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Abstract

This paper proposes a novel time domain approach for joint state/input esti-
mation of mechanical systems. The novelty consists of exploiting compressive
sensing (CS) principles in a moving horizon estimator (MHE), allowing the
observation of a large number of input locations given a small set of measure-
ments. Existing techniques are characterized by intrinsic limitations when
estimating multiple input locations, due to an observability decrease. More-
over, CS does not require an input to be characterized by a slow dynamics,
which is a requirement of other state of the art techniques for input modeling.
In the new approach, called compressive sensing–moving horizon estimator
(CS-MHE), the capability of the MHE of minimizing the noise while corre-
lating a model with measurements is enriched with an `1-norm optimization
in order to promote a sparse solution for the input estimation. A numerical
example shows that the CS-MHE allows for an unknown input estimation in
terms of magnitude, time and location, exploiting the assumption that the
input is sparse in time and space. Finally, an experimental setup is presented
as validation case.
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1. Introduction

State estimation is a well established engineering approach aiming at re-
covering a complete representation of the internal condition of the system
under investigation at a given time instant, and allows a system to be con-
trolled [1]. This is achieved by correlating information coming from a model
with a set of measurements. As such, it is becoming crucial in many engineer-
ing areas such as control, structural health monitoring and virtual sensing.
It is well known that the Kalman filter (KF) [2] provides the optimal state
estimation in case of linear systems with Gaussian, zero-mean, uncorrelated
process noise [1]. However, many real world systems do not satisfy these
hypothesis, and other estimation methodologies have been developed, such
as the extended Kalman filter (EKF) [1] and the moving horizon estimator
(MHE) [3]. The KF and its nonlinear derivations are recursive single step
approaches, whereas the MHE exploits a finite length time window sliding
over time. Moreover, the MHE is suited for nonlinear systems, can include
constraints and has been shown to provide the correct estimation for prob-
lems with multiple optima where the EKF tends to fail [4], at the price of a
higher computational cost.

All the over mentioned techniques can also combine the estimation of
states and inputs. In such framework, the inputs become part of the un-
knowns and are referred to as augmented states [1, 5]. A joint state/input
estimator is beneficial whenever the inputs are not easy to be measured or
if they have a strong influence on the estimation accuracy [1, 6, 7, 8]. In
fact, a joint estimator can capture the cross-coupling among all estimates
by means of a single covariance matrix. However, this comes at the price
of a higher computational cost and possible observability issues, which may
degenerate to failure of estimation when dealing with many estimates [1].
Furthermore, additional equations are needed to model these new states. A
random walk model is often employed to represent an unknown input. It
is a generic approach that can be applied to different input types, but it is
not suited if the number of augmented states exceeds a threshold governed
by observability or if the new states are characterized by a fast dynamics
[1, 6, 7, 8, 5, 9, 10, 11, 12].

Beside estimation problems, input models are key elements of force iden-
tification problems. References [13, 14, 15, 16] focus on inverse methods for
force identification based on the `1-norm regularization. In particular, ref-
erence [15] describes a fast iterative shrinkage/thresholding (IST) algorithm
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which leads to an accurate force reconstruction for impulses and harmonic
loads. The same approach is employed in [14], where different types of shape
functions are compared in order to find the best force impact representation.
Furthermore, the problem of impact identification and location is solved in
[13] by a two-step IST algorithm, allowing the characterization of one or two
force impulses within a set of nine candidate locations. Finally, reference [16]
describes the sparse deconvolution method for the reconstruction of impact
forces in case of large scale ill-posed inverse problems.

The `1-norm optimization constitutes the basis of a technique called com-
pressive sensing (CS), which is gaining attention in the fields of structural
health monitoring and fault detection in order to limit the number of re-
quired sensors [17, 18, 19] and the amount of data to be transmitted for
processing [20]. CS allows to acquire and recover undersampled signals, and
it is based on a concept referred to as signal sparsity [21, 22, 23]. CS is
currently being investigated as a powerful instrument in the framework of
estimation problems based on the KF. The first example of CS as a tool
to improve the KF can be found in [24], where the fact that the sparsity
pattern of a signal changes slowly over time is exploited within a KF with
a limited amount of measurements. This idea has been further developed in
[25, 26], and two other sparsity conditions have been introduced in [27] (i.e.,
sparsity in the state and sparsity in the innovations) in order to improve the
KF performances in terms of estimation error or convergence time.

Reference [28] applies CS for the detection of a single force impact en-
tering a mechanical system at an unknown location, such that the signal is
known to be sparse in time and space, and CS allows for an accurate input
estimation. Input sparsity in space has also been exploited in [29], where a
frequency domain approach is proposed to identify unknown dynamic forces
on a structure.

