattern in Constraint Programming (CP)

We can encode a BN pattern A = {(X1 = x1), . . . , (Xm = xm)} in CP by
introducing a CP variable Qi for every network variable Xi. The domain of the
CP variable Qi consists of |D(Xi)|+1 values, where D(Xi) is the set of possible
values the BN variable Xi can take: value 0 to represent that Xi is not part
of the pattern, e.g. it is marginalized over, and values 1 . . . |D(Xi)| that each
represent a possible assignment to the BN variable Xi.

FORMULATING BN PATTERN QUERIES AS CONSTRAINT PROGRAMMING PROBLEMS 37

+ 0.5

××

++ λ2,2λ1,2λ1,1 λ2,1

×× ××

λ3,2 λ3,10.8 0.2

B1,1 B2,1 B3,1 B1,2 B2,2B3,2

×F1

Figure 3.2: Arithmetic circuit for a BN with 3 variables with domain {1, 2} with X1
the parent of X2 and X3. Square boxes represent CP variables.

BN pattern queries in CP

Each of the constraints C of a BN pattern query (PG , C) can be formulated
through CP constraints over the Qi variables. We discuss this for each of the
constraints in turn.

Probability constraint We will need to repeatedly compute the probability of
a pattern, hence, we want this computation to be fast and ideally incremental.
For this reason, we choose to first compile the BN into an Arithmetic Circuit
(AC) (Darwiche 2003). Computing the probability of a partial assignment takes
time polynomial to the size of the AC, though that size is exponential to the BN
size in the worst case. Nevertheless, using ACs is generally recognized as one of
the most effective techniques for exact computation of probabilities (Darwiche
2003), especially when doing so repeatedly.

An arbitrary AC can be encoded in CP: for each indicator variable λi,j in the
AC, we introduce a Boolean CP variable Bi,j (see Fig. 3.2); the relation between
the indicator variables and the CP variables Qi is then modeled by the following

38 CONSTRAINT-BASED QUERYING FOR BAYESIAN NETWORK EXPLORATION

constraints (recall that Qi = 0 means variable Xi is not in the pattern):

Qi = 0→ ∧j (Bi,j = 1) ∀i

Qi = k → (Bi,k = 1) ∧ (∧j 6=k(Bi,j = 0)) ∀i,∀k 6= 0

We then introduce real-valued variable P , which will represent the computed
probability. For this, we introduce an auxiliary real-valued variable Fv for
each node in the circuit (round circles in Fig. 3.2). Assume each node has a
unique identifier v, with the root node having identifier 1. Leaf nodes are either
constants or indicator variables. The constants assign their corresponding Fv
variable to a fixed value. For the indicator variables λi,j , the corresponding Fv
variables are channeled to their Boolean counterparts Bi,j meaning they must
take the same value (either 0 or 1). The internal nodes are then simply encoded
by their operation, namely constraint Fv =

∏
w∈Ch(v) Fw for product nodes and

constraint Fv =
∑
w∈Ch(v) Fw for sum nodes, where Ch(v) are the identifiers of

the children of node v in the AC.

Because of these constraints, when all Qi (and hence Bi) variables are assigned,
each Fv represents the value of that node of the AC, and the root node F1 is the
probability of the BN pattern. F1 can then be used in a minimum probability
constraint, see Table 3.2, right column.

Subset, superset and exclusion constraints Including evidence and excluding
assignments in the pattern is done by constraining the relevant Qi variables
appropriately, as indicated in Table 3.2.

Freeness constraint To enforce this constraint, as explained in Section 3.3,
we need to reason over the probability of subsets of a pattern. To do so, we
use the observation that for an assignment (Xi = k) ∈ A: PG(A\{(Xi = k)}) =∑
j PG((A\{(Xi = k)}) ∪ {(Xi = j)}). Fortunately, using ACs we can efficiently

compute these terms, as they correspond to derivatives of the function f encoded
by the AC (Darwiche 2003). The latter work shows that for partial assignment
A we have PG((A\{(Xi = k)}) ∪ {(Xi = j)}) = ∂f

∂λi,j
(A). It was also shown

that this can be computed for all nodes (and hence variables X) simultaneously
using the derivatives of its parents in the AC, together with the values that we
store in Fv variables.

To compute these derivatives, we introduce a real-valued CP variable Dv for
every node v in the circuit. The value of Dv’s corresponding to leaves λi,j ,
denoted by Di,j for ease of notation, will represent the derivative of AC w.r.t
λi,j : ∀i, j Di,j = ∂f

∂λi,j
(A). Hence Di,j = PG((A\{(Xi = k)}) ∪ {(Xi = j)}).

EXPERIMENTS 39

Following the formulation in (Darwiche 2003), the constraints below encode the
computation of the D variables, where we denote by Pa+(v) the identifiers of
summation parents and by Pa∗(v) those of multiplication parents;

Dv =
∑

w∈Pa+(v)

Dw +
∑

w∈Pa∗(v)

(Dw
∏

v′∈Ch(w)
v′ 6=v

Fv) ∀v

D1 = 1

To formulate the free constraint from Table 3.2 over the CP variables, we use the
fact that given (Xi = k) ∈ A: PG(A\(Xi = k)) =

∑
j Di,j and that PG(A) = F1.

Maximality and closedness constraints can be formulated using the same building
blocks (c.f. table 3.2).

Difference constraints Comparing the probability of two networks over the
same variables can be done by encoding the two ACs and formulating a
mathematical constraint over the respective F1 root node variables (Table 3.2).

Using CP allows us to easily mix different problems, such as combining the
constraints of itemset mining in databases and BN’s in a single CP model. The
variable F1 can be computed as before, while the relative frequency of a database
over the same variables can be computed using a constraint programming for
itemset mining formulation (Guns et al. 2011b). In Table 3.2 we materialize
the relative frequency through a CP variable R.

As we have shown, many constraints over the pattern and the network can be
readily formulated in CP. Furthermore, as these are standard CP constraints,
existing CP solvers can be used to enumerate the satisfying BN patterns.

3.5 Experiments

We used the ACE1 compiler (version 2) for generating arithmetic circuits
from Bayesian networks. The networks were compiled with parameters “
-noTabular -cd06 -dtBnMinfill”. We used the Gecode 2 CP solver version
4.2.1. Experiments were run on Linux PCs with Intel 2.83GHz processors and
8GB of RAM.

1http://reasoning.cs.ucla.edu/ace/
2http://www.gecode.org

40 CONSTRAINT-BASED QUERYING FOR BAYESIAN NETWORK EXPLORATION

Network #BN-n c.Time(s) #AC-n #AC-e θ #Sols s.Time(s)

HeparII 70 0.701 6963 13272 0.9 664 9.96
0.8 24025 341.83

Win95pts 76 0.528 2786 6184 0.99 65 0.61
0.95 214645 444.1

Insurance 27 0.374 34742 113788 0.9 12 2.76
0.4 6662 383.66

Table 3.3: Probability queries over three benchmarks network, with #BN-n: number
of BN nodes; c.Time: compilation time; #AC-n/e: number of AC nodes/edges; θ:
probability threshold; #Sols: number of solutions, and s.Time: solving time.

Execution times for example queries

To give an indication of execution times, we report the runtimes for the example
queries of section 3.2 in Table 3.4a. The value of β for queries Q4 and Q5 was
0.08 and 0.25, respectively. The compilation time (not included in the reported
runtimes) was 0.374 seconds.

To investigate the influence of size of BN and AC, we ran a simple query with
only a probability(A,G, θ) constraint on three benchmark networks3. Table 3.3
reports BN and AC size, θ threshold and runtimes. AC compilation time is
small. Observe that in Table 3.3 the two larger networks have smaller AC’s,
because of their other structural properties (see (Darwiche 2003) for more
details). While bigger ACs require more runtime, the number of solutions has
a major impact on runtime too. This can be controlled up to some extent by
adding extra constraints.

Comparison with sampling

An obvious alternative to our proposed method for executing itemset queries
is to first sample a database from the joint distribution and then perform
constraint-based itemset mining queries on the sampled database. Using this
approach, one can execute the BN pattern queries using a constraint-based
itemset mining system such as (Guns et al. 2011b).

We investigate how this compares to our proposed method. We used two BNs:
the first was the insurance network, which we will call BN1. The network BN2
is a naïve Bayes version of BN1 (With PropertyCost as root, and all non-cost
observed variables as children) which we trained on 10000 samples from BN1.
Compilation time for BN1 was 0.374 and 0.212 seconds for BN2. We then
sampled a database of size 500 from BN2, which we call DB2.

3available at http://www.bnlearn.com/bnrepository/

RELATED WORK 41

Query Q1 Q2 Q3
Time(s) 1.63 11.7 11.67
Query Q4 Q5
Time(s) 58.41 12.11

(a)

#Samples Precision Recall Time(s)
100 0.39 0.76 7.59
1000 0.73 0.94 20.08
10000 0.97 0.93 375.95

(b)

Table 3.4: (a) Execution times of example queries, and (b) Quality of results of
sampling method as compared against the solutions of exact method.

In the approximate method, we sampled databases of varying sizes from BN1.
We then searched for itemsets for which the relative frequency in the database
and DB2 had a difference larger than 0.1. Table 3.4b presents the precision and
recall of BN patterns found by the approximate method, compared to those
found by our exact method. The results indicate that for a decent approximation,
one needs to sample a large database which in turn leads to high computational
costs. In comparison, the runtime of the exact method was 5.63 seconds.

3.6 Related work

Much attention in the Bayesian network literature has gone to the problem of
finding explanations given some evidence. These explanation queries typically
use a scoring function to find the best explanation. In contrast to queries like
MAP and MPE, we do not fix which variables must be in or not in the pattern,
instead we conceptually search over all possible marginalizations. There are
other explanation queries that share this feature. These typically use specific
scoring functions, such as the generalized Bayes factor of (C. Yuan, Lim, et al.
2011). The explanation queries are constrained optimisation problems instead of
enumeration problems. Our framework on the other hand is made for exploration
queries and enumerates all satisfying BN patterns instead of computing the
‘optimal’ one.

There is also a body of work on discarding irrelevant variables from explanations
(Shimony 1993; Campos et al. 2001; C. Yuan, Lim, et al. 2011; Kwisthout 2013),
as the free constraint does in our framework. In (Campos et al. 2001) each
explanation found by a K-MPE algorithm is simplified by removing assignments
that are considered irrelevant; (Kwisthout 2013) makes a trade-off between
high probability and specificity. (Shimony 1993) proposes a definition for
relevance and gives an algorithm that excludes irrelevant variables from the
MAP assignments. This is a specific optimization query which is solved by a
best-first-search algorithm.

Related to discriminating a BN network from a database, in (Jaroszewicz et al.

42 CONSTRAINT-BASED QUERYING FOR BAYESIAN NETWORK EXPLORATION

2009) the authors search for subsets of variables rather than partial assignments.
These attribute sets are then used to modify the BN to better reflects the
correlations present in the data. In other studies, a Bayesian network is used to
filter itemsets or association rules found in a database. In (Fauré et al. 2006),
first an itemset mining algorithm is applied to a database to find a number of
association rules, and then these rules are scored using the probability in the
Bayesian and the concept of D-separation. In (Malhas and Aghbari 2009) the
itemsets found by the well-known apriori algorithm are scored according to a
Bayesian network, and the itemsets and attribute sets with highest scores are
obtained in a post-processing step. The main difference with the discriminative
setting considered in our work is that we compare patterns in the database and
the network during search instead of post-processing them.

Our framework combines constraints with probabilistic computations. In similar
spirit, there has been work on combining (deterministic) constraint networks
with probabilistic networks (Mateescu and Dechter 2008). The main difference
is that in the resulting networks, all satisfying assignments are aggregated to
compute a single probability value; on the other hand, we enumerate all possible
partial assignments and compute their (marginal) probability.

3.7 Conclusions

We have investigated the problem of exploring Bayesian networks by querying
for BN patterns (partial assignments) under constraints. The work is inspired by
all the work on exploring data using constraint-based pattern mining techniques.
We have shown that similar queries and constraints as used in the constraint-
based pattern mining community can be used. This results in novel querying
abilities for BNs. The proposed execution strategy is to compile the BN
into an arithmetic circuit, and formulate and reason over that in a constraint
programming framework. Such an approach supports a wide range of queries
and constraints in a flexible and declarative manner.

Our work currently focusses on enumeration queries, as is typical in pattern
mining. However, it could also be used in an optimisation setting over a scoring
function, where its generality would allow one to add arbitrary constraints
on top of the scoring function. In future work, the approach could also be
adapted to problems beyond enumerating BN pattern queries, such as verifying
monotonicity of Bayesian networks (Rietbergen et al. 2014) or computing same-
decision probability (Chen et al. 2014). Our method may also be valuable for
mining patterns over data, when evaluating the interestingness of the patterns
using a BN (in our case, during search). Given the generality of the method,
efficiency can be a concern though. Efficiency could be improved by using global

CONCLUSIONS 43

constraints that can reason over the AC more efficiently, instead of using a
decomposition over auxiliary variables F.

Chapter 4

Stochastic Constraint
Programming with And-Or
Branch-and-Bound

Complex multi-stage decision making problems often involve uncertainty,
for example, regarding demand or processing times. Stochastic constraint
programming was proposed as a way to formulate and solve such decision
problems, involving arbitrary constraints over both decision and random
variables. What stochastic constraint programming still lacks is support for
the use of factorized probabilistic models that are popular in the graphical
model community. In this chapter we show how a state-of-the-art probabilistic
inference engine can be integrated into standard constraint solvers. This chapter
is based on the following publication:

• Behrouz Babaki, Tias Guns, and Luc De Raedt. “Stochastic constraint
programming with and-or branch-and-bound”. In Carles Sierra, editor,
Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pages 539–545. ijcai.org, 2017.

45

46 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

4.1 Introduction

Increasingly, complex decision making requires one to make decisions under
constraints while taking into account the uncertainty of the environment. Each
of these aspects has intensively been studied by different communities within
artificial intelligence. Indeed, constraint programming has focused on solving
constraint satisfaction problems and making decisions while the field uncertainty
in artificial intelligence is concerned with probabilistic graphical models and
inference. For each of these problems, advanced solutions have been developed
and solvers exist that can tackle substantial problems. But today, there is a
growing awareness that in many real-life applications, these aspects cannot be
addressed in isolation, but rather need to be tackled by an integrated approach.
Stochastic constraint programming (Walsh 2002; A. Tarim et al. 2006) covers all
three aspects as it extends constraint programming with decision making under
uncertainty. However, such methods do not yet support standard probabilistic
techniques from the graphical model community (Koller and N. Friedman
2009). It is well-known in probabilistic graphical models that factorizing
the joint probability distribution is beneficial for modeling, inference and for
learning (Koller and N. Friedman 2009). Stochastic constraint programming
currently uses trivial factorizations, assuming either that all random variables
are marginally independent (Walsh 2002), or using the joint as the only
factor (A. Tarim et al. 2006). The latter corresponds to enumerating all possible
worlds, also called scenarios. On the other hand, (Mateescu and Dechter 2008)
have integrated constraint programming and probabilistic graphical models, but
do not deal with decisions and utilities; and influence diagrams (F. Jensen et al.
1994) integrate probabilistic graphical models with decision theory, but do not
handle constraints.

Our contribution is as follows:

• We support stochastic constraint programming with factorized joint
probability distributions (as in Bayesian networks) and integrate state-of-
the-art inference engines for such graphical models.

• We use a generic constraint solver both for the deterministic constraints
and for doing constrained branch-and-bound search over an and-or tree.

• We develop and exploit a novel bound for expected utility in the search.
The key is that we use a probabilistic inference engine to compute marginal
probabilities and interval arithmetic for the utility.

We now introduce the problem and review the two standard approaches, after
which we explain and evaluate our method.

STOCHASTIC CONSTRAINT PROGRAMMING 47

4.2 Stochastic Constraint Programming

We consider multi-stage decision problems where a number of decisions can be
taken (such as the production amount) after which external factors are observed
(such as the demand) followed by new decisions etc. The goal is to assign in a
stage-wise manner the decision variables so that the expected utility over all
possible instantiations of the random variables is maximized. To model the
stochastic aspect of the external factors we use random variables with a (joint)
discrete probability distribution P .

Example 6. Consider a simple stochastic production problem from (Walsh
2002) where each stage corresponds to one quarter of the year, and the decisions
Vi are how many books to produce at the start of quarter i, and the random
variables Si represent how many books were sold at the end of quarter i. The
company is conservative so shortages are not allowed, yet the goal is to minimize
the sum of surpluses in each quarter due to stocking costs.

More formally for the 2 stage variant:

minimize min
V1

∑
S1

min
V2

∑
S2

P (S)× U(V,S)

s.t.

i∑
j=1

(Vj − Sj) ≥ 0 ∀i = 1..2

where U(V,S) = V1 − S1 + V2 − S2

Factored distributions

We will assume that the probability distribution P is specified as a factored
distribution, that is, the probability can be computed as a product of individual
factors (Koller and N. Friedman 2009). One popular such representation is a
Bayesian network.

An example Bayesian network is shown in Figure 4.1, left. It has two observed
variables (factors) S1 and S2, which would typically be two random variables
present in the stochastic problem formulation. The Bayesian network is a
hidden Markov model with 2 hidden variables (factors) where the probability of
observation is influenced by the hidden variables (e.g. market sentiment), and
the second hidden variable is influenced by the hidden variable of the previous
stage. Such a rich structure models complex interactions, and supports learning
them from observations.

48 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

Hi Si P (Si|Hi)
0 1 0.2
0 2 0.8
1 1 0.7
1 2 0.3

H1 P (H1)
0 0.5
1 0.5

H1 H2

S1 S2

H1 H2 P (H2|H1)
0 0 0.9
0 1 0.1
1 0 0.2
1 1 0.8

V1

S1

V2 V2

S2S2

2

1 2

1 2

1 2 1 2

Figure 4.1: Left: Bayesian network with 2 observed and 2 hidden variables.
Right: a policy tree for Example 6 with D(V1) = D(S1) = D(V2) = D(S2) =
{1, 2}.

Problem Description

We define a multi-stage Factored Stochastic Constraint Problem (FSCP) as a
7-tuple P = 〈V,S,D,P, U, C,≺〉 where:

• V and S are decision variables and random (stochastic) variables,
respectively;

• D is the domain of variables in V ∪ S, namely a mapping from variable to
the set of values it can take;

• P is a factored discrete distribution over S, i.e. P (S) =
∏
Si⊂S φ(Si) with

each factor φ(Si) over a subset of S. As in previous works, we assume
that the decision variables have no measurable impact on the probability
distribution.

• U(V,S) is a function that computes the utility of an instantiation of the
decision and random variables.

• C is a set of deterministic constraints. Each constraint is specified over a
non-empty subset of V and a (possibly empty) subset of S.

• ≺ is a partial ordering over V ∪ S that orders the variables by stage, and
within each stage the decision variables before the random variables.

STOCHASTIC CONSTRAINT PROGRAMMING 49

For notational convenience and without loss of generality we will assume one
decision variable Vi and one random variable Si per stage i: V1 ≺ S1 ≺ . . . ≺
VT ≺ ST .

The objective is to maximize (or similarly minimize) the expected utility of the
multi-stage problem according to ≺:

max
V1

∑
S1

max
V2

∑
S2

. . .max
VT

∑
ST

P (S1, . . . , ST)

× U(V1, . . . , VT , S1, . . . , ST) (4.1)

where we note that sum and max are not transitive and hence can not be
reordered in this formula. Constraints can range over random variables but
are deterministic: they must be satisfied for all possible (non-0 probability)
instantiations of the random variables.

An assignment to the variables V ∪ S that satisfies all constraints is not a
solution to the FSCP, rather, it holds only with probability P (S) and hence
contributes P (S) ∗ u(V, S) to the expected utility. Indeed, the solution is a
policy tree (Walsh 2002) where each node corresponds to a variable and for each
path in the tree the variables satisfy the ordering ≺. Each decision variable Vi
has just one child (corresponding to an assignment of this variable) and each
random variable Si has a child for each value in its domain. Figure 4.1 (right)
shows a policy tree for the problem of Example 6, where 1 or 2 thousand books
can be sold per stage.

An optimal policy tree is a policy tree where each decision variable in the tree
is assigned to a value such that Eq. (4.1) is maximized, while always satisfying
all constraints.

Scenario-based Search

One approach (A. Tarim et al. 2006; Hemmi et al. 2017) is to ground out each of
the possible worlds and compute their probability, and at the same time flatten
the policy tree by creating copies of each decision variable for all instantiations
of the random variables preceding it. One assignment to this set of decision
variables then corresponds to a policy tree.

For example for the policy tree in Figure 4.1 (right) we would create a decision
variable for every decision node in the tree, so 3 variables in total: one for V1
and two different ones for V2, corresponding to cases S1 = 1 and S1 = 2.

Constraints are added over these decision variables as needed, and the expected
utility function becomes a linear sum over all possible worlds

∑
s P (s) ∗ u(V, s)

50 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

V1

S1 S1

V2 V2 V2 V2

S2 S2 S2 S2 S2 S2 S2S2

2121212121212121

21212121

2121

21

Figure 4.2: The And-Or search tree for the problem of Example 6.

with s a possible world (also called scenario). For the example in Figure 4.1
(right), there would be 2 ∗ 2 scenarios corresponding to the possible worlds.

An obvious downside of this approach is that the number of decision variables
and the number of scenarios grows exponentially in the number of random
variables, with the base of the exponent determined by the number of possible
values for the random variables.

And-Or Search

Initially, a simple And-Or search algorithm (plain backtracking and forward
checking) for stochastic constraint programming was proposed (Walsh 2002).

The And-Or search tree has two types of internal nodes: the AND nodes
correspond to random variables, and the OR nodes correspond to the decision
variables. The leaves do not correspond to a variable. An outgoing edge from
an internal node represents the assignment of a value to the variable associated
with that node. Figure 4.2 shows the And-Or search tree for the problem of
Example 6.

Every path from the root to a node corresponds to a partial assignment to
V ∪ S, and must respect the ordering ≺. Given an assignment, we denote by

STOCHASTIC CONSTRAINT PROGRAMMING 51

vi the value of variable Vi ∈ V in the assignment. We label each node n by
the partial assignment (v1, s1, . . . , vk, sk) represented by the path from the root
to this node and denote it by label(n). The value of a labeled node n is then
defined as follows:

val(v1,s1, . . . , vk, sk) = max
Vk+1

∑
Sk+1

. . .max
VT

∑
ST

(4.2)

P (s1:k, Sk+1:T)× U(v1:k, Vk+1:T , s1:k, Sk+1:T)

where we use v1:k as shorthand for (v1, . . . , vk). The value of a label
(v1, s1, . . . , vk) ending in a decision variable is defined analogously. The notation
follows (F. Jensen et al. 1994).

Observe how the expression in Eq. (4.1) corresponds to the above value function
when none of the variables are assigned, that is, the value of the root node of
the And-Or tree.

The value of any node n in the And-Or tree can be computed recursively as
follows:

1. The value of a leaf with label(n) = (v1:T , s1:T) is P (s1:T)× U(v1:T , s1:T)

2. If n corresponds to a random variable, then
val(label(n)) =

∑
n′∈children(n) val(label(n′))

3. If n corresponds to a decision variable, then
val(label(n)) = maxn′∈children(n) val(label(n′))

A generic depth-first search procedure to recursively compute this function,
while also ensuring satisfaction of all constraints in non-0 probability worlds, is
shown in Algorithm 2. The symbol D represents the domain, that is, a mapping
from variables to the values they can take.

First, the AndOr() procedure on line 2 does propagation, which is the act of
removing those values from the domain that would violate a constraint. If all
variables are assigned (their domain has size 1), then the value of this leaf is
computed and returned. Next, on line 6, the variable to expand in this node
is selected in such a way that the order ≺ is respected and the value for each
of the children in the domain is recursively computed. In case of an AND
node, first one has to verify that all children (not just those with a value in the
domain) were visited and did not fail (line 13) because all possible worlds must
be possible in a policy tree. If so, the sum of child values is returned. For OR
nodes the maximum of the child values is returned.

