Parametric Quantifiers for Dependent Type Theory

ANDREAS NUYTS, KU Leuven, Belgium
ANDREA VEZZOSI, Chalmers University of Technology, Sweden
DOMINIQUE DEVRIESE, KU Leuven, Belgium

Polymorphic type systems such as System F enjoy the parametricity property: polymorphic functions cannot
inspect their type argument and will therefore apply the same algorithm to any type they are instantiated
on. This idea is formalized mathematically in Reynolds’s theory of relational parametricity, which allows the
metatheoretical derivation of parametricity theorems about all values of a given type. Although predicative
System F embeds into dependent type systems such as Martin-L6f Type Theory (MLTT), parametricity does
not carry over as easily. The identity extension lemma, which is crucial if we want to prove theorems involving
equality, has only been shown to hold for small types, excluding the universe.

We attribute this to the fact that MLTT uses a single type former II to generalize both the parametric
quantifier V and the type former — which is non-parametric in the sense that its elements may use their
argument as a value. We equip MLTT with parametric quantifiers V and 3 alongside the existing IT and X, and
provide relation type formers for proving parametricity theorems internally. We show internally the existence
of initial algebras and final co-algebras of indexed functors both by Church encoding and, for a large class of
functors, by using sized types.

We prove soundness of our type system by enhancing existing iterated reflexive graph (cubical set) models
of dependently typed parametricity by distinguishing between edges that express relatedness of objects
(bridges) and edges that express equality (paths). The parametric functions are those that map bridges to paths.

We implement an extension to the Agda proof assistant that type-checks proofs in our type system.

CCS Concepts: » Software and its engineering — Polymorphism; Formal methods; Functional languages;
Syntax; Semantics; » Theory of computation — Proof theory;

Additional Key Words and Phrases: Parametricity, cubical type theory, presheaf semantics, sized types, Agda

ACM Reference Format:

Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. 2017. Parametric Quantifiers for Dependent Type
Theory. Proc. ACM Program. Lang. 1, ICFP, Article 32 (September 2017), 29 pages.
https://doi.org/10.1145/3110276

1 INTRODUCTION

Many type systems and functional programming languages support functions that are parametrized
by a type. For example, we may create a tree flattening function flatten @ : Tree @ — List « that
works for any type a. If the implementation of a parametrized function does not inspect the
particular type « that it is operating on, possibly because the type system prohibits this, then the
function is said to be parametric: it applies the same algorithm to all types. From this knowledge, we
obtain various useful ‘free theorems’ about the function [Reynolds 1983; Wadler 1989]. For example,
if we have a function f : A — B, then we know that listmap f o flatten A = flatten B o treemap f.
If parametricity is enforced by the type system, as is the case in System F but also in a programming

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2017 Copyright held by the owner/author(s).
2475-1421/2017/9-ART32
https://doi.org/10.1145/3110276

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32

http://creativecommons.org/licenses/by-nc/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3110276
https://doi.org/10.1145/3110276

32:2 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

language like Haskell, then we can deduce such free theorems purely from a function’s type
signature, without knowledge of its implementation. This allows parts of a function’s contract to
be enforced by the type-checker; a powerful feature.

Existing work on parametricity in dependent type systems such as Martin-L6f Type Theory
(MLTT) has been able to show that the expected parametricity results hold for functions that
produce values of a small type [Atkey et al. 2014; Krishnaswami and Dreyer 2013; Takeuti 2001].
Below, we show with a simple example that in existing dependent type systems, parametricity
theorems can break down where large types are involved. The central aim of this paper is to resolve
this issue by equipping dependent type theory with additional parametric quantifiers.

Representation independence in System F. In order to expose the problem that occurs in dependent
type theory, we will elaborate an example that shows the power of parametricity in System F,
but which breaks down in dependent type theory. Assume that A is a type that is essentially an
interface, listing the operations that its elements provide. Then typically, we will not directly
construct values of type A; rather, we will construct representations of them in some type C,
from which we can extract the operations using a function r : C — A. A function f of type
RIAB :=Vy.(y > A) — (y — B) for some fixed type B, is then a function that, for any type y
that implements the interface A as witnessed by r : y — A, produces a map y — B. Parametricity
now asserts that f is representation independent: it can only use the argument ¢ : y through its
operations r ¢ : A and is thus oblivious to the particular implementation. Hence, elements of type
Rl A B are in one-to-one correspondence with functions A — B.

Representation polymorphism in dependent type theory. Dependent type theory departs from
System F in that it erases the strict dichotomy between types and values. The result is a system in
which types can depend on values, and can appear as values themselves, possibly as computational
content of other values (e.g. we can consider lists of types).

The function type former — from System F, is replaced with the type former II (called the
product type, dependent function type or simply II-type) in dependent type theory. If S is a type
and T is a type depending on a variable x : S, then the type II(x : S).T contains functions f that
map any value s : S to a value fs : T[s/x]. When T does not depend on x, we simply write S — T
and have recovered the ordinary function type from System F.

If we disregard parametricity, we may also use II to recover the V type former from System F. If
the domain S is some type of types U, also called a universe, then the function type Il(a : U).T
corresponds to the polymorphic type Ya.T from System F. So we can translate Rl to dependent
types as Rl AB :=II(C : U).(C —» A) — (C — B). However, representation independence is not
enforced for this type, and an easy counterexample can be constructed if we let B be the universe
U itself. Then we can break representation independence by directly leaking the implementation

type C to the end user:
leak = AC.Ar.Ac.C : II(C : U).(C > A) — (C > U) (1)

Wrapping up. We claim that while dependent type theory clearly takes a step forward from
System F in that it allows any kind of dependencies, it takes a step back by unifying V and — in a
single type constructor. The problem is that functions f : Va.T and g : P — Q differ not only in
that f is dependent and takes a type as argument whereas g is non-dependent and takes a value as
argument; they also differ in that f is parametric and uses its argument solely for type-checking
purposes, whereas g is non-parametric and is allowed to use its argument as a value. It is the second
property of V that produces the free theorems we want.

In order to restore parametricity for large types in dependent type theory, we reinstate the
parametric quantifier V from System F alongside the non-parametric quantifier II (also —) in
dependent type theory. The type formation rules for both quantifiers have the exact same premises.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:3

This means that we can quantify parametrically or not over either type-like or value-like arguments,
making the distinction between parametricity and non-parametricity orthogonal to the distinction
between type-level and value-level arguments, which we seek to erase in dependent type theory.
This leads to four situations of which only two existed (at the value level) in System F.

(1) As in System F, we can quantify parametrically over a type argument. An example is the
(proper) Church encoding of lists: ChList B = V(X : U).9X — (B —» X — X) — X (the |
modality is explained later).

(2) Unlike in System F, we can quantify non-parametrically over a type argument. A (non-
dependent) example is the cons constructor of List Y, which has the type cons : U —
List Y« — List Y. Clearly, this function uses its first argument not just for type checking
purposes. Rather, the value X can be retrieved from the list cons X Xs using the list recursor.
Another example is the function type former AX.AY.(X —» Y) : U —» U — U. The argu-
ments X and Y are not used just for type-checking (in fact they do not even occur in the type
U — U — U); rather, they determine the output value X — Y. Non-parametric dependent
quantification over a type variable is also common. For example, algebraic structures can be
represented as dependent tuples and these must be non-parametric in their underlying type,
lest we identify structures as soon as there is a homomorphism between them.

(3) Unlike in System F, we can quantify parametrically over a value argument. We have a type
Size that is similar to the natural numbers but enforces a form of well-behavedness for
functions that have Size as their domain. Let Vec; A be the type of vectors of length i : Size
over A, where vectors of different lengths are considered equal if the truncation of the longer
one is equal to the shorter one. Now consider the type V(i : Size).Vec; A. Parametricity
ensures that a function of this type will produce equal (i.e. compatible) vectors for all sizes.
In other words, this is the type of infinite streams of elements of A.

(4) Like in System F, we can quantify non-parametrically over a value argument. Any ordinary
term-level function from System F is an example of this. A more intriguing example is the
function Ai.Vec; A : Size — U which maps sizes to types, but also provides a notion of
heterogeneous (cross-type) equality between elements of Vec; A and Vec; A.

Although up until this point, we appealed to the intuition of parametric functions as ‘not inspecting
an argument’, this intuition diverges from the relational formulation when we consider parametric
quantification over a data type. Relational parametricity asserts that related inputs will lead to
related outputs. The identity extension lemma (IEL) moreover implies that relatedness in a
closed type, means equality. No assertions are made, however, about unrelated inputs. If we have
a type Nat in which (unlike in Size) different natural numbers are considered unrelated, then we
can allow to pattern match on them. However, a function T : Nat — U may then not provide a
notion of equality between T m and T n and a function of type V(n : Nat).T n need not produce
equal output for different numbers (as we even lack the notion of equality). This is a situation that
does not apply in basic System F (or Fw), where any two elements of a given kind, are related.

Contributions.

(1) We present a dependent type system ParamDTT in which dependencies can be either para-
metric () or continuous (id). Correspondingly, we obtain (predicative) relationally parametric
quantifiers V and 3 alongside the usual continuous quantifiers II and X.

(2) We make parametricity theorems provable internally using a type former called Glue (first
used by Cohen et al. [2016] in order to achieve computational univalence), and its (novel)
dual which we call Weld. These are an alternative for the operators by Bernardy et al. [2015].
Both Glue and Weld have some dependencies that are not continuous and that we cannot
prove further parametricity theorems about. This is represented by a third pointwise modality

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

324 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

(1D. As such, these type formers cannot be self-applied and iterated parametricity is not fully
available internally. We reframe and internalize IEL in the form of an axiom called the path
degeneracy axiom, enabling us to prove parametricity theorems involving equality.

(3) We construct Church initial algebras and final co-algebras of indexed functors, showing
that indexed (co)-recursive types can be built up from simpler components. We prove their
universal properties (up to universe level issues) internally, which to our knowledge has not
been done before in any type system. These internal proofs have some pointwise dependencies,
indicating that internal parametricity does not apply again to those dependencies.

(4) Annotating (co)-recursive types with a size bound on their elements is a modular way
to enforce termination and productivity of programs. This is a use case for parametric
quantification over values, as we do not want to view an object’s size bound as computational
content of the object. We construct initial algebras and final co-algebras of a large class of
indexed functors using induction on, and parametric quantification over size bounds. We
again prove their universal properties internally.

(5) We implement an extension to the dependently typed language Agda, which type-checks
ParamDTT and thus shows that its computational behaviour is sufficiently well-behaved to
allow for automated type-checking. ' We expect that ParamDTT minus its equality axioms,
which block computation of the J-rule, satisfies all desired computational properties.

(6) We prove the soundness of the type system by constructing a presheaf model in terms of
iterated reflexive graphs (more commonly called cubical sets), based on the reflexive graph
model by Atkey et al. [2014] and enhancements by Bernardy et al. [2015]. An important
innovation in our model is that our iterated graphs have two flavours of edges: bridges express
relatedness, and paths express heterogeneous equality of objects living in related types. If
we were to model parametricity of System F in the same model, we would use bridges to
represent relatedness of types, and paths to represent relatedness of terms. Correspondingly,
continuous functions are those that respect edge flavours, whereas parametric functions are
those that strengthen bridges to paths.

Overview. In Section 2, we give an informal overview of ParamDTT and its features. In Section 3,
we present the formal typing rules and relate the system to MLTT and predicative System Fow. In
Section 4, we treat Church encoding and sized types. In Section 5, we give an overview of the
presheaf model that proves soundness of ParamDTT. A more complete treatment of the model
is found in [Nuyts 2017]. We conclude in Section 6 with a discussion of related work and future
research directions.

2 A PROGRAMMER’S PERSPECTIVE

Before we show the formal rules of our type system, we present the system from a programmer’s
perspective. We consider the typical but simple example type of polymorphic identity functions:
VX : U)X - X.

Modalities. The ¥ quantifier is syntactic sugar for IT#(X : U).X — X: a II-type annotated with
the parametric modality §. We can construct a value of this type by annotating a lambda with the
same modality: A(X L U).u. In the body, the variable X is available in the context, annotated as
X* : U to remind us that it should only be used in parametric positions (which we color magenta as
a guide to the reader). A variable that is in the context parametrically (X* : /) does not type-check
as a value of type U. Luckily, when we next use a normal lambda A(x : X).u (i.e. annotated with
the continuous modality id) to construct a value of type X — X, the type annotation X for x
is a parametric position. As such, it is not type-checked in the current context (X* : /), but in

! Available in the artifact, and on Github as the ‘parametric’ branch of Agda: https://github.com/agda/agda/tree/parametric

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

https://github.com/agda/agda/tree/parametric

Parametric Quantifiers for Dependent Type Theory 3255

the context (X : U), where all parametric variables have been rendered continuous. This context
modification is a common theme in modal typing rules: -modal subterms like our X are checked in
modified contexts, defined by formally lefi-dividing the current context (X* : /) by the #§-modality:
#\ (X% :U) = (X : U). In the body of the second lambda, we simply return variable x of type X
to finish our example.