To summarize the state of the art, a joint state/input estimator is a
powerful tool if the knowledge of an input is crucial to the estimation accuracy
and cannot be obtained from direct measurements. However, such approach
is not suitable if the number of inputs exceeds an observability constraint or
a random walk is chosen to represent a high dynamics input. Recent research
shows that CS can lead to an accurate force reconstruction within a static
time horizon, independently from the input dynamics, provided that a set of
basis functions is available to guarantee input sparsity. CS was also employed
to improve a KF, proving that the sparsity within a single time step can be
propagated to the next step in an iterative fashion.
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This paper describes a novel joint state/input estimation approach which
limits the observability issues related to the estimation of multiple variables
and can be employed for the estimation of inputs characterized by a fast
dynamics, thus confining the drawbacks of state augmentation with respect
to observability and overcoming the limitations of the random walk model.
This new methodology will be referred to as the compressive sensing–moving
horizon estimator (CS-MHE). The CS-MHE is a joint state/input estimator
in which an unknown input is modeled as a sparse signal. In particular,
the CS-MHE exploits input sparsity in time and space. This is achieved
by projecting an input onto a set of basis functions of which only a few
are active. Thus, inputs distributed in time and/or space can be estimated
provided that an appropriate set of basis functions is available [30].

The paper is structured as follows: first, section 2 gives an overview
of the MHE and on CS. Next, section 3 illustrates the proposed CS-MHE
methodology. The CS-MHE is tested first numerically in section 4 and then
experimentally in section 5 for a linear time-invariant (LTI) mechanical sys-
tem loaded with an impact force, proving that the CS-MHE allows to detect
an unknown input on a mechanical system (e.g., a force) in terms of position,
magnitude and time. Finally, section 6 summarizes the conclusions.

2. An overview of MHE and CS

This section gives an overview of the two milestones on which the CS-
MHE is based, i.e., the moving horizon estimator (section 2.1) and compres-
sive sensing (section 2.2).

2.1. Moving Horizon Estimator

References [4, 3, 31] describe the classical MHE for state estimation prob-
lems, which is summarized by eqs. (1–5). An estimation window of length N
is defined between the discrete time steps k = T−N+1 and k = T , as shown
in Fig. 1.
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Figure 1: MHE strategy.

minimize
wa,wk,vk

wTa P
−1
a wa +

T−1∑
k=T−N+1

wTkQ
−1
k wk +

T∑
k=T−N+1

vTkR
−1
k vk (1)

subject to xk+1 = f(xk, uk) + wk (2)

yk = h(xk, uk) + vk (3)

xT−N+1 = x̄T−N+1 + wa (4)

xk ∈ Xk, wk ∈ Wk, vk ∈ Vk (5)

Eq. (1) is a cost function and consist of three noise terms to be minimized.
From left to right, they are related to the arrival cost wa ∈ RNS , the model
error wk ∈ RNS and the measurement error vk ∈ Rr, where NS and r are the
number of states and transducers, respectively. Each variable is associated
with a covariance matrix as follows:

wa ∼ N (0, Pa)
wk ∼ N (0, Qk)
vk ∼ N (0, Rk).

(6)

Eqs. (2–3) are the state-space representation of a discretized system under
the hypothesis of additive noise. Functions f(xk, uk) and h(xk, uk) depend
on the state vector xk ∈ RNS and on the input uk. Eq. (4) refers to the
arrival cost and finally Xk, Wk and Vk in eq. (5) are bounds on the variables
xk, wk and vk, respectively. Matrices Qk and Rk have to be built according
to the information that are available about the model and the measurement
system. For the latter this is usually a simple task, since the accuracy of the
measurement system is known, while a few assumptions are needed to choose
a value for the model uncertainty.
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The role of the arrival cost for the MHE is to include the past information
(from k=0 to k=T−N+1) in the estimation. The arrival cost refers to the
first time step of the moving window (i.e., k = T−N+1), and it is identified
by the subscript a. There are several ways to deal with the arrival cost. A
first approach is simply not to take into account any information prior to the
sliding window. A second method is to set a constant value for the arrival
cost (i.e., Pa = constant), and a third technique employs a recursive filter,
such as the EKF or the unscented Kalman filter (UKF) [3, 32]. Furthermore,
the so-called smoothed arrival cost exploits the covariance matrix of the
optimization problem [33, 34, 35]. It will become clear in section 3 that
the latter approach is well suited for the proposed CS-MHE, because the
covariance matrix is required independently of the arrival cost. The prior
information enters the estimation window through the term x̄T−N+1 in eq. 4,
and its value is set according to the chosen arrival cost strategy. The effect
of the arrival cost is minimal for a long window, in which a large set of data
is available for the optimization, such that an extra element does not have
a strong influence on the solution. For the same reason, a good estimation
of the arrival cost is crucial if the window is short. The latter is the most
interesting case from a practical point of view, because a short window allows
for a faster computation, which may be the bottleneck for online (real-time)
applications.

The optimization problem of eqs. (1–5) is solved via sequential quadratic
programming (SQP), and inequality constraints can also be included. Con-
straints are handled depending on the chosen algorithm (e.g., interior point,
active set, parametric active set) [36]. When dealing with estimation prob-
lems, it is important to assign a confidence level to the estimates (states,
inputs and parameters). This can be done by computing the covariance ma-
trix of the optimization problem, which is a symmetric positive semidefinite
square matrix whose diagonal entries are the variances of the optimization
variables, while any nonzero off-diagonal element denotes cross-correlation
between them. The covariance matrix for constrained optimization prob-
lems such as eqs. (1–5) can be calculated following the approach proposed in
references [37, 38].

