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Preface

The foundations of this thesis were established in my hometown Kortrijk,
Belgium. I had the pleasure of having Dr. Fabien Decruyenaere as mathematics
teacher in secundary school. He inspired me to achieve my full potential, and at
university, I worked hard to get good results. During those first bachelor years,
I was especially attracted by the courses from Prof. Lieven De Lathauwer. I
loved those courses. Clear, crisp mathematics. Advanced, yet not too abstract
and overcomplicated. I rediscovered the verge between mathematics and signal
processing in the master thesis which I wrote with Nico, under the guidance of
Lieven. Together with the pleasant commitment towards Sagio.be, that final
master’s year cannot be described as relaxing and peaceful at all. Things worked
out eventually, especially after meeting Astrid that year.

I decided to postpone my academic farewell and I started a PhD in Lieven’s
group in September 2013 with Prof. Marc Van Barel as co-supervisor. It kicked
off on a sad note by not being awarded a grant from the Research Foundations
– Flanders (FWO). My disappointment at the time was a public secret. But by
failing forward, I did manage in December that year to have my PhD personally
funded by the Agency for Innovation and Entrepreneurship, formerly known as
the Agency for Innovation through Science and Technology (IWT). I am very
grateful for this opportunity, allowing me to independently perform research
while having a number of goals and deliverables at hand. I have to especially
thank Devy, Kirsten, Ninah, Steven and the others for taking the time to
prepare me for the IWT defense.

These four years of PhD were both challenging and interesting. It must be said
that it took me a while to decide to go for a PhD, but I can now say it was
totally the right choice at the right time. In the remainder of this preface, I
would like to thank the people that have made my PhD worth it.

First, Lieven, thank you for allowing me to join your young and small but
energizing research group. Thanks for the informal discussions and the necessary
patience you had. Your perfectionism was challenging to pursue yet easy to
admire. Marc, you deal with a great combination of calmness, enthusiasm and
positiveness. I enjoyed the meetings with you every single bit. Prof. Sabine Van
Huffel, thanks for joining my supervisory committee and a special thank-you
is appropriate for allowing us to join your group’s social events. Sabine, your
smile and laugh are heartwarming. Prof. Marc Moonen, thanks for being part
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of my committee as well. Your thorough and compelling feedback during the
sporadic encounters is often challenging but never misplaced. I would especially
like to thank the external members of the committee, Prof. Sergios Theodoridis
and Prof. Adel Belouchrani, for joining the defense(s) in Belgium, as well as
the chair Prof. Jean Berlamont. Furthermore, thanks Marleen, Ida, Elsy, John,
Wim, Maarten, Jacqueline and other back-office people for the spurious efforts.
It certainly made my practical and administrative issues less a burden.

The PhD has allowed me to travel to different locations. Hong Kong, pearl of the
orient, blew me away. It was my first encounter with top-notch researchers in
the field. Brisbane (Australia) was host of my first signal processing conference.
Thanks Wouter, Amin, Enzo and Jorge for accompanying me. The Dolomites
(Italy) formed a closer yet most appealing location for the 2015 TRICAP
conference, the latter consisting of a select group of tensor-focused researchers.
I remember a chat with Prof. Rasmus Bro regarding food science, discussing the
connections between tensors and edible fermented moss during a hike. Other
conferences and summer schools followed in Prague (Czech Republic), Göttingen
and Bonn (Germany; thanks Ben, Daan and Martijn!), Lommel and Leuven. I
am especially indebted to Prof. Eleftherios Kofidis for allowing me to enjoy a
research trip to Athens. Thanks Christos and Manuel for having lunch together;
Christos, I still owe you some Belgian beers! I enjoyed the daily chats when
you passed by for coffee, Sergios; your dedication towards ‘your’ engineering
department should be honored. Leftheris, I will cherish the amazing dinner we
had in the local ψαρoταβέρνα (fish tavern). Finally, we have to admit that
one can finish worse with a conference on the beautiful island group of Hawai‘i
(USA); thanks Bert, Davy, Rahaf, Ali and Vivek for the joyful evenings!

Our designated working places within the department in Leuven were not less
diverse as the locations abroad. After graduation, Nico and I spent a couple
of weeks working in a small meeting room. Thanks Nico for (un)willingly
occupying the smaller of both tables. Soon, we moved to an office with Yunlong
Feng and Yuning Yang. Thanks guys for the amazing dinners we had; the
chicken feet marinated in Coca Cola were interesting, to say the least. Emanuele
Frandi and Paul Smyth joined our office later, the latter also joining our research
team. Thanks for bringing in the life experience, Paul. When the new part of
ESAT was ready, we were again moving . . . to an even older part of the building.
However, it felt good at the fifth floor in the tower and everyone was at ease
quite quickly. We got used to the stairs, except when carrying water bottles.

I had the chance to combine my PhD with some extra-PhD items. Thanks Bart,
for introducing me to CFA; it definitely brought me insightful knowledge on
financial markets. Laurent, Bert and Marc: thanks for the numerous meetings
we had, trying to launch Investimize. We did not succeed, but we can agree that
we all learned a lot. Who knows the journey might continue in the future? David,
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I’m glad we met during an Lcie event, resulting in founding TechStart together
with Tom and Steven; thanks Wim for the support and Christof, Joachim,
Caspar, Laurent and Mattia for continuing our legacy. Thanks Jonathan, Kin
Chi, Tom, Filip, Marc and others in the board of directors for joining me in the
quest to let Sagio.be flourish. Friends from the water-polo, thanks for providing
me with the weekly opportunity of practicing my favorite sport. Lucas, Janis
and Astrid, we can be proud of ourselves for finishing that enviable marathon
of Athens. It’s pretty certain: that was a damn long hill. Thanks all of you
yuppies (Sven, Ce, Bert, Stals, Jennes, Carl, Palmen) for the nights out and the
(not-so-)mystery weekends — where will the next mystery weekend take us? —
and the KULAK burgies for the various barbecues and re-energizing weekends.
Stein, let’s continue the runs, drinks, dinners and sporadic encounters.

A number of constants dominated the previous four years. Of course, Nico,
thanks for playing the silent monkey more often than you wanted — read: being
silent and just sitting next to me while I’m explaining something out loud,
allowing me to create my own insights. I hope you learned something as well ;-).
Frederik and Martijn, I enjoyed the first year as your master thesis supervisor
and the other years as your colleague. Nico, Fre, Martijn, please all follow
your passion in the rest of your careers, whether it is code optimization, web
development or graphic design, respectively. One guy quickly understood that
Nespresso was his favorite coffee brand, resulting in a daily visit to our office:
Tom. Thanks for the coffee breaks, and thanks for often disturbing me when
focusing on work. Your friendship means a lot to me. A special thanks goes to
Griet for organizing the various social events within the Biomed group (Thanks
Rob, Alex, Carolina, Bori, Laure, Thomas, Bharath, those were already there
and those who joined recently!). Colleagues from KULAK (Ignat and Mikael,
later on also Xiaofeng, Michiel, Chuan and Alwin), we might have spoken more
through mail than face-to-face but I enjoyed our encounters every single time,
whether it was you coming to Leuven or me traveling to Kortrijk.

Finally, a special thanks goes to my family and family-in-law to-be. Thank you
mama and papa. I dedicate this manuscript to you. You have allowed me to
become the person I am now, and you have laid out the foundations for my
academic career. You were there whenever needed. Benno, we differ in age
quite a bit, but our humor and passions are very alike and we definitely share
more characteristics than one might initially think of. Remember, just do what
you love, and try to do it well. And of course, Astrid, love of my life. Thanks,
for being there. Thanks for your love, patience, trust and joy. I’m proud to
become your lawfully wedded husband.

Thanks everyone. Mahalo and aloha,

Otto





Abstract

The value of data cannot be underestimated in our current digital age.
Data mining techniques have allowed various priceless technological advances,
influencing our daily lives to a significant extent. An important aspect of data
mining is data representation. While vectors and matrices can be used to
represent one-way and two-way data, respectively, so-called tensors are well
suited to represent multiway data. The capabilities of recently developed tensor
tools such as tensor decompositions surpass the power of their vector and matrix
counterparts. It follows that these tools are already established in domains such
as signal processing, statistics and machine learning.

Tensor tools obviously require a tensor. In various applications such as source
separation and data clustering, only one- or two-way data is available. While
classic matrix tools sometimes fall short, tensor tools have the ability to, for
example, uniquely identify underlying components. The main goal of this thesis
consists of investigating how one can purposefully use tensor tools and exploit
their powerful tensor properties in such applications given only a single vector
or matrix. One approach encompasses a so-called tensorization step by first
mapping the given data to a tensor. A number of tensorization techniques have
appeared in the literature such as Hankelization and higher-order statistics.
Not every mapping is meaningful though, and the effectiveness of a technique
strongly depends on the problem at hand.

In this thesis we present a comprehensive overview of both existing and novel
tensorization techniques. We uncover relations between the properties of the
given data and the properties of the tensor obtained after tensorization, and
provide connections with tensor tools. We showcase the power of tensorization in
the context of instantaneous and convolutive blind signal separation, including
fetal heart rate extraction, direction-of-arrival estimation and blind separation of
16-QAM signals, and provide theoretical working conditions. Other applications
are touched upon as well, such as data and graph clustering and the training
of neural networks. Furthermore, we exploit our expertise in tensor-based
optimization to propose a novel technique for nonnegative matrix factorization.
Throughout the thesis, particular attention is paid to the use of tensorization in
a large-scale context, leading to efficient representations of structured tensors
and algorithms that are able to cope with large tensors after tensorization.
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Beknopte samenvatting
De waarde van data kan niet onderschat worden in het huidige digitale tijdperk.
Technieken voor dataontginning hebben geleid tot verschillende waardevolle
technologische vooruitgangen die ons dagelijks leven significant hebben beïnvloed.
Een belangrijk aspect van dataontginning is datarepresentatie. Terwijl vectoren
en matrices gebruikt kunnen worden om respectievelijk één- en tweewegsdata
te beschrijven, zijn zogenoemde tensoren uitermate geschikt om meerwegsdata
voor te stellen. De mogelijkheden van recent ontwikkelde tensorinstrumenten
zoals tensorontbindingen overtreffen de eigenschappen van hun vector- en
matrixequivalenten. Deze instrumenten zijn daarom reeds gevestigde waarden
geworden in domeinen zoals signaalverwerking, statistiek en machine learning.

Tensorinstrumenten vereisen vanzelfsprekend een tensor. In verscheidene toe-
passingen zoals signaalscheiding en dataclustering is enkel één- of tweewegsdata
beschikbaar. Terwijl klassieke matrixtechnieken soms tekortschieten, hebben
tensorinstrumenten de kracht om, bijvoorbeeld, onderliggende componenten op
een eenduidige manier te identificeren. Het hoofddoel van deze thesis bestaat in
het onderzoeken hoe, gegeven een enkele vector of matrix, tensorinstrumenten
en hun krachtige tensoreigenschappen gebruikt kunnen worden. Een mogelijke
aanpak omvat een zogenoemde tensorisatiestap door eerst de gegeven data
om te vormen naar een tensor. Een aantal tensorisatietechnieken zijn reeds
verschenen in de literatuur zoals Hankelisatie en hogere-ordestatistieken. Niet
iedere omvorming is echter betekenisvol en de doeltreffendheid van een techniek
hangt sterk af van het beschouwde probleem.

In deze thesis stellen we een uitgebreid overzicht voor van bestaande en nieuwe
tensorisatietechnieken. We leggen relaties bloot tussen eigenschappen van
de gegeven data en die van de tensor na tensorisatie, en leggen verbanden
met tensorinstrumenten. We demonstreren de kracht van tensorisatie aan
de hand van ogenblikkelijke en convolutieve blinde signaalscheiding, inclusief
hartsignaalscheiding, invalshoekschatting en 16-QAM scheiding, en voorzien
theoretische werkingsvoorwaarden. Er worden ook kort andere toepassingen
aangeraakt zoals data- en grafenclustering en neurale netwerken. Bovendien
buiten we onze expertise in tensorgebaseerde optimalisatie uit om een nieuwe
techniek voor te stellen voor niet-negatieve matrixfactorisatie. Doorheen de
thesis wordt aandacht besteed aan het gebruik van tensorisatie voor grootschalige
data. Dit leidt tot efficiënte voorstellingen van gestructureerde tensoren en
algoritmen die vlot grote tensoren na tensorisatie kunnen verwerken.
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Chapter 1

Introduction

“Data is the new oil of the (digital) economy — Data in the
21st century is like oil in the 18th century: an immensely, untapped
valuable asset. Like oil, for those who see data’s fundamental
value and learn to extract and use it, there will be huge rewards.”

— Joris Toonders in Wired [361]

1.1 The new oil

Data is everywhere, and there is quite a lot of it. IDC, a market-research firm,
predicts that the amount of data created each year will exceed 180 zettabytes
in 2025 [367]. That is 180 followed by 21 zeros. Based on an estimate of 8.5
billion people on Earth in 2025 [369], this amounts to 40 megabytes of data per
minute produced per person.

Various types of sources are responsible for this data. Each one of us can be
considered to be a data source by just carrying a mobile device, for example.
When accessing social media and using search engines, your personal preferences
are saved. During commuting, your location is retained. The content of your
email box is also stored and analyzed. For many years, we have mainly known
the internet as a platform for connecting people. Under the heading of Internet
of Things, however, it increasingly interconnects a diversity of physical devices
such as mobile and wearable devices, (self-driving) vehicles and various kinds
of sensors integrated in health care instruments and home appliances such as
thermostats, refrigerators and washers [25]. Besides more diverse types of data,
also higher volumes are obtained, yielding the notion of big data. While images
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taken by the first phone camera in history only consisted of 0.35 megapixels,
the resolution of current camera phones can well exceed 40 megapixels [189].

While there might be plenty of oil available underneath the surface, oil only
contains value after it is pumped and refined. The same is true for data: it
is only valuable if one is able to extract insightful information [353]. The
process of data mining transforms raw data in valuable information such as
patterns or relationships. Techniques from machine learning subsequently turn
this information into models enabling various predictions, which can be used
for economical or technological purposes. Referring to the aforementioned
examples, your personal preference and search history are used to send you
personalized recommendations and offers, and your location is used to derive
a global traffic congestion model. Furthermore, your emails are screened to
automatically export meeting arrangements, hotel bookings and flight schedules
to your calendar. Image processing tools enable animal detection, allowing
self-driving cars to automatically decelerate if needed. Prediction techniques
based on mobile healthcare data improve diagnostics and treatments, while
sensors in refrigerators or heating elements detect energy inefficiencies and
optimize energy use.

The concept of data bearing value has influenced the economy to a large extent.
Newly founded companies such as startups are increasingly oriented towards
data analytics as opposed to focusing on a physical product. Large firms are
frequently seen to pivot to this data-driven world, such as Amazon with its
subsidiary Amazon Web Services [226]. Considering social media, Facebook has
acquired Instagram in 2012 and WhatsApp in 2014, while LinkedIn is now part
of Microsoft. These deals have not occurred because of the recurrent revenue
and profit generating capabilities of the smaller firms; the firms are mainly
acquired for their data. The recent fine for Facebook imposed by the European
Commission for unauthorized use of WhatsApp’s data is just one part of the
evidence [147].

1.2 One-way and two-way data

Data structures Data representation is central to data mining. Vectors and
matrices provide well-known structures to collect, store and represent data.
Vectors and matrices consist of one and two modes, respectively, denoting
them as one-way and two-way data objects. For example, measuring a physical
quantity in function of time yields one-way time series, which can be naturally
stored in a vector. The storage of review scores for a movie dataset requires a
matrix, containing the score of each user for different movies. A grayscale image
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Figure 1.1: Illustration of PCA on a bivariate Gaussian distribution with a clear
correlation between the variables x and y. Each vector shown is a normalized
principal component scaled by the square root of its corresponding eigenvalue.
These principal components indicate the principal modes of variation.

is typically stored as a matrix as well, each entry depicting an image pixel. A
graph is a collection of nodes (representing web pages, individual persons or
cities, among others) and edges and can also be represented by a matrix. The
entry at position (i, j) of the so-called graph adjacency matrix gives information
on the connection between nodes i and j.

Data mining tools Many different tools are available to extract valuable
information from vector and matrix data. Google’s search engine, for example,
strongly relies on PageRank which measures the importance of web pages given
an adjacency matrix [291]. Movie recommendation systems typically rely on
matrix completion tools [38, 66] to predict the unknown entries of a movie rating
matrix. Matrix compression techniques are used to reduce the size of image
or video data without significantly undermining the quality and interpretation.
Principal component analysis (PCA) is another prevalent matrix data mining
tool, having significant importance for, e.g., the face recognition algorithm called
Eigenfaces [366]. Given a set of observations of possibly linearly correlated
variables (the columns of a matrix), PCA derives a specific set of uncorrelated
variables called principal components, as illustrated in Figure 1.1 [208].

Before continuing the discussion, let us briefly focus on two other matrix-related
techniques, namely blind source separation and clustering.

• Given a set of mixed signals, the goal of blind source separation (BSS) is
to recover the original set of source signals without (or as little as possible)
prior knowledge of the mixing process or source signals. By stacking the
sampled versions of the observed signals in the rows of a matrix X, it can
be seen that BSS boils down to the analysis of this matrix. The mixing
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Figure 1.2: Blind signal separation can be seen as a matrix problem. Each
observed signal in x(t) is a linear mixture of the source signals in s(t). The
rows of X contain sampled versions of the signals in x(t). Given only X, the
goal is to identify both the mixing matrix M and the source signals in S.

process is often linear such that the model reduces to X = MS with
mixing matrix M and set of source signals S, as illustrated in Figure 1.2.
An intuitive example is the cocktail party problem which consists of
separating human voices from other speech signals and background
music. In a biomedical context, BSS allows separating maternal and
fetal electrocardiography (ECG) signals [111] or removing artifacts from
electroencephalography (EEG) data [209], among many other applications.
BSS is closely related to direction of arrival (DOA) estimation from array
processing, while other applications have appeared in telecommunications,
chemometrics and in the financial sector [89].
Physical signals such as biomedical or telecommunication signals typically
do not propagate instantaneously. Rather than considering an instanta-
neous mixture as in Figure 1.2, it might be useful to incorporate time
delays in the model. One then refers to deconvolution or blind system
identification (BSI) [2], dealing with systems with memory such as systems
consisting of finite impulse response filters.

• Clustering consists of assigning objects to groups based on similarity.
This allows the recognition of patterns in the data or the analysis of
network flows, among others. In machine learning, the objects are typically
represented by feature vectors. Based on a number of observations, these



ONE-WAY AND TWO-WAY DATA 5

vectors can then be stacked in the rows of a matrix X. In the following
simple example, two clusters can be easily identified:

1.0 2.1 3.0
5.9 5.1 4.1
5.8 5.0 3.9
1.0 2.0 3.0
6.1 4.8 4.0



 ≈
1

1
1

1
1




1 2 3
6 5 4

[ ]
X H C

1.0 2.1 3.0
5.9 5.1 4.1
5.8 5.0 3.9
1.0 2.0 3.1
6.1 4.8 4.0

1 0
0 1
0 1
1 0
0 1

1 2 3
6 5 4

The given matrix X is approximated by HC, in which each row of H
‘selects’ a row of C, the latter representing a cluster vector.

Matrix factorization Most of the previously mentioned data mining tools
rely on the concept of matrix factorization. The most simple version of matrix
factorization is the rank-1 decomposition, writing a given matrix X as the outer
product of two nonzero vectors a and b, respectively, such that X = abT. If a
matrix X admits to such a decomposition, it consists of rows (resp., columns)
that are scaled versions of each other, such as the following matrix:

1 2 3
2 4 6
3 6 9
−1 −2 −3

 =


1
2
3
−1

 [1 2 3
]
.

Instead of as a single outer product, the more general rank-Rmatrix factorization
writes X as a sum of R rank-1 terms:

X = a1bT
1 + . . .+ aRbT

R = ABT,

which can be visualized as in Figure 1.3. Given a matrix X of size N ×K, the
so-called factor vectors ar and br are stacked in the columns of the matrices A
and B of sizes N ×R and K ×R, respectively. If this R is minimal, i.e., if X
cannot be represented by a sum of R− 1 or less rank-1 terms, this R is defined
as the rank of the matrix. The theoretical rank of various kinds of matrix data
is typically very high, depending on the number of columns and rows. Often,
however, a good approximation is obtained if the matrix is approximated by a
low number of outer products. The validity of this low-rank matrix factorization
follows from the Eckart–Young–Mirsky theorem [142]. It is interesting to see
that a total of NK entries in X are then represented by only R(N +K) entries,
e.g., a rank-5 factorization of a matrix of size 100 × 100 involves only 1000
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X = + · · · + = A
BT

Figure 1.3: A low-rank matrix factorization writes a matrix X as a sum of outer
products of nonzero vectors, stacked in the matrices A and B.

variables amounting to a reduction of 90%. Such a model complexity reduction
provides the foundations of the previously mentioned matrix compression and
completion tools. Furthermore, as discussed, the given matrix X in the BSS
and clustering problems is factorized to allow the recovery of the source signals
and clustering vectors, respectively. In both cases, each source signal or cluster
vector contributes a rank-1 term to X. Finally, dictionary-based learning [264]
and factor analysis [182] originating from the domains of machine learning
and statistics, respectively, are two topics very related to matrix factorization.
Both decompose a given matrix in a set of dictionary vectors or latent factors,
respectively.

A fundamental difficulty in the case of low-rank matrix factorization is its non-
uniqueness for R > 1. Given a matrix X with factorization X = ABT, one can
always find an invertible matrix D such that X = ABT = ADD−1BT = ÃB̃T

with Ã = AD and B̃ = BD−T. The lack of (essential) uniqueness prohibits
a meaningful interpretation of the factor vectors. Additional constraints are
typically imposed on A and/or B to achieve (essential) uniqueness. Examples
of constraints are orthogonality, triangularity and nonnegativity, leading
to the singular value decomposition (SVD), LQ or QR decomposition and
nonnegative matrix factorization (NMF), respectively. Although useful in
various applications, these constraints are not suitable for BSS and clustering.
In BSS, independent component analysis (ICA) relies on the assumption of
mutually statistically independent source signals in S [89, 210], while uniform
linear sensor arrays in array processing lead to exponential vectors in M [323]. In
clustering, sparse constraints can be applied on H leading to sparse component
analysis (SCA) [60].

1.3 Multiway data

Vectors and matrices consist of one and two mode(s), respectively. One might
wonder: why would data science, and nature in general, be limited to two
modes? The answer is simple — it is not.
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T =

Figure 1.4: Visualization of a third-order tensor T as a collection of stacked
matrices along the third mode. Each matrix can then consist of movie rating
scores of users given in a specific year, or represent one of the color coordinates
in an RGB-encoded color image.

Data structures Multiway data depend on three or more variables. These
data can be naturally stored in multiway arrays consisting of three or more
modes, which we define as tensors. Tensors are natural generalizations of vectors
and matrices, and the number of modes is defined as its order. Much like a
matrix can be seen as a collection of column vectors, a third-order tensor,
for example, can be seen as a collection of matrices along its third mode, as
illustrated in Figure 1.4. These matrices are defined as the (frontal) slices of
the tensor.

Many different data can be understood as multiway data. Measuring physical
quantities such as temperature or radiation intensity (think of magnetic
resonance imaging (MRI)) along the conventional spatial coordinates readily
generates tensor data. Color image data (with the color space coordinates
as the third mode) and video data (with the time as third mode) are two
types of extensions of gray-scale image data to multiway data. Users typically
provide movie ratings at different time instances, yielding the Netflix rating
tensor with user, movie and time modes [38]. Furthermore, matrices of the
same size depending on a parameter can be stacked into a tensor, e.g., sets of
time-dependent graph adjacency matrices [351], mixture-dependent excitation–
emission matrices [56] or lag-dependent covariance matrices [33]. One may repeat
experiments several times, under varying conditions, with different attributes,
etc. Each condition and attribute then refers to a mode.

Data mining tools Tensors representing multiway data have been around
since the 19th century. A first step in tensor analysis could be the unfolding of
a given tensor to a matrix, after which this matrix is then investigated using
matrix tools. Unfolding is defined as the horizontal or vertical stacking of the
various slices of a tensor, e.g., a tensor of size 10× 10× 10 can be unfolded to
a matrix of size 10× 100. Eigenfaces, for example, first unfolds a given image
to a vector. Hence, given a set of images which can be stacked in a tensor, it
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reshapes this tensor first to a matrix, after which PCA is applied [366].

It easily follows that some structure is obfuscated and that in various applications
the data multiway characteristics is not entirely exploited. For example, it can
be easily seen that video data can be compressed more efficiently by taking into
account the temporal dependency as well. Second, a movie recommendation
system might attain a higher accuracy when exploiting the additional rating
time information. Many of the previously mentioned matrix data mining tools
such as PageRank, prediction systems, compression techniques and PCA have
therefore been extended to the tensor domain leading to for example multilinear
PageRank and multilinear PCA techniques [114, 163].

Tensor decompositions Not surprisingly, many of these extensions are
based on tensor generalizations of matrix factorization techniques. Initiated by
researchers such as Harshman, Tucker, Kruskal, Carroll and Chang, these tensor
decompositions became available from the 70’s on, allowing knowledge inference
in a compelling way [72, 183, 230]. Multilinear algebra encompasses the theory
of tensor tools and tensor decompositions. Rather than just providing extensions
of results from linear algebra, multilinear algebra is fundamentally more rich
compared to linear algebra. This can be evidenced by the various influential
articles and books [84, 177, 223, 229, 233, 324]. Already the concept of rank,
which is well defined in the matrix case, deserves a more subtle discussion in
the tensor case. For example, the rank of a tensor and the multilinear rank
of a tensor are two different concepts, each connected with a different tensor
decomposition.

On the one hand, a rank-1 tensor of order N is defined as the outer product
of N nonzero vectors. If a tensor can be written as a minimal sum of R such
rank-1 terms, its rank is defined as R. Such a decomposition is called the
canonical polyadic decomposition (CPD) [72, 183, 230], illustrated in Figure 1.5.
Interestingly enough, while we have discussed that low-rank matrix factorization
techniques require additional constraints to yield a unique solution, a low-rank
CPD is essentially unique under mild conditions by itself. Essential uniqueness
allows the factor vectors to be determined up to scaling and permutation. It is
thus valid to see factor vectors as the underlying components of the data. For
example, if a tensor consists of stacked excitation–emission matrices of different
mixtures, the factor vectors in the first, second and third mode represent the
excitation spectrum, emission spectrum and concentrations of the different
chemical analytes present in the mixture, respectively [56]. A meaningful
solution of the problem at hand is therefore obtained without needing to impose
additional constraints. Various results on CPD uniqueness have appeared in
the past [134–136, 230, 322].
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T =

c1
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+ . . . +

cR
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Figure 1.5: Visualization of a CPD of a rank-R third-order tensor. In excitation–
emission spectroscopy, each set of vectors ar, br, cr can represent the excitation
spectrum, emission spectrum and concentrations corresponding to a specific
chemical analyte.

T =

W

U
VS

Figure 1.6: Visualization of an MLSVD of a third-order tensor with multilinear
rank smaller than its dimensions. The factor matrices U, V and W represent
the mode-n vector spaces while the different interactions between those spaces
are contained in the core tensor S.

Denoting the row and column vectors of a matrix or tensor as its mode-1
and mode-2 vectors, a tensor can also be described by the spaces spanned by
its mode-n vectors. This yields the multilinear singular value decomposition
(MLSVD) [109, 364], as illustrated in Figure 1.6. The tuple consisting of the
dimensions of these spaces is defined as the multilinear rank of the tensor.
Remarkably, while the dimensions of the row space and column space of a
matrix are equal, the mode-n ranks of a tensor can differ. A tensor can typically
be well approximated by a truncated MLSVD. The core tensor can then be seen
as a compressed version of the original tensor. For fixed dimensions of the core
tensor, the truncated MLSVD might not necessarily yield the most optimal
approximation. The low multilinear rank approximation (LMLRA) might be
better suited [112].

Note that there exist a number of other tensor decompositions as well, such as
the decomposition in multilinear rank-(Lr, Lr, 1) terms [101, 345, 346], the block
term decomposition [103, 104, 113], the tensor train decomposition [286] and
the hierarchical Tucker decomposition [170, 178]. Each of these decompositions
might introduce a different definition for the concept of rank.
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Figure 1.7: Tensorization enables the use of tensor tools on one-way or two-way
data.

Figure 1.8: An example of tensorization by folding or reshaping a matrix to a
tensor, enabling the use of tensor tools on the obtained tensor.

1.4 Crossing the chasm: Tensorization

Let us now recall one of the previous discussions: many matrix tools are available
to analyze matrix data and have also been used to cope with multiway data,
before tensor tools became available.

Throughout the years, powerful properties and features of tensor mining tools
have been revealed. Applying tensor tools obviously requires the availability of
a tensor. One might only have a single vector (such as a time series) or matrix
(such as an adjacency matrix or grayscale image) available. Nevertheless, a
number of methods have appeared in the literature consisting of the application
of tensor tools given only a vector or matrix. These methods first map the
vector or matrix to a tensor before applying a tensor decomposition or other
multiway analysis tool. We refer to this first step as tensorization. It allows the
use of tensor tools on one-way or two-way data, cf. Figure 1.7. A straightforward
example of tensorization is the folding or reshaping of a vector or matrix to a
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tensor, as illustrated in Figure 1.8. A matrix of size 3 × 9, e.g., can then be
tensorized to a tensor of size 3× 3× 3. Note, however, that there are multiple
ways of reshaping a vector or matrix. Given a vector of length 6, for example,
two consecutive segments such as

[
1 2 3

]T and
[
4 5 6

]T can be stacked
in the columns of matrix, or two decimated versions such as

[
1 3 5

]T and[
2 4 6

]T can be stacked:

[
1 2 3 4 5 6

]T

1 4
2 5
3 6

 or

1 2
3 4
5 6

 ,
leading to the techniques of segmentation and decimation, respectively.

Many matrix-related data mining methods such as BSS, BSI and clustering can
strongly benefit from tensorization. As discussed, low-rank matrix factorization
does not readily enable the recovery of the underlying components, while some
tensor decompositions do provide an essentially unique decomposition. By
tensorizing the given matrix using a meaningful tensorization technique and
subsequently decomposing the obtained tensor using readily available tensor
decomposition algorithms, a powerful matrix data mining method can be
obtained. Hence, tensorization can be used in various domains such as signal
processing, graph analysis, machine learning and chemometrics.

Crossing the chasm A startup is a newly established business with
a scalable business model, likely to experience extreme growth1 soon.
Snap(chat), Instagram, Facebook, Apple, Tesla, . . . were all startups at
one point. These firms started by delivering their products to a number
of early adopters who believed in the product. In the startup scene, the
expression crossing the chasm indicates that a product or service is being
bought by a larger market segment, rather than by only a small group of
believers [271].

The expression can also be attributed to tensorization. Vector and matrix
data are not necessarily more common than tensor data, but still more
recognized in scientific and corporate contexts. Rather than only be applied
in the ‘niche’ segment of multiway data, tensorization allows tensor tools
to cross the chasm and to be applied on vector or matrix data as well,
enabling the latter to benefit from powerful mining tools.

1Hence, your favorite bakery or barber is most probably not a startup.
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1.5 Research aims

We provide a number of research aims, each clarified subsequently.

Aim: To provide a comprehensive tensorization overview and to develop
novel tensorization techniques.

The aforementioned reshaping technique is just one of the many tensorization
techniques available in literature. Other techniques use Hankel matrices,
are based on higher-order statistics or consider time–frequency or time–scale
transforms. Tensorization techniques have appeared rather disparately, and
some methods have not even been recognized as tensorization techniques or
have not been considered in a tensor setting.

Aim: Given a tensorization technique, to uncover relations between the
properties of the original data and the properties of the obtained tensor.

Of course, not every combination of mapping and tensor tool is meaningful.
Reshaping a graph adjacency matrix to a tensor and then applying a CPD,
for example, might not be worthwhile. Second, while a tensorization can be
meaningful for one particular type of vector, it is not necessarily suited for
another type of vector. Hence, we have to verify carefully how the tensorization
at hand translates the properties of the given vector or matrix to the properties
of the obtained tensor. For example, the following two connections have been
established earlier:

• An exponential can be mapped to a rank-1 Hankel matrix and, more
generally, a rank-1 Hankel tensor [293, 323]. Indeed, let us for example
rearrange the vector

[
1, z, z2, z3, z4]T in a Hankel matrix of size 3 × 3.

This matrix can be written as the outer product of two nonzero vectors:

[
1, z, z2, z3, z4]T

 1 z z2

z z2 z3

z2 z3 z4

 =

 1
z
z2

 [1 z z2] .
• The fourth-order cumulant, which is a fourth-order tensor, of a set of

mutually statistically independent signals is approximately diagonal [71].

Besides these low-rank and diagonal properties, respectively, there are a number
of other relations available, and many more to be discovered. For example, one
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might wonder when the reshaping of a given vector or matrix admits a specific
tensor decomposition.

Aim: To provide connections between tensorization, tensor properties
and tensor decompositions.

The previously mentioned tensor properties, i.e., low rank and diagonality, allow
an obtained tensor from tensorization to be decomposed. However, there are
tensorization methods which do not readily yield low-rank tensors or diagonal
tensors, but which do enable, after some manipulation, the use of tensor
decompositions. One example is the analytical constant modulus algorithm
(ACMA) [384].

Aim: To provide proof-of-concepts of various tensorization techniques
with a particular focus on BSS.

Tensorization techniques provide little value without a specific objective or
application in mind. As discussed, BSS forms an ideal basis for the application
of tensorization techniques. It is both challenging and interesting to also
investigate underdetermined BSS mixtures. Furthermore, it is worthwhile to
consider other applications dealing with the recovery of underlying components,
such as excitation–emission spectroscopy or graph clustering.

Aim: To provide uniqueness conditions and pay attention to other
working assumptions.

In the case of sampled polynomial source signals in BSS, it can be shown that
the mixing matrix and original signals cannot be recovered. However, even
in this case, there exist tensorization techniques that map the mixtures of
polynomials to tensors with interesting properties. Furthermore, these tensors
even admit specific tensor decompositions. One might wonder why the recovery
of the original polynomials does not succeed. To solve this apparent paradox, we
need to recall that some tensor decompositions, such as a CPD, are essentially
unique under mild conditions. These conditions do not allow polynomials to be
separated.

Aim: To provide ready-to-be-used algorithms suitable for both small-
scale and large-scale analysis.

If a matrix is reshaped to a tensor as in Figure 1.8, both the original matrix and
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obtained tensor have the same number of entries. However, if a vector of length
N is mapped to a tensor of size N ×N ×N , the number of entries in the tensor
significantly exceeds the original number of data points. For large N , one might
not even be able to store this tensor. This is a consequence of the curse of
dimensionality, referring to the phenomenon that the number of tensor entries
increases exponentially with the number of modes [391]. Hence, algorithms are
desired that are able to cope with large (structured) tensors.

On the other hand, the tensorization techniques should still be valuable given
only small vectors or matrices, e.g., in BSS with only a limited number of
samples available. For example, it is well known that higher-order cumulants
suffer from estimation errors [153].

1.6 Outline of the thesis

This brings us to the following chapter-by-chapter outline of the thesis. Chapter 2
can be considered as the glue of the thesis connecting the other chapters, as
illustrated in Figure 1.9.

Chapter 2 contains a comprehensive tensorization overview. We review
techniques which have appeared in the literature such as Hankelization,
higher-order statistics and time–frequency & time–scale techniques [87,
89, 101, 293, 323]. On the other hand, we discuss less-known techniques
such as Löwnerization, the stacking of Hessian or Jacobian matrices
and the collection of monomial relations [124, 139, 339]. We provide
links between different tensorization techniques and connect, for example,
time–frequency methods with segmentation, and higher-order statistics
with mixed discriminants. This allows the transfer of theoretical results
between different techniques; we derive, for example, theoretical low-rank
properties for time–frequency methods based on results we obtained in the
context of segmentation. Furthermore, it is discussed how tensorization
techniques can be applied simultaneously, as has been done for example
in CPA–IPA [116].
Each tensorization technique goes hand in hand with one or more
applications. We discuss BSS and clustering, while we also focus
on parameter estimation and function compression. A large number
of scientific domains are brought to the attention such as machine
learning, graph analysis and signal processing for telecommunications
and biomedical sciences.
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Related to tensorization is tensor recognition. With tensor recognition,
we mean that obtaining a tensor sometimes is equivalent to recognizing
the implicit presence of a tensor. A number of fundamental mathematical
and engineering concepts can very well be formulated using tensor-based
expressions. Multilinear operators such as matrix–matrix multiplication
and determinants seem to have clear links with tensors, as well as
(multivariate) polynomials. While linearization is related to linear
algebra, it follows that function approximations in broader neighborhoods
(using for example higher-order Taylor series) can be explained in a
tensor context. Other topics are connected to tensors as well, such as
global polynomial optimization, multilinear classification and systems of
polynomial equations, among others.

Chapter 3 focuses on a tensorization technique called Löwnerization which is
based on Löwner matrices. The latter have interesting connections with
rational functions. Rational functions can be used to model a variety
of smooth curves and signals with both low- and high-varying regions.
We discuss low-rank properties and structured decompositions of Löwner
matrices.
Furthermore, Löwnerization is applied in the context of BSS. It is discussed
that the separation of a number of rational functions after Löwnerization
reduces to a decomposition in multilinear rank-(Lr, Lr, 1) terms. We
provide uniqueness conditions for this separation, and deliver two different
proof-of-concepts. First, Löwnerization is used to separate maternal
and fetal ECG signals. Second, it is applied in the context of chemical
analyte separation. While classical tensor-based methods require multiple
mixtures to separate chemical analytes, we show how a single mixture is
sufficient to uncover the underlying components using Löwnerization.

Chapter 4 discusses segmentation in the context of signal compression. In
many large-scale applications, signals often admit a compact representation
which can be obtained using segmentation and tensor decompositions. We
show under which conditions this compactness is available. We provide
connections with Hankelization and show that next to the signals that
admit to a low-rank tensor decomposition after Hankelization, periodic
signals also admit a compact representation, among other types of signals.
Segmentation is also used to separate signals. Besides applying the
assumption of compact representation on the source level, it can also be
applied on the mixing level, for example in the case of a large number
of densely spaced sensors. Higher-order segmentation can provide even
a more compact representation which can be seen as a blessing of the
curse of dimensionality, and segmentation can be applied on both levels
simultaneously. The latter two concepts yield two novel types of tensor
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decomposition, namely a (rank-Lr ⊗ vector) decomposition and a so-called
butterfly decomposition, respectively. The technique is illustrated in two
case studies, namely in the context of fetal ECG extraction and in the
context of both far- and near-field direction of arrival estimation in array
processing.

Chapter 5 provides new algorithms for the separation of multi-modulus signals.
The analytical constant modulus algorithm (ACMA) is a well-known
algorithm in telecommunications, able to separate constant modulus
signals. Each sample s of such a complex-valued signal admits to the
expression |s|2 = ss? = c2, with c the constant modulus of the signal.
Both 4-QAM and binary phase shift keying (BPSK) signals are constant
modulus signals. However, the assumption of constant modulus can
be too restrictive for a large set of signals. We propose a variant of
the method to enable the separation of multi-modulus signals as well.
Multi-modulus signals, such as 16-QAM, can be seen as generalizations of
constant modulus signals. They allow the sample moduli to be equal to
two or more constant moduli rather than only a single constant modulus.
The proposed method transforms the problem of multi-modulus separation
algebraically into a set of coupled tensor decompositions. An exact solution
is guaranteed by a matrix eigenvalue decomposition in the noiseless case.
The standard method requires a minimum number of available samples. A
reduction of this bound is obtained by generalizing a previously developed
rank-1 detection procedure [70, 99]. This generalization allows the recovery
of Kronecker-structured vectors from a given space spanned by both
Kronecker-structured vectors and arbitrary vectors.
We extensively compare our method against other methods such as ICA,
ACMA and other multi-modulus algorithms [316, 317]. Besides in an
instantaneous BSS context, we also showcase our method in a convolutive
BSI context.

Chapter 6 groups recent developments in numerical optimization-based com-
putations of tensor decompositions that have formed the basis of the
third major release of Tensorlab, of which the candidate was one of the
developers. In Tensorlab 3.0, a framework of tensorization techniques
is introduced. Furthermore, it is explained how the structure of tensor
decompositions can be exploited to obtain both fast and well-converging
algorithms, and how coupled factorizations and structured factors can
be dealt with. The latter two concepts form the basis of structured data
fusion (SDF), which is a framework within Tensorlab allowing the rapid
prototyping of analysis and knowledge discovery in one or more tensors.
A tough challenge is how to analyze large-scale datasets, corresponding to
tensors with large dimensions or with a large number of modes. The use
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of incomplete tensors and randomized block sampling are two possible
approaches [388, 391, 393], the latter deliberately dealing with only a
small random set of tensor entries. On the other hand, tensorization of
a vector matrix can introduce redundancy into the tensorized form. It
can be worthwhile to exploit this structure and to only deal with efficient
representations of the tensor. With the presented algorithms, we arrive at
implicit tensorization. The latter describes the process of tensorization
combined with tensor decompositions without the explicit construction
of a tensor. The benefits of multilinear algebra are retained while some
disadvantages, such as the curse of dimensionality, are avoided.

Chapter 7 proposes a novel method for nonnegative matrix factorization
(NMF) based on nonnegative polynomials. We will show how a nonnegative
polynomial in a finite interval can be formulated using a closed-form
expression based on a sum of squares [237]. As polynomials can
approximate a wide range of shapes, they can be well suited to model the
factor vectors in NMF. This results in an optimization problem without
external nonnegativity constraints (which can be solved using conventional
optimization techniques), as well as in a significant reduction of the number
of variables. Furthermore, the polynomial-based model may realize an
intrinsic noise reduction and typically yields smooth results without the
need of external smoothing constraints.
In large-scale tensor decompositions, a widely used approach is to first
apply a compression using for example an LMLRA. In the matrix case, a
compression can be obtained with an SVD. However, in an NMF context,
an SVD destroys the nonnegativity in both the data and the model. We
show how polynomial-based NMF does allow an orthogonal compression
without sacrificing accuracy. This enables the technique to scale well to
large matrices. The polynomial-based NMF technique is illustrated with
applications in hyperspectral imaging and chemical shift brain imaging.

Chapter 8 finally summarizes the findings of the thesis and suggests directions
for prospective work.
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Chapter 2

The concept of tensorization

Abstract Multiway arrays, also known as tensors, are ubiquitous in
domains such as data mining and signal processing. The powerful dimension
reduction properties and uniqueness properties of tensor tools, to name a
few, have seen a wide applicability with respect to, e.g., component retrieval
and compression. Still, a tensor is required to enable the use of tensor tools.
While often only vector or matrix data is available, one can first map the
vector or matrix data to a tensor. Various techniques have made use of such
a tensorization step, whether or not knowingly. Rather than focusing on
tensor tools, we will zoom in on this concept of tensorization. We present
an overview of various tensorization techniques and show how tensorization
is fundamental in applications such as independent component analysis,
neural network training, time–frequency analysis and graph clustering.
Furthermore, we illustrate how conceptual problems from engineering and
mathematics can be well expressed in a tensor-based manner, such as the
approximation of non-linear functions with polynomials, matrix–matrix
multiplication and systems of polynomial equations.

Reference This chapter is a slightly adapted version of the article [120].
The candidate performed the research and wrote the article under the
guidance of the coauthor.
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2.1 Introduction

Tensor tools have been applied widely across various domains such as scientific
computing, signal and image processing, machine learning and statistics. Tensors
are generalizations of vectors and matrices and provide natural structures to
store and represent multiway data. Multilinear algebra forms the mathematical
backbone of tensors and tensor tools, encompassing far more rich concepts
compared to its linear counterpart. This has allowed multilinear tensor models
to surpass the flat-view bilinear matrix models and has enabled novel applications
dealing with processes such as component retrieval, compression, classification
and prediction. While researchers such as Hitchcock [190, 191] and Cattell
[73, 74] have provided the foundations of multilinear algebra in the early 20th
century, the spark in interest only came from the 60’s on thanks to results
attributed to Tucker [364], Harshman [183, 184], Carroll and Chang [72] and
Kruskal [230] which mainly originated from the domains of psychometrics and
chemometrics.

Various influential survey papers and books have appeared discussing models,
algorithms and applications of tensor tools, e.g., [84, 223, 229, 324, 328]. A large
class of tensor tools consists of tensor decompositions such as the canonical
polyadic decomposition (CPD), the tensor train decomposition (TT) and the
multilinear singular value decomposition (MLSVD) or Tucker decomposition.
These tensor tools obviously require a tensor. Often, a tensor is readily available,
whether in a natural way (e.g., a physical quantity measured along the three
common spatial coordinates) or by experiment design (e.g., by repeating an
experiment several times and by stacking the obtained data matrices). In some
cases, however, only a single vector or matrix is available. Still, an increasing
number of techniques from various scientific domains are appearing in which
tensor tools are applied given only vector or matrix data. These techniques
have been used to separate independent signals [33, 71] or constant modulus
signals [384] in signal processing, to identify graph clusters in graph analysis
[40], to assign topics to documents in topic modeling [18, 193] and to train
neural networks in machine learning [88, 204], to name only a few examples. In
each of these applications, only a single vector or matrix is available. Instead of
solely being adopted by multiway data, the power and flexibility of tensor tools
have seen their way to one-way and two-way data as well.

One might wonder how this apparent paradox can be explained and how tensor
tools can be applied given only vector or matrix data. Fundamental in these
techniques is the paradigm of mapping the given vector or matrix data to
a tensor first, yielding a tensorization step in which the lower-order data is
tensorized to a tensor. This tensorization procedure is often not well described
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and sometimes not even recognized. Tensorization effectively translates the
assumed vector or matrix model to a multiway model. The obtained tensor
typically admits properties such as low-rankness or diagonality for specific sets
of vectors or matrices. Various tensor tools build on such tensor properties.
For example, given a set of mutually statistically independent signals, the
corresponding fourth-order cumulant is diagonal which allows the use of the
CPD in independent component analysis (ICA) [71]. Hence, an investigation of
the applied tensorization technique is crucial to be able to validate the use of
tensor tools in the subsequent step.

In this overview chapter, we provide a tensorization framework and we survey
different tensorization techniques. The goal consists of presenting an insightful
view on the concept of tensorization, illustrating the power of tensor tools given
only vector or matrix data. Results regarding tensorization have appeared
rather disparately in the literature. We will connect different tensorization
techniques and show that theoretical results and algorithms can be interchanged
between these techniques and, thereby, between scientific domains. For example,
as we will see, time–frequency and time–scale representations [87, 97, 265] from
signal analysis on the one hand, and segmentation from array processing and
function approximation [51, 214] on the other hand, have common grounds
such that results from the latter can be passed to the former. Throughout
the chapter, we will show how the different techniques can be used in various
applications such as deterministic blind signal separation, topic modeling, graph
clustering, independent component analysis and neural network training.

Together with tensor construction often comes the recognition of a tensor. With
tensor recognition, we mean that obtaining a tensor sometimes boils down to
recognizing that a problem already involves a tensor. The tensor may be there
only implicitly, and seeing it is not always obvious. We will see that multilinear
functions and polynomials can be uniquely represented by a tensor. It follows
that a number of fundamental mathematical and engineering concepts can
very well be formulated using tensor-based expressions. For example, while
the concept of linearization is related to linear algebra, the polynomial-based
approximation of a non-linear function corresponds to multilinear algebra.
Furthermore, topics such as matrix–matrix multiplication, global polynomial
optimization and systems of polynomial equations all have clear links with
tensors, as will be discussed. The link between multilinear functions and tensors
even allows us to develop a framework based on a process called polarization
from which new tensorization techniques can originate.

The chapter is organized as follows. In Section 2.2, a number of preliminaries
are provided. Section 2.3 then discusses two common ways how measurements
or evaluations readily yield multiway data which can be represented by a tensor.
It is clear that multiway data can often be seen as evaluations of multivariate
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Figure 2.1: Organization of the chapter regarding the appearance of tensors.

functions; the latter are discussed in Section 2.4. Together with function
evaluation, also function differentiation is covered. Instead of considering tensors
modeling multiway data, Section 2.5 considers tensors representing objects or
operators such as multilinear functions and polynomials. The two latter sections
form the theoretical spine of tensorization techniques, which are reviewed
in Sections 2.6 and 2.7. A distinction is made between those tensorization
techniques that are able to map a single vector to a tensor (Section 2.6), and
those techniques that map a given matrix to a tensor (Section 2.7). Section 2.8
then provides further discussions and pointers to future work. Figure 2.1
illustrates the organization of the chapter.

2.2 Preliminaries on (multi)linear algebra and
multiway analysis

Basic notations are given in Section 2.2.1 while preliminaries on functions are
discussed in Section 2.2.2. Matrix factorizations and tensor decompositions are
then covered in Sections 2.2.3 and 2.2.4, respectively.