Another parametric position is the argument that we pass to a parametric function. For example,
with f : V(X : U).X — X in the context, we can construct another value of the same type by
composing f with itself: ACKH U A(x X).f x# (f X% x). The variable X is used (twice) as the
argument to a parametric function, and as such, it is not type-checked in context I' = (X t. U, x: X)
(where it would not be accepted), butin (\ T) = (X : U, x : X).

As a guide to the reader, we color subterms and variable bindings according to their modality:
magenta for parametricity (f), black for continuity (id), blue for the pointwise modality (denoted
. see further below), and for any unknown modality (some typing rules work for an
arbitrary modality y). Because we want our language to be unambiguous even without color, we
will sometimes additionally insert a modality symbol to disambiguate. Continuity (id) is considered
the default and will be omitted.

Internal parametricity: paths and bridges. A compelling feature of our type system is that we have
internal parametricity: free theorems about parametric functions can be derived internally. Imagine
that we have a function f : V(X : U).X — X, a type X* : U/ and a value x : X and we want to use
parametricity of f to prove that f X* x is equal to x. We can do this inside the language, using
essentially the same approach that one would take when using binary relational parametricity of
System F. There, for every x : X, we would construct a relation R, between the unit type T and
X such that R, (u, y) iff x = y. Since f, being parametric in its first argument, maps Ry -associated
second arguments to R,-associated output, we have that R, (f T#tt, f X¥ x), i.e. f X¥#x = x.

To construct the relation R, inside the language, we will construct a bridge from T to X. Such a
bridge can best be thought of as a line connecting two values, possibly living in different types. The
precise meaning of a bridge depends on the types concerned; a bridge from By : U to By : U gives
meaning to statements of the form ‘b, : By and b : B; are related’ (expressed by a heterogeneous
(cross-type) bridge from by to by) or ‘py : By and p; : B; are equal’ (expressed by a path from p,
to p1). Note that, unlike in existing accounts of relational parametricity, we distinguish between
relatedness and (possibly heterogeneous) equality.

A proof of R, (u, y) will be represented internally as a path from u : T to y : X. A path between
values py and p; can also be thought of as a line connecting these values. Just like bridges, paths
may be heterogeneous, but when they are homogeneous (i.e. when they stay within a single type),
they are necessarily constant, implying equality of their endpoints. Moreover, paths are respected
by all functions. These properties make the path relation a good notion of heterogeneous equality:
a congruence that reduces to equality whenever equality is meaningful. So in order to prove that
f X¥x = x, it will be sufficient to construct a path from f X* x to x.

We internalize both bridges and paths using a special pseudo-type I called the interval, which
consists of two elements 0 and 1 connected by a bridge. Since continuous functions, by definition
in the model, respect bridges, a bridge from B, to By can be represented as a function B : I — U
such that BO = By and B1 = B; definitionally. Since parametric functions, by definition in the
model, strengthen bridges to paths, a path from py : By to p; : By can be represented as a function
p: V(i :1).Bisuch that p 0¥ = py and p 1# = p;. Meanwhile, heterogeneous bridges take the form
b : II(i : I).Bi. The typing rules make sure that the types V(x : A).T x and II(x : A).T x can be
formed precisely when we have a continuous function T : A — U; when [is the domain, this
says that there needs to be a bridge between the types before we can consider bridges or paths

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:6 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

between their values. An internal path degeneracy axiom degax finally asserts that non-dependent
(homogeneous) paths are in fact constant.

Turning a function into a bridge. Note that the relation R, we used in the System F proof, is
in fact the graph of the function Au.x : T — X. As mentioned above, we intend to internalize
R, as a bridge from T to X, i.e. a function /Au.x\ : I — U such that /1u.x\0 reduces to T and
[Au.x\1 reduces to X. In fact, an operator /._.\ that turns a function into the bridge representing
its graph relation, can be implemented using either the primitive Glue type former, or its dual
called Weld, which we introduce in Section 3.2. For now, we just assume that we have a bridge
/Au.x\ and that it comes with a function push : V(i : I).T — /Au.x\i from the domain, such that
push o =idr: T — T and push 1# = lu.x : T — X; and a function pull : V(i : I)./Au.x\i = X
to the codomain, such that pull 0¥ = Au.x : T — X and pull 1# = idyx : X — X. Now consider the
following composite: ., , .

T épusm [Au.x\i ﬁ-f(//m”\'\l) [Au.x\i ﬁpu”l X.
For i = 0, it reduces to the constant function Au.x, while for i = 1, it reduces to Au.f X% x. Thus,
applying this to tt : T, we obtain a homogeneous (non-dependent) path
p=2i" (pullif o F(Jlux\iFopushif)tt: 4l > X, pof=x, pif=fxix
Finally, since this is a non-dependent (homogeneous) path, the aforementioned path degeneracy
axiom asserts that it is constant, implying that x =x f X* x.

Before we proceed: the pointwise modality. One important aspect of our system has been tucked
under the carpet in the above example: the Glue and Weld type formers, as well as the graph
type former /..\ implemented in terms of either of them, break the relational structure. This is
reflected syntactically by a third pointwise modality ({), which annotates dependencies that have
no action on bridges. So to be precise, the above example does not show that any function of
type V(X : U).X — X is the identity; rather, every such function can be weakened to the type
V(X : U).9X — X (forgetting its action on bridges in the second argument) and we have proven
that all functions of that type are the identity. In practice, this means the proof is perfectly usable
and valid, but we cannot apply another parametricity argument to the proof term. This restriction
is a limitation of our current model, but an acceptable one, as we will argue in what follows.

3 THE TYPE SYSTEM, FORMALLY

With the general ideas of ParamDTT established, this section presents the system formally. The first
part treats the core type system, which is just MLTT with modality annotations. The second part
explains the machinery we use for internal parametricity. The third part adds two types Nat and
Size of natural numbers, and we conclude in the fourth part by embedding MLTT and predicative
System Fw in our system in two ways.

3.1 Core Typing Rules: Annotating Martin-L6f Type Theory

Modalities. The judgements and typing rules of our system are similar to MLTT, except that,
as discussed, every dependency is equipped with a modality: either pointwise ({), continuous
(id) or parametric (). We follow the general approach developed by Pfenning [2001] and Abel
[2006, 2008]. A dependency’s modality expresses how it acts on bridges and paths. Functions of all
three modalities respect paths. Continuous functions moreover respect bridges, while parametric
functions strengthen them to paths, and pointwise functions do not act on bridges whatsoever.
Every dependency can be viewed as pointwise by ignoring its action on bridges. Because equal
values are also related, our model allows to weaken paths to bridges; this weakening allows to
view parametric dependencies as continuous. We express these findings as an order relation on
modalities (Fig. 1).

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:7

If a term t; depends p;-modally on a variable x and t, depends p,-modally I=<id<t

on 1, then the term #,[/, /1/] depends on x under a composed modality pop;. | Lo — | id
This composition of modalities is defined by the first table in Fig. 1, and 1 T 1 ¢
follows immediately from the action on bridges and paths. E.g. 1o J =, id I id ¢
because if the inner function forgets bridges, then the outer one cannot # 1 # #
retrieve them, and y1 o § = #§ because if the inner function strengthens [[\ - [id #
bridges to paths, then the outer function has to respect those paths. Note q T # #
that composition preserves order in both operands. id q id ¢

Formally, modalities come into play wherever dependencies appear in # q id id

the type system. First of all, the term on the right of a judgement depends on
the context variables, so we annotate those with modalities: we write x : A Fig. 1. Composition,
for continuous, x* : A for parametric and x! : A for pointwise variables. left division and order
Secondly, a term in the conclusion of an inference rule, also depends on of modalities.
the terms t : T in the premises. As explained before, such terms may be in
p-modal position, in which case the premise will not be T + ¢ : T but rather £\ T + ¢ : T, which can
be read as T' + 1# : T (a non-existent judgement form). This left-division of context I by modality u
replaces every dependency xV : Aby x#\V : A, defined by the second table in Fig. 1. The left division
selects the least modality p \ v such that v < o (u\ v). In other words, uy\v<p & v<puop
for all p, i.e. left division by p is left adjoint to postcomposition with p. In general, we take care to
maintain admissibility of the following structural rules:

T,«H:T,AvJ p\Trt:T ToH:T,AF] v<up

T AL/ FJT] subst Ty modwkn

With this modality machinery in place, we can now discuss our typing rules.

Contexts. Contexts are formed by starting from the empty context (c-em) and adding variables in
modalities of your choice (c-ext). Context variables are valid terms if their modality is continuous
or less (t-var). T+ Ttype THCtx (#:T)el p<id

——c-em c-ext t-var
F Ctx Ix# Tk Ctx F'bx:T

Universes. There is a countable hierarchy of universes, each one living in the next (t-Uni). Elements
of a universe can be coerced to higher universes (t-lift). Elements of the universe can be turned
into types (ty), and this operation is parametric because it shifts T to the type level, preventing any
further use as a value.

I+ Ctx {eN TrT: U k<teN BE\T+T:U,
t-Uni, t-lift, ——————ty,
T'rUp: Uy T'vT:U, T+ Ttype

Definitional equality. There are equality judgementsT'+s=¢:T and T + S = T type. We omit
the rules that make definitional equality a congruence and an equivalence relation. The conversion
rule (t-conv) allows to convert terms between equal types.

I'ra:A I'- A= Btype
I'ta:B

Quantification. We have universal and existential quantifiers for every modality (t-I1, t-3). We
denote them as IT# and X* for general modalities, but we abbreviate the continuous ones as IT and
> and the parametric ones as V and 3. Moreover, in the non-dependent case we will write yA — B
and pA X B. Quantified types are continuous in both domain A and codomain B. Indeed, A and B are
not just provided for type-checking but they determine the output value Q(x : A).B. The variance
of B’s dependency on x is worth a mention: we want b : B to be meaningful if an element o# : A
is given p-modally. Since in the claim b : B, the type B is in a parametric position, it needs to be

t-conv,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:8 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

defined for o¥\# : A. For y = id or y = #, we have that § \ y is id, so B depends continuously on x.
However, if 1 = , then the codomain may be pointwise in x, since # \ I = {.
THA: U, T, ALB: U, g frazte T P ARB: U .
t- t-
TrIA(x: A)B: U Tr>i(x:A)B: U

Functions. p-Modal functions are created using A-abstraction over y-modal values (t-1). p-Modal
function applications depend p-modally on the argument provided (t-ap). We omit - and 5-rules
for functions.

I,x#:A+b:B I'r f:1I#(x:A).B u\Tra:A
TrAGHE : AVb TP A B T+ far:Bla/+]

Pairs. The p-modal existential type #(x : A).B contains pairs (¢#, b) where o : Aand b : B[a/x]
(t-pair). We have a dependent eliminator for v-modal use of pairs (t-indpair), for which we omit the
P-rule. Note that the non-dependent specialization of indiad corresponds to the ‘unpack’ eliminator
for existentials in System F [see e.g. Pierce 2002, ch. 24].

t-ap

I'+3ZH(x: A).Btype I,z":3H(x: A).BF Ctype
u\Tra:A T,x"H:Ay":Brc:C[/7]
TFb:Bla/x] oa vATFp:3H(x:A).B t-indpai
Tr(@b):2i(A)B P T Trind(.Crap): Clpfz] Pl
Using indizd, we can implement continuous projections for X(x : A).B as
fst: %(x:A).B— A snd : II(p : Z(x : A).B).B[fst p/x]
fstp = indizd(z.A, X.Y.x,P), sndp = indizd(z.B[fst z/x), x.y.y,p).

The model supports the 5-rule for indy,, allowing us to assume the n-rule p = (fstp, snd p). For
»U(x : A).B, we can similarly implement a parametric first and a continuous second projection:

fst : §(=(x : A).B) — A snd! :H(p 31 :A).B).B[fstp/x]
fstlp = indg“(z.A,x.y.x,p), sndlp = indizd(,[(z.A,x.y.y,p).

Since p depends on its first component pointwise and # o | = | the term fst p gets pointwise
access, hence continuous access, to the first component of p. Again, we assume the n-rule for these
projections.

Example 3.1. Consider the Church encoding of streams: ChStr A = 3(X : Uy).(X — AxX)xX).
The above rules allow us to build head and tail functions for this type, left as an exercise to the
reader.

Identity types. We have an identity type a =4 b, continuous in A, a and b (t-1d).” The reflexivity
constructor is parametric (t-refl). We can use an equality proof e with modality v using the dependent
eliminator J”.> We omit the f-rule. Our model supports the reflection rule (t=-rflct), which we will
often not want to include as it breaks decidability of type-checking. Instead, we can take some of
its consequences as axioms, such as function extensionality. A program that applies the J-rule to
an instance of this axiom, will block. The model also supports definitional uniqueness of identity

2 It may be surprising that the identity type @ =4 b is not parametric in the type A, as one might think it is only there for type-
checking. However, if this were the case, then by parametricity, the type former .s =, L, of type V(X : Up).X — X — Uy
would have to be constant (this claim holds pointwise in a and b). As such, the type a =4 b would have to remain unchanged
if we were to replace the type A, for example, with the related type T and a, b : A with the heterogeneously equal values
ttt: T

3 A J-eliminator for every modality is actually a bit overkill, since the J-rule for a lesser modality follows from the J-rule for
a greater one.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 329

proofs (t=-UIP); which could be added to the type system either as-is, or in the form of special-case
propositional or definitional rules (e.g. proofs of a =4 a reduce to refl a).

r'+A:U, F'tab:A BE\Tra:A el
Tra=4b:U, i Fl—refla:a:Aa_re
B\Trab:A T,yf:Aw:a=4yF Ctype B\TF f,g:I1"(x : A).B
viTre:a=4b Ttrc:Claly,refla/w] TCrp:ITF(x: A).f xF =g gt
T'+JV(a,b,yw.C,yec):Clbly,e/w] 7 T Ffunext! p: f =nu(a)8 9
F'tab:A Tre:a=4b Tree :a=usb
t=-rflct t=-UIP
Tra=b:A IF're=e':a=xb

Example 3.2. The continuous J-rule allows us to prove transport: V(X,Y : Ue).(X =q1, Y) —
X — Y. Plugging in reflexivity, we get a term of type V(X : U¢).X — X. Parametricity will allow
us to conclude, solely from the type, that this term is (pointwise) the identity function.