52 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

Algorithm 2 And-Or search over domain D′ following ≺
1: procedure AndOr(D′)
2: if propagate(D′) == failure and probability > 0 then return failure
3: if ∀x ∈ V ∪ S : |D′(x)|= 1 then . In leaf
4: return val(label(D′))
5: end if
6: Select unassigned variable X according to ≺
7: . Expand this node by assigning values to X
8: for x ∈ D′(X) do . For all children of this node
9: D′′ := D′ and set D′′(X) := {x}

10: childvalx := AndOr(D′′)
11: end for
12: if X ∈ S then . AND node
13: if one of the children failed then return failure
14: else return

∑
x∈D(X) childvalx

15: else . OR node
16: return maxx∈D(X) childvalx
17: end if
18: end procedure

4.3 Method: branch-and-bound And-Or search

We improve on the above And-Or search in the following two ways, which
requires the probabilities of partial assignments:

• before exploring a node in the tree, we verify that the probability of the
assignment to the stochastic variables explored so far (a partial assignment)
is not 0. If it is, then all leaves that are descendants of this node will
have 0 probability and hence the value of this node will always be 0 and
it should not be explored. This was studied in (Qi and Poole 1995) where
it was shown that even a naive and-or search can be sped up significantly
in case of determinism (0 probabilities) in the graphical model.

• we compute upper bounds on the expected utility achievable by a node in
the and-or tree to prune the search.

Querying the probability of partial assignments

The probability of a partial assignment can be obtained through marginalization;
this has been studied for many years by the uncertainty in AI community (Pearl

METHOD: BRANCH-AND-BOUND AND-OR SEARCH 53

1989). Given a distribution over T variables, the marginal probability of
a subset of k variables is obtained by marginalizing out all other variables:
P (S1, ..., Sk) =

∑
Sk+1

. . .
∑
ST
P (S1, ..., ST).

Probabilistic inference methods can efficiently exploit structure and determinism
in the factored distribution when queried for a marginal probability. To take
advantage of this during search, we integrate an existing query inference engine
into our approach.

The characteristics of our queries are that: 1) we will query the engine many
times during search (at every node in the tree); 2) our queries will always contain
random variables satisfying the order ≺, following the depth-first search; 3) we
wish to obtain the partial probabilities of all possible values of a random variable
at once. Motivated by this, we chose the ACE engine (Chavira and Darwiche
2008) as query engine, because 1) it first compiles the Bayesian network into
an arithmetic circuit (AC). While this circuit may have worst-case exponential
size, once the AC is compiled computing a (marginal) probability takes time
linear in the size of the AC. In practice, the size of the AC is often reasonably
small making this approach very attractive to many applications (Chavira and
Darwiche 2005); 2) the ACE engine allows to incrementally commit and retract
assignments which fits the depth-first search procedure well and prevents the
engine from traversing the AC from scratch each time; 3) it can return, at low
extra cost, the probabilities for all values of a random variable. For more details
on the inference engine, see (Darwiche 2003).

Interval arithmetic for the utility

The computation of our novel bounds during the branch-and-bound And-Or
search relies on the following key ideas: to query the inference engine for
an upper bound on the probability of a partial assignment, to use interval
arithmetic (Moore 1966) to get an upper-bound on the utility of a partial
assignment and to combine this into an upper bound on the value of any node
in the And-Or tree.

The basic idea of interval arithmetic is that, given an equation over intervals,
using just the upper and lower bounds one can derive an upper and lower
bound on the outcome of the equation (Moore 1995). For example given
f(X,Y) = 3X − Y , then using interval arithmetic we can derive that
f([Xmin, Xmax], [Ymin, Ymax]) = [3Xmin − Ymax, 3Xmax − Ymin] where [·, ·]
represents the minimum and maximum value of an interval. Interval arithmetic
is a technique that constraint solvers often use internally to obtain bounds-
consistency (Choi et al. 2006).

54 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

Given a partial assignment (v1, s1, . . . , vk, sk), we wish to derive an upper
bound on the value of U(v1:k, Vk+1:T , s1:k, Sk+1:T) over all possible assignments
to Vk+1:T and Sk+1:T . We define the upper bound on the utility as:
Ū(v1:k, s1:k) = maxVk+1 maxSk+1 . . .maxST

U(v1:k, Vk+1:T , s1:k, Sk+1:T). The
bound is obtained by applying interval arithmetic to U with interval [vi, vi]
for each assigned variable and [min(D(Vi)),max(D(Vi))] for each unassigned
variable Vi; likewise for the Si. For simple utilities, as is the case here, this
interval bound computation can be provided by hand.

Shallow upper bound

Theorem 1. For each partial assignment label(n) = (v1, s1, . . . , vk, sk), we
have:

val(v1, s1, . . . , vk, sk) ≤ P (s1:k)× Ū(v1:k, s1:k) (4.3)

Proof.

max
Vk+1

∑
Sk+1

. . .max
VT

∑
ST

P (s1:k, Sk+1:T)

× U(v1:k, Vk+1:T , s1:k, Sk+1:T)

≤ max
Vk+1

∑
Sk+1

. . .max
VT

∑
ST

P (s1:k, Sk+1:T)× Ū(v1:k, s1:k)

= Ū(v1:k, s1:k)×max
Vk+1

∑
Sk+1

. . .max
VT

∑
ST

P (s1:k, Sk+1:T)

= Ū(v1:k, s1:k)×
∑
Sk+1

. . .
∑
ST

P (s1:k, Sk+1:T)

= Ū(v1:k, s1:k)× P (s1:k)

Hence, by efficiently querying for the probability P (s1:k) and computing
Ū(v1:k, s1:k), we obtain an upper bound on the value of this node.

Pruning OR nodes. This upper bound can be used to prune children of an
OR node, as only the child with the maximum value is sought. In the search,
every OR node will store as lower bound the value of its best child so far. If the

METHOD: BRANCH-AND-BOUND AND-OR SEARCH 55

upper bound of the next child to explore is below this lower bound, the child
does not need to be visited and can hence be pruned.

Pruning AND nodes. We observed that sometimes it is possible to prune
an AND node before all its children have been explored. In those cases, the
values of the children already visited are too low for the AND node to improve
its closest parent OR node.

Assume that every AND node can receive from its parent what the minimum
value is that it should achieve, that is, its lower bound LB. Let ‘Ch’ be the
set of children of an AND node and let ‘Pre’ be the children already explored
during search. Then, the following needs to hold:

LB ≤
∑
i∈Ch

val(label(i)) (4.4)

→LB ≤
∑
i∈Pre

val(label(i)) +
∑

i∈Ch\Pre

UB(i) (4.5)

where UB(i) is the upper bound on child i computed using Theorem 1. Hence,
after exploring a child of an AND node, we can verify whether Eq. (4.5) holds
and if it doesn’t we do not need to visit the remaining children.

For this to work, all nodes must be able to pass a lower bound LB to its children.
For an OR node, the lower bound of a child is simply the lower bound of the
OR node itself. For AND nodes, we can derive from Eq. (4.5) the following
lower bound on an unvisited child c:

LB −
∑

i∈Pre

val(label(i))−
∑

i∈Ch\(Pre∪{c})

UB(i) ≤ val(label(c))

hence the value of child node c needs to be larger than the left-hand side of this
equation.

Deep upper bound

A tighter upper bound on the value of a node can be computed by realizing
that the summation of an AND node Sk corresponds to a weighted sum of the
children’s value, weighted by their (conditional) probability. Hence, we can
obtain a tighter bound by computing the probability and upper bound on the
utility for each child of this AND node separately:

val(v1,s1, . . . , vk) ≤
∑
Sk

P (s1:k−1, Sk)× Ū(v1:k, s1:k−1, Sk)

56 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

The same reasoning is valid for any sequence of unassigned random variables,
that is, up to any depth:

Theorem 2. Given the partial assignment (v1, s1, . . . , vk) and an arbitrary
depth d such that k + d ≤ T , we have:

val(v1, s1, . . . , vk)

≤
∑
Sk

. . .
∑
Sk+d

P (s1:k−1, Sk:k+d)× Ū(v1:k, s1:k−1, Sk:k+d)

Proof. ∑
Sk

max
Vk+1

. . .
∑
ST

P (s1:k−1, Sk:T) × U(v1:k, Vk+1:T , s1:k−1, Sk:T)

≤
∑
Sk

max
Vk+1

. . .
∑
Sk+d

P (s1:k−1, Sk:k+d)

× Ū(v1:k, Vk+1:k+d, s1:k−1, Sk:k+d)

≤
∑
Sk

max
Vk+1

. . .
∑
Sk+d

P (s1:k−1, Sk:k+d) × Ū(v1:k, s1:k−1, Sk:k+d)

=
∑
Sk

∑
Sk+1

. . .
∑
Sk+d

P (s1:k−1, Sk:k+d) × Ū(v1:k, s1:k−1, Sk:k+d)

the last step is possible because the remaining P and Ū computation is
independent of the assignments to Vk+1:T , as it was taken out of Ū in the
step before.

This bound can be recursively computed by a simple depth-first search over
the assignments to the next d unassigned random variables. At depth d of
the recursive computation, the probability P (s1:k−1, Sk:k+d) is queried and the
upper bound on the utility is computed. Even if all probabilities of all random
variables are equal, this bound will be tighter than the shallow bound thanks to
the utility being computed for the actual value of the random variables explored.
The complexity of this computation is exponential with respect to the depth.

4.4 And-Or search in a constraint solver

A strong argument in favor of scenario-based search in (A. Tarim et al. 2006) is
the possibility to use any existing constraint solver, and hence the expressivity

EXPERIMENTS 57

and the constraints available in such solvers. We also support this argument
and use a generic constraint solver for our And-Or search and the constraints.
The key issue is that such a solver performs depth-first backtracking search but
is oblivious to nodes being AND or OR nodes. What it considers a solution,
namely an assignment to all of the variables, is just a leaf in the And-Or tree.

However this is not a fundamental issue, as constraint solvers are inherently
modular depth-first search engines. To obtain a correctly working And-Or
search, we added three modules to a constraint solver, which can be added to
most if not all modern CP solvers:

1. a global constraint that verifies whether no values are removed from the
domain of random variables, except by the search method, and otherwise
fails because the constraints should be satisfied in all possible worlds;

2. a variable and value ordering module that respects ≺, that will fail the
remaining children of an AND node if one of its children failed, and that
also computes and prunes using the upper bounds, as well as pushing the
lower bound to the child nodes;

3. a module that is called each time a complete assignment is found, and that
updates the expected utility values in its ancestor nodes appropriately.

At a technical level, we maintain the state of the policy tree in an object that
is shared by all three modules and that is not backtracked over by the regular
backtracking mechanism. The variable and value ordering module stores in
it the value choices that it made, for the global constraint to check; the ’leaf’
module updates the values of the policy tree whenever it is called, and the
variable and value ordering module resets these values for all nodes in a subtree
before exploring that subtree. This policy tree object also provides an interface
to the probabilistic inference engine and caches all queries to increase efficiency.
The cached values are stored in a hash table without replacement.

4.5 Experiments

We investigate the following questions: Q1: Does our proposed method improve
over existing approaches? Q2: What is the impact of bounding depth on
the efficiency of search? Q3: What is the interplay between bounding and
constraint propagation?

We used two problems in our experiments:

58 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

#stages scen-vars scen-CP scen-ILP AOB&B
1 1 0.000089 0.000416 0.000120
2 16 0.001410 0.002101 0.001291
3 241 T(S) 0.013641 0.016774
4 3616 T(S) 0.202595 0.19052
5 54241 T(S) 4.092760 4.02639
6 813616 T(S) 117.2034 75.9437
7 12204241 M(G) M(G) 1494.54

Table 4.1: Comparing the runtime (s) of our method (AOB&B) with scenario-based
approaches (CP and ILP) on the knapsack problem. The unsuccessful cases either
ran out of time (T) or memory (M) during generation of scenario-based problem (G)
or solving the problem (S).

#stages scen-vars scen-CP scen-ILP AOB&B
1 2 0.000134 0.000392 0.000213
2 34 0.000667 0.001199 0.001141
3 546 T(S) 0.023160 0.015718
4 8738 T(S) 0.724038 0.220448
5 139810 M(S) 34.09311 5.84844
6 2236962 T(S) 779.4099 162.892
7 35791394 M(G) M(G) T(S)

Table 4.2: Comparing the runtime (s) of our method (AOB&B) with scenario-based
approaches (CP and ILP) on the investment problem. The unsuccessful cases either
ran out of time (T) or memory (M) during generation of scenario-based problem (G)
or solving the problem (S).

Knapsack (based on an example from (Hnich, R. Rossi, S. A. Tarim, and
S. Prestwich 2011)) As items arrive, we must decide whether to pick or
leave the item. The weight and cost of an item are stochastic, and only
revealed immediately after a decision is made for that item. The weight (5
possibilities) and cost (3 possibilities) in each stage depend on a hidden variable
(2 possibilities), which itself depends on the hidden variable of the previous
stage. The goal is to maximize the expected sum of values under the constraint
that the total weight does not exceed the capacity.

Investment At the start of each season, a company can invest in option A or
B. The stochastic return is revealed at the end of the season. The two return
values in each season (4 possibilities for each option) depend on the market
sentiment (2 possibilities), which itself depends on the market sentiment in the
previous season. Option A has a higher return on average, but a major tax
relaxation is applied at the end of the horizon if the majority of income comes
from investment in B. The goal is to maximize the expected returns under the

EXPERIMENTS 59

constraint that the tax relaxation applies.

The Bayesian Networks are HMMs similar to Figure 4.1 but with two observed
variables per hidden variable (corresponding to each stage). The hidden variables
have 0.9 probability for staying in the same state. Other distribution parameters
for both problems were generated randomly, such that at each stage for Knapsack
the weight and cost have positive correlation and for Investment the returns
have negative correlation. Higher-order HMMs did not impact compilation or
runtime much because of the small number of variables/depth.

We ran the experiments on Linux machines with 32 GB of memory. The time-
out used was 1800 seconds. The CP solver used is Gecode-4.4.0 and the MIP
solver is Gurobi-6.51. We used the the ACE2 package to compile the Bayesian
networks into arithmetic circuits, and ported the inference library to C++ for
integration with Gecode. The code and data are available online 3.

Results

To answer Q1, we compare our method with a scenario-based approach that
copies the decision variables, using both a CP solver and a MIP solver. The
latter is possible because both problems only have linear constraints, though
our method can handle any CP constraint. Tables 4.1 and 4.2 show the results.
Standard CP quickly fails due to the huge search space and weak pruning. ILP
is more effective thanks to its presolving (> 50% reductions in variables) and
cutting planes. However, our native method is faster and can handle larger
number of stages.

To answer Q2, we compare the runtime of our method for different depths of
the bound. Figure 4.3 shows that even the shallow bound is much better than
no bound. Deeper bounds have a marginal gain in runtime for knapsack and a
marginal overhead for investment but always lead to smaller search spaces (not
shown). On the investment problem, it is clear that also bounding the AND
nodes (or both) is better than only the OR nodes.

To answer Q3, we gradually tighten the capacity constraint in the knapsack
problem and observe the effect on runtime, number of nodes, and number
of failures. Figure 4.4 shows that in the absence of bounds, tightening the
constraint leads to more failures and fewer nodes; meaning that the search space
becomes smaller. When bounding is employed, tighter constraints increase both
the number of nodes and failures. This indicates fewer solutions and weaker

1http://www.gecode.org and http://www.gurobi.com
2http://reasoning.cs.ucla.edu/ace
3https://github.com/Behrouz-Babaki/FactoredSCP

60 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

NONE 0 1 2 3 4 5 6
depth of bound

0

100

200

300

400

500

600

700

ru
nt

im
e

AND
OR
BOTH
NONE

NONE 0 1 2 3 4 5 6
depth of bound

140

160

180

200

220

240

260

280

ru
nt

im
e

AND
OR
BOTH
NONE

Figure 4.3: Effect of depth of bounds on instances of the knapsack problem (top) and
investment problem (bottom).

210 180 150 120 90
capacity

0

100

200

300

400

500

600

700

ru
nt

im
e depth=None

depth=0
depth=2
depth=4
depth=6

Figure 4.4: The effect of tightening the knapsack constraint on runtime in a 6-stage
problem.

bounding. Such interactions demonstrate the need for approaches that can both
handle constraints and prune with bounds.

RELATED WORK 61

no bound depth=6
C #failures #nodes #failures #nodes
210 0.0E+00 1.1E+09 8.1E+05 1.8E+07
180 5.9E+04 1.1E+09 8.1E+05 1.8E+07
150 7.6E+05 1.0E+09 2.3E+06 5.4E+07
120 3.2E+06 9.3E+08 6.3E+06 1.5E+08
90 5.7E+06 6.4E+08 9.1E+06 2.4E+08

Table 4.3: The effect of tightening the knapsack constraint (C) on the number of
nodes and failures in a 6-stage problem.

4.6 Related work

(Walsh 2002) also employed And-Or search (backtracking and forward checking)
but no bounds, independent random variables and one global stochastic
constraint. Nested constraint programming (Chu and Stuckey 2014) is a
related framework in which stochastic CP as well as other nested problems can
be expressed; their clause learning solver performs and-or search and caches
the valuation of identical subproblems/nodes, but it assumes independent
random variables. Quantified constraint optimization (Benedetti et al. 2008)
nests existential and universal quantification but does not consider probability
distributions. Arbitrary non-factored probability distributions have been
considered before in a scenario-based setting (A. Tarim et al. 2006). Global
chance constraints have been investigated in that setting too (Hnich, R. Rossi,
S. A. Tarim, and S. D. Prestwich 2012). Another work investigates relaxation
methods for convex expected utility functions (R. Rossi et al. 2008); see (Hnich,
R. Rossi, S. A. Tarim, and S. Prestwich 2011) for a survey on such methods.

FSCPs are also related to influence diagrams (F. Jensen et al. 1994) but
are different in that the utility function in influence diagrams is assumed to
be additive and that (F)SCPs support arbitrary complex constraints over
both decision and random variables; The typical jointree algorithms (F.
Jensen et al. 1994) can have prohibitive memory requirements. A depth-
first branch-and-bound algorithm was investigated (C. Yuan, X. Wu, et al.
2010) but the bound uses (simplified) influence diagrams itself. Other
connections between constraint programs and probabilistic graphical exist.
Notably probabilistic queries on mixed deterministic and probabilistic networks
(Mateescu and Dechter 2008) and a more theoretical, unifying framework of
algebraic graphical models (Pralet et al. 2007).

62 STOCHASTIC CONSTRAINT PROGRAMMING WITH AND-OR BRANCH-AND-BOUND

4.7 Conclusion and future work

We presented a novel stochastic constraint programming method with three
distinguishing features: a novel bound that works on the And-Or search space
directly; the use of (non-trivial) factorized probability distributions and querying
during search using a state-of-the-art inference engine from the UAI community;
and within a generic constraint solver meaning that any existing global constraint
can be used. This allows to reason over larger problems for which grounding out
all possible worlds is not feasible or incurs too much overhead. Our CP-based
method can handle complex constraints and not just linear/convex constraints
as MIP solvers do.

In the future, we aim to investigate a generic mechanism for global chance
constraints (Hnich, R. Rossi, S. A. Tarim, and S. D. Prestwich 2012), which
can be violated in a small amount of possible worlds (Walsh 2002). An option
is also to to find approximate solutions by not exploring worlds with a very
small probability/expected utility. A last promising avenue is to reason over
probability distributions that are influenced by the decisions too, where our
method has the advantage that it reasons over the (non-ground) problem
structure directly.

Part II

Constrained Clustering using
Integer Linear Programming

63

Chapter 5

Constrained Clustering using
Column Generation

In this chapter, we investigate the problem of constraint-based clustering from
an optimization point of view. We propose a new solution for minimum-sum-
of-squares clustering under constraints, where the constraints considered are
must-link constraints, cannot-link constraints and anti-monotone constraints on
individual clusters. This chapter is based on the following publication:

• Behrouz Babaki, Tias Guns, and Siegfried Nijssen. “Constrained clustering
using column generation”. In Helmut Simonis, editor, Integration of AI
and OR Techniques in Constraint Programming - 11th International
Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,
volume 8451 of Lecture Notes in Computer Science, pages 438–454.
Springer, 2014.

5.1 Introduction

One of the core problems studied in the data mining and machine learning
literature is that of clustering. Given a database of examples, the clustering task
involves identifying groups of similar examples; such groups are for instance
indicative for patients with similar clinical observations, customers with similar
purchase behaviour, or website visitors with similar click behaviour.

64

INTRODUCTION 65

While the clustering problem is common in the data mining literature, it is only
recently realized in the data mining community that this problem is closely
related to problems studied in the optimization literature, and hence that open
problems in clustering may be solved using generic optimization tools. In this
chapter, we study one such open problem: Optimal Constrained Minimum Sum-
of-Squares Clustering (MSSC). We show that a generic optimization strategy
can be used to address this problem.

Many types of clustering problems are known in the literature; however, MSS
clustering is arguably one of the most popular clustering settings. In MSS
clustering, the task is to find a clustering in which each example is put into
exactly one cluster. Clusters do not overlap and together they cover all the
available data. Clusters should be chosen such that points within a cluster have
small sum-of-squared distances.

The popularity of the MSS clustering setting is partially due to the k-means
algorithm. K-means is a heuristic algorithm which quickly converges to a local
minimum and is included in most data mining toolkits. Even though successful,
basic k-means has several disadvantages. One is its randomized nature: each
run of the algorithm may yield a different clustering. Another is its lacking
ability to take into account prior knowledge of a user.

There are many types of prior knowledge that a user may have. A common
perspective is to formalize prior knowledge in terms of constraints on the clusters
one wishes to find (Basu et al. 2008), where the most popular constraints
are must-link and cannot-link constraints. A must-link constraint enforces
that examples that are known to be related, are part of the same cluster. A
cannot-link constraint, on the other hand, enforces that examples that are
not related are not part of the same cluster. These constraints are popular
as many other constraints can be transformed into must-link and cannot-
link constraints (Davidson and Ravi 2007). The maximum cluster diameter
constraint, for instance, requires that each cluster must have a diameter of at
least distance α; hence, any two points that are further than α apart cannot
link together. The minimum cluster separation constraint requires that clusters
must be separated by at least distance β; hence, any two points that are less
than β apart must link together.

Other clustering settings that can be seen as constraint-based clustering problems
are problems in which clusters need to have a minimum or maximum size, or
where one is looking for alternative clusterings (Gondek and Hofmann 2004).

An important question is how to find a clustering that satisfies constraints.
Here, most algorithms in the data mining literature take a heuristic approach.
Arguably, the most well-known example is the COP-k-means algorithm (Wagstaff

66 CONSTRAINED CLUSTERING USING COLUMN GENERATION

and Cardie 2000), which modifies the k-means algorithm to deal with must-
link and cannot-link constraints. Unfortunately, even though the algorithm
is fast, it may not find a solution that satisfies all constraints even if such a
solution exists (Davidson and Ravi 2007). In itself, this is not surprising as the
problem is known to be NP hard and hence a polynomial solution is not likely
to exist (Aloise, Deshpande, et al. 2009; Davidson and Ravi 2007). As a result,
the problem of how to solve the MSSC problem under constraints is still open.

This chapter addresses this challenge and develops a generic approach that can
find an optimal solution to constrained MSSC problems. While we will focus
on must-link and cannot-link constraints, the approach allows for the inclusion
of several other constraints as well; we will show that the approach works for
all constraints that are anti-monotone.

Our approach builds on earlier work that showed the feasibility of unconstrained
optimal MSS clustering (Merle et al. 1999; Aloise, Hansen, and Liberti 2012) by
using column generation in an integer linear programming setting. The column
generation process is here responsible for identifying candidate clusters that
can be put into a clustering. We will show that most clustering constraints can
be dealt with by pushing the constraints in a branch-and-bound algorithm for
column generation.