2.2.1 Basic notation and matrix/tensor operations

We will denote scalars, vectors, matrices and tensors by lower case (e.g., a),
bold lower case (e.g., a), bold upper case (e.g., A) and calligraphic (e.g., A)
letters, respectively. Functions are denoted by underlined letters, e.g., a scalar
function f and vector function f . An Nth-order tensor A ∈ KI1×I2×···×IN is
a multiway array with numerical values ai1i2···iN = A(i1, i2, . . . , iN ), with K
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denoting either R or C. The mode-n vectors of A are constructed by fixing
all but one index. The ith column of a matrix A is denoted with ai. Sets
are indexed by superscripts1 within parentheses, e.g.,

{
A(n)}N

n=1. The mode-n
unfolding of A is a matrix A(n) with the mode-n vectors as its columns. The
vectorization operator vec (A) stacks all mode-1 vectors into a column vector.
On the other hand, a vector a ∈ KN or matrix A ∈ KM×N can also be folded
to a tensor A ∈ KI1×...ID with N =

∏D
d=1 Id and MN =

∏D
d=1 Id, respectively.

The complex conjugate, transpose, conjugated transpose, inverse, transposed
inverse and pseudo-inverse are denoted by ·?, ·T, ·H, ·−1, ·−T and ·†, respectively.
r(A) returns the rank of A while det(A) returns the determinant of a square
matrix A. The column-wise and row-wise concatenation of vectors and/or
matrices A and B is defined by X =

[
A B

]
and X =

[
A; B

]
, respectively,

with the latter being equal to X =
[
AT BT

]T. The vectors 1N and 0N denote
the N × 1 vectors of all ones and zeros, respectively. A similar definition holds
for the matrices 1M×N and 0M×N of size M ×N . IN is defined as the identity
matrix of size N ×N . The canonical basis vector ei contains a one in the ith
entry and zero elsewhere.

The inner product between two tensors A and B is denoted by 〈A,B〉 =
vec (B)Hvec (A). The tensor product or outer product of two tensors A ∈
KI1×···×IM and B ∈ KJ1×···×JN is the tensor C = A ⊗ B ∈ KI1×···×IM×J1×···×JN

with entries ci1...iM j1...jN = ai1...iM bj1...jN for all indices. The Hadamard or
element-wise product and the Kronecker, column-wise Khatri–Rao and row-wise
Khatri–Rao products are denoted with ∗, ⊗, � and �T, respectively. The
columns of A�B (resp., rows of A�TB) are the pairwise Kronecker products
of the columns (resp., rows) of A and B. Note that the outer and Kronecker
product are related through a vectorization: vec (a ⊗ b) = b⊗ a. The mode-n
product of a tensor A ∈ KI1×···IN and a matrix B ∈ KJn×In results in the tensor
C = A ·n B ∈ KI1×···×In−1×Jn×In+1×···×IN with entries ci1...in−1jnin+1...iN =∑In
in=1 ai1···iN bjnin . It can be seen that C is equal to a folded version of BA(n).

A mode-n contraction or tensor–vector product of a tensor A ∈ KI1×···×IN and
a vector b ∈ KIn is defined as A ·n bT ∈ KI1×···In−1×In+1×···×IN .

2.2.2 Preliminaries on functions

A scalar(-valued) univariate function, e.g., f(u) = 2u, maps a single scalar
variable to another scalar. Multivariate functions depend on several variables
which can be scalars, vectors or tensors such as f(u, v) = u + v or f(u,v) =

1Superscripts typically indicate a set of objects of different types (such as factor matrices
with different dimensions), while subscripts typically indicate a set of objects of similar types
which can be naturally stacked (such as vectors of equal dimensions).
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〈u,v〉 ∈ K. On the other hand, functions can also have vectors in their range
rather than scalars, such as f(u) =

[
1, u, . . . , uI

]T ∈ KI . Further generalizations
consist of matrix(-valued) and tensor(-valued) functions2. Vector, matrix and
tensor functions can be seen as the natural (higher-order) stacking of scalar
functions. Tensor-valued multivariate functions then merge both extensions,
such as the outer product function F(u,v,w) = u ⊗ v ⊗ w.

2.2.3 Matrix factorization

Let us consider the following bilinear matrix factorization writing X ∈ KN×K
as a sum of R outer products of nonzero factor vectors:

X = ABT =
∑R

r=1
ar ⊗ br, (2.1)

with A ∈ KN×R and B ∈ KK×R. The minimal number of rank-1 terms needed
to compose X is called the rank of X.

The decomposition in (2.1) is not unique as one can find a nonsingular matrix
Z ∈ KR×R such that ABT = AZZ−1BT = ÃB̃T with Ã = AZ and B̃ =
BZ−T. Essential uniqueness implies that the factor vectors can be uniquely
determined up to scaling and permutation. Unless R = 1, the decomposition
in (2.1) is only essentially unique if, additionally, constraints on A and/or
B are imposed. Well-known constraints include orthogonality, triangularity,
Vandermonde and nonnegativity, which — whether individually or combined —
form the basis of many fundamental factorizations such as the singular value
decomposition (SVD), QR decomposition, Vandermonde decomposition and
non-negative matrix factorization (NMF).

Insert 1 — Component recovery in applications: The bilinear model
in (2.1) forms the basis of various (generic) applications. In some, such as in
matrix completion or compression, the unique recovery of the factor vectors
is of subordinate importance to the approximation accuracy [66]. In others,
this recovery is critical:

• In blind signal separation, for example, the goal is to recover the source
signals in A and/or the mixing matrix B given only the observed signals
in X. Additional assumptions include mutual independence of the source
signals, or Vandermonde structure of the mixing matrix when dealing with
uniform linear arrays.

2The terminology should not be confused with the popular class of matrix functions such
as the matrix exponential [165]. According to the terminology in this chapter, this would be
called a matrix-valued function with a matrix-valued variable.
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• The goal of (hard) clustering consists of the allocation of objects into
different groups or clusters [201]. In machine learning, these objects and
clusters are typically represented by feature vectors and cluster vectors,
respectively. By stacking the feature vectors in the rows of the matrix
X and assuming zero-variance clusters, one can write X = ABT. The
columns of B consist of the cluster vectors while each row of A is a
canonical basis vector.

• In spectroscopy, X is an excitation–emission matrix of a chemical mixture.
Each factor vector indicates the (scaled) excitation or emission spectrum
of a single chemical component.

Each source signal, cluster or chemical component contributes a rank-1
term to the matrix X. These applications, among others, are covered in
the remainder of this chapter under the generic notion of unique matrix
factorization. Tensor-based methods seem well suited for this problem due
to their interesting properties, as will be discussed.

2.2.4 (Coupled) Tensor decompositions

We briefly recall a number of basic concepts from multilinear algebra such as
(multilinear) rank and tensor decompositions. For more details, we refer the
reader to the provided pointers or to accessible survey papers such as [84, 223,
324].

Rank and decomposition in rank-1 terms

An Nth-order tensor T has rank one if it can be written as the outer product
of N nonzero vectors. The (canonical) polyadic decomposition (CPD) writes
T ∈ KI1×I2×···×IN as a (minimal) sum of R rank-1 tensors:

T =
∑R

r=1
u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r

,
r
U(1),U(2), . . . ,U(N)

z
. (2.2)

If each rank-1 term is weighted with a factor cr, the notation
q
c; U(1), . . . ,U(N)y

is used.
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Generalizing the definition of matrix rank, the rank of T is defined as the
minimal number of rank-1 terms needed to compose T . Unlike in the matrix
case, the rank of a tensor can exceed its dimensions. A tensor of size 3× 3× 3,
for example, can have rank 4.

The CPD in (2.2) is essentially unique if the factor vectors can be recovered
up to permutation of the rank-1 terms, and up to scaling and counterscaling of
the factors in the same rank-1 term. In the tensor case, essential uniqueness is
expected under only mild conditions without needing to impose constraints on
the factor matrices. These conditions can be deterministic (given a particular set
of factor matrices) or generic (assuming factor entries drawn from a continuous
probability density function); a concise tutorial is given in [324, Section IV].
Kruskal’s condition is a well-known deterministic uniqueness condition and states
that the rank-R CPD T = JA,B,CK ∈ KI×J×K with A ∈ KI×R, B ∈ KJ×R
and C ∈ KK×R is essentially unique if kA + kB + kC ≥ 2R+ 2 [230], with the
Kruskal rank kM of a matrix M defined as the largest integer k such that any
k columns of M are linearly independent. On the other hand, the following is
an example of a generic uniqueness condition of a rank-R third-order tensor
T ∈ KI×J×K [79]:3

R ≤
⌈

IJK

I + J +K − 2

⌉
− 1 and IJK ≤ 15000,

with dxe denoting the smallest integer not less than x. In the case of I = J =
K = 10, the rank R can be up to 35 for generic uniqueness. Other deterministic
and generic conditions (and order-N generalizations) have been developed in
[134–136, 322, 345] and [78, 131, 348], respectively.

This essential uniqueness is only one of the foundations of the success of tensor-
based methods and is fundamentally different from essential uniqueness in the
matrix case. It allows unique signal separation and a meaningful extraction of
features or components, among others. Furthermore, unlike in the matrix case,
we have seen that the rank of a tensor can exceed its dimensions. This allows
for example the recovery of source signals in an underdetermined setting, i.e.,
when there are fewer observed signals than source signals. Both aforementioned
examples of uniqueness conditions are rather mild, meaning that they are
realistic working assumptions in applications.

Let us also briefly consider simultaneous matrix diagonalization. Given a set
of K matrices Xk ∈ KI×J , the matrices A ∈ KI×R,B ∈ KJ×R are then found

3While expected to hold for larger number of entries IJK as well, the condition has only
been verified numerically up to 15000 entries.
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such that

X1 = AΛ1BT,

...

XK = AΛKBT,

with diagonal matrices Λk ∈ KR×R. Let Xk be the kth slice of a tensor
X ∈ KI×J×K . It can be seen that the simultaneous matrix diagonalization
problem is equivalent with finding the CPD X = JA,B,CK with the diagonals
of the matrices Λ1, . . . ,ΛK stacked in the rows of C ∈ KK×R. Hence, it
is worthwhile to interpret simultaneous matrix diagonalization problems and
techniques (such as [33, 71, 175, 384]) in a tensor-based setting, from which
algorithms and uniqueness/identifiability conditions are readily available.

Multilinear rank, low multilinear rank decomposition and block
term decomposition

The mode-n rank of a tensor T ∈ KI1×I2×···×IN is defined as the rank of the
mode-n unfolding T(n). The multilinear rank of T is then defined as the tuple of
mode-n rank values. Unlike in the matrix case, the mode-n rank values can differ
between modes. A multilinear singular value decomposition (MLSVD) writes a
multilinear rank-(R1, R2, . . . , RN ) tensor T as the tensor-matrix product of an
ordered all-orthogonal core tensor S ∈ CR1×R2×···×RN with orthogonal factor
matrices U(n) ∈ KIn×Rn for 1 ≤ n ≤ N . In practice, a tensor can often be well
approximated by a truncated MLSVD with small core dimensions Rn. However,
for fixed Rn, the low multilinear rank approximation (LMLRA) might yield
a better approximation [112]. Because of these properties, the LMLRA and
MLSVD are popular for compression and denoising purposes [114, 326].

Block term decomposition, decomposition in multilinear
rank-(Lr, Lr, 1) terms and other tools

A block term decomposition (BTD) writes a tensor as a sum of R low multilinear
rank terms [103, 104, 113]. For a third-order tensor T ∈ KI×J×K , we have

T =
R∑
r=1
G(r) ·1 A(r) ·2 B(r) ·3 C(r),

with G(r) ∈ KLr×Mr×NR , A(r) ∈ KI×Lr , B(r) ∈ KJ×Mr and C(r) ∈ KK×Nr .
Each term has multilinear rank-(Lr,Mr, Nr). A special case is the BTD in
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multilinear rank-(Lr, Lr, 1) terms [101], writing T as:

T =
R∑
r=1

(
A(r)B(r)T

)
⊗ cr.

These terms are more general than rank-1 terms in a CPD. Nevertheless, it has
been shown that the BTD in multilinear rank-(Lr, Lr, 1) terms is still unique
under mild conditions [101, 345].

A decomposition in (rank-Lr ⊗ rank-Mr) terms writes a tensor T as a sum of R
terms, each consisting of the outer product of a rank-Lr tensor and a rank-Mr

tensor [51].

The tensor train (TT) decomposition represents a higher-order tensor as a set of
matrices and third-order tensors [286]. It is a particular type of tensor network
[283], as well as the hierarchical Tucker (hT) decomposition [170, 177].

Structured and coupled tensor decompositions

Structured tensor decompositions impose additional constraints or structure on
the factor matrices, such as orthogonality, nonnegativity or Hankel structure
[333]. These constraints can implement application-dependent prior knowledge.
Although typically not necessary for essential uniqueness for sufficiently low
rank, they can enforce uniqueness even if the rank significantly exceeds the
tensor dimensions [337]. Furthermore, exploiting structure can be beneficial for
interpretability, well-posedness and/or accuracy.

Coupled tensor decompositions consider the decomposition of a set of tensors
with coupled/shared factor matrices. They provide necessary tools within
the concept of data fusion [6, 232, 333]. For example, given two datasets
in the form of third-order tensors T (1) and T (2), the goal could be to find
matrices U(1), . . . ,U(5) such that T (1) =

q
U(1),U(2),U(5)y and T (2) =q

U(3),U(4),U(5)y with a coupled factor matrix U(5) in the third mode. Relaxed
uniqueness conditions can be one of the motivations for the use of coupled
decompositions. Algorithms and uniqueness results can be found in [6, 340,
407] for coupled CPDs (cCPDs) and in [345, 346] for the coupled decomposition
in multilinear rank-(Lr, Lr, 1) terms, among others. A general coupling model
considering different types of tensor decompositions can be found in [333].
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Tensor decomposition algorithms

The typical algorithms are either algebraic or optimization-based. Examples
of the former class build on (generalized) matrix eigenvalue decompositions
(GEVD) and can be computed with a polynomial time complexity, e.g., see
[99, 130, 136, 242, 312] for the CPD case. If their working conditions for
exact decompositions are satisfied, the algebraic algorithms are guaranteed to
return exact factors. In the inexact case, e.g., in the presence of noise, they
are suboptimal but they can provide good starting values for optimization-
based algorithms. Algorithms of the latter class are based on, e.g., alternating
optimization techniques, all-at-once methods or stochastic gradient approaches.
These algorithms try to minimize the differences between the given tensor and
the purported model. Examples for the CPD case are [72, 183, 297] and [8, 332]
and [393], respectively. Various toolboxes are available such as Tensorlab [392],
the N -way toolbox [20] and the Tensor Toolbox [28], among others.

2.3 Multiway experiment design

Throughout the years, many powerful tensor tools have been developed to cope
with the inherent multiway character of datasets. The acquisition of multiway
datasets is an important first step before tensor tools can be applied. Frequently,
as will be discussed in this section, experiments readily generate tensor data. In
other cases, experiments only yield a single data vector or data matrix. Using
tensorization, which will be covered in the remainder of this chapter, this vector
or matrix data are then transformed to tensors outside of the data creation
process. This is illustrated in Figure 2.2.

Some data obtained from experiments have a natural multiway character. For
example, measuring physical quantities such as temperature, volumetric mass
density or radiation intensity (think of magnetic resonance imaging (MRI))
along the conventional spatial coordinates readily generates tensor data [410].
A physical quantity of a (chemical) mixture can also be expressed in a tensor of
which the modes correspond to the concentrations of the individual components
[391]. As will be discussed in Section 2.4, such datasets can be seen as evaluated
scalar multivariate functions [171, 177, 214], e.g., f(x, y, z) for tensors with
three spatial modes.

Likewise, the entry at position (i, j, k) of a tensor can indicate, for example,
whether subjects i, j and k participated in the same social network discussion
[7], giving rise to multiway relational data. Given N objects, each entry of a
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third-order similarity tensor of dimensions N ×N ×N represents the similarity
between three of those objects.

In the previous examples, the modes share a similar meaning. However, this
is not necessary. While a grayscale image can be associated with a matrix,
a color image can be perceived as tensor data when stacking the coordinates
in the color coding space (such as RGB or CMYK) along a third mode [255,
409]. The first two modes then correspond to the spatial coordinates of the
image. Hyperspectral imaging extends color imaging by collecting many more
measurements along the third spectral mode [76, 262]. Video data is a natural
extension of image data, including a time mode in addition to the pixel and
spectral modes [219, 261].

Sometimes one deliberately includes an additional variable in the data creation,
allowing for example the creation of tensor data when otherwise only matrix
data would be available. One may think of this as tensorization during data
acquisition. Incorporating the time variable is a straightforward choice: let
an experiment yield matrix data, we can repeat the experiment at various
time instances and stack the snapshots in a third-order tensor. Ratings of
different users for different movies yield matrix data in movie recommendation
systems, while the well-known Netflix dataset additionally includes the rating
date yielding a third-order tensor [38]. Other examples can be found, e.g.,
in social media analysis by taking the time mode into account from e-mail
traffic data [7], in food science by collecting flavor release data [287] and in
chemometrics by considering the retention time in chromatography [58, 328].

In addition to or besides the temporal diversity, one often exploits the spatial
diversity in sensor array processing by providing each receiver with a sensor
array rather than a single sensor [323] or in biomedical signal processing by using
multiple channels [94, 211]. Experiments can be extended from single-sample or
single-subject to multi-sample or multi-subject, e.g., in fluorescence spectroscopy
[19, 57], biomedical signal processing [117], face recognition systems [366, 378]
and phonetic analysis [183]4. Tensor faces generalizes standard eigenfaces
by incorporating different illuminations, poses and expressions [379]. More
generally, one may repeat experiments several times, under varying conditions,
with different attributes, etc.

Including additional variables in the measurement process should not be confused
with incorporating multiway properties in matrix data. For example, in
telecommunications, a unique frequency channel or spreading code is allocated
to each source signal. The measured data are strictly speaking still matrix data
in function of receiver and time. By model construction, one can acknowledge
the multiway character and tensorize the matrix data to a third-order tensor

4Note that one of the earliest reported multiway datasets can be found in [183].
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Measurements
or evaluations

Application of
tensor tools

Tensorization
Vector or

matrix data

Tensor data by
experiment design

Natural
tensor data

Tensorized
data

Figure 2.2: Measurements and evaluations from experiments or simulations
often readily generate tensor data, which can be processed using various tensor
tools. Furthermore, tensor data can be obtained as well by experiment design
using additional variables in the data creation process. If only vector/matrix
data are available, one can consider an additional tensorization step. The latter
concept is the main focus of this paper.

using folding or rearranging (also known as segmentation) with the spectral
(resp., spreading) diversity resulting in a third mode [206, 325]. This will be
further discussed in Section 2.6.2.

2.4 Functions and derivatives

Various types of multiway data originate from the evaluation of a multivariate
function. An evaluation may yield vectors, matrices or tensors of which the order
and dimensions depend on the type of function and the type of evaluation used.
For example, the evaluation of a tensor-valued function in a single point readily
generates a tensor. In Sections 2.4.1 and 2.4.2, we discuss the evaluation of
scalar functions, and vector-, matrix- and tensor-valued functions, respectively.
In Section 2.4.3, the concept of higher-order derivatives is investigated as a
means of increasing the order and, as such, as a tensorization technique. The
fundamentals provided in this section form the basis of many tensorization
techniques discussed in Sections 2.6 and 2.7.

2.4.1 Evaluation of scalar multivariate functions

We make the distinction between scalar-valued variables in Section 2.4.1 and
vector-valued variables in Section 2.4.1.
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Scalar functions in scalar-valued variables

Let a tensor F ∈ R100×100×100 contain temperature data in various locations in a
cuboid-shaped room, with fijk indicating the temperature at spatial coordinates
(xi, yj , zk) for 1 ≤ i, j, k ≤ 100. It is obvious that the tensor is an evaluated or
discretized form of the scalar continuous function f(x, y, z).

More generally, let us consider the evaluation of the function f(u(1), . . . , u(D))
in the Cartesian product set {x(1)

1 , . . . , x
(1)
I1
} × · · · × {x(D)

1 , . . . , x
(D)
ID
}, yielding

the order-D tensor F ∈ KI1×I2×···×ID with entries

fi1i2···iD = f(x(1)
i1
, x

(2)
i2
, . . . , x

(D)
ID

)

for all indices [177]. Some multiway datasets mentioned in Section 2.3 can be
seen as originating from multivariate functions. An alternative notation is f(u)
with u ∈ KD. We will use both notations throughout this chapter, depending
on the context.

Multivariate functions of particular interest are those that are multiplicatively
separable in their arguments, i.e., functions that can be written as

f(u(1), . . . , u(D)) =
D∏
d=1

g(d)(u(d)),

in which g(d)(u) are unknown univariate functions. The function f(u(1), . . . , u(D))
corresponds to a rank-1 tensor F after evaluation, as F = g(1) ⊗ g(2) ⊗ · · ·⊗ g(D)

with g(d)
id

= g(d)(x(d)
id

). An example is the exponential of a linear form:

f(u(1), . . . , u(D)) = exp(
D∑
d=1

adu
(d)) =

D∏
d=1

exp(adu(d)).

Of course, u(d) can be substituted by some univariate function h(u(d)) such
as (u(d) − bi)2 in the case of Gaussians. The constant ad then determines the
inverse of the variance.

It follows that if a multivariate function f can be written as a sum of R separable
functions [44, 45], the evaluated tensor F admits a (C)PD with R rank-1 terms.
An example is the function f = sin(

∑D
d=1 u

(d)) [44]. Using trigonometric
identities, it may seem that R = 2D−1 terms are needed. However, it has been
proven using multilinear algebra that R = D is sufficient [270].



FUNCTIONS AND DERIVATIVES 33

Scalar functions in vector-valued variables

The scalar function f(u(1), . . . ,u(D)) in vector variables u(d) ∈ KNd yields a
I1 × · · · × ID tensor of order D after evaluation in the Cartesian product set
{x(1)

1 , . . . ,x(1)
I1
} × · · · × {x(D)

1 , . . . ,x(D)
ID
} given Id values for each variable u(d).

Let us now discuss an interesting variant where the dimensions of u(1), . . . ,u(D)

are equal, i.e., N1, . . . , ND = N . We consider a given set of I data vectors
x1, . . . ,xI , and stack the results from evaluating f in all possibleD-combinations
with repetition. An order-D tensor F ∈ KI××···×I is then obtained with for all
indices

fi1i2···iD = f(xi1 ,xi2 , . . . ,xiD ).

This is equivalent to the evaluation of f in the symmetric Cartesian product set
{x1, . . . ,xI} × · · · × {x1, . . . ,xI}. The tensor F is symmetric if f is symmetric
in its variables. Given only a single set of vectors x1, . . . ,xI , we have effectively
constructed a tensor F . As we will see, each tensorization technique in
Section 2.7 makes use of such a construction.

By way of illustration, a similarity matrix is obtained from a set of objects or
data vectors (such as feature vectors) and a similarity function f(u(1),u(2))
(such as the cosine or Gaussian similarity functions), by stacking the similarities
f(xi,xj) for varying i and j and, hence, by evaluating f in the symmetric
Cartesian product set. A higher-order similarity tensor then originates from a
function f(u(1), . . . ,u(D)).

2.4.2 Evaluation of vector-, matrix- and tensor-valued
multivariate functions

It is obvious that a tensor function F(u(1), . . . ,u(D)) ∈ KJ1×···×JE readily
yields a tensor F ∈ KJ1×···×JE when evaluating F in a single point, i.e., a
single choice of values for u(1), . . . ,u(D). Furthermore, given a set of I vectors
x1, . . . ,xI , let us construct the symmetric Cartesian product set {x1, . . . ,xI}×
· · ·×{x1, . . . ,xI} and assume N1, . . . , ND = N . Then, one can stack the results
from evaluating F in this set in a J1 × · · · × JE × I × · · · × I tensor of order
E +D.

A first special case is the matrix function F(u) ∈ KJ1×J2 . Such a function
corresponds to the mapping of a vector u to a matrix. Stacking the matrices
obtained by evaluating F(u) in a given set of vectors x1, . . . ,xI yields a third-
order tensor FJ1×J2×I . Examples will be provided in Section 2.6.
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Second, the vector function f(u(1),u(2)) ∈ KJ can yield a third-order tensor
F ∈ KJ×I×I as well, after stacking the vectors obtained from evaluating f in
the Cartesian product set {x1, . . . ,xI} × {x1, . . . ,xI}. Alternatively, let us
assume the function f can be parametrized by a set of J parameters ρj and
a scalar function f(u(1),u(2), ρ) such that f

j
(u(1),u(2)) = f(u(1),u(2), ρj) for

1 ≤ j ≤ J . Evaluating f in the Cartesian product set {x1, . . . ,xI}×{x1, . . . ,xI}
for a particular choice of ρ yields a matrix of size I×I. By stacking the matrices
corresponding to the different values ρ1, . . . , ρJ , the same third-order tensor
F of size J × I × I is obtained. In Section 2.7.1, a number of tensorization
techniques related to this type of evaluation are discussed.

Insert 2 — Compound matrix: Let us consider the function F(u,v) =
uvT−vuT ∈ KJ×J with u,v ∈ KJ . Given a set of I vectors x1, . . . ,xI ∈ KJ ,
a fourth-order tensor FJ×J×I×I can be constructed by evaluating F in the
Cartesian product set {x1, . . . ,xI} × {x1, . . . ,xI}. It follows that Fkl =
xkxT

l − xlxT
k for 1 ≤ k, l ≤ I.

This tensor is well known in its reduced unfolded form. Indeed, unfolding F by
combining the first and second mode, and third and fourth mode, respectively,
and removing the identical rows and columns yields the compound matrix
C2(X) ∈ K

J(J−1)
2 × I(I−1)

2 of the matrix X =
[
x1, . . . ,xI

]
∈ KJ×I . The matrix

C2(X) consists of the determinants of all 2 × 2 submatrices of X, stacked
in lexicographic order. More generally, the Dth compound matrix CD(X)
consisting of the D ×D minors of X can be obtained from order-D tensor
function generalizations of F(u(1),u(2)).

2.4.3 Tensorization using derivatives

By evaluating a multivariate function in a product set, a tensor is obtained.
Derivatives allow an increase of the order of this tensor, without the need
of evaluating the function in more points. It follows that derivatives can be
well used for tensorization. We make a distinction between scalar and vector
functions in Sections 2.4.3 and 2.4.3. Interestingly, derivatives of increasing
order can be naturally stacked into a single tensor; this will be discussed below
in Section 2.5.2. For simplicity, we limit the discussion in this section to the
real case.
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Derivatives of multivariate scalar functions

Let us consider again a multivariate scalar function f(u(1), . . . , u(D)) ∈ R.
The first-order partial derivatives of f form the gradient vector ∇f ∈ RD

with (∇f)d = ∂f/∂u(d) whereas the second-order partial derivatives form
the (symmetric) Hessian matrix ∆f ∈ RD×D. More generally, the partial
derivatives of order N can be naturally stacked in a symmetric tensor function
P(u(1), . . . , u(D)) of order N such that(

P(u(1), . . . , u(D))
)
i1i2...iD

=
∂Nf(u(1), u(2), . . . , u(D))
∂u(i1)∂u(i2) · · · ∂u(iD) . (2.3)

By evaluating the tensor function in a single point, a tensor P ∈ RD×D×···×D
of order N is obtained. Note that the evaluation of a bivariate function f(u, v)
in a product set yields only a matrix, while the evaluation in a single point of a
higher-order derivative of f(u, v) yields a 2× 2× · · · × 2 tensor of order N .

Of particular interest are additively separable scalar functions which can
be written as sums of univariate functions. For example, the function
f(u(1), . . . , u(D)) can then be written as

∑D
d=1 g

(d)(u(d)). It can be seen that
the derivatives of order N of such functions are diagonal for N ≥ 2. The ith
diagonal entry of the resulting matrix- or tensor-valued function then equals
the derivative dNg(i)(u(i))/d

(
u(i))N . As will be discussed in Section 2.7.3, this

diagonality forms the basis of many tensorization-based methods, such as those
related to independent component analysis.

Derivatives of multivariate vector functions

Similarly, a multivariate vector function f(u(1), . . . , u(D)) ∈ RJ (which holds a
number of scalar functions) can be tensorized by computing derivatives. The
first-order partial derivatives of f form the Jacobian matrix of size J × D
containing the multivariate scalar functions ∂f

j
/∂u(d). Evaluating the Jacobian

matrix in K points and stacking the obtained matrices along the third mode
yields a third-order tensor of dimensions J ×D ×K.

More generally, the order-N partial derivatives of f can be collected in a tensor
of order N + 1 with dimensions J ×D × · · · ×D that is symmetric in the last
D modes.

It is interesting to consider vector functions of which each scalar function is
univariate. Possibly after permuting the variables of f , the Jacobian matrix
and higher-order tensors consisting of the second- and higher-order partial
derivatives are diagonal.
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Insert 3 — Decoupling sets of multivariate functions: Consider a set
of J multivariate functions f

j
(u(1), . . . , u(D)), which together form the vector

function f(u(1), . . . , u(D)). The goal of decoupling the set of multivariate
functions, as described in [140], is to obtain a decomposition of the form

f
j
(u(1), . . . , u(D)) =

R∑
r=1

wjrgr

(
D∑
d=1

vdru
(d)

)
, (2.4)

where g
r
(z(r)) are univariate functions in z(r) =

∑D
d=1 vdru

(d). Such a
decoupling can be used to simplify complex nonlinear block-oriented systems
[162, 290], among others. If the functions f

j
and g

r
are polynomials, the

problem becomes a non-homogeneous multi-polynomial variant of the Waring
problem discussed in Section 2.5.2 [139].

The unknown matrices W ∈ RJ×R and V ∈ RD×R can be recovered by
evaluating the Jacobian matrix J in K points (x(1)

k , x
(2)
k , . . . , x

(D)
k ). A tensor

J ∈ RJ×D×K can be constructed by stacking the obtained matrices along
the third mode. Let us denote the derivative of g

r
(z(r)) as g′

r
(z(r)) =

dg
r
(z(r))/dz(r). Based on (2.4), each slice of J can be written as follows:

Jk = Wdiag
(
g′1(z(1)

k ), . . . , g′
R

(z(R)
k )

)
VT,

with z(r)
k =

∑D
d=1 vdru

(d)
k . It follows that T can be written as a sum of the

rank-1 terms wr ⊗ vr ⊗ cr with ckr = g′
r
(z(r)
k ) for 1 ≤ k ≤ K. If J admits a

unique rank-R CPD, W and V can be uniquely recovered. Furthermore, the
function values g

r
(z(r)) can be found up to permutation and scaling from

(2.4) if W has full column rank.

2.5 Tensors representing mathematical objects

Rather than modeling multiway data as discussed in the previous sections,
tensors can also represent a mathematical object or operator. Indeed, multilinear
functions and multivariate polynomials can be represented by tensors, as will
be pointed out below. It follows that a number of well-known linear algebra
problems and optimization tasks have a clear connection with tensors, such as
matrix multiplication and global polynomial optimization.
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2.5.1 Relations between multilinear functions and
tensors

Multilinear functions are multivariate functions that are linear in each variable.
We restrict the discussion to vector variables for convenience.

Multilinear forms

Scalar multilinear functions are also known as multilinear forms. Let us start
the discussion with a linear form f , which maps a vector u ∈ KI to a scalar. The
linearity property implies that f(α1u1 + α2u2) = α1f(u1) + α2f(u2). Writing
u in f(u) as u1e1 + . . .+ uIeI , f(u) can be written as u1f(e1) + . . .+ uIf(eI).
Collecting f(ei) in p ∈ KI , it follows that f(u) = uTp. Hence, each linear form
f corresponds bijectively to a vector p.

Proceeding further, a bilinear form f maps two vectors u ∈ KI1 and v ∈ KI2

to a scalar f(u,v) and is linear in both u and v. With a similar derivation as
before, the bilinear form corresponds to a matrix P ∈ KI1×I2 such that

f(u,v) = uTPv = P ·1 uT ·2 vT, (2.5)

in which P contains the coefficients of the bilinear form when u and v are
canonical unit vectors. A multilinear form f(u(1), . . . ,u(D)) with u(d) ∈ KId
can then be represented by a tensor P ∈ KI1×···×ID , and the evaluation of f
involves some tensor–vector products, as illustrated in Fig. 2.3:

f(u(1), . . . ,u(D)) = P ·1 u(1)T
·2 u(2)T · · · ·D u(D)T (2.6)

=
∑

i1,i2,...,iD

pi1i2···iDu
(1)
i1
u

(2)
i2
· · ·u(D)

iD
.

A rank-1 tensor P = p(1) ⊗ · · · ⊗ p(D) admits a separation of variables:

f(u(1), . . . ,u(D)) =
∏
d

(
u(d)Tp(d)

)
. (2.7)

Multilinear vector functions

Let f(u(1), . . . ,u(D)) ∈ KJ denote a multilinear function which mapsD variables
to a vector of dimension J . This function can be seen as a collection of scalar
multilinear functions, each of which can be represented by a tensor of order D.
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z = P

u(1)

u(2)

u(3)

= P u(1)

u(2)

z

Figure 2.3: Trilinear form z = f(u(1),u(2),u(3)) (left) and bilinear vector
function z = f(u(1),u(2)) (right).

Stacking the latter tensors, f can be represented by a tensor P ∈ KJ×I1×···×ID

of order D + 1. An evaluation of f then involves tensor–vector products along
modes 2 to D+1, as illustrated in Fig. 2.3. The reasoning can be easily extended
to multilinear matrix and tensor functions.

Examples

A variety of operations in linear algebra are related to multilinear forms and
functions. The trace of a matrix corresponds to a linear form, while the
inner product of two vectors is a trivial bilinear form with P = I. The matrix
determinant is linear in each of the columns of the matrix, and hence corresponds
to a multilinear form. As a special case, the determinant of a 2× 2 matrix is
the bilinear mapping represented by

P =
[

0 1
−1 0

]
.

The matrix multiplication of two matrices and the multiplication of complex
numbers both correspond to a bilinear function, as well as the convolution of
two vectors.

Insert 4 — Matrix multiplication: Let us consider the multiplication
of two square I × I matrices A and B, yielding C = AB. The product
maps A and B in a particular way to C. This can be written as vec (C) =
f(vec (A) , vec (B)) with the function f denoting the multiplication operation.
It is a bilinear transformation, as (α1A1 + α2A2)B = α1(A1B) + α2(A2B)
and A(β1B1 + β2B2) = β1AB1 + β2AB2. As discussed, f corresponds to
a tensor P ∈ KI2×I2×I2 , such that vec (C) = P ·2 vec (A) ·3 vec (B). Such
a tensor P is called a Strassen multiplication tensor [350]. Computing C
using a polyadic decomposition of P has led to faster algorithms than the
standard approach. The computational complexity depends on the (border)
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rank of P. In the case of 2× 2 matrices, for example, the number of scalar
multiplications can be reduced from 8 to 7, the latter being the rank of the
corresponding 4× 4× 4 multiplication tensor [234, 350].

2.5.2 Relations between polynomials and tensors

Studies of homogeneous5 polynomials (also called quantics) in the 19th century
form the roots of multiway analysis [75, 188]. Homogeneous polynomials can
be seen as symmetric versions of multilinear forms, as will be discussed in
Section 2.5.2. Connections between tensors and non-homogeneous polynomials
follow in Section 2.5.2. For a profound discussion and further references we
refer to [233].

Homogeneous multivariate polynomials

Let A be a symmetric matrix of size I × I. The product of A with a vector
u ∈ KI along both modes yields a quadratic form:

p(u) = uTAu = A ·1 uT ·2 uT (2.8)

=
D∑
d=1

addu
2
d +

D∑
d1<d2

2ad1d2ud1ud2 .

It can be seen that p(u) is an homogeneous polynomial of degree 2 in I variables.
More generally, an homogeneous polynomial p(u) of degree D can be associated
with a symmetric tensor A ∈ KI×···×I of order D:

p(u) = A ·1 uT ·2 uT · · · ·D uT. (2.9)

It can be seen that (2.8) and (2.9) are symmetric variants of (2.5) and (2.6),
respectively. Note that p(u) is not linear in u.

Insert 5 — The polynomial Waring problem: If A in (2.9) is a rank-1
tensor, i.e., A = b ⊗ · · · ⊗ b, the polynomial p(u) corresponds to the Dth
power of a linear form:

p(u) = (b ⊗ · · · ⊗ b) ·1 uT · · · ·D uT = (uTb)D .

5Recall that an homogeneous polynomial consists of terms of the same degree.
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It follows that if A admits a rank-R CPD, we can write p(u) =
∑R
r=1(uTbr)D.

Finding such a minimal sum of R Dth-power linear forms given a polynomial
p(u) is known as the (polynomial) Waring problem [281].

In the quadratic case, the problem can be solved using diagonalization
by congruence, using Lagrange’s multiplier method or using an eigenvalue
decomposition of A [26, 272]. The general Waring problem for D > 2, on
the other hand, is more difficult. It is equivalent with finding the symmetric
(C)PD A = JB, . . . ,BK with B =

[
b1, . . . ,bR

]
. The minimal number of

terms in the Waring decomposition is equal to the symmetric rank of A [91,
92].

Insert 6 — From linear to polynomial classification: In binary
linear classification, a vector a ∈ KI is trained or designed such that a
given vector f can be classified according to the sign of fTa. Two classes
in the I-dimensional space are then separated by a vector hyperplane. The
linear function can be generalized to an homogeneous polynomial of, for
example, degree 3. The sign of p(f) with p(u) = A ·1 uT ·2 uT ·3 uT =
(u⊗ u⊗ u)Tvec (A) then provides a basis for classification. As described
in the next section, the homogenization trick allows the extension to affine
hyperplanes and non-homogeneous polynomials. By constraining A to a
tensor with low (multilinear) rank, a reduction in the number of variables
can be obtained. This dimension reduction can improve the interpretability
and prevent overfitting [304].

Insert 7 — Homogeneous polynomial optimization on the unit
sphere: Consider a homogeneous polynomial g(v) of degree D in v ∈ RI

that is associated with a symmetric tensor G ∈ RI×···×I of order D so that
g(v) = G ·1 vT · · · ·D vT. Finding the global extremum of g(v) on the unit
sphere (i.e., with maximum absolute value

∣∣g(v)
∣∣ for ||v|| = 1) is equivalent

to the problem of maximizing (g(v))2 which in its turn is equivalent to
the minimization of ||G − Jλ; v, . . . ,vK||2 [112]. Hence, the original problem
corresponds to finding the best (symmetric) rank-1 approximation of G.
The scalar λ and vector v are also known as the largest Z-eigenvalue and
corresponding Z-eigenvector of G, respectively [222, 301–303].
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Non-homogeneous multivariate polynomials

A non-homogeneous multivariate polynomial can be characterized by two types
of degrees: its total degree and its coordinate degree. The total degree denotes
the maximum of the degrees of the monomials, while the coordinate degree is
a tuple consisting of the degrees of the univariate polynomials in each of the
variables. For example, a bivariate polynomial with total degree 2 can contain
the terms u2, uv and v2, while a coordinate degree of (1, 1) allows the term uv
but not the terms u2 and v2. Each type has its own connection with tensors.

Let us first consider a non-homogeneous polynomial p(u) of total degree D in
u ∈ KI which can be expressed as

p(u) = a(0) + uTa(1) + uTA(2)u+ · · ·

+A(D) ·1 uT · · · ·D uT,

with constant term a(0) ∈ K and with a(1) ∈ KI , . . . ,A(D) ∈ KI×···×I holding
the coefficients of the monomials. Let us symmetrically stack the coefficients in
a larger order-D tensor A(hom) ∈ K(I+1)×···×(I+1), as shown in Fig. 2.4. The
non-homogeneous polynomial can then also be written as

p(u) = A(hom) ·1
[
1,uT

]
· · · ·D

[
1,uT

]
.

This process is called homogenization, and the homogeneous polynomial
p(hom)(v) = A(hom) ·1 vT · · · ·D vT is the homogenized form of p(u), with
p(hom)(

[
1,uT

]T) = p(u). Hence, a symmetric tensor of size (I + 1)× · · · × (I + 1)
cannot only represent an homogeneous polynomial in I+1 variables, as discussed
in Section 2.5.2, but also a non-homogeneous polynomial in I variables. Using
homogenization, the three inserts from Section 2.5.2 can be extended to non-
homogeneous polynomials.

Let us now consider a non-homogeneous polynomial p(u) of coordinate degree
(D1, . . . , DI) with u ∈ KI . Unlike in the previous paragraph, p will not be
represented by a symmetric tensor A of size (I+1)×· · ·×(I+1), but rather by a
possibly unsymmetric tensor C of size (D1 + 1)×· · ·× (DI + 1). Recall that p(u)
is a polynomial of degree Di in the ith variable, and define the Vandermonde
vector v(ui) =

[
1, ui, u2

i , . . . , u
Di
i

]T. It follows that

p(u) = C ·1 v(u1)T · · · ·I v(uI)T
.

Observe the connection with the multilinear form of (2.6), which is now evaluated
in Vandermonde vectors. Also, if C has rank 1 then p(u) is a product of univariate
polynomials, similar to the separation of variables in (2.7).
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a(0)a(1)

A(2)

A(3)

Figure 2.4: Illustration of the natural stacking of the coefficient tensors of a
cubic (degree-3) multivariate non-homogeneous polynomial with I variables in
a tensor A(hom) with dimensions (I + 1)× (I + 1)× (I + 1), which corresponds
to the coefficient tensor of a cubic homogenized polynomial with I + 1 variables.
Note that the tensor has been rotated for illustration purposes as a(0) = a111.

Insert 8 — Non-homogeneous polynomial optimization over a
finite interval: Let f(u) be a non-homogeneous polynomial of degree
D. We want to find the global extremum of f(u) over a finite interval.
Without loss of generality, we consider u ∈ [−1, 1]. By a change of
variables6, the function f(u) can be transformed to a homogeneous polynomial
g(v) = G ·1 vT · · · ·2D vT with the unit-norm vector v ∈ R2 depending on u.
The transformation maps the finite interval [−1, 1] to the unit circle. The
entries in G depend only on the coefficients of f . Recalling Insert 7, finding
the global finite-interval extremum of f(u) is equivalent to finding a best
symmetric rank-1 tensor approximation.

Insert 9 — From systems of linear equations to systems of polyno-
mial equations: A system of linear equations is commonly represented by
a matrix equation Au = b. Each row of A corresponds to a linear form in
u. Systems of polynomial equations are interesting generalizations. They
are structurally richer than linear systems while easier to work with than
general nonlinear systems. The following is an example of a bivariate system

6More specifically, we may parametrize u as u = cos t = cos2 t
2 − sin2 t

2 with t ∈ [0, π].
Multiplying each degree-d monomial of f(u) by the trivial factor 1 =

(
cos2 t

2 + sin2 t
2

)D−d

yields a degree-2D polynomial that is homogeneous in the entries of v =
[
cos t

2 , sin
t
2
]T.

Indeed, ||v|| = 1.
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u
u

=
b

=

1 v v2 · · ·
1
u
u2
...

b

Figure 2.5: Systems of polynomial equations are represented in two ways: based
on the polynomials’ total degree (left, illustrated for multivariate polynomials
with total degree two) and based on the polynomials’ coordinate degree (right,
illustrated for bivariate polynomials).

of polynomials of low degree:{
3u2 + v − uv = 3
v3 − u+ u2v = 5

As discussed, each polynomial equation can be uniquely represented by a
coefficient matrix or tensor. As illustrated in Fig. 2.5, the global polynomial
system can be represented by a single tensor by stacking the individual
coefficient matrices or tensors. While a system of linear equations provides a
more local representation of a phenomenon, a system of polynomial equations
can yield an accurate representation in a larger area of operation. Fig. 2.6
shows the solution(s) of a linear system and of a polynomial system of
moderate degree. Besides Gröbner approaches, homotopy continuation
techniques and methods based on the Macaulay null space or polynomial
eigenvalue problem [29, 61, 95, 179, 243, 336], a polynomial system can also
be solved by computing a CPD [336, 375].

Linearization and series expansion

Modeling a non-linear multivariate function f(u) using a low number of
parameters is a common problem within the domains of optimization theory,
network analysis and systems theory, among others. Linearization, for example,
yields a linear function which provides a good approximation in a small region
around a provided operating point u0:

f(u) ≈ f(u0) + ∆uTa,
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−2 −1 0 1 2
−2

−1

0

1

2

u

v

−2 0 2

−2

0

u

v

Figure 2.6: An example of the solution(s) of a bivariate linear system (left)
and of a bivariate polynomial system (right, taken from [336]), illustrating that
polynomial systems are significantly richer than linear systems.

with ∆u = u − u0 and with a = ∇f ∈ KI the gradient of f evaluated in u0.
Instead of approximating f by a linear function, a polynomial can be used. The
latter can provide a better approximation of f in a larger region around u0, as
illustrated in Fig. 2.7. For example, a Taylor series expansion of degree D then
yields:

f(u)≈f(u0) + ∆uTa(1) + ∆uTA(2)∆u

+ . . .+A(D) ·1 ∆uT . . . ·D ∆uT,

in which A(d) = 1
d!P(d) with P(d) consisting of the derivatives of order d of

f evaluated in u0. This series of higher-order derivatives can be collected in
a single tensor as discussed in Section 2.4.3 and as illustrated in Fig. 2.4. It
follows that a multivariate non-linear function can be well represented by a
single tensor using polynomial approximation.

2.6 Tensorization of a single vector

The availability of powerful tensor techniques has allowed successful results
in various applications which can not be obtained using linear algebra in a
straightforward way. A number of examples have been provided in Section 2.3 if
tensor data are readily available from measurements, observations or evaluations.
However, given only vector or matrix data, tensor tools can still be applied by
first tensorizing the data to a tensor.
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Linear function → vector case

Quadratic function → matrix case

Quartic function → fourth-order tensor case

Figure 2.7: Illustration of the approximation of a non-linear function using
a linear function, a quadratic function and a quartic function. These
approximations of multivariate functions can be represented by vectors, matrices
and fourth-order tensors, respectively. Quartic functions provide a better
approximation in a broader range compared to linear functions.

In this section, we will discuss tensorization techniques given a single vector.
This vector can be a time series or an evaluated univariate function, among
others. Note that the techniques can also be applied on a matrix by tensorizing
each column and by stacking the results. The tensorization step translates the
assumed vector model to a tensor model, meaning that the obtained tensor
satisfies specific properties for specific types of vectors. We will uncover such
relations. Section 2.7 then presents techniques that tensorize a given matrix
and that are not suited in general to be applied on a single vector. Although
to a much lesser extent, some techniques have appeared in earlier surveys [118,
296].

More mathematically, different matrix-valued functions Z(f) are presented
which map or transform a data vector f to a matrix Z. Furthermore, we present
meaningful mappings of a given vector f to a tensor Z using tensor-valued
functions Z(f). For each method, links are established between the properties
of f and the properties of Z or Z.

2.6.1 Hankel/Toeplitz matrices and tensors

We discuss the strong relationship between Hankel/Toeplitz matrices/tensors
on the one hand, and polynomials and exponential functions on the other hand,
the latter having a broad relevance for applications such as (multidimensional)
harmonic retrieval and direction-of-arrival estimation [207, 309, 322, 323]. We
limit the discussion to Hankel matrices/tensors as Toeplitz matrices/tensors
are permuted versions; the results can be transferred directly. Unlike Toeplitz
matrices/tensors, Hankel matrices/tensors offer symmetry in the expressions.



46 THE CONCEPT OF TENSORIZATION

Informally, we call the process of constructing such Hankel matrices/tensors
Hankelization.

Rank-1 and low-rank Hankel matrices from exponentials, sinusoids
and polynomials

Given a data vector f ∈ KN , a Hankel matrix H ∈ KI×J with N = I + J − 1 is
defined as

H =


f1 f2 f3 · · · fJ
f2 f3 f4 · · · fJ+1
f3 f4 f5 · · · fJ+2
...

...
...

...
fI fI+1 fI+2 · · · fN

 , (2.10)

with the entries hij = fi+j−1 for 1 ≤ i ≤ I and 1 ≤ j ≤ J . It seems that Hankel
matrices can have low rank via two different types of functions: exponentials
and polynomials.

First, it is well known that H has rank 1 if and only if f is an exponen-
tial f(t) = czt evaluated in an equidistant point set [231]. Given7 f =[
c, cz, cz2, . . . , czN−1]T, we obtain the following decomposition with exponential
factor vectors a and b:

H = cabT with
{

a =
[
1, z, z2, . . . , zI−1]T ∈ KI ,

b =
[
1, z, z2, . . . , zJ−1]T ∈ KJ .

(2.11)

This result can be readily generalized to sums-of-exponentials. While a single
exponential leads to a rank-1 Hankel matrix, a sum of R exponentials with
different poles zr yields a rank-R Hankel matrix H. The latter admits the so-
called Vandermonde decomposition with Vandermonde factor matrices A and B
[376]. Sinusoids and exponentially-damped sinusoids are special cases of sums-
of-exponentials as, through Euler’s formula, they can be written as a sum of two
exponentials. For example, one can write eat cos(ωt) as 1

2e
(jω+a)t + 1

2e
(−jω+a)t.

Second, regarding polynomials, a constant function c leads to a constant rank-1
Hankel matrix8, while a linear function f(t) = ct evaluated in {0, 1, . . . , N − 1}
leads to a rank-2 Hankel matrix. Indeed, it can be seen that hij = c(i+ j) =

7We sample in the points {0, 1, . . . , N − 1}; nevertheless, the results apply for any set of
equidistant points.