3.2 Internal Parametricity: Glueing and Welding

With the core typing rules established, let us now turn to the operators that will allow us to prove
parametricity theorems internally. In Section 2, we used the type former /..\ for turning a function
f1: C — Dinto a bridge /f\ : I — U from C to D. As mentioned, this type former is not a
primitive; rather, it can be implemented in terms of either of the primitive type formers Glue and
Weld, which we introduce in this section. Because they require a bit of machinery, we start the
section with an introductory example in which we implement /..\ in terms of both Glue and Weld.
The Glue type former was originally introduced with one additional prerequisite by Cohen et al.
[2016] in a type system without modalities.

3.2.1 Introduction: Turning a Bridge into a Function. Let us take an f1 : C — D and reiterate
from Section 2 the properties that we need the type /f\ : I — U to satisfy. The type is a bridge
between C and D, so we want to have that /f\ 0 = Cand /f\ 1 = D. Additionally, we want there to
be a function push : V(i : 1).C — /f\i such that push 0% = idc : C — Cand push1# = f: C — D.
Finally, we also need pull : V(i : I)./f\i — D to the codomain, such that pull of = f:C— Dand
pull 1¥ = idp : D — D. The property pull i# o push i* = f holds if i equals 0 or 1 and we want it to
hold on the entire interval.

A construct called systems allows us to construct partially defined terms. For example, we can
define T := (i = 0?C|i = 1?D), a type that reduces to C if i = 0 and to D if i = 1. For general
i, it is not defined; it only makes sense when the predicate P := (i = 0 V i = 1) holds. Clearly,
/f\ i should extend T, in the sense that both types should be equal whenever T is defined. A naive
solution would be to add a default clause, i.e. something like:

[f\i=({=0?C|li=1?D|elseE) (not ParamDTT syntax).

This approach is not quite right: it would allow us to relate any two types C and D by adding
an arbitrary third type as a default clause and it is all but clear what that would mean. But let’s
consider it anyway. What would be the meaning of a path p : V(i : I)./f\ i with this definition? The
endpoints of the path would live in C and D, while the rest of the path lives in E. So we need some
condition to decide whether elements ¢ : C and d : D qualify as endpoints of a path in E (which
normally has endpoints also in E). This condition could arise from a relation between C and E[0/i]
and one between D and E[1/i], or in short a relation between T and E defined only when P holds.
This is essentially how Glue and Weld work; however, they do not allow any kind of relation. The
Weld type former takes a partially defined function g1 : E — T whereas Glue takes 11 : T — E.
The resulting types are denoted

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:10 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

Weld{E — (P?T,g)}, Glue{E « (P?T,h)},
and reduce to T when P is true. When P is false, they will be isomorphic to E.*

Using the Weld operation. In order to form / f\ i using Weld, we need a diagram of the form C «
E — D that somehow encodes the graph of the function f.’ In general, a relation can be represented
by such a diagram if we let E be the type of related pairs, which for functions is isomorphic to
the domain. So we set E := C (Fig. 2, left column) and g := (i = 0?idc|i =1?f):C — T (Fig. 2,
full arrows from left to middle column). With some syntactic sugar to avoid repeating the same
predicate, we can then write (Fig. 2, middle column)

Jf\i=Weld{C— (i=0?C,idc|i=1?D,f)}, /f\o=C, /f\1=D.

Thinking of / f\ i as a system with a default clause, it is clear

how we can obtain elements of it: if P holds, we can take /—\f\

elements of T. If it does not hold, then we are (intuitively) . c C
in the default case and we can use a constructor-like func- ‘ ide | f ‘

tion push i* := weld (P?¢g) = weld (i = 0?idc|i = 1?2 f):
C — /f\ i (Fig. 2, dashed arrow). Moreover, this function

extends to the case where P does hold, and then it specializes pushi#' | pull i
to g, i.e. push 0% = idc and push 1# = f. This internalizes f ‘
the idea that the paths in the welded type come from the de- n /;\ N

fault case, while their endpoints are associated to them by : f idp

the function g. Since weld (P ? g) is meaningful regardless

of whether P is true or false, it is a total function extending Fig. 2. Formation and elimination of /f'\
g. To summarize: given a partial type T, a total type E and using Weld. The middle row depends on i
a partially defined g : E — T, welding extends T to a total and reduces to the top/bottom row when
type and g to a total function which takes the role of a I equals 0/1. Welding produces /f\ i and
constructor. the dashed lines.

Finally, in order to construct pull : V(i : I)./f\ i — D, we use the eliminator indyq. It allows us
to eliminate a value w : /f\ i into a goal type D (which could in general depend on w) by inspecting
how w was obtained: we need to handle elements created using weld (P ? g) (Fig. 2, curved arrows)
and, in the event that P holds, elements living in T (Fig. 2, full arrows from middle to right column).
These cases are not disjoint: if P is true, then weld (P ? g) creates elements of type T, so we need to
handle them compatibly (Fig. 2, commutation of diagrams in top and bottom row). Thus, we can
define pull i* (with some predicates-related syntactic sugar) as

pulli* := indwea(w.D, (i = 0?c.(f ¢)|i = 1?2d.d),c.(f c),u): /f\i— D.

Note that modalities play an inconspicuous but utterly important role here. The predicate former
= is continuous in its endpoints and the Weld type former is continuous in the predicate P, so that
/f\ is a bridge relating types and not a path equating them. On the other hand, weld and indweq
are parametric in the predicate P, so that push and pull are heterogeneous paths, allowing us to
prove parametricity theorems involving equality.

Using the Glue operation. Glueing is the dual operation to welding. In order to form /f\ i
using Glue, we need a diagram of the form C — E « D that encodes the graph of the function
f. A well-behaved relation can be represented by letting E be the disjoint union of C and D,

4The particular predicate i = 0V i = 1 will never reduce to L as there are no mid-interval constants, so we will never really
end up in the default case. A predicate that can become false, is i = 0.

5In fact, E may depend on i so we can be more general: we need functions E[0/i] — C and E[1/i] — D. However, glueing
and welding over constant types will be powerful enough for all applications in this paper.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:11

quotiented by the relation. For a function, this is isomorphic to the codomain. So we set E := D and
h:=({(=0?f|i=1?idp): T — D. Then we get

/f\i:=Glue{D « (i=0?C,f|i=1?D,idp)}, /f\o=C, /f\1=D.

Whereas the Weld type - like an inductive type — lets us eliminate elements by inspecting their
construction, the Glue type — like a record type — lets us construct elements by saying how they
eliminate. Thinking of /f\ i as a system with a default clause, it is clear how we can eliminate
an element b: if P holds, then b becomes an element of T; otherwise, we are in the default case
and we can use a projection-like function pull i* := unglue (P?h) = unglue (i = 0? f|i = 1?idp) :
/f\ i — D. Again, this function extends to the case where P does hold, and then it specializes to h.
Thus, in order to construct an element b : / f\ i, we need to say what element ¢ of T it extends, and
what element a : A it projects to, and moreover we need that g t = a. This is then assembled as b :=
glue{a <= (P?t)}. In particular, we can define push i* := Ac.glue{f ¢ <= (i = 02¢c|i = 1? f ¢)}.

The rest of this section is dedicated to making formal every concept encountered in the above
examples, to wit: the interval I, a calculus of face predicates such as i = 0, systems for case distinction
over face predicates, and the Glue and Weld type formers. We conclude by postulating the path
degeneracy axiom.

3.2.2 The Interval. The interval I is what we use to reason internally about bridges and paths.
Although the model treats it as a type like any other, containing just two points 0 and 1 connected
by a bridge, we choose to give it an exceptional syntactic treatment with the purpose of preserving
the following syntactic property:

LeEmMMA 3.3. IfT + ¢t : I, thent is either 0, 1 or a variable from T with modality p < id. O

In other words, we want to avoid neutral interval terms. Then we should not have functions
with codomain I, and so I cannot be part of a universe. Instead, we consider I' +- i : T a new class of
judgements. So we postulate two constants 0,1 : I and furthermore allow: context extension with
interval variables i* : I (c-ext), use of interval variables (t-var), the construction of IT#- and X#-types
with I as their domain (t-II, t-X), A-abstraction over i* : I (t-1) and application to interval terms
(t-ap), formation of interval pairs (i¥, y) (t-pair) and pattern matching over such pairs (t-indpair)
but not first projections for such pairs, as they would pollute the interval term judgement.

3.2.3 Face Predicates and Face Unifiers. If we have m

continuous and n parametric interval variables in the Frij:t f-eq
context, we can think of the term on the right as rang- Fri=j:F

ing over an (m + n)-dimensional cube that has m bridge- I'+ Ctx I'+ Ctx
dimensions and n path-dimensions. A calculus of face TFT:F -t Trl:F
predicates allows us to make assumptions about where I+P,Q:F T+P,Q:F

we are on that cube, and to use those assumptions fle?ﬁnz— TrPAQ T f-A ITPVO. T f-v
tionally. Face predicates can be thought of as propositions,
i.e. types that have at most one element. For that reason, 't Ctx I\TFP:F
and because we make sure face predicates are decidable, [P+ Ctx
we will never explicitly write their proofs or hypotheses.
Because propositions have no relational structure, we can
ignore modalities for their elements. Again, while the model allows us to treat the universe of face
predicates FF as an ordinary type, we will be more restrictive in order to preserve decidability of
definitional equality.

Figure 3 lists the rules for generating predicates: we can equate interval terms (f-eq), we have
true and false predicates (f-tt, {-ff) and conjunction and disjunction (f-A, f-V). We can also extend
contexts with a face predicate assumption (c-f). As usual, we omit congruence rules for definitional

c-

Fig. 3. Formation rules for face predicates.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:12 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

equality. Before we can define equality for face predicates, we need two definitions. First, we say
that a face predicate holds when its translation to a metatheoretical predicate holds, i.e. i = j holds
ifand only if i = j, T holds, L does not hold, P A Q holds when both P and Q hold, and P Vv Q holds
when either P or Q holds. Secondly, a face unifier o : A — T for a context I’ is a substitution of
interval variables from a face-predicate-free context. To be precise, they are generated as follows:

c: A>T I'+Ttype c: A>T
0 050%™ s o) ST DV S ar oy
c: A>T U\NArj:I c:A—>T B\T+rP:F P[o]holds
G Ao mr o:A—(T,P) wext-f

GivenT + P,Q : F, we write P = Q if, for every face unifier o for T such that P[o] holds, Q[c]
also holds. We equate predicates that are in this sense equivalent (f=). If an equality predicate is
satisfied by any face unifier of the context, we can use it definitionally (i=-f).

I'vP,Q:F P(:)Qf Frij:I T=G=))

T+P=Q:F - Trizj:1 !

The joint effect of these rules is that, as soon as there are face predicates in the context, type
checking no longer happens in the current context, but only after face unification. Even though
a given context has infinitely many face unifiers (by weakening), it is always sufficient to check

finitely many, and further optimizations are possible. Indeed, if the face predicates in the context
do not use disjunctions, then one unifier is sufficient.

—f

Example 3.4. Terms in the context I',i : I,j : I can be thought of as living in context I' and
varying over a two-dimensional square. If we extend the context further with the assumption
P:=i=0Vvi=1Vj=0Vj=1, then we are restricting ourselves to the sides of that square.
Terms in the extended context will be type-checked 4 times, under each of the face unifiers
0/i),(1/i)):@,j:I) > [T,i:L,j:I,P)and (0/)),(1/j) : (T,i:I) —» (T,i:Lj:1LP).

3.24 Systems. Systems are the eliminator for proofs of disjunctions (V) and contradictions (L).
Assuming that P V Q is true, we can define a term by giving its value when either P or Q is true,
such that the given values match when both are true (t-sys2). Assuming a contradiction, we can
spawn terms at will using the empty system (t-sys0). We also give the f-rules for systems and the
n-rule for 4, which states that / is equal to anything.

T+ Atype I'nPra:A I[LOrFb:A I'+ Atype
ILPAQra=b:A E\T+PVvQ=T:F F\T+-L1L=T:F

t-sys2
Tr(P?al0%b):A 5ys Trs:A

t-sys0

(T?a|Q?b)=a, (P?a|T?b) =0, 4 =a.

In order to avoid repeating predicates, we will denote (P?a|Q V R?(Q?b|R?c)) shorter as
(P?a|Q?b|R?c).

