
Stochastic local search with learning automaton

for the swap-body vehicle routing problem

Túlio A. M. Toffoloa,b,∗, Jan Christiaensa, Sam Van Malderena,
Tony Wautersa, Greet Vanden Berghea

aKU Leuven, Department of Computer Science, CODeS & imec-ITEC - Belgium
bFederal University of Ouro Preto, Department of Computing - Brazil

Abstract

This work presents the stochastic local search method for the Swap-Body Vehicle Routing
Problem (SB-VRP) that won the First VeRoLog Solver Challenge. The SB-VRP, proposed
on the occasion of the challenge, is a generalization of the classical Vehicle Routing Problem
(VRP) in which customers are served by vehicles whose sizes may be enlarged via the
addition of a swap body (trailer). The inclusion of a swap body doubles vehicle capacity while
also increasing its operational cost. However, not all customers may be served by vehicles
consisting of two bodies. Therefore swap locations are present where one of the bodies
may be temporarily parked, enabling double body vehicles to serve customers requiring a
single body. Both total travel time and distance incur costs that should be minimized,
while the number of customers visited by a single vehicle is limited both by its capacity
and by a maximum travel time. State of the art VRP approaches do not accommodate SB-
VRP generalizations well. Thus, dedicated approaches taking advantage of the swap body
characteristic are desired. The present paper proposes a stochastic local search algorithm
with both general and dedicated heuristic components, a subproblem optimization scheme
and a learning automaton. The algorithm improves the best known solution for the majority
of the instances proposed during the challenge. Results are also presented for a new set of
instances with the aim of stimulating further research concerning the SB-VRP.

Keywords: Swap-Body Vehicle Routing Problem, VeRoLog challenge, metaheuristics,
local search, decomposition strategies, learning automaton, neighborhood size reduction

1. Introduction

The Swap-Body Vehicle Routing Problem (SB-VRP) was proposed by the EURO Work-
ing Group on Vehicle Routing and Logistics Optimization (VeRoLog) and the PTV Group
at the First VeRoLog Solver Challenge (Heid et al., 2014). It is a generalization of the
classical Vehicle Routing Problem (VRP) based on real problems faced by industry.

∗Corresponding author. E-mail : tulio.toffolo@kuleuven.be.

Preprint submitted to Elsevier August 14, 2017

The classical VRP is one of the most studied problems in combinatorial optimization
and is defined under capacity and route length constraints (Cordeau et al., 2007). The SB-
VRP primarily differs from the VRP insofar as vehicles consist of either one or two bodies
(trailers). The lengthened vehicles are called trains and have exactly twice the capacity of
the regular vehicles (trucks). Figure 1 shows an example of a truck, a swap body (with a
trailer) and a train, respectively.

+ =
Truck Truck Swap body Train

Figure 1: Vehicle type examples

Customers have individual demands and must be served by exactly one vehicle. Three
types of customers are considered: those who can only be reached by trucks, those who can
be served by both trains and trucks, and those whose demands exceed the capacity of a
truck and must be attended to by trains. Customers are geographically dispersed. Travel
times and distances between all locations are given.

In addition to the depot and customers’ locations, swap locations are present, where one
of the bodies of a train may be temporarily left, enabling the vehicle to serve customers with
a single body (truck).

The SB-VRP considers both total time and distance to derive costs that should be
minimized. These costs vary depending on whether the considered vehicle is a train or
truck. Furthermore, additional costs for operations at swap locations are also considered.
Vehicles routes are limited by both their capacity and a maximum travel duration.

The present paper proposes a stochastic local search heuristic approach to the problem.
Initially, a naive solution is quickly built. Different intensification and diversification strate-
gies are subsequently applied to improve the solution. These strategies include a subproblem
optimization scheme and different neighborhood structures, both of which are embedded in
a metaheuristic framework. A preprocessing procedure reduces the solution space and thus
dramatically increases the heuristic’s efficiency. The stochastic local search won the First
VeRoLog Solver Challenge and continues to outperform all other proposed approaches for
the problem.

The approach has significant practical relevance for a range of business activities in-
cluding production, distribution and also the transportation sector more generally. The
delivery of both perishable and urgently-required goods (fuel, for example), which almost
always necessitates transportation by road, becomes greatly optimized. Indeed, very often
the transportation costs associated with such products are disproportionate when compared
against the cost of the products themselves. Furthermore, the approach ensures efficiency
with regard to a number of important economic and ecological factors such as: the number
of vehicles, number of drivers, travel distance and time, and the environmental impact.

The present work is organized as follows. Section 2 details the problem. Section 3
presents a literature overview about the SB-VRP and related work. The proposed algorithm

2

is introduced and described within Section 4. The neighborhood structures considered for
the local search are discussed in Section 5. Section 6 presents computational experiments
and, finally, Section 7 summarizes the conclusions and indicates future research directions.

2. Problem description

The SB-VRP is a generalization of the classical VRP and, by consequence, is an NP-Hard
problem. It can be defined on a graph G = (V,A), where the vertices V are the locations
and the arcs A are the connections between these locations. Three vertex categories are
considered: depot, customers and swap locations. A single depot vertex is defined.

The customers, represented by the subset C ⊂ V , are divided into three groups: truck-
only (C1 ⊆ C), flexible (C2 ⊆ C) and train-only (C3 ⊆ C). These groups are defined
according to the types of vehicle that can be employed to visit the customers. Truck-only
customers can only be attended to by trucks, flexible customers can have their demands
satisfied by both trucks and trains, and train-only customers require trains.