8Note that a constant function is actually an exponential with z = 1.
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Table 2.1: Ranks of the Hankel matrices constructed from different types of
evaluated exponential polynomials f(t) [51], with p

r
(t) a polynomial of degree

Qr. The dimensions of H are assumed sufficiently large.

f(t) r(H) f(t) r(H)

czt 1
R∑
r=1

crz
t
r R

c sin(ωt+ φ)
c cos(ωt+ φ) 2

R∑
r=1

cr sin(ωrt) 2R

czt sin(ωt) 2
R∑
r=1

crz
t
r sin(ωrt) 2R

p(t) =
Q∑
q=0

cqt
q Q+ 1

R∑
r=1

pr(t)
R∑
r=1

Qr +R

p(t)zt Q+ 1
R∑
r=1

pr(t)ztr
R∑
r=1

Qr +R

p(t) sin(ωt) 2Q+ 2
R∑
r=1

pr(t) sin(ωrt)
R∑
r=1

Qr + 2R

p(t)zt sin(ωt) 2Q+ 2
R∑
r=1

pr(t)ztr sin(ωrt)
R∑
r=1

Qr + 2R

ci+ cj for all indices and hence

H = c


0
1
...

I − 1

 ⊗


1
1
...
1

+ c


1
1
...
1

 ⊗


0
1
...

J − 1

 .
Recall that ⊗ denotes the outer product a ⊗ b = abT. It follows that a general
polynomial of degree Q yields a Hankel matrix of rank Q+ 1.

These results form the basis of the set of low-rank Hankel properties summarized
in Table 2.1. Exponential polynomials, which are sums and/or products of
exponentials, sinusoids and/or polynomials, form the general class of functions
leading to low-rank Hankel matrices [101]. They can be seen as sums-of-
exponentials with poles possibly coinciding in the limit, and can be used to
model and approximate a variety of shapes. The well-known (truncated) Fourier
series expansion, for example, is a specific case of such an approximation.
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Hankel tensors

The results can be extended to higher orders in a straightforward manner.
By Hankelizing each column (or row) of a Hankel matrix multiple times, a
higher-order Hankel tensor is obtained. In essence, given a data vector f ∈
KN , we obtain a Hankel tensor H ∈ KI1×I2×···×ID with entries hi1i2...iD =
fi1+i2+···+iD−D+1 for all indices and with N = (

∑
d Id) −D + 1 [294]. While

Hankel matrices have constant anti-diagonals, Hankel tensors have constant
anti-diagonal hyperplanes. Note that Hilbert tensors [330] and anti-circulant
tensors [129] are specific cases of Hankel tensors.

An exponential f =
[
c, cz, . . . , czN−1]T leads to a rank-1 Hankel tensor with

Vandermonde factor vectors:

H = c


1
z
z2

...
zI1−1

 ⊗


1
z
z2

...
zI2−1

 ⊗ · · · ⊗


1
z
z2

...
zID−1

 ∈ KI1×I2×···×ID .

More generally, a Hankel tensor constructed from a sum of R exponentials
with distinct poles (such as a sinusoid) has rank R. It admits the CPDq
c; U(1), . . . ,U(D)y with Vandermonde matrices U(d), which is a direct gener-

alization of the Vandermonde decomposition in the matrix case.

The Hankel tensor H constructed from a degree-Q polynomial, on the other
hand, has a more sophisticated structure. It appears that H has multilinear
rank (Q+ 1, . . . , Q+ 1) and admits a LMLRA with a highly structured core
tensor [101, 149, 376]. Consequently, splitting a given function or signal into
exponential polynomial components involves a BTD rather than a CPD [101].

Insert 10 — Exponentials and quantization: Let f = [1, z, . . . , zN−1]
denote an exponential with N a power of 2 such that D = log2N . The
exponential f can be represented by a rank-1 Hankel matrix/tensor. Let
us apply D − 1 Hankelization steps, resulting in a 2 × 2 × · · · × 2 Hankel
tensor H of order 2. This tensor admits the following symmetric ‘quantized’
representation [215]:

H =
[
1
z

]
⊗

[
1
z

]
⊗ · · · ⊗

[
1
z

]
.
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Insert 11 — Pole estimation and harmonic retrieval: Let us consider
the estimation of the poles of a sum-of-exponential, originally solved using
Prony’s method [284, 365], or using ESPRIT [309] and related matrix pencil-
based methods [194]. This fundamental problem appears in many forms, e.g.,
in the shape-from-moments problem where the poles indicate the vertices
of a to-be-recovered polygon [145], or in signal processing where the poles
indicate the frequencies of harmonics [231, 293, 294]. Assuming a model with
R poles and provided that enough samples are available, the constructed
Hankel matrix/tensor has rank R. Two basic approaches are available to
solve the problem.

On the one hand, the poles can be found by exploiting the shift invariance
in the row, column or mode-n fiber space of the Hankel matrix/tensor. The
matrix case leads to ESPRIT while subspace algorithms are available in the
tensor case as well [176, 307]. These algorithms are mostly based on the
(ML)SVD, (G)EVD, and/or LMLRA.

On the other hand, one can estimate the poles by extracting the rank-1
terms and further neglecting the exponential structure. Although such a
factorization in the matrix case does not yield unique rank-1 terms, the CPD
in the tensor case is unique under mild conditions on the poles [323, 337, 340,
341]. Note that unlike in the first approach, R can exceed the dimensions of
the Hankel tensor in this CPD-based approach.

Efficient tensor decompositions

Because of the repetition of entries, the size of the Hankel tensor can significantly
exceed the original number of data points to the point of becoming unmanageable.
However, we can avoid the construction of the tensor and circumvent the so-
called curse of dimensionality by exploiting the Hankel structure in the tensor
decomposition algorithm [389–391]. For instance, a tensor–vector multiplication
involving a Hankel tensor of size I1 × I2 × · · · × ID requires O(

∏D
d=1 Id) flops

with a naive implementation. Using fast Fourier transforms, the complexity
can be reduced to O(N logN) flops with N =

∑D
d=1 Id [27, 129]. The memory

cost consists of only storing the original N data values instead of storing all∏D
d=1 Id entries.
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2.6.2 Segmentation, decimation, folding and reshaping

A data vector can be reshaped or folded to a matrix in two different ways.
While segmentation stacks consecutive parts of the vector, decimation stacks
downsampled versions.

Given a data vector f ∈ KN , we extract J consecutive segments of length I
with N = IJ and stack the segments as the columns of a matrix S ∈ KI×J :

S =


f1 fI+1 · · · f(J−1)I+1
f2 fI+2 · · · f(J−1)I+2
...

...
...

fI f2I · · · fN

 . (2.12)

For instance, a climate temperature time series can be segmented to a matrix,
each row and column corresponding to a particular day and year, respectively
[413].

Alternatively, one can decimate f with a certain subsampling factor I and stack
the J decimated vectors, resulting in a matrix D ∈ KJ×I :

D =


f1 f2 · · · fI
fI+1 fI+2 · · · fI+1
f2I+1 f2I+2 · · · fI+2
...

...
...

f(J−1)I+1 f(J−1)I+2 · · · fN

 .

As D is the transpose of S in (2.12), we will only discuss low-rank properties of
(variants of) segmentation.

Rank-1 matrices

Let us consider a periodic function with period equal to (a multiple of) I. It is
straightforward to see that a corresponding matrix S has rank 1. An exponential
leads to a rank-1 matrix as well. Third, a DS-CDMA signal also leads to a
rank-1 matrix if I equals (a multiple of) the spreading code length [325].

More generally, it can be seen that S has rank 1 and can be written as S = abT

if and only if f can be written as the Kronecker product f = b⊗ a. A periodic
signal then results in the vector a containing one or multiple signal portions of
period length and in a constant vector b. An exponential leads to Vandermonde
vectors a and b while in a DS-CDMA signal the vectors a and b consist of the
original sequence of symbols and the spreading code, respectively.
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Rank-R matrices and connections with Hankelization

A close link between Hankelization and segmentation emerges. Given a vector
f ∈ KN , let us consider the matrices S ∈ KI×J and H ∈ KI×(N−I+1) obtained
from segmentation and Hankelization, respectively, with N = IJ . The columns
of S form a subset of the columns of H so that r(S) ≤ r(H) [51]. The latter
inequality can be understood from the fact that S offers a more compact
representation than H. It follows that a vector f leading to a low-rank matrix
H also results in a low-rank matrix S.

More specifically, the matrix S = ABT has rank R if and only if f can be written
as the sum of R Kronecker products, with f =

∑R
r=1 br ⊗ ar and full column

rank matrices A ∈ KI×R, B ∈ KJ×R. Referring to the examples in Section 2.6.2,
a low-rank matrix rather than a rank-1 matrix may be obtained if the segment
length I is not exactly equal to the period of the periodic function (e.g., if the
period is not exactly known). Second, sums-of-exponentials, polynomials and
exponential polynomials all give rise to a low-rank matrix S depending on their
degree [51]. Finally, a convolution involving for example DS-CDMA signals also
leads to a low-rank matrix S.

Generally, a limited amount of Kronecker products can be useful for the
approximation of smooth and periodic signals or functions [51]. The low
rank property can be exploited to allow various compact representations. This
is essential in, e.g., large-scale blind signal separation with a large amount of
sensors [51], or in multivariate function approximation where the number of
function values exceeds the number of atoms in the universe [170, 214].

Tensors obtained from segmentation and decimation

The segmentation (decimation) procedure can be applied again on each column
of S (D). By stacking the obtained matrices along a third mode, a third-order
tensor is obtained. This can be done a number of times to obtain a tensor S
(D) of order D. For example, time series consisting of molecule concentration
values from multivariate curve resolution can be segmented to a third-order
tensor, of which the modes indicate the specific hour, day and year [13, 14].

Again, S has rank 1 if and only if f can be written as the Kronecker product of
D non-zero vectors, i.e., f = u(D) ⊗ · · · ⊗ u(1).

Insert 12 — Quantization: In (very) large-scale applications, a compact
representation with a low amount of parameters is often desired to reduce the
computation time. Given a vector f ∈ KN , let us apply D − 1 segmentation
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steps to obtain a tensor S ∈ Kq×q×···×q of order D, with N = qD. Using a
small segment length q and large order D, this process is called q-adic folding
or quantization in tensor-based scientific computing [170, 214, 215, 285]. S is
then approximated using TT decompositions (leading to quantized TT or
qTT), hierarchical Tucker decompositions or low-rank CPDs.

Let us focus on low-rank CPD, by way of example. The number of degrees
of freedom in a rank-R CPD of S is equal9 to (qD−D+ 1)R. For fixed R, a
maximal compression of f is obtained for q = 2, leading to only (1+ log2N)R
degrees of freedom or representation parameters. This results in a significant
compression compared to the original vector length N . Note that the case
q = 2 is considered in Insert 10 as well, in the context of Hankelization.

Segmentation with overlap and/or with alignment

Hankelization maximally exploits shift invariance, while segmentation offers a
maximally compact representation. A compromise between both can be made
by selecting a larger subset of columns of the Hankel matrix than in basic
segmentation. This amounts to stacking overlapping segments of a given vector.

Another variant consists of the extraction and stacking of non-consecutive
segments. When tensorizing electrocardiogram (ECG) signals, for example, the
segments may be chosen such that the heartbeats are aligned [54, 167, 168].

2.6.3 Löwner matrices and tensors

Löwner matrices [259] are intimately connected with rational functions, i.e.,
functions that can be written as a fraction of two polynomials. They have been
used in system identification [22, 23]. Remarkably, unlike in the Hankel case,
equidistant sampling is not required to obtain low-rank Löwner matrices.

Löwner matrix

Consider a vector f ∈ KN , obtained from the evaluation of a function f(t) in
the points {t1, . . . , tN}. Let us construct a matrix Z ∈ KN×N with zij = fi−fj

ti−tj .

9Note that there are qDR variables while the scaling indeterminacy leads to (D − 1)R
degrees of freedom.
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This definition would result in poorly defined fractions10 on the diagonal of Z,
however. Löwner matrices are defined as proper submatrices of Z.

More formally, let us partition the point set T = {t1, . . . , tN} in the point
sets X = {x1, . . . , xI} and Y = {y1, . . . , yJ}, with N = I + J . Let vectors
φ ∈ NI and θ ∈ NJ contain the indices of the points from X and Y within
T , respectively, e.g., x3 = tφ3 . The entries of the Löwner matrix L ∈ KI×J

are then defined as fφi−fθj
xi−yj for 1 ≤ i ≤ I, 1 ≤ j ≤ J , leading to the following

matrix:

L =


fφ1−fθ1
x1−y1

fφ1−fθ2
x1−y2

. . .
fφ1−fθJ
x1−yJ

fφ2−fθ1
x2−y1

fφ2−fθ2
x2−y2

. . .
fφ2−fθJ
x2−yJ

...
...

. . .
...

fφI−fθ1
xI−y1

fφI−fθ2
xI−y2

. . .
fφI−fθJ
xI−yJ

 . (2.13)

Independent of the type of partitioning, it can be easily seen that L has rank 1
if11 f is a sampled rational function of degree 1. Indeed, if f(t) = c t−nt−p , then
lij = α · 1

xi−p ·
1

yj−p with constant α = −c(p− n)2 and we have

L = α abT with
{

a =
[ 1
x1−p , . . . ,

1
xI−p

]T ∈ KI ,
b =

[ 1
y1−p , . . . ,

1
yJ−p

]T ∈ KJ .

The factor vectors contain sampled rational functions of degree 1. Note the
similarity with the Hankel case in (2.11).

Let us now consider a general rational function of degree12 R. As a degree-R
rational function with distinct poles can be written as a sum of R degree-1
rational functions (partial fractions), any corresponding Löwner matrix has
rank R [21, 32, 259]. The factor matrices have Cauchy structure, and the
decomposition is known as the Cauchy decomposition [124, 152, 381, 382].

Note that polynomials, as a special case of rational functions, also lead to
low-rank Löwner matrices. More specifically, a polynomial of degree Q yields a
Löwner matrix of rank Q.

10Asymptotically, the diagonal entries may be defined as the first-order derivatives of f(t)
in the points {t1, . . . , tN}.

11We want to point out that this condition is only necessary and not sufficient. Indeed,
only if every possible partitioning of T into sets X and Y yields a rank-1 Löwner matrix, f is
an evaluated rational function of degree 1.

12The degree of an irreducible rational function is defined as the maximum of the degrees
of the polynomial in the numerator and the polynomial in the denominator.
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Löwner tensors

To the best of the authors’ knowledge, higher-order generalizations of a Löwner
matrix have not been defined or investigated in the literature. A third-order
Löwner tensor can be obtained by Löwnerizing each row or column of a
Löwner matrix and by stacking the resulting matrices. Applying a number of
Löwnerization steps results in a I1 × I2 × · · · × ID tensor of order D such that
N =

∑
d Id.

Löwner tensors admit a definition in a closed form. Consider a partition of T
in D sets X(d) =

{
x

(d)
1 , x

(d)
2 , . . . , x

(d)
Id

}
, each associated with an index vector

φ(d) ∈ NId such that xid = t
φ

(d)
id

. The entries are defined for all indices as
follows:

li1i2...iD =
D∑
d=1

[ f
φ

(d)
id

D∏
m=1
m 6=d

(
x

(d)
id
− x(m)

im

)
]
. (2.14)

Similar to Löwner matrices, higher-order Löwner tensors have low (multilinear)
rank for rational functions and polynomials. Whereas a Löwner matrix contains
first-order finite differences, a Löwner tensor of orderD contains finite differences
of order D − 1. It can be seen that (2.14) simplifies to (2.13) for D = 2, with
lij = fφi

xi−yj + fθj
yj−xi . In [121], it is demonstrated that a rational function of

degree R with distinct poles leads to a Löwner tensor of rank R for large enough
dimensions.

Link with Hankelization

There exists a close link between Löwner matrices and Hankel matrices, with
a one-to-one relationship between Löwner matrices of size I × J and Hankel
matrices of the same size. The isomorphism consists of the mapping H 7→ L =
WxHWT

y with (typically ill-conditioned) matrices Wx ∈ KI×I and Wy ∈ KJ×J
that depend on the point sets X and Y , respectively, and not on the vector f
[124, 152, 381, 382].

Efficient tensor decompositions

Similar to the Hankel case, the structure in Löwner matrices and tensors can be
exploited in the case of equidistant points [389, 390]. In this way, the explicit
construction of the Löwner matrix/tensor can be avoided.
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Figure 2.8: One deterministic approach for BSS is by mapping the matrix X to a
tensor Z(x) and by subsequently decomposing Z(x) in multilinear rank-(Lr, Lr, 1)
terms. To preserve the linearity of the BSS model, a linear tensorization mapping
should be used such that Z(x) can be written as a linear combination of the
contributions of the source signals. The vectors b1, . . . ,bR appear as factor
vectors in the third mode.

Insert 13 — Deterministic BSS: Hankelization, segmentation and
Löwnerization can be used very effectively for deterministic blind signal
separation (BSS) as discussed in [101], [51] and [124], respectively. It has
been discussed in 1 that BSS and unique matrix factorization are connected.

Let us map each vector xk (resp. ar) to a matrix Z(x)
k ∈ KI×J (resp. Z(a)

r ∈
KI×J) using one of the methods. By stacking the matrices, a tensor Z(x) ∈
CI×J×K (resp. Z(a) ∈ CI×J×R) is obtained as illustrated in Figure 2.8.
Let us assume that each matrix Z(a)

r = UrVT
r has rank Lr ≤ min(I, J),

corresponding to the assumptions on ar listed in Table 2.2. As each mapping
is linear, we can write:

Z(x) = Z(a) ·3 B =
R∑
r=1

Z(a)
r

⊗ br =
R∑
r=1

(UrVT
r ) ⊗ br.



56 THE CONCEPT OF TENSORIZATION

0 0.5 1
−1

0

1

Original
source signals

0 0.5 1

Noisy
observed signals

0 0.5 1

Recovered
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Figure 2.9: An example of Hankelization-based deterministic underdetermined
BSS. Three signals (shown left, a high-frequency sinusoid ( ), a low-frequency
sinusoid ( ) and an exponentially damped sinusoid ( )) are mixed together
into two signals (middle, and ). The signal-to-noise ratio of the observed
signals is 10 dB, defined as the power of the signal to the power of Gaussian
additive noise. Given only 500 samples per observed signal, the goal is to
recover the source signals under the assumption that their corresponding Hankel
matrices have low rank. On the right, the recovered source signals are shown,
using Lr = 2 for each source signal. An optimal scaling and permutation step is
added to cope with the default BSS indeterminacies. Note that the signals have
been recovered nearly exactly given only 500 samples and despite this noisy
underdetermined situation.

This boils down to a multilinear rank-(Lr, Lr, 1) decomposition of Z(x).
Under mild conditions on B, Ur and Vr, this decomposition is unique and
B can be directly recovered up to permutation and scaling [51, 101, 124]. An
estimate of A can be obtained from X

(
B†
)T, but also from Z(a). Only the

latter strategy succeeds in the underdetermined case. An illustration is given
in Fig. 2.9. Note that the tensorization can also be applied on the second
mode of X instead, if the mixing vectors rather than source signals satisfy
one of the conditions from Table 2.2. The application of a tensorization
technique together with a decomposition in multilinear rank-(Lr, Lr, 1) terms
has been referred to as block component analysis (BCA) [102].

The techniques have been applied in various applications. For example,
Hankelization-based separation is well known from direction-of-arrival (DOA)
estimation based on uniform linear arrays (ULA) [323], while segmentation
is suitable for large-scale far- and near-field ULA-based DOA estimation
[51]. Generalizations to blind system identification have appeared in [52].
Hankelization has also appeared in the context of separating epileptic seizures
[199]. Löwnerization has been applied in the context of amino acid spectra
separation. The tensor obtained by stacking excitation–emission spectra
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Table 2.2: Overview of functions that may lead to low-rank matrices/tensors
after tensorization

Tensorization Functions
Hankelization Exponentials, (exponentially damped) sinu-

soids, (exponential) polynomials, sum of
exponentials

Segmentation The functions above, periodic signals, sum of
Kronecker products

Löwnerization Rational functions, polynomials

of multiple mixtures may admit a CPD [57]. Given a single mixture,
Löwnerization of the excitation–emission matrix can yield a unique CPD
as well for spectra that can be well approximated by low-degree rational
functions [124].

2.6.4 Determinant-defining matrix and monomial
relations

A relatively new type of matricization exploits monomial relations between
signal samples or data vector entries [339]. Various types of signals satisfy such
relations, as we will show. We will link monomial relations with rank-deficient
matrices and discuss tensor-based approaches for blind signal separation.

Monomial relations and rank-deficient matrices

Given a vector f ∈ CI , let us assume there exist indices p1, . . . , pQ and s1, . . . , sT ,
and integer powers β1, . . . , βQ and ω1, . . . , ωT , such that

fβ1
p1 f

β2
p2 · · · fβQpQ = fω1

s1 f
ω2
s2 · · · fωTsT . (2.15)

Without loss of generality we assume that the degree of the right monomial is
equal to or smaller than the degree of the left monomial, i.e., L = β1 +. . .+βQ =
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ω0 + ω1 + . . .+ ωS for some ω0 ≥ 0. Let us now construct two vectors:

b =

 fp11β1
...

fpQ1βQ

 ∈ KL and c =


1ω0

fs11ω1
...

fsT 1ωQ

 ∈ KL.

It can be seen that (2.15) is equivalent with
∏L
l=1 bl =

∏L
l=1 cl, which then leads

to the following:

0 =
L∏
l=1

bl −
L∏
l=1

cl

= b1 ·

∣∣∣∣∣∣∣∣∣∣
b2 0 · · · 0

c3
. . .

. . .
...

. . .
. . . 0
cL bL

∣∣∣∣∣∣∣∣∣∣
− c1

∣∣∣∣∣∣∣∣∣∣
c2 b2

0 c3
. . .

...
. . .

. . . bL−1
0 · · · 0 cL

∣∣∣∣∣∣∣∣∣∣
(2.16)

= |D| ,
with the L× L matrix D defined as

D =



b1 0 · · · 0 (−1)L · c1
c2 b2

. . . 0

0 c3
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 cL bL


. (2.17)

The first transition is based on the fact that the determinant of a triangular
matrix is equal to the product of the diagonal entries. Second, (2.16) can be
seen as the cofactor expansion of |D| along the first row.

We have effectively matricized the data vector f to a rank-deficient matrix D.
Indeed, (2.15) leads to |D| = 0. Hence, the rank of D is strictly smaller than L.
On the other hand, the minors in (2.16) do not vanish except in the trivial case
where both sides of (2.15) are zero. This means that the rank of D is exactly
L− 1.

Examples

Consider an exponential function f(t) = czt sampled in I = 3 equidistant points
resulting in the data vector f ∈ K3. It can be easily seen that f1f3 = f2

2 . We
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construct b =
[
f1, f3

]T, c =
[
f2, f2

]T and the 2× 2 matrix D:

D =
[
b1 c1
c2 b2

]
=
[
f1 f2
f2 f3

]
,

which is a rank-deficient 2 × 2 Hankel matrix. A second example concerns
4-QAM signals, of which all samples satisfy the property f4 = −1. Two 4-QAM
samples f ∈ C2 then satisfy f4

1 = f4
2 and we obtain the following rank-deficient

matrix D:

D =


f1 0 0 f2
f2 f1 0 0
0 f2 f1 0
0 0 f2 f1

 .
BPSK, constant modulus, constant power and other finite alphabet signals
satisfy similar monomial relations as well.

Data vectors satisfying multiple monomial relations

The entries of a vector f ∈ KN may satisfy more than one monomial relation.
For example, let f be an equidistantly sampled exponential vector of length
N . Among other relations, this vector satisfies N − 2 relations of the type
fn−1fn+1 = f2

n for n = 2, . . . , N − 1. Imposing all monomial relations
corresponds to constraining all 2× 2 minors of H in (2.10) to be zero, which in
its turn is equivalent with assuming that H has rank 1.

Second, N samples from a 4-QAM signal satisfy Z = I(I−1)
2 relations of the

type f4
i = f4

j for 1 ≤ i < j ≤ N , yielding Z different rank-deficient matrices of
size L× L.
A vector might exhibit multiple types of monomial relations which lead to
matrices of different size. These matrices can be further processed using coupled
matrix or tensor techniques [339]., matrices of possibly different size can be
constructed which can be further processed with coupled matrix or tensor
decomposition techniques. This flexibility is useful when dealing with non-
trivial signal processing setups, such as L-shaped and triangular-shaped arrays.

Relations with other methods

We have pointed out that Hankelization may yield a single low-rank matrix
while the technique from this section may result in a set of rank-deficient
matrices. Hankelization, on the one hand, exploits all the structure in f in a
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rigid manner. On the other hand, monomial relations enable a more flexible
approach. They can, for example, be used when an entry is missing, or when
a signal is not equidistantly sampled. A link between Löwnerization and the
currently described technique can also be established, as, e.g., degree-1 rational
functions also relate to specific monomial relations.

Insert 14 — Blind source separation using rank-deficient matrices:
Monomial relations can be well exploited in a context of array processing,
harmonic retrieval and blind signal separation. For example, ULAs are
associated with exponential mixing vectors in far-field situations, while
constant modulus signals such as 4-QAM or BPSK signals are often used in
telecommunications. Considering the bilinear factorization in (2.1), let us
assume that each of the columns of A satisfy the same set of Z monomial
relations. Let D(z)

xk and D(z)
ar denote the matrices constructed as in (2.17)

from xk and ar, respectively, corresponding to the zth monomial relation of
degree Lz, for 1 ≤ z ≤ Z. Furthermore, let us concatenate these matrices
along a third mode to obtain the tensors D(z)

X and D(z)
A , respectively. Since

the mapping in (2.17) is linear, the slices of D(z)
X are linear combinations of

the slices of D(z)
A such that

D(z)
X =

R∑
r=1

D(z)
ar ⊗ br,

for 1 ≤ z ≤ Z. As each Lz × Lz matrix D(z)
ar has rank Lz − 1, the tensors

D(z)
X admit coupled decompositions in multilinear rank-(Lz, Lz, 1) terms

with a coupled factor matrix B. As these decompositions are unique under
mild conditions [339, 345], the mixing vectors and/or source signals can be
recovered.

2.6.5 Time–frequency and time–scale techniques

In contrast to frequency domain representations, time–frequency analysis
inspects the energy or intensity of a time series as a function of both time
and frequency [87]. It can be used effectively to investigate non-stationary
signals with time-evolving spectral characteristics, for example. We limit the
discussion to the short-time Fourier transform and the Wigner–Ville distribution
which are treated in Sections 2.6.5 and 2.6.5, respectively.

An alternative for time–frequency analysis is time–scale analysis. Instead of
analyzing the signal using an exponential kernel as in the time–frequency case,
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a single time-limited wave is used, also known as a wavelet. The wavelet
decomposition, as will be discussed in 2.6.5, compares the signal to time-delayed
and time-scaled versions of a given wavelet.

Both time–frequency and time–scale transforms map a vector to a matrix.
If multiple signals are available, a tensor may be obtained by stacking the
representations of the different signals. Space–time–frequency and space–time–
scale analysis techniques consider a set of signals originating from a sensor
or antenna array [256]. If the spatial mode rather than temporal mode is
investigated, one refers to space–time–wave analysis [30, 31].

We want to mention that time–frequency and time–scale methods have a
sparsifying effect for signals that have components that are well-located in both
time and frequency or scale. This is the case for a variety of real-life time series
and signals. For example, in epileptic encephalogram (EEG) data, epileptic
seizures have significantly different spectral components and occur at different
time instances than eye blinking and muscle tension artifacts [11, 199]. This
sparsity is one of the reasons why the methods are frequently used in sparse
coding, sparse component analysis (SCA) [60, 263] and blind signal separation
[5, 305, 406, 415].

Short-time Fourier transform

One way to extract time-dependent spectral characteristics of a time signal f(t)
is to consider the spectral content (Fourier transform) within small consecutive
or overlapping intervals. This is called the Fourier transform with sliding window
or short-time Fourier transform (STFT) [15]. Mathematically, the STFT is
defined in the continuous domain as

w(ω, τ) =
∫ ∞
−∞

f(t)h(t− τ)e−jωtdt,

with angular frequency ω and window function h(t), commonly a Hann,
Hamming or Gaussian13 window. Note that the squared magnitude of the
STFT, i.e., |w(ω, τ)|2, yields the well-known spectrogram [221].

In the discrete case, there is a clear link between the STFT and the segmentation
technique discussed in Section 2.6.2 as different segments are extracted from the
signal and then transformed using a discrete Fourier transform (DFT). This can
be understood as follows. Let f ∈ KN and h ∈ KL be sampled versions of f(t)
and h(t), respectively, using the same equidistant points. The window function
h(t) is typically designed such that it is approximately zero outside the sampling

13The STFT with Gaussian window is also known as the Gabor transform.
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interval. Let each column of E ∈ KL×J consist of a length-L segment of f . In
the STFT, one typically considers partially overlapping segments rather than
consecutive segments. The discrete STFT matrix W ∈ KI×J with I uniformly
spaced angular frequencies can then be written as

W = Q diag(h)E,

with Q ∈ KI×L the I-point DFT matrix.

Assuming that I ≥ L, both Q and diag(h) have full column rank, and it follows
that the rank of W is equal14 to the rank of E. As E is a segmented version of
f , the STFT completely inherits the low-rank properties from the segmentation
tensorization technique of Section 2.6.2, independently of the choice of window
function h(t). This theoretical connection with segmentation validates the use
of low-rank approximations for STFT-based time–frequency representations.

It follows that in BSS methods relying on segmentation, such as in the
separation of sums-of-exponentials discussed in Insert 13, the segmentation can
be substituted by an STFT, and vice versa. For example, a combination of
an STFT and CPD has been used for the separation of EEG data [269, 273]
and audio data [288]. Also other tensor decompositions have been applied
in combination with STFT, e.g., in spreading-multiplexing methods for blind
system identification [16]. If segments overlap almost entirely, the STFT is
strongly connected with Hankelization following the same rationale.

Quadratic representations — Autocorrelation function and
Wigner–Ville distribution

The nonstationary symmetric autocorrelation function of a given zero-mean
time signal f(t) is defined as c(t, τ) = f

(
t+ τ

2
)
f
(
t− τ

2
)?. The Wigner–Ville

distribution (WVD) is obtained after applying a Fourier transform on the
variable τ [395, 398]:

w(ω, t) =
∫ ∞
−∞

f
(
t+ τ

2

)
f
(
t− τ

2

)?
e−jωτdτ,

which is a function of the angular frequency ω and the lag τ .

The WVD w(ω, t) is not a linear but a quadratic function of the input signal
f(t). Hence, WVDs can theoretically not be used to solve the case studies
described in this section such as pole estimation and blind signal separation
from Inserts 11 and 13, as each underlying component does not only contribute

14Although the rank is equal, the non-zero singular values of E and W can differ.
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a rank-1 term but also contributes additional cross-terms. To diminish the
effect of the latter, one often relies on smoothing kernels, giving rise to the
broad class of Cohen’s quadratic time–frequency distributions [87]. While a
detailed discussion of this class is outside the scope of this chapter, WVDs
can be understood as the most simple forms. The Choi–Williams [80] and
Kirkwood–Rihaczek distributions [220, 306] are other well-known quadratic
representations, as well as the spectrogram discussed in the previous section.

By considering cross-distributions between signals, the cross-WVD and other
quadratic representations can be used meaningfully in a tensor framework as they
become linear in each signal. This is discussed in more detail in Section 2.7.1.

Wavelet decomposition

The STFT investigates low- and high-frequency components using the same
fixed segment length. This can limit the spectral analysis if these components
appear in broad and narrow parts of the signal, respectively, as is the case
for various kinds of signals. It might be worthwhile, for example, to consider
smaller segments for components with higher frequency so to obtain a better time
resolution, i.e., such that high-frequency components can be better distinguished
in the time domain. Time–scale analysis offers a solution by comparing the
signal with dilated versions of a wavelet. The continuous wavelet decomposition
(CWT) [96, 97, 265, 394] acts as such a representation, defined as

w(σ, τ) =
∫ ∞
−∞

f(t) 1√
σ
ψ

(
t− τ
σ

)?
dt, (2.18)

in which the wavelet function ψ(t) (such as the Haar or Daubechies wavelet)
plays a similar role as the STFT window, but is both translated and dilated.
Figure 2.10 compares the time and frequency resolution of the STFT and
CWT; note that Heisenberg’s uncertainty principle prohibits both high time
and frequency resolution [265].

Given a sampled time signal f ∈ KN , a discretized CWT can readily be computed
from (2.18). Again, a link with segmentation and Hankelization emerges as the
discretized CWT W ∈ KI×J of f can be written as

W = ZHE, (2.19)

with Z ∈ KM×I and E ∈ KM×J . Each column of E is a length-M segment
of f , while each column of Z is a dilated version of the wavelet ψ(t), padded
with zeros. The segment length M depends on the largest chosen scale. The
formulation distinguishes between the signal component and translation effect
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Good time
resolution

Good frequency
resolution

High-frequency
components in CWT

Low-frequency
components in CWT

Both low and high frequencies
for small-segment STFT

Both low and high frequencies
for large-segment STFT

Figure 2.10: Using small segments, the STFT ( ) offers a good time resolution.
It offers a better frequency resolution but inferior time resolution if large
segments are used. The CWT ( ) offers a good time and frequency resolution
for high- and low-frequency components, respectively.

W =

Dilation
of wavelet

Overlapping
signal segments

H

Figure 2.11: Illustration of the discrete wavelet decomposition in (2.19). The
matrix Z contains dilated versions of the wavelet ψ(t) and the matrix E contains
segments of the given signal.

on one hand (captured in E), and the wavelet component and dilation effect on
the other hand (captured in Z). Figure 2.11 illustrates the structure of (2.19).
More technically, each vector zi is the finite difference of a decimated version
corresponding to the ith scale (possibly padded with zeros) of the function
φ(k) =

∫ k
−∞ ψ(t)dt.

Note that the wavelet transform is a linear function of the given signal. As Z
has full column rank for M ≥ I, the rank of W is equal to the rank of E, and
the discretized CWT inherits the low-rank properties from segmentation and
Hankelization. For example, for a sinusoid, the matrix W has rank 2. Similar
to the window function in the STFT, the type of wavelet alters the singular
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values of W.

Note that, during the construction of E in practice, the discrete signal f may
be padded with zeros. This padding can create severe artifacts and may break
the low-rank properties. To keep the low-rank properties, it suffices to remove
a number of columns at the beginning and end of W.

The discrete wavelet transform (DWT) provides an alternative for the discretized
CWT. It uses ψ( tσ − τ) rather than ψ

(
t−τ
σ

)
. It can be seen that this change

in variables breaks the low-rank properties of the discretized CWT. On the
other hand, a signal that does not yield a low-rank discretized CWT matrix
may yield a low-rank matrix after DWT. We omit a further discussion on the
DWT. Note that the DWT formulation is equivalent to discrete filter banks,
which will be briefly discussed in Section 2.6.6.

A choice can be made between different types of wavelets. While we have
seen that the choice of wavelet does not alter the rank algebraically, it can
influence the sparsifying effect. Different kinds of wavelets have been used in
combination with different types of tensor decompositions. Morlet (also known
as Gabor) wavelets, for example, have been used to construct a third-order
tensor by stacking the CWTs of different EEG signals, after which a CPD has
been applied [173, 269, 274, 397]. A Ricker or Mexican-hat CWT in combination
with a CPD has been used as well [11, 238], while a decomposition in multilinear
rank-(Lr, Lr, 1) terms has been applied in, e.g., [199]. Biorthogonal CWTs have
appeared in [117, 128] while tensor-based CWT processing has also been applied
in hyperspectral imaging [251].

Note that a two-dimensional extension of the wavelet transform can also be
applied on matrix data such as image data, possibly using separable two-
dimensional wavelets [96]. A third-order tensor is obtained, of which two modes
correspond to horizontal and vertical translations while a third mode corresponds
to the wavelet dilation. Shearlets are anisotropic multiscale extensions of
wavelets, naturally yielding fourth-order tensors [141].

2.6.6 Other tensorization techniques

The techniques presented in the Sections 2.6.1 to 2.6.5 are well-known linear
mappings from vectors or matrices to tensors with established low-rank
properties. There exist a number of other tensorization techniques as well,
of which we briefly discuss three techniques. However, low-rank and other
meaningful properties validating the use of these techniques in applications are
yet to be identified.
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Figure 2.12: Uniform tree-structured filter bank in a tensor format.

A first example consists of Cauchy tensors. A vector f can be tensorized to an
order-D Cauchy tensor C with entries ci1...iD = 1/(fi1 + · · ·+ fiD) [302] or to
other types of structured tensors.

Second, the empirical mode decomposition (EMD) extracts components recur-
sively from a given vector f ∈ KN to obtain a matrix E ∈ KN×I [196]. Let ei
be the ith so-called intrinsic mode function (IMF) of f , then ei+1 is the mean of
the upper and lower envelope of ei. An additional Hilbert transform yields the
Hilbert–Huang decomposition [195]. Other recursive functions can be applied
as well, leading to other mappings.

Uniform tree-structured filter banks form the basis of a tensorization technique
as well [329, 371]. The output of the filter bank can be naturally stacked in a
tensor, as illustrated in Figure 2.12. For example, the filters H1(z) and H2(z)
can be low-pass and high-pass filters, respectively. More than two filters can be
applied in each stage, the decimators can be omitted and more than two stages
can be included. A connection can be made with the DWT from Section 2.6.5
[349].

2.7 Tensorization of a given set of vectors

The techniques presented in this section consider the availability of a set of
vectors x1, . . . ,xK . Provided that each vector has dimension N , these vectors
can be stacked in the columns of a matrix X of size N×K. Again, these vectors
can be time series, evaluated functions or observations from stochastic variables,
among others.

On one hand, we consider the construction of a set of matrices that depend on
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a parameter. For a chosen set of parameter values, such as lags or frames, a
tensor is obtained by stacking the constructed matrices corresponding to each
parameter value. Sometimes, as discussed in Section 2.7.1, the obtained tensor
readily admits to a CPD. In other cases, as discussed in Section 2.7.2, a CPD
emerges only after some manipulation. It will become apparent that diagonality
is only one of the properties leading to a CPD.

On the other hand, rather than artificially stacking matrices, a tensor with
natural multiway character can be directly constructed. Such tensorization
techniques can then lead to diagonal tensors such as the context of unique matrix
factorization. Higher-order statistics, adjacency tensors and score functions are
addressed in Section 2.7.3.

More mathematically, the techniques in Sections 2.7.1 and 2.7.2 are based on the
evaluation of a scalar parameter-dependent multivariate function z(u(1),u(2), ρ)
in the Cartesian product set {x1, . . . ,xK} × {x1, . . . ,xK}. A set of parameter
values then yields a set of matrices which can readily be stacked in a third-order
tensor. Each function z can be used in that respect, but is not necessarily
meaningful. Similar to Section 2.6, the links between the vector properties and
the properties of the obtained tensor will be discussed. In Section 2.7.3 one
then considers a function z(u(1), . . . ,u(D)) with D ≥ 3.

2.7.1 Collection of matrices obtained by parameter
variation

From a given matrix X, a set of K × K matrices Z1, . . . ,ZL is generated
via a mapping that depends on a parameter. By stacking these matrices, a
third-order tensor Z ∈ KK×K×L is obtained. For a chosen set of parameter
values ρ1, . . . , ρL, the lth matrix Zl is constructed by evaluating a function
z(u(1),u(2), ρ) in {x1, . . . ,xK}×{x1, . . . ,xK} as discussed in Section 2.4.1, with
parameter value ρl. Hence, the entry zk1k2l of Z is defined as z(xk1 ,xk2 , ρl).

We discuss stacked outer products, stacked covariance matrices and stacked
Hessian or Jacobian matrices in more detail. There exist other variants, such as
the stacking of time-dependent adjacency matrices. The latter will be covered
in Section 2.7.3.

Insert 15 — Unique matrix factorization: The techniques from this
subsection have been successfully used for what we have called ‘unique
matrix factorization’ in Insert 1. The approach then typically consists of the
following. Let Z(x)

l and Z(a)
l be constructed from X and A, respectively. We

limit ourselves to mappings z that are bilinear, i.e., z(u(1),u(2), ρ) is linear
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in u(1) and in u(2). Thanks to the bilinearity, we have

zk1k2l = z(xk1 ,xk2 , ρl)

= z(
∑
r1

bk1r1ar1 ,
∑
r2

bk2r2ar2 , ρl)

=
∑
r1,r2

bk1r1bk2r2z(ar1 ,ar2 , ρl)

such that we can write Z(x) = Z(a) ·1 B ·2 B or

Z(x)
1 = BZ(a)

1 BT,

...

Z(x)
L = BZ(a)

L BT.

If the matrices Z(a)
l can be assumed diagonal, the tensor Z(x) admits a rank-R

CPD Z(x) =
q
B,B,D(a)y, as illustrated in Figure 2.13. The matrix D(a)

consists of the diagonals of the matrices Z(a)
l . The uniqueness of the CPD of

Z(x) under mild conditions on B and D(a) is key to the unique factorization
of the matrix X. Note that the mapping z is chosen in function of prior
knowledge on A, as it translates known properties of A into diagonality of
Z(a)
l .

Stacked outer products

Let us take z equal to the following function:

z(u(1),u(2), ρ) = u(1)
ρ u(2)

ρ ,

with ρ ∈ {1, . . . , N}. Hence, if we vary ρ from 1 to N , it can be seen that the
nth matrix Zn ∈ KK×K is the symmetric outer product of the nth row of X
with itself. Here, the parameter ρ equals the row index n. By stacking all outer
products, the tensor Z ∈ KK×K×N is obtained for which Z(3) = X�TX.

By definition, each slice of Z has rank 1. The overall tensor Z has rank 1 if
and only if x1, . . . ,xK are scaled versions of each other or, stated otherwise, if
X has rank 1. However, the rank of Z does not equal the rank of X in general.
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X! = A?

B?

Z(x) = B B

= + · · ·+

D(a)

Figure 2.13: One approach to solve blind signal separation, or unique matrix
factorization in general, consists of constructing a set of matrices depending on
a parameter, which yields a tensor Z(x). Provided a bilinear mapping is used,
this tensor can be written as Z(x) = Z(a) ·1 B ·2 B. Joint diagonalization of the
slices Z(x)

1 , . . . ,Z(x)
L is equivalent with the CPD of Z(x).

This holds only if each row vector of X is a scaled version of one of the columns
of a matrix B ∈ KK×R. Let us now consider the case in which every row of X
contains exactly one nonzero entry. Then, and only then, we obtain diagonal15

matrices Zl. One can think of such X as a (scaled) selection matrix, as the
multiplication XYT ‘selects’ (and possibly scales) columns from an arbitrary
matrix Y.

It is obvious that third-order tensors Zn constructed from a generalization of z
can also be stacked, as well as higher-order generalizations. These generalizations
still satisfy the rank and diagonality properties.

Insert 16 — Clustering: By assuming a selection matrix A in unique
matrix factorization, we obtain a clustering model. Indeed, the columns of
B then contain the cluster vectors, and the positions of the nonzero entries

15Furthermore, each diagonal consists of only a single nonzero entry. More specifically, the
diagonal is equal to the corresponding element-wise squared row of X. We ignore this in the
remainder.
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in the rows of A determine the cluster allocations, e.g.:

X =


1 0 0 0
0 0 1 0
...

...
...

...
0 1 0 0

 [b1 b2 b3 b4
]T
.

As the structure in A allows us to assume that each matrix Z(a)
n is diagonal,

Z(x) admits a rank-R CPD with

Z(x) =
r
B,B,D(a)

z
. (2.20)

Furthermore, the diagonal of Z(a)
n consists of squared entries of the nth

row of A. Hence, we have D(a) = A ∗ A.16 The CPD is unique under
mild conditions on A and B, and each cluster contributes a rank-1 term to
T (x). The condition on A, for example, only requires that each column of A
contains at least one nonzero entry, i.e., that from each cluster at least one
observation is available.

In topic modeling, for example, each vector br collects the occurrence
probability of a set of N dictionary words for the rth topic, and each vector
xk contains the occurrence frequency of the dictionary words in the kth
document [18]. The goal then consists of allocating a topic to each document.
It is equal to the ‘bag-of-words’ problem, and is a specific instance of latent
Dirichlet allocation [47]. The latter allows mixed models in which documents
can rely on more than one topic.

Instead of occurrence frequency or probability data, the given vectors can also
be feature vectors. For example, in MRI processing, stacked outer products
have been used to differentiate tumor tissue types, with each tissue type
corresponding to a different feature vector and hence different cluster [46].

Note that the CPD formulation avoids the use of heuristic algorithms such
as k-means [185]. In the presence of noise, algebraic CPD algorithms may
still give suboptimal estimates of the matrix A and the cluster vectors in B.
If Gaussian noise is added to each row of X with statistics that depend on
the specific cluster the row belongs to, the problem is equivalent to Gaussian
mixture parameter estimation [157, 193]. Higher-order moments as discussed
in Section 2.7.3 may be more appropriate because of their noise reduction
abilities.
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Stacked covariance matrices

Let now x1, . . . ,xK be observations of K stochastic variables χ1, . . . , χK with
the latter being collected in a random vector χ ∈ KK . The covariance matrix of
χ is defined as C(x) = E {χ(t)χH(t)}. Given the observations x1, . . . ,xK , the
sample covariance matrix Ĉ(x) = 1

N−1XHX is an unbiased estimator of C(x).
The covariance matrix is diagonal if and only if the variables χk are uncorrelated.
Consequently, it is also diagonal if the variables χk are statistically independent.
However, the diagonality of C(x) is not sufficient for independence. Hence, C(x)

by itself does not provide sufficient information for, e.g., independent component
analysis (ICA) [89, 210], such that additional matrices need to be computed.
These matrices can then be stacked such that tensor tools can be employed.

One may for instance compute a number of different covariance matrices. Several
variants have been reported in the literature. Lagged covariance matrices, for
example, compare time-delayed signal versions:

C(x)(ρ) = E {χ(t)χH(t− ρ)} .

Covariance matrices can also be estimated in function of the specified time
frame. In the following, sρ and eρ denote the start and end of each time frame
indicated by ρ, respectively:

C(x)(ρ) = E {χ(t)χH(t)}sρ≤t<eρ .

Instead of varying only the lag or frame index, both may be varied by considering
time-frequency representations and selecting specific time–frequency working
points, cf. Section 2.6.5. Indeed, one can for example consider the cross-
Wigner–Ville distribution which is closely related to the covariance matrix. The
selection of time–frequency points corresponds to the sparsifying effect of the
representations [36]. For example, it can be useful to select those time–frequency
points where at most one of the underlying signal components is active.

Furthermore, covariance matrices with different complex conjugate patterns can
be stacked as well, e.g., E {χ(t)χT(t)} and E {χ(t)χH(t)}.
Instead of covariance matrices, so-called eigenmatrices of fourth-order cumulants
have also been considered. These matrices are defined as reshaped eigenvectors
of an unfolded fourth-order cumulant. We will discuss higher-order cumulants
in more detail in 2.7.3.

16A more technical way to recognize the CPD is as follows: Z(3) = X�TX =
(ABT)�T (ABT) = (A�TA) (BT ⊗BT). Because of the structure in A, ai ∗ aj = 0N

for i 6= j. By omitting the cross-terms, we obtain (A ∗A) (BT�TBT) = (A ∗A) (B�B)T.
The latter is an unfolded version of

q
B,B,D(a)y along the third mode with D(a) = A ∗A.
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Insert 17 — Independent component analysis: The mentioned tech-
niques have been used for ICA, in which one tries to recover a set of mutually
independent source signals. Instantaneous ICA is a specific instance of
unique matrix factorization from Insert 1, with X and A consisting of a set
of observed signals and a set of source signals, respectively. B acts as mixing
matrix. Each technique yields diagonal matrices for sets of independent
signals such that for each technique a CPD is obtained as discussed in
Insert 15.

However, each technique typically requires an additional working assumption.
For example, lagged covariance matrices are only diagonal for temporally
coherent independent signals. Such matrices are used in the algorithm for
multiple unknown signals extraction (AMUSE) [360] which relies on a single
lag17 and in the second-order blind identification (SOBI) algorithm [33, 34]
which uses multiple lags. For time-depending covariance matrices to be
diagonal, on the other hand, it is required that the signals are non-stationary.
These matrices have not only appeared in a signal processing context [295, 347]
but also in a context of directed network topology inference [320]. By stacking
covariance matrices with mutually different complex conjugate conventions,
non-circular signals can be separated [108]. Furthermore, working with
matrices which are evaluated in different time–frequency points typically
involves the assumption of sparsity [35, 305, 406]. Finally, when using
eigenmatrices of fourth-order cumulants, it is assumed that the source signals
are non-Gaussian.

Note that besides each technique-dependent working assumption there are
also typically mild algebraic conditions present, related to the uniqueness
conditions of the CPD of Z(x). In SOBI, for example, the source signals
cannot be recovered if their autocorrelations are scaled versions of each
other [33].

Stacked Hessian or Jacobian matrices

A tensor can be obtained by stacking Hessian or Jacobian matrices evaluated
in different points, as discussed in Section 2.4.3. An example is the covariance
matrix which is the Hessian matrix of the second characteristic function
evaluated in the origin. Hence, all stacked matrices from Section 2.7.1 may
be interpreted as stacked Hessian matrices. Note that the origin is merely a

17There is a close link between AMUSE and canonical correlation analysis as well [155,
192].
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practical choice; other evaluation points can also be used but lead to more
complex expressions [93, 405].