This chapter is organized as follows. Section 5.2 introduces MSS clustering
and MSS clustering under constraints. Section 5.3 gives an overview of how
to find a solution using a column generation process, building on the earlier
work of (Merle et al. 1999; Aloise, Hansen, and Liberti 2012). In Section 5.4
we introduce a branch-and-bound approach for generating columns under
constraints. Section 5.5 discusses practical considerations in the implementation
of this algorithm. Section 5.6 provides experiments, Section 5.7 discusses related
work and Section 5.8 concludes.

5.2 MSSC

Assumed given is a dataset D with n data points. Each example in the dataset
is a point p in an m-dimensional space and is represented by a vector with
m values. One cluster is defined as a set of data points C ⊆ D. A clustering
consists of k such clusters, and corresponds to a partitioning of the data into
k groups. The number of clusters k is typically given upfront by the user. In
MSS clustering, the clusters in a clustering are usually non-overlapping, that is,
each data point belongs to exactly one cluster.

MSSC 67

Given a cluster C ⊆ D, the cluster center or centroid is the mean of the data
points that belong to that cluster:

zC = mean(C) =
∑
p∈C p

|C|
(5.1)

The quality of a clustering can be measured in many different ways. In MSS
clustering, the quality of a clustering is measured using the sum of squared
distances between each point in a cluster and the centroid of the cluster:
SSC(C) =

∑
C∈C

∑
p∈C d

2(p, zC), where d(·, ·) calculates the distance between
two points, for example, the Euclidean distance.

Note that for a cluster C, the sum of squared distances to its centroid equals
the sum of all pairwise distances between the points of that cluster, divided by
the size of the cluster:∑

p∈C
d2(p, zC) =

∑
p1,p2∈C d

2(p1, p2)
|C|

(5.2)

For simplicity of notation, when we write p1, p2 ∈ C we assume that every pair
of two points in C is included in the sum exactly once. To summarize the MSSC
problem, a mathematical programming formulation is given in Table 5.1.

The best known clustering algorithm that uses sum of squared distances is
the k-means algorithm. It is an approximate algorithm that starts with an
initial random clustering and iteratively minimizes the sum-of-squares using the
following two steps: 1) add each data point to the cluster with closest cluster
centre; 2) compute the new cluster centre of the resulting clusters. These two
steps are iterated until convergence, that is, the cluster centres do not change
any more. This procedure can get stuck in local minima and it is not uncommon
that two different runs (e.g. with different initial clusters) produce different
clusterings.

Constraints. The most well-known constraints are must-link and cannot-link
constraints. Let ML and CL be subsets of D ×D. Then a cluster C satisfies a
must-link constraint (p1, p2) ∈ML iff |{p1, p2}∩C|6= 1; it satisfies a cannot-link
constraint (p1, p2) ∈ CL iff |{p1, p2} ∩ C|≤ 1.

Note that both constraints can be evaluated on the individual clusters in a
clustering. This is a key observation for our work.

In a seminal paper by Wagstaff et al (Wagstaff and Cardie 2000), the COP-
k-means algorithm is proposed. COP-k-means is an extension of the k-means
algorithm towards must-link and cannot-link constraints. It modifies the k-
means algorithm by not assigning each point to its closest cluster centre, but

68 CONSTRAINED CLUSTERING USING COLUMN GENERATION

rather to the closest centre that satisfies all constraints. If no such centre exists,
the algorithm terminates. An alternative approach is to continue running the
algorithm, even though the final solution might then not satisfy all constraints;
in any case, the algorithm is not guaranteed to find a solution even if there
exists one.

Many other constraints are possible. We will not give a complete overview here
(see Section 5.7 and (Basu et al. 2008)). For this work it is however important
to observe that many problems can be formalized using constraints that are
anti-monotone. We call a boolean constraint ϕ(C) on a cluster C of data points
anti-monotone iff ϕ(C) implies ϕ(C ′) for all C ′ ⊆ C. The cannot-link constraint
is anti-monotone: if a cluster C satisfies a cannot-link constraint, every subset
also satisfies this constraint. There are many other anti-monotone constraints:

• a maximum cluster size constraint on clusters |C|≤ θ, which can be used
to avoid that one cluster dominates a clustering;

• a maximum overlap constraint |C ∩X|≤ θ, which can be used to avoid
that any cluster found is too similar to a given set of points X; this
generalizes the cannot-link constraint;

• a minimum difference constraint |C\X|≤ θ, which requires a certain
similarity to cluster X;

• a soft cannot-link constraint, which requires that the number of pairs
of points in a cluster that have a cannot-link constraint among them is
bounded;

• conjunctions or disjunctions of anti-monotone constraints.

A conjunction of anti-monotone constraints can for instance be used to find an
alternative clustering: starting from a clustering C, we can enforce that in a new
clustering every cluster is different from all clusters in the earlier clustering.

Must-link constraints are an example of constraints that are not anti-monotone.

In the following sections, we will show how to solve the MSS problem under a
combination of anti-monotone constraints and must-link constraints, by adapting
a state-of-the-art unconstrained optimal clustering algorithm. A feature of the
algorithm is that it exploits the anti-monotonicity of cluster constraints.

MSSC 69

minimize
C

∑
C∈C

∑
p∈C

d2(p, zC), (5.3)

s.t.

C1 ∩ C2 = ∅ ∀C1, C2 ∈ C (5.4)

|
⋃
C∈C

C|= n (5.5)

|C|= k (5.6)

Table 5.1: MSS clustering

minimize
x

∑
t∈T

ctxt, (5.7)

s.t. ∑
t∈T

xtait = 1 ∀i ∈ {1, . . . , n} (5.8)

∑
t∈T

xt = k (5.9)

xt ∈ {0, 1} ∀t ∈ T (5.10)

Table 5.2: An ILP model for MSS clustering

70 CONSTRAINED CLUSTERING USING COLUMN GENERATION

5.3 Column generation framework

In this section we give a brief overview of an ILP formulation of MSSC and a
column generation method for solving it, based on the (unconstrained) MSSC
column generation framework of Aloise et al. (Aloise, Hansen, and Liberti 2012).
The next section will introduce our proposed approach for taking constraints
into account.

An ILP formulation of MSSC. Given a dataset with n data points, the number
of possible clusters is 2n. In principle, we can hence reformulate the clustering
problem using a Boolean n by 2n matrix A that represents all possible clusters:
each column is a cluster where ait = 1 if data point pi is in cluster t and ait = 0
otherwise. We define the cost of a cluster (column) as the sum of squared
distances of the points in the cluster to its mean: ct =

∑n
i=1 d

2(pi, zt)ait.

The problem in equations 5.3-5.6 can then be formulated as an Integer Linear
Program as in Table 5.2 (Merle et al. 1999), where T = {1, . . . , 2n} denotes all
possible clusters. Equation 5.7 corresponds to the SSC criterion. Equation 5.8
states that each data point must be covered exactly once. Hence it enforces
both that the clusters are not overlapping and that all points are covered.
Equation 5.9 finally ensures that exactly k clusters are found. Note that the
k-means (and COP-k-means) algorithm can return empty clusters and hence less
than k clusters in some occasions. This can not arise in the above formulation.

For even moderate sizes of n the number of clusters will be too large to solve the
above ILP by first materializing A. However, we can use a column generation
approach in which the master problem (Eq. 5.7-5.10) is restricted to a smaller
set T ′ ⊆ T and columns (clusters) are incrementally added until the optimal
solution is provably found.

Column Generation iterates between solving the restricted master problem
and adding one or multiple columns. A column is a candidate for being added
to the restricted master problem if adding it can improve the objective function.
If no such column can be found, one is certain that the optimal solution of
the restricted master problem is also the optimal solution of the full master
problem. Whether a column can improve on the objective can be derived from
the dual.

The dual of the master problem (Table 5.2) is given in Table 5.3.

COLUMN GENERATION FRAMEWORK 71

maximize
λ,σ

− kσ +
n∑
i=1

λi (5.11)

s.t.

− σ +
n∑
i=1

aitλi ≤ ct ∀t ∈ T (5.12)

λi ≥ 0 ∀i ∈ {1, . . . , n} (5.13)

σ ≥ 0 (5.14)

Table 5.3: Dual of the optimization problem.

minimize
x

∑
t∈T

ctxt +
n∑
i=1

θiyi, (5.15)

s.t. ∑
t∈T

xtait + yi = 1 ∀i ∈ N (5.16)

∑
t∈T

xt = k (5.17)

xt ∈ {0, 1} ∀t ∈ T (5.18)

− µ ≤ yi ≤ µ ∀i ∈ N (5.19)

Table 5.4: Model with stabilization included (N = {1, . . . , n}).

72 CONSTRAINED CLUSTERING USING COLUMN GENERATION

Here λi indicates a dual value corresponding to the constraint in equation 5.8
and σ a dual value corresponding to equation 5.9. One column in the master
problem corresponds to one constraint in the dual (Equation 5.12).

Given values for λ and σ, obtained by solving a restricted master problem, we
need to determine whether there are columns for which σ−

∑n
i=1 aitλi + ct < 0,

that is, whether there are columns with a negative reduced cost. If no such
column can be found, the current solution is optimal.

Finding a column with negative reduced cost is called pricing. While a pricing
routine can return any column with a negative reduced cost, one typically
searches for the smallest one; hence we are interested in finding:

arg min
t∈T

σ −
n∑
i=1

aitλi + ct. (5.20)

Solving this pricing problem is not trivial, given the large number of columns.
The details of solving the pricing subproblem will be discussed in more detail
in Section 5.4.

When solving the restricted master problem, it is possible that it has no feasible
solution. In this case, Farkas’ Lemma (Schrijver 2003) can be used to add
columns that gradually move the solutions of the restricted master problems
closer to the feasible region, or to prove infeasibility of the master problem.
This Farkas pricing is similar to the regular pricing explained above. In this
case, the problem to optimize is:

arg min
t∈T

σ′ −
n∑
i=1

aitλ
′
i (5.21)

where σ′ and λ′ are the dual Farkas values. Note that this is the same problem
as the regular pricing problem above, with the exception that the cost ct of the
cluster does not need to be taken into account.

5.4 Column generation with constraints.

Given the earlier observations, one can see that enforcing constraints on clusters
C amounts to removing from the cluster matrix A all clusters that do not
satisfy these constraints. In a column generation scheme, this means that it is
sufficient to add these constraints to the subproblem solver; they do not need to
be added to the master problem. The rest of this section explains our proposed
branch-and-bound method for solving the (constrained) subproblem.

COLUMN GENERATION WITH CONSTRAINTS. 73

5.4.1 Subproblem solving

Essentially, in each iteration of the column generation process we need to solve
a constrained minimisation problem. The objective function to minimize is
given by equation 5.20 (equation 5.21 in case of infeasibility). By removing the
constant σ and using equation 5.2, we can rewrite the objective as:

arg min
t∈T

n∑
i=1

d2(pi, zt)ait + σ −
n∑
i=1

aitλi (5.22)

= arg min
t∈T

∑n
i=1
∑n
j=i+1 d

2(pi, pj)aitajt∑n
i=1 ait

−
n∑
i=1

aitλi (5.23)

Let us represent the cluster t ∈ T and its corresponding column a·t as a set X.
We define d(X) =

∑
i,j∈X d

2(pi, pj), where every pair is only considered once
in the sum, d(X,Y) =

∑
i∈X,j∈Y d

2(pi, pj) and λ(X) =
∑
i∈X λi. We can now

rephrase our problem as that we wish to search for a cluster X:

arg min
X

d(X)
|X|

− λ(X) (5.24)

and such that all constraints on clusters are satisfied.

Blocks. A first simple observation is that the must-link constraints are
transitive and hence the must-link relation is an equivalence relation. We
will refer to the equivalence classes as blocks. We can rephrase our optimization
problem as an optimization problem over the blocks. Let X = [pi]ML denote
the block that point pi ∈ D belongs to (a point can never belong to two blocks)
and let D/ML = {[pi]ML | pi ∈ D} denote the blocks in the data. We are
looking for a subset of the blocks X̄ ⊆ D/ML such that the following criterion
is minimized:

f(X̄) =

∑
X∈X̄

d(X) +
∑

X,Y ∈X̄

d(X,Y)

 /
∑
X∈X̄

|X|−
∑
X∈X̄

λ(X). (5.25)

Note that we can precompute the terms d(X), d(X,Y), |X| and λ(X) for all
X,Y ∈ D/ML. Note furthermore that if ML = ∅ then ∀X ∈ X̄ : |X|= 1 and
this formula is identical to the one without constraints.

In addition, the choice of X̄ has to satisfy the cannot-link constraint: for no
two X,Y ∈ X̄ it may be the case that i ∈ X, j ∈ Y, (i, j) ∈ CL.

74 CONSTRAINED CLUSTERING USING COLUMN GENERATION

Algorithm 3 Branch-and-bound(Set: X̄, Set: C̄)
X̄ is the current set of blocks under consideration, C̄ the possible extensions to
X̄.

1: C̄ := reduce-candidates(X̄, C̄)
2: if not prunable(X̄, C̄) then
3: Store C̄ in a stack
4: Process X̄ as candidate cluster
5: while C̄ is not empty do
6: C := C̄.pop ()
7: Branch-and-bound (X̄ ∪ {C}, C̄)
8: end while
9: end if

Algorithm. We propose to use a branch-and-bound algorithm to solve this
problem. This algorithm performs a set-enumeration and is given in Algorithm 3
(initialized with Branch-and-bound({}, D/ML)). It uses newly developed
pruning strategies to make the search feasible and is easily extended to include
a wide range of constraints. In order to prune candidates, we either remove
some candidates from consideration (line 1) or discard a branch of the search
tree using bounds on the objective function (line 2).

The removal of candidates in line 1 corresponds to propagation in a constraint
programming setting (Dao et al. 2013). However, we will show that the proposed
bound used in line 2 is not valid in the presence of arbitrary constraints and
hence cannot be used in general.

5.4.2 Reducing the number of candidates

We employ three strategies to reduce the set of candidates in line 1 of
Algorithm 3:

Cannot-link constraints. The cannot-link constraint is easily taken into
account: when there is a cannot-link constraint between a block in C̄ and
a block in X̄, the block is removed from C̄.

Anti-monotone constraints other than cannot-link constraints are easily included
as well: if a set X̄ ∪ {C} does not satisfy an anti-monotone constraint, the
candidate C can be removed in line 1.

COLUMN GENERATION WITH CONSTRAINTS. 75

Block compatibility. Assume that we have a block C1 ∈ X̄ and a block C2 ∈ C̄
and the following holds:

d(C1) + d(C2) + d(C1, C2)
|C1|+|C2|

− λ(C1)− λ(C2) > 0,

then any cluster X̄ ′ we could build that includes both C1 and C2 can be
improved by removing both C1 and C2:

f(X̄) =
∑

pi∈∪X̄

d(pi, z∪X̄)2 −
∑
X∈X̄

λ(X) ≥

∑
pi∈∪X̄\{C1,C2}

d(pi, z∪X̄\{C1,C2})
2 +

∑
pi∈C1∪C2

d(pi, zC1∪C2)2 −
∑
X∈X̄

λ(X) ≥

∑
pi∈∪X̄\{C1,C2}

d(pi, z∪X̄\{C1,C2})
2 +−

∑
X∈X̄\{C1,C2}

λ(X). (5.26)

Note that this argument is only valid in the presence of anti-monotone constraints
in combination with must-link constraints. We refer to this test as a compatibility
test. When a block in C̄ is incompatible with a block in X̄, the block is removed
from C̄.

5.4.3 Pruning using a bound on the objective function

For the remaining set of candidates, a more elaborate test is carried out
to determine whether to continue the search (line 2). This test consists of
calculating a bound on achievable solutions and comparing it with the best
solution found so far. A key feature of this bound is that it can be calculated
efficiently.

The key idea is as follows. Let X̄ ′ be a set that is found below a set X̄ in the
search tree, that is, X̄ ′ ⊆ C̄ ∪ X̄. We can write its quality as follows:

(d(∪X̄)︸ ︷︷ ︸
old

+
∑

X∈X̄′\X̄

β(X̄,X)

︸ ︷︷ ︸
(1) between old and new

+
∑

X,Y ∈X̄′\X̄

d(X,Y)

︸ ︷︷ ︸
(2) between new blocks

)/
∑
X∈X̄′

|X|

︸ ︷︷ ︸
(3) sizes

−
∑
X∈X̄′

λ(X)

︸ ︷︷ ︸
(4) lambdas

,

where β(X̄,X) = d(X) +
∑
Y ∈X̄ d(X,Y).

Essentially, we need to have a bound on the best X̄ ′. An important first
concern is that we do not know the size of the best X̄ ′ and hence we do not

76 CONSTRAINED CLUSTERING USING COLUMN GENERATION

know term (3). We simplify this problem by iterating over all cluster sizes∑
X∈X̄ |X|≤ s ≤

∑
X∈X̄ |X|+

∑
C∈C̄ |C| and calculating a bound on the quality

assuming the best cluster has size s, i.e., we calculate a bound on the above
formula assuming part (3) is iteratively fixed. The overall bound is the best
bound among all the sizes considered.

Calculating a lower bound for a fixed value s of (3) requires a lower bound
on (1) and (2), and an upper bound on (4). We discuss each in turn. A lower
bound on part (1) for a given size s is obtained as follows:

• sort all C ∈ C̄ increasing in their β(X̄, C)/|C| values, yielding order
C1, . . . , Cm;

• determine the largest value k such that
∑k
i=1|Ci|≤ s;

• determine
∑k
i=1 β(X̄, Ci) as bound.

The argument for this is as follows. All additional points that are selected by
the algorithm above in C1, . . . , Ck are characterized by the β(X̄, C)/|C| value
their corresponding block has. If we sum these characteristic values over all
points, the result is

∑k
i=1 β(X̄, Ci). Choosing the lowest possible characteristic

values is a lower bound as the sum of characteristic values of the points in the
optimum X̄∗, and hence also the value

∑
X∈X̄∗\X̄ β(X̄,X), can never be better.

A similar algorithm can be used to determine an upper bound for term (4):

• sort all C ∈ C̄ decreasing in their λ(C)/|C| values, yielding order
C1, . . . , Cm;

• determine the smallest value k such that
∑k
i=1|Ci|≥ s;

• determine
∑k
i=1 λ(Ci) as bound.

A simple lower bound on term (2) is that it is always higher than zero.
Calculating a good bound is hard, as we essentially need to solve an edge-
weighted clique problem.

While the overall bound obtained is not very tight, also because term (1) and
term (4) are sorted independently, it has important computational advantages.
First, we can sort the λ(C)/|C| and β(X̄, C)/|C| values before iterating over
potential sizes; hence, we can avoid doing this repeatedly for each size s. Second,
we do not need to consider all sizes s indicated earlier. If we consider the sorted
ranges of λ and β values, there are ranges of sizes in which the bound does not

PRACTICAL CONSIDERATIONS 77

change; the bound only changes when either a lambda value changes or a β
value changes. It hence suffices to consider 2|C̄| different sizes for s. Finally, we
can maintain the bounds incrementally.

As a result, the overall bound over all sizes s can be calculated in O(|C̄|log|C̄|)
time. As furthermore all required counts can be maintained incrementally
in O(|C̄|) time, the overall time spent in one call of the Branch-and-bound
algorithm (excluding recursive calls) is O(|C̄|log|C̄|); in other words, the
complexity of the algorithm is not dependent on the number of points in
the data, but only on the number of blocks that the must-link constraints
identify in it.

5.5 Practical considerations

The column generation approach, in combination with the branch-and-bound
algorithm, provides a fundamental approach for finding optimal solutions under
constraints. However, several practical considerations are of importance when
implementing the column generation approach.

5.5.1 Initialisation

Initially, there are no columns in the restricted master problem. This means
that Farkas pricing needs to be performed until a feasible solution is found,
which can be time consuming. However, assuming a heuristic solver such as
COP-k-means finds a solution, one can initialize the restricted master problem
with this known (sub-optimal) solution. This avoids the need for Farkas pricing,
provides a number of good initial columns (cuts to the dual problem) as well as
an upper bound for the master problem.

5.5.2 Branching

Integer linear programs are typically solved by solving a number of LP relaxations
and using branching to enforce integrality. So far, we have described how we
employ the column-generation method for solving the LP relaxations. In theory,
if the solution to the linear program is fractional any type of branching can be
used. In previous work (Merle et al. 1999) a Ryan-Foster branching scheme was
employed. In this scheme, in the restricted problem two columns are determined
that have a corresponding fractional value and that cover the same data point
(p1). Branching will enforce that in subsequent problems only one of these two

78 CONSTRAINED CLUSTERING USING COLUMN GENERATION

Figure 5.1: Run times on the Iris data set.

columns can cover that point. Observe that no two columns cover exactly the
same data points and hence they must differ in at least one data point (p2).
We can now branch by enforcing that in one branch points p1 and p2 are in the
same cluster and that in the other branch p1 and p2 are not in the same cluster.

This type of branching naturally fits our approach as it corresponds to adding
a must-link or cannot-link constraint. Compared to (Merle et al. 1999), the
proposed approach can hence handle both constrained and unconstrained cases
in the same principled manner.

5.5.3 Slow convergence

Many large-scale column generation approaches suffer from slow convergence.
Similar to (Merle et al. 1999), we also observed degeneracy in our experiments:
even when given the optimal solution, a large number of column generation
iterations is required before the optimality is proved. We implemented a dual
stabilisation scheme similar to the one of (Merle et al. 1999): adding a linear
penalisation to the dual objective corresponds to adding a perturbation variable
to each of the constraints in equation 5.8 and adding them to the objective
function, given in Table 5.4. Here yi are the perturbation variables, +/−µ
its bounds and θi its coefficients in the objective function. The θi form a
stabilisation centre in the dual that will penalize duals that are too far from
it. A good choice for θ is the dual λ values from the best known solution so
far. The value of µ has to be progressively decreased until 0. At this point,
all perturbation variables are 0 and the problem is identical to the original
restricted master problem.

We employ a scheme where the θi are given an equal initial value and µ is set to
0.99. Each time an optimal solution to the perturbed restricted master problem
is found, the θi values are changed to the duals of that optimal solution and µ
is divided by 2` where ` is a counter of the number of such updates.

5.6 Experiments

Data was obtained from the UCI machine learning repository (Bache and
Lichman 2013). Table 5.5 lists the properties of the datasets.

EXPERIMENTS 79

name # points dimensions # labels
Iris 150 4 3
Wine 178 13 3
Soybean 47 35 4

Table 5.5: Description of datasets

We used the open-source SCIP (Achterberg 2009) system as column generation
framework. The branch-and-bound pricer is written in C++. Source
code is available at http://dtai.cs.kuleuven.be/CP4IM/cccg/. All
experiments were run on quad-core Intel 64 bit computers with 16GB of RAM
running Ubuntu Linux 12.04.3.

Constraints were generated according to the common methodology of (Wagstaff
and Cardie 2000): two data points are repeatedly sampled randomly from
labelled data; if they have the same label a ML constraint is generated, otherwise
a CL constraint. This is repeated until the required number of constraints
is generated. The code for generating these constraints and for the COP-k-
means algorithm were obtained from http://www.cs.ucdavis.edu/~davidson/

constrained-clustering/ .

It is common practice to run (COP-)k-means multiple times to avoid that it is
stuck in a local minimum. For each setting, we ran COP-k-means 500 times.
The implementation obtained continues until convergence and is not guaranteed
to satisfy all constraints. We will report on the number of runs that satisfy all
constraint (COP sat). Only when at least one solution is found that satisfies all
constraints will we report on its quality (COP max).