2.2. Compressive sensing and `1-norm optimization

Compressive sensing (CS) is a well known scheme in the field of signal
and image processing [21, 39, 40]. It allows to acquire a signal at a lower
sampling rate than the Nyquist-Shannon limit and subsequently to recover
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a signal from an undersampled data set [23]. CS is based on a concept
referred to as signal sparsity, i.e., a signal can be represented (fully or in
an approximate way) by just a few components (basis functions) belonging
to a certain space (dictionary) [41, 22, 21]. Moreover, the sensing scheme
should have a dense representation in the dictionary [22]. A simple overview
on compressive sampling can be found in [21]. References [22, 42] provide
the mathematical guarantees to be taken into account when dealing with
compressive sampling.

Eq. (7) shows the sensing process. Vector u ∈ Rγ is an unknown signal to
be measured, y ∈ Rµ is a set of measurements and Φ ∈ Rµ×γ is the sensing
matrix, and implements the operations of signal acquisition. u is projected
on the dictionary Ψ ∈ Rγ×η, such that α ∈ Rη is a sparse representation
of the input. Finally, Θ ∈ Rµ×η brings together the sensing matrix and the
dictionary in the so-called global sensing basis. The system is assumed to
be underdetermined (typically µ � γ ≤ η) and has an infinite number of
solutions. This happens for two reasons: first because the number of samples
µ is kept low, and secondly because the dictionary can be overcomplete [30].

y = Φu = ΦΨα = Θα (7)

Compressive sensing can solve eq. (7), provided that y is sufficiently long
and α is sufficiently sparse [22]. Specifically, the restricted isometry property
(RIP) is a condition on Θ that indicates a nearly orthonormal matrix when
operating on sparse vectors (such as α). If the RIP holds for a given sparsity,
the rate of success of CS is very high [22, 42, 43]. Among all possible solutions
of eq. (7), CS is interested in finding the sparsest one. The reason is that the
number of measurements y needed to capture a sparse signal α is proportional
to its sparsity (i.e., to the number of nonzero elements of α). Eq. (7) can
be solved through an `1-norm optimization problem, known as basis pursuit
(BP) or basis pursuit denoising (BPDN, in case of solution approximation,
regularization and noise filtering) [44, 45, 46, 47, 30, 22].

3. Proposed methodology: the CS-MHE

The CS-MHE formulation is given and explained here. The combined
state/input estimation is achieved through a state augmentation, i.e., the
inputs to be estimated become part of the optimization variables. State
augmentation is a standard practice in state/input/parameter estimation.
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Its main drawback is that it deteriorates the observability of the system.
Furthermore, extra information are required to model the newly introduced
variables. This is typically done through a so-called random walk model
[5], which consist on modeling an input (or paramenter) as the input (or
parameter) at the previous time step plus a noise term proportional to the
dynamics of that value. This approach suffers from a few limitations. First,
it should be clear that such model cannot represent a sudden input change
(e.g., the case of an impulse). Furthermore, the number of extra variables
needed may render the system unobservable. To overcome those weaknesses,
CS-MHE exploits sparsity instead of a random walk to model an input.

The CS-MHE approach is given in eqs. (8–14). Most of the notation has
already been explained for the classical MHE in eqs. (1–5). The new parts
involve the last two terms of the cost function in eq. (8), their related bounds
in eq. (14), and the new constraints denoted as eqs. (11) and (13).

minimize
wa,wk,vk,να∗ ,αk

wTa P
−1
a wa +

T−1∑
k=T−N+1

wTkQ
−1
k wk +

T∑
k=T−N+1

vTkR
−1
k vk

+ νTα∗P−1α∗ να∗ + λ
T−1∑

k=T−N+1

‖αk‖`1 (8)

subject to xk+1 = f(xk, uk) + wk (9)

yk = h(xk, uk) + vk (10)

uk = Ψαk (11)

xT−N+1 = x̄T−N+1 + wa (12)

α∗ = ᾱ∗ + να∗ (13)

xk ∈ Xk, wk ∈ Wk, vk ∈ Vk, να∗ ∈ Nα∗ , αk ∈ Γk (14)

The new CS term in eq. (8) consists of the `1-norm of the sparse represen-
tation αk of the input. It is expressed by eq. (11), where Ψ is a sparsifying
dictionary as defined in eq. (7). The optimization problem is formulated
under the assumption that the input is fully unknown. If this is not the
case, the equations can be easily extended to include any available input
information, without loss of generality. The CS term is the only linear term
of the cost function, while all other components are quadratic. A constant
weight λ balances this term with the rest of the cost function, and plays a
crucial role in the optimization. In fact, λ scales the contribution of the spar-
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sity exploitation with regard to the noise terms of model and measurements,
which are represented by the covariance matrices Qk and Rk, respectively.
Section 4.3 will give some details about the choice of λ, referring to the
numerical example.