Instead of Hessian matrices, one can also stack Jacobian matrices. This has for
instance been used for multivariate function decoupling, as discussed in Insert 3.

One might wonder how the concept of derivatives is related to the evaluation
of a function z(u(1),u(2), ρ) as discussed in the beginning of this section. The
answer is not straightforward, but will be given in Section 2.7.

2.7.2 Collection of matrices indirectly resulting in a
CPD

In the previous section, a number of techniques have been reviewed which stack
parameter-depending matrices. In various cases, these techniques have enabled
the use of a CPD through the fact that the constructed matrices are diagonal
for a specific set of vectors. For example, stacked outer products yield diagonal
matrices for a given selection matrix, while covariance matrices are diagonal for
independent signals. This diagonal property readily yields a CPD.

However, algorithms have appeared in which a CPD is obtained only after some
manipulations. In this section, we will show that these algorithms can each be
linked to the construction of a tensor by stacking different matrices. Instead
of a diagonal property for a specific set of vectors, these matrices satisfy other
kinds of properties.

Unlike in other sections, we will focus specifically on the problem of unique
matrix factorization, i.e., the recovery of A and B given X = ABT. In the
previous CPD appearances in applications such as deterministic BSS from
Insert 13, clustering from Insert 16 and ICA from Insert 17, one or more of the
factor matrices was equal to B. Rather than B, it can be seen that a so-called
‘separation matrix’ W =

(
B−1)T is recovered from the CPDs in this section

such that XW = A.

We start the discussion with an introductory case study on the separation of
constant modulus signals in Section 2.7.2. We then generalize the procedure in
Section 2.7.2 and provide an overview of the properties that also lead to a CPD
after some manipulations, apart from the diagonal property. We then provide a
number of examples of the technique in Section 2.7.2.
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Case study – Separation of constant modulus signals

Let us assume that the entries of A have constant modulus, i.e., |anr|2 =
anra

?
nr = c, with c ∈ R the square of the constant modulus. Each observed

vector xk is an instantaneous mixture of the constant modulus signals a1, . . . ,aR
[384]. We assume K = R but we continue to use both symbols to improve
readability. If K > R we can apply a dimension reduction technique such as
PCA [208] to obtain the case K = R.

Similar to Section 2.7.1, we will apply a function z(u(1),u(2), ρ), namely

z(u(1),u(2), ρ) = u(1)
ρ

(
u(2)
ρ

)?
.

The parameter ρ corresponds to the sample index n. After evaluation in
{x1, . . . ,xK}× {x1, . . . ,xK} and {a1, . . . ,aR}× {a1, . . . ,aR} for n = 1, . . . , N ,
we obtain the tensors Z(x) ∈ KK×K×N and Z(a) ∈ KR×R×N with slices Z(x)

n

and Z(a)
n , respectively. The function z is linear in u(1) and in u(2) such that, as

discussed in Insert 15, we can write

Z(x) = Z(a) ·1 B ·2 B? (2.21)

or

Z(x)
1 = BZ(a)

1 BT,

...

Z(x)
N = BZ(a)

N BT.

In this case, unlike in Section 2.7.1 and Figure 2.13, the matrices Z(a)
n are not

diagonal. However, we know that each diagonal entry of F(a)
n is constant and

equal to c. Under this constraint, the problem in (2.21) can be solved in a
classical optimization setting. On the other hand, it is clear that there is only
little difference with solving the standard problem X = ABT under the constant
modulus constraint on A. However, as we will now show, (2.21) does provide a
basis to derive algebraic algorithms and uniqueness conditions.

Let us consider the previously defined separation matrix W ∈ KK×R such that
A = XW. For each separation vector wr, we obtain a constant modulus vector
Xwr = ar. From (2.21), it follows that

Z(x) ·1 WT ·2 WH = Z(a). (2.22)
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Recalling that Z(3) is the mode-3 unfolding of Z, (2.22) is equivalent to

Z(x)
(3) (W? ⊗W) = Z(a)

(3) .

Let us only consider the equations that correspond to the diagonals of Z(x)
n

and Z(a)
n , and let D(a) contain the diagonals of Z(a)

n as in Section 2.7.1, i.e.,
D(a) =

[
diag(Z(a)

1 ), . . . ,diag(Z(a)
N )
]T

∈ CN×R. Hence, we have

Z(x)
(3)Y = D(a) = c1N×R, with Y = W? �W. (2.23)

This is a linear system in which each solution has a Kronecker structure, i.e.,
w?
r � wr. This can be solved with suitable algebraic or optimization-based

algorithms.

Let us go one step further and relax the structure of the columns of Y to reduce
(2.23) to a homogeneous system. This will allow us to uncover a CPD in the
null space of Z(x)

(3) from which W can be estimated. By applying a Householder
or discrete Fourier transform, among others, and omitting the first row, the
problem can be easily transformed to

Z̃(x)
(3)Y = 0N×R (2.24)

with Z̃(x)
(3) ∈ C(N−1)×K2 . From (2.24) we know that the dimension of the null

space of Z̃(x)
(3) is at least R. This corresponds to the fact that there are R

separation vectors yielding R constant modulus signals. Let us assume that
there are sufficient samples available such that the number of rows of Z̃(x)

(3) is
larger than K2 −R, and that the dimension of the null space is exactly equal18

to R. Let the columns of N ∈ CK2×R form a basis of this null space. There
exists a matrix Λ ∈ CR×R such that N = YΛT = (W? �W) ΛT. Hence, by
reshaping N to the tensor N ∈ CK×K×R, the rank-R CPD N = JW,W?,ΛK is
obtained. After estimating W, both A and B can be recovered. This sequence
of steps forms the basis of the well-known analytical constant modulus algorithm
(ACMA) [384]. Note that this third method is fundamentally different from the
second method, as solving (2.23) on the one hand and computing the CPD of
N after the computation of the null space from (2.24) on the other hand both
involve different weightings.

18This corresponds to r(Z̃(x)
(3) ) = K2 −R, which is a valid assumption if the phases of the

source samples are sufficiently random, cf. [363, 384].
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Generalization

The case study in the previous section leads us to an important novel concept:
as long as a function z(u(1),u(2), ρ) can be found that yields a tensor F (a)

of which the slice diagonals have constant entries, a CPD emerges provided
a number of algebraic conditions are satisfied. This concept can be further
generalized as we will now discuss. A CPD can also be obtained if the diagonals
of F(a)

l (cf. Figure 2.13) yield a zero matrix, a rank-1 matrix, or more generally,
a matrix of rank at most R− 2.

Let us first discuss the rank-1 variant. A Householder or discrete Fourier
transform is not necessary to uncover a CPD from (2.23). Obviously, the
constant matrix c1N×R = c1N1T

R has rank 1; let us assume that D(a) = ghT

with g ∈ KN and h ∈ KR. Hence, under the same conditions as before on
the number of samples and the column rank of Z(x)

(3) , it can be assumed from
(2.23) that the null space of Z(x)

(3) has exactly dimension R− 1. Let the columns
of N ∈ KK2×(R−1) form a basis of this null space. By folding N to a tensor
N ∈ KK×K×(R−1) as before, a rank-R CPD N = JW,W?,ΛK emerges again.
Note that we do not need to know the values in g or h to obtain the CPD.

The rank-1 condition on D(a) can be relaxed even further, as the rank of D(a)

can be up to R − 2. In the latter case, as long as the algebraic conditions
are satisfied, a tensor N ∈ KR×R×2 is obtained that admits a rank-R CPD.
Although N consists of only two slices, the CPD can still be unique following
from Kruskal’s uniqueness conditions [230]. Note that the rank of D(a) cannot
be larger than R− 2. If r(D(a)) = R− 1, for example, the the null space has
dimension one and folding a basis of this null space only yields a matrix rather
than a third-order tensor.

On the other hand, instead of having rank 1 or higher rank, D(a) can also
immediately be a zero matrix, i.e., D(a) = 0N×R. A reduction to a homogeneous
system as in (2.24) is then obviously not necessary. Folding a basis of the null
space of Z(x)

(3) readily yields a K×K×R tensor N of rank R, provided the same
conditions as before are satisfied. Note that D(a) = 0N×R results in hollow
matrices Z(a)

n , i.e., the diagonals of Z(a)
n are zero. It is interesting to connect

this to the techniques from Section 2.7.1 such as SOBI. There, the diagonal
entries of Z(a)

l were assumed to be non-zero while the off-diagonal entries were
assumed to be zero. Here, it is exactly the opposite. As we have uncovered,
both properties effectively lead to a CPD, whether directly or indirectly.

There is an important connection with the technique from Section 2.6.4. While
the latter considers monomial relations, the function z in this section is related
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to the broader class of polynomial relations. The vectors ar are then assumed
to lie on algebraic varieties. If D(a) = 0N×R, for example, the algebraic variety
is then the set of solutions of a system of homogeneous polynomial equations.

Other examples

One of the first appearances of the technique can be found in [70], discussing the
decomposition of the fourth-order cumulant19 in the context of underdetermined
ICA. The presented so-called rank-1 detection device was later applied to obtain
an algebraic algorithm for a CPD of which only one factor matrix has full column
rank [99]. Indeed, the CPD X = JG,H,BK with G ∈ KI×R and H ∈ KJ×R
can be seen as a unique matrix factorization problem

(
X(3)

)T = ABT with
A = H�G. Ported to this framework, the following function is then used:

z(u(1),u(2), i1, i2, j1, j2) = e
(1)
i1j1

e
(2)
i2j2

+ e
(1)
i2j2

e
(2)
i1j1

− e(1)
i1j2

e
(2)
i2j1
− e(1)

i2j1
e

(2)
i1j2

, (2.25)

in which E(1) and E(2) are segmented versions of u(1) and u(2), respectively,
with dimensions I×J . The matrices obtained by evaluating z in {x1, . . . ,xK}×
{x1, . . . ,xK} or {a1, . . . ,aK} × {a1, . . . ,aK} can then be stacked for all
meaningful combinations of parameter values 1 ≤ i1 < i2 ≤ I and 1 ≤ j1 <
j2 ≤ J , yielding the tensors Z(x) and Z(a), respectively. It can be seen that
the diagonals of the slices of Z(a) are all zero, following from the fact that each
column of A can be written as ar = hr � gr. Hence, the discussed procedure
can be applied to recover B and subsequently G and H.

Furthermore, in [346], a similar technique is used to obtain an algebraic algorithm
for the multilinear rank-(Lr, Lr, 1) decomposition. The ideas are generalized in
[130] to allow the computation of a CPD of which none of the factor matrices
has full column rank.

The separation of constant modulus signals as illustrated in Section 2.7.2 has
recently been extended to multi-modulus signals (such as 16-QAM signals),
yielding a set of coupled CPDs [122]. Separation techniques based on the same
approach as ACMA have also appeared for discrete / finite alphabet [172],
constant power [411], binary [383] and on/off signals [385].

In Section 2.6, we have explored techniques to separate (evaluated) exponential
functions and rational functions, allowing the recovery of B. These models can
be ported to this framework as well, recovering the separation matrix W. For

19See Section 2.7.3.
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example, in the case of exponentials [339], F (x) can then be constructed using
the following function:

z(u(1),u(2), n) = 2u(1)
n u(2)

n − u(1)
n+1u

(2)
n−1 − u

(1)
n−1u

(2)
n+1

with 1 < n < N . It is easy to see that the slice diagonals of F (a) are zero
if and only if the vectors ar are exponentials, as they satisfy the property
a2
nr = an−1,ran+1,r. Similar to the technique presented in Section 2.6.4, this

technique is more flexible compared with the Hankelization and segmentation
procedures and can be used if some samples are missing, if the signals are not
equidistantly sampled, or for non-standard array shapes.

2.7.3 Direct construction of a tensor

Instead of constructing a tensor by concatenating matrices, it is also possible
to directly obtain a higher-order tensor from a given matrix X. Higher-order
moments and cumulants, for example, are two well-known types of higher-order
statistics [276]. Although defined as higher-order derivatives of characteristic
functions, they are most common in their explicit form as we will point out.
Moments are closely connected with N -grams from natural language processing
[59]. We will illustrate the use of moments and N -grams for clustering in
Section 2.7.3 and make links with stacked outer products. Cumulants, on the
other hand, are prevalent in independent component analysis as will be shown
in Section 2.7.3. The use of adjacency tensors in graph analysis is discussed in
Section 2.7.3, while neural networks have also clear links with tensors through
score functions. The latter is covered in Section 2.7.3.

Insert 18 — Unique matrix factorization: The approach for unique
matrix factorization using the direct construction of a higher-order tensor
typically consists of the following. Let the tensorization technique be defined
by the function z(u(1), . . . ,u(D)), and let Z(x) and Z(a) be the order-D
tensorized versions of X and A, respectively. Similar to the discussion in
Insert 15, a multilinear function z allows one to write

Z(x) = Z(a) ·1 B · · · ·D B.

Under the assumption of diagonality of Z(a), Z(x) admits the CPD Z(x) =q
d(a); B, . . . ,B

y
with d(a)

r = z
(a)
r···r. This CPD is unique under mild conditions

such that B (and subsequently A) can be recovered.
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Higher-order moments and N-grams

Higher-order statistics (HOS) have seen a broad use in statistical theory, signal
processing and data analysis [89, 266, 277]. The original definition of HOS is
based on higher-order derivatives of a characteristic function, while a better
known version of the definition is based on the evaluation of a function z in
a product set. We will show how these two versions are linked to each other.
In this section, we will limit the discussion to higher-order moments; higher-
order cumulants are covered in Section 2.7.3. The concepts apply to covariance
matrices (Section 2.7.1) as well, as covariance matrices are second-order versions
of cumulants. Higher-order moments are also known as N -grams in natural
language processing and computational linguistics as we will point out [59].

We consider again the set of stochastic variables χk instead of the observations
xk. The derivations are also valid for the latter by substituting the expectancy
operator with the mean. Let

g(υ) = E
{
ejυ
}

(2.26)

with υ a stochastic variable and let us substitute υ = ω1χ1 + . . .+ ωKχk such
that the function

h(ω1, . . . , ωK) = E
{
ej(ω1χ1+...+ωKχK)

}
(2.27)

is obtained. This function is also known as the first characteristic function.
Moments of order D are now defined as the stacked derivatives of order D of
h(ω1, . . . , ωK) evaluated in ω1, . . . , ωK = 0 and scaled by 1/jD. The stacking of
higher-order derivatives has already been discussed in Section 2.4.3. Formally,
we have the momentM∈ RK×···×K of order D with for all indices:

mk1···kD = 1
jD

∂DE
{
ej(ω1χ1+···+ωKχK)}
∂ωk1 · · · ∂ωkD

∣∣∣∣∣
ω1,...,ωD=0

. (2.28)

Hence, each entry ofM contains the derivative of order D h to a combination of
D variables from ω1, . . . , ωK in which repetition is allowed. This is the classical
derivative-based definition of the higher-order moment. However, in practice, it
can be cumbersome to compute these higher-order derivatives. Another version
of the definition is much more established, which can be linked to the evaluation
of a function z(υ1, . . . , υD) in a product set.

Let us first compute the derivatives by applying the chain rule. Then, one can
write

M = E
{(

1
jD

∂Dg(υ)
∂υD

∣∣∣∣∣
υ=0

)
(χ ⊗ · · · ⊗ χ)

}
.
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The scalar term in the brackets is equal to 1. Hence, the following simple
well-known explicit formula for the higher-order moment emerges with for all
indices:

mk1···kD = E {χk1 · · ·χkD} . (2.29)

The attentive reader has now been able to detect two different types of
tensorization in both definitions ofM. On the one hand, following the definition
in (2.28), the tensorM consists of higher-order derivatives of the function g(υ).
On the other hand, following the definition in (2.29),M consists of evaluations
of the function

z(υ(1), . . . , υ(D)) = E
{
υ(1) · · · υ(D)

}
(2.30)

in the product set {χ1, . . . , χK} × · · · × {χ1, . . . , χK}. The two tensorization
techniques are associated with each other because of the use of the linear
combination substitution in (2.27). (2.30) can be seen as a simplified form of

z(υ(1), . . . , υ(D)) = 1
jD

∂DE
{
ej(ω1υ

(1)+···+ωDυ(D))
}

∂ω1 · · · ∂ωD

∣∣∣∣∣∣
ωd=0

.

The latter is the polar form of g(υ) obtained through polarization [233, 355]. The
two different derivations leading to the same tensorM can then be summarized
as follows:

1. Substitute υ in g(υ) with ω1χ1 +· · ·+ωKχK and compute the higher-order
derivatives of h in zero for each combination of D variables ωk or

2. Substitute υ in g(υ) with ω1υ
(1) + · · · + ωDυ

(D), compute the higher-
order derivative to ω1, . . . , ωD in zero and evaluate z(u(1), . . . ,u(D)) in
the Cartesian product set {χ1, . . . , χK} × · · · × {χ1, . . . , χK}.

The same tensor emerges by following both procedures.

In practice, often only observations of the stochastic variables are available. The
expressions remain valid by substituting υ and χ with u and x, respectively,
and by replacing the expectancy operator by the mean. Procedures 1 and 2 in
this discrete case are then visualized in Figure 2.14, respectively on the right
and left.

Although used in a different context, N -grams are mathematically equal to
higher-order moments. N -grams are defined as the co-occurrence probabilities
of objects, such as words in the same document or topic. By collecting the
occurrence probabilities of words in each document or topic in a matrix X, the
N -grams are equal to the order-N moments of X.
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Substitution of u with
ω1u(1) + · · · + ωLu(L)

Compute derivative
∂D/∂ω1 · · · ∂ωD

in ω1, . . . , ωD = 0

Evaluate in
Cartesian product
set {x1, . . . , xK} ×
· · · × {x1, . . . , xK}

Evaluate in uk = xk

Compute all possible
order-D derivatives

to ω1, . . . , ωK

Evaluate in ωk = 0

Same order-
D tensor

Z ∈ KK×···×K

g(ω1u(1) + · · ·+ ωDu(D))

z(u(1), . . . , u(D))

g(ω1u(1) + · · ·+ ωKu(K))

h(ω1, . . . , ωK)

P(ω1, . . . , ωK)

g(u)

PolarizationPolarization

Figure 2.14: Illustration of the order-D tensorization of K data vectors
x1, . . . ,xK ∈ KN based on a scalar function g(u) with u ∈ KN . Two different
sequences of steps yield the same tensor Z, each induced by fundamentally
different tensorization techniques (in blue). The functions g(υ) = E

{
ejυ
}
and

g(υ) = log E
{
ejυ
}
then lead to the higher-order momentM and higher-order

cumulant C, respectively, as discussed in Sections 2.7.3 and 2.7.3.
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Insert 19 — Clustering: Let us recall the clustering problem from
Insert 16. By computing, e.g., the third-order moment (or trigram) of X, we
obtain a CPD:

M(x) =M(a) ·1 B ·2 B ·3 B =
r
π(a); B,B,B

z
, (2.31)

with π(a) the diagonal ofM(a). Indeed, if A is a selection matrix,M(a) is
diagonal. The vector π(a) then contains the probabilities of each cluster (or
topic in topic modeling) [18, 193, 324].

It can be seen that the higher-order moments are reduced versions of the
stacked higher-order outer products in Section 2.7.1. A third-order moment,
then, is obtained by applying a summation along the fourth mode of the
tensor obtained by stacking third-order outer products. The CPD in (2.31)
is then a direct consequence from the CPD obtained in (2.20).

In the presence of noise, some additional measures can be taken. For example,
the smallest eigenvalues of the covariance matrix of X give an indication of the
noise variance [193]. By subtracting the noise contributions from the moments,
the noise can be neutralized to some extent. It is not straightforward to
incorporate the knowledge of the noise statistics in stacked outer products
from Section 2.7.1.

Higher-order cumulants

In the previous section, we have explained that higher-order moments can be
defined as the higher-order derivatives of the first characteristic function, and
that they can also be defined as the evaluation of some multivariate function in
a product set. The same is true for higher-order cumulants, which follow from
the function g(υ) = log E

{
ejυ
}
. Note the additional log compared to (2.26).

After substitution of ω1υ1 + · · ·+ ωKυK , the second characteristic function is
obtained:

h(ω1, . . . , ωK) = log E
{
ej(ω1χ1+...+ωKχK)

}
.

The cumulant of order D [39, 354] is defined as the stacking of all derivatives
of order D of h(ω1, . . . , ωK) evaluated in the origin. The second-order
cumulant which is known as the covariance matrix consists of the entries
ck1k2 = E {χ̃k1 χ̃k2} with χ̃ the zero-mean version of χ, while the entries of the
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fourth-order cumulant are defined as

ck1···k4 = E {χ̃k1 χ̃k2 χ̃k3 χ̃k4} − E {χ̃k1 χ̃k2}E {χ̃k3 χ̃k4}

− E {χ̃k1 χ̃k3}E {χ̃k2 χ̃k4} − E {χ̃k1 χ̃k4}E {χ̃k2 χ̃k3} .

Alternatively, C can be defined as the evaluation of the polarized form z of g(υ)
in the Cartesian product set with

z(υ1, . . . , υ4) = E {υ̃1υ̃2υ̃3υ̃4} − E {υ̃1υ̃2}E {υ̃3υ̃4}

− E {υ̃1υ̃3}E {υ̃2υ̃4} − E {υ̃1υ̃4}E {υ̃2υ̃3} . (2.32)

It is well-known that mutually independent stochastic variables χ1, . . . , χK yield
a diagonal cumulant [266, 267], but it is less clear why. In contrast to moments,
it can be seen that the diagonality emerges because of the presence of the
log function. Relying on the fact that E {υ1υ2} = E {υ1}E {υ2} for mutually
independent stochastic variables υ1 and υ2, h(ω1, . . . , ωK) can be written as a
sum of univariate functions with

h(ω1, . . . , ωK) = log E
{
ejω1χ1

}
+ · · ·+ log E

{
ejωKχK

}
.

We have seen in Section 2.4.3 that a sum of univariate functions yields a diagonal
higher-order derivative tensor.

Again, in the discrete case, the expectancy operator, υ and χ can be replaced
by the mean20, u and x, respectively. The obtained sample cumulant Ĉ will be
approximately21 diagonal for mutually independent signals.

Insert 20 — Independent component analysis: Because of the
diagonality of cumulant tensors for mutually independent stochastic variables,
cumulants are often used for the separation of non-Gaussian mutually
independent signals in ICA [89]. This readily yields a CPD, as discussed in
Insert 18. As the covariance matrix does not provide sufficient information,
and as the third-order cumulant tensor is zero for symmetric distributions,
fourth-order cumulants are most common. In early ICA algorithms, the
covariance matrix was used in a PCA-based preprocessing step to obtain
orthogonal factor matrices in the subsequent tensor decomposition [69, 71].
In the presence of (Gaussian) noise, however, it has been shown that the PCA

20Better estimators for the cumulant entries exist such as the k-statistics which are the
minimum-variance unbiased estimators [213]

21Observe the difference with the diagonal property of higher-order moments. While a
finite sample cumulant is only approximately diagonal for mutually independent variables,
the higher-order moment is exactly diagonal for selection matrices.
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step can introduce significant errors and prevents asymptotically unbiased
estimates [110]. Furthermore, developments have led to well-established
CPD algorithms that are able to cope well with non-orthogonal and possibly
ill-conditioned factor matrices.

Rather than using only fourth-order cumulants [70], it can still be beneficial
to combine these cumulants with covariance matrices (and other meaningful
lower-order statistics) which typically suffer less from estimation errors [49,
153]. For example, the covariance matrix can be concatenated with the
reshaped version of the fourth-order cumulant of size K ×K ×K2, whereas
coupled tensor decompositions might provide a more flexible approach.
Second, it can be beneficial to assume the covariance matrix diagonal as
unknown, as it consists of the largest noise contribution in the case of
uncorrelated noise components. Note that a series of cumulants up to order
D can also be stacked in a (K + 1) × · · · × (K + 1) tensor of order D and
subsequently decomposed as explained in Section 2.4.3.

In any case, sufficient importance should be placed on the weighting of the
various statistics. A statistically optimal weighting exists, but can be hard to
find. We refer the interested leader to [357, 404], while weighting techniques
dealing with stacked covariance matrices from Section 2.7.1 can be found in
[68, 144, 403].

Graph adjacency tensors

Graphs are defined as sets of vertices or nodes and edges, the latter typically
expressing relations between those nodes. Nodes can represent objects, persons,
locations or events, amongst others. Graphs are often seen as abstractions of
networks (such as social, computer or supply networks), and can be (un)weighted
and/or (un)directed [356]. Although typically visualized graphically, cf.
Figure 2.15, one can express a graph with K nodes uniquely with its square
K×K adjacency matrix X, which will be binary and symmetric for unweighted
and undirected graphs, respectively. X contains the second-order structure of
the graph, i.e., entry xik expresses the connection from node i to node k with
xik = 0 denoting a non-existing connection. Hence, porting this concept to
the framework in this section, a graph corresponds to a given set of vectors
x1, . . . ,xK , with the kth vector denoting the connections to node k.

Tensors have appeared in graph theory before, typically in the form of stacked
adjacency matrices of different graph instances. Each adjacency matrix then
corresponds to the same set of nodes but to a different set of edges, typically
forming a layered or time-evolving graph. For example, airports can be linked
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Figure 2.15: An example of a graph with two clearly identifiable yet connected
clusters.

through different airlines [400], websites can be linked through a number of
different keywords [224], or authors can be linked through different citations
or collaborations [292]. In [319, 320], adjacency matrices corresponding to
different time instances are stacked. The tensorization technique is then similar
to the concept discussed in Section 2.7.1, consisting of the stacking of different
(parameter-dependent) matrices.

On the other hand, tensors appear more naturally by considering higher-order
graph structures, which can be entirely deduced from the adjacency matrix. X
can then be tensorized to the adjacency tensor Z ∈ KK×K×K , using suitable
definitions. For example, for a binary symmetric X, the triangle adjacency
tensor consists of entries zijk = 1 if xij = xik = xjk = 1 or if any two indices are
equal and zijk = 0 otherwise, i.e., ‘triangle’ connections between nodes i, j and
k are extracted [252, 374]. Other higher-order types such as stars correspond to
other adjacency tensor definitions [374].

Adjacency tensors also form the basis of transition tensors corresponding to
higher-order Markov chains. For example, the entries pijk of a transition tensor
P indicate the transition probability from current state j to state i given the
previous state k. Transition tensors have been used in applications such as
multilinear pagerank [41, 163, 400].

Insert 21 — Graph clustering: A common objective in graph theory is
the identification of specific clusters in graphs, i.e., well-connected subgraphs.
Let us consider a graph with K nodes and R clusters, with the rth cluster
containing Kr nodes. Nodes in the same cluster are assumed to be fully
connected and there exist no connections between clusters. For R = 2, a
so-called bipartite graph is obtained.

Let us construct the triangle tensor Z. By ordering the nodes of the graph
such that nodes of the same cluster are grouped, it can be seen that Z is a
block diagonal tensor with blocks consisting of all ones. Note that the tensor
with all ones has rank 1 and can be written as 1K ⊗ 1K ⊗ 1K . It is easy to
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show that Z admits a rank-R CPD Z = JU,U,UK with factor matrix [17,
41, 374]

U =


1I1 0 · · · 0
0 1I2 · · · 0
...

...
. . .

...
0 0 · · · 1IR

 .
Even if the nodes are not reordered, the clusters can be easily extracted
using a truncation procedure or data clustering techniques such as k-means
[185]. In the non-ideal case where clusters are not fully connected and with
connections between clusters, such as in Figure 2.15, the CPD holds only
approximately, but still a suboptimal estimate of U can be obtained [374].
The clusters can then easily be extracted.

Higher-order score functions

Higher-order score functions are similar to moments [205]. Given a stochastic
vector χ ∈ KK and its probability density function p(x) in function of an
observation x ∈ KK , the order-D score function S(x) ∈ KK×···×K is defined as

S(x) = (−1)DP (x)
p(x) , (2.33)

with P holding the higher-order derivatives of p as discussed in Section 2.4.3.
Considering a particular model which maps an observation x of χ to y(x) ,
the so-called corresponding cross-moment tensor T ∈ KK×···×K of order D is
defined as

T = E
{
y(x)S(x)

}
. (2.34)

The cross-moment tensor has special properties for specific types of models, e.g.,
for neural networks with a single hidden layer as we discuss in Insert 22

Insert 22 — Neural networks: Let us consider a given set of feature
vectors with corresponding scalar labels. We will model the classifier by a
neural network with a single hidden layer.

Note that the results can easily be generalized to vector labels. The neural
network is modeled as follows:

y(x) = bTσ(ATx), (2.35)
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as depicted in Figure 2.16. The so-called activation function σ is evaluated
element-wise and is assumed to be sufficiently differentiable. Note that
constant terms can be added by considering an additional input xK+1 = 1,
cf. the homogenization procedure from Section 2.5.2.

Let us assume N feature vectors are given which are the rows of the given
matrix X. The vector x in (2.33), (2.34) and (2.35) can then be substituted
with the nth row of X. Each feature vector can be seen as an observation of
a stochastic vector χ, of which we know the probability density function p.
The nth feature vector corresponds with the label yn. The goal consists of
finding the matrix A and the vector b given these observations. Typically,
these are recovered by training the neural networks using methods such as
back propagation [186].

Alternatively, let us construct the cross-moment tensor T . In practice, we
have

T = 1
N

∑
n

ynS((XT)n).

If the labels yn satisfy the model in (2.35), it has been proven that the cross-
moment tensor T of order D from (2.34) admits a CPD T = JA, . . . ,AK
[204, 205]. By constructing T and applying a CPD, the matrix A can
readily be obtained. Hence, computing the CPD is equivalent to training
the neural network. Note that algebraic CPD algorithms exist which do
not suffer from local optima, unlike optimization-based algorithms. If the
labels do not perfectly follow the model, algebraic CPD algorithms can still
provide suboptimal estimates of A which can serve as initializations for
optimization-based techniques.

The appearance of the CPD can be understood from the fact that the function
σ is applied element-wise, as is also the case in the decoupling of multivariate
functions discussed in Insert 3. Indeed, it can be shown that the neural
network model is a specific instance of the model in (2.4). However, the
technique from Insert 3 cannot be applied in the case of neural networks as
the higher-order derivatives of y are typically unknown. The method based
on score functions considers the derivatives of the probability density function
of the inputs rather than the derivatives of y.

Further notes on polarization

Higher-order statistics, adjacency tensors and score functions might be the most
well-known techniques that map a given matrix X to a multiway tensor. As
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Figure 2.16: Visualization of a neural network with one hidden layer. The
input is an observation of the stochastic vector χ ∈ KK . The neural network
considers a scalar label y but this can be extended easily to a vector output.

discussed, each function z(u(1), . . . ,u(D)) has the capability of tensorizing a
given set of vectors x1, . . . ,xK to a tensor of order D. To be able to apply tensor
tools in a subsequent step, the function z typically needs to be multilinear.

The polarization-based discussion in Section 2.7.3 provides a novel framework as
it shows that each function g(u) leads to a function z(u(1), . . . ,u(D)), called the
polar form of g(u), which can be used to map a given set of vectors to a tensor.
Furthermore, it is well known in algebra that the polar form is multilinear [233,
355]. We reproduce a brief proof of this in the appendix of this chapter. This is
not unimportant: it shows that a meaningful multilinear tensorization technique
can be obtained by choosing a suitable function g(u) or g(υ).

We have explained that both higher-order moments and higher-order cumulants
originate from a particular choice of g(υ), namely from g(υ) = E

{
ejυ
}
and

g(υ) = log E
{
ejυ
}
, respectively. Although not presented in such a way, the

determinant function g(U) = det(U) lies at the core of the algebraic algorithm
developed in [130] to compute a CPD in which none of the factor matrices has
full column rank. This function gives rise to the mixed discriminant function

z(U(1), . . . ,U(D)) =
D∑
d=1

∑
1≤id≤D
i1<···<iD

(−1)(D−d) det(U(i1) + · · ·+ U(id)).(2.36)

More accurately, the vector function g(U) = vec (CM (U)) is applied which
leads to the (vectorized) polarized compound matrix function z(U(1), . . . ,U(D)).
The latter can be expressed as in (2.36) but with det(·) replaced by vec (CD(·)).
It can be seen that, for D = 2, z contains the scalar functions defined in
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(2.25). Furthermore, it should not come as a surprise that (2.36) and (2.32)
(the definition of the fourth-order cumulant) have a very similar structure, as
they are both derived in a similar way from a function g.

2.8 Further discussions and future work

A number of different concepts have been proposed on how a vector or matrix
can be mapped to a tensor. A tensorization technique should not uniquely
be identified with a single concept, as the concepts can also be joined. For
example, spatio-temporal cumulants merge the concepts of parameter variation
from Section 2.7.1 and the direct construction of a cumulant from Section 2.7.3.
Hence, the spatio-temporal cumulants not only take into account the non-
Gaussian character of the signals but also their non-stationarity. For example,
the spatio-temporal generalization of the fourth-order cumulant yields a tensor of
order seven, each entry depending on a combination of four signals and three time
lags. Spatio-temporal cumulants in combination with tensor decompositions
are particularly useful for blind system identification [150, 247, 373].

Furthermore, tensorization techniques can also be combined and applied
simultaneously. Given a matrix X, twofold tensorization applies a tensorization
technique on each mode of X simultaneously. This can be used to incorporate
assumptions on both A and B given the model X = ABT. This twofold
tensorization then results in a tensor of order four or higher. For example,
in the context of instantaneous BSS, twofold segmentation can be used to
exploit the Kronecker structure of both A (the source level) and B (the mixing
level) [51]. Similarly, if B has a Kronecker structure and A contains mutually
independent and non-Gaussian signals, a combination of segmentation and
higher-order cumulants can be used in a context of ICA [116]. Given a matrix
X, the construction of a compound matrix as discussed in Insert 2 can also be
seen as twofold tensorization.

Many of the tensorization techniques have been illustrated based on a number of
applications such as ICA, clustering and the training of neural networks. While
relatively simple underlying models have been considered, advanced models
might be more appropriate in a real-life setting. Rather than instantaneous
ICA, single-membership cluster models or single-layer neural networks, one
can consider convolutional ICA, mixed-membership cluster models, or neural
networks with multiple hidden layers (deep neural networks) or with feedback
(recurrent neural networks). While tensorization techniques have already seen
a broad use in the convolutive generalization of ICA [150, 247, 373], one can
imagine that the power of tensor tools can also be employed in the context of
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the other generalizations. A limited number of results have already appeared,
discussing the use of CPD in mixed-membership models [17] and the hierarchical
Tucker decomposition for deep neural networks [88].

2.9 Conclusion

This chapter has covered a tensorization framework and has surveyed a large
number of tensorization techniques which have been presented rather disparately
in the literature. Tensorization is defined as the mapping of a vector or matrix
to a tensor or, more generally, of mapping lower-order data to higher-order
data. It has been illustrated how the techniques are fundamental to tensor-
based methods for deterministic blind signal separation, independent component
analysis, data clustering and topic modeling, graph clustering and the training of
neural networks, among others. Links between different tensorization techniques
have been established, such as between segmentation and time–frequency
and time–scale representations, between higher-order statistics and mixed
discriminants through a process called polarization, and between the analytical
constant modulus algorithm and other algebraic variety-based methods. This
polarization procedure allows the development of new multilinear tensorization
techniques. Furthermore, we have recognized that a number of problems that
are ubiquitous in engineering can be well represented by tensors. For example,
the approximation of a non-linear function using a power series expansion is
equivalent to representing the non-linear function by a tensor, and finding the
global optimum of a polynomial within a finite interval is equivalent to finding
the best symmetric rank-1 approximation of a tensor.
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Constructing multilinear functions using
polarization

Theorem 2.1. Each possibly non-linear function g(u) with u ∈ KN of
which the order-D derivatives exist in u = 0 leads to a multilinear mapping
z(u(1), . . . ,u(D)) of the form

z(u(1), . . . ,u(D)) =
∂Dg(ω1u(1) + · · ·+ ωDu(D))

∂ω1 · · · ∂ωD

∣∣∣∣∣
ωd=0

.

Proof. By applying the chain rule, one can see that

∂g(ω1u(1) + · · ·+ ωDu(D))
∂ω1

∣∣∣∣∣
0

= u(1)T ∇g
∣∣
0

with ∇g the gradient of g(u). By applying the other D−1 derivatives, it follows
that

z(u(1), . . . ,u(D)) = P ·1 u(1)T
·2 u(2)T · · · ·D u(D)T

, (2.37)

with P the order-D symmetric tensor of size N×· · ·×N holding the higher-order
derivatives of g(u) in u = 0 as defined in (2.3). The function z from (2.37) is
of the form in (2.6), i.e., it is a multilinear mapping.

In algebra, typically, a polynomial function g(u) is considered. However, g(u)
can be any non-linear function, as long as it is D times differentiable in the
origin.

Corollary 2.1. Each function g(u) may form the basis of a multilinear order-
D tensorization technique. Given vectors x1, . . . ,xK , an order-D tensor of
size K × · · · ×K can be obtained by evaluating the corresponding polar form
z(u(1), . . . ,u(D)) in {x1, . . . ,xK} × · · · × {x1, . . . ,xK}.





Chapter 3

Löwner-based blind signal
separation of rational
functions

Abstract A new blind signal separation (BSS) technique is proposed,
enabling a deterministic separation of signals into rational functions.
Rational functions can take on a wide range of forms, such as the well-known
pole-like shape. The approach is a possible alternative for the well-known
independent component analysis when the theoretical sources are not
independent, such as for frequency spectra, or when only a small number
of samples is available. The technique uses a low-rank decomposition on
the tensorized version of the observed data matrix. The deterministic
tensorization with Löwner matrices is comprehensively analyzed in this
chapter. Uniqueness properties are investigated, and a connection with the
separation into exponential polynomials is made. Finally, the technique is
illustrated for fetal electrocardiogram extraction and with an application
in the domain of fluorescence spectroscopy, enabling the identification of
chemical analytes using only a single excitation-emission matrix.

Reference This chapter is a slightly adapted version of the article [124].
Changes are limited to layout and representation aspects. The candidate
performed the research and wrote the article under the guidance of the
coauthors.
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3.1 Introduction

This chapter deals with the separation of linear mixtures of different source
signals, known as blind signal separation (BSS). The general solution to this
problem is not unique and various approaches have been proposed, ranging from
applying independence assumptions to non-negativity and sparsity constraints
[85]. The former has received the name independent component analysis (ICA) in
which one assumes the sources to be statistically independent [89, 210]. ICA has
already been applied in numerous applications in for example image processing,
finance, telecommunications and biomedical sciences [64, 83, 89, 200]. It is a
stochastic technique, tensorizing the observed matrix data using higher-order
statistics [267]. Many applications do not involve stochastic and independent
signals however, and one can also tensorize the data deterministically. In a
source-related deterministic setting, as in this chapter, the separation of the
observed signals is based on a specific source model.

A first possible source model could be the class of polynomials, as they have
a simple form and well-understood properties. However, polynomial signal
models often require a large number of coefficients. Second and more essential,
polynomial models generally do not allow a unique separation, as will be
illustrated in this chapter. With the family of exponential polynomials (sums
and/or products of exponentials, sinusoids and/or polynomials), a source model
is proposed in [101] which is applicable for blind signal separation by using a
deterministic Hankel tensorization.

This chapter proposes the class of rational functions, contributing to a general
framework of deterministic blind signal separation. They encompass the class
of polynomials, and are able to model complicated structures with a fairly
low degree in both the numerator and denominator; much like autoregressive–
moving-average models are more powerful in the field of system identification
than pure moving-average models [181]. Rational functions are mainly known
because of their pole-like behavior (suitable when modeling frequency spectra,
time-of-flight data, distribution functions, etc.) but can take on an extremely
wide range of shapes in the complex domain; also smooth curves and signals with
both low- and high-varying regions can be modeled. Furthermore, by considering
uniqueness properties, we show in this chapter that rational functions are suitable
in a BSS context. It is also illustrated that the sampling points need not be
equidistant for the proposed technique, contrary to the Hankel technique from
[101].

Another basis for BSS is sparse separation in which one uses a fixed signal
dictionary with the weights optimized according to some sparse objectives [246,
408, 415]. The proposed technique in this chapter goes a step further as there
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is no need for an initial signal dictionary: the dictionary itself is estimated too.

The assumption of rationality is implemented using the theory and properties
of the Löwner matrix. This kind of matrix is well-known in the domain of
system identification regarding rational interpolation [21, 23, 24], but is not
acknowledged in other application domains; its definition is given in Section 3.2.
The observed data matrix is tensorized using Löwner matrices, and the obtained
tensor is analyzed using a block term tensor decomposition [84, 104, 113, 223].
Block component analysis (BCA) describes the use of block term decompositions
to identify underlying components [102].

It is shown in this chapter that the solution with the assumption of rational
sources is unique under mild conditions. This is important as it explains
that the assumption is powerful and natural, while in the case of nonnegative
constraints, for example, additional sparsity constraints need to be imposed to
recover a unique solution [85]. Furthermore, techniques have been developed
for ICA to recover more source signals than there are observed signals, i.e., for
underdetermined mixtures [107, 151]. Because of the strong uniqueness results,
this is readily extended in the separation method described. Simulations are
presented in the final section of this chapter.

The technique was briefly described in [123]. We present the method with two
illustrations using real-life datasets. The first illustration is antepartum fetal
heart rate monitoring with the separation of mother and fetal electrocardiogram
signals from multilead cutaneous potential recordings. An excellent separation
is obtained, even for short sequences with coinciding heart beats. The second
illustration covers the detection of chemical components in mixtures, using
emission-excitation data from fluorescence spectroscopy. With the technique,
only a single sample is sufficient to determine the concentrations and frequency
spectra of the different chemical components.

We start by fixing the notation and discussing some basic definitions and
decompositions in the field of multilinear algebra. In Section 3.2 the problem
statement is examined and the Löwner-based technique is introduced. Section 3.3
contains a more advanced analysis. Uniqueness properties are considered in
Section 3.4. A connection to the method from [101] is investigated in Section 3.5,
and numerical experiments are performed in Section 3.6.

3.1.1 Notation and basic operations

Vectors (denoted by a bold, lowercase letter, e.g., a) and matrices (denoted by
a bold, uppercase letter, e.g., A) can be generalized to higher orders, obtaining
tensors. A general Nth order tensor of size I1 × I2 × · · · × IN is denoted by
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a calligraphic letter as A ∈ KI1×I2×···×IN (with K we mean R or C). A is
a multidimensional array with numerical values ai1i2···iN = A(i1, i2, . . . , iN ).
The mode-n vectors of A are constructed by fixing all but one index, e.g.,
a = A(i1, . . . , in−1, :, in+1, . . . , iN ).

A number of products can be defined in the domain of tensors. The mode-
n tensor–matrix product between a tensor A ∈ KI1×I2×···×IN and a matrix
B ∈ KJ×In is defined as

(A ·n B)i1···in−1jin+1···iN =
∑In

in=1
ai1i2···iN bjin .

The outer product of two tensors A ∈ KI1×I2×···×IN and B ∈ KJ1×J2×···×JM is
given as

(A ⊗ B)i1i2···iN j1j2···jM = ai1i2···iN bj1j2···jM .

The matrices AT and A† denote the transpose and Moore-Penrose pseudo-inverse
of A, respectively. The Frobenius norm of a tensor is defined as the root of the
sum of the squares of the elements: ‖A‖ = (

∑I1
i1=1 · · ·

∑IN
iN=1 |ai1···iN |2)1/2.

3.1.2 Rank definitions and basic tensor decompositions

The column (row) rank of a matrix A is the maximum number of linearly
independent columns (rows) of A. Note that the column rank is equal to
the row rank for a matrix. We make a distinction between the rank and the
multilinear rank.

First, a tensor T has rank 1 if it can be written as the outer product of some
nonzero vectors: T = a(1) ⊗ a(2) ⊗ . . . ⊗ a(N). If one writes a tensor T as a
linear combination of R rank-1 tensors, one obtains a polyadic decomposition
(PD):

T =
∑R

r=1
a(1)
r

⊗ a(2)
r

⊗ · · · ⊗ a(N)
r

,
r
A(1),A(2), ... ,A(N)

z
.

If this R is minimal, the rank of T is defined as R, denoted by r(T ). The
decomposition then becomes canonical (CPD).

Second, the mode-n rank of a tensor T is the dimension of the subspace spanned
by its mode-n vectors. It is equal to the rank of the matrix constructed
by stacking all the mode-n vectors one after the other. If the mode-1 rank,
mode-2 rank and mode-3 rank of a third-order tensor are equal to L, M and
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T =

c1

A1

B1

+ · · · +

cR

AR

BR

Figure 3.1: Decomposition of a tensor T in multilinear rank-(Lr, Lr, 1) terms.

N , respectively, it is said to have trilinear rank (L,M,N). This becomes
the multilinear rank when generalized to arbitrary order, obtaining the N -
tuple (R1, R2, . . . , RN ). Connected to this multilinear rank is the Tucker
decomposition:

T = G ·1 A(1) ·2 A(2) · · · ·N A(N) ,
r
G; A(1),A(2), ... ,A(N)

z

with G ∈ KR1×R2×...×RN being a (typically small) core tensor. Related are
the multilinear singular value decomposition and the low multilinear rank
approximation; for details we refer to [105, 109, 112, 391].

In this chapter we make use of the block term decomposition (BTD), which
starts from the idea of linearly combining tensors of low multilinear rank [104,
113]. For third-order tensors, one obtains the BTD in R rank-(Lr,Mr, Nr)
terms. A special instance is the decomposition of a tensor T ∈ KI1×I2×I3 in
rank-(Lr, Lr, 1) terms (with Mr = Lr and Nr = 1, for 1 ≤ r ≤ R):

T =
∑R

r=1
Er ⊗ cr, (3.1)

with the matrix Er ∈ KI1×I2 having rank Lr and vector cr ∈ KI3 being nonzero.
Each matrix Er can be factorized to give

T =
∑R

r=1
(ArBT

r ) ⊗ cr, (3.2)

with Ar ∈ KI1×Lr , Br ∈ KI2×Lr . It is visualized in Fig. 3.1.

3.2 Löwner-based blind signal separation

In this section, the technique for BSS with Löwner matrices is discussed and
the use of the previously defined BTD in rank-(Lr, Lr, 1) terms is explained.
Section 3.2.1 discusses the model setup and Section 3.2.2 introduces Löwner
matrices. Section 3.2.3 explains the tensorization technique. Finally, two
different ways to recover the original sources are discussed.
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X = M S

LX = Ls1
+ . . . + LsR

Löwner-transform = Löwnerization = a kind of tensorization

= Z1
Z̃T

1G1 + . . . + ZR

Z̃T
RGR

m1 mR

m1 mR

Figure 3.2: The observed data matrix is tensorized to stacked Löwner matrices,
which are decomposed with a block term d ecomposition in rank-(Lr, Lr, 1) terms.
The mixing vectors m1, . . . , mR appear as factor vectors in the third mode,
and the Löwner matrices of the sources appear in the first and second mode.
The factor matrices have an interesting structure, explained in Section 3.3.

3.2.1 The blind signal separation problem

Assume we have R source signals being linearly mixed into K observed signals.
For each signal N samples are available. We consider the following data model
in BSS:

X = MS + N,

with X ∈ KK×N containing the observed data, S ∈ KR×N the R unknown
source signals, M ∈ KK×R the unknown mixing matrix and N ∈ KK×N
representing additive noise. The general goal in BSS is to recover the unknown
sources in S and the unknown mixing vectors in M, given only the observed
data X. We investigate the behavior related to added Gaussian noise in the
experiments of Section 3.6 but omit N in the next analyses for convenience.

Broadly speaking, we will map each observed signal (each row in X) to a Löwner
matrix. By stacking these Löwner matrices, one obtains a tensor which is of low
multilinear rank because of the working hypothesis, i.e., the source signals can
be modeled by rational functions of low degrees. This hypothesis is satisfied in
many applications. By decomposing the tensorized data, one can immediately
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identify the mixing vectors. The reconstruction of the sources follows. Fig. 3.2
gives a comprehensive overview of the technique.

3.2.2 Löwner matrices

We first define the Löwner matrix for a function sampled in a point set T
consisting of N distinct points:

Definition 3.1. Given a function f(t) sampled on points T = {t1, t2, . . . , tN}.
We partition the point set T into two distinct point sets X = {x1, x2, . . . , xI}
and Y = {y1, y2, . . . , yJ} with I+J = N , and define the elements of the Löwner
matrix L ∈ KI×J as

Li,j = f(xi)− f(yj)
xi − yj

∀i, j.

We thus obtain the following matrix:

L =


f(x1)−f(y1)

x1−y1

f(x1)−f(y2)
x1−y2

. . . f(x1)−f(yJ )
x1−yJ

f(x2)−f(y1)
x2−y1

f(x2)−f(y2)
x2−y2

. . . f(x2)−f(yJ )
x2−yJ

...
...

. . .
...

f(xI)−f(y1)
xI−y1

f(xI)−f(y2)
xI−y2

. . . f(xI)−f(yJ )
xI−yJ

 .
In the literature, a parameter α is often used with I = α and J = N − α.
Matrix L is square when N is even and α = N/2. Unless denoted otherwise,
we assume I = α = dN/2e.
A Löwner matrix can also be constructed for point sets with coinciding sample
points, for which we refer to other literature [152, 381]. Notice that the Löwner
matrix corresponding to a constant function becomes the zero matrix.