We initialized our column generation method with the best solution found by
COP-k-means. Best is here defined by the clustering with the largest number
of clusters satisfying all constraints. Among these clusterings, the one with
the lowest MSS is selected. Note that in case COP-k-means did not find a
solution satisfying all constraints, our column generation method started with
the best infeasible solution. The stabilisation parameter µ was set to 0.99.
Initial perturbation values θi can be set to any value; the update mechanism is
explained in Section 5.3. In case a feasible solution is at hand, a good initial
value for θi can be obtained from bounds on the dual variables. These bounds
are calculated as in (Merle et al. 1999), and we used the lower bounds of the
dual variables to initialize the corresponding θi.

The branch-and-bound method for solving the subproblem maintains a list of
all clusters that improve the bound during search (including the final best one).
All these clusters are added as columns to the restricted master problem.

http://dtai.cs.kuleuven.be/CP4IM/cccg/
http://www.cs.ucdavis.edu/~davidson/constrained-clustering/
http://www.cs.ucdavis.edu/~davidson/constrained-clustering/

80 CONSTRAINED CLUSTERING USING COLUMN GENERATION

k=3
#c COP sat COP max CG best
2 100.00% 90.3725 90.3725
60 100.00% 83.6675 83.6675
100 37.20% 87.2082 87.2082
140 0% - 87.8750∗
200 0% - 89.1496∗
240 0% - 85.2477∗
300 0% - 89.3868∗
340 31.40% 89.3868 89.3868∗
400 0% - 89.3868∗
440 31.00% 88.6409 88.6409∗
500 0% - 89.3868∗

Table 5.6: Clustering with 3 clusters and ’#c’ constraints, Iris dataset.
*optimality proven

Results. We compare the result of our column generation approach to that of
repeated runs of COP-k-means. Our column generation approach is initialized
as explained above, and a time-out of 30 minutes is used.

Tables 5.6 and 5.7 shows the quality of the results for the Iris dataset, for k = 3
(the true number of class labels) and k = 5, respectively; Figure 5.1 gives an
impression for the amount of run time it took to calculate these results.

A first observation is that in case of k = 3, and a low number of clusters,
COP-k-means easily finds clusterings that satisfy the constraints (indicated
by “COP sat”). For higher numbers of constraints, COP-k-means encounters
more problems finding clusterings satisfying all constraints. In multiple cases
none of the 500 runs finds a clustering satisfying all constraints. When we
increase the number of clusters to k = 5, the constrained clustering problem
becomes easier (Davidson and Ravi 2007); as a consequence, COP-k-means can
find satisfying solutions more easily. Even when COP-k-means can not find a
solution, our method finds acceptable clusterings; even optimal ones are found
for higher numbers of constraints. The case of 140 constraints is an exception.
For k = 5 and higher numbers of constraints, our method can find the optimal
constrained clustering.

Tables ?? and 5.9 showsthe results for the bigger Wine dataset. This dataset is
much harder, both for COP-k-means and for the column generation approach.
In case of k = 3, the true number of class labels, COP-k-means is again rarely
able to find a solution satisfying all constraints. The CG approach is able to find
solutions for some cases, but can not prove them optimal within the time-out.

EXPERIMENTS 81

k=5
#c COP sat COP max CG best impr.
2 100% 46.5616 46.5616 0%
60 100% 53.399 53.399 0%
100 100% 57.3827 57.3804∗ 0.004%
140 100% 63.1699 62.2115∗ 1.5%
200 100% 71.1401 69.3154∗ 2.56%
240 100% 72.7078 69.9776∗ 3.76%
300 83.6% 82.0819 81.9792∗ 0.13%
340 100% 85.9036 82.9945∗ 3.39%
400 100% 84.0495 84.0357∗ 0.02%
440 100% 82.6373 82.6373∗ 0%
500 100% 85.8908 85.8719∗ 0.02%

Table 5.7: Clustering with 5 clusters and ’#c’ constraints, Iris dataset.
*optimality proven

k=3
#c COP sat max CG best
240 0% - 4860250∗
300 0% - 5133144∗
340 0% - 5214981∗
380 0% - 5220299∗
420 0% - 5232632∗
460 0% - 5232632∗
500 0% - 5232632∗

Table 5.8: Clustering with 3 clusters and ’#c’ constraints, Wine dataset.
*optimality proven

In case of k = 5 the problem becomes easier, as was the case on Iris. We can see
that the CG approach can sometimes greatly improve the best solution found
in 500 COP-k-means runs, even without being able to prove its optimality.

Table 5.10 shows results on the Soybean dataset, a smaller dataset of higher
dimensionality; its true number of labels is 4. Observe that for k = 3 and
80 constraints, CG is able to prove that this problem is infeasible. The
heuristic COP-k-means simply does not find a solution, as happens for 40
and 60 constraints. We further note that in contrast to k = 4, for k = 5
COP-k-means is often not able to find the optimal solution.

82 CONSTRAINED CLUSTERING USING COLUMN GENERATION

k=5
#c COP sat COP max CG best impr.
240 100% 4021090 3327908∗ 17.24%
300 0% - 4077296∗ +
340 16.6% 4659910 4329603∗ 7.09%
380 66.6% 4729860 4450036∗ 5.92%
420 59.6% 4740180 4537678∗ 4.27%
460 94.2% 4819200 4540041∗ 5.79%
500 15% 4922560 4684355∗ 4.84%

Table 5.9: Clustering with 5 clusters and ’#c’ constraints, Wine dataset.
*optimality proven

k=3 k=4 k=5
cons COP sat. CG gap COP sat. CG gap COP sat. CG gap

2 100.00% 0 100.00% 0 100.00% 0.00%
10 100.00% 0 100.00% 0* 100.00% 4.56%*
20 100.00% 0* 100.00% 0.12%* 100.00% 0.29%*
40 0.00% 339* 100.00% 0* 100.00% 1.25%*
60 0.00% 418* 52.60% 0* 81.20% 0.24%*
80 0.00% INF 74.00% 0* 27.00% 0.38%*

Table 5.10: Soybean, different k and number of clusters (#c); GC gap =
difference between best solution quality of cop-kmeans and the solution of CG,
INF = infeasible.

5.7 Related work

We build on a column generation approach first described in (Merle et al. 1999)
and improved in (Aloise, Hansen, and Liberti 2012). This earlier work only
studies unconstrained clustering settings. We show that with modifications it
can also be used in the presence of constraints. The main necessary modification
is in the subproblem solver. We use a branch-and-bound approach that directly
solves the subproblem and can be used in the presence of any constraint that is
anti-monotone.

A feature of the first approach (Merle et al. 1999) is that it uses a heuristic
Variable Neighborhoud Search method to solve a subproblem, and only when
a solution can not be found in this way an exact method is used. The exact
method uses Dinkelbach’s lemma (Dinkelbach 1967) to solve equation 5.23
through a series of unconstrained quadratic 0-1 problems. The latter are solved
using a heuristic VNS combined with an exact branch-and-bound algorithm for

RELATED WORK 83

verifying the stopping criterion of the Dinkelbach method.

This method is improved in (Aloise, Hansen, and Liberti 2012). One of these
improvements is the introduction of a compatibility test. We adapted this test
for use in the presence of must-link constraints.

Other exact methods for MSSC are branch and bound methods (Koontz et al.
1975; Diehr 1985; Brusco and Stahl 2005), a cutting plane algorithm that starts
from the observation that MSSC is a concave optimisation problem (Xia and
Peng 2005), dynamic programming (R. E. Jensen 1969; Os and Meulman 2004)
and a branch-and-cut semi-definite programming algorithm (Aloise and Hansen
2009). These methods do not consider the addition of extra constraints.

Exact methods for constrained-based clustering have been studied before.
Typical is that they do not use MSS as optimisation criterion, but rather
a function that is linear or quadratic. Saglam et al. (Saglam et al. 2006)
use an integer linear programming approach for minimizing the maximum
cluster diameter. More recently, constraint programming has been used for
solving constrained clustering tasks (Dao et al. 2013). A range of constraints is
supported including instance-level constraints, size of cluster constraints and
constraints on the separation between clusters and maximum diameter of a
cluster. As objective function the (non-normalized) sum of squared distances
between clusters or maximum diameter is supported.

A large class of clustering methods are those that evaluate the quality of a
cluster based on a cut-value. Also in such methods the use of column generation
has been proposed (Johnson et al. 1993). The inclusion of constraints in this
method may be a topic for further research.

Exact methods are also used as part of approximate constraint-based clustering
methods. Demiriz et al. (Demiriz et al. 2008) propose to modify k-means such
that the assignment step, where points are assigned to their nearest feasible
cluster, corresponds to solving an LP. Constraints on minimum cluster size
can be taken into account, as well as instance level constraints. Davidson
et al. studied the use of SAT solvers, also using diameter as optimization
criterion (Davidson, Ravi, and Shamis 2010). Müller and Kramer (Mueller and
Kramer 2010) use integer linear programming to solve constrained clustering
tasks where a fixed number of candidate clusters is given upfront. The problem
consists of selecting the right subset of clusters, which can be compared to solving
one iteration of the restricted master problem. They investigate a number of
different optimisation criterion, as well as constraints at the clustering level,
such as the maximum amount of overlap between clusters or logical formula
over entire clusters. These methods are not guaranteed to find globally optimal
solutions.

84 CONSTRAINED CLUSTERING USING COLUMN GENERATION

5.7.1 Recent developments

After publication of this work, the problem of exact constrained MSS clustering
has been further studied and significant improvements have been achieved
in this direction. (Dao et al. 2015) present a framework based on constraint
programming. They introduce filtering algorithms that compute a bound on
the objective function of the clustering problem. This framework is improved
by using a different filtering algorithm in a later study (Guns, Dao, et al. 2016).
Both studies demonstrate improvements over our method in their experiments.
In general, using constraint programming for solving clustering problem is an
emerging topic, which aims at offering generic systems that can deal with a
range of objective functions and constraints (Dao et al. 2017).

5.8 Conclusions

We proposed a column generation strategy for solving the constrained MSS
clustering problem. The main novelty is a branch and bound algorithm that
directly solves the subproblem. Experiments showed its promise: in cases
where the COP-k-means algorithm is not able to find a solution satisfying all
constraints even in 500 runs, CG could find solutions and in several cases even
prove their optimality.

Several open questions remain. Degeneracy was not a main concern in this
study, however we observe that with the simple stabilisation scheme described
in section 5.5 the master problem still converges very slowly. It is worth
investigating if advanced stabilisation techniques work better (Merle et al. 1999).
Furthermore, the pruning strategy in the branch-and-bound algorithm could be
improved and the branch-and-bound could be expanded to deal with additional
constraints.

Chapter 6

A Branch-and-Cut Algorithm
for Constrained Graph
Clustering

In this chapter we study a graph clustering problem motivated by an application
in the analysis of biological data. This problem has two distinguishing
characteristics: First, the subgraph induced by each cluster has to be connected.
Second, the objective function is based on penalties rather than densities or
other standard quality measures. In this chapter, we explain the problem
including the constraints and quality measures, and propose to use generic
Mixed Integer Programming to solve it. This chapter is based on the following
publication:

• Behrouz Babaki, Dries Van Daele, Bram Weytjens, and Tias Guns. “A
branch-and-cut algorithm for constrained graph clustering”. Data Science
meets Optimization workshop (colocated with CPAIOR), Padova, Italy,
2017.

6.1 Introduction

Clustering is the task of partitioning a set of entities into homogeneous subsets.
The quality of the clustering is typically determined by the distance between
the entities. In graph clustering (Schaeffer 2007), each entity is assumed to be

85

86 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

a node in a graph; this graph is typically not fully connected. The quality is
then determined by the density of the entities within a cluster or by the cut
size between the clusters, that is the number of edges shared between different
clusters. The latter is for example frequently studied in the field of graph
partitioning (Buluç et al. 2016). Graph clustering has applications in many
domains including social network analysis and community detection, information
networks, transportation and logistics, and bioinformatics (Schaeffer 2007).

As data mining is increasingly applied on more and more problems in different
domains, it increasingly happens that existing clustering methods are not suited
for the problem at hand. This is either because the problem domain imposes
additional constraints that can not be expressed in these methods, or because
the objective function has a non-standard form. This has lead to the field of
constrained clustering, which studies clustering problems involving different
constraints and objectives (Basu et al. 2008). An increasingly popular way to
handle a broad range of constraints and objectives is to use generic optimisation
tools. In other words, to cast the problem as an optimisation problem and to
use generic (discrete) optimisation solvers such as constraint programming (Dao
et al. 2013), mixed integer programming (Gilpin et al. 2013; Babaki et al. 2014)
or maximum satisfiability solvers (Berg and Järvisalo 2017). Though scalability
can be an issue, these solvers can intrinsically handle different objectives and
constraints.

The problem we study in this chapter is such a graph clustering problem that
does not fit existing approaches. It is part of a bigger pipeline in computational
cancer research, where the goal is to find pathways in gene interaction networks.
There is hence an interaction network and it is a hard constraint that all nodes
belonging to a cluster must be connected in this interaction network. To evaluate
the quality there is a separate weighted co-occurence network and the nodes
belonging to a cluster should have a low co-occurence penalty. Furthermore,
small pathways are biologically less meaningful and hence the size of the clusters
should also be maximized. The problem is hence a bi-objective graph clustering
problem with hard connectivity constraints on a separate network. Existing
methods are not able to handle such a complex setting, hence we study a mixed
integer programming approach.

More specifically, our contributions are as follows: 1) we identify a new bi-
objective constrained graph clustering with applications in bio-informatics and
present an MIP formulation of the problem; 2) in order to better handle the
large number of connectivity constraints, we propose a branch-and-cut approach
that adds connectivity constraints as needed using the principle of node-cut
sets. Our experiments demonstrate the effectiveness of the approach.

The rest of this chapter is structured as follows: we first discuss related work. In

RELATED WORK 87

section 6.3 we present the application that motivates this problem. Section 6.4
introduces the formal problem definition and a MIP formulation with the
connectivity requirement. In section 6.6, we introduce two methods for handling
the connectivity requirement, including a cutting plane approach. Section 6.7
contains the experiments after which we conclude.

6.2 Related work

There are several studies that apply mathematical programming to clustering
and graph partitioning problems (Hansen and Jaumard 1997). In addition to
integer linear programming, semidefinite programming (Armbruster et al. 2008;
Lisser and Rendl 2003), and quadratic programming (N. Fan and Pardalos 2010)
formulations have also been used for solving these problems. Techniques such
as branch-and-cut (Ferreira et al. 1998; Grötschel and Wakabayashi 1989) and
branch-and-price (Mehrotra and Trick 1998; X. Ji and Mitchell 2007) have been
used to improve the performance.

There are several variants of the graph partitioning problem. When the
underlying graph is a complete graph, this problem is sometimes called the
clique partitioning problem. In most variants of the graph partitioning problem,
the edges, nodes, or both are weighted. The number of clusters can be specified
by the user or they can be decided by the algorithm. The two most prominent
types of objective functions are 1) the total weight of the edges that have
endpoints in different clusters and 2) the total weight of the edges that have
endpoints in the same cluster. Depending on the meaning of the weights, these
functions are minimized or maximized. In either case, these objectives are
meant to increase the homogeneity of the clusters.

Several types of constraints are common to the graph partitioning problem. The
most widely used constraint is the balance constraint that requires the number
of nodes in all clusters to be almost equal (Labbé and Özsoy 2010). Other types
of constraints include constraints on the size of clusters (N. Fan and Pardalos
2010), and constraints on the total weight of nodes in a cluster (Ferreira et al.
1998).

The main difference of our problem with existing ones is that we have two
graphs, where the edges of the co-occurrence graph are weighted, but the goal is
to minimize their total value. The connectivity of the nodes in the interaction
network are required and must hence be added as hard constraints. The graph
partitioning problem of (Benati et al. 2017) also requires such constraints.
However, they do not assume that the number of clusters is given, and their
encoding of the clustering problem is quite different from ours.

88 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

6.3 Motivating application

In cancer research, tumor tissue is collected from patients for further study.
Such a tumor is basically a cell in which one or more genes have mutated.
Normally that cell would be destroyed by the immune system, but in case of
a tumor that cell has managed to survive and may even be growing (out of
control). Genes and mutated genes can be identified in a tumor by sequencing
the DNA of the tissue. Nowadays, sequencing has become fairly commonplace,
enabling the genome-wide measurement of mutated genes across large groups
of cancer patients.

The key challenges when interpreting these data are to detect the (mutated)
genes that affect the creation and development of cancer and to gain an
understanding of their interaction. Initially, the main focus by the community
was solely on the detection of key driver genes. However, there are typically many
mutated genes making it challenging to detect rare ones with high statistical
significance. For this reason, there is recently a rise in methods aiming to exploit
the information contained in the human interaction network (Leiserson et al.
2015; Pulido-Tamayo et al. 2016). This network expresses which genes interact
with each other. This can be used to verify that a set of genes interact with
each other.

In our setting we start by considering a subgraph of the human interaction
network containing only those genes and interactions that were identified as
being highly relevant to breast cancer. Each node represents a gene or gene
product, and each edge represents an interaction between a pair of nodes. The
graph may consist of multiple connected components. It is our goal to separate
distinct pathways from each of these components, where a pathway is a set of
genes that interact with each other.

By incorporating such biological pathway information, a superior selection and
understanding of genes and their interactions is possible. A difficult challenge
however is how to determine that two genes are more likely to belong to the
same or to a different pathway. Fortunately, it is known that the creation and
growth of tumors follows a clonal evolutionary model. Following this model, it
is considered unlikely that a tumor would disrupt and mutate different genes
within a single pathway. Indeed, it is sufficient to disrupt one gene to disrupt
the pathway, and hence evolutionarily there is little incentive to disrupt others
as well. As a consequence, it is less common that multiple mutated genes of a
single pathway are observed within the same patient. We can hence compute a
co-occurrence penalty score for each pair of genes, based on the harm associated
with the mutations and the number of patients for whom that pair was observed.

While obtaining pathways with a low penalty is important, one should not go

PROBLEM AND MIP FORMULATION 89

c

b

a

e

fd

c

b

a

e

fd

c

b

a

d

b

e

f

Figure 6.1: Left: A small subgraph extracted from the interaction network.
Dashed lines represent the can-not-link constraints. Middle: the pathways
obtained from non-overlapping clusters. Right: the pathways obtained from
overlapping clusters.

as far as dividing the genes into small clusters. For this reason, we will aim
to balance the size of the (smallest) pathway with the amount of penalty the
pathways incur.

6.4 Problem and MIP formulation

From a computational point of view, the input to our problem are a set of
genes and two graphs over those genes: an unweighted interaction graph and
a weighted co-occurrence graph. We first review some basic graph concepts
before formally defining the problem.

A graph G = (V,E) consists of a set of nodes V and a set of edges E. Each
edge e ∈ E is a tuple (u, v), u, v ∈ V and the graph is undirected if the ordering
of the edges does not matter. The graph is weighted if each edge e ∈ E has
a corresponding weight w(e). A graph is simple if it does not have any loops
or double edges. A graph is connected if there is a path between each pair of
its nodes. The nodes on a path except the first and last ones are called the
intermediate nodes. A simple path is a path with no cycles. Another important
concept is that of an induced subgraph. Given a set of nodes V ′ ⊆ V , the
induced subgraph of G on V ′ is a graph G[V ′] that contains only the nodes in
V ′ and only the edges of G that have both endpoints in V ′.

Problem definition

Our problem is as follows: given a set of genes V , a simple undirected graph Gi =
(V,Ei) representing the interaction network and a simple weighted undirected
graph Go = (V,Eo) with weight function wo representing the co-occurence
network. The goal is to partition V into k different groups V1, . . . , Vk, where k
is assumed given. Each cluster induces a subgraph on the interaction graph Gi

90 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

and that subgraph must be connected. The quality of a clustering is determined
by the size and co-occurence penalty of the clusters. The two are linearly
combined using γ to obtain the following objective that must be maximized:

f(V1, . . . , Vk) = minkc=1|Vc|−γ
k∑
c=1

∑
e∈Go[Vc]

wo(e) (6.1)

The first component represents the size of the smallest cluster while the second
component represents the sum of weighted edges in the induced subgraph of
the co-occurence graph Go on the cluster Vc. γ can be used to balance the size
component to the co-occurence penalty computed and is assumed given.

Mixed integer programming

We can formulate this problem as an integer linear program. The main decision
variables in this formulation are those that determine the assignment of nodes
to the clusters. We will use binary variables xic to indicate whether or not node
i is included in cluster c. Each cluster must be assigned to exactly one cluster.
This can be enforced by the following set of constraints:

k∑
c=1

xic = 1 ∀i ∈ {1, . . . , |V |} (6.2)

To model the first component of the objective in Eq. 6.1 we introduce an integer
variable s which represents the size of the smallest cluster. The domain of s is
{0, . . . , b |V |k c}. The following constraints ensure that s is smaller or equal than
the size of each cluster.

s ≤
|V |∑
i=1

xic ∀c ∈ {1, . . . , k} (6.3)

As s is included in the objective function it will be maximized and hence take
the value of the size of the smallest cluster during optimisation.

For the second component, we introduce additional variables to model the edges
in the induced subgraph Go[Vc] of each cluster. More specifically, we introduce
binary variables yijc which are equal to one if and only if nodes i and j are
both included in cluster Vc. To enforce this property, we add the following
constraints to the model:

yijc ≥ xic + xjc − 1 ∀c ∈ {1, . . . , k},∀(i, j) ∈ Eo (6.4)

EXTENSIONS AND IMPROVEMENTS 91

When both xic and xjc are equal to one, this constraint forces yijc to be equal
to one. Otherwise, yijc can be either zero or one. However, as we will see,
yijc is included in the objective function with a negative coefficient. Hence the
optimization procedure will automatically fix yijc to zero in such cases.

Our formulation so far does not ensure that the nodes in each cluster are
connected. For now assume that constraint connected(x1c, . . . , x|V |c) enforces
the connectivity of cluster c. We will discuss the exact formulation of this
constraint in the next section.

The complete model that we defined is hence the following, where wo((i, j)) =
wo(e) for e = (i, j):

maximize s− γ
k∑
c=1

∑
(i,j)∈Eo

wo((i, j)) ∗ yijc (6.5)

s.t.

k∑
c=1

xic = 1 ∀i ∈ {1, . . . , |V |} (6.6)

yijc ≥ xic + xjc − 1 ∀c ∈ {1, . . . , k},∀(i, j) ∈ Eo (6.7)

s ≤
|V |∑
i=1

xic ∀c ∈ {1, . . . , k} (6.8)

connected(x1c, . . . , x|V |c) ∀c ∈ {1, . . . , k} (6.9)

xic ∈ {0, 1} ∀c ∈ {1, . . . , k},∀i ∈ {1, . . . , |V |} (6.10)

yijc ∈ {0, 1} ∀c ∈ {1, . . . , k},∀(i, j) ∈ Eo (6.11)

s ∈ {0, . . . , b |V |
k
c} (6.12)

6.5 Extensions and improvements

We choose to use a generic discrete constraint solver to solve our non-traditional
clustering problem. In the following we discuss three extensions to the above
formulation that are possible thanks to the use of generic solvers and their
ability to handle different types of constraints.

92 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

6.5.1 Overlapping clusters

It is well known that genes can occur in multiple pathways, and hence we may
wish to allow for nodes to be included in more than one cluster. To apply this
modification to our formulation, we only need to replace constraints (6.2) with
the following inequalities:

k∑
j=1

xij ≥ 1 i ∈ {1, . . . , |V |} (6.13)

6.5.2 Breaking symmetries

Clustering problems often have an inherent symmetry which is due to the fact
that the labels of clusters are arbitrary. This means that for each solution,
there are k! equivalent solutions that only differ by the cluster labels. We can
strengthen our formulation by breaking these symmetries. (Sherali and Desai
2005) suggests two measures to reduce these symmetries: 1) assign label 1 to
the cluster that contains node 1. 2) assign labels to other clusters in increasing
order of their sizes. This translates to the following constraints:

x11 = 1 (6.14)

|V |∑
i=1

xic ≤
|V |∑
i=1

xi(c+1) c ∈ {2, . . . , k − 1} (6.15)

These constraints do not eliminate all symmetries (especially in the case of
overlapping clusters) but still lead to improvements in performance in practice.