Eqs. (12–13) and their related terms in the cost function contribute to the
CS-MHE by including information prior to the current window. Specifically,
eq. (12) refers to the arrival cost and has already been discussed in section 2.1
for the classical MHE, while eq. (13) allows to exploit any available knowledge
about an input, and will be discussed in section 3.1. Despite its similarity to a
typical random walk equation, it is important to notice that eq. (13) does not
refer to the input estimation. In fact, it propagates the participation factors
of an already detected input to the next iteration, while the estimation is
performed by the CS part. Nα∗ and Γα in eq. (14) are two bounds on the
newly introduced optimization variables.

3.1. Exploiting the prior information

As discussed in section 2.1, a covariance matrix can be computed to
determine the accuracy of the estimates and the smoothed arrival cost. In
the framework of the CS-MHE, the covariance matrix is crucial to transfer
the knowledge of an input from the current window to the next time step.
This is done as described in Algorithm 1 and it is implemented by eq. (13),
together with its related term in eq. (8).
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1 define window i, with k=T−N+1, . . . , T ;
2 set optimization problem i;
3 solve optimization problem i (eqs. (8–14));
4 compute covariance i;
5 compute α∗i|i and nα∗ i|i;

6 compute α∗i+1|i and nα∗ i+1|i;

7 if nα∗ i+1|i ≥ 1 then
8 compare α∗i|i and α∗i|i−1;

9 assign Pα∗ i+1|i as follows:
10 Pα∗ i+1|i = Pα∗ i|i +Qdrift (for matching elements);
11 Pα∗ i+1|i = Qdrift (for new elements);

12 else
13 iteration i+1 will not have extra states;
14 end

Algorithm 1: Procedure for updating the sparse representation of an
input.

The following list illustrates the notation of Algorithm 1 and gives all details
about the propagation of the input information. Moreover, the few symbols
of eqs. (8–14) that were not described yet are explained here. Items are
labeled according to the line numbers they refer to in Algorithm 1.

1 Index i refers to the current optimization problem.

2–4 The optimization problem i is set and solved, and its associated covari-
ance matrix is computed. Setting the problem includes any available
prior information, i.e., the arrival cost and the knowledge about a pos-
sible input. The solution of the problem returns an estimation of states
and inputs. The latter are represented by the sparse vector αi|i, which
is the collection of all αk within the window1.
Index i has been omitted from eqs. (8–14). Similarly to the notation of
the arrival cost in eqs. (4) and (12), prior data are marked with a bar,
such that ᾱ∗ corresponds to α∗i|i−1.

5 Variable α∗i|i collects the nonzero elements of αi|i, and their number is

1Notation zi|j refers to the estimation of variable z at time step i given the information
at time step j.
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denoted as nα∗ i|i. A nonzero element of αi|i is considered as such if its
absolute value exceeds a predefined threshold level εα.
The purpose of εα is to filter out the noise components and limit the size
of the optimization problem. Its side effect is that some energy coming
from the input is discarded, and consequently the input magnitude is
underestimated. A simple way to avoid this energy loss will be shown
in sections 4–5.
Variable να∗ ∈ Rnα∗ in eqs. (8) and (13) is a noise term related to
the input, and it is assumed to follow a Gaussian distribution να∗ ∼
N (0, Pα∗), where Pα∗ carries the weighting numbers of any estimated
input.

6 Variable α∗i+1|i of length nα∗ i+1|i transfers the current knowledge of the
input to the next window. The input knowledge is shared with the next
iteration i+1 through weighting numbers. Those can be obtained from
the covariance matrix of the optimization problem. To achieve this, the
set α∗i+1|i is added to the problem as nα∗ i+1|i extra states. Note that
α∗i|i and α∗i+1|i may differ since the window is sliding in time, and any
information at T−N+1 is thus omitted.

7 If at least one element is shared with the next time step, the updating
procedure takes place. Otherwise, nothing is transfered to the next
iteration (see line 13).

8–11 The comparison between current and previous windows governs the
way the input weighting numbers are updated.
In fact, if an element was present during the previous window, then the
current problem and covariance matrix include its weighting number
Pα∗ i|i. This is added to a drift term Qdrift, resulting in Pα∗ i+1|i (line
10). On the other hand, if an element is new, only Qdrift is assigned to
Pα∗ i+1|i (line 11).

In plain text, whenever the CS-MHE detects an input, the algorithm
assumes that it is highly possible that the same input will be detected also
in the following iteration, until the step at which that input reaches the end
of the window. In other words, the sparsity pattern of the input does not
change in space, while it is shifted in time according to the sliding window.
Moreover, a drift term Qdrift is added to the input magnitude, to relax the
constraints of the next optimization problem. Note that a small Qdrift implies
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tighter constraints, while higher values give more freedom to the solver. The
choice of Qdrift is linked to the knowledge of the system, which is evaluated
by the covariances Qk and Rk.

The knowledge of an input is shared with the next iteration in terms of
augmented states. Consequently, the number of variables of the optimization
problem grows proportionally to nα∗ i+1|i. The size of the problem may be
kept smaller if the threshold for the input detection εα gets higher. The drift
term to correct the input estimation can be modeled in several ways. The
simplest approach employs a constant value, but a function of the time steps
within the window may be more appropriate. An example will be given in
sections 4–5.