The Löwner matrix has interesting properties in connection to rational functions.
Let the degree of an irreducible rational function be defined as the maximum
of the degrees of the polynomial in its numerator and the polynomial in its
denominator. The following has been proven in [21, 32, 259]:

Theorem 3.1. Given a Löwner matrix L of size I × J constructed from a
function f(t) sampled in a point set T = {t1, . . . , tN} with N = I + J . If f(t)
is a rational function of degree δ and if I, J ≥ δ, then L has rank δ:

rank(L) = δ = deg(f).

This theorem is easy to verify for simple rational functions of low degree. For
example, f(t) = c

t−p gives Li,j = −c · 1
xi−p ·

1
yj−p . The corresponding matrix
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L is of rank 1, as it can be written as an outer product of two vectors. The
next section gives an insight into the structure of the Löwner matrix for a more
general rational function.

Note that Theorem 3.1 is valid for any point set partitioning: two straightforward
partitionings are the interleaved partitioning with X = {t1, t3, . . .} and
Y = {t2, t4, . . .} and the block partitioning with X = {t1, . . . , tI} and
Y = {tI+1, . . . , tN}.

3.2.3 Tensorization and block term decomposition

Consider again the BSS model with X = MS. Let us map each row of X to a
Löwner matrix of size I × J , and stack these matrices in the third dimension
obtaining a tensor LX of size I × J × K. We call this transformation the
Löwnerization of matrix X. As both the Löwner transform and the BSS model
are linear, we can write:

LX =
∑R

r=1
Lsr ⊗ mr, (3.3)

with Lsr the Löwner matrix and mr the mixing vector of source r. If source
sr, i.e., each rth row of S, can be modeled as a rational function of some (low)
degree δr, the matrix Lsr will have a (low) rank δr provided there are enough
samples for I, J ≥ maxr δr. The matrix Lsr admits a factorization with some
Ar ∈ KI×δr and Br ∈ KJ×δr :

LX =
∑R

r=1
(ArBT

r ) ⊗ mr, (3.4)

which is precisely the decomposition in rank-(Lr, Lr, 1) terms from (3.2) with
δr = Lr. In Section 3.3 we look into the factorization of Lsr = ArBT

r = ZrGrZ̃T
r .

In Section 3.4 the uniqueness properties are investigated regarding the use of a
BTD in rank-(Lr, Lr, 1) terms.

3.2.4 Recovery of the mixing matrix and the sources

The columns of the mixing matrix appear as the factor vectors in the third mode
of the decomposition. The source signals can be reconstructed in two main ways.
First, the estimated matrix M̂ can be inverted to calculate Ŝ = M̂†X. This is
the most straightforward method, and the default method for ICA. However,
it is not applicable for underdetermined mixtures (with fewer observed signals
than sources) or when the mixing matrix does not have full column rank. The
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columns of Ŝ are then determined up to arbitrary vectors in the null space of
M̂, as in underdetermined ICA [107, 151].

A more general but more cumbersome technique is to recover the sources
from the separated Löwner matrices in (3.3) and (3.4). Each recovered matrix
Er = ArBT

r contains information about the corresponding source in a finite
difference format. A linear system can be constructed to recover the source
signal from their corresponding Löwner matrices:

sr = arg min
sr

1
2

∥∥∥Fsr − vec(L̂sr )
∥∥∥2

for 1 ≤ r ≤ R,

with the matrix F being the reshaped matrix version of the following tensor F
with size I × J ×N :

∀i, j, n : fi,j,n =


1

xi−yj if n = φ(i),
−1

xi−yj if n = θ(j),
0 elsewhere,

with φ : i→ {n ∈ {1, . . . , N} : tn = xi} and θ : j → {n ∈ {1, . . . , N} : tn = yj}.
F is constructed by vectorizing the third-order slices of F and stacking them as
columns. With the point set T = {x1, y1, x2, y2} for example, we have φ(1) = 1,
φ(2) = 3, θ(1) = 2 and θ(2) = 4, and one obtains the following linear system:

(L̂r)1,1
(L̂r)2,1
(L̂r)1,2
(L̂r)2,2

 =


1

x1−y1
−1

x1−y1
0 0

0 −1
x2−y1

1
x2−y1

0
1

x1−y2
0 0 −1

x1−y2
0 0 1

x2−y2
−1

x2−y2



sr(x1)
sr(y1)
sr(x2)
sr(y2)

 .

Let now µr be the DC component of the rth source. Observe that the vector
[µr, . . . , µr]T ∈ KN is an element of the null space of the matrix F. The vector
µ = [µ1, . . . , µR]T ∈ KR can be found solving an additional linear system:

µ = arg min
µ

1
2

∥∥∥X− M̂
(
Ŝ + µeT

)∥∥∥2
= 1
N

(
M̂†X− Ŝ

)
e

with e = [1, . . . , 1]T ∈ RN . The vector µ is determined up to a vector in the
null space of M̂, generating fewer indeterminacies than the first method.

3.3 Factorization of Löwner matrices

There is well-known theory about the factorization of Hankel matrices with the
Vandermonde decomposition [48, 101, 376]. Each Hankel matrix H ∈ CI×J can
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be written as VGṼT with Vandermonde matrices V ∈ CI×H and Ṽ ∈ CJ×H ,
and a block-diagonal matrix G ∈ CH×H . The rank H of H is the degree of the
underlying exponential polynomial. For Löwner matrices, a general factorization
has been developed in [152, 382]. We present the factorization in a way that
facilitates the use in signal processing for modeling signals by rational functions
of low degree. The factorization relies on partial fractions and Cauchy matrices.
A Cauchy matrix Cu,v ∈ KI×J based on two vectors u ∈ KI , v ∈ KJ with
∀i, j : ui 6= vj consists of elements ci,j = 1/ (ui − vj).
We assume a rational source s(t) with the following partial fraction decomposi-
tion:

s(t) = a(t) +
F∑
f=1

Df∑
d=1

cf,d

(t− pf )d
, (3.5)

meaning that s(t) has F complex poles pf which can have a multiplicity Df

higher than one. Equation (3.5) is general in the sense that it covers all rational
functions. The first term a(t) in (3.5) denotes a polynomial of degree W . We
define L = W +

∑F
f=1Df . As a working assumption, W is zero for most sources;

Section 3.4 considers the uniqueness conditions.

In each of the three following subsections we illustrate the factorization of the
Löwner matrices corresponding to (3.5) in a constructive way, first discussing
the case of non-coinciding poles and afterwards discussing coinciding poles, i.e.,
poles with a multiplicity higher than one. In a third subsection polynomials
are discussed. Subsection 3.3.4 concludes the section by applying the results to
blind signal separation.

3.3.1 Case of rational functions with non-coinciding
poles

Consider a rational function with W = 0 and with F poles pf with multiplic-
ities Df = 1 for 1 ≤ f ≤ F (thus L = F ), collected in a vector p and with
corresponding coefficients cf :

s(t) = a+
F∑
f=1

cf
t− pf

.
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If sampled in a point set T with N distinct points and partitions X and Y , the
corresponding Löwner matrix is given by:

Li,j =

 F∑
f=1

cf
xi − pf

−
F∑
f=1

cf
yj − pf

 /(xi − yj),

=
∑F

f=1
−cf ·

1
xi − pf

· 1
yj − pf

∀i, j.

Hence, the matrix L can be factorized as

L = Z · diag(−c1, . . . ,−cF ) · Z̃T,

with

Z =


1

x1−p1
· · · 1

x1−pF
...

. . .
...

1
xI−p1

· · · 1
xI−pF

, Z̃ =


1

y1−p1
· · · 1

y1−pF
...

. . .
...

1
yJ−p1

· · · 1
yJ−pF

.
One can see that Z = Cx,p and Z̃ = Cy,p.

The assumption of non-coinciding poles with its factorizaton of the Löwner
matrix suffices in many cases. We present the general case with coinciding poles
in the following subsection for the sake of completeness.

3.3.2 General case of rational functions with coinciding
poles

We first study the Löwner matrix of the term corresponding to
∑Df
d=1

cf,d
(t−pf )d in

(3.5), i.e., for a pole pf with multiplicity Df ≥ 1. The matrix is given by

Li,j =

Df∑
d=1

cf,d
(xi − pf )d −

Df∑
d=1

cf,d
(yj − pf )d

 /(xi − yj),

=
Df∑
d=1

cf,d
(yj − pf )d − (xi − pf )d

(xi − yj)(xi − pf )d(yj − pf )d , ∀i, j.

Because (xi − yj) = ((xi − pf )− (yj − pf )), one can derive

Li,j =
Df∑
d=1

(
−cf,d

d∑
e=1

1
(xi − pf )e(yj − pf )d−e+1

)
.
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The result yields the factorization L = Zf,DfGf,Df Z̃T
f,Df

with Zf,Df and Z̃f,Df
being Vandermonde matrices:

Zf,Df =


1

x1−pf · · · 1
(x1−pf )Df

...
. . .

...
1

xI−pf · · · 1
(xI−pf )Df

 ,

Z̃f,Df =


1

y1−pf · · · 1
(y1−pf )Df

...
. . .

...
1

yJ−pf · · · 1
(yJ−pf )Df

 .
These matrices are variants of the confluent Cauchy matrices from [382]. We
also have

Gf,Df =


−cf,1 −cf,2 −cf,3 · · · −cf,Df
−cf,2 −cf,3 −cf,4 · · · 0
−cf,3 −cf,4 −cf,5 · · · 0
...

...
... . .

. ...
−cf,Df 0 0 . . . 0

 .

3.3.3 Case of polynomials

Let s(t) be a polynomial of degree W , i.e., s(t) =
∑W
w=1 awt

w = aW t
W + . . .+

a1t + a0, with aw ∈ K, 1 ≤ w ≤ W . The Löwner matrix corresponding to a
point set T with partitions X and Y is given by:

Li,j =
(

W∑
w=1

awx
w
i −

W∑
w=1

awy
w
j

)
/(xi − yj),

=
W∑
w=1

aw

w−1∑
v=0

xvi y
w−v−1
j , ∀i, j.
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The matrix admits to a factorization L = ZWGW Z̃T
W with ZW ∈ KI×W ,

Z̃W ∈ KJ×W :

ZW =

1 x1 · · · xW −1
1

...
...

. . .
...

1 xI · · · xW −1
I



Z̃W =

1 y1 · · · yW −1
1

...
...

. . .
...

1 yJ · · · yW −1
J

 (3.6)

and with

GW =


a1 a2 · · · aW
a2 a3 · · · 0
...

... . .
. ...

aW 0 . . . 0

 ∈ KW×W .

3.3.4 Summary and implication for blind source
separation

Regarding the complete rational signal s(t) from (3.5), its associated Löwner
matrix L admits to a general decomposition

L = ZGZ̃T (3.7)

in which

Z =
[
ZW Z1,D1 Z2,D2 · · · ZF,DF

]
∈ KI×L

Z̃ =
[
Z̃W Z̃1,D1 Z̃2,D2 · · · Z̃F,DF

]
∈ KJ×L

with L = W +
∑F
f=1Df . The matrix G ∈ KL×L is a block-diagonal matrix

with Hankel and upper antitriangular matrices GW and Gf,Df for 1 ≤ f ≤ F
on its diagonal.

Instead of a single signal, suppose we have R different sources sr(t). From
this point on, we use the subscript r to denote the specific source. Each
Löwner matrix Lr, constructed with the same point set partitions admits to a
decomposition of the form (3.7).
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Let us assume that I, J ≥ max(L1, . . . , LR). First, the matrices Zr and Z̃r
clearly have full rank for distinct points. Second, Gr is nonsingular since its
diagonal blocks are nonsingular. Each Löwner matrix Lr is then of rank Lr
and the rth term in (3.3) is rank-(Lr, Lr, 1) for 1 ≤ r ≤ R. Hence, eq. (3.3)
is a decomposition of LX in rank-(Lr, Lr, 1) terms. Furthermore, the matrix
multiplication ArBT

r in (3.4) can be written as ZrGrZ̃T
r with the previously

explained structure.

The next section will explain whether (and when) this decomposition in rank-
(Lr, Lr, 1) terms is unique.

3.4 Uniqueness

The analysis in this section is the Löwner counterpart of the Hankel case[101].
We first recall [104, Theorem 4.1] regarding the uniqueness of a BTD in rank-
(Lr, Lr, 1) terms:

Theorem 3.2. Consider a decomposition of T ∈ KI×J×K in rank-(Lr, Lr, 1)
terms as in (3.1) and (3.2), with I, J ≥ ∑R

r=1 Lr. If A =
[
A1 A2 · · · AR

]
and B =

[
B1 B2 · · · BR

]
have full column rank and C =

[
c1 · · · cR

]
does

not have proportional columns, then the decomposition is essentially unique.

We call the decomposition ‘essentially unique’ when one can only permute the
rth and r′th terms in (3.1) when Lr = Lr′ and when one can only scale Er

provided that cr is counterscaled. In [101] the theorem is generalized into
the following theorem for the block term decomposition, including a necessary
condition:

Theorem 3.3. Consider a decomposition of T ∈ KI×J×K in rank-(Lr, Lr, 1)
terms as in (3.1) and (3.2). Define W(w) =

∑R
r=1 wrEr. Assume the following

conditions to be satisfied:

(C1) For every w that has at least two nonzero entries, we have that rank(E(w)) >
maxr|wr 6=0(Lr).

(C2) The columns of C are linearly independent.

The decomposition is then essentially unique. On the other hand, if condition
(C1) is not satisfied, then the decomposition is not essentially unique.

We now apply Theorem 3.2 to BSS for rational sources with coinciding poles
and polynomial terms:
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Theorem 3.4. Consider a matrix M ∈ KK×R that does not have proportional
columns, and a matrix S ∈ KR×N in which every row has a structure as in
(3.5). Assume that bN+1

2 c ≥
∑R
r=1 Lr. If all the poles pr,fr are distinct for

1 ≤ fr ≤ Fr, 1 ≤ r ≤ R in (3.5) and if at most one source contains a polynomial
term (at most one Wr 6= 0), then the decomposition X = MS is essentially
unique.

Proof. The constraint bN+1
2 c ≥

∑R
r=1 Lr allows us to map the rows of X to

Löwner matrices with sizes I × J and with I, J ≥∑R
r=1 Lr. With distinct poles

in (3.5), the matrices Z =
[
Zr=1 Zr=2 · · · Zr=R

]
· diag(Gr=1, . . . ,Gr=R)

and Z̃ =
[
Z̃r=1 Z̃r=2 · · · Z̃r=R

]
have full column rank. This is assuming

that at most one Wr 6= 0, i.e., at most one ZWr and Z̃Wr from (3.6) is included
in Z and Z̃, respectively. Indeed, ZWr

and ZWr′ from (3.6) have mutually linear
dependent columns for r 6= r′ (likewise for Z̃Wr). The uniqueness result then
follows from Theorem 3.2.

The proof shows that it is not possible to separate polynomials, as pointed out
in [101] too. A polynomial from a single source can be identified though.

It is also important to remark that if the sources have distinct poles, uniqueness
of the factorization X = MS is guaranteed when enough samples are available.
Even so, only 2×∑R

r=1 Lr samples are needed, with Lr mostly small.

Furthermore, uniqueness results can be obtained if the sources share common
poles too [101]. Part 3.6.4 gives an example with the second fetal electrocar-
diogram experiment. A sufficient property can be found in [346, condition
(5.18)].

Other general and useful results are presented in [345], while the procedure
from [132] can be used to deduce generic uniqueness conditions.

3.5 Connection with Hankel-based
tensorization and Vandermonde
decomposition

In Subsection 3.5.1 we give a connection between Löwner and Hankel matrices,
with the latter being used in blind signal separation of exponential polynomials
[101]. A discussion about the choice of sampling points is given in a second
subsection, illustrating that an equidistant sampling is not needed for Löwner-
based BSS.
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3.5.1 Transformation between Löwner and Hankel

A strong connection between Löwner and Hankel matrices was given in [152]
and afterwards generalized in [381] and used in [382]. We repeat the theorem
in a customized way:

Theorem 3.5. For fixed point sets X and Y with distinct points, the mapping
F : H → L = WxHWT

y is an isomorphism (i.e. there is a one-to-one
relationship) between the class of all I × J Hankel matrices and the class
of I × J Löwner matrices corresponding to X and Y , with

(Wx)k,l = 1
l!

dlak(z)
dzl

∣∣∣∣
z=0

, ak(z) =
∏
i 6=k

(z − xi) ;

(Wy)k,l = 1
l!

dlbk(z)
dzl

∣∣∣∣
z=0

, bk(z) =
∏
j 6=k

(z − yj) .

The matrices Wx and Wy depend only on the point sets X and Y and not
on the actual signals. As the matrices Wx and Wy are of full column rank
in the generic case, an important consequence of the isomorphism is that
rank(L) = rank(H). The relationship enables, for example, the transposition of
uniqueness results between the different techniques.

The condition number of WX and WY depends heavily on the point set however.
For equidistant samples on the real axis, the matrices are highly ill-conditioned,
so that the explicit use of the transformation can pose numerical difficulties.

3.5.2 Choice of sampling points

The results obtained in the previous sections (such as Theorem 3.4 or the
factorizations in Section 3.3) are independent of the sample points used. Any
sampling in the complex domain can be used.

For the Hankel case, one needs measurements sampled in an equidistant
way; otherwise the Vandermonde decomposition is not applicable. This is a
fundamental difference with respect to the Löwner case for which any collection
of sampling points can be used: Chebyshev nodes, logarithmic distribution, . . .
The arbitrary choice of sampling points enables the use of compressed sensing
techniques. One can, for example, randomly sample the observed signals at a
number of time instances, useful in the case of high-cost measurement settings.
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Figure 3.3: Results for the first experiment of Section 3.6.1. Left: the two
original sources. Middle: the observed signals. Right: the perfectly recovered
sources.

3.6 Experiments and applications

In the first Subsection 3.6.1 an example of a separation is given with one source
containing a polynomial term. We also investigate the behavior for a low
number of samples and with respect to the presence of noise. Subsection 3.6.2
presents the separation for an underdetermined mixture with more source signals
than observed signals. A third Subsection 3.6.3 explains the illustration of
fluorescence spectroscopy. We conclude with a description of the use of Löwner-
based tensorization for fetal electrocardiogram extraction in Subsection 3.6.4.

To present the recovered sources and to determine the relative error, we use
an optimal scaling and permutation step (the default indeterminacies in BSS)
with respect to the theoretical sources. The relative error is then defined as
the relative difference in Frobenius norm, e.g., if Ŝ are the recovered sources
after this step, we have a relative error εS = ‖S− Ŝ‖/‖S‖. Second, the signal-
to-noise ratio (SNR) is defined as the power of the signal to the power of the
noise, with the noise being Gaussian additive noise (unless stated otherwise).
To calculate a BTD in rank-(Lr, Lr, 1) terms, various approaches similar to
CPD algorithms exist such as alternating least squares, unconstrained nonlinear
optimization, or nonlinear least squares [113, 332, 333]. We employ the latter
by using Tensorlab [334]. A generalized eigenvalue decomposition is used for
the initialization [104]. In all experiments only a few iterations are needed to
reach convergence. For information about complexity we refer to [332, 333]. By
default, the sampling points are chosen equidistantly on the real axis in [0, 1].
To construct the Löwner matrix, we use square matrices and partition the point
set T in two interleaved partitions X and Y . An extensive analysis did not
give a clear answer on which partitioning method is preferred; both methods
described in section 3.2.2 give a similar performance. The sources are by default
recovered by using the inverted mixing matrix, except for the underdetermined
case in subsection 3.6.2.
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Figure 3.4: Recovery results for 100 and 20 samples when Gaussian noise is
added, in function of SNR. The median relative errors across 100 experiments
are shown, for the mixing matrix ( ), and for the recovered sources for the
two different recovery methods of Section 3.2.4: by using the inverted mixing
matrix ( ) and by using the Löwner matrices ( ).

3.6.1 General experiment

We start with the separation of the two following sources:

s1(t) =
(
(t− 0.2)2 + 0.052)−1 +

(
(t− 0.8)2 + 0.052)−1 + t2,

s2(t) =
(
(t− 0.4)2 + 0.082)−1 +

(
(t− 0.6)2 + 0.082)−1

.

The first source of degree 6 has two conjugated pole pairs 0.2 ± 0.05j and
0.8± 0.05j, and also includes a polynomial term of degree 2. The second source
has two conjugated pole pairs 0.4± 0.08j and 0.6± 0.08j and has degree 4. The
two sources are divided by a factor 100 and 50, respectively, to obtain suitable
magnitudes. Fig. 3.3 shows the signals. A mixture with M = [0.5, 0.3; 0.5, 0.7]
is used, and L1 = 6 and L2 = 4. In a first case, we take 100 equidistant samples
in [0, 1]. The recovered sources for the noiseless case are presented in Fig. 3.3
and the results for the noisy case are shown in Fig. 3.4 on the left. A second
case, presented in function of SNR in Fig. 3.4 on the right, only uses 20 samples.

Fig. 3.5 shows the results for an experiment in which the number of source
signals is varied, given ten observed signals. The ith source is given by
si(t) =

(
(t− ri)2 + q2)−1, with ri equidistantly spaced in [0, 1]. Two cases

are considered: q = 0.01 (mildly overlapping) and q = 0.1 (highly overlapping).
An SNR of 25 is used. M is taken column-wise orthonormal.
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Figure 3.5: Recovery results for a varying number of mildly ( ) and highly
( ) overlapping source signals. Median relative errors across 100 experiments
are shown.
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Figure 3.6: Results for the underdetermined experiment. Left: the three original
sources. Middle: the two observed mixed signals. Right: the three recovered
sources after optimal scaling and permutation. A perfect recovery has been
obtained of more sources than observed signals.

3.6.2 Underdetermined system

We examine the identification of more sources than there are observed signals
available. Consider the following three source signals:

s1(t) =
(
(t− 0.1)2 + 0.052)−1 (pole pair 0.1± 0.05j)

s2(t) =
(
(t− 0.5)2 + 0.202)−1 (pole pair 0.5± 0.20j)

s3(t) =
(
(t− 0.7)2 + 0.152)−1 (pole pair 0.7± 0.15j)

sampled in t ∈ [0, 1] with N = 100 equidistant points. The signals are mixed into
two observed signals using the mixing matrix M = [−0.5, 0.5, 1; 0.9, 0.9, −0.2].
We use L1 = L2 = L3 = 2. A perfect reconstruction of the three sources is
obtained, as Fig. 3.6 illustrates.
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Figure 3.7: Results for the underdetermined mixture, in function of SNR and
for varying ranks with (L1, L2, L3) being (2,1,1) ( ); (2,2,2) ( ); (3,2,2)
( ); (4,3,2) ( ) and (4,4,4) ( ). The sources are determined up to a
constant, cf. subsection 3.2.4. Median relative errors across 100 experiments
are shown.

In Fig. 3.7 we include results for varying SNR and different values of (L1, L2, L3).
Note that several choices of the degrees lead to good results. This shows that
the choice of the (multilinear) rank(s) is not very critical [101, 102]. A trial-
and-error method can be used to deduct Lr, knowing that the multilinear rank
of LX is bounded by (

∑R
r=1 Lr,

∑R
r=1 Lr, R).

3.6.3 Fluorescence spectroscopy

Source separation, also known as curve resolution, is a valuable technique used
in fluorescence spectroscopy. It enables the estimation of relative concentrations
and pure analyte spectra from fluorescence measurements of chemical analytes
in mixtures. Consider a sufficiently diluted chemical solution containing different
amounts of R chemical components. By exciting the mixture at K different
excitation wavelengths and measuring the spectrum of the emitted light at N
different emission wavelenghts, one obtains an intensity matrix called X ∈ RK×N .
Through the Beer-Lambert law [241], the spectra of the mixture are linearly
dependent on the spectra of the underlying chemical components and on their
concentrations, and one can show that X = AΣB = MS with A ∈ RK×R
containing the excitation spectra of the R underlying chemical components in
the columns, B ∈ RR×N containing the emission spectra of the components in
the rows, and Σ ∈ RR×R a diagonal matrix with the concentrations. When
interpreted in terms of source signals in S with a mixture matrix M, the matrix
Σ can be included both in S or M. We allocate the emission spectra (rather
than the excitation spectra) to the source signals. As the different spectra of
the underlying components are unknown, this is a standard BSS problem.
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Figure 3.8: Results for the fluorescence experiment. On the left the emission
spectra are shown (being approximated with rational functions of degree 2) and
on the right the excitation spectra are shown. The real signals are given by
solid lines ( ) and the reconstructed signals by dashed lines ( ).

Typical techniques using multilinear algebra resort to the use of multiple
mixtures: the different excitation-emission matrices (EEM) are stacked, and a
solution is obtained with a CPD [19, 57, 328]. Our technique only requires a
single EEM, reducing the measurement cost and enabling analysis when only a
single EEM is available. This is done with the understanding that the emission
spectra can be well approximated by rational functions. It is also a possible
alternative to time-dependent spectroscopy techniques.

The dataset1 used in this chapter contains the components phenylalanine,
tyrosine and tryptophan [56, 57, 216]. The measurements are done with
excitation wavelengths in 260-300 nm and emission wavelengths in 250-450 nm,
both with steps of 1 nm. We mix the analytes with concentrations of 0.5, 0.2
and 0.3, respectively. In Fig. 3.8 the pure emission and excitation spectra
of the components are visualized; the emission spectra have been Löwnerized
and approximated by rational functions of a significantly low degree. The
technique is used to separate the observations in three components with Lr = 2
for r = 1, 2, 3. The results are given in Fig. 3.8, and one can see that the
components are separated very well given that only a single mixture has been
used. A relative error on the emission (excitation) spectra of 0.1094 (0.096) has
been obtained. For comparison, ICA yields a relative error of 0.640 (0.305), 0.818
(0.491) and 0.606 (0.682) for FastICA, RobustICA and JADE, respectively.

A final remarkable thing to mention is that in theory, we do not need fluorescence
measurements across 50 different excitation wavelengths. The more observations
in practice however, the more accurate the separation will be. Fig. 3.9 illustrates
the findings if less than 50 excitation wavelengths are used. The extracted rows
from the observed data matrix are selected as equidistant as possible.

1Available from http://www.models.kvl.dk/Amino_Acid_fluo

http://www.models.kvl.dk/Amino_Acid_fluo
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Figure 3.9: Results for the fluorescence experiment of the relative error on the
mixing matrix ( ) and the recovered sources ( ) in function of the number
of excitations used.

3.6.4 Fetal electrocardiogram extraction

In this application, the proposed technique is used for the extraction of
antepartum fetal electrocardiogram (fetal ECG or FECG) from multilead
cutaneous potential recordings. While examining ECG recordings measured on
the pregnant woman’s skin (cutaneous), one tries to eliminate the dominant
heartbeat of the mother. Seeing the problem as a blind signal separation
problem, one can resort to the use of ICA [111]. ICA falls short however when
only few samples or heartbeats are available. Second, for coinciding beats, the
basic independence assumption of ICA is not valid.

It seems that ECG beats (with their easily recognizable QRS complexes) can
be well modeled by rational functions [154, 257, 258]. The Löwner technique
needs no preprocessing, as opposed to the technique in, e.g., [212]. We carry
out two experiments with real-life datasets to illustrate the technique.

The first dataset consists of 8 measurement signals (of which 5 abdominal and
3 thoracic signals), available at DaISy2 [65, 111]. For the sake of simplicity,
only the 5 abdominal signals and only the first 500 samples are used, with the
observations shown in Fig. 3.10. Each signal has been scaled to unit norm. For
recovery, a separation into two source signals is not enough and at least three
source signals are needed; this is also the case when applying ICA [111]. For the
BTD, a rank of 20 for each source signal has been used. The three recovered
sources are visualized in Fig. 3.11 with a clear separation of the two different
ECG sources.

The second dataset contains a limited number of heartbeats with the beats of
the mother and fetus coinciding. A mixing matrix M = [1 1; 1 − 0.8] is used to
mix the signals. Fig. 3.12 visualizes the signals and the recovered sources. When
using the proposed technique with again a rank 20 for each source signal, an

2Available from http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html.

http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
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Figure 3.10: Visualization of the 5 abdominal ECG recordings used in the first
FECG experiment.
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Figure 3.11: The separation of the ECG recordings into three recovered source
signals for the first FECG experiment. One clearly notices the separation of the
fetal heart beats (above) and the heart beats of the mother (below). Typically,
the fetal heart rate is significantly higher than the mother’s heart rate.
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Figure 3.12: Illustrations for the second FECG experiment. Left we have a
limited amount of heart beats of mother (above) and fetus (below) where some
beats coincide. The mixed signals are shown in the middle. To the right, the
recovered sources are shown. An excellent recovery is obtained with a relative
error on the sources of only 0.013.

excellent recovery is obtained with a relative source error of 0.013. To compare,
ICA recovers the signals up to a relative error of 0.126, 0.125 and 0.29 for
FastICA, RobustICA and JADE, respectively.

3.7 Conclusion

A novel technique for blind signal separation has been proposed for signals
that can be modeled as rational functions. The tensor-based technique makes
use of a deterministic tensorization with Löwner matrices and the obtained
tensor is decomposed with a block term decomposition. In this chapter,
the factorization of the Löwner matrices has been analyzed, together with
the uniqueness conditions. The proposed method can be applied to any
collection of sampling points and not only for equidistant points, as has
been discussed while relating the method to another separation technique
using a source model of exponential polynomials. Two synthetic experiments
(including an underdetermined mixture) and two real-life illustrations with
fluorescence spectroscopy and fetal electrocardiogram extraction have been used
to verify the proposed technique. The method has been compared against ICA,
demonstrating the power of the deterministic Löwner technique when the source
signals are not independent or when only a limited number of samples are
available.



Chapter 4

A tensor-based method for
large-scale blind source
separation using
segmentation

Abstract Many real-life signals are compressible, meaning that they
depend on much fewer parameters than their sample size. In this chapter
we use low-rank matrix or tensor representations for signal compression.
We propose a new deterministic method for blind source separation that
exploits the low-rank structure, enabling a unique separation of the source
signals and providing a way to cope with large-scale data. We explain
that our method reformulates the blind source separation problem as the
computation of a tensor decomposition, after reshaping the observed data
matrix into a tensor. This deterministic tensorization technique is called
segmentation and is closely related to Hankel-based tensorization. We
apply the same strategy to the mixing coefficients of the blind source
separation problem, as in many large-scale applications the mixture is
also compressible because of many closely located sensors. Moreover, we
combine both strategies, resulting in a general technique that allows us
to exploit the underlying compactness of the sources and the mixture
simultaneously. We illustrate the techniques for fetal electrocardiogram
extraction and direction-of-arrival estimation in large-scale antenna arrays.

Reference This chapter is a slightly adapted version of the article [51].
Changes are limited to layout and representation aspects. The candidate
provided extensive guidance to the first author regarding the research and
the article preparation.
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4.1 Introduction

In blind source separation (BSS) one tries to reconstruct a set of unobserved
sources based only on a set of observed signals. In this chapter, the latter are
unknown linear instantaneous mixtures of the sources. Applications can be
found in telecommunications, signal processing and biomedical sciences [83, 89,
200, 203]. In general, there is no unique solution to the BSS problem, hence,
one imposes additional assumptions.

A well-known BSS method, called independent component analysis (ICA),
assumes statistically independent sources [89]. Several ICA methods use higher-
order statistics (HOS) in order to tensorize the BSS problem and then apply
a tensor decomposition to uniquely identify the sources. Recently, a class
of deterministic methods has been proposed that do not use (higher-order)
statistics but assume that the sources can be modeled as, e.g., exponential
polynomials or rational functions [101, 124]. Specific tensorization techniques
can be used, such as Hankel-based or Löwner-based tensorization [118]. The
source signals can then be uniquely recovered by block component analysis
(BCA). BCA is a framework based on block term decompositions which was
introduced in [102–104]. These methods, as well as the method we propose
here, go further than dictionary-based methods. In the latter, one defines
a priori a fixed signal dictionary in which one assumes the sources can be
described sparsely and then one exploits this sparse representability to identify
the sources [246, 415]. Here, we do not need an initial dictionary.

In this chapter, we introduce a new method for BSS that exploits the fact that
many real-life signals are compressible, i.e., the fact that they can be described
in terms of much fewer parameters than the actual number of samples [63, 67].
One way of representing signals in a (possibly very) compact way is a (higher-
order) low-rank approximation of a tensorized version of the signal [171]. This
can be interpreted as approximating the original signals by sums of Kronecker
products of smaller vectors. This strategy is similar to tensor-based scientific
computing in high dimensions [171, 286, 391], which has allowed one to solve
problems in a number of unknowns that exceeds the number of atoms in the
universe. It is used in a novel way for BSS in this chapter and is a key idea
to handle large-scale BSS problems, i.e., problems with many sensors and/or
samples. In particular, we use a deterministic tensorization technique, called
segmentation, that reshapes each observed signal into a matrix (tensor) and
stacks them into a (higher-order) tensor. The latter can be interpreted as a
compact version of the Hankel-based tensorization mentioned above. We show
that the BSS problem boils down to the computation of a decomposition of the
tensor obtained by segmentation if the sources exhibit the hypothesized low-rank
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structure. This yields a unique solution to the BSS problem and provides a
way to cope with large-scale problems where conventional methods fall short.
Also, it is illustrated that our method allows the separation of underdetermined
mixtures, i.e., the separation of more sources than observed signals.

We can apply the same strategy to the mixing coefficients of the BSS problem
(instead of the source signals) following a similar argument. Indeed, in the
context of big data, we see a large increase in the number of sensors and/or sensor
density in fields such as biomedical sciences and sensor array processing [43, 236].
The mixing coefficients are in that case often smoothly varying because of the
many closely located sensors, allowing a (higher-order) low-rank approximation
of a tensorized version of the mixing vectors. Conventional methods such as
ICA fall short in a large-scale setting because of the exponential dependence on
the order of the statistics. Exploiting low-rank structure on the mixing level was
briefly discussed in [50]. In this chapter, we go further: we apply the strategy
on the sources, as described above, but also apply it on both the sources and
the mixture simultaneously. The latter is a natural extension that results into
a more general method that exploits the hypothesized low-rank structure of the
simultaneously tensorized source and mixing level of the BSS problem, enabling
a unique solution for large-scale BSS.

We illustrate the proposed methods with two applications. First, we have the
separation of the fetal and maternal electrocardiogram (ECG) from multilead
cutaneous potential recordings. Our method allows a clear separation of the two
sources. Second, we have direction-of-arrival (DOA) estimation for large uniform
linear arrays in both a line-of-sight and multipath setting. Our methods provides
accurate estimates, even for close DOAs. In very large-scale applications, the
arrays, however, are typically non-uniform but this is outside the scope of this
chapter; here, we focus on the main principles.

In the remainder of this section we introduce the notation and basic definitions.
In Sections 4.2 and 4.3, we introduce a new BSS method that exploits the
hypothesized compressibility of the sources and mixing vectors, respectively.
We combine both strategies in Section 4.4. Simulations and applications are
presented in Section 4.5. Finally, we conclude in Section 4.6.

4.1.1 Notation and definitions

Tensors, denoted by calligraphic letters (e.g., A), are higher-order generalizations
of vectors and matrices, denoted by bold lowercase (e.g., a) and bold uppercase
(e.g., A) letters, respectively. The (i1, i2, . . . , iN )th entry of an Nth-order tensor
A ∈ KI1×I2×···×IN , with K meaning R or C, is denoted by ai1i2...iN . The nth
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element in a sequence is indicated by a superscript between parentheses (e.g.,
{A(n)}Nn=1). The unit vector with a one in the ith row is denoted as ei.

A mode-n vector of a tensor A ∈ KI1×I2×···×IN is defined by fixing every index
except the nth, e.g., ai1···in−1:in+1···iN , and is a natural extension of the rows
and columns of a matrix. The mode-n unfolding of A is a matrix A(n) with
the mode-n vectors as its columns (following the ordering convention in [223]).
The vectorization of A, denoted as vec(A), maps each element ai1i2···iN onto
vec(A)j with j = 1 +

∑N
k=1(ik − 1)Jk and Jk =

∏k−1
m=1 Im. The outer and

Kronecker product are denoted by ⊗ and ⊗, respectively, and are related
through a vectorization: vec (a ⊗ b) = b ⊗ a. A frontal slice of a third-order
tensor X ∈ KI×J×K , denoted by Xk, is obtained by fixing the last index.

4.1.2 Tensor decompositions

An Nth-order tensor has rank one if it can be written as the outer product of
N nonzero vectors. The rank of a tensor is defined as the minimal number of
rank-1 terms that generate the tensor as their sum. The multilinear rank of an
Nth-order tensor is equal to the tuple of mode-n ranks, which are defined as
the ranks of the mode-n unfoldings of the tensor.
Definition 4.1. A polyadic decomposition (PD) writes an Nth-order tensor
A ∈ KI1×I2×···×IN as a sum of R rank-1 terms:

A =
R∑
r=1

u(1)
r

⊗ u(2)
r

⊗ · · · ⊗ u(N)
r . (4.1)

The columns of the factor matrices U(n) ∈ KIn×R are equal to the factor vectors
u(n)
r for r = 1, . . . , R. The PD is called canonical (CPD) when R is equal to

the rank of A.

The CPD is a powerful model for several applications within signal processing,
biomedical sciences, computer vision, data mining and machine learning [84,
223, 324]. The decomposition is essentially unique if it is unique up to trivial
permutation of the rank-1 terms and scaling and counterscaling of the factors in
the same rank-1 term. In general, no unique solution exists in the matrix case
without additional assumptions for R > 1. In the higher-order case, we typically
expect uniqueness under rather mild conditions. Consider a third-order tensor
of rank R and size I × J × K with factor matrices A,B, and C. Kruskal’s
condition states that the CPD is unique if [230]:

2R+ 2 ≤ kA + kB + kC. (4.2)
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The k-rank of a matrix A equals the largest number kA such that any kA
columns of A are linearly independent. Condition (4.2) is deterministic in the
sense that uniqueness is guaranteed for a particular choice of factor matrices
satisfying the condition. Generic uniqueness conditions consider uniqueness
with probability one when the entries of the factor matrices are drawn from
absolutely continuous probability density functions. For example, condition (4.2)
implies generic uniqueness if 2R + 2 ≤ min(I,R) + min(J,R) + min(K,R) as
the k-rank of a generic matrix equals its smallest dimension. In general, milder
conditions than Kruskal’s can be obtained. Let us for instance consider the
case where at least one of the tensor dimensions is not strictly smaller than R.
For example, the CPD is generically unique for K = C if [78, 131]:

R ≤ (I − 1)(J − 1), 3 ≤ I ≤ J, and R ≤ K. (4.3)

More generally, the CPD is generically unique (with a few known exceptions)
if [79]:

R ≤
⌈

IJK

I + J +K − 2

⌉
− 1 and IJK ≤ 15000, (4.4)

with dxe the smallest integer not less than x. The bound on the number of
entries IJK has only been verified numerically up to 15000 but is assumed to
hold for larger number of entries as well. Condition (4.4) is equivalent with (4.3)
for R ≤ K and 3 ≤ I ≤ J .
Note that condition (4.4) involves the ratio between the number of entries in the
tensor and the number of parameters in a rank-1 term (compensated for scaling).
The condition states that the decomposition is unique with probability one if the
number of entries is (strictly) larger than the number of parameters, i.e., if the
tensor is (minimally) compressible. Our working assumption to solve the large-
scale BSS problem is based on this compressibility, as will be explained further.
We expect even milder uniqueness conditions when N > 3 [322, 345]. An
overview and state-of-the-art deterministic and generic uniqueness conditions
for higher-order tensors are given in [79, 130, 131, 133–136, 249, 345] and
references therein. For a short introduction to CPD uniqueness we refer to [324,
Section IV].
Definition 4.2. A block term decomposition (BTD) of a third-order tensor X ∈
KI×J×K in multilinear rank-(Lr, Lr, 1) terms for r = 1, . . . , R is a decomposition
of the form:

X =
R∑
r=1

(ArBT
r ) ⊗ cr, (4.5)

in which Ar ∈ KI×Lr and Br ∈ KJ×Lr have full column rank Lr and cr is
nonzero.
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X = M S

X = S1 + . . . + SR

Segmentation

=

m1

A1
B1

+ . . . +

mR

AR

BR

m1 mR

Figure 4.1: Illustration of segmentation: each row of the observed data matrix
X is reshaped into a matrix and then stacked into a tensor X . The reshaped
sources appear in the first and second mode, and the mixing vectors appear
in the third mode. The BSS problem boils down to a BTD in multilinear
rank-(Lr, Lr, 1) terms if the reshaped sources allow a low-rank representation,
enabling a unique separation of the sources and identification of the mixing
vectors.

These block terms are more general than the simple rank-1 terms of a third-order
PD. Hence, they allow the modeling of more complex phenomena, see e.g., [102,
106]. Other BTDs and associated uniqueness results can be found in [101, 103,
104].

4.2 Large-scale blind source separation via
low-rank sources

We derive a new BSS method that exploits the hypothesized compressibility of
the sources. We show that this is possible by applying a particular deterministic
tensorization technique to the observed data matrix. Decomposition of the
resulting tensor allows us to uniquely retrieve the mixing vectors and the sources.
In Subsections 4.2.1, 4.2.2, and 4.2.3, we define BSS, motivate the working
hypothesis, and derive our method.
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4.2.1 Blind source separation

We use a linear and instantaneous data model for BSS [89]:

X = MS + N, (4.6)

with X ∈ KM×K and S ∈ KR×K containing K samples of each of the M
observed and R source signals, respectively; M ∈ KM×R is the mixing matrix
and N ∈ KM×K is the additive noise. The goal of BSS is to retrieve the
unknown mixing vectors in M and/or the unknown sources in S, given only the
observed data X. In the derivation of our method we ignore the noise N for
notational simplicity, its influence will be further investigated in Section 4.5 by
means of simulations.

The proposed method reshapes each observed signal, i.e., each row of X, into
a matrix and stacks them into a third-order tensor. This is illustrated in
Figure 4.1. If the matricized sources admit a low-rank representation, the BSS
problem can be solved uniquely by decomposing the tensorized observed data.
In general, we reshape each row into an Nth-order tensor and stack them into
an (N + 1)th-order tensor. As such, the parsimonious low-rank models enable
very large signal compressions, allowing one to tackle large-scale problems. In
general, no unique solution to (4.6) exists without additional assumptions. By
assuming that the source signals are low-rank signals, which can be written as
sums of Kronecker products of smaller vectors, the problem can be reformulated
as a tensor decomposition. As a decomposition of a higher-order tensor is unique
under mild conditions as discussed in Subsection 4.1.2, the working assumption
enables a unique solution of (4.6) under the same conditions.

4.2.2 Low-rank sources

Many real-life signals are compressible. For example, many common types of
signals can be expressed in a basis such that the coefficients decay according to
a power law [146]. In a large-scale setting, the amount of information contained
in the signal can often be represented by a number of parameters that is much
smaller than the total number of entries because there is some structure in
the data [362]. Such compressible signals can often be represented in a very
compact way by a low-rank approximation of a tensor representation [171, 215];
we call them low-rank signals. It is this notion that is the key to our approach:
it enables a unique separation of the sources and identification of the mixing
vectors. Moreover, it provides a way to cope with large-scale BSS problems
because of the large reduction in the number of parameters. We show that our
working hypothesis holds exactly for exponential polynomials.
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Consider f(t) = azt evaluated in t = 0, 1, . . . , 5. The resulting vector is reshaped
into a (3× 2) matrix S of rank 1:

S = a

 1 z3

z z4

z2 z5

 = a

 1
z
z2

(1 z3) . (4.7)

The (3× 4) Hankelized version H of the same vector is [101]:

H = a

 1 z z2 z3

z z2 z3 z4

z2 z3 z4 z5

 =

 1
z
z2

(1 z z2 z3) . (4.8)

It is well-known that if the original signal is exponential, then H has rank one,
as illustrated. One can see that the columns of S are a subset of the columns of
H. Hence, if H has rank one, then clearly S also has rank one. Consider now a
vector f ∈ KK defined by the underlying function f(t) as fk = f(tk), 1 ≤ k ≤ K,
using equidistant samples. We reshape f into a (I × J) matrix S such that
vec(S) = f with K = IJ . Consider also a Hankelized version H ∈ KI×Jh such
that hijh = fi+jh−1 with K = I + Jh − 1. Hence, we have that S = HQ with
Q ∈ KJh×J the selection matrix defined by qj = e(j−1)I+1 for j = 1, . . . , J . One
can verify that the matrix Q selects all distinct columns of H, by comparing,
e.g., the matrices in (4.7) and (4.8). It is clear that if H has low rank then S
has low rank as well, while S offers a more compact representation than H. It
is known that H has low rank if the underlying functions are sums of a limited
number of exponential and trigonometric terms. This fact extends to the larger
class of exponential polynomials [101]. The latter allows one to model a wide
range of signals in many applications, e.g., the autonomous behavior of linear
systems can be described by (complex) exponential and, if we admit coinciding
poles, exponential polynomials. In Table 4.1 we show the coinciding (exact) rank
values of H and S for several common (exponential) polynomials; by combining
such functions one can model a wide variety of signals. For example, a sine is a
linear combination of two (complex conjugated) exponentials and, hence, admits
a rank-2 model. Note that, while exponential polynomials can be represented
by low-rank matrices, the latter allow the representation of a much larger family
of signals than only exponential signals. Moreover, Hankel matrices are often
ill-conditioned [368], so that the numerical rank can be significantly smaller
than the theoretical one.

So far we have discussed signals that admit an exact low-rank representation.
However, our approach also works well for more general compressible signals.
A reshaped version of the latter often admits an approximate low-rank model
as illustrated in Figure 4.2. Assume we approximate S by a rank-R matrix
S̃ =

∑R
r=1 ar ⊗ br, then the approximation error on the original function
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Table 4.1: Rank r(H) of the Hankelized version of several (exponential)
polynomials f(t). If H has low rank then the (I × J) reshaped version S
has low rank as well (if R < min(I, J)). The latter, however, provides a much
more compact representation for f(t) than the former. (pr(t) is a polynomial of
degree Qr.)

f(t) r(H) f(t) r(H)

azt 1
R∑
r=1

arz
t
r R

a sin(bt)
a cos(bt) 2

R∑
r=1

ar sin(brt) 2R

azt sin(bt) 2
R∑
r=1

arz
t
r sin(brt) 2R

p(t) =
Q∑
q=0

aqt
q Q+ 1

R∑
r=1

pr(t)
R∑
r=1

Qr +R

p(t)zt Q+ 1
R∑
r=1

pr(t)ztr
R∑
r=1

Qr +R

p(t) sin(at) 2Q+ 2
R∑
r=1

pr(t) sin(art)
R∑
r=1

Qr + 2R

p(t)zt sin(at) 2Q+ 2
R∑
r=1

pr(t)ztr sin(art)
R∑
r=1

Qr + 2R
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1

0 0.5 10
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1
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1

Figure 4.2: Low-rank approximation of a reshaped smooth function often
provides a good representation. This is illustrated for a Gaussian (left), a
rational function (middle), and a sigmoid (right) sampled uniformly 100 times
in [0, 1] ( ). The original functions are reshaped into a (10 × 10) matrix
and then approximated by a low-rank matrix by truncating the SVD. The
reconstructed functions are obtained by vectorizing this low-rank matrix. One
can clearly see that the functions can be better approximated by a rank-2 ( )
than a rank-1 ( ) approximation.
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f = vec(S) is:

‖f − vec(S̃)‖2F = ‖f −
R∑
r=1

br ⊗ ar‖2F. (4.9)

Recall from Subsection 4.1.1 that a Kronecker product equals a vectorized outer
product. We can make the approximation error (4.9) as small as desired by
increasing R. Since (4.9) is just a vectorized version of ‖S−S̃‖2F, Eckart–Young’s
theorem provides an upper bound on the approximation error [142]. Namely,
the least squares error on the representation of the signal f is the sum of the
squares of the discarded singular values of S. The singular value spectrum of S
is often fast decaying, and hence the signal f often admits a good representation
of the form (4.9) for low R. It is outside the scope of this chapter to investigate
in general under which conditions on the signal f the error in (4.9) is small.
However, we do provide explicit bounds by focusing on signals that admit a
good polynomial approximation. We emphasize that these are only bounds,
as 1) polynomials are only a special case of exponential polynomials and 2)
the latter are only a special case of functions that yield a low-rank matrix S.
As such, assume that we approximate the underlying function f(t) of f with a
Taylor polynomial p(t) of degree R− 1 around t = t∗. Assuming f(t) and its
derivatives up to order R are continuous, which is satisfied for smooth signals,
Taylor’s theorem provides the following element-wise upper bound on the error
in (4.9):

|f(t)− p(t)| ≤ fmax
R! |t− t∗|

R (4.10)

with fmax = maxu f (R)(u), u ∈ (t∗, t) and f (R) the Rth derivative of f . The
corresponding matrix S̃ of p(t) has rank R, see Table 4.1; hence, (4.10) is a bound
on the error of the rank-R approximation of S. Signals with rapidly converging
Taylor series admit an approximate low-rank model, hence, only a small R is
needed for a good approximation. A general polynomial approximation p(t)
in K uniformly sampled points in the interval [a, b] gives the following upper
bound on (4.9):

‖f − vec(S̃)‖2F≤
(
hR

4Rf̄
)2

with h = (b− a)/K, f̄ = maxu f (R)(u), u ∈ [a, b], and f (R) the Rth derivative
of f . Similar results can be derived for other types of approximations, e.g., a
polynomial approximation in Chebyshev points. In Section 4.5, we illustrate
our strategy for real-life signals as well, showing that our working hypothesis is
valid for a variety of signals and applications.