6.5.3 Obtaining the set of Pareto optimal solutions

In the above formulation we used the commonly employed method of reducing
a bi-objective optimisation problem to a single-objective one through the use
of a balancing parameter γ. An alternative solution is to use a bi-objective
optimisation approach to compute the set of Pareto optimal solutions. A
solution of a bi-objective optimization problem is Pareto optimal if there is no
other solution with a better quality with respect to both objectives. Obtaining
the set of Pareto optimal solutions for other types of bi-objective constrained
clustering has been studied before (Dao et al. 2017; Guns, Dao, et al. 2016). As
in that work, we use a method based on the ε-constraint algorithm (T’Kindt

ENFORCING CONNECTIVITY 93

Algorithm 4 Computing the set of Pareto optimal solutions
1: P ← ∅ . the set of Pareto optimal solutions
2: m← 0 . Minimum size of the previous solution
3: repeat
4: solution←MinimizePenalties(V,Gi, Gc, k,m)
5: P ← P ∪ solution
6: m← size of the smallest cluster in solution
7: until no solution was found
8: return P

and Billaut 2006) to obtain the Pareto optimal solutions. To do this, we remove
the size component from the objective leaving only the co-occurence part. Then
we iteratively solve this modified problem, each time adding a constraint such
that the size of the smallest cluster is larger than that found in the previous
iteration (m):

|V |∑
i=1

xic > m ∀c ∈ {1, . . . , k} (6.16)

The approach is depicted in Algorithm 4.

6.6 Enforcing connectivity

The remaining issue to work out is how to represent the connected(x1j , . . . , x|V |j)
constraint. We investigate two different approaches.

For a cluster to be connected, there should exist for each pair of points belonging
to the cluster at least one path between these two nodes such that all nodes on
this path also belong to the cluster. In section 6.6.1 we enforce this condition by
explicitly enumerating all simple paths between each pair of non-adjacent nodes
in the graph and adding variables and constraints for these paths. However, the
total number of paths can be exponential leading to very large models to solve.

A way to avoid having to ground out constraints for all the possible paths is to
incrementally add only those constraints needed. The cutting plane algorithm
is a method that allows this exactly. In section 6.6.2 we introduce another
formulation for the connectivity constraint based on node-cut sets, which also
has a worst-case exponential number of constraints but which lends itself well
to an incremental cutting plane method.

94 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

6.6.1 Enumerating all simple paths

Consider a simple path between the nodes u and v. Let I denote the set of
indices of the intermediate nodes on this path. Assume that binary variable
yc indicates that all these nodes belong to cluster c. A standard translation of
the relation (yc = 1)⇔ ∧i∈I(xic = 1) to linear constraints gives the following
inequality:

0 ≤
∑
i∈I

xic − |I|yc ≤ |I|−1

In general, let Puv denote the set of all simple paths between nodes u and v
in the interaction graph. For a path Pr ∈ Puv, let Ir denote the set of indices
of intermediate nodes of Pr. We introduce binary variable yrc to indicate that
all these nodes are assigned to cluster c. This relationship is enforced by the
following constraints:

0 ≤
∑
i∈Ir

xic − |Ir|yrc ≤ |Ir|−1

∀u, v ∈ V, (u, v) /∈ E,∀r ∈ {1, . . . , |Puv|},∀c ∈ {1, . . . , k} (6.17)

Finally, to enforce the condition (xuc = 1∧ xvc = 1)⇒ ∨r(yrc = 1), we add the
following constraints to the model:

xuc + xvc − 1 ≤
|Puv|∑
r=1

yrc

∀u, v ∈ V, (u, v) /∈ E,

∀c ∈ {1, . . . , k} (6.18)

These constraints ensure there exists at least one path in the interaction graph
between every two nodes in the same cluster.

6.6.2 A cutting plane approach

In the cutting plane method two steps are iteratively repeated: 1) A model
that includes only a subset of the constraints is solved. 2) A constraint that is
violated by the current solution, a cut, is added to the model. These steps are

ENFORCING CONNECTIVITY 95

1

2

3 4

5

Figure 6.2: The sets {2,
5} and {3, 5} belong to
Γ(1, 4), but the set {2, 3, 5}
does not because it is not
minimal.

repeated until no constraint is violated. To use the cutting plane algorithm, we
need an oracle that given an assignment x can check if x satisfies all constraints
and if not, finds a constraint that is violated by x. Since in the latter case the
added constraint separates x from the feasible region, the problem solved by the
oracle is called the separation problem. In a branch and cut algorithm, cutting
planes are added throughout the branch and bound tree.

A cutting plane approach with the formulation of connectivity from the previous
section would require us to add both variables (the yrc ones) and constraints
(6.17) and (6.18) for each cut. Instead, we adopt the approach of (Carvajal
et al. 2013) which defines the connectivity constraints in terms of node-cut
sets. The advantage is that no extra variables need to be introduced, and that
between two nodes the connectivity can be broken incrementally with individual
constraints. The following definition and theorem are taken from (Carvajal
et al. 2013).

Definition 6 (Node-cut set). Given nodes u, v ∈ V that are not adjacent
((u, v) /∈ E), a set of nodes S ⊆ V \ {u, v} is a node-cut set separating u and v
(or simply a uv-node cut) if all paths between u and v intersect S.

There is hence at least one node from every path between u and v in the uv-node
cut. A uv-node cut is minimal if it is not a uv-node cut after removing any
of its nodes. For a pair of non-adjacent nodes u and v, we denote by Γ(u, v)
the set of all minimal uv-node cut sets. Figure 6.2 shows examples of minimal
node-cut sets. The following theorem relates the connectivity of a graph to its
minimal node-cut sets.

Theorem 3. Given U ⊆ V and a pair of non-adjacent nodes u, v ∈ U , there
exists a path between u and v in the subgraph induced by U if and only if all
uv-node cuts S are such that S ∩ U 6= ∅.

For every uv-node cut S this theorem states that to ensure that cluster c is
connected, at least one node in the node cut must belong to the cluster:

(xuc = 1 ∧ xvc = 1)⇒ ∨w∈S(xwc = 1)

96 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

By translating this condition into linear constraints we can formulate the
constraint connected(x1c, . . . , x|V |c) as follows:

∑
w∈S

xwc ≥ xuc + xvc − 1∀(u, v) ∈ V, (u, v) /∈ E,S ∈ Γ(u, v) (6.19)

The constraint set (6.19) contains an exponential number of constraints.
Following the cutting plane method, we will iteratively add some of the violated
constraints to the model. A common practice is to add one or some of the
constraints most violated by the current solution in each iteration.

Given a solution x∗ of the problem, let us denote the value of xic variables in
this solution by x∗ic and the vector of variables corresponding to cluster c by
x∗c . In this respect, a first observation is that

∑
w∈S x

∗
wc ≥ 0 is always true

as the x∗ are Boolean variables. Hence, the constraint can only be violated if
x∗uc + x∗vc − 1 > 0, that is, if both variables belong to the same cluster. If that
is the case, then the constraint can only be violated if

∑
w∈S x

∗
wc = 0, that is,

if none of the nodes in the cut set are in the cluster. If no such constraint can
be found, then the connectivity constraint is satisfied.

The same principle can be used on real-valued solutions (as computed by the
MIP solver when solving the linear relaxation). The most violated constraint for
a non-adjacent pair (u, v) is now the constraint for which x∗uc + x∗vc − 1 > 0 and
that minimizes

∑
w∈S x

∗
wc. To add a cut of (u, v) in the cutting plane algorithm,

the goal is hence to find the node-cut set S∗,

S∗ = argmin
S∈Γ(u,v)

∑
w∈S

x∗wc (6.20)

It is shown in (Carvajal et al. 2013) that the solution for equation 6.20 can be
computed efficiently: If we use x∗ic as the capacity of node i, the separation
problem reduces to finding the minimum capacity node cut separating u and v.
This problem can be solved using any standard min-cut algorithm. A summary
of the cut generation procedure is presented in algorithm 5, where for each
cluster the most violated constraint among its node-pairs is added.

6.7 Experiments

We ran experiments on quad-core Linux machines with 32 GB of memory.
We implemented our branch-and-cut algorithm using the Python interface of

EXPERIMENTS 97

Algorithm 5 The cut-generation procedure
1: C ← ∅ . Set of constraints to add
2: for c ∈ {1, . . . , k} do
3: for u, v such that (u, v) /∈ Ei and x∗uc + x∗vc > 1 do
4: S∗ ← min-cut(u, v,x∗c , Gi)
5: C ← C ∪ {

∑
w∈S∗ xwc ≥ xuc + xvc − 1}

6: end for
7: end for
8: Add constraints C to the model

Gurobi-7 1 and allowed it to use all 4 cores.

To solve the separation problem, we used the min-cut/max-flow algorithm from
the NetworkX-1.11 library (Hagberg et al. 2008). In order to use this algorithm,
we first replaced each undirected edge by two opposite directed edges of infinite
capacity. Then, we replaced each node v by two nodes vin, vout connected by
two opposite edges, with capacities equal to the capacity of v. We obtain the
minimum node cut separating u and v by computing the minimum cut between
uout and vin in this graph.

We followed the recipe of (Carvajal et al. 2013) for adding the cuts: cuts to
the linear relaxation were only added at the root node of the branch-and-cut
tree. Moreover, when adding cuts to the relaxation, we monitored the change
in the value of the objective function. If this value improved less than 5% in 10
consecutive rounds, we stopped adding cuts. Outside the root node, we only
add cuts when an integer solution is found. We normalized the two components
of the objective function. We multiplied the size variable by 1/n in overlapping
clustering and by k/n in non-overlapping clustering. We divided the second
component by the sum of edge weights.

The graphs used in our experiments were extracted from the HINT+HI2012
protein-protein interaction network (Das and Yu 2012; Yu et al. 2011). We
consider this selection of subgraphs representative of the graphs encountered
in our application domain. Table 6.1 highlights some of the properties of our
selected instances. Several of these instances contain a very low number of edges
compared to nodes. As a direct result of this, they contain a very small number
of paths. We have also selected a few graphs that contain more paths. These
graphs also have a number high-degree nodes. Such hubs are fairly common in
scale-free networks, of which protein-protein interaction networks are a common
example.

1www.gurobi.com

98 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

Table 6.1: Instance properties

instance #simple paths #nodes #edges
200_1000 93 40 46
200_1250 1508 52 68
250_750 45 30 32
250_1000 1040 69 81
300_750 59 44 46
350_500 12 13 12
350_750 73 58 60
450_750 105 90 92

6.7.1 Results and discussion

Scalability of the two approaches

We compare the runtime of the model formulation using all paths (ENUM) with
that of using branch-and-cut (BNC), for a number of datasets and k values
and averaged over γ ∈ {0.1, 0.25, 0.33, 0.5, 1, 2, 3, 4, 5, 10}. Table 6.2 shows the
results. In each instance, one of the algorithms outperforms the other one.
This divides the instances into two groups. Instances for which enumerating
all paths has a better performance are those which have a similar number of
nodes and edges (see table 6.1). As a result, the total number of simple paths in
these graphs is small and the optimization model has a reasonable size. On the
other hand, for two of the instances the branch-and-cut method provides a clear
advantage. The total number of simple paths for these instances is considerably
larger than the others. Hence, for these instances the extra effort for solving
the separation problem pays off.

Impact of γ

The γ parameter is a way of balancing the minimum size of the clusters with
the total co-occurrence penalty. We showcase the effect of the parameter on
these two components of the objective in Figure 6.3 for instance 250_750. As
γ approaches 0 most weight is given to the size leading to increasing larger
minimum clusters but also a sharp incline in the total co-occurence penalty. For
too high γ values, ≥ 4 in this case, the size of the clusters can drop to values of
1 or 2, which are not meaningful. In this case, a γ between 1 and 3 seems most
sensible.

EXPERIMENTS 99

Pareto optimal set

As explained in Section 6.5.3 one can also use generic solvers to compute the
Pareto-optimal set directly instead of having to determine a γ parameter. In
Figure 6.4 for the non-overlapping setting we can see that a few smallest cluster
values are skipped because they are not optimal. We also observe that there is
a gradual increase in total violations as the minimum size increases, with an
increase in incline near the end (there are 30 genes in this dataset). This can
be used to select an appropriate solution among the Pareto optimal ones.

0 2 4 6 8 10

γ

0

5

10

15

20

25

30

si
ze

of
th

e
sm

al
le

st
cl

us
te

r k = 2
k = 3
k = 4

0 2 4 6 8 10

γ

0

5

10

15

20

25

30

su
m

of
vi

ol
at

io
ns

k = 2
k = 3
k = 4

Figure 6.3: Impact of γ on smallest cluster size (left) and total co-occurrence penalty
(right) for instance 250_750.

100 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

0 5 10 15 20 25 30

lower bound on size of the smallest cluster

0

10

20

30

40

50

60

70

80

su
m

of
vi

ol
at

io
ns

k = 2
k = 3
k = 4

Figure 6.4: The Pareto optimal set for overlapping clustering on instance 250_750
with three values for number of clusters.

Figure 6.5: Number of patients which are a member of each cluster, per PAM50
subtype.

EXPERIMENTS 101

Table 6.2: Average runtimes of overlapping and non-overlapping clustering by
enumerating all simple paths (AllPaths) and branch and cut (BnC). Timed-out
experiments are counted as 600 seconds (–).

overlapping non-overlapping
instance k AllPaths BnC AllPaths BnC
200_1000 2 0.830 12.320 0.319 13.398

3 3.211 16.255 4.474 15.007
4 14.846 28.714 15.578 52.262

200_1250 2 225.735 43.740 113.210 38.849
3 582.541 52.950 298.390 72.643
4 – 188.287 595.930 205.454

250_1000 2 487.222 78.243 370.898 69.481
3 587.700 121.677 – 217.079
4 – 206.952 – –

250_750 2 0.166 4.058 0.025 3.873
3 0.321 6.433 0.387 3.965
4 0.737 10.564 0.698 7.374

300_750 2 0.333 12.232 0.209 10.546
3 0.761 20.365 0.812 16.924
4 1.728 28.267 3.598 50.836

350_500 2 0.004 0.093 0.003 0.151
3 0.006 0.129 0.021 0.257
4 0.007 0.181 0.039 0.211

350_750 2 0.503 44.842 0.591 20.130
3 1.971 113.311 2.016 58.417
4 7.892 323.188 9.841 309.998

450_750 2 1.560 115.541 1.334 89.672
3 10.686 361.855 12.655 320.706
4 90.516 430.954 75.395 –

Biological validation

Research increasingly shows that a single type of cancer, for example breast
cancer, is not one homogeneous disease. Instead, it can be divided in different
subtypes that display different harmful effects, and in turn require different
treatments. In order to validate the results of the clustering approach, we
looked at the PAM50 tumor subtype classification (Parker et al. 2009), which
was previously published for the patients in our records by the Cancer Genome
Atlas Network (Koboldt et al. 2012). PAM50 subtypes are determined by
looking at the expression levels of 50 specific genes from a breast cancer sample
in order to assign an intrinsic subtype to the patient’s tumor. As this is

102 A BRANCH-AND-CUT ALGORITHM FOR CONSTRAINED GRAPH CLUSTERING

Figure 6.6: Number of patients with specific PAM50 subtype, per cluster.

based on expression data rather than the mutational gene data used in our
clustering approach, correlation between the PAM50 subtypes and the identified
clusters would be interesting as this would enable us to (partially) subtype
breast cancer tumors based on gene mutation data. Furthermore, since the
PAM50 tumor subtype classification has prognostic significance, correlation
between the clusters and the PAM50 tumor subtypes would largely validate
our clustering approach as being biologically relevant in a real-world cancer
setting. We analyzed the data by partitioning it into 4 non-overlapping clusters
with a γ of 0.5. We then assessed every patient in our dataset for membership
of one or multiple clusters. A patient was considered a member of a specific
cluster when that patient had at least one deleterious mutation (defined as a
PHRED-scaled CADD score of at least 20 (Kircher et al. 2014)). The results
of this analysis are depicted in Figure 6.5 and Figure 6.6. We performed
a χ-square goodness of fit test on the distribution of the basal-like PAM50
subtype from Figure 6.5 and on both the distributions of cluster 1 and cluster
2 from Figure 6.6 to test whether they deviated from a random assignment
of patients to clusters. All three distributions deviated significantly from the
random case (Basal-like: χ− squared = 103.48, df = 3, p− value < 2.2e− 16;
cluster 1: χ − squared = 15.507, df = 4, p − value = 0.003757; Cluster 2:
χ− squared = 22.388, df = 4, p− value = 0.0001678). Based on these results,
and the observations from figure 6.5 and figure 6.6, two interesting conclusions
could be drawn: 1) patients with a basal-like PAM50 tumor subtype were very
likely to have a mutation in clustered pathway 4 and 2) patients with a mutation
in pathway 1 or 2 were more likely to have a luminal A subtype. This shows that
the identified gene clusters / pathways have at least some correlation with the

CONCLUSIONS AND FUTURE WORK 103

PAM50 subtypes and could thus be useful in patient subtyping and exploring
subsequent treatment options, although more research would be needed to
confirm this. As such, our subtyping method is able to generate meaningful
biological results in a cancer subtyping setting.

6.8 conclusions and future work

Motivated by a problem in bio-informatics, we presented a novel graph clustering
problem involving two graphs, a co-occurrence graph whose weighted edges are
part of the objective function, and an interaction graph with hard connectivity
constraints. We propose two methods for handling the (potentially exponential
in number) connectivity constraints, one based on enumerating all simple paths
and the other being a cutting plane approach. We also present a number
of extensions such as a bi-objective Pareto optimisation method to balance
minimum cluster size and total penalty. Computational experiments show the
properties of the different proposed methods, and a validation experiment on
a separate biological data source demonstrates the potential of our proposed
approach.

Part III

Learning Taxi Passenger
Demand

105

Chapter 7

Feature-based Taxi Request
Prediction

In this chapter we investigate the problem of transportation demand prediction
where the goal is to accurately predict where and when a transport need will
occur. We focus in particular on the problem of taxi request prediction. We
develop an approach for feature-based taxi request prediction that allows for
the easy integration of additional features. We also introduce a new approach
for analyzing and gaining insight in taxi demand by using non-negative matrix
factorization. This chapter is based on the following work:

• Behrouz Babaki, and Anton Dries. Feature-based Taxi Request Prediction.
(manuscript in preparation).

7.1 Introduction

Over the last few years, the study of transport management has gained a lot
of attention in the political, economic and scientific communities. One of the
important topics studied in this emerging field is the optimal use of existing
infrastructure (e.g. roads) to accommodate the increasing demand with the aim
to decrease economic losses caused by traffic jams and health and environmental
issues caused by pollution.

In this context, dial-a-ride services (such as taxis, and services like Uber and
Lyft) are an interesting candidate for research because (1) they are a major

106

RELATED WORK 107

contributor to the traffic in large urban regions, (2) they are demand-driven
(unlike most public transport systems which are supply-driven), and (3) they
are increasingly monitored digitally by means of GPS trackers.

Understanding the regularities in taxi trajectories not only gives insight about
the taxi services, but also reveals the patterns of human mobility in the city.
For example, one can identify the attractive regions by observing the popular
destinations and study how they vary over time (Li et al. 2012; Yue, Zhuang,
et al. 2009; Yue, Wang, et al. 2011; Chang et al. 2010). The information
obtained through such studies can be used for improving transport management,
such as determining the need for public transport or planning the locations of
taxi stops (Moreira-Matias et al. 2013), or to support long-term decisions with
respect to urban planning (Zheng et al. 2011).

We focus on the problem of predicting taxi requests from contextual features.
The primary goal is to be able to predict taxi requests on regions for which
there is no or limited historic data available. To the best of our knowledge,
there are no techniques that can easily incorporate such features. We show that
by using demographic information we obtain reasonable predictions for both
known and unknown regions.

As an additional contribution, we show that non-negative matrix factorization
can be a useful tool in the analysis of taxi data. It can offer insight in the
behavioral patterns underlying the data and improve the interpretability of the
prediction model by reducing the number of parameters.

This chapter is organized as follows. In Section 7.2 we give an overview of
work related to travel demand forecasting. In Section 7.3, we give a formal
definition of the problem of predicting taxi demand and in Section 7.4, we
investigate traditional approaches to In Section 7.5 we introduce a new approach
for predicting taxi requests based on demographic data and we evaluate our
approach in Section 7.6. Finally, Section 7.7 concludes this chapter.

7.2 Related work

The problem of predicting taxi passenger requests has been studied before. Some
of the existing methods assume a dependence between the demand at a certain
timeslot and the observed demand in previous timeslots. All methods that are
based on time-series analysis fall in this category. Davis et al. use a time-series
model for prediction. They extend this method by grouping neighboring areas
into clusters and combining the predictions for areas in each cluster (Davis
et al. 2016). Several papers use different autoregressive integrated moving

108 FEATURE-BASED TAXI REQUEST PREDICTION

average (ARIMA) models for predicting the taxi demand (Li et al. 2012; Li
et al. 2012; Moreira-Matias et al. 2013). The dependence relations with previous
observations can be also modeled as a Bayesian network: Li et al. start with
a naive method that simply reports the observed count of passengers in the
same timeslot in the past day. Then they extend this method to a simple
Bayesian network (Li et al. 2012). One of the methods presented by Zhao et
al. is an order-k Markov model (Zhao et al. 2016). Zhang et al. represent the
relationship between the observed demand and hidden variables by a hidden
Markov model (Zhang et al. 2014).

Some studies decompose the demand prediction problem into subproblems. In
the work of Miller et al. there are two sources of uncertainty: the arrival of
pedestrians and whether a pedestrian will make a request for a taxi trip. They
model the arrivals by a Poisson distribution and the probability of making
a request by a Bernoulli distribution (Miller and How 2017). Zhang et al.
decompose the passenger demand into two components: the passengers who
have just arrived, and those who are left behind from previous timeslots (Zhang
et al. 2014).

Bayesian learning is also used for updating the distribution of demand
continuously. In this method, the quantity of interest is modeled by a distribution
with uncertain parameters. These parameters themselves follow a distribution
that can be easily updated according to the observed values. Miller et al. use
this method to update the arrival rate of pedestrians and the probability of
receiving a trip request from a pedestrian (Miller and How 2017). Zhang et
al. model the demand by a time-varying Poisson process which is continuously
revised by Bayesian updating (Zhang et al. 2014).

Until recently, contextual features were rarely taken into account in prediction
of taxi demand. However, two recent studies train predictive models that take
such features as input. Zhao et al. train a neural network using these features:
temperature, precipitation, wind speed, day of week, and hour of day (Zhao et al.
2016). Saadi et al. compare multiple machine learning algorithms: a single
decision tree, bagged decision trees, random forests, gradient boosted trees, and
neural networks. They use four types of features as input: space-time, price,
traffic condition, and weather condition (Saadi et al. 2017). One important
difference of our work with these studies is that we base our model on both
contextual features and recent observations.

Predicting future demand can improve the quality of solutions obtained for
optimization problems such as vehicle routing. There exist several studies on
routing with uncertainty about the future demand (Ferrucci et al. 2013; Ichoua
et al. 2006; Bent and Hentenryck 2004). Most of these studies assume that the
requests are known in advance (e.g. for a package delivery service) or follow

PROBLEM SETTING 109

a known distribution (stochastic). A notable exception is the work of Bent
et al. where they discretize the demand into a number of levels and train a
hidden Markov model for predicting the demand (Bent and Hentenryck 2005).
Ferrucci et al. learn fixed-rate Poisson models for reach region and period to
predict the demand (Ferrucci et al. 2013). Ge et al. solves a routing problem
using historical taxi trip records of San Francisco. They cluster pickup points
of high-performance drivers into clusters and later use the centroids of these
clusters for recommending pickup points to drivers (Ge et al. 2010). Miao et
al. design a tractable dispatching algorithm which takes the uncertainties in
passenger demand prediction into account. They evaluate their method on four
years of trip data of New York and report improvements in the supply-demand
ratio and idle driving distance (Miao et al. 2016).