4. Numerical test case

The CS-MHE described in section 3 has been tested numerically for a lin-
ear time-invariant (LTI) mechanical system. Consequently, the state-space
model in eqs. (9–10) assumes the form indicated in eqs. (15–16). This section
describes the numerical test case (section 4.1), discusses the observability of
the system (section 4.2), suggests a method to choose the weight λ (sec-
tion 4.3) and finally shows some simulation results (section 4.4).

xk+1 = Axk +Buk + wk (15)

yk = Cxk +Duk + vk (16)

4.1. Description of the numerical test case

The cantilever beam in Fig. 2 was chosen for testing the CS-MHE method-
ology. Three simulated displacement transducers s1, s2, s3 were located at 3
equidistant points denoted as x(s1), x(s2), x(s3) in Table 1. The beam is mod-
eled analytically considering a bar with uniform rectangular cross-section. A
state space model was built following the procedure given in reference [28]
and adapting it to a cantilever beam with displacement measurements. Ge-
ometry and material properties are summarized in Table 1. The model takes
into account the first 3 eigenmodes, which are also displayed in Fig. 2. Their
damping values are denoted as ζ1, ζ2 and ζ3 in Table 1. The system is de-
scribed by 6 states, i.e., 3 position modal participation factors (MPFs) and
their time derivatives [28].
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Figure 2: Numerical test case. Legend: 1st mode (—–); 2nd mode (- - -); 3rd mode (- · -);
spatial sampling (+); transducers (s1, s2, s3); input (F1, F2, F3, F4).

Parameter Value
Beam length [m] 0.405
Beam width [m] 0.025
Beam thickness h [m] 0.003
Density [kg/m3] 7502
Young’s modulus [GPa] 65.9
x(s1) [m] 0.245
x(s2) [m] 0.325
x(s3) [m] 0.405
ζ1 0.030
ζ2 0.037
ζ3 0.119
εα [N] 1.0

Table 1: Parameters of the numerical test case.
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Force ID Time [s] Location [m] Magnitude [N]
F1 0.03 0.405 -10
F2 0.06 0.365 -5
F3 0.09 0.285 5
F4 0.12 0.165 10

Table 2: Location of the impacts in time and space.

Figure 3: Reference input for the numerical test case (—–×, the nonzero components are
marked in a darker color), and window for the first CS-MHE iteration (light blue).

Fig. 2 shows also a spatial sampling (8 equally spaced grey crosses) and
the input, which consists of 4 force impulses F1, F2, F3, F4. Those impacts
enter the system at different locations and time, as indicated in Table 2 and
Fig. 3. The force (green crosses) is zero except for the four impacts, such that
the input signal is sparse in time and space, and there is no need to project
the signal onto any specific dictionary. In other words, variables u and α
are equivalent. Fig. 3 indicates the first estimation window (light blue). The
system is at rest and this status does not change until F1 is applied.

The CS-MHE can directly estimate the position of an input only if this
is applied to a sampling point. If this is not the case, the input energy is
spread onto the neighboring nodes. However, the exact input location can
still be estimated accurately by linear interpolation, provided that the input
consists of one single impulse [28]. In such context, CS outperforms the
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Figure 4: Qdrift as a linear function of the time step k.

random walk model for what the robustness in relation to the accuracy of
an input location is concerned. In fact, an input applied to an unexpected
location may jeopardize the estimation, since the filter does not take into
account such uncertainty.

The window length has been fixed to a value of 11 time steps, such that
the input estimation takes place on 10 time steps [48]. This value allows for
good accuracy [3] and for a fast computation. The drift term (Qdrift) follows
a linear function of the time step k within one window, as shown in Fig. 4.
This follows the fact that the estimation is expected to be more accurate if
both past and future data take part in the estimation, and this happens next
to k=T−N+1 [49].

A model mismatch was simulated in order to investigate the influence of
the modeling error. This was achieved by changing the beam thickness (h).
Table 3 shows the first three eigenfrequecies of the beam for the reference test
case (h=0.003 m) as well as for 3 different modeling errors, characterized by
a frequency mismatch indicated by δ%. The choice of parameters εR, εQ and
λ will become clear in section 4.3. In order to satisfy the Nyquist-Shannon
sampling theorem for the highest mode, a sampling period of 2.5 ·10−3 s
(400 Hz) has been chosen. Note that the CS-MHE exploits compressive
sampling for the observation of a large amount of input positions, and this
formulation does not allow for signal acquisition with undersampled data in
time.