In this chapter we also reshape signals into higher-order tensors, going further
than the Hankel strategy from [101] and enabling an even more compact
representation. In tensor-based scientific computing one often reshapes a
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function up to a (2× 2× · · · × 2) tensor of very high order to achieve maximal
compression for a fixed rank R [171, 215]. Here, we allow much more freedom
in the choice of the reshaping parameters, which enables a trade-off between
the approximation error in (4.9) and the compression rate, see Subsection 4.5.5.

Let us now describe the strategy more formally. Suppose one reshapes the
rth source sr in (4.6) into a (I × J) matrix Sr such that vec(Sr) = sr with
K = IJ . Note that this is the same as stacking different decimated versions of
the signal in the rows of a matrix. If the rth reshaped (or matricized) source Sr
admits a rank-1 representation, which is our working hypothesis, we have that
Sr = ar ⊗ br with ar ∈ KI and br ∈ KJ , as, e.g., in (4.7). In general, however,
this model is too restrictive. The reshaped sources may admit, or better be
approximated by a low-rank representation, as is, e.g., the case for a sine and the
functions in Figure 4.2, respectively. Hence, we have that Sr =

∑Lr
lr=1 alrr ⊗blrr.

Note that this means that we assume that the sources can be written as a sum
of Kronecker products: sr = vec (Sr) =

∑Lr
lr=1 blrr⊗alrr. This strategy enables

a compact representation of the sources, see Table 4.2. Indeed, the number of
parameters is one order of magnitude lower than the finite length K if I ≈ J .
More generally, we can reshape the sources into a higher-order tensor, enabling
a more compact representation. Suppose we reshape the rth source sr into an
Nth-order tensor Sr ∈ KI1×I2×···×IN such that vec(Sr) = sr with K =

∏N
n=1 In.

If the rth reshaped (or tensorized) source Sr admits a (higher-order) low-rank
representation, we have that:

Sr =
Lr∑
lr=1

u(1)
lrr

⊗ u(2)
lrr

⊗ · · · ⊗ u(N)
lrr

, (4.11)

in which u(n)
lrr
∈ KIn for n = 1, . . . , N , where the number of rank-1 terms Lr

can differ between sources. Note that this is a PD as in (4.1). This means that
the sources can be modeled, or approximated, by sums of (N − 1) Kronecker
products [171]:

sr = vec (Sr) =
Lr∑
lr=1

u(N)
lrr
⊗ u(N−1)

lrr
⊗ · · · ⊗ u(1)

lrr
, (4.12)

In general, the number of parameter decreases logarithmically in the number
of Kronecker products N (i.e., the order of the representation) and increases
proportionally with the number of rank-1 terms Lr, see Table 4.2. For example,
if In = I for n = 1, . . . , 3, then K = I3 and only O(3LrI) parameters are needed.
The possibly large compressions indicate the applicability of this strategy for
large-scale BSS problems.
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Table 4.2: Reshaping sr in (4.6) into Sr ∈ KI1×I2×···×IN and then using a
rank-Lr representation leads to a considerable compression. If N = 2, we use I
and J . The number of parameters decreases logarithmically in N and increases
proportionally with Lr.

K for general In In ≈ I, for all n
N = 2 IJ Lr(I + J − 1) O(LrI)
N > 2

∏N
n=1 In Lr(

∑N
n=1 In −N + 1) O(LrNI)

4.2.3 Decomposition

We now demonstrate how the BSS problem in (4.6) can be reformulated as
the computation of a tensor decomposition when the sources admit a low-rank
representation. Let us start as follows: each row of X is reshaped into a
(I × J) matrix as described earlier and then stacked into a third-order tensor
X ∈ KI×J×M such that vec (Xm) = xm. In other words, the mth matricized
observed signal is equal to the mth frontal slice of X . Since the tensorization is
a linear operation, the M reshaped observed signals are linear combinations of
the R reshaped sources Sr ∈ KI×J . As such, we have that:

X =
R∑
r=1

Sr ⊗ mr. (4.13)

We denote this deterministic tensorization technique by segmentation; see
Figure 4.1 for an illustration. Now assume that the rth reshaped source
in (4.13) admits a rank-1 representation, i.e., Sr = ar ⊗ br for r = 1, . . . , R,
then we have that:

X =
R∑
r=1

ar ⊗ br ⊗ mr. (4.14)

Equation (4.14) is a CPD as defined in (4.1). Consequently, the BSS problem
boils down to the computation of a CPD of a third-order tensor in R rank-1
terms. Analogously, if the reshaped sources admit a low-rank representation,
the BSS problem boils down to a BTD in multilinear rank-(Lr, Lr, 1) terms, as
in (4.5) and illustrated in Figure 4.1. References to uniqueness results for both
cases have been mentioned in Subsection 4.1.2. We insist that the compressibility
of the sources has enabled their blind separation.

More generally, we can reshape each observed signal into a (I1 × I2 × · · · × IN )
Nth-order tensor as described earlier and then stack it into a (N + 1)th-order
tensor X ∈ KI1×I2×···×IN×M . As such, the mth tensorized observed signal is
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equal to the mth Nth-order “frontal slice” of X :

X =
R∑
r=1
Sr ⊗ mr, (4.15)

If the reshaped sources Sr ∈ KI1×I2×···×IN allow a low-rank representation as
in (4.11), we have:

X =
R∑
r=1

(
Lr∑
lr=1

u(1)
lrr

⊗ u(2)
lrr

⊗ · · · ⊗ u(N)
lrr

)
⊗ mr, (4.16)

which is a decomposition in R (rank-Lr ⊗ vector) terms [332]. It is a more
general decomposition because it boils down to a CPD of a higher-order tensor
as in (4.1) if Lr = 1 for all r. Also, it boils down to a BTD in multilinear
rank-(Lr, Lr, 1) terms as in (4.5) if N = 2, i.e., if X is a third-order tensor. In
that case, the factor matrices U(1)

r and U(2)
r of the rth term are not unique,

but their products are (up to scaling and permutation). On the other hand, for
N > 2, the factor matrices U(n)

r are unique under mild conditions because they
form a rank-Lr PD of an Nth-order tensor. We will exploit this in the DOA
estimation application in Subsection 4.5.7.

The proposed method simultaneously determines both the mixing vectors
and the sources by 1) simply reshaping the data (using segmentation) and 2)
exploiting the fact that many real-life signals admit a (higher-order) low-rank
representation. As such, the BSS problem boils down to a tensor decomposition
and 3) we can benefit from mild uniqueness properties. Moreover, 4) it is
applicable for large-scale BSS problems, i.e., large K, as is clear from the
possibly huge compressions as indicated above. However, this is not necessarily
a significant advantage compared to existing methods like ICA. The latter has
only a linear dependence on K and even benefits from large K accuracy-wise
because the K samples are used to estimate statistics. Finally, 5) the method
is deterministic, meaning that it does not use (higher-order) statistics, hence, it
also works well if the number of samples is small and/or if the sources are not
statistically independent. This is a difference with statistical methods such as
ICA.

4.3 Large-scale blind source separation via
low-rank mixing vectors

In the previous section we exploited the fact that many real-life (source) signals
admit a low-rank representation. This is also a natural assumption for the
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mixing vectors if one considers, e.g., many sensors and/or high sensor density; we
call them low-rank mixing vectors analogous to low-rank sources. Such problems
arise in biomedical sciences, e.g., wireless body area networks (WBANs) using
electroencephalography (EEG) [43] and electrocorticography (ECoG) [310]
with high spatial resolution, or neural dust with thousands of miniature
sensors (neural probes) dispersed throughout the brain [314]. Moreover,
one often encounters mixing matrices with Vandermonde structure [337], i.e.,
each reshaped mixing vector has exactly rank one. An example are uniform
linear (ULAs) and rectangular arrays (URAs) with far-field sources that emit
narrowband signals [228, 268, 323]. Here, we also see a trend towards large-scale
antennas, also known as massive MIMO [156, 236]. If the signals propagate
through several distinct paths, e.g., due to reflections or scattering [202], each
reshaped mixing vector has low rank. If the sources are located in the near-field,
the Vandermonde structure is only approximate which can be accommodated
by a low-rank approximation.

Exploitation of the underlying compactness of such low-rank mixing vectors
amounts to a comparable method as in Section 4.2, which has been briefly
addressed in [50]. Let us illustrate the analogy with the previous section more
clearly: each column (cf. above) of X is reshaped into a (I × J) matrix with
M = IJ and then stacked into a third-order tensor X ∈ KI×J×K . Next, assume
the reshaped mixing vectors admit a rank-1 representation, which is our working
hypothesis, i.e., Mr = unvec(mr) = ar ⊗ br for r = 1, . . . , R. Hence,

X =
R∑
r=1

ar ⊗ br ⊗ sr. (4.17)

Note that this boils down to applying the same strategy as before on the
transposed observed data matrix. The generalization to higher-order low-rank
representations is straightforward. The same analysis as in Subsection 4.2.3
applies, but now we segment the mixing vectors and exploit the fact that
they possibly admit a (higher-order) low-rank representation. Moreover, the
method has several advantages over ICA: ICA methods based on (full) HOS are
infeasible when M is large as the number of entries in Qth-order statistics is
O(MQ). Also, our method can handle Gaussian random sources in contrast to
ICA (if the mixing vectors indeed exhibit some low-rank structure) [89]. Finally,
the method imposes only mild conditions (via the uniqueness conditions) on
the sources in contrast to existing methods, e.g., linear independence instead of
statistical independence as in ICA.
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4.4 Large-scale blind source separation using
twofold segmentation

In the previous two sections we either reshaped the sources or the mixing vectors
and then exploited the hypothesized low-rank structure. However, as we have
illustrated before, both the mixing vectors and the sources may admit such a
higher-order low-rank representation. Hence, a natural extension is to use both
strategies simultaneously. For instance, one often has sinusoidal sources, which
admit a rank-2 representation, in ULAs of which the Vandermonde mixing
vectors admit a rank-1 representation. To the best of our knowledge, this is
the first time that tensorization is used on both levels of the BSS problem and
more generally in matrix factorization.

By exploiting the underlying compactness on both levels, we are again able to
reformulate the BSS problem as the computation of a tensor decomposition. Let
us start with reshaping each column of X into a (I1× I2) matrix with M = I1I2
and stacking them in an intermediate third-order tensor Y ∈ KI1×I2×K . Note
that the (i1, i2)th mode-3 vector of Y equals the (i1 + (i2 − 1)I1)th row of
X. Each mode-3 vector of Y (i.e., row of X) is subsequently reshaped into
a (J1 × J2) matrix with K = J1J2, which overall yields a fourth-order tensor
X ∈ KI1×I2×J1×J2 . Hence, we have that:

X =
R∑
r=1

Mr ⊗ Sr. (4.18)

We denote this by twofold segmentation (cf. Sections 4.2 and 4.3). Let us now
assume that both the reshaped mixing vectors and sources admit a rank-1
representation. In that case, it is easy to see that (4.18) is a CPD of a fourth-
order tensor in R rank-1 terms. More generally, if the segmented mixing vectors
and sources allow a low-rank representation, we have:

X =
R∑
r=1

(ArBT
r ) ⊗ (CrDT

r ) , (4.19)

in which Ar ∈ KI1×Lr and Br ∈ KI2×Lr have full column rank Lr and Cr ∈
KJ1×Pr and Dr ∈ KJ2×Pr have full column rank Pr. Note that the ranks Lr
and Pr can be different for each r and do not necessarily have the same value
inside the rth term. This is a new kind of decomposition: X is decomposed in
a sum of R (rank-Lr ⊗ rank-Pr) terms.

More generally, we can reshape each row and column of X into Sr ∈
KJ1×J2×···×JNs and Mr ∈ KI1×I2×···×INm such that vec(Mr) = mr and
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vec(Sr) = sr, respectively, with M =
∏Nm
nm=1 Inm and K =

∏Ns
ns=1 Jns ,

analogous to the single segmentation case in (4.15). As such, we have that:

X =
R∑
r=1
Mr ⊗ Sr.

Analogous to (4.16), the reshaped mixing vectors and sources can both admit a
low-rank representation. Hence, we have that:

X =
R∑
r=1

(
Lr∑
lr=1

⊗Nm
nm=1u

(nm)
lrr

)
⊗

(
Pr∑
pr=1

⊗Ns
ns=1v

(ns)
lrr

)
,

in which u(nm)
lrr

∈ KInm and v(ns)
prr ∈ KJns . In comparison with (4.19), the

block factors U(n)
r and/or V(n)

r are unique under mild conditions if Nm > 2
and/or Ns > 2. The reason is the same as for the single segmentation case, see
Subsection 4.2.3.

The proposed method offers 1) a framework to exploit the low-rank structure
of both the reshaped mixing vectors and sources; the same analysis as in
the previous sections applies. Again, we reformulate the BSS problem as the
computation of a tensor decomposition, hence, 2) we can benefit from the mild
uniqueness properties. More specifically, it boils down to the computation of a
new and more general decomposition. As such, 3) the method is applicable in a
big data setting: it can handle both large sample sizes and large numbers of
sensors efficiently, see Table 4.2. Furthermore, 4) the method is deterministic,
hence, it is not needed per se to have a large number of samples. Finally, 5)
only mild, and natural, assumptions are imposed on the mixing vectors and
the sources. We simply exploit the low-rank structure which is often present in
real-life signals as explained above.

4.5 Simulations and applications

In Subsection 4.5.1, we give an example of the separation of two low-rank
sources and the separation of two low-rank sources that are mixed with low-rank
mixing vectors. Subsection 4.5.2 demonstrates the separation of more sources
than observed signals. We investigate the influence of the noise and the sample
size in Subsection 4.5.3. Subsection 4.5.4 shows how well one can approximate
the reshaped mixing vectors and/or sources for varying rank and SNR. In
Subsection 4.5.5 we analyze the influence of the choice of reshaping dimensions.
Finally, in the last two subsections, we illustrate the proposed methods with fetal
electrocardiogram extraction and direction-of-arrival estimation in large-scale
uniform linear arrays.
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We use the segmentize command from Tensorlab to apply segmentation to the
observed data matrices [392]. The CPD and BTD in multilinear rank-(Lr, Lr, 1)
terms can typically be computed algebraically by means of a generalized
eigenvalue decomposition [104, 332, 333]. The algebraic solution is exact
in the noiseless case and a good initialization for optimization-based methods
in the noisy case. In this chapter, we use least squares optimization-based
algorithms cpd and ll1 to fit the decomposition to the data until a sufficiently
high accuracy is attained. During the computation, it is theoretically possible
that degeneracy occurs [227, 327]. For example, the magnitude of some terms
grows without bounds but with opposite sign, resulting in a poor solution but
a good fit. Degeneracy can be avoided in several ways such as increasing the
number of rank-1 terms or imposing orthogonality or nonnegative constraints
on the factor matrices [84, 227, 248, 344]. The decompositions in (rank-Lr ⊗

vector) and (rank-Lr ⊗ rank-Pr) terms are computed with two adapted versions
of cpd_nls called lvec_nls and lp_nls, respectively, and are available upon
request. For very large tensors, one can resort to large-scale algorithms as
described in [321, 391, 393].

The mixing vectors and sources can only be determined up to scaling and
permutation, i.e., the standard indeterminacies in BSS. Hence, in order to
compute the error they are first optimally scaled and permuted with respect
to the true ones. The relative error is then defined as the relative difference in
Frobenius norm, i.e., we have relative error εA = ||A− Â||F/||A||F with Â an
optimally scaled and permuted estimate of A. We use Gaussian additive noise
unless indicated otherwise.

4.5.1 General experiments

First, we illustrate the method proposed in Section 4.2. Consider R = 2 low-
rank sources: s1(t) = e−t and s2(t) = sin(4πt) with K = 4096 equidistant
samples in [0, 1]. They are mixed into M = 3 observed signals using M =
[0.5, 2; 2, −3; 1, 0.5]. We use a second-order (N = 2) rank-1 (L1 = 1) and
rank-2 (L2 = 2) approximation for the first and second source, respectively,
with I = J = 64. Note that the approximation of the first and second source
requires only 127 and 254 values, respectively, see Table 4.2. This is the maximal
reduction for a second-order approximation. Namely, we have a compression
of 1 − Lr I+J−N+1

M , i.e., 96.90% and 93.80% for the first and second source,
respectively. The perfectly recovered sources are shown in Figure 4.3.

Second, we illustrate the method proposed in Section 4.4. Consider R = 2 low-
rank sources: s1(t) = e−t+et−e0.5t and s2(t) = 2e−t withK = 4096 equidistant
samples in [0, 1]. The sources are mixed with two low-rank mixing vectors:
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Figure 4.3: Results for the first experiment of Subsection 4.5.1. Left: the two
original sources. Middle: the observed signals. Right: the recovered sources.

m1(ξ) = sin(2πξ) and m2(ξ) = e−2ξ sin(6πξ) with M = 4096 equidistant
samples in [0, 1]. We use a third-order (Ns = 3) rank-3 (P1 = 3) and rank-1
(P2 = 1) approximation for the first and second source, respectively, with
J1 = J2 = J3 = 16. Furthermore, we use a second-order (Nm = 2) rank-2
approximation for both mixing vectors (L1 = L2 = 2) with a non-optimal
choice of the segmentation parameters: I1 = 128 and I2 = 32. Hence, we
decompose the (128× 32× 16× 16× 16) segmented version of X into a sum of
a (rank-2 ⊗ rank-3) and a (rank-2 ⊗ rank-1) term. The approximation of the
rth mixing vector requires only Lr(I1 + I2 −Nm + 1) values, i.e., a compression
of 1− Lr I1+I2−Nm+1

M = 92.19%, although this is not the maximal compression.
Higher compression can be attained by increasing the order. For instance, the
approximation of the rth source consists of only Pr(J1 + J2 + J3 − Ns + 1)
values, i.e., a compression of 1 − Pr J1+J2+J3−Ns+1

M . Specifically, we have a
compression of 96.63% and 98.88% for the first and second source, respectively.
We further investigate the choice of Inm and Jns in Subsection 4.5.5. The
perfectly recovered factors are shown in Figure 4.4.

4.5.2 Underdetermined mixture

We illustrate the separation of more sources than observed signals. Consider
R = 3 complex exponential source signals sr(t) = e2πirt for r = 1, . . . , R which
are mixed into M = 2 observed signals using M = [−1, 0.5, 2; 0.5, 1, 0.5]. We
take K = 4096 uniformly discretized samples in [0, 1]. We use a second-order
(N = 2) rank-1 approximation for both sources with I1 = I2 = 64. The real
part of the recovered sources is shown in Figure 4.5: perfect reconstruction is
obtained.
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Figure 4.4: Results for the second experiment of Subsection 4.5.1. Top: original
mixing vectors (left) and sources (right). Bottom: perfectly recovered mixing
vectors (left) and sources (right).
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Figure 4.5: Results for the underdetermined mixture. The real part of the three
original sources (left), the two observed signals (middle), and the recovered
sources (right).

4.5.3 Noise and sample length

First, we investigate the influence of the noise and the sample size K for
the method of Section 4.3. Consider a setup in which we have M = 4096
sensors and R = 2 i.i.d. zero-mean unit-variance Gaussian random sources of
length K = {101, 102, 103}. We construct the low-rank mixing vectors as the
vectorization of a second-order (N = 2) rank-2 (L1 = 2) and rank-3 (L2 = 3)
tensor using (4.12) with zero-mean unit-variance Gaussian random factor vectors
and I = J = 64. Hence, we use a second-order rank-2 and rank-3 approximation
with I = J = 64, respectively. In Figure 4.6, we report the relative error
on the mixing vectors εM and the sources εS; note that the results are very
accurate in comparison with the SNR. Although the method is deterministic, it
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Figure 4.6: Median across 100 experiments of the relative error on the mixing
vectors (left) and the sources (right) as a function of SNR for K = 101 ( ),
102 ( ), and 103 ( ). The mixing vectors are well conditioned.

is beneficial to increase K under noisy conditions. However, K can be (very) low
in comparison to typical values in ICA. (Note that in this particular example,
ICA cannot be used since the sources are Gaussian.) εS does not improve for
increasing K because one also has to estimate longer source signals. Similar
results can be obtained for the method of Section 4.2 when increasing the
number of sensors M under noisy conditions.

Next, consider a similar setup as in the previous experiment but now with the
following rank-1 mixing vectors: m1(ξ) = e0.5ξ and m2(ξ) = e−2ξ with ξ ∈ [0, 1].
We use a second-order (N = 2) rank-1 approximation for both mixing vectors
(L1 = L2 = 1) with I = J = 64. The results are shown in Figure 4.7: in
comparison with Figure 4.6, there is some loss of accuracy on the mixing vectors
and much clearer on the sources. This is due to the condition of the problem:
in the previous experiment, the mixing vectors are approximately orthogonal
and have about the same size (‖m1‖/‖m2‖ ≈ 0.8), while now the angle is 37.11°
and ‖m1‖/‖m2‖ = 2.65. Hence, the computation of the decomposition is more
difficult and the estimates less accurate.

4.5.4 Low-rank approximation

We investigate the influence of deviations from a second-order rank-1 structure
on the relative error as follows. Define each mixing vector as the vector-
ization of a random matrix with exponentially decaying singular values, i.e.,
mr = vec (Urdiag (σ) Vr) with σ = e−αξ and ξ a vector containing min (I, J)
equidistant samples in [0, 1]. Ur and Vr are random orthogonal matrices
of compatible dimensions. The exponential decay of the singular values is
controlled with α which is a measure for the rank-1-ness of the mixing vectors:
increasing α leads to more rank-1-like mixing vectors and vice-versa. We take
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Figure 4.7: Median across 100 experiments of the relative error on the mixing
vectors (left) and the sources (right) as a function of SNR for K = 101 ( ),
102 ( ), and 103 ( ). The mixing vectors are ill-conditioned.

R = 2 i.i.d. zero-mean unit-variance Gaussian random sources of length K = 10
and use a second-order (N = 2) rank-Lr approximation with I = J = 64.

Figure 4.8 shows the relative errors εM and εS as a function of α for an SNR of
15 dB and 25 dB using L1 = L2 = 1. Note that an estimate of the mixing matrix
M̂ can be obtained from the decomposition, i.e., from (4.17) for this particular
case, in the way explained above. However, one can also estimate it via the noisy
observed data matrix and the pseudo-inverse of the estimated source matrix:
M̂ = XŜ†. The figure illustrates that εM decreases for increasing α until it
stagnates due to noise. One can also see that, for large α, M̂ computed via
the pseudo-inverse is less accurate than directly extracting M̂ from (4.17) and
imposing rank-1 structure. However, for small α, the opposite is true. Indeed,
for decreasing α, the mixing vectors become less rank-1 like and our rank-1
model cannot attain a better estimate than the one given by Eckart–Young’s
theorem [142]. Also, note that the sources are estimated more accurately than
the mixing vectors: the noise on the sources is more averaged out because this
factor is much shorter in the decomposition (K � I, J) [115].

Figure 4.9 shows the relative errors for several choices of Lr. One can observe
that for increasing Lr, the relative error decreases in the case of small α, i.e.,
in the case of little rank-1-like mixing vectors. On the other hand, little is
lost through overmodeling (i.e., choosing Lr too large) for large α. In fact, we
overmodel less than conventional methods as we exploit the low-rank structure.
Hence, the choice of Lr is not so critical, see [101, 124]. In this case one also
knows that the multilinear rank of X is bounded by (

∑R
r=1 Lr,

∑R
r=1 Lr, R).
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Figure 4.8: Median across 100 experiments of the relative error on the mixing
vectors (left), extracted from (4.17) (dashed) and computed via the inverse of
Ŝ (dotted), and the sources (right) for varying rank-1-ness α and an SNR of
15 dB (cross) and 25 dB (circle). The error bound given by the Eckart-Young
theorem is shown in solid.
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Figure 4.9: Median across 100 experiments of the relative error on the mixing
vectors (left) and the sources (right) for varying rank-1-ness α of the mixing
vectors and 20 dB SNR with L1 = L2 = 1 ( ), L1 = L2 = 2 ( ), and
L1 = L2 = 3 ( ). The error estimate given by the Eckart-Young theorem is
shown with dashed lines. Note the small scale of εS (right).

4.5.5 Compression versus accuracy

We investigate the trade-off between compression and accuracy which will lead
to a better understanding on how to choose the segmentation parameters Inm
and/or Ins . We do this by examining the accuracy of a low-rank approximation
of various segmentations of a real-life EEG signal with a sample rate of 500 Hz.
More precisely, we reshape the EEG signal of length K = 214 into a (I × J)
matrix with I = 2q and vary q = 2, . . . , 12, then J = 214−q such that K = IJ .
Subsequently, we approximate the reshaped signal with a rank-L model with
L = {1, 2, 3}.
In Figure 4.10, we plot the normalized number of parameters K̂ = L(I + J)/K
versus the relative error ε of the rank-L approximation. We see a clear trade-off
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Figure 4.10: Normalized number of parameters K̂ as a function of the relative
error of a rank-1 ( ), rank-2 ( ), and rank-3 ( ) approximation of a
segmented real-life EEG signal of length K = 214. The signal is reshaped into a
(I × J) matrix with I = 2q and J = 214−q such that K = IJ with q = 2, . . . , 12
and q increasing from left to right on the curve.

between compression and accuracy, hence, what is considered a “good” choice
of parameters will depend on the needs in a particular application. First of all,
the curves are not symmetric since segmentation is not symmetric in the modes
that it creates. Note that one can easily improve the accuracy without affecting
the compression rate by switching the values of I and J such that I < J rather
than I > J for the same rank. For fixed I and J , increasing the rank can greatly
improve the accuracy, e.g., when I � J (left part of Figure 4.10). The original
signal and two particular approximations are shown in Figure 4.11. Note the
relative error decreased from 0.68 to 0.096 by taking I < J and increasing L for
the second approximation. On the other hand, the compression reduced from
96.88% to 86.72%.

In general, a good choice of the parameters will depend on the application. If
compression is the objective, one should choose I ≈ J and L not too large. If,
on the other hand, accuracy is the objective, one can try other choices of I and
J and maybe a higher rank L. In practice, one can try a particular choice of
parameters, perform a similar analysis as here on the estimated sources, and
further refine the choice from there.

4.5.6 Fetal electrocardiogram extraction

We use the method of Section 4.2 for the extraction of the antepartum fetal
electrocardiogram (FECG) from multilead cutaneous (i.e., recorded on the
mother’s skin) potential recordings. The FECG is important for analyzing the
health and condition of the fetus. The elimination of the mother’s dominant
heartbeat in the ECG can be seen as a BSS problem and one can use methods
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Figure 4.11: Visualization of the original EEG signal ( ) and two
approximations. The latter are obtained by first reshaping the original signal
into a (27 × 27) and (25 × 29) matrix, respectively, and then approximating
them by a rank-1 ( ) and rank-2 ( ) matrix by truncating the singular
value decomposition. The reconstructed signals are obtained by vectorizing
these low-rank matrices. Only the first 2000 samples are shown. The rank-2
approximation is much better than the rank-1 as is also clear from Figure 4.10.

such as ICA [111]. ICA, however, falls short when only a few samples or
heartbeats are available. FECG extraction is not a large-scale problem, but it is
useful to illustrate a few features of our approach. Our method is applicable here
because the typical QRS complexes in the ECG admit a low-rank approximation.
In other words, we show that representability by a small number of parameters
can be used as a ground for blind ECG signal separation. We illustrate our
method for a real-life dataset.

The dataset contains eight observed signals, of which five abdominal and
three thoracic; the dataset is available from DaISY1. Data acquisition and
preprocessing is described in [65]. The sampling rate is 250 Hz. We only
use the first 500 samples and scale each signal to unit norm. Each observed
signal is segmented into a (25× 20) matrix and the overall data set is stacked
into a (25 × 20 × 8) tensor. We use a rank-5 approximation for each source
(L1 = L2 = L3 = L = 5). At least three sources are needed to extract the
FECG; this is also the case for ICA [111]. We use this particular segmentation as
to maximize the compression which is only an arbitrary choice. We determined
L by a trial-and-error approach starting from a rank-10 approximation and then
decreasing L. Little is lost by choosing a larger L anyway, see Subsection 4.5.4.
Figure 4.12 shows two recovered sources. One can verify that the heartbeats of
the fetus are no longer visible in the ECG of the mother and vice versa, i.e, we
have a clear separation. The frequency of the FECG is typically twice as high
as the frequency of the MECG, which can be observed as well.

1Available from http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html

http://homes.esat.kuleuven.be/~smc/daisy/daisydata.html
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Figure 4.12: Visualization of the two recovered sources in the FECG experiment.
Notice a clear separation of the fetal (above) and maternal (below) ECG.

4.5.7 Direction of arrival estimation

We use the method of Section 4.4 for direction-of-arrival (DOA) estimation
of signals impinging on a ULA. Applications include radar, sonar, wireless
communications, and seismic exploration. Recently, there has been a trend
towards large-scale array processing [236]. Our method is able to cope with
a large number of sensors, where other methods fall short. We compare our
results with two well-known DOA estimation methods, MUSIC and ESPRIT,
in several scenarios [228].

Consider a ULA that consists of M uniformly spaced and omnidirectional
antennas receiving signals from R narrow-band sources located in the far
field. In that case, the problem can be described by (4.6) with the mixing
vectors defined element-wise as mmr = θm−1

r with θr = e−2πi∆ sin(αr)λ−1 . ∆
is the inter-element spacing, the angle αr to the normal is the rth DOA (i.e.,
−90° ≤ αr ≤ 90°), and λ denotes the wavelength. Note that the mixing
vectors are Vandermonde vectors: mr =

[
1 θr θ2

r · · · θM−1
r

]T, hence, they
admit a rank-1 representation [268, 322]. In a multipath setting, the mixing
vectors are defined element-wise as mmr =

∑Lr
l=1 θ

m−1
lr (ignoring path losses

for simplicity), with Lr the number of paths for the rth source, admitting
a low-rank representation. If the sources are located in the near field, the
mixing vectors no longer admit a rank-1 representation but can still be well
approximated by a low-rank model. If one also uses low-rank source models, we
can use the method of Section 4.4.

First, consider a ULA withM = 64 sensors and ∆ equal to halve the wavelength.
Although our method is applicable for a large number of sensors, we choose
M rather small so we can compare with MUSIC and ESPRIT. The latter two
methods have to compute a M × M covariance matrix and then apply an
eigenvalue decomposition (EVD). These steps can be computationally expensive
because they have a complexity of O(M2K) and O(M3), respectively, rendering
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such methods infeasible for large M and K. Moreover, MUSIC has to evaluate
the MUSIC spectrum for many angles in order to estimate the DOAs accurately.
Here, we evaluated the MUSIC spectrum in 104 equidistant angles in [−π2 , π2 ].
Note that the number of evaluation points bounds the attainable accuracy.
Consider R = 2 low-rank sources: sr(t) = sin(10πrt) with K = 1024 equidistant
samples in [0, 1]. The sources are in line-of-sight and impinge on the ULA with
α11 = 32° and α12 = 34°. We use a second-order (Ns = 2) rank-2 (P1 = P2 = 2)
approximation for both sources with J1 = J2 = 32 and a second-order (Nm = 2)
rank-1 (L1 = L2 = 1) approximation for both mixing vectors with I1 = I2 = 8.
Note that the model of the sources and mixing vectors requires only 126 and
15 values instead of 1024 and 64, respectively, see Table 4.2. This results in a
compression of 1− Pr J1+J2−Ns+1

K = 87.70% and 1− Lr I1+I2−Nm+1
M = 76.56%,

respectively. In Figure 4.13 (left), we report the median of the relative errors on
the DOAs εα. It is clear that the dedicated methods estimate the DOAs more
accurately than our method. On the other hand, by exploiting the low-rank
structure, we show that it is still possible to get fairly accurate estimates in
comparison with well-known dedicated methods. Moreover, our method is
applicable for large M .

In a second experiment, we add a third source (R = 3) that impinges on the
ULA from two different paths (L3 = 2): α13 = −15° and α23 = 67°. We use a
third-order (Nm = 3) rank-1 and rank-2 approximation for the first two and
last mixing vector, respectively, with I1 = I2 = I3 = 4. We choose Nm > 2
such that the different DOAs of the third source can be found directly from
the estimated vectors u(1)

13 and u(1)
23 (instead of the column space of S3), see

the discussion of uniqueness in Subsection 4.2.3. Note that one simply has to
increase the rank Lr in order to cope with a multipath source, while MUSIC
and ESPRIT need additional spatial smoothing [318]. The results are shown in
Figure 4.13 (right).

In a third experiment, we use the same setup as in the first experiment but
with two near-field sources defined by a DOA and range relative to the first
antenna: α1 = −17°, w1 = 2(M − 1)∆, α2 = 41°, and w2 = 3(M − 1)∆. We
compare our results with a two-dimensional version of MUSIC [197]. Figure 4.14
shows the median of the relative errors on the DOAs εα and the ranges εw.
MUSIC estimates both the DOA and range more accurately but is even more
computationally expensive because now one has to evaluate a two-dimensional
spectrum for many angles and ranges. Here, we used 102 equidistant angles
and ranges in [−π2 , π2 ] and [5, 12], respectively. In order to cope with near-field
sources in our approach, one simply has to increase the rank Lr.

The final experiment uses the same setup as the first experiment but now with
M = 9 and K = 100 with J1 = J2 = 10 and I1 = I2 = 3. As can be seen from
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Figure 4.13: Median across 100 experiments of the relative error on the DOAs
as a function of SNR for the line-of-sight (left) and multipath (right) experiment
using segmentation ( ), ESPRIT ( ), and MUSIC ( ).
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Figure 4.14: Median across 100 experiments of the relative error on the DOAs
(left) and ranges (right) as a function of SNR for the near field experiment using
segmentation ( ) and MUSIC ( ).

Figure 4.15, MUSIC fails to distinguish close DOAs when only a few samples
are available and the SNR is low [228]. A small number of sensors M flattens
the peaks in the MUSIC spectrum, making the problem more difficult. Our
method can still estimate the DOAs accurately in such a setup because it is
deterministic, performing even better than ESPRIT.

4.6 Conclusion

In this chapter, we have introduced a new method for BSS that exploits the
fact that many real-life signals are compressible. We expressed this by assuming
that the tensorized sources can be well approximated by a low-rank model. In
other words, we assume that the sources can be well approximated by sums
of Kronecker products of smaller vectors. As such, we have demonstrated
that, if the sources indeed admit such a low-rank representation/approximation,
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Figure 4.15: Median across 100 experiments of the relative error on the DOAs as
a function of SNR for the small-scale line-of-sight experiment using segmentation
( ), ESPRIT ( ), and MUSIC ( ).

the BSS problem boils down to the computation of a decomposition of the
resulting tensorized observed data matrix. It is precisely the compressibility,
which is essential in large-scale problems, that makes it very likely that the
tensor decomposition is unique. Hence, our method provides a unique solution
to the BSS problem and a way to cope with large-scale problems. Furthermore,
we applied the same strategy to the mixing level motivated by an increasing
number of sensors and sensor density in fields such as biomedical sciences and
array processing. Moreover, combining both strategies simultaneously allowed
the exploitation of low-rank structure on both levels of the BSS problem. We
have illustrated our methods with two applications: FECG and DOA estimation
for large-scale ULAs. We note that it is possible to impose constraints on the
sources and/or mixture when applicable, e.g., statistical independence of the
sources as in ICA. Such variants are out of the scope of this chapter. Although
we focused on the CPD for modeling the tensorized sources and/or mixture,
it is possible to consider other tensor models such as tensor trains (TTs) and
hierarchical Tucker [171]. The latter are often used in tensor-based scientific
computing because they combine large compression rates with good numerical
properties. For the CPD of very large tensors, algorithms such as the ones
in [321, 391, 393] can be used.



Chapter 5

Analytical multi-modulus
algorithms based on coupled
canonical polyadic
decompositions

Abstract We present new techniques for multiple-input-multiple-output
blind signal separation and blind system identification of multi-modulus
source signals. Multi-modulus signals, such as 16-QAM, are very common
in telecommunications. We algebraically transform the problem into a set
of coupled tensor decompositions for which uniqueness results and algebraic
solutions exist. An exact solution is guaranteed to be obtained by a matrix
eigenvalue decomposition in the noiseless case. The proposed technique
is deterministic and does not rely on statistics. Furthermore, we explain
that certain source signals can still be recovered in the case of a rank-
deficient mixing matrix. As a side result, we generalize a rank-1 detection
procedure from a previously proposed tensor decomposition method. In
the multi-modulus context, the generalization allows a reduction of the
required number of samples for separation.

Reference This chapter is a slightly adapted version of the article [122].
Changes are limited to layout and representation aspects. The candidate
performed the research and wrote the article under the guidance of the
coauthors.
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5.1 Introduction

Given a set of signals X, the multiple-input-multiple-output (MIMO) blind
signal separation (BSS) problem consists of the identification of the mixing
matrix M and/or the original sources S. In the instantaneous linear MIMO
BSS model, one considers the following model with N the additive noise matrix:

X = MS + N. (5.1)

In blind system identification (BSI), an unknown system transfer function
is considered instead of an instantaneous mixing matrix. In case of a linear
time-invariant system, the observed signals are obtained through a convolution.
Hence, the problem is also known as blind deconvolution.

For both BSS and BSI, solutions can be obtained under different working
hypotheses. One hypothesis is mutual statistical independence of the source sig-
nals, leading to independent component analysis (ICA) [2, 89]. A deterministic
hypothesis for multiple-invariance sensor array processing can be found in [323];
other deterministic assumptions are discussed in [119]. In telecommunications,
blind separation and identification avoid the use of training sequences. A lot of
work has been done in exploiting prior knowledge on the moduli of the samples
of telecommunication signals. An example is the constant modulus algorithm
(CMA), discussed in [164] and [363]. It was originally presented in a context
of convolutive single-input-single-output (SISO). In CMA, all source samples
are assumed to have the same constant modulus (CM), as is the case for real-
valued binary phase shift keying (BPSK) signals, or complex-valued continuous
phase/frequency shift keying (CPSK/CFSK) and complex 4-QAM (quadrature
amplitude modulation) signals. Several important improvements followed in
[166] and [37]. In [282], an algorithm for CMA was developed which was later
coined as the multi-modulus algorithm [401, 402]. The algorithm applies a cost
function with multiple linear moduli to fix the rotational ambiguity for 4-QAM
signals. Despite the terminology, we will show that the method is not suitable
for the problem discussed in this chapter. Various other cost functions have
been analyzed for CMA, grouped in different families [3, 169, 245].

Instead of optimizing a certain CM cost function, the analytical constant
modulus algorithm (ACMA) transforms the MIMO BSS problem analytically
into a simultaneous matrix diagonalization [384]. This was one of the first
appearances of the constant-modulus problem in a MIMO context. ACMA
was later extended to the convolutive case [100, 387]. In [100], a connection
was made to tensor algebra, as it was shown that ACMA boils down to the
computation of a tensor decomposition of a partially Hermitian third-order
tensor.
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Figure 5.1: Constellation diagram for rectangular (left) and circular (right)
16-QAM, in which three and four squared moduli are present, respectively. CMA
is only applicable when samples lie on a single circle. For rectangular 16-QAM,
the squared moduli are 2, 10 and 18. For circular 16-QAM, the squared moduli
are 4, 9, 16 and 25.

Many signals, such as higher-order QAM, do not satisfy the constant modulus
property. One has to resort to more general techniques allowing signal samples
with a broader range of possible moduli. Signals of which the sample moduli
are not restricted to a single constant modulus but rather to a finite set of
moduli are called multi-modulus signals. The samples then lie on a number of
concentric circles. An example is a rectangular 16-QAM signal with samples
drawn from ±{1, 3} ± {1, 3}j, having squared moduli of 2, 10 or 18. Circular
16-QAM involves four moduli. Both constellations are illustrated in Fig. 5.1.

It was shown in [315] that the behavior of CMA is poor for the multi-modulus
MIMO BSS and BSI problem, especially when the source signals are correlated
and nonuniform. Because the MMA algorithm from Oh [282] uses the dispersion
of real and imaginary parts separately, it was presented as more suitable for
higher-order QAM constellations [98, 187, 198]. Note that the definitions of
the dispersion moduli used in the latter methods differ intrinsically from the
definition of the moduli of multi-modulus signals. The appendix of this chapter
contains a further clarification. Others applied Givens rotations on the MMA
cost function [316] or introduced customizations to the default MMA algorithm
[4].

This chapter proposes a new method for MIMO BSS and BSI of multi-modulus
signals as a sound generalization of the ACMA algorithm. Unique to our MIMO
approach is, first, that a more suitable cost function is used than the one in
MMA. It is related to finite alphabet methods [244, 308, 414] and has been
used in a convolutive SISO context in [275, 315].
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Second, the problem is algebraically transformed into a set of coupled tensor
decompositions. Coupled tensor decompositions, and more specifically coupled
canonical polyadic decompositions (cCPDs), form an important and emerging
concept in signal processing and data analytics. They enable the integration
of data from multiple datasets, often called data fusion [6, 232, 333]. Using
cCPDs, one-dimensional harmonic retrieval and shift-invariance techniques can
be generalized to multi-dimensional harmonic retrieval and multiple-invariance
techniques, respectively. Furthermore, one can deal with non-uniform linear
arrays, incomplete arrays and convolutive mixtures instead of uniform linear
arrays, dense arrays and instantaneous mixtures, respectively [342, 343].

Because of the reformulation into the tensor framework, algorithms and
uniqueness conditions can be readily obtained [345, 346]. Algebraic methods
using matrix eigenvalue decompositions are available such that an exact solution
can be obtained in the noiseless case. In the presence of noise, refinement
optimization techniques can be used. Furthermore, we present explicit lower
bounds for the number of samples. Note that the method does not make use
of statistics, and is therefore not dependent on the corresponding estimation
error.

As a side result of this chapter, we generalize a rank-1 detection procedure
from a previously proposed algebraic CPD algorithm [99]. While the original
method finds Kronecker-structured vectors in a space spanned by a number of
Kronecker-structured vectors, the generalization allows a search space spanned
by both Kronecker-structured and arbitrary vectors. The generalized method is
applied in the context of the multi-modulus technique to obtain a reduction of
the number of samples required for separation.

The chapter is organized as follows. Multilinear algebra is introduced in
Section 5.2. The BSS method is proposed in Section 5.3. An advanced version is
discussed in Section 5.4 making use of a generalized rank-1 detection procedure.
The methods are extended to BSI in Section 5.5. Simulations are presented in
Section 5.6 and a discussion and conclusion follows in Section 5.7.

5.2 Multilinear algebra and notation

Tensors, denoted by calligraphic letters, e.g., A, are higher-order generalizations
of vectors (denoted by boldface lowercase letters, e.g., a) and matrices (denoted
by boldface uppercase letters, e.g., A). Scalars are written as italic lowercase
letters, e.g., a. The entry with row index i and column index j of a matrix
A ∈ CI×J is denoted by aij . Likewise, the (i1, i2, . . . , iN )th entry of an Nth-
order tensor A ∈ CI1×I2×...×IN is denoted by ai1i2...iN . The jth column of
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a matrix A ∈ CI×J is denoted by aj . The superscripts ·T, ·?, ·H, ·−1 and ·†
represent the transpose, complex conjugate, complex conjugated transpose,
inverse and Moore–Penrose pseudoinverse, respectively.

The Kronecker and column-wise Khatri–Rao products are denoted by ⊗ and
�, respectively. The operation ⊗ stands for the outer product. The Kronecker
and outer product are related, as for vectors a ∈ CI and b ∈ CJ it holds that
a ⊗ b = vec(b ⊗ a), with vec the column-wise vectorization of a matrix or
tensor. Concatenations along the first and second mode are denoted as

[
· ; ·
]

and
[
· ·
]
, respectively.

A Kronecker-structured vector v ∈ CIJ is defined as a vector which can be
written as a Kronecker product of two non-zero vectors a ∈ CI and b ∈ CJ such
that v = a ⊗ b. It can be seen that such a vector is a reshaped rank-1 matrix.

If an Nth-order tensor A can be written as an outer product of non-zero vectors,
i.e., A = a(1) ⊗ a(2) ⊗ · · · ⊗ a(N), it has rank 1. If a tensor can be written as a
sum of R rank-1 terms, the decomposition is called a polyadic decomposition
(PD):

A =
R∑
r=1

a(1)
r

⊗ a(2)
r

⊗ . . . ⊗ a(N)
r ,

r
A(1),A(2), . . . ,A(N)

z
.

The factor vectors a(n)
r are the columns of the factor matrices A(n). If R is

minimal, the decomposition is a canonical polyadic decomposition (CPD) and
R is defined as the rank of the tensor. One advantage of the CPD is that it is
unique under very mild conditions [135, 230]. There exists ample literature on
tensors and tensor decompositions; we refer the interested reader to [84, 223,
324].

5.3 Tensor-based multi-modulus blind signal
separation

We recall the blind signal separation problem:

X = MS + N.

Let us assume R sources, K observed signals and N samples for each signal;
hence, X,N ∈ CK×N , M ∈ CK×R and S ∈ CR×N . We assume that K = R,
as a preprocessing step based on principal component analysis (PCA) can be
carried out when K > R. The underdetermined case is not discussed. Note
that the distinction between K and R is still made to improve readability.
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By defining the separation matrix W ∈ CK×R as WT = M† and by omitting N
for convenience, one can write S = WTX. The transpose is meant to simplify
notation further on. Considering a source sample srn = sr(n), one can write

∀r, n : srn = wT
rxn, (5.2)

with wr the rth column of W and xn the nth column of X.

Constant modulus signals have the property that ∀r, n : |srn|2 = srn · s?rn = c,
with c the a priori known squared constant modulus. For multi-modulus signals,
we have a more general constraint:

∀r, n : |srn|2 = srn · s?rn ∈ {c1, . . . , cP },

in which P is the number of possible moduli, or, equivalently, the number of
concentric circles on which the source samples can lie; e.g., P = 3 in the case of
rectangular 16-QAM. Hence, one has:

∀r, n :
P∏
p=1

(
|srn|2 − cp

)
= 0. (5.3)

From these constraints, a minimization problem can be constructed with
objective function J :

J =
R∑
r=1

N∑
n=1

[
P∏
p=1

(
|srn|2 − cp

)2
]
. (5.4)

Standard optimization techniques can be used to minimize J . Throughout
the next subsections, however, we will solve the problem in an algebraic way.
The constraint from Eq. (5.3) yields a linear system with structured solutions
in subsection 5.3.1. Whereas in [275] an approximate suboptimal quadratic
eigenvalue method [358] is used, we will show that by applying a classical
subspace-based technique (subsections 5.3.2 and 5.3.3), the problem can be
solved by means of coupled CPDs (subsection 5.3.4).

5.3.1 Translation into a constrained set of linear
equations

We derive the method for P = 2 while the generalization for P > 2 is
straightforward. Let us consider a single source sr, drop the subscript r,
and substitute (5.2) in (5.3):

∀n : (wTxnxH
nw? − c1) (wTxnxH

nw? − c2) = 0, (5.5)
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then we obtain the following:

∀n : (wTxnxH
nw?)2 − (c1 + c2)wTxnxH

nw? + c1c2 = 0.

As one can show that for arbitrary vectors d, e ∈ CI and f ,g ∈ CJ the equality
(dTe) (fTg) = (e⊗ f)T (d⊗ g) holds, we can transform the preceding equation
into:

∀n : (xn ⊗ x?n ⊗ xn ⊗ x?n)T(w⊗w? ⊗w⊗w?)−

(c1 + c2)(xn ⊗ x?n)T(w⊗w?) = −c1c2.

Stacking for n from 1 to N yields: (x1 ⊗ x?1 ⊗ x1 ⊗ x?1)T

...
(xN ⊗ x?N ⊗ xN ⊗ x?N )T

 (w⊗w? ⊗w⊗w?)

− (c1 + c2)

 (x1 ⊗ x?1)T

...
(xN ⊗ x?N )T

 (w⊗w?) = −c1c2

1
...
1

 .
This set of equations can be written as follows:

Ru + Pv = α1, (5.6)

with 1 the vector with all ones, the scalar α = −c1c2 and

R =

 (x1 ⊗ x?1 ⊗ x1 ⊗ x?1)T

...
(xN ⊗ x?N ⊗ xN ⊗ x?N )T

 = (X�X? �X�X?)T
,

P = −(c1 + c2)

 (x1 ⊗ x?1)T

...
(xN ⊗ x?N )T

 = −(c1 + c2)(X�X?)T
,

u = w⊗w? ⊗w⊗w?, v = w⊗w?. (5.7)
Equivalently, one can write

Tz = α1,
with T =

[
R P

]
and z =

[
u; v

]
. Each vector w extracting a multi-modulus

source satisfies constraint (5.5) and gives a solution to (5.6). Vice versa, if we
find a solution vector of system (5.6) with u and v constrained as in (5.7), w is
a valid separation vector of the MIMO BSS problem. In total, we need to find
R different vectors wr, yielding the separation matrix W.
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5.3.2 Omitting identical columns from the linear system

The Kronecker products introduce identical columns in R, which should be
removed. We define a reduced matrix R� including only the distinct columns
of R multiplied by the number of occurrences, cf. [411]. Equivalently, u� is
introduced containing only the unique elements of u. Then holds:

Ru + Pv = α1 ⇔ R�u� + Pv = α1. (5.8)

Considering K observed signals, the matrix R� has size N × 1
4K

2(K + 1)2.
Note that there is no need to operate on P and v, unless both M and S are
real. Alternatively, we can consider the system T�z� = α1 with the matrix
T� =

[
R� P

]
and the vector z� =

[
u�; v

]
.