3.25 Welding. As clarified in Section 3.2.1, the Weld type (t-Weld) comes with a constructor
(t-weld) and a variance-polymorphic eliminator (t-indweld). We supplement these rules with three

equations that express that Weld and weld extend the partial objects that they should extend, as
well as two f-rules for indyelq- The f-rules are compatible due to the equality required by indyejq-

I'rP:F ILP+T:Uyp '+ Weld{A — (P?T, f)} type
rrA: U \T,Prf:A—>T Tra:A

t-Weld t-weld
I+ Weld{A— (P?T, f)}: U, I'rweld(P?f)a:Weld{A — (P?T, f)}

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:13

[,y": Weld{A— (P?T,f)}+Ctype T,P,y":Trd:C
IxV:Avrc:C| P? f)x/y] I,P,xV:Avrc=d[f x/y]:C[f x/y]
vAT+Fb:Weld{A— (P?T, f)}

T indlyy (0.C.(P7 0.d). xc.0) CLb/ 1] tindweld
Weld{A — (T?T, ()} = T, indy.q(v.C, (T ?1y.d), x.c,b) = d[b/y],
weld(T?f)a = fa, indy,4(v.C,(P?y.d), x.c, P?f)a) = cla/x].

3.26 Glueing. Dually, the Glue type (t-Glue) comes with a projection (t-unglue) and a construc-
tor (t-glue). We supplement these with three equations stating what happens when P = T, a S-rule
and an g-rule.

T+P:F TL,PrT:1U

FrA:U, I\T.Prf:T—A | T+b:Glue{A— (P?T, f)} ,
Tr Glueld — (P77,)} @, " olue T+ unglue (P?)b A4 unelue
I+ Glue{A « (P?T, f)} type ILPrt:T F'ta:A I[LPrft=a:A)
T Fglue{a — (P?21)} : Glue{A — (P?T, f)} t-glue
el (170) = h e))(gela = (P70 = a
unglue (T‘?f)b = fb, g ue{(ung ue (P : f)) ~ (P :)} = .

3.2.7 From Identity Extension to the Path Degeneracy Axiom. Relational parametricity in System
F [Reynolds 1983] asserts that, at both the type and the value level, related inputs will lead to
related outputs; thus, ‘relatedness’ is a congruence. In this formulation, to say that types A; and
A, are related, is to give a relation [A] : Rel(A;, A;). Relatedness of values a; : A; and a; : A; is
then defined by that same relation [A]. The identity extension lemma (IEL) asserts that if, at the
type level, all inputs are of the form Eq, : Rel(A, A), then the output will also be of that form. In
particular, relatedness in a closed type (with no type-level input) means equality. Then ‘relatedness’
at the value level can be thought of as heterogeneous equality: it is a congruence that boils down
to equality when it becomes homogeneous. However, ‘relatedness’ at the type level does not mean
equality, as Rel(A, B) can be inhabited for any two types A and B. This explains the difficulty in
extending IEL to large types in dependent type theory.

Our approach in the transition to dependent types, is to mix value and type levels, while
maintaining two separate relations: the bridge relation is like type-level relatedness in System F,
whereas the path relation is like value-level relatedness in System F and expresses heterogeneous
equality. Parametric functions in System F map types to values; hence our parametric functions
map bridges to paths. We already know that all functions preserve paths (since o ff =), so we only
need to add that path-connectedness in closed types means equality. We assert this by postulating
that all non-dependent paths are constant, implying that their endpoints are equal:

T+ Atype B\Trp:V(i:D).A
T+ degaxp : p =yin.a (AG* : 1).p0%)

t-degax

3.3 Related and Unrelated Naturals

We include two types Nat and Size which both represent the natural numbers, but with different
relational structure. In Nat, numbers are only related to themselves, i.e. every bridge I — Nat is
constant. In Size, any two sizes are related, i.e. the bridge relation is codiscrete. As such, it is easier
to create functions of domain Nat, but these functions come with fewer type-guaranteed properties.
The type of naturals Nat is highly similar to that of MLTT:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:14 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

I' + Ctx N I',m¥ : Nat + Ctype
— t-Nat .
TrNat: U T+ co: Cl0/m]
I,m" :Nat,c:C+ ¢cs: C[sm/m]
'+ Cix I'+n:Nat v\T Fn:Nat
I'+0:N tt_0 Tk . N tt—s v t-indnat
FNa sn:iNa T+ ind{,,(m.C, ¢, m.c.cs,n) : C[n/m]

We omit the f-rules. Perhaps surprisingly, the eliminator allows us to create parametric functions
from the naturals by pattern matching. For example, we can have a parametric identity function:

Anu.indﬁ‘at(m.Nat, 0,m.c.(sc),n) : fNat — Nat. (2)
This makes sense, because Nat has no interesting bridges, so every function trivially maps bridges to
paths, as required by the parametric modality #. This is in line with the known theorem [Atkey et al.
2014; Takeuti 2001] that any function in MLTT with small codomain, is parametric, even though
such functions may pattern match on natural numbers. The reason for the surprise may lie in the
fact that parametricity over a discrete domain typically does not arise in e.g. System Fw, where
elements of the most common kinds are always related. In Section 6, we contrast parametricity
with irrelevance.

The type Size, in contrast, has the following constructors: TeP:F

I'+ Ctx T'+ Ctx T'+n:Size I',P+rn:Size
————t-Size —————t-Size-0 —————t-Size-s - —t-Size-fill
T + Size : U, I'+ 0g : Size T'+Tn:Size T+ fill(P?n) : Size

where fill(P ? n) extends n, i.e. fill(T ? n) = n : Size. Moreover, we have fill(_L ? n) = 0s. So the fill
operation completes a partial size by adding 0s in missing vertices, and filling up the relational parts
using the fact that any two sizes are related. However, we want more: if the bridge relation is to be
codiscrete, then the relational action of any continuous function to Size should be void of informa-
tion. This means not only that any two sizes are related, as is asserted by Ai.fill(i = 0?m|i = 1?n),
but also that they are related in a unique way. To that end, we add the following, somewhat
unconventional typing rule:

(i#:) el u<id T'+m,n:Size ILi=0Vi=1)Frm=n:Size

- t=-Size-codisc
I'-m=n:Size

Repeated application shows that two sizes are equal as soon as they are equal on all bridge-vertices
of T, i.e. they become equal after substituting every continuous and pointwise interval variable
with a constant.

An eliminator that simply takes images for each of these constructors, satisfying the necessary
equations, would be very complicated to use. Instead, we choose to provide the strong principle
of induction (t-fix) which uses an inequality type (t-<). Since instances of the fix" combinator
expand non-terminatingly, we include its -rule as a (non-computational) equality axiom (t-fix-eq),
although the model supports the definitional equality.

[,n" : Size - Atype T+ f:10"(n: Size).(I"(m : Size).(Tm < n) = A[m/n]) — A

t-fi
T r fix’ f:I01"(n : Size). A *
B\ T r fix” f:11"(n : Size).A #Bov)\TFm:Size T'+m,n: Size
— — — t-fix-eq ——————t-<
T fixt fm:fix" fmY =4 fm¥(Anv. e fix" fn) I'em<n:U,
B\T Fn:Size Tre :nyg<m Trey:ng <ny
t-<-refl t-<-trans
TFrreflcn:n<n I'+trans<eje; : ng < ny
B\T + n:Size T're:m<n
t-<-zero t-<-step

I'+zerocn:0<n I'hstep.e:Tm<Tn

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:15

ILPre:m<n t<-£ll fill<(T?e) = e
T HAillc(P?e):fill(P?m) < fill(P?n) ~ fill<(L?e) = zero<Os
(#:eT IF'ree :m<n Ii=0vi=1l)tre=e:m<n)
t=-<-codisc

TF're=e':m<n

The combinator fix" allows us to define g n” in terms of the restriction of g to Size:

glan = A(m” : Size).A(e : Tm < n).gm”. (3)
An intuitive argument why fix” can have the modalities it does, is the following: since we have
fix" fn¥ = fn”(Am".Ae.fix" f m") and the right hand side is v-modal in 1, so is the left hand side.
This reasoning shows that, when we pass a bridge in the argument 7, the action of v on bridges
will be respected during expansion of fix". Note that although the 0s and T constructors allow us to
create a function Nat — Size, we cannot construct an inverse. Indeed, fix” does not allow arbitrary
distinctions between 0s and T n.

We could add many more Size-related primitives, e.g. for deriving contradictions from assump-
tions like e : Tn < n or to prove that all inequality proofs are definitionally equal. However, the
current set of rules, combined with the following maximum operator (t-LI) is more than sufficient
for the practical applications in Section 4.2.

T'+m,n:Size B <Trmn:Size B <TFrmn:Size

—_——t-U t-<-U-1 t-<-L-r
T'rmUn:Size I'tlmax<cmn:m<mUn I'Frmaxcmn:n<muUn

3.4 Embedding Other Systems

To understand precisely how powerful our type system is, it is useful to compare it to others.
In this section, we show that MLTT and a predicative variant of System Fw can be embedded
into our system using either the continuous or the pointwise modality. The latter shows that the
pointwise modality of Glue and Weld’s dependency on the diagram arrows will only interfere with
special features of ParamDTT and not with features already present in MLTT or System Fo. Indeed,
everything that can be done in MLTT, can be done pointwise in ParamDTT. Each of these results
can be proven by induction on the derivation tree of the translated judgement.

LEmMA 3.5 (EMBEDDING OF MLTT). Let yi be either id or . Then every derivable judgement of
MLTT can be translated to a derivable judgement of ParamDTT by inserting 1 wherever a modality is
required.® Thus, we have extended MLTT.

We can make System Fo [see e.g. Pierce 2002, ch. 30]

Kinds — Types
predicative by annotating the kind * with a level £ € N and [[Tecl . =] 'YLZH 1
. . . . K — K = Kl — K
assigning levels to types in the style of MLTT, e.g. if ¢ : Rinding comers 5 —
kj = ok b A xp, then V(g 0 %) — #1).A ¢ Fmay (j41,k+1, 6} 101 = (;
This extends the predicative variant of System F by Leivant H?’ 0: : :c] = [[A]]c’ “t :tM
ontexts d ontexts
[1991]. JBrr =T
LEMMA 3.6 (EMBEDDING OF PREDICATIVE SYSTEM Fw). Let [[Ty’p’; : = : T]]y’pes '
y be either id or . Then every derivable judgement of pred- [V(a : x).A] = Va:[«]D.IA]
L . . [B(a : x).A] = e : [x])-[A]
icative System Fo can be translated to a derivable judgement [A— B] = u[Al = 1B]
of ParamDTT by the tables in Fig. 4 (where we omit the trans- J[[dA X BH‘ = ’;[[f]] = [[?]]
udgements — udgements
lation of terms and equality judgements). [A+ KindingCtx] = TA] F Cix
[AIT FCt] = [A|T] F Ctx
4 APPLICATIONS [AFT:«] = #\[A]+F[T]: [x]
[AMTr2:T] = [AITD+[e]: (7]

Mechanized Agda proofs for the results of this section, are

available in the artifact or online®. Fig. 4. Embedding predicative System

Fow into ParamDTT.
% Alternatively, all 3-types can be annotated with id instead of .

7 Alternatively, all product types can be annotated with id instead of p.
8https://github.com/Saizan/parametric-demo

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

https://github.com/Saizan/parametric-demo

32:16 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

4.1 Church Encoded (Co)-Recursive Types

In System F, we can use Church encoding to represent data types. For example, for a fixed type B,
we can encode the type of lists over B as ChList B := Va.a — (B — a — a) — «. The list [y, b,]
is then encoded as Aa.Anil’.Acons’.cons’ by (cons’ by nil’). With dependent types, we would define
ChlListy B :=II(X : Ur).X — (B — X — X) — X. Now if B happens to be some universe U; with
J = ¢, then the following term should arouse suspicion:

exoticList = AX.Anil’.Acons’.cons’ X nil” : ChList, U;

If this is a list of types, then it is one whose contents depend on the type X which we are eliminating
to. This may not be detrimental - for example an analysis based on universe levels may reveal that
we cannot extract the contents of such a list if j > £. However, using V instead of II, we can instead
forbid exoticList altogether.

In this section, we use parametric Church encoding to construct indexed (co)-recursive data types.
More formally put, we construct, up to universe level issues, initial algebras and final co-algebras
for indexed functors, and prove their universal properties internally. We assume throughout this
section that we have a context I' and an index type # \ T + Z : U, (which we take, for simplicity, in
U, although our formal proof in Agda is more general). We will write X = YforV(z: Z).Xz > Yz
and © for the corresponding composition operator.” We moreover assume a functor F which is a
scheme consisting of

B\T+Fr:(Z - Ur) — (Z — Uyp)
AT FFL V(X Z > U VY : Z = Up)(X = Y) = (FX = FY)

for all metatheoretic k, £ € N, such that identity and compos;ition are preserved definitionally, even
across universes. We will omit level annotations on F and F, as well as the first two arguments of
F. Throughout the section, we will write i# : T for u \ T + t : T. Note that theorems are strongest
when their assumptions are parametric and their conclusions are pointwise.
4.1.1 Initial Algebras. '° Define
BEATFMur = 22VX: Z 5> U)JFX = X) > Xz:Z — Upy,
T+ fold :== AX* AmkxX T Az* Am.m X* mkx ¥ V(X : Z - U)J(FX = X) > (Muy = X),
T + mkMug := Az# Am. 2 Amkx T (mkX © F (fold X mkx 1)) 2% i : F Mu, = Muy,
Tr]:= 228 Am A AmkoxXLm x ¥ mix 1 Muss1 = Mug.