4.2. Observability of the system

Before presenting any numerical results, let us investigate the observabil-
ity of the system. Such analysis helps understanding the potentiality of the
CS-MHE in comparison to joint state/input/parameter estimators that rely
on a random walk model. Let us consider the LTI cantilever beam described
in section 4.1 in the case in which only the states are being estimated. Then,
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h = 0.003 m h = 0.0029 m h = 0.0028 m h = 0.0027 m
(reference) (δ% = −3.3 %) (δ% = −6.7 %) (δ% = −10.0 %)

f1 [Hz] 8.76 8.47 8.17 7.88
f2 [Hz] 54.88 53.05 51.22 49.39
f3 [Hz] 153.66 148.54 143.42 138.30
εR [m2] 1.48·10−8 1.48·10−8 1.48·10−8 1.48·10−8

εQ 7.39·10−2 1.48 598.74 598.74
λ 3.27·10−4 2.94·10−2 1.98·10−4 3.27·10−4

Table 3: First 3 eigenfrequencies of the beam and CS-MHE tuning parameters for the
numerical test cases.

let us add one by one the possible input positions as augmented states. A
zero-order random walk model is associated with each input position [5]. For
the system to be observable, matrices A and C in the state-space eqs. (15–16)
have to satisfy eq. (17), where O is the observability matrix [50, 1]. Fig. 5
shows the rank of O as function of the number of states NS, which includes
the 6 position and velocity MPFs as well as the augmented states for the
input estimation.

rank(O) = NS, with O =


C
CA
CA2

...
CANS−1

 (17)

6 7 8 9 10 11 12 13 14
6

7

8

9

10

11

N
S
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nk

(O
)

rank(O) = N
S

Figure 5: Rank of the observability matrix O as function of the number of states NS .
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The graph shows that the system becomes not observable if NS > 9,
i.e., when the number of observed positions exceeds 3. Accordingly, the
numerical example in section 4.1 does not satisfy eq. (17), since the forces
are applied to 4 different locations. The example is not observable if a RW
is applied at each position, while it will be shown in section 4.4 that the
CS-MHE is able to estimate all 4 inputs, provided that the input is sparse.
The connection between sparsity and observability for a joint state/input
MHE with no input model, random walk model and compressive sensing has
been investigated in [48] for different scenarios. The main outcome of [48]
is that the observability of the CS-MHE is linked to input sparsity, whereas
observability with a random walk is constrained by the number of input
locations (i.e., the number of random walk models).

4.3. Choice of the balancing weight λ

The key role of the weight λ and its dependency on the model and mea-
surement covariance matrices has already been pointed out in section 3. This
crucial CS-MHE parameter is further discussed here for the numerical exam-
ple. Fig. 6 shows the mean square error (MSE) of the input estimation for
different values of λ, while the covariances Q and R are constant. The MSE
drops within a region of λ, leading to an accurate input estimation. If λ is too
small, the optimization gives more weight to the minimization of the model
and measurement errors, and the sparsity of the input cannot be exploited.
On the other hand, a too high value of λ would promote sparsity within a
system that does not minimize any model and measurement errors, result-
ing in a higher MSE. An analogous simulation was carried out for different
values of εQ and εR, resulting in an optimal λ for each combination, corre-
sponding to the minimum MSE. εQ and εR are two scaling factors assigned
to the covariance matrices Q and R, respectively. The study was repeated
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for the other three models introduced in Table 3. Fig. 7 shows the MSE of
the input estimation given as a function of εQ, εR and computed with their
related optimal λ.

It is worth noticing that there are particular combinations of εQ and εR
that give a smaller MSE, and those are located along a line in a log–log plane
(white dashed line). This can be spotted in case of modeling error, while the
reference case manifests a wider interval of low MSE. Furthermore, Fig. 8
shows the values of the optimal λ for each combination. It can be seen that
they scale logarithmically while moving along the line of minimum MSE.
Given a measurement setup (such that εR is known) and a model, there are
a certain model accuracy (εQ) and a certain optimal λ at which the MSE has
a minimum (i.e., the CS-MHE performs its best). Those values are marked
with a green circle and are given in Table 3.
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Figure 7: MSE of the input estimation as a function of εQ and εR. The white dashed
lines indicate the combinations of εQ and εR that give a minimum MSE. The chosen
combinations are marked with a green circle, and correspond to Table 3.

4.4. Results and discussion

This section presents the results of the numerical test case. Whenever a
new measurement is available, the moving window shifts in time and performs
a joint state/input estimation. Fig. 9 shows the estimation window i = 7
for δ% = 0%, while the whole simulation is available here. The left graphs
display the states, divided into position (top) and velocity (bottom) MPFs.
Their confidence intervals are also present (MPFn ± 3σn, i.e., 99.7% of the
normal distribution, where n=1, 2, 3 identifies the first 3 eigenmodes of the
structure). The right graph shows the input estimation. The time axis in
Fig. 9 is relative to the current window.
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Figure 8: Optimal λ as a function of εQ and εR. The white dashed lines and the green
circles corresponds to Fig. 7.

Fig. 10 shows the input estimation of the full simulation. The graph
is obtained by keeping the elements α ≥ εα that correspond to the best
estimation time step of each window, i.e., k = T −N+1. This follows the
fact that an estimate obtained by processing both past and future data is
more accurate than an estimate that relies only on prior information [49].
This approach can be adopted if the latest input estimate (i.e., k = T −1)
is not required for specific real-time applications. Moreover, the discarded
energy (due to εα) is evaluated and distributed to each nonzero component
proportionally to its magnitude, obtaining the solid dots in Fig. 10.