5.3.3 Solving the system

The solutions of the system are found in the following procedure through
the computation of a null space. To obtain a homogeneous linear system of
equations, the right-hand side of (5.8) with all elements equal to α is rotated to
the first coordinate axis. The first row of the system can then be dropped.

Let Q be any unitary matrix such that Q1 =
[
N

1
2 ; 0

]
. Q can correspond to

a Householder or discrete Fourier transformation [165]. Now consider the left
multiplication of the system with Q such that

QR�u� + QPv = αQ1 (5.9)

⇔
[

r̃�1
R̃�
]

u� +
[
p̃1
P̃

]
v =

[
αN

1
2

0

]
.

The vectors r̃�1 and p̃1 denote the first row of QR� and QP, respectively,
while R̃� and P̃ consist of the other N − 1 rows. By omitting the first
equation, the following system is obtained, with R̃� ∈ C(N−1)× 1

4K
2(K+1)2 and

P̃ ∈ C(N−1)×K2 :

R̃�u� + P̃v = 0⇔
[
R̃� P̃

] [u�
v

]
= 0,

⇔ T̃�z� = 0, (5.10)

with the matrix T̃� =
[
R̃� P̃

]
∈ C(N−1)× 1

4K
2(K+1)2+K2 . Ignoring the

structure in z�, we now focus on the null space of the matrix T̃�.
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In the noiseless case, the dimension of the null space is at least R. Indeed, each
separation vector wr yields a solution z�r =

[
u�r ; vr

]
via (5.10), and these R

vectors are linearly independent if the R separation vectors wr are independent.
This is equivalent with W having full column rank which is a valid working
assumption if K ≥ R.
Let us first consider the case in which the matrix T̃� has more rows than
columns minus the null space dimension (i.e., N − 1 ≥ 1

4K
2(K + 1)2 +K2 −R;

we refer to Section 5.4 for an alternative procedure if this is not satisfied). The
dimension of the null space is at most R unless there are significant (phase)
relations between the source signals. This can occur if the (phases of the)
samples are not sufficiently random, cf. the derivations and discussions in [352,
363, 384, 396]. Furthermore, we give the following theorem, which we prove in
the appendix of this chapter:

Theorem 5.1. If N − 1 ≥ 1
4K

2(K + 1)2 +K2 −R, T̃� has full column rank
for generic S in (5.1).

Summarizing, one can assume that the dimension of the null space of T̃�
is exactly R, being the number of separation vectors wr. Consider a basis
{f�1 , . . . , f�R } of the null space of T̃�. If the observed signals are perturbed by
noise, one can use the R smallest singular vectors of T̃� for {f�1 , . . . , f�R }.

5.3.4 Recovery of the separation matrix

The basis vectors can be partitioned as follows, and also expanded again by
reintroducing the repeated elements:

f�r =
[
fu�
r

fv
r

]
∈ C

1
4K

2(K+1)2+K2 ⇔ fr =
[
fu
r

fv
r

]
∈ CK

4+K2
.

As W is assumed to have full column rank, {z1, . . . , zR} is a linearly independent
set. Hence, it is a basis itself, and each basis vector fr is a linear combination
of the vectors from {z1, . . . , zR}:

∀r : fr = λr,1zr + . . .+ λr,Rzr, (5.11)

⇔ ∀r :
[
fu
r

fv
r

]
= λr,1

[
u1
v1

]
+ . . .+ λr,R

[
uR
vR

]
.
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The coefficients can be collected in a matrix Λ ∈ CR×R. Note that this matrix
has full rank. Equivalently, we can write:

∀r : fu
r = λr,1 (w1 ⊗w?

1 ⊗w1 ⊗w?
1) + . . .

+λr,R (wR ⊗w?
R ⊗wR ⊗w?

R) ,

∀r : fv
r = λr,1 (w1 ⊗w?

1) + . . .+ λr,R (wR ⊗w?
R) .

These equations can now be expressed in a tensor format. Let us reshape the
vectors fu

r ∈ CK4 to fourth-order tensors, and stack them along a fifth mode for
r = 1, . . . , R to obtain the tensor Fu ∈ CK×K×K×K×R. Likewise, we construct
a third-order tensor Fv ∈ CK×K×R by stacking the matricized versions of fv

r

along a third mode. Both tensors Fu and Fv have rank R, and we obtain two
CPDs (note that the column-wise matricization of w⊗w? is equal to w? ⊗ w):

Fu =
R∑
r=1

w?
r

⊗ wr ⊗ w?
r

⊗ wr ⊗ λr = JW?,W,W?,W,ΛK ,

Fv =
R∑
r=1

w?
r

⊗ wr ⊗ λr = JW?,W,ΛK .

with λr the rth column of Λ. Summarizing, the equations show that the
solutions of the original system of (5.6) can be partitioned, and, when reshaped
into tensors, can be decomposed using a CPD to recover the separation vectors.
This is an interesting result, in multiple ways, as we can now exploit knowledge
on tensors and multilinear algebra.

5.3.5 Interpretation in a tensor framework

Let us interpret the previous results in a tensor setting. First, a CPD is
essentially unique under mild conditions. This means that the factor matrices
can be recovered up to scaling and permutation. Note that these are the basic
ambiguities in BSS. We can apply the uniqueness results already obtained by
Harshman: as it is assumed that the matrix W has full rank and because Λ does
not contain proportional columns (as it has full rank), the decomposition of Fv is
unique [183]. Furthermore, as both W and Λ have full rank, it is shown in [184]
that the CPD of Fv can be computed by means of the eigenvalue decomposition
(EVD). An algebraic technique using the generalized EVD (GEVD) can be
found in [242] and references therein.

Hence, the CPD of Fv is essentially unique and decomposing Fv is enough to
recover W. There is no need to decompose or even construct the larger tensor
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Fu. Besides deterministic conditions on W and/or Λ, there also exist generic
uniqueness conditions, for which we refer the interested reader to [134, 135].

Second, while it might be sufficient to use Fv, a higher accuracy might be
obtained by resorting to the decomposition of the larger tensor Fu.

Third, the CPDs are partially symmetric. For example, W is a factor matrix of
Fu in the second and fourth mode. The factor matrices W and W? are also
related to each other. This can be exploited by customized tensor decomposition
algorithms.

Fourth, the tensors are coupled through the matrices W and Λ. This structure
can be taken into account by using, e.g., the structured data fusion framework
implemented in Tensorlab [333, 392], among others. An overview of data fusion
models is given in [6]. By considering the coupling, the uniqueness conditions
can be relaxed [345]. The accuracy might increase too.

Furthermore, it is possible to reduce the coupled decompositions of Fu and Fv

to a single tensor decomposition through relaxation. For example, consider the
unfolding of the fifth-order tensor Fu into a third-order tensor F̃u ∈ CK3×K×R.
The tensor F̃u then admits the CPD F̃u = JZ,W?,ΛK with Z = W⊗W?⊗W ∈
CK3×R. Now consider the concatenation of the tensors F̃u and Fv along the
first mode, defining the concatenated tensor G ∈ C(K3+K)×K×R. This tensor
G admits the CPD G = JB,W?,ΛK with B =

[
(W⊗W? ⊗W)T WT

]T ∈
C(K3+K)×R. Alternatively, G can be reshaped to a tensor H ∈ C(K2+1)×K2×R

which admits the CPD H = JC,D,ΛK, with the matrices D = W ⊗W? ∈
CK2×R and C =

[
D; 1

]
∈ C(K2+1)×R where 1 is the vector of size 1×R with

all ones. Hence, the coupled tensor decomposition of Fu and Fv has been
reduced to a single CPD of G or H. It is also possible to express the CPD of
Fu as the coupled decomposition of third-order tensors. For details on coupled
CPDs we refer the reader to [345, 346].

Finally, note that the structured data fusion framework from Tensorlab allows
the user to add regularization to the tensor decompositions or additionally
impose structure on W, such as sparseness or nonnegativity.

5.3.6 Note concerning rank deficiency of the mixing
matrix

So far, a full-rank mixing matrix M has been considered, together with its
corresponding full-rank separation matrix W. It has been discussed under
which circumstances the dimension of the null space of T̃� corresponds to the
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number of different separation vectors that can be found. In this subsection, it
is shown that even if M is rank-deficient, some source signals can be recovered.

Let us illustrate this with an example that involves four multi-modulus source
signals and four observed signals. Let us assume that m4 = αm2 + βm3 with
α 6= 0, β 6= 0. The vectors m1,m2 and m3 are linearly independent, and
M ∈ C4×4 has rank 3. Then one can write:

X =
[
m1 m2 m3 m4

] 
s1
s2
s3
s4

 =
[
m1 m2 m3

]︸ ︷︷ ︸
M̃

 s1
s2 + αs4
s3 + βs4


︸ ︷︷ ︸

S̃

.

Note that, in general, a linear combination of multi-modulus signals is not a
multi-modulus signal. Hence, we are unable to recover s2 + αs4 and s3 + βs4
using the proposed method. The vector s1 can be recovered, as there exists a
column vector w ∈ C4 such that wTX = wTM̃S̃ = s1.

Generally, let us assume that M ∈ CK×R has rank U < R. X = MS can then
be expressed as X = M̃S̃ with full-rank matrices M̃ ∈ CK×U and S̃ ∈ CU×N .
Let us assume that M has Z column vectors that are, each, linearly independent
of the R − 1 other vectors. Only the source signals corresponding to these
mixing vectors can be recovered, as explained in the example. The null space
of T̃� has dimension Z, and the coupled tensor decompositions can be used to
recover the Z corresponding separation vectors. Note that strictly Z < U ; if Z
was equal to the rank U of M, each of the other R− Z column vectors of M
would be linearly dependent on one or more of the Z column vectors, which is
a contradiction.

Note that the source signals corresponding to the other mixing vectors are either
removed from S̃ or are replaced with a linear combination of multi-modulus
signals (which is not multi-modulus, in general), as illustrated in the previous
example. As the multi-modulus property is lost, they can not be recovered.

5.4 Multi-modulus BSS using a rank-1
detection procedure

We ignored the structure of the vectors zr in Section 5.3.3 so that (5.10) could
be seen as a linear least squares problem. Let us now exploit the rank-1
structure of zr to extract the relevant vectors wr. The technique of detecting
Kronecker-structured vectors (or reshaped rank-1 matrices) is explained in
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general in the first subsection. In the second subsection, we explain how the
rank-1 detection technique can be used in conjunction with the previously
proposed multi-modulus BSS procedure. The method allows us to reduce the
number of samples needed.

5.4.1 Rank-1 detection procedure

Consider a matrix E ∈ CIJ×Rtot that can be written as

E = (A�B) GT, (5.12)

with A ∈ CI×R, B ∈ CJ×R, and G ∈ CRtot×R. We assume that A � B
and G have full column rank [99]. Equation (5.12) is equivalent to a matrix
representation of a polyadic decomposition. Given E, consider now the generic
problem of recovering A, B and G (up to (counter)scaling and permutation). In
[99], this problem was solved by searching for the matrix W = (GT)† ∈ CRtot×R

such that
EW = A�B.

The column space of E can be represented by a basis of only Kronecker-structured
vectors. The goal is then to detect these vectorized rank-1 matrices; hence, the
‘rank-1 detection’ terminology. Note that an additional mild necessary condition
on A and B was specified in [99].

Now consider a more general E ∈ CIJ×Rtot of the form

E = (A�B) GT + CHT =
[
A�B C

] [
G H

]T
, (5.13)

with C ∈ CIJ×Radd and H ∈ CRtot×Radd . The subscript of Radd stands for
‘additional’. We assume both

[
A�B C

]
and

[
G H

]
have full column rank.

The column space of E cannot be represented by a basis of only Kronecker-
structured vectors anymore — also other vectors are needed — and the problem
is not equivalent to finding a CPD anymore.

It is however still possible to detect the different Kronecker-structured vectors
in the column space of E constructed from (5.13) up to machine precision. We
will use Algorithm 1 given in [99, Algorithm 2.1, steps 3-10]. The algorithm
was discussed in [99] for only Radd = 0. Perhaps surprisingly, the algorithm
is guaranteed to work in the exact case as well for Radd > 0, provided Rtot is
sufficiently small with respect to I, J (see further).

For a detailed explanation of the algorithm, we refer to [99]. Here, we briefly
comment on some steps. Consider the mapping Φ : (X,Y) ∈ CI×J × CI×J →
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Φ (X,Y) ∈ CI×I×J×J with its resulting tensor P defined by

(P)ijkl = (Φ (X,Y))ijkl = xijyil + yikxjl − xilyjk − yilxjk.

Let us review two properties of the mapping Φ. First, it is clear that the mapping
Φ is bilinear in X and Y, i.e., if X =

∑M
m=1 αmXm and Y =

∑N
n=1 βnYn then

P = Φ(X,Y) =
M∑
m=1

N∑
n=1

αmβnΦ (Xm,Yn) .

Second, consider the case where Y = X. If and only if X has rank 1, P =
Φ(X,X) is an all-zero tensor. Hence, the mapping is able to distinguish between
matrices with rank 1 and matrices with rank strictly greater than 1.

By applying Φ on reshaped versions of the columns of E as detailed in Steps 1
and 2, one obtains a matrix P ∈ CI2J2×R2

tot in Step 3. Under the necessary
assumption that the tensors Puũ are linearly independent for 1 ≤ u < ũ ≤ Rtot,
a CPD can be obtained from the null space of P as follows. If the tensors are
not linearly independent, the method does not work.

Rather than the entire null space of P, we consider a specific subspace. Let us
define the ‘symmetric null space’ of P as the intersection of the null space and
the space spanned by vectorized symmetric matrices. If there are R linearly
independent Kronecker-structured vectors in the column space of E, then the
dimension of the symmetric null space of P is equal to R. M in Step 4 contains
a basis of this symmetric null space. Through the multilinearity of Φ, it is shown
in [99] that a reshaped tensor version of M admits the CPDM = JW,W,ΘK.

Note that the null space of P� ∈ CI2J2× 1
2Rtot(Rtot+1) is equal to the null space of

P�HP� ∈ C 1
2Rtot(Rtot+1)× 1

2Rtot(Rtot+1); calculating the null space of the matrix
P�HP� might be computationally more efficient as the latter matrix is smaller.
P�HP� can also be constructed in an efficient way. Additionally, the number
of rows from P� can be reduced to 1

4I(I + 1)J(J + 1) by removing redundant
rows. Step 3 in Algorithm 1 can be computationally demanding for large Rtot,
as the number of elements in P�TP� is of the order of magnitude O(R4

tot).

A critical assumption in Algorithm 1 is that the tensors Puũ are linearly
independent for u < ũ. A generic bound was given in [99, p. 656] for Radd = 0:

R(R− 1)
2 ≤ I(I − 1)J(J − 1)

4 . (5.14)

We now conjecture the following bound for Radd ≥ 0:

Rtot(Rtot + 1)
2 −R ≤ I(I − 1)J(J − 1)

4 . (5.15)
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We have verified this bound empirically for various combinations of R, Radd, I
and J . One can see that the bound in (5.14) is the specific case for Radd = 0
or, equivalently, Rtot = R.

Algorithm 1: Rank-1 detection procedure
Input : Matrix E
Output : Matrices A, B and W such that EW = A�B

1. Construct a tensor E ∈ CI×J×Rtot as follows:

∀i, j, u : (E)iju = (E)(i−1)J+j,u .

2. Compute Puũ ∈ CI×I×J×J , 1 ≤ u, ũ ≤ Rtot as follows:

∀i, j, k, l : (Puũ)ijkl = eikuejlũ + eikũejlu − eiluejkũ − eilũejku.

3. Reshape each tensor Puũ to a vector of length I2J2 and stack the
different vectors in the columns of a matrix P ∈ CI2J2×R2

tot . Compute
the symmetric null space of P by

• Removing identical columns to obtain P�;
• Computing the null space of P� (or equivalently P�HP�);
• Expanding the R computed null space vectors again as discussed in

subsection 5.3.4 to obtain a matrix M ∈ CR2
tot×R.

4. Reshape the matrix M to the tensorM∈ CRtot×Rtot×R.

5. Compute a rank-R CPDM = JW,W,ΘK.

6. Compute Z = EW. Reshape each vector zr to a matrix of size J × I and
compute a best rank-1 approximation to obtain br and ar.

5.4.2 Application in the multi-modulus setting

Recall the problem in subsection 5.3.4 of finding R structured vectors zr =
[wr ⊗w?

r ⊗wr ⊗w?
r ; wr ⊗w?

r ] in the null space of P. One can see that zr is a
Kronecker-structured vector, as we can write zr = [wr ⊗w?

r ; 1]⊗ (wr ⊗w?
r) =

[vr; 1]⊗ vr.

In subsection 5.3.3 a tall T̃� is assumed, i.e., N − 1 ≥ 1
4K

2(K + 1)2 +K2 −R.
This limits the dimension of the null space of T̃� to R such that the null space is
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exactly spanned by the vectors zr. Using zr = [vr; 1]⊗ vr, the system in (5.11)
can be expressed in the form (5.12). This can be solved using the algebraic
Algorithm 1 as discussed in [99]. As ar = [wr ⊗ w?

r ; 1] and br = wr ⊗ w?
r ,

the different wr can be recovered up to the standard scaling and permutation
ambiguities by using a best rank-1 approximation on a reshaped version of
either ar or br, or in a coupled way.

However, if N − 1 < 1
4K

2(K + 1)2 +K2 −R, the dimension of the null space
is strictly larger than R, simply because T̃� is a wide matrix. The null space
is not only spanned by the vectors zr but also by other arbitrary vectors. Let
us define the dimension as Rtot > R. Generically, Rtot = R + Radd with
Radd =

( 1
4K

2(K + 1)2 +K2 −R
)
− (N − 1). Rather than (5.12), (5.13) now

describes the structure of the null space of T̃�. While the system in (5.11) and
thus the approach in Section 5.3 is not valid in this setting, Algorithm 1 can
still be used as explained in Section 5.4.1 to recover the R Kronecker-structured
vectors zr = [vr; 1]⊗ vr from the null space of T̃� with dimension Rtot > R.

The general bound in (5.15) does not apply directly because the matrices A and
B in (5.13) have a particular structure, as explained previously. We conjecture
the following bound in the multi-modulus context, which we have verified for
different values of R and N :

Rtot(Rtot + 1)
2 −R ≤ K2(K2 − 1)

4

[
K2(K2 − 1)

2 + 1
]
−K

(
K

4

)
,

with Rtot = R+Radd = 1
4K

2(K + 1)2 +K2 −N + 1 and with
(
K
4
)

= K!
4!(K−4)!

if R ≥ 4 and zero otherwise. The required number of samples for 2, 3 and 4
source signals, each with two possible source moduli, is reduced to 8, 11 and 20
samples instead of 12, 43 and 113 samples, respectively.

The mapping was applied by considering the Kronecker structure zr = [vr; 1]⊗vr.
To obtain a more powerful version of the rank-1 detection technique, one can take
into account the full Kronecker structure in zr = [wr⊗w?

r⊗wr⊗w?
r ; wr⊗w?

r ],
working in analogy with [345, 346]. The mapping Φ is applied four times in
total: three times on the first part of zr, focusing on (wr ⊗w?

r ⊗wr) ⊗w?
r ,

(wr ⊗w?
r)⊗ (wr ⊗w?

r) and wr⊗ (w?
r ⊗wr ⊗w?

r), and once on the second part
of zr consisting of wr ⊗w?

r . Each mapping will provide a different matrix P in
Step 3. By vertically stacking these matrices in a large matrix, the null space
of interest can be estimated. A more relaxed bound can be obtained on the
required number of samples. A detailed derivation is considered to be out of
scope of this chapter.

Summarizing, we have shown that the rank-1 detection procedure can extract
the separation vectors from the null space of T̃�, even if the null space is
spanned by not only Kronecker-structured vectors, enabling a reduction of the
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number of samples required for the separation of the multi-modulus source
signals.

5.5 Blind deconvolution of multi-modulus
signals

In this section, we consider the equalization of MIMO systems of multi-
modulus signals. The problem is more general than the instantaneous problem
from Section 5.3. The data model is first discussed in Subsection 5.5.1.
Subsections 5.5.2 and 5.5.3 discuss two different methods to solve the BSI
problem.

5.5.1 Data model

We consider a following data model with system order Ls:

∀k, n : xk(n) =
R∑
r=1

Ls∑
l=0

h
(l)
krsr(n− l).

where the noise term is omitted. The model can be written as

∀n : xn =
Ls∑
l=0

H(l)sn−l,

in which the matrices H(l) ∈ CK×R contain the unknown system coefficients
for l = 0, . . . , Ls; hence, the Z-transform H of the system can be written as
follows:

H[z] = H(0) + H(1)z−1 + . . .+ H(Ls)z−Ls .

For Ls = 0, one obtains the instantaneous case from Section 5.3. Alternatively,
consider H =

[
H(0) · · · H(Ls)

]
∈ CK×(Ls+1)R and let us stack the vectors sn,

sn−1, . . . , sn−Ls in one large vector s2
n ∈ C(Ls+1)R for n = Ls + 1, . . . , N . By

concatenating the vectors s2
n , a block-Toeplitz matrix S2 ∈ C(Ls+1)R×(N−Ls)

is obtained such that
X = HS2. (5.16)

The superscript ·2 stands for the block-Toeplitz encapsulation.
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We assume that it is possible to equalize the channel by means of a finite impulse
response (FIR) filter F(z) with filter order Lx:

sn =
Lx∑
l=0

F(l)xn−l,

with F(l) ∈ CR×K for l = 0, . . . , Lx. This assumption is valid when K > R and
under some additional conditions on the coefficients [254, 386]. This bound can
be further relaxed to K ≥ R when considering paraunitary systems as these
can be equalized by an FIR filter of the same length; hence, Ls = Lx = L
[100, 371]. We consider general non-paraunitary systems in this section unless
stated otherwise. Again, by collecting the vectors xn, xn−1, . . . , xn−Lx in a
block-Toeplitz matrix X2 ∈ C(Lx+1)K×(N−Lx), it is possible to write S = FX2

with F =
[
F(0) · · · F(Lx)] ∈ CR×(Lx+1)K .

5.5.2 Deconvolution using an increased number of
source signals

Consider the case where K ≥ R(Ls + 1); the matrix H has then more rows
than columns and one can write S2 = WX with W = H† ∈ C(Ls+1)R×K .
As a delayed multi-modulus signal is still multi-modulus, the techniques from
Section 5.3 and 5.4 can be used, assuming there are (Ls + 1)R different source
signals instead of only R signals. Note that the block-Toeplitz structure in S2

is not taken into account.

Otherwise, if R < K < (Ls + 1)R, a smoothing technique can be applied
in a preprocessing step. By delaying the observed signals, one can artificially
construct a system such that a tall mixing matrix H̃ is obtained. The techniques
from Section 5.3 and 5.4 can again be used to recover the original source signals.
For further details on the smoothing technique we refer to e.g. [254, 386].

5.5.3 Deconvolution using the original number of source
signals by exploiting the block-Toeplitz structure

The number of samples required for a unique decomposition depends directly
on the number of source signals R, as discussed in Sections 5.3 and 5.4. By
exploiting the block-Toeplitz structure of S2, it is possible to convert the
deconvolution problem into an instantaneous BSS problem involving only R
source signals instead of (Ls + 1)R, as required in the previous section.
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Consider the problem from (5.16). Ignoring the multi-modulus constraint, this
is a block-Toeplitz factorization of the matrix X. This is just one factorization;
let us consider an alternative factorization of X:

X = HS2 = HZ−1ZS2 = UV2,

with U = HZ−1, V2 = ZS2 and Z ∈ C(Ls+1)R×(Ls+1)R an arbitrary invertible
matrix. Consider the following matrix Σ:

Σ =

sLs+2 · · · · · · sN−Ls−1 · · · sN
...

. . .
. . .

...
s1 · · · sLs+2 · · · · · · sN−Ls−1


T

.

We can now proceed with a result that can for instance be found in [253, 254,
338]: if both H and Σ have full column rank, then X = UV2 is a block-Toeplitz
factorization of X if and only if Z is of the following form:

Z = ILs+1 ⊗G,

in which G ∈ CR×R is an invertible matrix. Let V be the data matrix
corresponding to the block-Toeplitz matrix V2, in the same way as S2 is
constructed from S. Then as V2 = (ILs+1 ⊗G) S2, we have that V = GS.
Hence, V2 can be found from a block-Toeplitz factorization of X (which is a
linear least squares problem) and V can be derived from V2. After V has been
determined, what remains to do is to find an invertible matrix G such that S is
multi-modulus. This is exactly the instantaneous BSS problem which has been
discussed in Sections 5.3 and 5.4.

Stated otherwise: if H and Σ have full column rank, then the block-Toeplitz
matrix factorization X = UV2 reduces the deconvolution to an instantaneous
BSS problem that involves only R source signals. For the solution of the linear
least squares block-Toeplitz problem to be unique, it is necessary that Σ has
full column rank, which we can interpret as a working assumption. Second,
the matrix H ∈ CK×(Ls+1)R should have full column rank which requires that
K ≥ (Ls + 1)R. Otherwise, if R < K < (Ls + 1)R, it is again possible to apply
the smoothing technique from Section 5.5.2.

5.6 Simulations

We investigate the behavior of the proposed multi-modulus method for a varying
number of samples and signal-to-noise ratio (SNR), as well as the behavior of
Algorithm 1. The multi-modulus technique is compared to three other methods:
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robustICA [412], ACMA [384] and a recently proposed MMA technique using
Givens rotations [316, 317]. ICA has already been used before in a constant or
multi-modulus context [279], and its use is valid for the following simulations
as the source signals are mutually stochastically independent.

To calculate a CPD, various approaches exist such as the popular alternating
least squares (ALS) algorithm. We use a nonlinear least squares (NLS) approach,
implemented in Tensorlab [392]. A generalized eigenvalue decomposition is used
for the initialization, together with five random initializations. Each time, the
final solution with the minimal cost function value is retained. The observed
signals are first prewhitened.

For the coupled decompositions, the coupling constraints are incorporated using
the dedicated ccpd_nls algorithm from Tensorlab, with the following cost
function:

min
A,B,C

ω1

2 ||F
u − JB, A, B, A, CK||2 + ω2

2 ||F
v − JB, A, CK||2 ,

in which the weights ω1 and ω2 are the inverse squared Frobenius norms of
Fu and Fv, respectively. The complex conjugation symmetry is not exploited;
hence, the matrices W and W? are considered as different factor matrices A and
B, respectively. The matrix Λ is estimated as C. For the initialization, we use
a combination of the GEVD initializations of the lower-order and higher-order
tensor, together with five additional random initializations.

To determine the relative error, we correct for scaling and permutation (the
default indeterminacies in BSS) with respect to the theoretical sources. The
relative error is then defined as the relative difference in Frobenius norm, e.g.,
if Ŝ are the recovered sources after this step, we have a relative error εS =
‖S − Ŝ‖/‖S‖. Second, the SNR is defined as the ratio of the power of the
signal to the power of the Gaussian additive noise. For each experiment, the
medians of the relative errors are given across 100 simulations. In each run,
new realizations of source signals, noise signals and mixing matrix / channel
coefficients are generated.

5.6.1 Simulation for rank-1 detection algorithm

A first simulation considers the rank-1 detection method in Algorithm 1. The
matrices A, B, C, G and H from (5.13) are randomly generated using a
Gaussian distribution with I = J = 10, U = 40 and R = 2. Hence, while
the dimension of the column space of E from (5.13) is 40, the dimension of
the intersection of the column space and the space of Kronecker-structured
vectors is only 2. Algorithm 1 is compared with a method which extracts the
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Figure 5.2: Relative errors on A and B for the rank-1 detection simulation from
Section 5.6.1 using Algorithm 1 ( ) and using a CPD with rank R = 2 ( )
in function of the SNR.

two Kronecker-structured vectors by applying a CPD with rank R = 2 on a
reshaped version of E . Fig. 5.2 illustrates the estimation error on A and B
in function of the SNR on E. It shows that the CPD approach fails as the
influence of CHT is not negligible, while Algorithm 1 delivers good results.

5.6.2 Simulations for the instantaneous case

A first experiment regarding multi-modulus BSS considers two (R = 2) multi-
modulus continuous-phase shift keying (CPSK) source signals of 100 samples
each (N = 100), mixed into two (K = 2) observed signals. Each source sample
has a uniform random phase drawn from [0, 2π[ and a modulus of 1 (c1 = 1) or
2 (c2 = 4) with equal probability. A unitary mixing matrix is used. Fig. 5.3
visualizes the relative errors on the mixture matrix and the source signals for
varying SNRs. The proposed technique shows optimal asymptotic performance
for increasing SNR, in contrast to the other methods. The proposed technique
performs slightly worse at low SNR in terms of mixing matrix error; however,
more important is the source recovery error, where the difference is negligible.
The accuracy of ICA is limited because of the statistics estimation error. CMA
is not suited in a multi-modulus context, and MMA optimizes a non-suitable
cost function.

In a second experiment, we take a similar setting but vary the number of samples
for an SNR of 20 dB and 30 dB, as shown in Fig. 5.4. The relative error is
only weakly dependent on the number of samples and the solutions are about
as good as the zero-forcing solutions. The experiment shows that not many
samples are needed to reach asymptotic performance.
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Figure 5.3: Results for the first experiment in Section 5.6.2 with CPSK source
signals. Both the relative error on the mixing matrix (left) and on the source
matrix (right) are shown for varying SNRs. The results obtained by the proposed
methods are shown in blue. We discuss variants using only the lower-order
tensor ( ), only the higher-order tensor ( ) and both in a coupled way
( ). The coupled and higher-order methods show a similar performance.
They are compared with ICA ( ), ACMA ( ) and MMA using Givens
rotations ( ). The black dots ( ) represent the case in which the exact mixing
matrix is used to recover the source signals, a.k.a. the zero-forcing solution.

In the third experiment, we consider four rectangular 16-QAM source signals
with N = 2000 samples. The samples are drawn from ±{1, 3} ± {1, 3}i with
equal probability, having a squared modulus of c1 = 2, c2 = 10 or c3 = 18;
hence, P = 3. We use a generalization of the technique for two moduli explained
in Section 5.3, allowing now three different moduli. Four instantaneously mixed
signals are observed. For this experiment, a mixing matrix with condition
number 10 is used to illustrate the performance in ill-conditioned situations.
For P = 3, a set of coupled decompositions of a third-order tensor, a fifth-order
tensor and a seventh-order tensor is obtained. Fig. 5.5 visualizes the results
when decomposing the third-order tensor, the seventh-order tensor and both
tensors coupled. In terms of the source error, the solutions are about as good
as the zero-forcing solutions for increasing SNR and are only slightly worse for
low SNRs. Fig. 5.6 visualizes the source signals, the observed signals and the
recovered signals at 40 dB.

5.6.3 Simulations for the convolutive case

For the convolutive case, we consider a single experiment with two (R = 3)
multi-modulus CPSK source signals of 500 samples each. The samples have a
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Figure 5.4: Results for the second experiment in Section 5.6.2. The relative
error on the source matrix is shown for SNRs of 20 dB (left) and 30 dB (right)
for an increasing number of samples N . The labels are the same as in Fig. 5.3.
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Figure 5.5: Results for the third experiment in Section 5.6.2 with 16-QAM
source signals. Both the relative error on the mixing matrix (left) and on the
source matrix (right) are shown for varying SNR. The labels are the same as in
Fig. 5.3.

squared modulus of c1 = 1 or c2 = 4 and a random phase. A random system is
used of order Ls = 2. Six signals (K = 6) are observed.

As it is not straightforward to compare transfer functions, we only report the
error on the recovered deconvolved source signals in Fig. 5.7. Both the results
from the method of subsection 5.5.2 with (Ls + 1)R and the block-Toeplitz
factorization method of subsection 5.5.3 with R source signals are given. For
the former method, the technique works well for middle to high SNR, and
performs slightly worse compared to the other algorithms for low SNR. The
block-Toeplitz factorization procedure performs optimally.
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Figure 5.6: Visualization in the complex plane of the different signals in the
third experiment from Section 5.6.2 at 40 dB. In (a), one of the 16-QAM source
signals is shown. One of the observed mixed signals is shown in (b). In (c)
and (d), an estimate of a source signal is shown (after compensating for scaling
and permutation) by applying the ICA technique and the proposed technique,
respectively.
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Figure 5.7: Results for the experiment from Section 5.6.3 with the blind
deconvolution of two multi-modulus signals. On the left, the procedure of
Section 5.5.2 is applied with (Ls + 1)R source signals. On the right, the
procedure of Section 5.5.3 based on a block-Toeplitz factorization is applied
with R source signals. The latter method clearly outperforms the former. The
labels are the same as in Fig. 5.3.
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5.7 Conclusion

We have proposed a new technique for multiple-input-multiple-output blind
signal separation and blind system identification of multi-modulus signals such
as 16-QAM signals. The method includes an analytical transformation to a set
of CPDs by using subspace methods. We have shown that a number of source
signals can still be recovered in the case of a rank-deficient mixing matrix. As a
side-result, an existing rank-1 detection procedure has been generalized to find
Kronecker-structured vectors in a space spanned by both Kronecker-structured
vectors and arbitrary vectors, and we include a conjectured bound on the
number of vectors that can be handled. The generalized technique has been
applied in the multi-modulus context to allow for a reduction in number of
samples required for separation. The proposed methods can be interpreted as
generalizations of the analytical constant modulus algorithm (ACMA). Some
advantages of the tensor framework have been discussed, and the algorithm has
been tested in different situations and compared to methods from the literature.
An algebraic or exact solution can be obtained in the noiseless case for the
proposed method, and the method reaches optimal asymptotic performance for
increasing SNR.

In this chapter, each source signal was assumed to be multi-modulus. If only Z
source signals with Z < R are multi-modulus, the dimension of the null space of
T̃� in (5.10) is Z in general. The Z corresponding separation vectors can then
be found using the techniques proposed in this chapter, despite the presence of
non-multi-modulus source signals.

In [385], a method was suggested for a BSS problem in which the source
signal samples are assumed to have either constant modulus or zero modulus.
The technique proposed in this chapter can be extended to allow such signals.
Eq. (5.5) then changes to

∀n : (wTxnxH
nw? − c1) (wTxnxH

nw? − c2) wTxnxH
nw? = 0.

One can work in analogy with Section 5.3 to obtain an algebraic method.

Comparison with the MMA cost function

In [282], a cost function with multiple dispersion constants DR and DI (also
defined as the in-phase and quadrature moduli, respectively) was designed for
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separating QAM signals:

J =
R∑
r=1

N∑
n=1

[(
<{srn}2 −D2

R

)2 +
(
={srn}2 −D2

I

)2]
. (5.17)

It has been coined the multi-modulus algorithm (MMA) cost function in [401,
402]. Typically, one uses DR = DI , as a compromise value which acts to
project the constellation points onto the same circle. The cost function has been
reused in many subsequent publications on the separation or deconvolution of
multi-modulus signals such as [98, 187, 198].

Let us recall the cost function from Eq. (5.4) for P = 2:

J̃ =
R∑
r=1

N∑
n=1

[(
|srn|2 − c1

)(
|srn|2 − c2

)]
. (5.18)

This cost function is only implicitly used in this paper. Given that |srn|2 =
<{srn}2 + ={srn}2, one can rework Eq. (5.18) to the following:

rJ̃ =
R∑
r=1

N∑
n=1

[(
<{srn}2 − F 2

R

)2 +
(
={srn}2 − F 2

I

)2
+1

2
(
4<{srn}2={srn}2 − c21 − c22

)]
with FR = FI =

√
c1+c2

2 . The constant terms c21 and c22 are not relevant for the
minimization; hence, they can be omitted. We have now shown that both cost
functions are not equivalent, but rather differ in one term:

J̃ ≡ J + 2
R∑
r=1

N∑
n=1
<{srn}2={srn}2.

The results in the paper have shown that the cost function J in (5.17) is not
able to find the optimal solution, while the proposed cost function J̃ in (5.18)
allows optimal asymptotic performance.

Proof of Theorem 5.1

We first give the following lemma from [135, 174, 207, 344] which is used in the
proof:
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Lemma 5.1. Given an analytic function f : CN → C. If there exists an
element x ∈ CN such that f(x) 6= 0, then the set {x|f(x) = 0} is of Lebesgue
measure zero.

Let us also define the following matrices related to (5.6):

ZX =
[

X�X? �X�X?

X�X?

]
, ZS =

[
S� S? � S� S?

S� S?

]
,

Z�
X =

[
(X�X? �X�X?)�

X�X?

]
, Z�

S =
[

(S� S? � S� S?)�

S� S?

]
.

It can be seen that Z�
X = [R� P]T and ZX = [R P]T. The operator � removes

repeated rows, much like the operator � from Section 5.3 removes repeated
columns.

Proof of Theorem 5.1. The inequality states that T̃� should not have more
columns than rows; hence, T̃� is assumed to be a tall matrix. Note that Q in
(5.9) is a unitary matrix. To prove that T̃� = QZ�

X
T has full column rank, it

is thus sufficient to prove that Z�
X

T has full column rank or, equivalently, that
Z�

X has full row rank.

From X = MS, it can be seen that ZX = BZS with B ∈ CK6×R6 a block-
diagonal matrix containing the blocks M⊗M?⊗M⊗M? and M⊗M? on the
diagonal. Furthermore, it can be seen that Z�

X = B⊗Z�
S . B⊗ is obtained by

removing the non-unique rows and columns from B. As we assume that M has
full rank, B⊗ has full rank as well. Hence, it remains to show that Z�

S has full
row rank for generic S.

The latter problem is equivalent to showing that Z�
S has full row rank for at

least one choice of S. This follows from Lemma 5.1, as S has full row rank
if and only if SST has a non-zero determinant. Hence, the analytic function
mentioned in the lemma is f(A) = det (AAT).

We look for an example in the set of Vandermonde matrices. Let us assume
that S is a transposed Vandermonde matrix:

S =

1 d1 · · · dN−1
1

...
...

. . .
...

1 dR · · · dN−1
R

 .
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Then, S� S? is again a transposed Vandermonde matrix [344]:

S� S? =


1 d1d

?
1 · · · dN−1

1 d?1
N−1

1 d1d
?
2 · · · dN−1

1 d?1
N−1

...
...

. . .
...

1 dRd
?
R · · · dN−1

R d?R
N−1

 ,
with R2 generators did?j for 1 ≤ i, j ≤ R. Similarly, S�S?�S�S? is a transposed
Vandermonde matrix with generators did?jdkd?l for 1 ≤ i, j, k, l ≤ R. Combined,
ZS and Z�

S are Vandermonde matrices with R4 + R2 and 1
4R

2(R + 1)2 + R2

generators, respectively:{
did

?
jdkd

?
l , 1 ≤ i ≤ k ≤ R and 1 ≤ j ≤ l ≤ R,

did
?
j , 1 ≤ i, j ≤ R.

We can now choose different values dr such that the 1
4R

2(R+1)2 +R2 generators
are distinct. Then, Z�

S has full row rank.



Chapter 6

Tensorlab 3.0 — Numerical
optimization strategies for
large-scale constrained and
coupled matrix/tensor
factorization

Abstract We give an overview of recent developments in numerical
optimization-based computation of tensor decompositions that have led
to the release of Tensorlab 3.0 in March 2016 (www.tensorlab.net).
By careful exploitation of tensor product structure in methods such as
quasi-Newton and nonlinear least squares, good convergence is combined
with fast computation. A modular approach extends the computation
to coupled factorizations and structured factors. Given large datasets,
different compact representations (polyadic, Tucker, . . . ) may be obtained
by stochastic optimization, randomization, compressed sensing, etc.
Exploiting the representation structure allows us to scale the algorithms
for constrained/coupled factorizations to large problem sizes.

Reference This chapter is a slightly adapted version of the article [390].
Changes are limited to layout and representation aspects. The candidate
authored Sections 6.2 and 6.3 and was a developer of Tensorlab 3.0.
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6.1 Introduction

Central to multilinear algebra are tensors, or multiway arrays of numerical
values, and their many types of decompositions such as the canonical polyadic
decomposition (CPD), the block term decomposition (BTD) or the multilinear
singular value decomposition (MLSVD). Similar to their matrix counterparts,
these decompositions can be used to analyze data, compress data, make
predictions and much more. The multilinear structures allow more complex
relations to be modeled, as has been shown in countless applications not only
in signal processing [84, 90, 324], but, among others, also in data analytics and
machine learning [10, 260, 328].

Tensorlab [392] is a Matlab toolbox with as main purpose to provide user-
friendly access to a variety of state-of-the-art numerical algorithms and tools
for tensor computations. In March 2016, the third version of Tensorlab has
been released. This chapter gives a birds-eye overview of some new techniques
that have been made available. The overview is by no means exhaustive: a full
overview can be found at www.tensorlab.net. A number of demos illustrating
good Tensorlab practice can be accessed at www.tensorlab.net/demos.

We continue this section by explaining the history and philosophy of Tensorlab
and by fixing the notations. Section 6.2 discusses the SDF framework
from Tensorlab, while Section 6.3 explains the concept of tensorization.
Section 6.4 introduces a new algorithm for coupled matrix/tensor factorizations
in Tensorlab 3.0. Large-scale approaches are discussed in Section 6.5, with a focus
on compression, incompleteness, randomizations and efficient representations.

6.1.1 History and philosophy

The first version of Tensorlab provided state-of-the-art algorithms for the
computation of CPDs, BTDs or low multilinear rank approximations (LMRLA)
as well as a large number of convenience methods involving tensors. These
algorithms are based on the complex optimization toolbox (COT) [331, 335],
allowing decompositions of both real and complex datasets and/or variables. In
optimization problems, real-valued functions with complex arguments are often
split into the real part and the imaginary part, and both problems are solved
separately. In contrast, the complex Taylor series expansion can be used to
generalize standard real-valued optimization algorithms for complex arguments
and data, thereby exploiting inherent structure present in derivatives which
would otherwise be ignored [12, 335]. COT leverages this structure and provides
generalizations of many standard optimization algorithms.

www.tensorlab.net
www.tensorlab.net/demos
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The alternating least squares (ALS) algorithm is undoubtedly the most popular
algorithm for tensor decompositions, mainly because of its simplicity. While
it effectively exploits multilinear structures and often provides good results
quickly, it is numerically not very sophisticated and it has no proven convergence
[332, 370]. In Tensorlab, the main focus lies on more advanced optimization
algorithms such as nonlinear least squares (NLS) methods, thereby benefiting
from the many good results in numerical optimization, including convergence
guarantees. The number of iterations needed is often lower because of the
quadratic convergence. The asymptotic cost per iteration of NLS can be
reduced to the cost of ALS, although with some larger constants [332]. To
achieve this low cost, the multilinear structure is exploited and a preconditioned
iterative solver is used to determine the step direction. In particular, in NLS
algorithms the system

Gp = −g (6.1)

is solved in every iteration, in which G is the Gramian of the Jacobian and g is
the gradient. As inverting G is too expensive, the conjugate gradients (CG)
method is used. CG requires only the matrix-vector products Gp to iteratively
solve (6.1). In many tensor decomposition algorithms the multilinear structure
can be exploited when computing these products. To reduce the number of CG
iterations needed, preconditioning is used, i.e., instead of (6.1) the system

M−1Gp = −M−1g (6.2)

is solved, in which the preconditioner M is an easily invertible matrix chosen such
that (6.2) is easier to solve. (More technically, the eigenvalues of M−1G are more
clustered than those of G.) For tensor problems, a block-Jacobi preconditioner,
i.e., a block diagonal approximation to G, is often an effective choice [332]. The
combination of low per-iteration cost with quadratic convergence of NLS type
methods leads to a fast algorithm. In practice, the algorithms also seem more
robust for ill-conditioned problems [332].

Since its official launch in February 2013, Tensorlab has seen two more releases.
In January 2014, Tensorlab 2.0 was revealed, including the structured data
fusion (SDF) framework as its major feature. SDF allows structured and
coupled decompositions of multiple full, sparse or incomplete matrices or
tensors. This was inspired by the success of specific dedicated algorithms, each
exploiting a particular type of constraint on the factor matrices. SDF allows
the user to choose different decompositions, constraints and regularizations
and combine these to their liking using SDF’s own domain specific language
[333]. By leveraging the chain rule for derivatives, parametric constraints can be
handled easily: over 40 constraints are included, such as nonnegativity, Toeplitz,
polynomial, Kronecker, Vandermonde and matrix multiplication. Different
types of regularization can be used to model soft constraints as well.
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The most recent release from March 2016, Tensorlab 3.0, introduces tensorization
and structured tensors, extends and improves the SDF framework while making
it more user-friendly, introduces a number of large-scale algorithms and a new
algorithmic family, improves coupled matrix/tensor factorizations, and much
more. In the following sections, we discuss a number of these new features in
more detail.

6.1.2 Notation

An Nth order tensor T can be factorized in various ways. The (canonical)
polyadic decomposition (CPD) writes the tensor as a (minimal) number of
rank-1 terms, each of which is the outer product, denoted by ⊗, of N non-zero
vectors a(n)

r :

T =
R∑
r=1

a(1)
r

⊗ · · · ⊗ a(N)
r =

r
A(1), . . . ,A(N)

z
,

in which the factor matrix A(n) contains the vectors a(n)
r as its columns. The

higher-order SVD (HOSVD) or multilinear SVD (MLSVD) can be written as
the mode-n tensor-matrix product ·n of a core tensor S and N factor matrices
U(n):

T = S ·1 U(1) · · · · ·N U(N).

The block term decomposition (BTD) writes a tensor as a sum of low-multilinear
rank terms:

T =
R∑
r=1
S(r) ·1 U(r,1) · · · · ·N U(r,N).

A special variant of the BTD is the decomposition into a sum of multilinear
rank-(Lr, Lr, 1) terms (LL1):

T =
R∑
r=1

(ArBT
r ) ⊗ cr.

An overview of these decompositions is given in Fig. 6.1.

The mode-n unfolding of a tensor T is denoted by T(n) and concatenates the
mode-n vectors as columns in the matrix T(n). The element-wise product or
Hadamard product, the transpose and the Hermitian transpose are denoted by
∗, ·T and ·H, respectively. 〈·, ·〉 denotes the inner product.
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T =

C1

A1
B1G1 + · · ·+

CR

AR

BRGR

Figure 6.1: Block term decomposition of a tensor T in terms with multilinear
ranks (Lr,Mr, Nr). If R = 1, a LMLRA is obtained. If Mr = Lr and Nr = 1,
thus if the rth core tensor has size (Lr, Lr, 1), a BTD in multilinear rank-
(Lr, Lr, 1) terms is obtained. If Lr = Mr = Nr = 1, a CPD is obtained.

6.2 Structured data fusion

Structured data fusion (SDF) is a framework for rapid prototyping of analysis
and knowledge discovery in one or more multidimensional datasets in the form
of tensors. Fig. 6.2 gives a schematic overview. These tensors can be complex,
incomplete, sparse and/or structured. Each tensor is decomposed using one of
the tensor decompositions that are included in Tensorlab. The factor matrices
are possibly shared between the different datasets, meaning that the tensors
are coupled. They can also be equal within a tensor decomposition, indicating
the presence of symmetry. Furthermore, besides the choice of factorizations,
regularization terms can be added as well, based on L0, L1 or L2 norms.
Regularization can be used to prevent overfitting but also to implement soft
constraints.

In a lot of applications, prior knowledge is available on the factor matrices
indicating some kind of structure such as orthogonality or non-negativity. More
than 40 structures are readily available in Tensorlab to constrain the factor
matrices, cf. Fig. 6.3. Besides the administered structures, a user can design its
own constraints as well by providing the mapping and its first-order derivative
information. It is worthwhile to note that the constraints are implemented
with parametric transformations of underlying optimization variables, rather
than with penalty terms. For example, an orthogonal factor matrix of size
I × R requires only R(I − (R − 1)/2) variables while a Vandermonde matrix
of size I ×R requires only I generating variables. Hence, the solution space is
reduced to a restricted search space, and the constraints are imposed exactly
rather than only approximately. The chain rule is then internally used to
cope with the composition of the tensor decomposition model and the various
transformations/constraints, and to solve for the underlying variables.
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The type of tensor decomposition, the coupling and the structure imposed on
the factors can all be chosen independently of the solver and its options. Two
different popular classes of algorithms are available to solve SDF problems
in Tensorlab: quasi-Newton (QN) methods and nonlinear least squares (NLS)
methods, implemented in sdf_minf and sdf_nls, respectively. Within the QN
methods, both limited memory BFGS (L-BFGS, subdivided in line search and
trust region approaches) and nonlinear conjugate gradient (NCG) methods
can be selected, while Gauss–Newton (CG-Steihaug and Dogleg trust region
approaches) and Levenberg–Marquardt algorithms are implemented within the
NLS class.