LEMMA 4.1 (NATURALITY OF fold). Assume A¥, B} : Z — U, with algebra structures mkAY :
FA= A and mkBY : FB = B. Assume a morphism of algebras f1 : A= B (ie. f @ mkA =
mkB © F f). Then there exists a term natlemmal : f ® fold A mkal =mu,—p fold B mkBl.,

SKETCH OF PROOF. The proofboils down to the construction of the diagram of algebra morphisms
in Fig. 5, where / f\ differs from the type defined in Section 3.2.1 using Glue in that it is now a
Z-indexed type formed from a Z-indexed function, i.e. we currently write / '\ i z instead of / f Z#\ .
The path degeneracy axiom then asserts that the top and bottom rows compose to equal functions.

A major hurdle is that we need a proof (mk/ f\ it F(/f\i)= /f\ ithat/f\ iisan algebra, so
that we can apply fold. Here, the push and pull functions are insufficient, and it becomes important
that we use the Glue-implementation of /f'\. Indeed, the weld constructor only takes input of type

9One can argue that it is more general to consider continuously indexed functions: II(z : Z).X z — Y z. However, those
interfere with the § modality. In Section 4.2, we do use continuously indexed functions.

10For initial algebras, we have been able to refine the proofs so as to obtain the same results, but with continuous instead of
pointwise dependencies. There are some complications in dualizing the technique we used for final co-algebras.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:17

B kAl

01 Mu, fold A% mkA A f B
fold DB (mk/f\)T ‘ Ini#

T v Mug old (/f\)" (mk/f\ i A\ pull i B
q ‘ Azblidgs

1:1 Mu, fold B¥ mkB B z".idp B.

Fig. 5. Proving naturality of fold. The middle row depends on i and reduces to the top/bottom row for i = 0
and i = 1 respectively.

A, and applying indwelq under the functor F would not allow us to escape F. However, we do have
mkB ® F pull i*%: F(/ f\ i) = B, which is enough for glue. See the Agda proofs for details. O

We can prove, up to universe level issues, that folding to Mu is the identity:

LEMMA 4.2. We have loweringlemma(JI L =Muga =My, foldeig Muﬁt mkMu, 1.

Proor. By function extensionality, it is sufficient to prove the equation only when postcom-
posed with a general fold, X¥ mkxX ¥ : Mu, = X_ It is clear that fold, X* mkx1 @ | is equal to
folds4y X* mkX 1, so we can apply the previous theorem to fold, X# mkx1. O

Combining these lemmas, we can conclude up to universe level issues that fold B# mkB1 is the
only algebra morphism Mu = B:

THEOREM 4.3. Assume we have Bf : 7 — Uyi1, an algebra structure mkBY : FB= B and
an algebra morphism f1 : Mu; = B (ie. f ® mkMu; = mkB ® Ff). Then initiality!

f ® | =mu,,, =B foldgy; B mkBi. o

This theorem is perhaps less interesting than the proof technique. For example, the type of Church
lists V(X : Up).IX — (B — X — X) — X and the Church-encoded unit type V(X : U¢).IX — X
mentioned in Section 2 do not precisely fit the constraints of the theorem. However, they do up
to isomorphism if there is a unit type and a coproduct type former, and the proof technique even

applies if those types do not exist. What we have demonstrated is in fact a more general thesis,
namely that Church encodings of indexed recursive types can be shown internally to work.

4.1.2 Final Co-algebras. Define, using some syntactic sugar for (elimination of) triples:
BANTFNus=Az:2)3X:Z > U)JIX = FX)XXz:Z — Uy,
T + unfold := AX* AmatchX T Az% Ax. (X%, matchX ™, %) : V(X : Up). (X = FX) — (X = Nuy),
I' + matchNug := Azﬁ.A(Xﬁ, matcth{,x).(I::(unfoId xH matchX 1) ® matchX) 24 x 1 Nup = FNug,
F+1T:= Azﬂ./l(Xﬂ, matcth[,x).(Xﬁ, matchXL, x) : Nug = Nugq.
Then similar reasoning as before, but with /.\ implemented using Weld instead of Glue, shows:
THEOREM 4.4. Assume we have B} : 7 — Uyiq, a co-algebra structure matchBY : B= FB

and a co-algebra morphism {1 : B = Nu (i.e. matchNu, ® f = ﬁf © matchB). Then finality1 :
1® f =B=nu,,, unfold B matchBl.

4.2 Sized Types

As an example of the use of parametric quantification over values, in this section we show how it
can express irrelevance properties of definitions that use sized types. By indexing data-types with a
bound to the height of their elements, sized types reduce both terminating recursion and productive

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:18 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

universal existential
a V.T = T 3T = T
b VnAn = VYnVm<nAm dnAn = dndm<nAm
c (x:T).Vn.Bxn = VnlIl(x:T).Bxn (x:T).3n.Bxn = 3dnX(x:T).Bxn
d | (Vn.An)x(Vn.Bn) = Vn.(AnxBn) (3n.An)+ (In.Bn) = In.(An+Bn)
e Vn3(x:T).Bxn = 3(x:T).Vn.Bxn
f Vn.(An+Bn) = (Vn.An)+ (Yn.Bn)
g

(3n.An)x (3n.Bn) = FIn.(A<nxB<n)

where C< n dAm<nCm

Fig. 6. Isomorphisms for working with Size quantifiers. Isomorphisms between dually quantified types are
placed side by side.

co-recursion to well-founded induction on sizes [Abel and Pientka 2013]. This allows to enforce
the totality of programs through typing and allows more recursion patterns to be recognized as
well-founded when compared to more syntactic checkers.

However, while these sizes are just natural (or in some applications ordinal) numbers, they
require a different treatment than other natural numbers, as a bound on the length of a list should
not be considered computational content of that list. Consider the following sized list type and its
constructors:

SListA : Size > U
nil : II(n : Size).Il(m : Size).(m < n) — SListAn
cons : II(n : Size).Il(m : Size).(m < n) - A — SList Am — SList An

If we treat sizes as computational content, then we obtain two different empty lists of size 2:
no := nil (T705) 05 (.. .), n; := nil (T70s) (T0s) (. . .).

In ParamDTT we can fix this problem by making the constructors parametric in their
size arguments. Then we can use the codiscrete bridge structure of Size, to build a path
Aif il (1705)# (fill(i = 0?05 | i = 12705))# (.. .) from ng to ny. To show that this approach to sized
types is valid we will build initial algebras and final co-algebras, and their sized version, for suf-
ficiently well-behaved functors. Our approach is immature for practical use as it relies on many
propositional equalities, some of which are non-computing axioms. Throughout the section, we will
omit the domain of quantifiers over Size, and we will moreover write 3m < n.T for Am.(m < n)XxT m
and Vm < n.T for Vm.(m < n) — T.

4.2.1 Isomorphisms for Size Quantifiers. To do so we will make use of the isomorphisms in Fig. 6
which describe how parametric quantification over Size commutes with other connectives. We
highlight the central ideas here, see the full Agda proofs for details. We get to remove quantifiers
over constant types (a), because inserting different values of n into function applications f n* or
existential pairs (n¥, t) yields path-connected and hence equal values. The reasoning for (b) is
similar. The isomorphisms (c) involve trivial swapping of arguments or components. In the special
case where T = Bool, we get (d) modulo a trivial isomorphism. In the isomorphism (e), the first
component is constant by (a) and can be extracted from the quantifier. Specializing to Bool again,
we arrive at (f). To the right of (e), we would like to write that In.II(x : T).B x n were isomorphic to
II(x : T).3n.B x n. However, this would require an operator that joins T many sizes into a single size
n., and moreover a way to transport from various types B x n to the type B x n,. This is possible
when T = Bool by using the maximum operator (L), provided that Bx n is covariant in n. This
covariance is clear if B x is of the form C<, in which case we can use (b) to extract C on the left.
This yields (g).

Example 4.5. We build a fixpoint for the functor T + (A X L), assuming that we already have the
sized initial algebra SList A : Size — U such that SList An = T + AX (3m < n.SList Am). We have

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:19

In.SListAn = In.(T + AX (Im < n.SList Am)) =4 (3n.T) + In.(A X (Im < n.SList Am))
e T+H+AX3In.dm < n.SListAm =, T+ AX In.SList An

4.2.2 Sized Initial Algebras. In this section we fix a universe level £, a context I and a type
B\ T F Z : U, and take an Z-indexed functor to be a pair of terms

B\THF:(Z > U)— (Z— Uy
T+F: Y(ALB:Z - Uy).I(z:Z).Az—> Bz) > l(z: Z).FAz — FBz
such that F satisfies the identity and composition laws propositionally. We omit parametric type
arguments such as the first two arguments to F. Write (A = B) for (Vn.Il(z : Z). Anz — Bnz).

We lift the functor F to a functor F on the category of sized indexed types as follows (using some
syntactic sugar for eliminating pairs):

B\TF F = MAAn.F(Az.3m < n.Amz) : (Size —» Z — Uy) — (Size = Z — Uy)
T+F:= /lAﬂ./lBﬂ.Af./lnﬁ.ﬁ(/lz.A(mﬁ,e, a).(mﬁ, e,fmﬁ za)): YA B.(A= B) — FA=FB

which can be shown to also respect the functor laws. We then define the sized initial algebra Mu as
the unique fixpoint of F, using well-founded induction on Size:

$\ T F Mu := fix (An.AMu’.F(Az.3(m : Size).Z(e : m < n).Mu’ mez)) : Size — Z — U,.
From fix- we obtain the propositional equality Mu = F Mu which gives us the (invertible) algebra
structure T' + mkMu : F Mu = Mu, while the initiality is given by the following fold function:

T+ fold : VA(FA= A) — (Mu = A), fold AP mkA =
fix® (Anﬂ./lfold'./lz./lmu.mkA n# 2 (ﬁ (A2’ A(mP, e, mu’).(m¥, e, fold’ m* e 2’ mu’)) z (mk/\//\\u_1 mu)))

Uniqueness is obtained from well-founded induction on sizes and the functor laws for F.

4.2.3 Initial Algebras. Finally we define the initial algebra as Mu := Az.3n.Mu n z. However, in
order to define the algebra map mkMu : II(z : Z).F Muz — Mu z we need an extra property of F:
we say that F weakly commutes with 3(n : Size) if the canonical map of type I1(z : 2).(3n.FAnz) —
F(Az’.3n.Anz’) z is an isomorphism for every A. All finitely branching indexed containers [Al-
tenkirch et al. 2006], i.e. functors of the form FX z = (¢ : Cz).(II(b : Bzc¢).X (r zc b)) for some
r: I(z:Z)I(c:Cz).Bzc— Z with Bzc finite, satisfy this property. If F weakly commutes
with 3(n : Size), then F Mu = Mu, which gives us the algebra map as anticipated. The unique
algebra morphism fold is defined using fold and its uniqueness follows from the fact that there
is an isomorphism between algebra morphisms from (Mu, mkMu) and algebra morphisms from
(Mu, mkMu).

4.2.4 Final Co-algebras. The entire construction can be dualized to obtain final co-algebras,
here we give only the main definitions:

F:= MAAn.F (A2’ Vm < n.Amz),
Nu := fix (An.ANu’.F(Az’ .V (m : Size).II(e : m < n). Nu’ mey),
Nu := Az.¥n.Nunz.

Then Nu is the final co-algebra if F weakly commutes with V(n : Size), i.e. if the canonical map of
type I(z : Z).F(Az’.¥(n : Size).Anz’)z — Vn.F Anz is an isomorphism for every A. This property
is satisfied by all containers.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:20 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

5 SOUNDNESS: AN OVERVIEW OF THE PRESHEAF MODEL

In this section we give a high-level overview of the presheaf model that we constructed to prove
the soundness of ParamDTT. This section can be safely skipped by readers who are primarily
interested in the type theory side of the story. No prior knowledge of presheaves is assumed.

We start with a brief review of the set model of MLTT and show why it cannot model contexts
containing continuous or parametric interval variables and hence also fails to model bridges and
paths. We then explain how the general presheaf model of dependent type theory as treated by
Hofmann [1997], can be seen as a method for manually adding non-setlike ‘primitive’ contexts
to the set model. We point out existing presheaf models that support some form of interval: the
reflexive graph model [Atkey et al. 2014] and cubical models [Bernardy et al. 2015; Bezem et al. 2014;
Cohen et al. 2016]. Finally, we construct a specific presheaf model by manually adding bridge/path
cubes — contexts consisting solely of continuous and parametric interval variables — and give a
high-level overview of the semantics of ParamDTT in that model.

For the sake of the exposition, we ignore universe level issues. Most of the time, we do not use an
interpretation function but instead give judgements a direct meaning in the model. A more formal
treatment of the model is found in [Nuyts 2017].