Analysis of historical data of taxi trips has been used for other tasks than
predicting the future demand: Some studies use the trip records of taxis to
identify spatial clusters based on taxi services in multiple periods during the
day (Deng and M. Ji 2011; Yue, Zhuang, et al. 2009). Li et al use records of
taxi trips to find regions with the highest pickup rates (Li et al. 2012). Chang
et al use clustering techniques on the trip data to discover the location of
landmarks in the city (Chang et al. 2010). Yuan et al use historical records of
taxi trajectories to train a probabilistic model for computing the probability of
picking up the next passenger. They use this model to recommend locations to
both drivers and passengers (J. Yuan et al. 2011).

7.3 Problem setting

The problem of predicting taxi requests is typically modeled using the following
three components:

• a time frame T (e.g. one day)

• a partitioning P of the time frame (e.g. 15-minute intervals)

• a set of geographical regions R (e.g. a rectangular grid on the map)

The request model describes the distribution of requests within one time frame
(e.g. one day) and can then be used to predict the number of requests for the
regions in R and the periods in P of another time frame (e.g. the next day).
For each region ri ∈ R and each time interval pj ∈ P the distribution of the
number of requests occurring in the given region at the given time is modeled.

Existing approaches to modeling this problem can be characterized according
to three properties:

110 FEATURE-BASED TAXI REQUEST PREDICTION

Wed 17/02/2010 Sun 14/02/2010 Wed 10/02/2010

Figure 7.1: Distribution of taxi rides for three days in February 2010: a regular
Wednesday (17/02), a regular Sunday (14/02) and a Wednesday during a
blizzard (10/02).

1. To what extent the model uses peripheral features;

2. How specific or general the model is; and

3. How recent is the data that the model uses for making predictions.

We will now explain each of these properties in more detail.

7.3.1 Exploiting peripheral features

The problem formulation above focuses on the effect of two factors on the
distribution of requests, namely the area and time interval. However, not all
time frames are identical. The distribution of trips on a Wednesday can be
significantly different from the distribution of trips on a Sunday, or trips can
be influenced by the weather as illustrated in Figure 7.1. The distribution is
influenced by external factors, that can often be described using additional
features, such as calendar, weather, and demographic information. A factor
that distinguishes different models is the extent to which they incorporate such
peripheral information.

7.3.2 Specificity of the model

A common practice in existing methods for predicting the requests is to partition
the feature space in advance, and develop one model for each partition. The
simplest example of this practice is to develop one model for each geographical
region. More generally, one can train a separate model for each combination of

PROBLEM SETTING 111

values of features of interest. This corresponds to adding an extra dimension to
the parameter space, and parameters can be noted as λ(d)

ij where d ∈ D, the set
of possible feature combinations. Obviously, this quickly leads to an explosion
in the number of parameters and, consequently, the amount of data required
to accurately learn a model, because in order to obtain an accurate model, we
need sufficient data for each of the parameters. This means that the number
of trips in each cell (region-period) should be high enough. For example, if
we have 200 regions, 15-minute intervals and a time frame of one week (for
a total of 672 periods), we have 200× 672 = 134 400 parameters. Even if we
make the (unrealistic) assumption that the trips are distributed evenly over the
region/period cells, then for a mere 10 data points per parameter, we would
require more than 1 million data points. When the trips distribution is skewed
or more features are used, this number can rise quickly.

The restriction that we can only predict requests for regions and combinations
of features for which we already have historic data, limits the applicability of
the traditional approaches. Indeed, a model that uses individual, independent
parameters λ(d)

ij can’t make any predictions for combinations of i, j and d that
do not appear in the training data.

A completely different approach is to train one general model for making all
predictions. In this approach, instead of partitioning the feature space, feature
values are provided as input data to the model. For example, instead of training
one model for each geographical region, the demographic information of regions
is provided as features to the model. This enables the model to generalize to
new combinations of feature values that do not occur as such in the training
data. Using this approach, we can, for example, make predictions in an area for
which we have no historical data of requests based purely on its demographic
information.

7.3.3 Recency of the data

The last factor concerns the recency of the information that we assume to
be available at prediction time. More formally, at the time that we predict
the requests for time interval pt, how much information is available about the
observed requests in the intervals pt−1, pt−2, Some models heavily rely on
the availability of very recent data. While exploiting such information can
enhance the accuracy of prediction, assuming that such information is always
available can be restrictive. On the other hand, as GPS technologies are more
widely used in transportation services, over time this restriction might become
less severe.

112 FEATURE-BASED TAXI REQUEST PREDICTION

7.4 Traditional approaches

In this section we summarize the traditional methods for predicting requests
for a transportation service. We group these methods into two classes: Poisson
processes and time-series models.

7.4.1 Poisson processes

A Poisson process is a joint distribution of variables X1, . . . , Xt such that:

P (Xt) = e−λ(t)λ(t)Xt

Xt!
(7.1)

The dependence between observations is encoded through the rate function
λ(t). An advantage of using Poisson distributions is that the rate parameter
λ coincides with the most likely value of the distribution. Moreover, we can
efficiently learn the parameter λ from the data by averaging the observed counts.

The problem of predicting requests is most commonly described as a time-space
Poisson process (Ferrucci et al. 2013; Bent and Hentenryck 2005), that is, the
requests in region ri in time interval pj are distributed according to a Poisson
distribution with rate λij . The model describes the distribution of requests
over the time-frame (e.g. a day). If we want to predict requests from region
ri (e.g. near the airport) at a time pj (e.g. between 8:00 and 8:15) in the
next time-frame (i.e. the next day), we can simply look up the rate λij and
determine the distribution.

In a time-space Poisson model, it is assumed that all time frames are identical.
As pointed out earlier, this assumption is not very realistic. To overcome
this, one can include dimensions other than time and space into the design of
the model. Moreira-Matias et al. (Moreira-Matias et al. 2013), for example,
noticed a significant difference in the number of requests in different days of the
week. To take this factor into account, they added day-of-week as an additional
dimension to their model.

In principle, this approach can be extended to including other factors such as
weather information. However, this requires training one specific model for each
combination of features of interest. As we already stated in section 7.3.2, this
is only practical if we have a few number of features.

Prediction using a Poisson process is simply performed by looking up the
corresponding rate parameter. Hence there is no need for information about
recently-observed requests at prediction time.

FEATURE-BASED TAXI PREDICTION 113

7.4.2 Time-series analysis

Moreira-Matias et al. (Moreira-Matias et al. 2013) use an ARIMA model for
predicting the requests. An ARIMA model is a linear function of p past observed
requests and q random error terms. The pair (p, q) is called the order of the
model. At prediction time, one should provide the observed values of requests
in the past p intervals. This means that ARIMA models require very recent
information for making predictions.

An ARIMA model only involves past observations and error terms. To consider
the differences between the areas, or other influencing factors, one needs to train
multiple specific ARIMA models. For example, Moreira-Matias et al. (Moreira-
Matias et al. 2013) trained one ARIMA model for each area.

In our work, we also propose models that exploit the information about previous
observed requests. However, our model assumes a nonlinear relation between
past observations and the target value. Moreover, we include other influencing
factors as additional features in our models.

7.5 Feature-based taxi prediction

Traditional approaches are not scalable to many features because they require a
model for each combination of feature values. In our approach, we use a global,
feature-based model that can represent all parameters in a single model. We
use existing learning algorithms to construct such a model, which are able to
freely decide which parameters can be grouped together based on available data
and can make predictions on combinations of feature values that do not occur
in the training data. This global model represents a function Λ(x) where x is an
arbitrary vector of features, instead of representing the model as a fixed number
of rates λ(d)

ij . This function computes the most likely number of requests for a
region and time with the characteristics given in x, which corresponds to the
rate of the Poisson distribution.

With regard to features, we consider three types: time-specific (such as time of
day, day of week, weather, etc.), region-specific (such as population, number of
restaurants, etc) and recent observations (i.e. observed requests for previous
time frames).

In this section we describe three techniques that can be fitted in this framework.
First, we show that the splitting-based approach mentioned in section 7.4.1 can
be described in this framework. Next, we introduce two new approaches based
on regression.

114 FEATURE-BASED TAXI REQUEST PREDICTION

7.5.1 Feature-based Poisson processes

In time-space Poisson processes, the only supported features are region identifier
i, and period identifier j. To include features in the model, we can add a feature-
based partition identifier d to the index pair (i, j). The partition identifier can
be used to split the model based on feature values, for example, to learn one
model for weekdays and another for weekends.

The function Λ(i, j, d) corresponds to a lookup in a table that contains a rate
λ

(d)
ij for each triplet (i, j, d). These rates can be obtained by computing the

average of a given set of data points (i, j, d, count).

7.5.2 Direct prediction

In the first approach, we use a regression model to directly predict the rate. The
input data contains a row for each combination of region, period and time-frame
that occurs in the training data. The columns are region-specific features (e.g.
population) and time-specific features (e.g. weather, time of day, day of week).
The model is built on the features and predicts the count.

As our regression model, we use gradient boosted regression trees (GBT).
Boosting methods fit additive models for predicting a target value: The learned
function has the form f(x) =

∑M
m=1 βmb(x; γm). The functions b(x; γm) are

called base learners and are parameterized by vector γm. A possible base learner
for the regression task is a regression tree. The regressoin tree itself has an
additive form:

b(x; {cj , Rj}J1) =
J∑
j=1

bj1(x ∈ Rj) (7.2)

where {Rj}J1 are the regions in the input space corresponding to J terminal
nodes of the tree, {cj}J1 are the values predicted at terminal nodes, and 1(.)
is the indicator function. The tree is equivalent to the set of rules x ∈ Rj ⇒
b(x) = cj ,∀1 ≤ j ≤ J .

Boosting methods add base learners in several stages. In each stage a new base
learner is added to the model to address its shortcomings. Traditional boosting
methods like AdaBoost, represent the shortcomings of the current model by
classification or regreesion error Freund and Schapire 1997. In contrast, gradient
boosting method identifies the shortcomings of current model in terms of the
gradient of loss function J. H. Friedman 2001.

FEATURE-BASED TAXI PREDICTION 115

Tree-based approaches have the ability to adapt the level of detail of a prediction
based on the amount of available data in certain regions of the feature space.
The advantage of using such a global model is that the learning algorithm
can automatically determine the optimal number of parameters and decide
which regions, periods and features are most relevant or are similar enough to
be merged. By applying gradient boosting we can significantly increase their
predictive performance (Freund and Schapire 1997; J. H. Friedman 2001).

If we assume that recently materialized requests are known at prediction time,
we can include these observations as additional features. This approach has two
advantages over ARIMA: (1) features other than past observations are included
in the model, and (2) the model can encode complex nonlinear relationships
between the features and the number of requests.

In this approach, the training algorithm is in charge of partitioning the feature
space. However, it is also possible to perform some of this partitioning manually.
For example, one can drop the region-specific features from the feature set and
train one specific model for each region. Note that other features (i.e. the
time-specific features and previous observations) are still used for making the
predictions.

7.5.3 Decomposition-based prediction

The previous approach has the disadvantage that it does not reduce the number
of potential parameters. This also makes the method’s outcome hard to interpret.

In order to reduce the number of parameters, we first apply a transformation
on the data. The goal of this transformation is to find a number of principal
components that each describe a different aspect of the data. To this end, we
will use non-negative matrix factorization (NMF) (Lee and Seung 2000; Lee
and Seung 1999). This approach is commonly used in topic modeling but to
our knowledge has never been applied to data of this kind.

NMF decomposes a matrix M of size m× n into a component matrix B of size
c× n and a weight matrix W of size m× c such that

M 'W ·B

and c is a preset number of components. The advantage of NMF over other
PCA techniques is that each value in the matrices B and W is ≥ 0. This means
that the components can still be interpreted and visualized as distributions of
request counts and that each of the components has an additive contribution to
the distribution of requests. This makes it easier to interpret the result.

116 FEATURE-BASED TAXI REQUEST PREDICTION

mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

2

4

6

8

10

12

14

16

18

mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

5

10

15

20

25

mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

5

10

15

20

mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

5

10

15

20

mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

5

10

15

20

mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

5

10

15

20

Figure 7.2: Components discovered by NMF (c = 6).

In our approach, the matrix M corresponds to a matrix Zij where each row
represents the histogram of requests for a given region ri over the course of
one week with 15-minute bins pj . Each component found by NMF can be
interpreted as such a histogram as well describing a subset of the requests.
Figure 7.2 illustrates that NMF appears very successful in finding meaningful
base components.

The matrix W describes, for each region, the contribution of each of the base
components to the activity in that region.

Instead of directly predicting the m × n matrix representing the number of
requests, we can now predict the m× c matrix of weights.

Assume we are given a request matrix Zknown for a given set of periods and
regions, a corresponding matrix of features Fknown, and a set of features for a
different set of periods and regions Funknown . The request matrix for the second
set of regions can then be predicted using the following four steps:

EVALUATION 117

1. Compute weights and base components using NMF:

Wknown ·B = Zknown

2. Train a regression model based on features:

M = regr(Fknown,Wknown)

3. Predict the weights of the unknown data using the regression model:

W ′unknown =M(Funknown)

4. Construct the request matrix:

Z ′unknown = W ′unknown ·B

The function Λ(x) is thus defined as

Λ(x) =M(x) ·B.

7.6 Evaluation

In this section, we empirically evaluate our approaches. We give a short
description of the data and evaluation metric we use, and we look at the effect of
using decomposition. Finally, we evaluate the predictive power of our approach
both on predicting known regions and unknown regions.

7.6.1 Data

For our experiments we use two publicly available datasets of taxi trips for
New York1 and San Francisco2. We base our results primarily on the New
York dataset due to the low quality of the San Francisco data witnessed by a
high variability in number of recorded trips and large chunks of missing data.
Since Gradient boosting is inherently capable of handling missing values, we
did not need to remove or replace the missing counts in the data. We learned
the parameter of Poisson distributions by taking the corresponding average
excluding the missing entries.

1http://nyc.gov/html/tlc/html/about/trip_record_data.shtml
2http://stamen.com/work/cabspotting

http://nyc.gov/html/tlc/html/about/trip_record_data.shtml
http://stamen.com/work/cabspotting

118 FEATURE-BASED TAXI REQUEST PREDICTION

mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

10000

20000

30000

40000

50000

60000

70000

80000

(a) New York (26 744 433 trips)
mo 00 mo 12 tu 00 tu 12 we 00 we 12 th 00 th 12 fr 00 fr 12 sa 00 sa 12 su 00 su 12 mo 00
0

500

1000

1500

2000

2500

3000

3500

4000

4500

(b) San Francisco (1 130 078 trips)

Figure 7.3: Distribution of all trips between 5 April and 30 May 2010. Trips
are aggregated to show distribution over a one week period.

As region features, we use data from the LEHD department of the US Census
bureau3. We therefore use census tracts as regions. These datasets describe
characteristics of working people. For each region there are two sets of features,
one set describes the job characteristics of the people living in that region
(RAC), the other set describes the job characteristics of people working in that
region (WAC). These characteristics include total number of jobs, number of
people working in given sectors (e.g. healthcare, entertainment, food services,
etc), earning certain wages, having a certain education level, etc.

For weather information, we collected the measurements from multiple weather
stations using MesoWest API4. The weather information is available for each
15-minute interval. For each attribute, we use the average over measurements
of multiple stations and hence it is the same for all regions within the same city.
The attributes consist of temperature, humidity, precipitation and wind speed.

Figures 7.3 and 7.4 show the overall distribution of trips for both cities, and
the used regions in New York.

7.6.2 Evaluation metric

To measure the quality of predictions, we compare the symmetric mean absolute
percentage error (sMAPE) of the predicted values against the actual number of
requests. Assume that Zij is the actual demand for region i and period j at
time t, and Z ′ij is the predicted value, i.e. bλ′ijc. Then for each region ri the
sMAPE error is defined as sMAPEi = (1/|P |)

∑
j Errj , where:

Errj =


0 if Z ′ij = Zij = 0

|Z ′ij − Zij |
Z ′ij + Zij

otherwise
(7.3)

3http://lehd.ces.census.gov/
4http://mesowest.org/api/

http://lehd.ces.census.gov/
http://mesowest.org/api/

EVALUATION 119

74.05 74.00 73.95 73.90 73.85 73.80
40.60

40.65

40.70

40.75

40.80

40.85
109090.2

264244.0

418380.4

548039.2

699672.5

874632.4

1008963.9

1106066.6

1435488.1

> 1435488.1

(a) Number of taxi pickups
74.05 74.00 73.95 73.90 73.85 73.80

40.60

40.65

40.70

40.75

40.80

40.85
705.5

1355.6

1841.2

2902.6

3709.5

6666.0

10641.0

17587.0

35851.8

> 35851.8

(b) Total number of jobs

Figure 7.4: Map of New York regions with high activity.

Moreira-Matias et al. argue that sMAPE is too sensitive to small deviations
when the actual number of requests are small. They suggest adding a constant
c = 1 to the denominator of Errj to alleviate this effect (Moreira-Matias et al.
2013). The modified sMAPE measure is hence defined as:

sMAPEi =
∑
j

|Z ′ij − Zij |
Z ′ij + Zij + 1 (7.4)

To compute the error over all regions, we take a weighted average of errors
based on the number of requests in each region

sMAPE =
∑
ri∈R

sMAPEiψi
Ψ (7.5)

where ψi =
∑
ri∈R zij and Ψ =

∑
ri∈R ψi.

All the errors reported in the remainder of this chapter are computed in this
way. We compare different methods based on these errors. To evaluate the
significance of the difference between the errors of two methods, we use the
independent two-sample t-test with a 0.05 significance level.

120 FEATURE-BASED TAXI REQUEST PREDICTION

7.6.3 Decomposition

Before we evaluate the prediction components, we first analyze the performance
of the decomposition. We want to answer the following two questions:

Q1 How much information do we lose by decomposing the profiles?

Q2 Are the components for one location informative when reused in another
location?

To answer these effect, we take three datasets

• NYC10 New York 2010 (200 most active regions)

• NYC14 New York 2014 (same regions at NYC10)

• SFC10 San Francisco 2010 (50 most active regions)

and we compute the decomposition for each of them. We then use the
components to transform and reconstruct on all three datasets.

The results are shown in Table 7.1 for decomposition with 6 and 16 components
respectively. This table shows that the reconstruction errors between the two
datasets from New York are very similar. This indicates that the basic behavioral
patterns did not change much between 2010 and 2014. Figure 7.5 shows the

to
NYC10 NYC14 SFC10

fr
om

NYC10 0.1358 0.1408 0.2774
NYC14 0.1402 0.1406 0.2851
SFC10 0.1758 0.1814 0.2450

(a) 6 components

to
NYC10 NYC14 SFC10

fr
om

NYC10 0.1238 0.1292 0.2655
NYC14 0.1270 0.1267 0.2658
SFC10 0.1530 0.1573 0.2245

(b) 16 components

Table 7.1: Reconstruction error across datasets. Rows indicate components
used. Columns indicate reconstructed datasets.

EVALUATION 121

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

NYC10
NYC14
SFC10*

Figure 7.5: Average component weights for three datasets for 6 components
obtained from NYC10 (components shown in Figure 7.2). SFC10 scaled up by
a factor of 10.

0 10 20 30 40 50
number of components

0.10

0.15

0.20

0.25

0.30

sM
A

P
E
 o

f
re

co
n
st

ru
ct

io
n

NYC10
NYC14
SFC10

Figure 7.6: Reconstruction error of NYC10 components by number of
components.

122 FEATURE-BASED TAXI REQUEST PREDICTION

average component weights for 6 components of NYC 2010 when reconstructing
the three datasets. The reconstruction errors for San Francisco are significantly
worse, which may be due to the high number of zeros (potentially missing
entries) in this dataset. By increasing the number of components we can reduce
the reconstruction error as illustrated in Figure 7.6 (it will eventually reach
zero).

7.6.4 Prediction using historic data

In this experiment we examine the performance of our approach in the traditional
request prediction setting: given historic data from a given set of regions, predict
the future demand for the same set of regions. In these experiments we assume
that no information about recently-materialized requests is available. We want
to answer this question:

Q3 How does our proposed method compare with the traditional methods
when recent observations are not available?

We perform this experiment in two settings: predict two weeks in the future,
and four years in the future. For this experiment, we take all the data for New
York City in 2010 and we split it into blocks of 8 weeks. The first 6 weeks in
the block are training data, the 8th week is the test data. (The 7th week is left
out as a buffer.) We repeat this for blocks starting at week 1, 5, 9, . . . , 41. In
the second stage of the experiment we predict the 8th week for each block but
four years later (2014).

The comparison contains the following approaches:

Naive: Predict the average over the whole training set for all examples in
the test set. This method will serve as a reference point in the evaluation.

Poisson: Predict the requests using Poisson processes. For each time,
region, and day of week, a rate is learned from the historic data.

Poisson_W: Predict the requests using weighted time-varying Poisson
models (Moreira-Matias et al. 2013). The difference with the previous
setting is that for learning the rates, instead of simple averaging, a weighted
average is used. This way, later observations get larger weights than the
earlier ones.

GBT: Predict the requests using a single gradient boosted regression
model.

EVALUATION 123

2 4 6 8 10 12 14 16 18 20

number of components

0.00

0.05

0.10

0.15

0.20

0.25

sM
A

P
E
 o

f
p
re

d
ic

ti
o
n

Poisson

GBT_Dxx

Figure 7.7: Prediction error for components by number of components for
NYC10 to NYC10. Error bars indicate one standard deviation.

GBT_S: Predict the requests using region-specific GBT models.

GBT_D6 and GBT_D8: Predict the requests through decomposition,
using 6 and 8 components respectively.

The approach GBT uses calendar information, demographic data (WAC and
RAC) and weather information. InGBT_S the demographic data are excluded.
The approaches based on decomposition don’t use the full weather information
(with information every 15 minutes), but instead uses snapshots at every four
hours. The results are summarized in Table 7.2.

method 2010 → 2010 2010 → 2014
Naive 0.3694±0.0181 0.3720±0.0104
Poisson 0.1402±0.0227 0.1605±0.0212
Poisson_W 0.1413±0.0245 0.1618±0.0223
GBT 0.1499±0.0324 0.2173±0.0319
GBT_S 0.1463±0.0272 0.1702±0.0279
GBT_D6 0.1539±0.0314 0.2229±0.023
GBT_D8 0.1576±0.0476 0.2194±0.0214

Table 7.2: sMAPE score for prediction with historic data. Results are averaged
over 11 time blocks.

Discussion The errors are presented in Table 7.2. According to the statistical
tests, in short-term prediction except for the method GBT_D8, other learning

124 FEATURE-BASED TAXI REQUEST PREDICTION

methods are not significantly different. In long-term prediction, the methods
Poisson, Poisson_W and GBT_S are significantly better than others. All
methods outperform the naive averaging in both settings.

In results of short-term prediction two observations are worth noting: (1) the
method GBT which uses a single global model competes with region-specific
models, and (2) the region-specific method GBT_S is not significantly better
than the GBT method. These observations confirm the ability of the GBT
models to adapt to the properties of feature space. Overall, the results indicate
that in this setting the feature-based methods do not offer an improvement in
terms of accuracy over the traditional methods.

Figure 7.7 shows the effect of the number of components on the prediction
error. Whereas Figure 7.6 showed us that increasing the number of components
decreases the reconstruction error, the same does not necessarily hold for the
prediction error. This is due to the prediction task becoming harder when there
are more components (in the limit it will correspond to GBT).

7.6.5 Prediction using historic data and recent observations

In this experiment we examine the ability of our method to exploit the
information about recent observations. This is the question that we want
to answer:

Q4 How does our proposed method compare with the traditional methods
when historic data and recent observations are available?