Fig. 11 presents three further aspects regarding the input estimation of
the full simulation, and refers to all four test cases of Table 3. The top graph
shows the deviation from the reference signal for every window, expressed
as MSE. It can be seen that the MSE grows proportionally with the model
mismatch. Moreover, the highest values are associated with F1. A difference
in MSE is justified by the sensor positioning. A performance improvement
can be obtained by optimally placing the transducers [51]. Next, the central
graph shows nα∗ i|i for each window, which depends on the choice of εα.
The dashed green line is a reference value and corresponds to the sparse
signal of Fig. 3. A link between the number of inputs and the MSE can
be noticed, i.e., detecting more components increases the MSE. Finally, the
bottom graph in Fig. 11 shows the sum of all elements in αi|i. It can be seen
that the magnitudes of F2 and F4 do not converge to their expected values,
while F1 and F3 do converge. The reason of this offset is in the fact that
part of the model error is seen as input by the CS-MHE. This effect can be
limited by a better model or a different sensor positioning which improves
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Figure 9: State/input estimation at window i = 7 for δ% = 0%. Legend (left graphs):
1st mode (—–); 2nd mode (- - -); 3rd mode (· · ·). The thick green lines are the reference,
the thick blue lines are the CS-MHE estimation, confined into two blue thin lines that
represent the confidence level (MPFn ± 3σn). Legend (right graph): reference values
(—–×); CS-MHE estimation (—–◦). The time is relative to the current window.

local observability.
As an example, let us have a look at iteration 45 of the model mismatch

δ% = −10%, which is marked with a red diamond in Fig. 11. Fig. 12 shows the
input estimation, where it can be seen that most of the nonzero components
are located around the impulse, while some others are located away from
the impulse and are due to the model mismatch. Unfortunately, it is not
possible to filter out those components a priori. However, it can be noticed
that results are accurate even in case of a high model error.

Finally, Fig. 13 (left) shows the estimation results for the case δ% =−10%
on the full time history, and all four peaks are well estimated. A way to filter
out the unwanted peaks is to set a higher threshold εα, as shown in Fig. 13
(right). Both graphs in Fig. 13 do not include any energy correction, which
can be implemented as discussed for the reference test case with δ% = 0%.
An incorrect impact is estimated due to the modeling error.

To summarize, the reference test case (δ% = 0%) gave a very accurate
input estimation, whereas a small error resulted when the model mismatch
was increased up to δ% =−10% on each eigenfrequency. Being the CS-MHE
a model-based estimator, its performances depend on the model accuracy.
The error can be reduced by improving the model and tuning the CS-MHE
parameters.
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Figure 10: Global solutions at k= T−N+1 and α > εα for δ% =0%. Reference ( —–×),
CS-MHE (—–◦) CS-MHE corrected with the total energy (—–•).

5. Experimental test case

The CS-MHE described in section 3 was applied to an experimental test
case involving the cantilever beam of Fig. 14. The beam was instrumented
with several transducers. First, 3 accelerometers were mounted along the
beam. Moreover, a LED was placed in front of each accelerometer for vision
tracking. Their location as well as the other geometry and material properties
corresponds to the ones of the numerical example in section 4 (cf. Table 1).
The accelerometers were used to measure the modal parameters of the beam
[52], which acted as target values for updating the analytical model. The
LEDs served as displacement transducers, with their motion being optically
tracked by a Nikon Metrology K600 system [53].

A model updating procedure based on experimental data was performed
since the presence of the accelerometers strongly influenced the dynamic
behavior of the beam. Moreover, the transducers’ cables generated high
damping values. Table 4 shows the eigenfrequecies of the beam computed
experimentally (first column) [52] and after model updating (second column).
The right column indicates that the third eigenmode diverges significantly
from the measurements. A better approximation could be achieved through
a more detailed model such as a finite element representation [5], but an
analytical model was chosen here for its simplicity, as the model type does
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Figure 11: MSE (top), nα∗ i|i (middle) and sum of all elements in αi|i (bottom).

not influence the proposed methodology.
A force impact F was applied by a hammer to x(s2), as shown in Fig. 15.

For synchronization purposes, the hammer provided a trigger signal to the
data acquisition system. The exact input location in time and space was
measured through a video recorded during the measurement campaign by a
XIMEA MQ042CG-CM high speed camera [54] synchronized with the K600
system, which showed that the contact between the hammer and the beam
holds for two time steps (the video is available here). Since no direct force
measurement was available during the experiment, it has been assumed that
the impulse follows a quadratic curve centered in the middle of the two
nonzero components, going to zero at their adjacent time steps [55]. The four
points highlighted with dark green circles in Fig. 16 belong to that curve,
and serve as reference for interpreting the CS-MHE results. The magnitude
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Figure 12: Input estimation at window i = 45 for δ% = −10%. Legend: see Fig. 9 (right).
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Legend: see Fig. 10.

of its peak is purely indicative and was set according to our best knowledge
of the input. The values of εR, εQ and λ for the experimental test case follow
from Fig. 17 and are given in the caption.