In Tensorlab 3.0, the SDF framework has been updated in several respects. Two
new solvers for symmetric and/or coupled CPDs are introduced (as discussed
in Section 6.4), as well as three new factorization types and various updated
and new transformations. Besides a focus on content, there has also been
a focus on user-friendliness. Using a new language parser (sdf_check), it is
easier to formulate SDF models and to investigate them. It also helps finding
errors in the model. Furthermore, the domain specific language has been made
more lenient to allow more flexible model formulation, e.g., by automatically
converting arrays to cells and adding braces, wherever necessary.

The handling of incomplete and sparse tensors has also improved from Tensorlab
3.0 on. Note that with the surge of big data applications in mind, the Tensorlab
algorithms have a linear time complexity in the number of known/non-zero
elements of the data tensor. The SDF features regarding incomplete tensors have
shown its value in various applications before, such as in movie recommendation
and user participation predictions [333] as well as in the design of alloys and
in multidimensional harmonic retrieval [391]. This is further discussed in
Section 6.5.2.

6.3 Tensorization

Many powerful tensor tools have been developed throughout the years for
analyzing multiway data. When no tensor data is available and only a matrix
is given, tensor tools may still be used after first transforming the matrix data
to tensor data. This transformation is called tensorization, and many different
mappings are possible. The tensorization step is conceptually an important step
by itself. Many results concerning tensorization have appeared in the literature
in a disparate manner but have not been discussed as such, e.g., [384].

After the tensorization step, one often computes a tensor decomposition. This is
especially the case in blind signal separation, where the first tensorization step



TENSORIZATION 179

z1

z2

z3

x1(z1)

⊥x2(z2)

+x3(z3)
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⊥M(1)

⊥ +M(2)

T (1)≈

T (2)≈

Figure 6.2: A schematic of structured data fusion (adapted from [333]). The
vector z1, upper triangular matrix z2 (representing a sequence of Householder
reflectors) and full matrix z3 are transformed into a Toeplitz, orthogonal and
nonnegative matrix, respectively. The resulting factors are then used to jointly
factorize two coupled datasets T (1) and T (2).

z̄ cnst ZH

Z−1 Z− 1
2 Z−T �

+ nop ‖z‖ ⊥
∏
ZT zji

Figure 6.3: More than 40 structures can be imposed on factor matrices in a
tensor decomposition using SDF. 25 examples are shown schematically.
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implements assumptions on the source signals while the second decomposition
step realizes the actual separation of the source signals [118].

Tensorlab 3.0 contains a number of tensorization techniques [118]. Hankelization
(Hankel-based mapping) and Löwnerization (Löwner-based mapping) can be
used when dealing with approximations by exponentials/sinusoids and rational
functions, respectively. Segmentation and decimation are based on folding
matrix data, which is, e.g., useful when dealing with large-scale data [51]. Also
higher-order and lagged second-order statistics have been included.

Corresponding detensorization techniques have been included where possible.
They can be useful, for example, to extract source estimates from the terms
in the tensor decomposition. By providing a (noisy) Hankel matrix or tensor
for example, the command dehankelize returns the averaged anti-diagonals or
anti-diagonal slices, respectively.

Tensorization typically involves including redundant information in the higher-
order tensor. The number of elements in the obtained tensor can grow quickly,
in line with the curse of dimensionality which states that the number of elements
in a tensor increases exponentially with the number of dimensions, and so do the
computational and memory requirements. To cope with this curse, Tensorlab 3.0
can use efficient representations of the higher-order tensors resulting from the
tensorization. The efficiency of these representations can then be exploited in
the decomposition algorithms, as discussed in Section 6.5.4.

6.4 Coupled matrix/tensor factorization

Joint decomposition of multiple datasets into rank-1 terms is a common problem
in data analysis. Often symmetry constraints are used as well. Both coupling
and symmetry, at the level of the data and the factorization, are easy to
implement using SDF. In this section, we discuss how the new, specialized
coupled and symmetric CPD (CCPD) solver improves convergence and reduces
computation time compared to the standard SDF solvers by exploiting both
constraints early.

The general SDF solvers sdf_minf and sdf_nls handle coupling and symmetry
by first computing the Gramian of the Jacobian G and the gradient g as if no
constraints were imposed (see Equation (6.1)). G and g are then contracted
to Gc and gc which, in this case, boils down to summing the proper blocks, as
indicated in Fig. 6.4. The result is a smaller system which is cheaper to solve.

Fig. 6.4 shows that many blocks in G are repeated because of symmetry.
The ccpd_nls function takes this into account directly: each unique block is
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multiplied by the number of occurrences instead of summing all blocks after
computing them. In the case of the gradient, symmetry in the data T and
the decomposition, e.g., JA,A,BK, has to be considered. In the example, the
decomposition is symmetric in the first two modes as the factor matrices are
identical. The gradients w.r.t. the first and second mode are only identical if
T is symmetric in the first two modes as well. If this is the case, computing
the gradient w.r.t. to second mode is unnecessary. Otherwise, there is no
computational gain possible. Detecting symmetry is therefore an important
task in the CCPD solvers.

For a regular CPD, a block-Jacobi preconditioner has shown to be effective and
efficient to reduce the cost of solving (6.1) because of the Kronecker structure
[332]. The ccpd_nls algorithm uses a similar preconditioner that exploits
symmetry and coupling while keeping the Kronecker structure, in contrast to
the non-preconditioned sdf_nls algorithm.

To illustrate the performance gain of the new algorithm, consider the following
coupled and symmetric problem [127]:

min
M,κ

∣∣∣∣∣∣C(2) −MMT
∣∣∣∣∣∣2 +

∣∣∣∣∣∣C(4) − JM,M,M,M,κK
∣∣∣∣∣∣2 (6.3)

in which C(2) and C(4) are constructed using M ∈ R50×25 and κ ∈ R1×25 drawn
from a normal distribution. In Table 6.1 the SDF and the NLS algorithms
are compared1. It is clear that exploiting all symmetry reduces the time
per iteration. The block-Jacobi preconditioner used to solve (6.1) improves
convergence considerably as can be seen from the reduced number of iterations.
The combination of all improvements reduces the total computation time
significantly.

6.5 Large-scale tensor decompositions

There exist many strategies for handling large-scale tensors: parallelization of
operations, parallel decompositions, incompleteness, compression, exploitation
of sparsity and so on. Here, we discuss four techniques readily available in
Tensorlab: MLSVD computation using randomized matrix algebra, the use of
incomplete tensors and randomized block sampling for polyadic decompositions,
and the use of structured tensors.

1The timings for both algorithms benefited from a modified version of mtkrprod which is
not yet released.
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Table 6.1: Compared to SDF, CCPD requires less time and fewer iterations
to converge when computing (6.3). Increasing the number of CG iterations
improves convergence and reduces computation time. All numbers are medians
over 50 experiments. Both algorithms use the options TolX = eps and TolFun
= epsˆ2, with eps the machine precision.

25 CG Iter. 75 CG Iter.
SDF CCPD SDF CCPD

Time (s) 70.3 6.9 19.4 6.2
Iterations 170.0 45.5 39.5 29.5
Time/iteration (s) 0.40 0.15 0.47 0.20
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Figure 6.4: Illustration of contraction in sdf_nls for a decomposition of T =
JA,A,BK and M = BBT. All blocks with the same shading are identical. The
CCPD algorithm computes the contracted Gramian and gradient directly.

6.5.1 Randomized compression

Using randomized matrix algebra, we derive a fast yet precise algorithm for
computing an approximate multilinear singular value decomposition of a tensor
T . The standard way to compute an MLSVD uses the matrix SVD to compute
the left singular vectors U(n), n = 1, 2, 3, of the different unfoldings T(n) of
the tensor, and computes the core tensor S as T ·1 U(1)T ·2 U(2)T ·3 U(3)T [109].
In very recent literature, one has replaced the SVD by a randomized variant
from [180]. Here we present a variant that combines a sequential truncation
strategy [377] with randomized SVDs and Q subspace iterations [180]. The full
algorithm is described in Algorithm 2.

As example, we create 400 random third-order tensors of size I1 × I2 × I3 with
In uniformly distributed in [100; 400] and with multilinear ranks (R1, R2, R3)
with Rn distributed uniformly in [10; 50], n = 1, 2, 3. The compression size
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Algorithm 2: Computation of MLSVD using randomization and subspace
iteration. (Implemented as mlsvd_rsi.)
Input: Nth order tensor T of size I1× · · ·× IN , compression size R1× · · ·×RN ,

oversampling parameter P and number of subspace iterations Q.
Output: Factor matrices U(n), n = 1, . . . , N and core tensor S such that

S ·1 U(1) · · · · ·N U(N) ≈ T .
1 Set size sn ← In, n = 1, . . . , N and Y ← T ;
2 for n = 1 . . . , N do
3 Let Ω be a random matrix of size

∏
k 6=n sk ×Rn + P ;

4 QR QR←−− Y(n)Ω;
5 for q = 1, . . . , Q do
6 QR QR←−− YT

(n)Q;

7 QR QR←−− Y(n)Q;
8 USVT SV D←−−− QTY(n);
9 U(n) ← QU(:, 1 : Jn);

10 sn ← Rn + P ;
11 Y ← reshape(SVT, s1, . . . , sN );
12 S ← Y(1 : R1, . . . , 1 : RN );

is (R̃1, R̃2, R̃3) with R̃n distributed uniformly in [10; 40]. The oversampling
parameter P is 5 and the number of subspace iterations Q is 2. The relative
Frobenius norm error is maximally 4.2% higher in the case of the randomized
algorithm mlsvd_rsi compared to the standard algorithm mlsvd, while the
speedup is a factor 3 for small tensors and a factor 25 for larger tensors. If
the used compression size is equal to or larger than the multilinear rank of the
tensor, the mean relative errors are 1.3 · 10−14 and 0.5 · 10−14 for the standard
and the randomized algorithm, respectively.

6.5.2 Incomplete tensors

Incomplete tensors occur for two main reasons. First, one can be unable to know
some entries, for example, because a sensor breaks down, or because some entries
correspond to physically impossible situations, e.g., negative concentrations
[391]. In the second case, all elements could be known, but computing or storing
all entries is too costly, hence some elements are deliberately omitted. For
example, for a rank-R CPD of an Nth order tensor T of size I × · · · × I, the
number of entries is IN , while the number of variables is only NIR. Hence,
the number of entries scales exponentially in the order, while the number of
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variables scales only linearly. This enables the use of very sparse sampling
schemes [391].

Here, we restrict the discussion to the computation of a CPD of an incomplete
tensor. Three main techniques can be found in literature [391]. First, unknown
elements can be imputed, e.g., by replacing all unknown values with the
mean value or with zero. Second, in an expectation-maximization scheme,
the unknown values are imputed each iteration with the current best guess from
the model. Third, the unknown elements can be ignored altogether. In this last
approach, the objective function for a CPD becomes

min
A,B,C

1
2 ||W ∗ (T − JA,B,CK)||2F , (6.4)

in which W is a binary observation tensor. Various optimization schemes have
been used to minimize objective (6.4) [9, 333, 359, 388].

Two NLS type algorithms are available in Tensorlab. The first technique scales
the Gramian by the fraction of known values, but ignores the structure of the
missing data [333]. While this approach is very fast, the result may not be
accurate in some cases. If the number of known entries is extremely small,
this algorithm may fail [388]. The second technique uses the exact Gramian
of the Jacobian, i.e, the structure of the missing data is exploited. Second-
order convergence can be achieved, but each iteration is relatively expensive.
This is often compensated for, however, as the number of iterations needed for
convergence is reduced significantly. As shown in [388], leveraging the exact
Gramian can sometimes be crucial in order to find a reasonable solution.

6.5.3 Randomized block sampling

A third technique involves full tensors which may not fit into memory entirely,
or for which the computation cost per iteration would be excessive. In [393] a
technique called Randomized Block Sampling (RBS) was presented to compute
the CPD of large-scale tensors. This method combines block coordinate descent
techniques with stochastic optimization as follows. Every iteration, a random
subtensor or block is sampled from the full tensor. Using this block, one
optimization step is performed. Due to the structure of a CPD, only a limited
amount of variables are affected in each step. This means multiple steps from
multiple blocks can be computed in parallel, as long as the affected variables
do not overlap. As only small blocks are used, there is no need to load the
full tensor. Blocks can also be generated on-the-fly obfuscating the need to
construct a tensor beforehand. Thanks to a simple step restriction schedule,
the underlying CP structure can be recovered almost as accurately as if the full
tensor were decomposed, even if only a fraction of the data is used.
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6.5.4 Efficient representation of structured tensors

Tensors are not always given as a multiway array of numbers or as a list of
non-zeros or known entries. The tensor can, for example, be given in the Tucker
format as a result of randomized compression, as a Tensor Train approximation
[286] to solution of a partial differential equation, or in a Hankel format after
tensorization (see Section 6.3). As discussed in [389], the efficient representation
of a tensor T can be exploited by rewriting the objective function

min ‖T − T̂ ‖2F = min ||T ||2F − 2〈T , T̂ 〉+ ‖T̂ ‖2F, (6.5)

in which T̂ can be a CPD, an LMLRA, an LL1 or a BTD. The gradients can
be rewritten in a similar way. All norms and inner products at the right-hand
side of (6.5), and all matricized tensor times Khatri–Rao or Kronecker products
needed for the gradients can be computed efficiently by exploiting the structure
of T and T̂ . This can lead to speedups in many algorithms, including ALS,
quasi-Newton and NLS algorithms.

Exploiting the structure of tensors by rewriting the objective function as (6.5)
does not change the optimization variables. This has as consequence that
constraints on factor matrices, symmetry or coupling can be handled trivially.
Consider, for example, a nonnegative CPD of a large-scale tensor. Without
constraints, the tensor T is often compressed first to reduce the computational
complexity using S = T ·1 U(1)T · · · · ·N U(N)T . The compressed tensor S is
then decomposed as

r
Â(1), . . . , Â(N)

z
. The CPD

q
A(1), . . . ,A(N)y of T can

be recovered using A(n) = U(n)Â(n), n = 1, . . . , N . This technique cannot be
used to compute the nonnegative CPD, as non-negativity is not preserved by
compression, i.e., Â(n) ≥ 0 does not imply A(n) ≥ 0 in which ≥ holds entry-wise.
However, using the structured format, the optimization variables are the full
factor matrices A(n) instead of the compressed ones Â(n). Hence standard
non-negativity techniques can be used, while still exploiting the structure.

6.6 Conclusion

In this chapter, we have elaborated on a number of features that have been
introduced by the third release of Tensorlab in March 2016. First of all, new
factorizations and constraints are available in the structured data fusion (SDF)
framework. A new tool improves the user-friendliness of SDF by finding model
errors early. A number of tensorization and detensorization methods have also
been added, allowing the transformation of lower-order to higher-order data,
and vice versa. By carefully exploiting the symmetry and coupling structure
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in different stages including the preconditioning stage, new solvers for coupled
matrix/tensor factorizations have been enabled. Furthermore, a number of new
large-scale approaches have been discussed in this chapter, such as randomized
block sampling and decompositions of large structured tensors using efficient
representations.



Chapter 7

Nonnegative matrix
factorization using
nonnegative polynomial
approximations

Abstract Nonnegative matrix factorization is a key tool in many data
analysis applications such as feature extraction, compression and noise
filtering. Many existing algorithms impose additional constraints to take
into account prior knowledge and to improve the physical interpretation.
This chapter proposes a novel algorithm for nonnegative matrix factoriza-
tion in which the factors are modeled by nonnegative polynomials. Using
a parametric representation of finite-interval nonnegative polynomials, we
obtain an optimization problem without external non-negativity constraints
which can be solved using conventional quasi-Newton or nonlinear least
squares methods. The polynomial model guarantees smooth solutions
and may realize a noise reduction. A dedicated orthogonal compression
enables a significant reduction of the matrix dimensions, without sacrificing
accuracy. The overall approach scales well to large matrices. The approach
is illustrated with applications in hyperspectral imaging and chemical shift
brain imaging.

Reference This chapter is a slightly adapted version of the article [125].
Changes are limited to layout and representation aspects. The candidate
performed the research and wrote the article under the guidance of the
coauthors.
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7.1 Introduction

Matrix factorization techniques compress or analyze a given data matrix X ∈
RI×J using the bilinear model X = WHT with W ∈ RI×R,H ∈ RJ×R and
typically R � I, J . The factor vectors or components in W and H can
subsequently be used to, e.g., predict missing entries in X [225] or identify
source signals in a blind source separation (BSS) context [85, 89]. Many
signals and data are nonnegative by nature such as amplitude spectra, pixel
intensities and occurrence counts. Imposing the assumption of non-negativity
on W and H results in nonnegative matrix factorization (NMF), giving an
additive parts-based representation of X [160]. It is well known that the general
problem of NMF does not return unique components [138, 159]. To facilitate the
interpretation of the results and to exploit prior knowledge (but not necessarily
completely solve the uniqueness problem), many existing NMF techniques
impose additional constraints such as sparsity [143, 159, 218], smoothness [77,
137, 408] and orthogonality [81].

Multiple NMF algorithms have been developed using two-block coordinate
descent approaches (alternatively solving for one factor matrix while keeping the
other matrix fixed, resulting in convex subproblems) such as the multiplicative
update (MU) [240], alternating least squares (ALS) [289] and alternating
nonnegative least squares methods [217, 239, 372]. Others use a more direct
approach by updating both W and H in the same step based on projected
gradients (PG) [250] or using some parametrization free of non-negativity
constraints [82]. It is known that many NMF algorithms are sensitive to
initialization and can result in non-smooth solutions [55, 235, 399]. Second, it
can be seen that the number of optimization variables (I + J)R can be large
for large dimension sizes I, J .

In [82], the parametrizations W = E∗E and H = F∗F are used, with E ∈ RI×R,
F ∈ RJ×R and ∗ the Hadamard product. The technique yields an optimization
problem without non-negativity constraints which can be solved with standard
quasi-Newton or nonlinear least squares optimization techniques. The approach
we propose is also parametrization-based. Rather than parametrizing each
variable separately, each entire factor vector (in one or both factor matrices) is
represented and approximated by a nonnegative polynomial. This makes sense
in various applications, as many (smooth) signals can be well approximated
by polynomials with a low degree such as emission or frequency spectra and
sinusoidal signals. The approach is related to novel BSS techniques where
source and/or mixing vectors are approximated by low-parametric deterministic
models such as in [51, 101, 118, 124].

By using a particular parametrization, the complete set of nonnegative
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polynomials on a finite interval of interest can be modeled. Smooth results
are guaranteed without the use of additional smoothing penalization or
regularization terms as in [77, 137], and the number of optimization variables is
significantly reduced which is beneficial for large-scale NMF. It is tempting in
large-scale NMF to reduce the dimensionality of the problem by a singular value
decomposition (SVD). However, the nonnegativity is lost using the orthogonal
compression. The nonnegative polynomial approach, on the other hand, does
admit a dedicated loss-free orthogonal compression. By carefully exploiting the
structure in the resulting problems, efficient algorithms are obtained. These
can be used as such or, when polynomials just give a first approximation, to
initialize general-purpose NMF algorithms. Note that the technique should not
be confused with the fundamentally different polynomial kernel NMF technique
from [62].

Notation Parameters, scalars, vectors and matrices are denoted by upper,
lower, bold lower and bold upper case characters, e.g., N , a, a and A, resp.
The Hadamard, Kronecker, column-wise Khatri–Rao and row-wise Khatri–Rao
products are denoted with ∗, ⊗, � and �T, resp. The columns of A�B (resp.,
rows of A�TB) are the pairwise Kronecker products of the columns (resp.,
rows) of A and B. [A; B] denotes the vertical concatenation of matrices A and
B. The transpose, inverse, pseudoinverse, element-wise square and Frobenius
norm are denoted by ·T, ·−1, ·†, ·∗2 and ||·||, resp.

7.2 Nonnegative polynomial-based NMF

Section 7.2.1 discusses how to model nonnegative polynomials on infinite and
finite intervals. These models are then interpreted from a signal processing
point of view in Section 7.2.2 and applied to the NMF setting in Section 7.2.3.

7.2.1 Modeling nonnegative polynomials on (in)finite
intervals

A degree-D polynomial f(t) is obviously nonnegative for t ∈ [−∞,∞] if it can
be written as a squared polynomial, i.e., f(t) = p(t)2. While this representation
is not sufficient to model the entire set of nonnegative polynomials on the real
axis, the sum-of-squares (SOS) representation is [237]:

∀t ∈ R : f(t) ≥ 0 ⇔ f(t) =
∑K

k=1
pk(t)2. (7.1)
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It is well known that K = 2 is sufficient, and each pk(t) has degree at most
D/2. Signals of finite rather than infinite length are typically considered in
applications, which makes the representation in (7.1) too restrictive for our
purposes. This can be understood by considering the class of odd-degree
polynomials and more specifically the example f(t) = t+ 2, for which f(t) ≥ 0
for t ∈ [−1, 1] but f(t) < 0 for t < −2.

A fundamental representation exists in the literature for nonnegative polynomials
on a finite interval. We limit the analysis to t ∈ [−1, 1], which can be generalized
to t ∈ [a, b] using the change in variables f̃(t) = f( 2t−(a+b)

b−a ). Then [237],[148]:

∀t ∈ [−1, 1] : f(t) ≥ 0 ⇔ f(t) = f1(t) + g(t)f2(t) (7.2)

with g(t) = 1−t2 and the degree of f1(t) and f2(t) not exceeding 2D and 2D−2,
resp. In [237] it is discussed that f1(t) and f2(t) should be SOS as in (7.1), but
judging from the original work [148, 299, 300] it suffices that f1(t) and f2(t)
are squared polynomials. Note that the representation is not unique in general,
e.g., it is possible that f1(t) + g(t)f2(t) = f3(t) + g(t)f4(t) for f1(t) 6= f3(t) and
f2(t) 6= f4(t).

7.2.2 Connection with discrete-time signals

Let us first consider the discrete-time signal p ∈ RI with pi = p(ti) for
i = 1, . . . , I and with p(t) a degree-D polynomial. The points ti do not need to be
equidistant. It is clear that one can write p = Vc for some evaluated polynomial
basis V ∈ RI×(D+1) and corresponding coefficients c ∈ RD+1. For the
standard monomial basis, V has Vandermonde structure. Using a Chebyshev or
Legendre basis instead can avoid ill-conditioned situations. An evaluated squared
polynomial f = p∗2 then results in f = (Vc)∗2 = (V�TV) (c� c). Furthermore,
from the representation in (7.2), an evaluated nonnegative polynomial on a
finite interval can be represented by

f = (V�TV) (a � a) + (U�TU) (b� b) , (7.3)

with matrices V ∈ RI×(D+1),U ∈ RI×D, and with coefficient vectors a ∈
RD+1,b ∈ RD. The weighting function g(t) is absorbed in U, i.e., ∀i, d : uid =√

1− t2i pid with P ∈ RI×D some evaluated polynomial basis of degree D − 1.

7.2.3 NMF using nonnegative polynomials

The NMF problem consists of finding the factorization X = WHT such that
W ≥ 0 and H ≥ 0 with element-wise non-negativity. Assuming that each
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factor vector in W can be well approximated by a finite-interval nonnegative
polynomial, the model from (7.3) can be used. With A ∈ R(D+1)×R and
B ∈ RD×R, this results in the following single-sided version:

X = [(V�TV) (A�A) + (U�TU) (B�B)] HT

= Q
[
A�A
B�B

]
HT with Q =

[
V�TV U�TU

]
, (7.4)

and H ≥ 0. The number of variables in A, B and H is reduced from (I + J)R
to (2D + 1 + J)R. Furthermore, using the model in (7.3) also for the factor
vectors in H, one obtains the following double-sided polynomial-based NMF
model:

X = Q(w)
[
A�A
B�B

] [
C�C
D�D

]T

Q(h)T
, (7.5)

with ar,br and cr,dr the coefficients related to each factor vector wr and hr,
resp., and Q(w),Q(h) similar matrices as in (7.4). The number of variables is
reduced to (2D(w) + 2D(h) + 2)R, with D(w) (resp., D(h)) the degrees of the
polynomials used to approximate each factor vector wr (resp., hr).

There exist NMF techniques that make use of a linear model W = VA to
represent one or both factor matrices, with V containing some basis functions
such as radial basis functions and with A containing the corresponding
coefficients [408]. While the latter methods require explicit non-negativity
constraints on VA and/or A, the constraints are implicitly imposed in (7.5).
Second, results of these methods highly depend on the function parameters in
V, while the proposed approach only requires predefined degrees D(w), D(h).

7.3 Algorithms and computational aspects

7.3.1 Quasi-Newton and nonlinear least squares
algorithms

Let us consider the single-sided nonnegative polynomial-based NMF (NP-NMF)
model in (7.4), with H = F∗2 with F ∈ RJ×R to impose the non-negativity
constraint [82]. Given data matrix X, one can find matrices A, B and F by
minimizing the following least squares objective function:

J = 1
2 ||X−WHT||2 = 1

2 ||R||
2
, (7.6)

with residual matrix R = Q
[
(A�A); (B�B)

] (
F∗2

)T −X.
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While NMF methods are typically based on two-block coordinate descent or
alternating least squares (ALS, linear convergence) approaches, we consider
more direct techniques to minimize (7.6) by updating the estimates in the same
iteration. These so-called all-at-once algorithms such as quasi-Newton (QN,
superlinear convergence) and nonlinear least squares (NLS, close to quadratic
convergence) have been shown to be more robust to overfactoring and to
outperform ALS-based algorithms for ill-conditioned cases, although requiring
a higher computational load per iteration [9, 335]. For a further discussion, we
refer the reader to more detailed literature [278].

QN methods require the expression of the gradient g:

∂J

∂ar
= ((ID+1 ⊗ ar) + (ar ⊗ ID+1))T(V�TV)TRf∗2r (7.7)

= 2VTdiag(Var)Rf∗2r , r = 1, . . . , R, (7.8)

∂J

∂br
= ((ID ⊗ br) + (br ⊗ ID))T(U�TU)TRf∗2r

= 2UTdiag(Ubr)Rf∗2r , r = 1, . . . , R, (7.9)

∂J

∂F = 2F ∗ (RTQ
[
(A�A); (B�B)

])
,

in which diag(e) returns a I × I diagonal matrix with diagonal e ∈ RI , and
in which II is the I × I identity matrix. To approximate the Hessian by its
Gramian G = JTJ, NLS methods additionally require the Jacobian matrix J:

∂ vec (R)/∂ aT
r = (f∗2r )⊗ (diag(Var)V) ,

∂ vec (R)/∂ bT
r = (f∗2r )⊗ (diag(Wbr)W) ,

∂ vec (R)/∂ fT
r = IN �

(
Q
[
(ar � ar); (br � br)

]
fT
r

)
.

These expressions can then be plugged into a numerical optimization solver.
Evaluating the objective function and calculating the gradient both cost O(I(J+
D)R) flop, which reduces to O(IJR) flop as typically J � D. Rather than
constructing and inverting the possibly large Gramian G, fast matrix-vector
products JTJp are used in inexact NLS approaches to iteratively solve the
system Gp = −g. These matrix-vector products and corresponding (block-
)diagonal preconditioner can be computed in O(IJR) flop as well. This order
of complexity is equal to that of many standard NMF approaches, e.g., MU
or accelerated hierarchical ALS [158, 161, 380]; recall also the convergence
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properties mentioned above. In Section 7.3.2, we will further reduce the cost
per iteration.

The gradient vector and Jacobian matrix corresponding to the objective function
in (7.6) given the double-sided model from (7.5) can be derived in a similar
way.

7.3.2 Preprocessing with orthogonal compression

Consider the double-sided NP-NMF model in (7.5). As the typically tall
matrices Q(w) ∈ RI×(2D(w)2+2D(w)+1) and Q(h) ∈ RJ×(2D(h)2+2D(h)+1) are
known beforehand, a significant compression is possible. Assuming that
I ≥ 2D(w) + 1 and J ≥ 2D(h) + 1, it can be shown that Q(w) and Q(h)

are rank-deficient and have rank 2D(w) + 1 and 2D(h) + 1, resp., independent
of the polynomial basis type. Let us compute the corresponding reduced SVDs
Q(w) = Y(w)Σ(w)Z(w)T and Q(h) = Y(h)Σ(h)Z(h)T. Since Y(w) and Y(h) are
column-wise orthonormal, the double-sided version of (7.6) can without loss of
accuracy be expressed as:

J = 1
2

∣∣∣∣∣∣∣∣X̃− (Σ(w)Z(w)
)[A�A

B�B

] [
C�C
D�D

]T(
Σ(h)Z(h)

)T
∣∣∣∣∣∣∣∣2 ,

with X̃ = Y(w)TXY(h)T ∈ R(2D(w)+1)×(2D(h)+1) the compressed data matrix
which needs to be computed only once. While the dimensions are significantly
reduced, the Khatri–Rao structure in Z(w),Z(h) is lost. Consequently, we
cannot use the simplifications in, e.g., (7.8) and (7.9). Instead, ∂J/∂ ar is then
computed using an expression as in (7.7) but with V�TV replaced by the
first (D(w) + 1)2 columns of Σ(w)Z(w); like-wise for ∂J/∂ br, ∂ vec (R)/∂ aT

r

and ∂ vec (R)/∂ bT
r . Nevertheless, the complexity is reduced from O(IJR) to

O((2D(w)+1)(2D(h)+1)R) flop per iteration. This is significant if the number of
samples is large or if the components can be well approximated by polynomials
of low degree.

7.4 Simulations and applications

In this section, we present some results illustrating the modeling power of
nonnegative polynomials for synthetic data and for two real-life applications,
together with a timing comparison of the proposed NMF techniques. Unless
stated otherwise, the NLS version of NP-NMF with compression step, Chebyshev
basis, diagonal preconditioner, random initial coefficients and 50 iterations is



194 NMF USING NONNEGATIVE POLYNOMIAL APPROXIMATIONS

−1 −0.5 0 0.5 10
0.2
0.4
0.6
0.8

1

−1 −0.5 0 0.5 1
0

1

2

−1 −0.5 0 0.5 10
0.2
0.4
0.6
0.8

1

−1 −0.5 0 0.5 1
0

1

2
Figure 7.1: A Gaussian function f(t) = e−

1
2 (5t)2 (left) and a sinusoidal function

f(t) = 1+cos(4πt) with 20 dB SNR (right). Both signals are sampled uniformly
100 times in [−1, 1] ( ) and approximated by finite-interval nonnegative
polynomials ( ) of degrees 6 (left) and 10 (right).

used. The polynomial degrees are chosen by visual inspection and with some
trial-and-error. Altering the degrees changes the possible number of local
extrema and alters the smoothing effect. The complex optimization toolbox
[331, 335] is used as numerical optimization solver. Additive Gaussian noise is
used. We denote NMF without polynomial structure as ‘general NMF’. Unless
stated otherwise, it is solved using the accelerated hierarchical ALS (aHALS)
technique [86, 161].

A first experiment in Fig. 7.1 considers the approximation of two basic
functions. A relative fitting error of 0.047 and 0.092 is obtained, illustrating
that nonnegative polynomials can model a variety of shapes and also have a
denoising effect.

In a second experiment, we apply NP-NMF to the spectral unmixing problem
for non-resolved space object characterization [42, 76, 298]. The spectral
signatures (wavelength-dependent absorption features) of space object materials
(endmembers) such as aluminum, mylar, paint and silicon from solar cells mix
together in the spectral reflectance measurements of the entire object. Given a
hyperspectral data matrix X with I spectral bands and J spectral measurements,
the goal is to identify the different endmembers in W and fractional abundances
in H using the NMF model X = WHT. Let us consider the real-life spectral
signatures of R = 4 endmembers in the 0.6-1.8 µm range with I = 120 spectral
bands in Fig. 7.2 [298]. The spectral measurements in X are constructed by
using a matrix H ∈ R4×4 with entries drawn uniformly from [0,1]. Noise is
added to X in the simulations with a signal-to-noise ratio (SNR) of 40 dB [313].
The median relative fitting error εf is reported on the noiseless WHT across 10
runs with different initializations. The single-sided NP-NMF method is applied
with degrees 6 and 12, each with 30 iterations (εf = 0.0062 and 0.0049, resp.).
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Figure 7.2: The endmembers signatures in the second experiment ( ) and
aligned NP-NMF estimates using degrees 6 ( ) and degrees 12 ( ).
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Figure 7.3: (Left) Zoom-in on the mixed signatures in X, with the original
signatures ( ), fitted NP-NMF signatures with D(w) = 12 ( ) and fitted
aHALS signatures. For the latter, two initializations for W are used: the
same initial W as in the NP-NMF experiment, i.e., a degree-12 nonnegative
polynomial with random coefficients ( ), and a random nonnegative W
without polynomial structure ( ). (Right) Aluminum signatures estimated
by aHALS, to be compared with the NP-NMF estimates in Fig. 7.2 (top, left).
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Figure 7.4: (Left) Visualization of XT from the third experiment. (Right)
Aligned estimated components using NP-NMF ( ) and aHALS ( ).

General NMF is applied with two types of initializations and 300 iterations
(εf = 0.0088 and 0.0079, resp.). Fig. 7.3 (left) shows that NP-NMF yields
smoother estimates than general NMF and is less prone to noise fitting.

Without additional assumptions or constraints, the NMF components cannot
be uniquely determined [138, 159]. To be able to compare the estimates, we
determine the matrix Q ∈ RR×R such that W̃Q approximates W in optimal
least-square sense, with W̃ the estimate of W. The aligned estimates W̃Q
obtained from NP-NMF are given in Fig. 7.2; for comparison, the aligned
estimated aluminum signature obtained from general NMF is given in Fig. 7.3.
The signatures are well approximated by low-degree nonnegative polynomials,
i.e., the latter constitute a good class of models. Second, although general NMF
yields small fitting errors εf , the component estimates can be highly non-smooth
and difficult to interpret.

A third experiment considers 31P chemical shift imaging data of the human brain
[280, 311, 313]. The data set consists of J = 512 spectra measured on a 8×8×8
grid in the brain, each containing I = 369 resonance bands between approx.
−20 and 5 ppm. Both the single-sided NP-NMF (D(w) = 34) and general NMF
are applied with R = 2 components (brain and muscle). Fig. 7.4 shows similar
estimated components, with NP-NMF yielding smooth approximations of the
general NMF components. As discussed in the literature, additional constraints
(e.g., local sparsity) are needed to incorporate prior knowledge and separate the
brain and muscle components.

A fourth experiment compares the timing characteristics of the different methods
in the double-sided setting, each with 20 iterations. The columns of W and
H contain degree-20 nonnegative polynomials. The SNR is 10 dB, R = 2 and
D(w), D(h) = 20. Fig. 7.5 shows timing results for varying dimensions of X.
It can be seen that the compression-based QN and NLS NP-NMF methods
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Figure 7.5: Median timing results across 10 simulations for the fourth experiment,
for aHALS ( ), PG [250] ( ), CG NP-NMF ( ) and NLS NP-NMF
( ). The solid and dashed lines for NP-NMF show the uncompressed and
compressed versions, respectively. The dotted lines correspond to only the
optimization part of the compressed versions, without the compression itself.
The element-wise parametrization W = E∗E and H = F∗F is also considered
[82], with CG ( ) and NLS ( ) versions implemented using the structured
data fusion framework from Tensorlab [333, 392].

are faster than aHALS and PG [250] for large dimensions, with the cost of
the optimization steps independent of I, J . We note that, in general, NLS
needs fewer iterations than CG or ALS to obtain the same accuracy; Fig. 7.5
essentially compares the cost per iteration.

7.5 Conclusion

This chapter proposes novel NMF methods by modeling the components using
finite-interval nonnegative polynomials. The parametric representation avoids
explicit non-negativity constraints and guarantees smooth solutions. Single-
and double-sided variants have been discussed, and quasi-Newton and nonlinear
least squares algorithms have been derived. We have indicated that nonnegative
polynomials can model a variety of shapes, and the models have successfully
been applied on two real-life datasets. A particular orthogonal compression has
been proposed that can significantly speed up the NP-NMF methods and can
outperform state-of-the-art methods. As future work, the algorithms can be
adapted in a spline-like manner to obtain approximating polynomials of lower
degrees in different regions of the components.





Chapter 8

Conclusion

8.1 Contributions

In this thesis, we have developed a framework for tensorization (Chapter 2),
a Löwner-based tensorization technique suitable for the separation of rational
functions (Chapter 3), a segmentation-based tensorization technique suitable for
large-scale separation (Chapter 4), an analytical technique for the separation
of multi-modulus signals (Chapter 5), structure-exploiting and large-scale
algorithms and a new version of Tensorlab (Chapter 6) and a nonnegative
polynomial-based method for nonnegative matrix factorization (NMF) which
scales well to larger dimensions (Chapter 7). In the following, we give a chapter-
by-chapter overview of our contributions. These are categorized according to
conceptual contributions ( ), theoretical foundations ( ), algorithms and
computational aspects ( ) and proof-of-concepts and real-life applications
( ).

Chapter 2:

An overview of various tensorization techniques. A wide range of tensorization
techniques from various domains such as signal processing, graph analysis
and machine learning have been discussed and organized in a meaningful
framework.

Connections between tensorization techniques. Among other connections, we
have established relations between segmentation and time–frequency and
time–scale methods, between higher-order statistics and mixed discriminants
through polarization, and between the analytical constant modulus algorithm
and other algebraic variety-based methods. The connections allowed us to
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derive interesting properties, such as low-rank properties for time–frequency
& time–scale tensorization methods.

Links between tensors and well-known problems and concepts. Multilinear
functions can be bijectively represented by tensors, allowing matrix–matrix
multiplication and compound matrices to be connected with tensors.
Furthermore, a tensor can also uniquely represent a (multivariate) polynomial.
This equivalence between global polynomial optimization on the one hand,
and the best symmetric rank-1 tensor approximation on the other hand
readily follows. Furthermore, Taylor series, the polynomial Waring problem
and polynomial systems can be expressed using tensors.

Application of tensorization in a variety of domains. We have discussed
a wide range of applications such as blind signal separation (BSS), graph
clustering, data clustering (such as topic modeling and document clustering)
and pole estimation.

Chapter 3

A Löwner-based BSS technique. We have proposed a tensorization technique
using Löwner matrices called Löwnerization that can be used in BSS. More
specifically, Löwnerization allows the separation of rational functions or
signals that can be approximated by rational functions. The separation is
obtained using a multilinear rank-(Lr, Lr, 1) decomposition of the Löwner
tensor.

Connections between rational functions and low-rank Löwner matrices, and
factorizations of Löwner matrices. We have shown that rational functions of
degree D lead to Löwner matrices of rank D. A Löwner matrix constructed
from a rational function also admits a so-called Cauchy decomposition.
Each factor matrix is then Cauchy structured. We have investigated
rational functions with non-coinciding poles and with coinciding poles, and
polynomials.

Uniqueness conditions for Löwner-based separation. We have derived specific
uniqueness conditions for Löwner-based BSS based on existing conditions of
the multilinear rank-(Lr, Lr, 1) decomposition. The theoretical results show
furthermore that polynomials indeed cannot be separated.
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Connections between Hankel- and Löwner-based tensorization. A one-to-one
relationship exists between the set of Hankel matrices of size I×J and the set
of Löwner matrices of the same size. This allowed us to make a connection
between Hankelization and Löwnerization. Although the standard form of
Hankelization requires equidistantly sampled points, this is not a requirement
for Löwnerization.

Löwner-based separation of maternal and fetal ECG signals. Rational
functions can model a variety of shapes, and are well-known for their pole-
like behavior. The latter explains why a low-degree rational function can
well approximate a heartbeat. This has allowed us to successfully apply
Löwner-based BSS succesfully in the context of separating maternal and fetal
ECG signals.

Identification of chemical analytes using only a single excitation-emission
matrix. Conventional tensor-based methods in spectroscopy stack a collection
of excitation–emission matrices corresponding to different mixtures of
chemical analytes. The Beer–Lambert law then allows the use of a canonical
polyadic decomposition (CPD) on the tensor such that the concentrations
of the chemical analytes can be recovered. As spectra can be well
approximated by low-degree rational functions, we have been able to show
how Löwnerization can be used to separate mixtures based on only a single
mixture.

Chapter 4

The contributions in this chapter have followed from a close collaboration with
M. Boussé.

A large-scale segmentation-based BSS technique. In large-scale applications,
signals and systems often admit a compact representation. This is exploited
in the context of (large-scale) BSS. The technique is applied on the source
level, the mixing level as well as on both simultaneously. The latter gives
rise to twofold segmentation. Furthermore, also higher-order segmentation
is applied, in which a vector is reshaped into a higher-order tensor. This
enables an even more compact representation.

Connections between segmentation and Hankel-based tensorization and further
low-rank properties. The columns of a matrix obtained from segmentation
are a subset of the columns of a matrix obtained from Hankelization. Hence,
segmentation can be seen as a compact version of Hankelization. Furhermore,
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signals that yield low-rank Hankel matrices also yield low-rank matrices after
segmentation. However, the reverse is not true. Periodic signals, for example,
can lead to low-rank matrices after segmentation. It is discussed that the
rank of a matrix after segmentation of a signal has rank R if and only if the
signal can be written as a sum of R (and not less than R) Kronecker product
vectors.

A decomposition in (rank-Lr ⊗ vector) terms and a butterfly decomposition.
Higher-order segmentation and twofold segmentation both lead to two novel
decompositions. Algorithms and uniqueness conditions have been provided,
partly also in the follow-up paper of Chapter 4 [53].

Segmentation-based separation of maternal and fetal ECG signals. Various
signals admit a compact representation such as ECG signals. This allows
the separation of maternal and fetal ECG signals, much like Löwnerization
has allowed in Chapter 3.

Segmentation-based direction of arrival (DOA) estimation. Estimating the
DOA of signals is an important goal in array processing. Given uniform linear
arrays (ULA), segmentation can be used to extract the direction of arrival
of simultaneously impinging signals. Because of the compact representation,
the technique scales well to large-scale ULAs. Besides the far-field setting,
the technique lends itself well to near-field and multipath cases also. The
proposed technique is compared with other DOA methods such as ESPRIT
and MUSIC.

Chapter 5

An analytical blind separation technique of multi-modulus signals. The
analytical constant modulus algorithm (ACMA) allows the separation of
constant modulus signals such as 4-QAM signals [384]. We have developed
a more general method that also allows the separation of multi-modulus
signals.

Uniqueness conditions for analytical multi-modulus separation. We have
derived working assumptions for the separation of multi-modulus signals.
More specifically, the technique applies a (coupled) CPD after segmentation
of the null space of a constructed matrix which we briefly denote as T. We
have shown that for a set of generic source signals, a tall matrix T has full
column rank.
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A generalized rank-1 detection procedure. The requirement of a tall matrix
T can cause some limitations, as the number of rows and columns of T
depend strictly on the number of signals and source signals, respectively. We
have generalized a previously developed rank-1 detection procedure. Given
a space spanned by a number of Kronecker-structured vectors, the original
formulation of the procedure allowed the recovery of these vectors. While it
does not recover Kronecker-structured vectors from a space spanned by such
vectors and other arbitrary vectors, the generalization of the procedure does,
provided some algebraic conditions apply.

Alternatively formulated, the generalization allows the algebraic recovery
of the factor vectors ar and br from a given tensor T which admits the
following expression:

T =
R∑
r=1

ar ⊗ br ⊗ cr +
Q∑
q=1

Dq ⊗ eq.

This can be seen as a CPD model in the presence of interfering terms. Note
that there exists an upper bound on Q in function of R and in function of
the dimensions of T , and that additional algebraic conditions apply. This
new procedure has allowed us to conjecture a new relaxed lower bound on
the number of samples required for multi-modulus separation.

A generalization to blind deconvolution of multi-modulus signals. Using
two different approaches, we have extended the method from instantaneous
separation to convolutive separation in a BSI context.

Separation of CPSK and 16-QAM signals. The techniques have been
showcased in a context of CPSK and 16-QAM separation, as well as compared
with other state-of-the-art techniques in function of both signal-to-noise ratio
and number of samples available. Unlike the other algorithms, the proposed
method does provide a perfect recovery in the noiseless case and does work
well when only a limited amount of samples are available.

Chapter 6

The contributions in this chapter have followed from a close collaboration with
N. Vervliet.

Tensorization techniques. We have developed a framework of tensorization
techniques within Tensorlab containing novel tensorization techniques such
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as Hankelization, Löwnerization, segmentation and decimation as well as
already available techniques such as fourth-order cumulants and stacked
lagged covariance matrices. Furthermore, a detensorization technique has
been provided for each deterministic tensorization technique. The techniques
are flexible such that vectors and matrices can be tensorized to tensors of
various orders, dimensions, etc.

Large-scale and efficient representations. We have presented a number
of recently developed approaches for large-scale tensor decompositions.
Furthermore, related to tensorization, we have allowed the decomposition of
tensors based on efficient tensor representations. In this way, one avoids the
construction of a tensor at all, bypassing the curse of dimensionality.

Extended and improved version of structured data fusion (SDF). The new
version of SDF is more efficient by the addition of a number of new solvers,
and is also more user-friendly with the addition of a language parser and
the inclusion of a more lenient domain specific language. This is mainly
contributed by N. Vervliet.

Coupled matrix/tensor factorization algorithms. The joint decomposition of
multiple datasets is a common problem in data analysis. The new solvers
with updated preconditioners have improved convergence and have reduced
computation time, exploiting as much symmetry and coupling as possible.
This is mainly contributed by N. Vervliet.

A new version of Tensorlab. These new developments and algorithms have
been made available in Tensorlab 3.0 [392]. Together with the release, the web
page has been renewed, and an online manual and a set of demonstrations
have been added. These demonstrations illustrate the use of Tensorlab
in various applications such as DOA estimation, independent component
analysis (ICA), independent vector analysis (IVA) and user-involvement
prediction, among others [126].

Chapter 7

A nonnegative matrix factorization (NMF) technique based on nonnegative
polynomials. Polynomials can be used well to approximate various types of
signals. By parametrizing a nonnegative polynomial in a finite interval using
a closed-form expression, we have shown how these nonnegative polynomials
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can be used in a context of NMF to reduce the number of variables and to
provide a denoising effect.

Large-scale NMF techniques and algorithms. We have successfully shown how
the polynomial-based NMF method allows orthogonal compression such that
a significant dimension reduction is obtained. Together with the previous
nonnegative-based parametrization, this has enabled the method to scale well
to larger problem dimensions. Unlike the proposed technique, it needs to be
pointed out that conventional orthogonal compression based on, e.g., SVD
or QR, is not suitable in an NMF context as it destroys the nonnegativity.

Chemical shift brain imaging and the separation of hyperspectral endmember
signatures. The method has been showcased in a context of chemical shift
brain imaging and in a setting of hyperspectral imaging. In the latter
application, we have seen that the proposed model readily provides much
smoother solutions than state-of-the-art general NMF methods without the
need of smoothing constraints.

8.2 Prospective work

The remaining part of this thesis provides a number of pointers regarding
prospective work. Besides the permanent objective of uncovering additional
tensorization techniques and related tensor properties, we would suggest the
following major directions:

• Focus on other tensor decompositions. The bulk of the tensorization
techniques in this thesis have been presented in combination with mainly
the CPD and the block term decomposition (BTD). Some have also been
discussed in the context of tensor trains (TT), such as segmentation
or quantization. However, it is evident that many more tensorization
techniques can be developed that are useful in combination with the TT,
hierarchical Tucker and more general tensor networks, among others.

• Neural networks and other machine learning tools. Neural networks with
a single hidden layer have recently been connected with tensorization
and tensor decompositions [204, 205]. Interesting results can be expected
as well for a larger number of layers and for deep networks. Second,
further results concerning data clustering and graph clustering, e.g., in
the direction of spectral clustering, might be obtained. Other tools from
machine learning such as dimensionality reduction techniques, supervised
learning methods and prediction algorithms might strongly benefit from
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tensorization as well. It does not come as a surprise that Google has
recently released a part of its machine learning software library as open
source under the name of TensorFlow [1].

• Spline-like tensorization decomposition. A number of signal models
have been discussed, such as exponential polynomials, rational functions,
nonnegative polynomials and compact representations using segmentation.
Each of these models can be used to approximate specific types of signals.
The approximation of signals using different models in different regions
could be a further extension. This brings the excitingly new field of coupled
tensor decompositions to the forefront [333]. In the case of coupled CPDs,
relaxed uniqueness conditions and algebraic algorithms have already been
developed [345, 346].

We would also like to propose a number of minor suggestions:

• Time–frequency & time–scale transformations. These transformations
have been applied a number of times, especially in the domains of audio
processing and biomedical signal processing. However, they have appeared
rather disparately, without significant theoretical results on the validity of
their use. Although Section 2.6.5 contained a discussion on these methods
with a number of new results, an overview indicating the use of specific
transformations in specific situations could provide a welcome theoretical
foundation. For example, the influence of the type of window function or
wavelet should be investigated in more detail.

• Algebraic variety-based methods. Section 2.7.2 has discussed tensorization
techniques which stack a number of constructed matrices. While the
obtained tensor does not readily admit a CPD, a manipulation can be
performed to obtain one or more coupled CPDs. This technique has
appeared in the context of deterministic BSS (of which the separation of
multi-modulus signals from Chapter 5 is an example) and in combination
with algebraic CPDs where none of the factor matrices have full column
rank. It is expected that this group of tensorization techniques has many
more capabilities.

• Polynomial-based nonnegative tensor factorization (NTF). We have
discussed the use of nonnegative polynomials for NMF, but these
nonnegative polynomials could also be applied in the context of NTF [85].
By applying the provided orthogonal compression, a significant dimension
reduction can be obtained for large-scale tensors.
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