The data that we use for this experiment is the same as in section 7.6.4, except
that each row has ten additional features indicating the counts at 15-minute
intervals for the period [t−180, t−30] for a prediction made at time t. Note that
we have excluded the two observations that immediately precede the prediction
time. This allows for a delay in collection and processing of the real-time data.

The comparison contains the following approaches:

Naive: The average over the whole training set.

ARIMA: Predict the requests using region-specific ARIMA models.

GBT_O: Predict the requests using a single GBT model, trained on the
data that contains recent observations as additional features.

GBT_S_O: Predict the requests using region-specific GBT models,
trained with the ten additional features.

EVALUATION 125

For training the ARIMA models, we used the same setting as the one used by
Moreira-Matias et al. (Moreira-Matias et al. 2013). To enforce the two-period
delay between the last observation and prediction, we performed three-step-
ahead prediction using the ARIMA models. The results are summarized in
Table 7.3.

method 2010 → 2010 2010 → 2014
ARIMA 0.1694±0.0123 0.1765±0.0067
GBT_O 0.1187±0.0067 0.1403±0.0071
GBT_S_O 0.1236±0.0082 0.1365±0.0118

Table 7.3: sMAPE score for prediction with historic data and recent observations.
Results are averaged over 11 time blocks.

Discussion Error values presented in Table 7.3 and the statistical tests show
that both versions of the feature-based method perform significantly better than
ARIMA in both settings (For the sake of consistency, we will keep calling these
settings short-term and long-term). As expected, ARIMA performs similarly
in short-term and long-term predictions, while the accuracy of feature-based
methods decreases in long-term prediction. A comparison with Table 7.2 shows
that by using both contextual information and recent observations, we can
outperform all traditional methods (which at best use only one of these two
types of information).

7.6.6 Prediction on unseen regions

Some of the traditional methods (e.g. Poisson models) require records of requests
over a sufficiently long period of time for training a model. Some other methods
(e.g. ARIMA models) rely solely on the most recent observations. Our proposed
method can use both recent observations from the target region and historic
data from other regions. In this experiment we examine this scheme and answer
the following question:

Q5 How does the proposed method compare to the traditional methods when
no historic data is available?

We ran this experiment in two settings. In the first setting we use the same
time-based partitioning (6 + 1 weeks), but we use different regions for training

126 FEATURE-BASED TAXI REQUEST PREDICTION

and testing. We use 5-fold cross-validation on the regions (i.e. 80% of regions
for training and 20% of regions for testing).

In the second setting we use the model learned on all regions of New York to
predict the taxi demand in San Francisco. Because there is a large discrepancy
between the number of trips in both cities, we rescale the request counts for
San Francisco for each week separately. In this way, we can determine whether
the prediction captures the relative distribution of trips over the week. Three
weeks were omitted from the test set because no data was available for those
weeks.

We compare the methods ARIMA, GBT, and GBT_O. This experiment
is not applicable to other methods, as they all require historic data from the
target region. In previous experiments we used the last part of historic data to
do the model selection for ARIMA models. In this experiment we start using
the ARIMA model from the second day. At each day, we use all previous days
for model selection. In the first day, to predict the counts at time t we take
the average of observations at times t− 3 and t− 4, which are the most recent
available observations. The results are summarized in table 7.4.

method NYC → NYC NYC → SFC
Naive 0.3693±0.0180 0.6908±0.0719
ARIMA 0.1764±0.0123 0.2449±0.0158
GBT 0.2338±0.0224 0.6272±0.0772
GBT_O 0.1429±0.0057 0.3558±0.0966

Table 7.4: sMAPE scores for predicting on unseen regions.

Discussion In the first setting (using historic data from another region in the
same city), all differences are statistically significant. In this setting, the simple
feature-based method performs poorly. However, when the recent observations
are added to the features, it outperforms the ARIMA method. In the second
setting (using historic data from another city), there is no difference between
GBT and naive averaging. In general, in this setting all methods perform
poorly.

7.7 Conclusions and future work

We introduced two novel approaches for feature-based taxi request prediction.
To our knowledge this is the first work that specifically aims at using background

CONCLUSIONS AND FUTURE WORK 127

information for making predictions and to have the ability to make predictions
in regions for which no historic data is available. Our experiments suggest that
models that combine contextual features and recent observations outperform
the models which take only one of these two into account. These models also
perform significantly better in the task of making predictions for unseen regions
in the same city. For the task of making predictions for unseen regions in a
different city, none of the studied methods produced satisfactory results.

We also contributed a method for analyzing data of this type by showing that
non-negative matrix factorization can be used to discover behavioral patterns
in the data. The main advantage of this method is that it offers interpretable
predictions.

Prediction of taxi trips is usually a component of a larger pipeline that solves
an optimization problem (e.g. routing or scheduling problems). For future work,
we want to investigate whether our predictions will improve the quality of the
final solutions in such a pipeline. Another extension is to use methods such as
Poisson dependency networks for modeling the dependencies among Poisson
variables. Another interesting direction is the use of more relevant features. For
example, it would be interesting to combine our work with that of Chang et
al. (Chang et al. 2010) which focuses on detecting landmark in a city based
on taxi data. By using those techniques we can develop a model about which
type of landmarks draw most traffic and use that information as features in our
prediction model.

Chapter 8

Conclusions and Future Work

8.1 Summary and Conclusions

Probabilistic inference and constraint satisfaction and optimization have been
studied extensively for decades. The two fields are known to have connections,
and their intersection has been studied before. However, these connections
have not been fully exploited in solving problems that involve both constraint
satisfaction and probabilistic inference. An example of such problems is
maximization of the expected utility which is a natural extension of deterministic
CSPs to a situation where there is only probabilistic knowledge about some of
the problem parameters. Another class of such problems are those that involve
constraining or optimizing the probability values themselves. Our contribution
in this regard was to present two mechanisms for solving these two classes of
problems. Both these methods build on existing constraint programming solvers.
This means that a lot of facilities of these solvers (e.g. the complex constraints
that they support) can be used by our methods.

The second contribution of this thesis was motivated by the recent interest
in integrating data mining with constraint satisfaction and optimization. In
particular, we formulated and solved two clustering problems as integer linear
programming models.

Advances in optimization under uncertainty allow the user to formulate more
accurate models by specifying a distribution over random variables. A problem
that is rarely addressed in existing work on stochastic optimization is how
to accurately approximate the real-world uncertainties using a probability
distribution. This question has been extensively studied in the statistical

129

130 CONCLUSIONS AND FUTURE WORK

machine learning domain. Our third contribution was to use techniques from
this domain to learn probability distributions for taxi passenger demand.

In the first chapter we introduced the three main research question in this thesis.
We will now review these questions again and summarize the answers that this
thesis provides for them:

Q1. How can we combine principles of constraint satisfaction and probabilistic
inference to solve problems that involve both tasks?

We introduced two mechanisms for combining probabilistic inference and
constraint satisfaction and optimization. The first mechanism models the
computational steps of a probabilistic inference engine in terms of constraints.
The second mechanism uses a novel depth-first search algorithm and calls an
external probabilistic inference engine.

In the first approach, we compile a Bayesian network into a d-DNNF, and
formulate and reason over this structure using a constraint programming solver.
We show that using this approach we can support a wide range of queries and
constraints in a flexible and declarative manner. We used this approach for
pattern mining in Bayesian networks.

In the second approach, we presented a new stochastic constraint programming
method. Existing works on stochastic constraint programming made at least
one of the following assumptions: 1) the random variables are independent, 2)
the probability distribution should be first converted to a list of possible worlds.
Instead, we assumed a non-trivial factored joint distribution over the random
variables. We introduced an And-Or search algorithm to combine constraint
satisfaction and probabilistic inference. We introduced a novel bound that
works directly on this tree. To compute this bound we used a state-of-the-art
probabilistic inference engine. We implemented this mechanism within a generic
constraint solver. So our method supports existing complex constraints.

Q2. What are the potentials of formulating constrained clustering as integer
linear programming?

We also formulated two clustering problems using integer linear programming:
constrained minimum sum-of-squares (MSS) clustering and constrained graph
clustering. To solve the first problem we used a formulation in which each
possible cluster is represented by a variable. This leads to an exponential
number of variables. We used a column-generation algorithm to incrementally
add a significant subset of these variables to the model. We presented a novel
branch and bound algorithm to solve the pricing subproblem, i.e. the problem
of finding the next variable to be added to the model. This hybrid approach
allows us to take care of the constraints when solving the subproblem. Using

DISCUSSION AND FUTURE WORK 131

this approach we obtained the optimal solution for a number of constraint
clustering instances for the first time.

We also presented two formulations for a biologically-inspired graph clustering
problem. The first formulation was based on enumerating all simple paths
in the graph. In dense graphs, this formulation leads to a large number of
constraints. The second formulation also included a worst-case exponential
number of constraints. But we used a cutting-plane algorithm to include only
a sufficient subset of these constraints in the model. We also introduced a
bi-objective Pareto optimization method to balance the two components of the
objective function. Our experiments showed that each formulation performs
better on a certain type of problems. When the graph is sparse and the total
number of simple paths is low, the first formulation is more efficient. For denser
graphs, the overhead of solving the cutting-plane subproblem pays off and the
second formulation performs better.

Q3 How can we use data mining techniques to learn the distribution of passenger
requests from records of taxi trips?

We introduced two novel approaches for learning distributions for taxi passenger
demand. The main novelty of our method is using background information for
making predictions and to have the ability to make predictions in regions for
which no historic data is available. Our experiments suggest that models that
combine contextual features and recent observations outperform the models
which take only one of these two into account. These models also perform
significantly better in the task of making predictions for unseen regions in the
same city.

8.2 Discussion and Future Work

We will now shortly discuss a number of directions for future research. We divide
our discussion into three parts. In the first part we review the open questions and
future directions on the topic of combining CSP(O) and probabilistic inference.
The second part deals with possibilities for future work in the application
of integer programming to constrained clustering problems. We conclude by
mentioning opportunities for further research on the topic of learning taxi
passenger demand.

132 CONCLUSIONS AND FUTURE WORK

8.2.1 Probabilistic Models in Constraint Satisfaction and
Optimization

In one of our studies we represented an arithmetic circuit by a set of constraints.
It has been shown that using a dedicated propagator for an s-DNNF outperforms
the method that represents the circuit as a set of constraints (Gange and Stuckey
2012). A dedicated propagator for the arithmetic circuit obtained from the
d-DNNF might improve the efficiency of the search. Designing such a propagator
is a direction for future research.

In our work on stochastic constraint programming using And-Or search, there
are several directions for future research. One component missing from our work
which is common in the existing research on stochastic constraint programming
is the notion of chance constraints. A chance constraint is a constraint that
is allowed to be violated in a certain fraction of possible worlds (Walsh 2002).
Introducing chance constraints to our method is a topic for future work.

Stochastic constraint programming is a combination of two difficult problems.
This motivates designing approximate methods that aim at solving large
problems. An example of approximate methods for stochastic constraint
programming is to use reinforcement learning for solving these problems (S. D.
Prestwich et al. 2017). Another possible approach which is closer to an exact
algorithm is to use the same And-Or branch and bound method, while ignoring
the branches that lead to a small probability (or expected utility) in such a
way that the difference with the exact objective is guaranteed to be less than a
certain threshold.

The And-Or branch and bound algorithm shares many principles with nested
constraint programming (NCP) (Chu and Stuckey 2014). In principle, factored
stochastic constraint programs can be solved as special cases of NCP. This
would make it possible to take advantage of improvements that are built in
this framework. Currently, when a stochastic constraint programs is modeled
as NCP it is assumed that the random variables are independent. Modeling
factored stochastic programs as NCP requires designing special propagators
that reason over the joint probability distribution. This can be done in the
same direction as designing propagators that reason over arithmetic circuits.

In our FSCP framework, the problems of constraint satisfaction/optimization
(search) and probabilistic inference (counting) were decoupled. The search
component repeatedly communicates with an external inference engine to answer
probability queries. A direction for future research is to perform these tasks
jointly within a single mechanism. This can facilitate exploiting the joint
structure of deterministic and probabilistic factors. DPLL search is a possible
candidate for unifying search and counting. On one hand, it has been used for

DISCUSSION AND FUTURE WORK 133

probabilistic inference (Sang et al. 2004), and on the other hand it can be used
for propagation in constraint satisfaction/optimization (Ohrimenko et al. 2007).

Finally, it is interesting to allow the probability distribution to be influenced
by the decisions. Standard scenario-based methods sample the scenarios in
a phase prior to the decision-making step and hence can not deal with such
problems. The advantage of our method is that it directly reasons over the
problem structure and hence it might be easier to adapt to such problems.

8.2.2 Constrained Clustering using Integer Linear Program-
ming

There are a number of open questions about our work on clustering by column
generation. The performance of this method is affected by the efficiency of
solving the master problem and the subproblem. An interesting direction for
future work is to improve the bounding method in the branch and bound
algorithm that solves the subproblem. It might also be beneficial to use an
approximate algorithm for solving the subproblem and use the exact method
only when this approximate method fails. This technique has been used in the
column generation algorithm for the unconstrained version of our clustering
problem (Aloise, Hansen, and Liberti 2012). In our algorithm, the constraints
are enforced in the subproblem. Another interesting future work is to extend
the branch and bound algorithm so that it supports other types of constraints.

In our work on graph clustering, we based our formulation on encoding
assignments of nodes to clusters as decision variables. Another common encoding
in graph clustering is based on co-membership of pairs of nodes in a cluster.
Using this approach, the number of clusters can be decided automatically (Benati
et al. 2017). Formulating the graph clustering problem using this encoding and
comparing it with the current two formulations is an interesting direction for
future work. Moreover, in our formulations of the graph clustering problem
we did not use any redundant constraints. Finding valid inequalities that
can strengthen the current formulations is another topic that needs further
investigation.

In both formulations of clustering problems, we had to develop specialized
algorithms for solving the subproblems. This at least partially contradicts
the declarative nature of constraint solving which was one of the motivations
for formulating DM/ML tasks as CSP(O) models. A possible direction for
future research is to automatically detect and solve the subproblems. There
is a framework called Generic Column Generation (GCG) which converts
a MILP formulation into an equivalent model that can be solved using the

134 CONCLUSIONS AND FUTURE WORK

column-generation method. It then formulates the subproblem as another MILP
model and solves the problem using the branch-and-price method (Gamrath and
Lübbecke 2010). However, our MSS clustering problem can not easily be modeled
as a compact MILP problem. Moreover, the subproblem in our formulation
involves non-linear constraints and hence can not be directly solved by the
MILP solver. This suggests that new representations and solving techniques
are required to extend existing methods such as GCG to general clustering
problems.

8.2.3 Learning Taxi Passenger Demand

In our work we assumed that the random variables representing the passenger
demand in different areas are independent given the contextual features (e.g.
weather, demographic attributes, calendar information, etc.). This assumption
simplifies both learning the distributions and sampling from them. However,
there are methods in spatio-temporal data analysis that take the dependencies
between variables into account (Diggle 2013). Another type of models that
encode such dependencies between count variables are Poisson dependency
networks (Hadiji et al. 2015). Using these richer models might lead to more
accurate distributions and more realistic samples.

An emerging topic in machine learning is probabilistic programming. In this
declarative approach, the user specifies a probabilistic model, and inference
(also learning, as a special type of inference) is performed automatically. Several
probabilistic programming frameworks rely on sampling as their approximate
inference mechanism. It might be beneficial to use these frameworks for learning
distributions and sampling scenarios. A next step will be extending probabilistic
programming frameworks with decision making capabilities. This will offer a
fully-declarative approach to (multi-stage) stochastic optimization. Since the
declarative specification might include constraints over the decision variables,
enforcing such constraints in this setting is a challenge that needs to be addressed.

8.3 Concluding Remarks

The three domains of AI that we studied in this thesis – i.e. DM, CSP(O), and
probabilistic inference – share common underlying principles. On one hand,
CSP(O) and probabilistic inference both deal with exploring combinatorial
spaces. On the other hand, a significant number of DM problems involve
searching over a combinatorial hypothesis space. This similarity allows using
methods from one domain to solve problems in another one. Following this

CONCLUDING REMARKS 135

perspective, we solved a DM problem (clustering) using CSP(O) mechanisms
(integer linear programming). Sometimes a problem lies at an intersection
of these domains. An approach for solving these problems is to combine the
existing methods in each domain into a new solving mechanism. We took this
approach for combining CSP(O) and probabilistic graphical models.

Our work in both directions led to improvements over the state-of-the-art. The
author hopes that this work inspires others to work along similar intersections
and to contribute to bridging the gap between these subfields.

Bibliography

Achterberg, T. (2007). “Constraint integer programming”. PhD thesis. Berlin
Institute of Technology.

– (2009). “SCIP: solving constraint integer programs”. In: Math. Program.
Comput. 1.1, pp. 1–41.

Aggarwal, C. C., M. Bhuiyan, and M. A. Hasan (2014). “Frequent Pattern Mining
Algorithms: A Survey”. In: Frequent Pattern Mining. Springer, pp. 19–64.

Agrawal, R., T. Imielinski, and A. N. Swami (1993). “Mining Association Rules
between Sets of Items in Large Databases”. In: SIGMOD Conference. ACM
Press, pp. 207–216.

Agrawal, R. and R. Srikant (1994). “Fast Algorithms for Mining Association
Rules in Large Databases”. In: VLDB. Morgan Kaufmann, pp. 487–499.

Aloise, D., A. Deshpande, P. Hansen, and P. Popat (2009). “NP-hardness of
Euclidean sum-of-squares clustering”. In: Machine Learning 75.2, pp. 245–248.

Aloise, D. and P. Hansen (2009). “A branch-and-cut SDP-based algorithm for
minimum sum-of-squares clustering”. In: Pesquisa Operacional 29.3, pp. 503–
516.

Aloise, D., P. Hansen, and L. Liberti (2012). “An improved column generation
algorithm for minimum sum-of-squares clustering”. In: Math. Program. 131.1-
2, pp. 195–220.

Armbruster, M., M. Fügenschuh, C. Helmberg, and A. Martin (2008). “A
Comparative Study of Linear and Semidefinite Branch-and-Cut Methods
for Solving the Minimum Graph Bisection Problem”. In: IPCO. Vol. 5035.
Lecture Notes in Computer Science. Springer, pp. 112–124.

Babaki, B., T. Guns, and S. Nijssen (2014). “Constrained Clustering Using
Column Generation”. In: CPAIOR. Vol. 8451. Lecture Notes in Computer
Science. Springer, pp. 438–454.

Bache, K. and M. Lichman (2013). UCI Machine Learning Repository.
Bartlett, M. and J. Cussens (2017). “Integer Linear Programming for the

Bayesian network structure learning problem”. In: Artif. Intell. 244, pp. 258–
271.

137

138 BIBLIOGRAPHY

Basu, S., I. Davidson, and K. Wagstaff (2008). Constrained Clustering: Advances
in Algorithms, Theory, and Applications. Chapman & Hall/CRC Press.

Benati, S., J. Puerto, and A. M. Rodríguez-Chía (2017). “Clustering data that
are graph connected”. In: European Journal of Operational Research 261.1,
pp. 43–53.

Benedetti, M., A. Lallouet, and J. Vautard (2008). “Quantified Constraint
Optimization”. In: CP. Vol. 5202. Lecture Notes in Computer Science.
Springer, pp. 463–477.

Bent, R. and P. V. Hentenryck (2004). “Scenario-Based Planning for Partially
Dynamic Vehicle Routing with Stochastic Customers”. In: Operations
Research 52.6, pp. 977–987.

– (2005). “Online Stochastic Optimization Without Distributions”. In: ICAPS.
AAAI, pp. 171–180.

Berg, J. and M. Järvisalo (2017). “Cost-optimal constrained correlation
clustering via weighted partial Maximum Satisfiability”. In: Artif. Intell.
244, pp. 110–142.

Binder, J., D. Koller, S. J. Russell, and K. Kanazawa (1997). “Adaptive
Probabilistic Networks with Hidden Variables”. In: Machine Learning 29.2-3,
pp. 213–244.

Boulicaut, J. and B. Jeudy (2001). “Mining Free Itemsets under Constraints”.
In: IDEAS. IEEE Computer Society, pp. 322–329.

Brusco, M. J. and S. Stahl (2005). “Minimum Within-Cluster Sums of Squares
Partitioning”. In: Branch-and-Bound Applications in Combinatorial Data
Analysis. Springer.

Buluç, A., H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz (2016). “Recent
Advances in Graph Partitioning”. In: Algorithm Engineering. Vol. 9220.
Lecture Notes in Computer Science, pp. 117–158.

Campos, L. M. de, J. A. Gámez, and S. Moral (2001). “Simplifying Explanations
in Bayesian Belief Networks”. In: International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems 9.4, pp. 461–490.

Carvajal, R., M. Constantino, M. Goycoolea, J. P. Vielma, and A. Weintraub
(2013). “Imposing Connectivity Constraints in Forest Planning Models”. In:
Operations Research 61.4, pp. 824–836.

Chang, H., Y. Tai, and J. Y. Hsu (2010). “Context-aware taxi demand hotspots
prediction”. In: IJBIDM 5.1, pp. 3–18.

Chavira, M. and A. Darwiche (2005). “Compiling Bayesian Networks with Local
Structure”. In: IJCAI. Professional Book Center, pp. 1306–1312.

– (2008). “On probabilistic inference by weighted model counting”. In: Artif.
Intell. 172.6-7, pp. 772–799.

Chen, S. J., A. Choi, and A. Darwiche (2014). “Algorithms and Applications
for the Same-Decision Probability”. In: J. Artif. Intell. Res. 49, pp. 601–633.

BIBLIOGRAPHY 139

Choi, C. W., W. Harvey, J. H. M. Lee, and P. J. Stuckey (2006). “Finite
Domain Bounds Consistency Revisited”. In: Australian Conference on
Artificial Intelligence. Vol. 4304. Lecture Notes in Computer Science. Springer,
pp. 49–58.

Chu, G. and P. J. Stuckey (2014). “Nested Constraint Programs”. In: CP.
Vol. 8656. Lecture Notes in Computer Science. Springer, pp. 240–255.

Dao, T., K. Duong, and C. Vrain (2013). “A Declarative Framework for
Constrained Clustering”. In: ECML/PKDD (3). Vol. 8190. Lecture Notes in
Computer Science. Springer, pp. 419–434.

– (2015). “Constrained Minimum Sum of Squares Clustering by Constraint
Programming”. In: CP. Vol. 9255. Lecture Notes in Computer Science.
Springer, pp. 557–573.

– (2017). “Constrained clustering by constraint programming”. In: Artif. Intell.
244, pp. 70–94.

Darwiche, A. (2003). “A differential approach to inference in Bayesian networks”.
In: J. ACM 50.3, pp. 280–305.

– (2009). Modeling and Reasoning with Bayesian Networks. Cambridge
University Press.

Das, J. and H. Yu (2012). “HINT: High-quality protein interactomes and their
applications in understanding human disease”. In: BMC Systems Biology 6,
p. 92.

Davidson, I. and S. S. Ravi (2007). “The complexity of non-hierarchical clustering
with instance and cluster level constraints”. In: Data Min. Knowl. Discov.
14.1, pp. 25–61.

Davidson, I., S. S. Ravi, and L. Shamis (2010). “A SAT-based Framework for
Efficient Constrained Clustering”. In: SDM. SIAM, pp. 94–105.

Davis, N., G. Raina, and K. Jagannathan (2016). “A multi-level clustering
approach for forecasting taxi travel demand”. In: ITSC. IEEE, pp. 223–228.

Demiriz, A., K. Bennett, and P. Bradley (2008). “Using assignment constraints
to avoid empty clusters in k-means clustering”. In: Constrained Clustering:
Algorithms, Applications and Theory. Chapman & Hall/CRC.

Deng, Z. and M. Ji (2011). “Spatiotemporal structure of taxi services in
Shanghai: Using exploratory spatial data analysis”. In: Proceedings of the
19th International Conference on Geoinformatics, pp. 1–5.