5.1 The Set Model of Dependent Type Theory

In this model, a closed type is a set, whose elements are precisely its semantic closed terms. So
+ T type means that T is a set, and + ¢ : T means that t € T. A context I is modelled as a set, whose
elements are vectors of semantic closed terms that give meaning to all of the variables in I":

0={0) @e:T)={(.0) |y et Tlyl}.

So T + Ctx means that T is a set. From the notation T[y], it is already clear that an open type
I + T type is a function that assigns to every y € T'aset T[y]. Aterm T + ¢ : T is a function that
maps y € I' to t[y] € T[y]. Note that elements of a context I' correspond precisely to semantic
substitutions y : () — I from the empty context. More generally, a substitution o : A — T'is
a function from A to I'. Substitutions of types and terms are given by T[c][§] = T[o(5)] and
t[c][8] = t[o(5)]. Definitional equality is modelled as equality of mathematical objects.

So to wrap up, we have picked a category (namely the category of sets) whose objects model
contexts and whose morphisms model substitutions. We have defined for every object I' what it
means to be a type T + T type and how we define T[c], and finally we have done the same for
terms. We have explained how to extend a context with a type. A few additional features will give
this setup the structure of a category with families [CwF, Dybjer 1996], and we can prove soundness
of MLTT with any extensions of interest by giving every inference rule a meaning in the model in
such a way that some contradictory type has no semantic terms.

The set model is insufficient to model ParamDTT. Indeed, how do we interpret the closed type
I or the contexts (i :) and (i* : I) as a set? The terms I 0,1 : I show that these have at least two
elements, and (0 = 1) = L shows that they are distinct. But there is nothing that allows us to relate
them, which is necessary if we want to model the path degeneracy axiom. The interval is, in short,
not a set.

5.2 Presheaf Models

The problem of contexts that cannot be modelled by sets, can be overcome by adding them explicitly
to the model. This is what presheaf models do. The first step in constructing a presheaf model,
is to identify a set of primitive contexts (also called levels, shapes, worlds or simply objects) that
‘generate’ the problem. Secondly, for every two primitive contexts V, W, we must explicitly provide

the set of all substitutions ¢ : V — W that we want to exist between V and W; we will call these

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:21

primitive substitutions (more commonly, they are called face or restriction maps). Together, these
must form a category ‘W (the base category).

Now, we define contexts I' not in relation to the empty context by providing the set of all
substitutions () — T, but in relation to all primitive contexts. So in order to define I', we need
to provide for every primitive context W the set of all defining substitutionsy : W > T and for
every primitive substitution ¢ : V S Wa composition operator L1 o ¢ : (W 5T)— (V>T).In
other words, a context ' is a functor (s — T) : W — Set (also called a presheaf over ‘W). A
substitution o : A — T’ (also: presheaf map/morphism) is then defined by saying how it composes
with the defining substitutions of A, i.e. we have to give an operator co : (W — A) —» (W — T
that is natural in W. In other words, substitutions are natural transformations, and our category of
contexts is the functor space Set™, also called w.

Note that we can view a primitive context W as a context by setting (V S W)= Sw),
and a primitive substitution ¢ : V 5 W as a substitution by defining ¢ o i as composition with ¢
in ‘W. This defines a functory : ‘W — W called the Yoneda-embedding, which is fully faithful,
meaning that (V Lw)= (Vo W), ie. every substitution between primitive contexts is in fact a
primitive substitution. Similarly, we have (W > IN=W->TI).

So T + Ctx means that T' is a presheaf, and a substitution ¢ : A — T is a presheaf map. We
define a type I + T type by giving for every W and every y : W = T its set of defining terms
W Pt : T[y], plus for every ¢ : V = W a substitution operator i[¢] that takes W P ¢ : T[y] to
VP t[p] : T[y o ¢]. Aterm T r ¢ : T is then a thing that maps defining substitutions y : W 5T to
defining terms W +P t[y] : T[y] in such a way that t[y][¢] = t[y o ¢]. Again, one can show that
defining terms W P ¢ : T[id] are in bijection to terms W r ¢ : T. We extend contexts as follows:

WS T,t:T) = {(y,t)’y:ng“andW I—Dt:T[y]}, (y,t) o @ = (y o, t[p]).

One can show that every presheaf category constitutes a CwF [Hofmann 1997] that supports
universes if the metatheory does [Hofmann and Streicher 1997].

The category of reflexive graphs. In order to model parametricity for a dependent type system
without modalities, we can pick as base category the category RG with just two primitive contexts ()
and (i : I), and where primitive substitutions are (non-freely) generated by (0/i), (1/i) : () — (i :)
and () : (i : I) = (). A presheaf I' over RG is then a reflexive graph, with a set of nodes () >Tanda
set of edges (i : I) T Precomposition with (0/i) and (1/i) determines the source and target of an
edge, and precomposition with () determines the reflexive edge at a node. This corresponds to the
reflexive graph model as treated by Atkey et al. [2014], although they use a non-standard universe
to model identity extension (IEL). This model does not support iterated parametricity; hence it does
not support internal parametricity operators which, in absence of modalities, can be self-applied.
The non-standard universe supports IEL, but not in combination with proof-relevant relations.

The category of cubical sets. In order to support iterated parametricity or to have identity extension
in the presence of proof-relevant relations, we need a way to express relatedness of relations. In
other words, we need a notion of edges between edges (squares), edges between squares (cubes), etc.
Although contexts like (i : I, j : I) exist in the category of reflexive graphs, these are still just graphs
that do not contain data to express that the faces (0/5), (1/j) : (i : I) 2 (i : 1Lj : I) are related.

In the cubical model, we add cubes explicitly. As base category, we pick the cube category Cube
with primitive contexts (? : I") for n € N and primitive substitutions (7 : I 5 (7 : I") that
substitute every variable of the codomain with either 0, 1 or a variable from the domain. A presheaf
I" over Cube is then a so-called cubical set, consisting of, for every number n, a set of n-dimensional

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:22 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

cubes (7 : I") > T and a composition operator with primitive substitutions (face maps) that allow
us to extract faces, diagonals and reflexive cubes from a given cube. This model is close to the
(binary version of) the one used by Bernardy et al. [2015]. Cubical type theory [Bezem et al. 2014;
Cohen et al. 2016] uses a similar model to model univalence, but they have additional operators
V, A and - on the interval, resulting in a base category with the same objects but more primitive
substitutions.

The category of bridge/path cubical sets. We need to make just one
modification to the base category to obtain a presheaf category of
our system: we annotate the interval variables in primitive contexts
with either id or # (as (i1 : I) really just contains two points 0 and 1). : :
So as base category, we pick the category BPCube whose objects are 6 (lz/i'k/j) %
bridge/path cubes (j : 1, i% : "), where m, n € N. Primitive substitu- =i
tions ¢ : V. — W substitute every continuous ‘bridge’ variable from
W with 0, 1 or a bridge variable from V, and every parametric ‘path’ kJi0fj) (/LT (kJi1/))
variable from W with 0, 1 or any variable from V (Fig. 7). A presheaf
I is then a bridge/path cubical set that contains for any m,n € N a Oik/))
set of cubes with m bridge dimensions and n path dimensions. The e——=
defining composition operator of I" allows us to extract faces, diago- % Lo0/ikl) |

(l/i,(?/j) (l/f,l/j)

nals and reflexive cubes from a given cube, as well as to weaken path ;i g
dimensions to bridge dimensions. (0/i,0/)) (0/i,1/))
The standard presheaf model over BPCube supports iterated para-

metricity as it is essentially just the cubical set model extended with Fig. 7. All points, bridges (sin-
an arbitrary distinction between bridge and path dimensions. How- gle line) and paths (double line)
ever, on top of this model we will build a machinery of modalities of the bridge/path cube (i :
that adds the path degeneracy axiom, but loses full internal iterated 1,j# :). The labels are the cor-
parametricity. We still need the cubical structure in order to sup- responding primitive substitu-

port the path degeneracy axiom in the presence of proof-relevant t°" V;i’ith domains (), (k - T)
relations and (k* : I) respectively.

5.3 The Cohesive Structure of BPCube

A bridge/path cubical setT' € BPCube can be seen as an ordinary cubical set (namely the cubical
set of its bridges) equipped with a notion of cohesion in the sense of Licata and Shulman [2016]
expressed by its paths. This is formalized by a forgetful functor LI : BPCube — Cube that forgets
paths. This functor can be shown to be a morphism of CwFs, i.e. it extends to types and terms in a
well-behaved manner. It is part of a chain of at least five adjoint functors (Fig. 8):

N4A4U4V 48, M,U,3 : BPCube — Cube, A,V : Cube — BPCube

of which only 1M is not a morphism of CwFs. The discrete functor A takes a cubical set with only
bridges and equips it with a path relation defined as the equality relation — the strictest path
relation possible. The codiscrete functor V on the other hand defines the path relation as the bridge
relation — the most liberal possibility. The functor B is a forgetful functor at another level: it maps
a bridge/path cubical set to its cubical set of paths and forgets the bridge structure. From this
perspective, V takes a cubical set with only paths and equips it with a bridge relation defined as the
path relation — the strictest possibility. Finally, the functor M identifies all path-connected objects,
producing a cubical set with only a bridge relation. This functor is not a morphism of CwFs as it
would not respect substitution.

Composing each adjoint pair to a (co)monad BPCube — BPCube, we get a chain of four adjoint

endofunctors on BPCube,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:23

{4b+4+9:BPCube — BPCube.

The shape monad | = ArM, again the only one that is not a morphism of CwFs, identifies path-
connected objects and then reintroduces a discrete path relation. The flat co-monad b = AU
redefines the path relation discretely as the equality relation. The sharp monad # = VU redefines
the path relation codiscretely as the bridge relation, and the pointwise co-monad J = VH redefines
the bridge relation as the path relation. Note that a presheaf map §A — T maps bridges in A to
paths in T', as does a parametric function, and that a presheaf map A — T maps paths in A to
paths in T, but does not act on bridges in A, just like a pointwise function. The functors [, Id and #
satisfy the same composition rules that we have for modalities, and we have the co-unit 3 : { — Id
and the unit ¢ : Id — § to interpret the order relation on modalities.

5.4 Meaning of Judgements

In this section, we write internal judgements between interpretation
brackets [...], in order to tell them apart from mathematical state-
ments about the standard presheaf model from Section 5.2 which we

v

also write in judgement-style. . . .
LT
Contexts. As usual, [T + Ctx]] means that [I'] is a presheaf over e
BPCube, i.e. [T] F Ctx. o o o o
Types. Unusually, [T + T type] means that [T] is a type over the \ \

presheaf §[I], i.e. #]T] + [T] type, that is moreover discrete. The
fact that it lives in #]I] means that when there is a bridge in [I'], ur,br fr
then [T] provides a notion of paths over it. This is necessary if we o
want to add x¥ : T to the context, because a bridge in {[T] is a

path in [T]. Of course we have [I] + [T][] type. We say that a type \
A+ Atype is discrete if every path in A that lives above a constant
path in A, is also constant. More formally, if we have a primitive
context (W, Kt I) and a defining substitution § : (W, Kt) 2, A Fig. 8 Example of a

. . .. 8 bridge/path bical t T
that is constant in k, i.e. it factors as (W, Kt 9] (—)> W — A, then ridge/patn - cubical set
and its images for various

every defining term (W, k# : 1) kP a : A[8] is also constant in k, i.e. functors. A single line denotes
it is a weakening of some W +P a’ : A[§’]. This is essentially the ,, edge (for edge cubical sets)
statement that non-dependent paths in A are constant, i.e. that A or 5 bridge, a double line is a
satisfies the path degeneracy axiom. So [T + T type] means that [T] path. Implied content, such as
is a type in context §[I'] that satisfies the path degeneracy axiom. constant lines and the bridge
under a path, are not shown.
Hence, applying A preserves
the drawing.

/

. . ° °
g5r, a8r qr

Modal context extension. If [T + T type] holds, then we need to be
able to extend '] with variables of type [T] in any modality p. We
already know that p corresponds to an endomorphism of CwFs on
BPCube. The laws of a morphism of CwFs allow us to apply u to both sides of a typing judgement,
obtaining p#[T] + p[T] type. Now pff = # by the composition table of modalities so that we have
[T + (u[TDL type (note how this would not work if [T] lived in [I'] and g = q). We now interpret
[T, x# : T] as ([T], x : (u[T])[:]). Then one can show that [\ I'] = b[I'] and [{ \ T] = #[T], so that
left dividing a context by a modality corresponds to applying the modality’s left adjoint.

Terms. A term [T + t : T] is now interpreted as [T + [¢] : [T][4]-

5.5 Some Remarkable Interpretations of Types

The universe. For simplicity, we ignore universe levels — a more formal exposition can be found
in [Nuyts 2017]. The standard presheaf universe U"" as described by Hofmann and Streicher

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:24 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

[1997] has as its defining terms W 2 A : UP*" the types W Atype over the Yoneda-embedded
primitive context W. This universe is problematic for our purposes in three ways. First, the types it
contains are not all discrete. Secondly, ™" is not discrete itself and thus cannot satisfy the path
degeneracy axiom. Thirdly, an encoded type T + A : U should admit terms T + a : A; indeed, the
V-quantifier admits parametric functions in non-parametric types. The universe " does not
satisfy this requirement.