Fig. 18 shows the estimation window i= 12, while the whole simulation
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Figure 14: Experimental setup.

fn Experimental Model updating δ% [%]
f1 8.76 8.76 0.00
f2 61.58 54.88 -3.71
f3 180.52 153.66 -14.88

Table 4: Comparison of the first 3 eigenfrequencies of the beam, computed experimentally
and after model updating, expressed in [Hz].
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Figure 15: Experimental test case. Legend: see Fig. 2.

is available here. For the notation and the legend we refer to the numerical
example in section 4.4. A few nonzero components are located in the neigh-
borhood of the expected input position, and some of them will be filtered
out since their absolute value does not exceed εα.

Fig. 19 shows the input estimation of the full simulation. The discarded
energy (due to εα) is evaluated and distributed to each nonzero component
proportionally to its magnitude. Three nonzero components are present, two
of which are located where they are expected to be. The third one is on a
neighboring node, located in time at the second nonzero component of the
impact and in space at x = 0.365 m, i.e., in the direction of the tip of the
beam. A closer look at the video of the acquisition (the video is available
here) shows that the hammer hits the beam in the direction of that node,
which justifies the presence of the third component.
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Figure 16: Reference input for the experimental test case. Legend: see Fig. 3.

Finally, Fig. 20 presents MSE and nα∗ i|i for the experimental test case. It
can be seen that the estimation gets more accurate when the input approaches
the end of the window, justifying the choice of Qdrift (cf. Fig. 4) as well as the
choice of recognizing the last time step of each window as the best estimate
[49]. A certain delay characterizes the input detection, revealing the intrinsic
capability of a time window to detect an impulse, which is not a trivial task
for estimators based on a single time step.

6. Conclusions and future work

This paper described a novel approach for combined state/input estima-
tion based on a moving horizon estimator (MHE) enhanced with a compres-
sive sensing (CS) term that exploits input sparsity. Such approach has been
called CS-MHE and takes advantage of the MHE for correlating a model
with measurements and minimizing their uncertainties in a given time win-
dow, while a `1-norm term allows estimating an input signal described by a
small set of basis functions.

This latter feature is of particular interest because it allows to exploit
additional known information about the input. In fact, other approaches
for input estimation employ a zero order random walk model, which relies
on a strong assumption concerning the dynamic range of the input, i.e., the
input does not vary too much. On the other hand, the CS-MHE requires
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Figure 18: State/input estimation at window i = 12 for the experimental test case. Legend:
see Fig. 9.

that the input has a sparse representation in some basis, leading to a more
robust behavior in case of high dynamic ranges. Possible applications can be
found in structural dynamics, structural health monitoring, process control,
condition monitoring and virtual sensing.

A numerical example showed that the CS-MHE allows to estimate the
states of a LTI mechanical system as well as a force impulse applied at an
unknown location. The example highlighted the potential of the CE-MHE in
terms of observability and input dynamic range in comparison to a random
walk model. Furthermore, it exhibited the robustness of the CS-MHE with
regard to modeling and measurement errors, and indicated a relationship
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between the CS-MHE tuning parameters. An experimental example served
as validation scenario, yielding to an accurate estimation for a real system
subjected to model and measurement errors.

The major drawback of the MHE over the extended Kalman filter is its
higher computational effort, and this disadvantage remains also for the CS-
MHE. However, new efficient algorithms are being developed for the MHE by
the communities of nonlinear optimization and optimal control, from which
the CS-MHE can benefit since the problem structure was not changed.
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The CS-MHE relies on the choice of a few parameters, i.e., the window
length, the weight of the linear term of the cost function, a threshold for the
input detection and a drift term to propagate the sparse representation of an
input to the next iteration. This paper gave the details on how to optimally
tune the weight λ given a known measurement system and a model.

This paper focused on state/input estimation, but the idea of applying
compressive sensing can be applied to the wider framework of state/input/
parameter estimation. The MHE is a natural framework for nonlinear sys-
tems, thus future work will investigate more complex examples. More effi-
cient adaptations of the proposed CS-MHE method are foreseen to handle
distributed loads and multiple inputs.

The development of the CS-MHE involved an optimization problem, a
few tuning parameters, an observability condition and a covariance matrix.
Nevertheless, the RIP was mentioned in section 2.2 as a condition to increase
the rate of success of CS. The RIP cannot be verified for arbitrary matrices,
but it can be tested numerically through a Monte Carlo approach on CS
problems like eq. (7), given a matrix Θ and simulating a (large) number of
sparse vectors α up to a certain sparsity. Due to the more complex structure
of the CS-MHE problem, such study becomes challenging. In fact, it would
involve all terms of the cost function including all tuning parameters and set-
tings of the CS-MHE, such as the number of sensors, the number of possible
input locations, the number of (augmented) states, the window length and
the balancing weight λ. At the same time, some of these parameters have
to satisfy the observability criterion. All the numerical test cases presented
along the paper as well as the experiment converge to the expected results,
suggesting the success of the `1-norm optimization even if the RIP is formally
not assessed. Future work will investigate this aspect.
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