Diehr, G. (1985). “Evaluation of a branch and bound algorithm for clustering”.
In: SIAM Journal on Scientific and Statistical Computing 6.2, pp. 268–284.

Diggle, P. J. (2013). Statistical analysis of spatial and spatio-temporal point
patterns. CRC Press.

Dinkelbach, W. (1967). “On nonlinear fractional programming”. In:Management
science 13.7, pp. 492–498.

140 BIBLIOGRAPHY

Druzdzel, M. J. and H. J. Suermondt (1994). “Relevance in probabilistic
models:“Backyards” in a “small world””. In: Working notes of the AAAI–1994
Fall Symposium Series: Relevance, pp. 60–63.

Fan, N. and P. M. Pardalos (2010). “Linear and quadratic programming
approaches for the general graph partitioning problem”. In: J. Global
Optimization 48.1, pp. 57–71.

Fauré, C., S. Delprat, J. Boulicaut, and A. Mille (2006). “Iterative Bayesian
Network Implementation by Using Annotated Association Rules”. In: EKAW.
Vol. 4248. Lecture Notes in Computer Science. Springer, pp. 326–333.

Feillet, D. (2010). “A tutorial on column generation and branch-and-price for
vehicle routing problems”. In: 4OR 8.4, pp. 407–424.

Ferreira, C. E., A. Martin, C. C. de Souza, R. Weismantel, and L. A. Wolsey
(1998). “The node capacitated graph partitioning problem: A computational
study”. In: Math. Program. 81, pp. 229–256.

Ferrucci, F., S. Bock, and M. Gendreau (2013). “A pro-active real-time control
approach for dynamic vehicle routing problems dealing with the delivery of
urgent goods”. In: European Journal of Operational Research 225.1, pp. 130–
141.

Freund, Y. and R. E. Schapire (1997). “A Decision-Theoretic Generalization of
On-Line Learning and an Application to Boosting”. In: J. Comput. Syst. Sci.
55.1, pp. 119–139.

Friedman, J. H. (2001). “Greedy Function Approximation: A Gradient Boosting
Machine”. In: The Annals of Statistics 29.5, pp. 1189–1232.

Gamrath, G. and M. E. Lübbecke (2010). “Experiments with a Generic Dantzig-
Wolfe Decomposition for Integer Programs”. In: SEA. Vol. 6049. Lecture
Notes in Computer Science. Springer, pp. 239–252.

Gange, G. and P. J. Stuckey (2012). “Explaining Propagators for s-DNNF
Circuits”. In: CPAIOR. Vol. 7298. Lecture Notes in Computer Science.
Springer, pp. 195–210.

Ge, Y., H. Xiong, A. Tuzhilin, K. Xiao, M. Gruteser, and M. J. Pazzani
(2010). “An energy-efficient mobile recommender system”. In: KDD. ACM,
pp. 899–908.

Gilpin, S., S. Nijssen, and I. N. Davidson (2013). “Formalizing Hierarchical
Clustering as Integer Linear Programming”. In: AAAI. AAAI Press.

Gondek, D. and T. Hofmann (2004). “Non-Redundant Data Clustering”. In:
ICDM. IEEE Computer Society, pp. 75–82.

Grötschel, M. and Y. Wakabayashi (1989). “A cutting plane algorithm for a
clustering problem”. In: Math. Program. 45.1-3, pp. 59–96.

Guns, T., T. Dao, C. Vrain, and K. Duong (2016). “Repetitive Branch-and-
Bound Using Constraint Programming for Constrained Minimum Sum-of-
Squares Clustering”. In: ECAI. Vol. 285. Frontiers in Artificial Intelligence
and Applications. IOS Press, pp. 462–470.

BIBLIOGRAPHY 141

Guns, T., S. Nijssen, and L. D. Raedt (2011a). “Evaluating Pattern Set
Mining Strategies in a Constraint Programming Framework”. In: PAKDD
(2). Vol. 6635. Lecture Notes in Computer Science. Springer, pp. 382–394.

– (2011b). “Itemset mining: A constraint programming perspective”. In: Artif.
Intell. 175.12-13, pp. 1951–1983.

Hadiji, F., A. Molina, S. Natarajan, and K. Kersting (2015). “Poisson
Dependency Networks: Gradient Boosted Models for Multivariate Count
Data”. In: Machine Learning 100.2-3, pp. 477–507.

Hagberg, A. A., D. A. Schult, and P. J. Swart (2008). “Exploring network
structure, dynamics, and function using NetworkX”. In: Proceedings of the
7th Python in Science Conference (SciPy2008), pp. 11–15.

Hansen, P. and B. Jaumard (1997). “Cluster analysis and mathematical
programming”. In: Math. Program. 79, pp. 191–215.

Hemmi, D., G. Tack, and M. Wallace (2017). “Scenario-Based Learning for
Stochastic Combinatorial Optimisation”. In: CPAIOR. Vol. 10335. Lecture
Notes in Computer Science. Springer, pp. 277–292.

Hnich, B., R. Rossi, S. A. Tarim, and S. Prestwich (2011). “A Survey on
CP-AI-OR Hybrids for Decision Making Under Uncertainty”. In: Hybrid
Optimization: The Ten Years of CPAIOR. Springer, pp. 227–270.

Hnich, B., R. Rossi, S. A. Tarim, and S. D. Prestwich (2012). “Filtering
algorithms for global chance constraints”. In: Artif. Intell. 189, pp. 69–94.

Ichoua, S., M. Gendreau, and J. Potvin (2006). “Exploiting Knowledge About
Future Demands for Real-Time Vehicle Dispatching”. In: Transportation
Science 40.2, pp. 211–225.

Jaroszewicz, S., T. Scheffer, and D. A. Simovici (2009). “Scalable pattern mining
with Bayesian networks as background knowledge”. In: Data Min. Knowl.
Discov. 18.1, pp. 56–100.

Jensen, F., F. V. Jensen, and S. L. Dittmer (1994). “From Influence Diagrams
to junction Trees”. In: UAI. Morgan Kaufmann, pp. 367–373.

Jensen, R. E. (1969). “A Dynamic Programming Algorithm for Cluster Analysis”.
In: Operations Research 17.6, pp. 1034–1057.

Ji, X. and J. E. Mitchell (2007). “Branch-and-price-and-cut on the clique
partitioning problem with minimum clique size requirement”. In: Discrete
Optimization 4.1, pp. 87–102.

Johnson, E. L., A. Mehrotra, and G. L. Nemhauser (1993). “Min-cut clustering”.
In: Math. Program. 62, pp. 133–151.

Kircher, M., D. M. Witten, P. Jain, B. J. O’roak, G. M. Cooper, and J. Shendure
(2014). “A general framework for estimating the relative pathogenicity of
human genetic variants”. In: Nature genetics 46.3, pp. 310–315.

Koboldt, D. C. et al. (2012). “Comprehensive molecular portraits of human
breast tumors”. In: Nature 490.7418, pp. 61–70.

142 BIBLIOGRAPHY

Koller, D. and N. Friedman (2009). Probabilistic Graphical Models - Principles
and Techniques. MIT Press.

Koontz, W. L. G., P. M. Narendra, and K. Fukunaga (1975). “A Branch and
Bound Clustering Algorithm”. In: IEEE Trans. Computers 24.9, pp. 908–915.

Kwisthout, J. (2013). “Most Inforbable Explanations: Finding Explanations in
Bayesian Networks That Are Both Probable and Informative”. In: ECSQARU.
Vol. 7958. Lecture Notes in Computer Science. Springer, pp. 328–339.

Labbé, M. and F. A. Özsoy (2010). “Size-constrained graph partitioning
polytopes”. In: Discrete Mathematics 310.24, pp. 3473–3493.

Lee, D. D. and H. S. Seung (1999). “Learning the parts of objects by non-negative
matrix factorization”. In: Nature 401.6755, pp. 788–791.

Lee, D. D. and H. S. Seung (2000). “Algorithms for Non-negative Matrix
Factorization”. In: NIPS. MIT Press, pp. 556–562.

Leiserson, M. D., F. Vandin, H.-T. Wu, J. R. Dobson, J. V. Eldridge, J. L.
Thomas, A. Papoutsaki, Y. Kim, B. Niu, M. McLellan, et al. (2015). “Pan-
cancer network analysis identifies combinations of rare somatic mutations
across pathways and protein complexes”. In: Nature genetics 47.2, pp. 106–114.

Li, X., G. Pan, Z. Wu, G. Qi, S. Li, D. Zhang, W. Zhang, and Z. Wang (2012).
“Prediction of urban human mobility using large-scale taxi traces and its
applications”. In: Frontiers of Computer Science in China 6.1, pp. 111–121.

Lisser, A. and F. Rendl (2003). “Graph partitioning using linear and semidefinite
programming”. In: Math. Program. 95.1, pp. 91–101.

Malhas, R. and Z. A. Aghbari (2009). “Interestingness filtering engine: Mining
Bayesian networks for interesting patterns”. In: Expert Syst. Appl. 36.3,
pp. 5137–5145.

Manandhar, S., A. Tarim, and T. Walsh (2003). “Scenario-based Stochastic
Constraint Programming”. In: IJCAI. Morgan Kaufmann, pp. 257–262.

Mannila, H. and H. Toivonen (1997). “Levelwise Search and Borders of Theories
in Knowledge Discovery”. In: Data Min. Knowl. Discov. 1.3, pp. 241–258.

Mateescu, R. and R. Dechter (2008). “Mixed deterministic and probabilistic
networks”. In: Ann. Math. Artif. Intell. 54.1-3, pp. 3–51.

Mehrotra, A. and M. A. Trick (1998). “Cliques and clustering: A combinatorial
approach”. In: Oper. Res. Lett. 22.1, pp. 1–12.

Merle, O. du, P. Hansen, B. Jaumard, and N. Mladenovic (1999). “An Interior
Point Algorithm for Minimum Sum-of-Squares Clustering”. In: SIAM J.
Scientific Computing 21.4, pp. 1485–1505.

Miao, F., S. Han, S. Lin, Q. Wang, J. A. Stankovic, A. M. Hendawi, D. Zhang,
T. He, and G. J. Pappas (2016). “Data-Driven Robust Taxi Dispatch under
Demand Uncertainties”. In: CoRR abs/1603.06263.

Miller, J. and J. P. How (2017). “Demand Estimation and Chance-Constrained
Fleet Management for Ride Hailing”. In: CoRR abs/1703.02130.

Moore, R. E. (1966). Interval Analysis. Prentice-Hall, Englewood Cliffs, N.J.

BIBLIOGRAPHY 143

– (1995). Methods and applications of interval analysis. SIAM studies in applied
mathematics. SIAM.

Moreira-Matias, L., J. Gama, M. Ferreira, J. Mendes-Moreira, and L. Damas
(2013). “Predicting Taxi-Passenger Demand Using Streaming Data”. In: IEEE
Trans. Intelligent Transportation Systems 14.3, pp. 1393–1402.

Mueller, M. and S. Kramer (2010). “Integer Linear Programming Models for
Constrained Clustering”. In: Discovery Science. Vol. 6332. Lecture Notes in
Computer Science. Springer, pp. 159–173.

Négrevergne, B. and T. Guns (2015). “Constraint-Based Sequence Mining
Using Constraint Programming”. In: CPAIOR. Vol. 9075. Lecture Notes in
Computer Science. Springer, pp. 288–305.

Nijssen, S. and A. Zimmermann (2014). “Constraint-Based Pattern Mining”.
In: Frequent Pattern Mining. Springer, pp. 147–163.

Ohrimenko, O., P. J. Stuckey, and M. Codish (2007). “Propagation = Lazy
Clause Generation”. In: CP. Vol. 4741. Lecture Notes in Computer Science.
Springer, pp. 544–558.

Os, B. J. van and J. J. Meulman (2004). “Improving Dynamic Programming
Strategies for Partitioning”. In: J. Classification 21.2, pp. 207–230.

Parker, J. S., M. Mullins, M. C. Cheang, S. Leung, D. Voduc, T. Vickery,
S. Davies, C. Fauron, X. He, Z. Hu, et al. (2009). “Supervised risk predictor
of breast cancer based on intrinsic subtypes”. In: Journal of clinical oncology
27.8, pp. 1160–1167.

Pearl, J. (1989). Probabilistic reasoning in intelligent systems - networks of
plausible inference. Morgan Kaufmann series in representation and reasoning.
Morgan Kaufmann.

Pralet, C., G. Verfaillie, and T. Schiex (2007). “An Algebraic Graphical Model
for Decision with Uncertainties, Feasibilities, and Utilities”. In: J. Artif. Intell.
Res. 29, pp. 421–489.

Prestwich, S. D., R. Rossi, and A. Tarim (2017). “Stochastic Constraint
Programming as Reinforcement Learning”. In: CoRR abs/1704.07183.

Przytula, K. W., D. Dash, and D. Thompson (2003). “Evaluation of Bayesian
networks used for diagnostics”. In: 60, pp. 1–12.

Pulido-Tamayo, S., B. Weytjens, D. De Maeyer, and K. Marchal (2016). “SSA-
ME Detection of cancer driver genes using mutual exclusivity by small
subnetwork analysis”. In: Scientific Reports 6.

Qi, R. and D. L. Poole (1995). “A New Method for Influence Diagram
Evaluation”. In: Computational Intelligence 11, pp. 498–528.

Riedel, S. (2008). “Improving the Accuracy and Efficiency of MAP Inference
for Markov Logic”. In: UAI. AUAI Press, pp. 468–475.

Rietbergen, M. T., L. C. van der Gaag, and H. L. Bodlaender (2014). “Provisional
Propagation for Verifying Monotonicity of Bayesian Networks”. In: ECAI.

144 BIBLIOGRAPHY

Vol. 263. Frontiers in Artificial Intelligence and Applications. IOS Press,
pp. 759–764.

Rossi, F., P. van Beek, and T. Walsh, eds. (2006). Handbook of Constraint
Programming. Vol. 2. Foundations of Artificial Intelligence. Elsevier.

Rossi, R., A. Tarim, B. Hnich, and S. D. Prestwich (2008). “Cost-Based Domain
Filtering for Stochastic Constraint Programming”. In: CP. Vol. 5202. Lecture
Notes in Computer Science. Springer, pp. 235–250.

Saadi, I., M. Wong, B. Farooq, J. Teller, and M. Cools (2017). “An investigation
into machine learning approaches for forecasting spatio-temporal demand in
ride-hailing service”. In: CoRR abs/1703.02433.

Saglam, B., F. S. Salman, S. Sayin, and M. Türkay (2006). “A mixed-integer
programming approach to the clustering problem with an application in
customer segmentation”. In: European Journal of Operational Research 173.3,
pp. 866–879.

Sang, T., F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi (2004). “Combining
Component Caching and Clause Learning for Effective Model Counting”. In:
SAT.

Schaeffer, S. E. (2007). “Graph clustering”. In: Computer Science Review 1.1,
pp. 27–64.

Schölkopf, B., A. J. Smola, R. C. Williamson, and P. L. Bartlett (2000). “New
Support Vector Algorithms”. In: Neural Computation 12.5, pp. 1207–1245.

Schrijver, A. (2003). Combinatorial Optimization – Polyhedra and Efficiency.
Springer.

Sherali, H. D. and J. Desai (2005). “A Global Optimization RLT-based Approach
for Solving the Hard Clustering Problem”. In: J. Global Optimization 32.2,
pp. 281–306.

Shimony, S. E. (1993). “The role of relevance in explanation I: Irrelevance as
statistical independence”. In: Int. J. Approx. Reasoning 8.4, pp. 281–324.

Tarim, A., S. Manandhar, and T. Walsh (2006). “Stochastic Constraint
Programming: A Scenario-Based Approach”. In: Constraints 11.1, pp. 53–80.

Teso, S., R. Sebastiani, and A. Passerini (2017). “Structured learning modulo
theories”. In: Artif. Intell. 244, pp. 166–187.

T’Kindt, V. and J. Billaut (2006). Multicriteria Scheduling - Theory, Models
and Algorithms (2. ed.) Springer.

Wagstaff, K. and C. Cardie (2000). “Clustering with Instance-level Constraints”.
In: ICML. Morgan Kaufmann, pp. 1103–1110.

Walsh, T. (2002). “Stochastic Constraint Programming”. In: ECAI. IOS Press,
pp. 111–115.

Wolsey, L. A. (1998). Integer programming. New York, NY, USA: Wiley-
Interscience.

Xia, Y. and J. Peng (2005). “A Cutting Algorithm for the Minimum Sum-of-
Squared Error Clustering”. In: SDM. SIAM, pp. 150–160.

BIBLIOGRAPHY 145

Yu, H., L. Tardivo, S. Tam, E. Weiner, F. Gebreab, C. Fan, N. Svrzikapa,
T. Hirozane-Kishikawa, E. Rietman, X. Yang, et al. (2011). “Next-generation
sequencing to generate interactome datasets”. In: Nature methods 8.6, pp. 478–
480.

Yuan, C., H. Lim, and T. Lu (2011). “Most Relevant Explanation in Bayesian
Networks”. In: J. Artif. Intell. Res. (JAIR) 42, pp. 309–352.

Yuan, C., X. Wu, and E. A. Hansen (2010). “Solving Multistage Influence
Diagrams using Branch-and-Bound Search”. In: UAI. AUAI Press, pp. 691–
700.

Yuan, J., Y. Zheng, L. Zhang, X. Xie, and G. Sun (2011). “Where to find my
next passenger”. In: UbiComp. ACM, pp. 109–118.

Yue, Y., H. d. Wang, B. Hu, and Q. q. Li (2011). “Identifying Shopping Center
Attractiveness Using Taxi Trajectory Data”. In: Proceedings of the 2011
International Workshop on Trajectory Data Mining and Analysis. New York,
NY, USA: ACM, pp. 31–36.

Yue, Y., Y. Zhuang, Q. Li, and Q. Mao (2009). “Mining time-dependent
attractive areas and movement patterns from taxi trajectory data”. In:
Proceedings of the 17th International Conference on Geoinformatics, pp. 1–6.

Zhang, D., T. He, S. Lin, S. Munir, and J. A. Stankovic (2014). “Dmodel: Online
Taxicab Demand Model from Big Sensor Data in a Roving Sensor Network”.
In: BigData Congress. IEEE, pp. 152–159.

Zhao, K., D. Khryashchev, J. Freire, C. T. Silva, and H. T. Vo (2016).
“Predicting taxi demand at high spatial resolution: Approaching the limit of
predictability”. In: BigData. IEEE, pp. 833–842.

Zheng, Y., Y. Liu, J. Yuan, and X. Xie (2011). “Urban computing with taxicabs”.
In: UbiComp. ACM, pp. 89–98.

List of publications

Journal article

• Behrouz Babaki, and Anton Dries. Feature-based Taxi Request Prediction.
(manuscript in preparation).

Conference papers

• Behrouz Babaki, Tias Guns, and Siegfried Nijssen. “Constrained clustering
using column generation”. In Helmut Simonis, editor, Integration of AI
and OR Techniques in Constraint Programming - 11th International
Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,
volume 8451 of Lecture Notes in Computer Science, pages 438–454.
Springer, 2014.

• Behrouz Babaki, Tias Guns, Siegfried Nijssen, and Luc De Raedt.
“Constraint-based querying for bayesian network exploration”. In Élisa
Fromont, Tijl De Bie, and Matthijs van Leeuwen, editors, Advances in
Intel- ligent Data Analysis XIV - 14th International Symposium, IDA
2015, Saint Etienne, France, October 22-24, 2015, Proceedings, volume
9385 of Lecture Notes in Computer Science, pages 13–24. Springer, 2015.

• Behrouz Babaki, Tias Guns, and Luc De Raedt. “Stochastic constraint
programming with and-or branch-and-bound”. In Carles Sierra, editor,
Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August 19-25,
2017, pages 539–545. ijcai.org, 2017.

147

148 LIST OF PUBLICATIONS

Workshop paper

• Behrouz Babaki, Dries Van Daele, Bram Weytjens, and Tias Guns. “A
branch-and-cut algorithm for constrained graph clustering”. Data Science
meets Optimization workshop (colocated with CPAIOR), Padova, Italy,
2017.

Curriculum Vitae

Behrouz Babaki Studied Industrial Engineering at Iran University of Science
and Technology, Tehran, and received his Bachelor degree in September 2005.
He obtained a Master of Science in Industrial Engineering from Sharif University
of Technology, Tehran, in January 2009. His thesis was titled “Dynamic Pricing
of Perishable Assets using Demand Learning”.

In September 2011, he joined KU Leuven, Belgium, for a Master of Science
in Artificial Intelligence. His thesis was titled “Preposition Disambiguation
using Relational Learning”. He graduated with great honors in September 2012.
Afterwards, he started his PhD studies under the supervision of professor Luc
De Raedt and professor Tias Guns at the DTAI lab of KU Leuven. In September
2017, he will defend his thesis titled “On Constraints, Optimisation, Probability
and Data Mining”.

149

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF COMPUTER SCIENCE

DTAI
Celestijnenlaan 200A box 2402

B-3001 Leuven

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Constraint Satisfaction and Optimization
	Probabilistic Reasoning
	Data Mining
	Connections between Subdomains of Artificial Intelligence
	Contributions
	Structure of the thesis
	Part I: Probabilistic Models in Constraint Satisfaction and Optimization
	Part II: Constrained Clustering using Integer Linear Programming
	Part III: Learning Taxi Passenger Demand

	Background
	Bayesian Networks
	Probabilistic Inference by Knowledge Compilation
	Constraint Programming
	Mixed Integer Linear Programming
	Branch-and-bound search
	Cutting planes
	Column Generation

	Pattern Mining
	Constraint-based pattern mining
	Frequent pattern mining using constraint programming

	I Probabilistic Models in Constraint Satisfaction and Optimization
	Constraint-Based Querying for Bayesian Network Exploration
	Introduction
	Examples of Bayesian Network Exploration
	BN query framework
	Formulating BN Pattern Queries As Constraint Programming Problems
	Experiments
	Related work
	Conclusions

	Stochastic Constraint Programming with And-Or Branch-and-Bound
	Introduction
	Stochastic Constraint Programming
	Method: branch-and-bound And-Or search
	And-Or search in a constraint solver
	Experiments
	Related work
	Conclusion and future work

	II Constrained Clustering using Integer Linear Programming
	Constrained Clustering using Column Generation
	Introduction
	MSSC
	Column generation framework
	Column generation with constraints.
	Subproblem solving
	Reducing the number of candidates
	Pruning using a bound on the objective function

	Practical considerations
	Initialisation
	Branching
	Slow convergence

	Experiments
	Related work
	Recent developments

	Conclusions

	A Branch-and-Cut Algorithm for Constrained Graph Clustering
	Introduction
	Related work
	Motivating application
	Problem and MIP formulation
	Extensions and improvements
	Overlapping clusters
	Breaking symmetries
	Obtaining the set of Pareto optimal solutions

	Enforcing connectivity
	Enumerating all simple paths
	A cutting plane approach

	Experiments
	Results and discussion

	conclusions and future work

	III Learning Taxi Passenger Demand
	Feature-based Taxi Request Prediction
	Introduction
	Related work
	Problem setting
	Exploiting peripheral features
	Specificity of the model
	Recency of the data

	Traditional approaches
	Poisson processes
	Time-series analysis

	Feature-based taxi prediction
	Feature-based Poisson processes
	Direct prediction
	Decomposition-based prediction

	Evaluation
	Data
	Evaluation metric
	Decomposition
	Prediction using historic data
	Prediction using historic data and recent observations
	Prediction on unseen regions

	Conclusions and future work

	Conclusions and Future Work
	Summary and Conclusions
	Discussion and Future Work
	Probabilistic Models in Constraint Satisfaction and Optimization
	Constrained Clustering using Integer Linear Programming
	Learning Taxi Passenger Demand

	Concluding Remarks

	Bibliography
	List of publications
	Curriculum Vitae