The first issue is easiest to resolve: we define a non-discrete universe of discrete types T/NPP by
taking as defining terms W +° A : UNDPP precisely the discrete types W + Atype.

The other two issues can be solved together. A closed type such as the universe that we want
to model, is discrete if and only if its path relation is the equality relation. Meanwhile, a bridge
(i : I) ¥P A : U should admit paths (i* : T) +P a : A. Both of these matters are resolved if we
take as defining terms (G : 1™, % 1) ¥P A : U precisely the discrete types (% : 1) + Atype, or
equivalently terms (% : 1) kP A : UNPP So the paths of U are constant and the bridges of U are
the paths of LNPP; this amounts to saying that U = bUNPP = ABUNPP. Indeed: J redefines the
bridge relation as the path relation, and b subsequently redefines the path relation as equality.

Now if we have [\ T + A : U], i.e. (up to isomorphism) b[T] + [A] : bJZNPP, then applying
f and using that b = § and §] = q yields a term }[I'] + ﬁ[[A]] : qUNPP. Finally we can use
9 : — 1d to obtain #[I] - I(*[A]) : LUNPP, which encodes a discrete type §[I] - I(*[A]) type, i.e.
an interpretation for [T + Atype]. We will write EI T for 9(*T).

An important challenge is now to establish that all type formers work on elements of the discrete
universe U = bJUNPP. The general approach is the following: We move the functor b{ to the left
of the turnstile (+) in the form of its left adjoint #{. Then we apply existing type formers for LNPP
in the context #{T and finally we move the functor back to the right. Great care is needed where
we have interactions between terms and types, i.e. when modelling dependent quantifiers, identity
types and Glue/Weld types.

Identity types. The standard presheaf identity type has a single defining term W +P x : (a =4
b)[y] when a[y] = b[y] and no defining terms for y otherwise. In other words, it represents
definitional, proof-irrelevant equality. Now suppose we have [['+ T : U] and [T + s, : T]. The
former judgement can be unfolded to #{[I] + T’ type. Using the fact that T is discrete, we are
allowed to disregard the | functor, so by applying # to [s] and [¢], we obtain terms §{[T'] + s’, t" : #T".
Then we can construct §{[I'] s =47 t’ type, which is discrete as it is a proposition, and finally
we can go back to [U]. It is noteworthy that the interpretation of the identity type is not over
T’, but over §T’. This also allows us to model parametricity of the reflexivity constructor, without
damaging the power of the J-rule.

Function types. Assume we have [I' + A: U] and [T, B\ AL B: U], ie. [T] + [A] : bITNOP
and [I],x : ((# \ pEIA)[] + B : bJUNPP. Again, we push b to the left in the form of .
Remember that | is a monad that we can map into; this allows us to extract the variable x out of
it. Meanwhile, we have a natural transformation g — # o (# \ y). All of this allows us to derive
#7[T] + A” - UNPD and {f[T],x : pA’ + B’ : UNPP, whence #{[T] + H(x : pA’).B" : UNPP and
finally [T] + [IT#(x : A).B] : bTNPP.

Pair types. The pointwise and continuous pair types are formed in the same way as the function
types. For the parametric pair type 3, a problem occurs because X(x : $4”).B’ is not generally
discrete. We resolve this by applying a type-level shape operator § that identifies all terms connected
by non-dependent paths, obtaining #{[T'] + $3(x : #A4”).B’ : UNPP. Pushing #] to the right again,
we find [T] + [3(x : A).B] : bJUNPP.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:25

Face predicates. Similar to ™", there is a standard presheaf universe of propositions Prop”".
The defining terms W P P : Prop™" are the proof-irrelevant types W P type over the Yoneda-
embedded primitive context W; these are types for which all defining terms are equal to x. We define
[F] = bq(#Prop™") = bProp™h (so #Prop™h takes the role that T/"" took before) and interpret
context extension similar to the way we did for types. See [Nuyts 2017] for details.

Glueing and welding. We first define these types in the standard presheaf model. Write W =
Weld{A — (P?T, f)} and G = Glue{A « (P?T, h)}. We want these to be types: I' v W, G type.
We define W as follows: the defining terms V +P w : W[y] are defining terms V +P w : T[(y, %)] if
P[y] = T; otherwise, they are defining terms V > w : A[y]. The primitive substitutions w[¢] of w
are defined using some case distinctions and the function f. Similarly, a defining term V +° ¢ : G[y]
is a defining term V +-P g : T[(y, %)] if P[y] = T. Otherwise, it is a pair (a, t) with V +° a : A[y] and
V,p:P+t:T[(y,p)], such that h maps t to a. Again, primitive substitutions are defined using case
distinction and the function A.

The next step is to internalize these types. We have [A] and [T] living in b Z/NPP and [P] living
in bq#Prop®h, all in context [I]. In each of these cases, we can push b{ to the left, arriving in
context #§{[[T]. Further unpacking is needed for [P]. Meanwhile, [f] lives in context [\ '] = #]T].
The fact that the type of f is discrete and lives in a discrete universe, allows us to disregard §, so
that f too lives in #§{[I']. Now we can apply the presheaf Glue or Weld type formers and push the
functors to the right again.

Size. We define a closed type Size in the presheaf model as a type of naturals with codiscrete
bridge structure and discrete path structure: a defining term (G : 1™, % : 1") P s : Size consists
of 2™ natural numbers, one for each vertex of the bridge cube. So we relate any two numbers
with a bridge, while paths are required to be constant. The type #Size then has defining terms
G, # 17 KR s : fSize consisting of 2™*" natural numbers. Given I + s, : #iSize, we define
a proposition T + s < ttype, where we have a defining term W +P % : (s < t)[y] if and only

if s[y] < t[y] vertexwise. The internal type [s < t] is then defined similarly to the identity type.
Finally, the fixpoint operator on Size is defined by induction on the greatest vertex of a given cube.

6 RELATED AND FUTURE WORK

Parametricity in and of dependent type theory. Figure 9 provides an overview of related work.
Reynolds’s original formulation [1983] is in terms of a (partly ill-conjectured [Reynolds 1984])
set-theoretic semantics, but others have shown that parametricity of System F can be formulated in
a predicate logic on System F. Such frameworks can be seen as ‘internal’ because the parametricity
proof that we obtain for a specific program, can be constructed as a proof term internally in the
predicate logic. However, as the ‘journey’ column emphasizes, the fact that this program-to-proof
translation works for any program, is proven externally. IEL holds in each of the cited frameworks
for System F.

The second chunk of Fig. 9 contains frameworks for parametricity of dependent type theory.
In this class of work, IEL is only shown to hold for small types. In fact, the function leak from
Section 1 would be ruled out by IEL; hence, IEL cannot hold in general. In our terminology, work
like Bernardy et al.’s [2012] which omits IEL altogether, shows that MLTT is continuous (i.e. all
functions respect relations) analogous to Lemma 3.5 where p is the continuous modality.

Atkey et al. [2014] prove their results in a reflexive graph model, following related models for
simpler type systems such as those by Robinson and Rosolini [1994], Hasegawa [1994], and Atkey
[2012]. This model has been enhanced by Bernardy et al. [2015] to a (unary, but generalizable)
model in terms of cubical sets (iterated reflexive graphs) that supports iterated parametricity. Our
work builds further on that. Bernardy et al.’s type system provides operators that allow us to map

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:26 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

‘ citation ‘ source ‘ target ‘ journey ‘ model ‘ IEL proof ‘
[Reynolds 1983] System F conject. set model | yes
[Abadi et al. 1993] System F System % external yes
[Plotkin and Abadi 1993] | System F System F + logic | external yes
[Wadler 2007] System F System F + logic | external yes
[Takeuti 2001] Z € A-cube % € A-cube external for small types
[Bernardy et al. 2012] any PTS other PTS external no
[Krishnaswami and | dependent types PER-model only some corol-
Dreyer 2013] laries
[Atkey et al. 2014] dependent types presheaves: reflex- | for small types
ive graphs
[Bernardy et al. 2015] dependent types + | same as source internal | presheaves: (unary) | no
param. operators cubical sets
This work dependent types + | same as source internal | presheaves: bridge/ | yes: (semantics
Glue, Weld, V, 3 path cubical sets of) degax

Fig. 9. Classification of important related frameworks that prove parametricity. The ‘source’ column lists the
type system that parametricity is proven of. If parametricity is formulated in some type system, it is listed
under ‘target’ and the ‘journey’ column lists whether the translation from program to parametricity proof,
takes place internal to the type system, or externally in the metatheory. If a metatheoretic model is (also)
used, it is listed under ‘model’. The last column lists whether the identity extension lemma (IEL) is proven.

programs to their parametricity proofs internal to the type system. Modulo some technical issues
that can be overcome, their operators could be plugged into our presheaf model and supplementing
them with the path degeneracy axiom would have given our system similar power. However, just
as in their system, we would have had non-duplicable interval variables, severely complicating
implementation as an extension of Agda. We overcome this, somewhat experimentally, by choosing
instead to use the more indirect Glue and Weld types, which exist in any presheaf model and are
in this sense also more robust against future reworkings of the model. This decision is unrelated to
the appearance of the pointwise modality (). The graph type /f\ from Section 3.2.1 with its push
and pull functions, is analogous to the graph relation in System % [Abadi et al. 1993].

Modalities. Although the use of modalities for keeping track of parametricity is to our knowledge
new, parametricity is just one addition to a large list of applications of modalities, including
(eponymously) modal logic [Pfenning and Davies 2001], variance of functorial dependencies [Abel
2006, 2008; Licata and Harper 2011], irrelevance [Abel and Scherer 2012; Reed 2003], erasure
[Mishra-Linger and Sheard 2008], intensionality vs. extensionality [Pfenning 2001]. Licata and
Shulman’s modality system for axiomatic cohesion [2016] is an important ingredient of our model.
The syntactic treatment in terms of order, composition and left division has been developed by
Pfenning [2001] and Abel [2006, 2008], and was already implemented in Agda as the basis for its
irrelevance modality, facilitating the implementation of the ParamDTT extension of Agda.

Parametricity versus irrelevance. Notions closely related to parametricity, especially in non-
dependently-typed systems, are irrelevance and erasability. The meanings of these words seem to
shift somewhat throughout the literature, so we start by defining the terminology we will use. By a
parametric dependency, as in the rest of the paper, we mean a dependency that maps related inputs
to (heterogeneously) equal outputs. This includes the identity function §Nat — Nat defined in
Eq. (2). By an erasable dependency, we mean a dependency that can be erased after type-checking, at
compile time, while preserving the operational semantics of a program. By an irrelevant dependency,
we mean a dependency that can be erased already during type-checking, implying that terms can
be converted between types that are equal up to their irrelevant parts. It is intuitively clear that
irrelevance is stronger than erasability, which in turn is stronger than parametricity.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

Parametric Quantifiers for Dependent Type Theory 32:27

Mishra-Linger and Sheard’s EPTS [2008] and Barras and Bernardo’s ICC* [2008] are type systems
with quantifiers for erasable dependencies based on Miquel’s implicit calculus of constructions
(ICC) [2001a; 2001b]. Both propose a conversion rule that erases at type-checking time, making
their quantifiers irrelevant. If we allow conversion only between f-equal types, as Mishra-Linger
and Sheard also suggest, both systems embed into ours. Abel and Scherer [2012] show that it is
problematic to view the quantifiers of EPTS and ICC* as irrelevant. The problem can be neatly
formulated in terms of our bridges and paths: if a function is to be irrelevant, then surely it must
map any pair of inputs to equal outputs. However, both type systems consider irrelevant functions
f : I (x : A).B with merely ‘continuous’ codomain B : A — U. In our system, this means that
we would require a path between any two values f ;'™ and f o, without necessarily providing
a notion of paths between B a; and B ay. The result is unclarity about how to check cross-type
equality.

Reed [2003] and Abel and Scherer [2012] present similar type systems with irrelevant quantifiers
in which this problem does not arise as they require the codomain B : irr A — U to be irrelevant as
well. We can conclude that each of the concepts mentioned above has its own virtues. Irrelevance
admits erasure at type-checking time, but we cannot consider irrelevant functions for an arbitrary
dependent codomain. Erasability does allow arbitrary codomains, but admits erasure only at
compile time. Parametricity does not admit erasure whatsoever, but it does admit pattern matching
eliminators while still producing free theorems.

Cubical type theory and HoTT. Cubical type theory [Bezem et al. 2014; Cohen et al. 2016] uses
a cubical set model, similar to ours, to model the univalence axiom from homotopy type theory
(HoTT) and consequently, function extensionality. The cubical type system and ParamDTT have in
common that equalities can be expressed using functions from the interval, and that types varying
over the interval can be constructed using variations of Glue. We expect that both systems can
be merged into a system for parametric HOTT. Voevodsky’s homotopy type system [HTS, 2013]
and Altenkirch et al.’s 2-level type system [2016], which contain both a fibrant path type and a
non-fibrant strict equality type, may play well with such a system for parametric HoTT, where
types live in a different context as their terms and hence need not be fibrant in their terms’ context.

Iterated bridges. 1t is regrettable that we have lost internal iterated parametricity. This issue
is directly related to the fact that in ParamDTT there is no way to provide, between two types
Ap and A;, a notion of heterogeneous bridges without also providing a notion of heterogeneous
paths. Indeed, if we have a bridge A : I — U from A to A;, then we can consider both bridges
II(i : I).Ai and paths V(i : I).Ai. However, if we have a bridge between functions f and g, then
a heterogeneous bridge from a : Glue{A « (P?T,)} to b : Glue{A « (P?T,g)} has meaning
in the model, whereas a path does not. This suggests that we should add to our model a weaker
connection of pro-bridges, such that a pro-bridge between types expresses a notion of bridges, but
not paths. This will then immediately ask for the addition of pro-pro-bridges, etc. It seems that a
system for iterated bridge/path parametricity needs to be modelled in iterated bridge/path cubical
sets which contain ever weaker notions of edges. On the syntax side, the consequence would be
that the J modality is lossless and we can have § o | = id, which would stop the propagation of
the { modality that precludes iterated parametricity. A possibly related feature that ParamDTT
lost with respect to both cubical type theory and Bernardy et al.’s work, is that our bridge and
path types are not indexed by their endpoints; rather, they look like ordinary function spaces. The
reason is that the interaction between modalities and indexed function types poses very subtle
problems and we were able to achieve good results without. We believe that iterated bridge/path
cubical sets could create clarity on this issue as well.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

32:28 Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese

7 ACKNOWLEDGEMENTS

We want to thank Andreas Abel, Paolo Capriotti, Jesper Cockx, Dan Licata and Sandro Stucki for
many fruitful discussions, and Andreas Abel, Sandro Stucki, Philip Wadler and the anonymous
reviewers for their valuable feedback on the paper. Andreas Nuyts and Dominique Devriese hold
a Ph.D. Fellowship and a Postdoctoral Mandate (resp.) from the Research Foundation - Flanders
(FWO).

REFERENCES

Martin Abadi, Luca Cardelli, and Pierre-Louis Curien. 1993. Formal parametric polymorphism. Theoretical Computer Science
121, 1 (1993), 9 - 58. DOI:http://dx.doi.org/10.1016/0304-3975(93)90082-5

Andreas Abel. 2006. A Polymorphic Lambda-Calculus with Sized Higher-Order Types. Ph.D. Dissertation. Ludwig-Maximilians-
Universitat Miinchen.

Andreas Abel. 2008. Polarised subtyping for sized types. Mathematical Structures in Computer Science 18, 5 (2008), 797-822.
DOI: http://dx.doi.org/10.1017/S0960129508006853

Andreas Abel and Gabriel Scherer. 2012. On Irrelevance and Algorithmic Equality in Predicative Type Theory. Logical
Methods in Computer Science 8, 1 (2012), 1-36. DOI: http://dx.doi.org/10.2168/LMCS-8(1:29)2012 TYPES’10 special issue.

Andreas M. Abel and Brigitte Pientka. 2013. Wellfounded Recursion with Copatterns: A Unified Approach to Termination
and Productivity. In Proceedings of the 18th ACM SIGPLAN International Conference on Functional Programming (ICFP °13).
ACM, New York, NY, USA, 185-196. DOI: http://dx.doi.org/10.1145/2500365.2500591

Thorsten Altenkirch, Paolo Capriotti, and Nicolai Kraus. 2016. Extending Homotopy Type Theory with Strict Equality.
CoRR abs/1604.03799 (2016). http://arxiv.org/abs/1604.03799

Thorsten Altenkirch, Neil Ghani, Peter Hancock, Conor McBride, and Peter Morris. 2006. Indexed Containers. Manuscript,
available online. (February 2006).

Robert Atkey. 2012. Relational Parametricity for Higher Kinds. In Computer Science Logic (CSL’12) - 26th International
Workshop/21st Annual Conference of the EACSL (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 16. 46-61.
DOI : http://dx.doi.org/10.4230/LIPIcs.CSL.2012.46

Robert Atkey, Neil Ghani, and Patricia Johann. 2014. A Relationally Parametric Model of Dependent Type Theory. In
Principles of Programming Languages. DOI : http://dx.doi.org/10.1145/2535838.2535852

Bruno Barras and Bruno Bernardo. 2008. The Implicit Calculus of Constructions as a Programming Language with Dependent
Types. Springer Berlin Heidelberg, Berlin, Heidelberg, 365-379. DOI: http://dx.doi.org/10.1007/978-3-540-78499-9_26

Jean-Philippe Bernardy, Thierry Coquand, and Guilhem Moulin. 2015. A Presheaf Model of Parametric Type Theory.
Electron. Notes in Theor. Comput. Sci. 319 (2015), 67 — 82. DOI: http://dx.doi.org/10.1016/j.entcs.2015.12.006

Jean-Philippe Bernardy, Patrik Jansson, and Ross Paterson. 2012. Proofs for Free — Parametricity for Dependent Types.
Journal of Functional Programming 22, 02 (2012), 107-152. DOI : http://dx.doi.org/10.1017/S0956796812000056

Marc Bezem, Thierry Coquand, and Simon Huber. 2014. A Model of Type Theory in Cubical Sets. In 19th International
Conference on Types for Proofs and Programs (TYPES 2013) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 26.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 107-128. DOI: http://dx.doi.org/10.4230/LIPIcs.
TYPES.2013.107

Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mértberg. 2016. Cubical Type Theory: a constructive interpretation
of the univalence axiom. CoRR abs/1611.02108 (2016). http://arxiv.org/abs/1611.02108

Peter Dybjer. 1996. Internal type theory. Springer Berlin Heidelberg, Berlin, Heidelberg, 120-134. DOI: http://dx.doi.org/10.
1007/3-540-61780-9_66

Ryu Hasegawa. 1994. Relational limits in general polymorphism. Publications of the Research Institute for Mathematical
Sciences 30 (1994), 535-576.

Martin Hofmann. 1997. Syntax and semantics of dependent types. Springer London, London, Chapter 4, 13-54. DOI:
http://dx.doi.org/10.1007/978-1-4471-0963-1_2

Martin Hofmann and Thomas Streicher. 1997. Lifting Grothendieck Universes. Unpublished note. (1997).

Neelakantan R. Krishnaswami and Derek Dreyer. 2013. Internalizing Relational Parametricity in the Extensional Calculus
of Constructions. In Computer Science Logic 2013 (CSL 2013) (Leibniz International Proceedings in Informatics (LIPIcs)),
Vol. 23. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 432-451. DOI : http://dx.doi.org/10.4230/
LIPIcs.CSL.2013.432

Daniel Leivant. 1991. Finitely stratified polymorphism. Information and Computation 93, 1 (1991), 93 — 113. DOI:http:
//dx.doi.org/10.1016/0890-5401(91)90053-5

Daniel R. Licata and Robert Harper. 2011. 2-Dimensional Directed Type Theory. Electronic Notes in Theoretical Computer
Science 276 (2011), 263 — 289. DOI:http://dx.doi.org/10.1016/j.entcs.2011.09.026 27th Conference on the Mathematical

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

http://dx.doi.org/10.1016/0304-3975(93)90082-5
http://dx.doi.org/10.1017/S0960129508006853
http://dx.doi.org/10.2168/LMCS-8(1:29)2012
http://dx.doi.org/10.1145/2500365.2500591
http://arxiv.org/abs/1604.03799
http://dx.doi.org/10.4230/LIPIcs.CSL.2012.46
http://dx.doi.org/10.1145/2535838.2535852
http://dx.doi.org/10.1007/978-3-540-78499-9_26
http://dx.doi.org/10.1016/j.entcs.2015.12.006
http://dx.doi.org/10.1017/S0956796812000056
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://dx.doi.org/10.4230/LIPIcs.TYPES.2013.107
http://arxiv.org/abs/1611.02108
http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1007/3-540-61780-9_66
http://dx.doi.org/10.1007/978-1-4471-0963-1_2
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.432
http://dx.doi.org/10.4230/LIPIcs.CSL.2013.432
http://dx.doi.org/10.1016/0890-5401(91)90053-5
http://dx.doi.org/10.1016/0890-5401(91)90053-5
http://dx.doi.org/10.1016/j.entcs.2011.09.026

Parametric Quantifiers for Dependent Type Theory 32:29

Foundations of Programming Semantics.

Daniel R. Licata and Michael Shulman. 2016. Adjoint Logic with a 2-Category of Modes. Springer International Publishing,
219-235. DOI:http://dx.doi.org/10.1007/978-3-319-27683-0_16

Alexandre Miquel. 2001a. The Implicit Calculus of Constructions: Extending Pure Type Systems with an Intersection
Type Binder and Subtyping. In Proceedings of the 5th International Conference on Typed Lambda Calculi and Applications
(TLCA’01). Springer-Verlag, Berlin, Heidelberg, 344-359. http://dl.acm.org/citation.cfm?id=1754621.1754650

Alexandre Miquel. 2001b. Le Calcul des Constructions Implicite: Syntaxe et Sémantique. Ph.D. Dissertation. Université Paris 7.

Nathan Mishra-Linger and Tim Sheard. 2008. Erasure and Polymorphism in Pure Type Systems. Springer Berlin Heidelberg,
Berlin, Heidelberg, 350-364. DOI : http://dx.doi.org/10.1007/978-3-540-78499-9_25

Andreas Nuyts. 2017. A Model of Parametric Dependent Type Theory in Bridge/Path Cubical Sets. Technical Report. KU
Leuven, Belgium. https://arxiv.org/abs/1706.04383

Frank Pfenning. 2001. Intensionality, extensionality, and proof irrelevance in modal type theory. In Proceedings 16th Annual
IEEE Symposium on Logic in Computer Science. 221-230. DOI: http://dx.doi.org/10.1109/LICS.2001.932499

Frank Pfenning and Rowan Davies. 2001. A judgmental reconstruction of modal logic. Mathematical Structures in Computer
Science 11, 4 (2001), 511-540. DOI : http://dx.doi.org/10.1017/S0960129501003322

Benjamin C. Pierce. 2002. Types and programming languages. MIT Press.

Gordon Plotkin and Martin Abadi. 1993. A logic for parametric polymorphism. Springer Berlin Heidelberg, Berlin, Heidelberg,
361-375. DOI:http://dx.doi.org/10.1007/BFb0037118

Jason Reed. 2003. Extending Higher-Order Unification to Support Proof Irrelevance. In Theorem Proving in Higher Order
Logics: 16th International Conference, TPHOLs 2003, Rome, Italy, September 8-12, 2003. Proceedings, David Basin and Burkhart
Wolff (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 238-252. DOI:http://dx.doi.org/10.1007/10930755_16

John C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism.. In IFIP Congress. 513-523.

John C. Reynolds. 1984. Polymorphism is not set-theoretic. Research Report RR-0296. INRIA. https://hal.inria.fr/inria-00076261

Edmund P. Robinson and Giuseppe Rosolini. 1994. Reflexive graphs and parametric polymorphism. In Proceedings Ninth
Annual IEEE Symposium on Logic in Computer Science. 364-371. DOI : http://dx.doi.org/10.1109/LICS.1994.316053

Izumi Takeuti. 2001. The Theory of Parametricity in Lambda Cube. Technical Report 1217. Kyoto University.

Vladimir Voevodsky. 2013. A simple type system with two identity types. (2013). https://ncatlab.org/homotopytypetheory/
files/HTS.pdf unpublished note.

Philip Wadler. 1989. Theorems for Free!. In Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture (FPCA °89). ACM, New York, NY, USA, 347-359. DOI:http://dx.doi.org/10.1145/
99370.99404

Philip Wadler. 2007. The Girard-Reynolds isomorphism (second edition). Theoretical Computer Science 375, 1 (2007), 201 -
226. DOI:http://dx.doi.org/10.1016/].tcs.2006.12.042

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 32. Publication date: September 2017.

http://dx.doi.org/10.1007/978-3-319-27683-0_16
http://dl.acm.org/citation.cfm?id=1754621.1754650
http://dx.doi.org/10.1007/978-3-540-78499-9_25
https://arxiv.org/abs/1706.04383
http://dx.doi.org/10.1109/LICS.2001.932499
http://dx.doi.org/10.1017/S0960129501003322
http://dx.doi.org/10.1007/BFb0037118
http://dx.doi.org/10.1007/10930755_16
https://hal.inria.fr/inria-00076261
http://dx.doi.org/10.1109/LICS.1994.316053
https://ncatlab.org/homotopytypetheory/files/HTS.pdf
https://ncatlab.org/homotopytypetheory/files/HTS.pdf
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1145/99370.99404
http://dx.doi.org/10.1016/j.tcs.2006.12.042

	Abstract
	1 Introduction
	2 A programmer's perspective
	3 The type system, formally
	3.1 Core Typing Rules: Annotating Martin-Löf Type Theory
	3.2 Internal Parametricity: Glueing and Welding
	3.3 Related and Unrelated Naturals
	3.4 Embedding Other Systems

	4 Applications
	4.1 Church Encoded (Co)-Recursive Types
	4.2 Sized Types

	5 Soundness: an overview of the presheaf model
	5.1 The Set Model of Dependent Type Theory
	5.2 Presheaf Models
	5.3 The Cohesive Structure of "0362BPCube
	5.4 Meaning of Judgements
	5.5 Some Remarkable Interpretations of Types

	6 Related and future work
	7 Acknowledgements
	References