All customers i ∈ C have an associated demand qi and service time si. These demands
must be satisfied with exactly one visit. Since the capacity of a swap body is given by
constant Q, truck-only and flexible customers’ demands must be bounded by Q, such that
qi ≤ Q ∀i ∈ C1 ∪ C2. Contrastingly, train-only customers have demands that trucks cannot
satisfy, therefore implying Q < qi ≤ 2Q ∀i ∈ C3.

Swap locations, represented by the subset S ⊂ V , are associated with neither demand
nor service time. Nevertheless, depending on the operation executed at a swap location, a
certain amount of time is consumed. In total, four operations are possible at a swap location,
each consuming varying amounts of time:

park : leaves the back swap body of the train at the swap location;

exchange : leaves the front swap body of the train at the swap location;

pickup : picks up the swap body that was left at a swap location;

swap : leaves the currently attached swap body and picks up the swap body that was
left at the swap location.

As Miranda-Bront et al. (2017) have highlighted, the consumed capacity of the bodies may
be distributed across routes such that the first action on a swap location is always park.
Exchange generally requires more time than park, and thus employing park rather than
exchange results in less time spent in a swap location.

Each arc (i, j) ∈ A connects location i to location j, has a distance dij and a travel time
tij. Note that the distances and travel times are asymmetric, meaning dij and tij are not
guaranteed to be equal to dji and tji respectively.

Figure 2 shows a graph representation of a small SB-VRP instance. Triangles represent
swap locations, squares indicate truck-only customers, filled circles denote flexible customers
and, finally, open circles identify train-only customers.

3

DEPOT

Figure 2: Graph representation of a small SB-VRP instance

Vehicles must leave and return to the depot with the same swap bodies. Crucially, routes
must begin and end in the depot and swap bodies may not be exchanged between vehicles.
Therefore, if a vehicle leaves a swap body in a swap location, the body must be retrieved
later by the same vehicle. Henceforth, the part of the route that comprises of the customers
between the two swap location visits will be referred to as a sub-route.

All routes must respect capacity constraints and a maximum route duration T . Each
route’s duration is given by the sum of its travel times, service times and swap operation
times.

In the SB-VRP considered the objective is to minimize the total operation cost, given
by the sum of two components:

vehicle/driver costs : consisting of a fixed cost for using a vehicle, a cost per kilometer
traveled and a cost per hour (driver’s cost);

swap body costs : consisting of a fixed cost per additional swap body and a cost per
kilometer traveled with it.

A sample solution for the problem depicted by Figure 2 is shown in Figure 3. This
example employs three vehicles: one truck and two trains. Note that one of the routes
(route 3) contains a sub-route, therefore indicating it utilizes a swap location. The swap
location temporarily stores one of the vehicle’s swap bodies, while it visits two truck-only
customers. After visiting these two customers (or directly before finishing the sub-route),
the vehicle reattaches the parked body and continues towards the next customers.

4

DEPOT

route 3

route 1

route 2

Figure 3: Example of a SB-VRP solution

3. Literature review

The SB-VRP considered by this work was introduced recently in the literature. Huber
and Geiger (2014) addressed the SB-VRP with an iterative variable neighborhood search
(VNS) procedure. They employed a cluster-first route-second approach to produce initial
solutions. Both sequential and parallel versions of the algorithm were evaluated. Lum
et al. (2015) applied a VRP-Reduce algorithm to the SB-VRP. They first transform the
SB-VRP into a classical VRP and then solve the classical problem employing a simulated
annealing (SA) algorithm. Afterwards, a post-processing procedure produces solutions to
the SB-VRP, which are subsequently improved with a variable neighborhood descent (VND)
method. Miranda-Bront et al. (2017) combined a cluster-first route-second approach with
a greedy randomized adaptive search procedure (GRASP). Different constructive heuristics
were studied. Absi et al. (2015) proposed a relax-and-repair approach to the SB-VRP in
which the problem is initially solved as a heterogeneous-fleet VRP with a memetic algo-
rithm. Next, the results are repaired to produce valid solutions for the SB-VRP. During the
optimization process all solutions are stored to be later used as input to a set-partitioning
problem aiming at deriving better solutions. Finally, Todosijević et al. (2016) proposed a
method that resembles the one proposed by Huber and Geiger (2014). A cluster-first, route-
second constructive heuristic for generating an initial solution, and two general variable
neighborhood search (GVNS) heuristics. Both sequential and parallel versions were evalu-
ated. Todosijević et al. (2016) also introduced a mixed integer programming formulation for
the SB-VRP. Recently, Huber and Geiger (2017) presented a study on the importance of the
neighborhoods and their ordering within the VNS algorithm proposed by Huber and Geiger
(2014). It was shown that the sequence of neighborhoods matters. In addition, the impact

5

of the synchronization frequency during the parallel execution on the solution quality was
also evaluated. Improved results were reported.

Table 1 summarizes the characteristics of the published SB-VRP methods. Each column
represents a different approach: HG2014/2017 (Huber and Geiger, 2014, 2017), Lum2015
(Lum et al., 2015), THUJG2016 (Todosijević et al., 2016), MB2017 (Miranda-Bront et al.,
2017) and Absi2016 (Absi et al., 2015). Note how all studies addressed the SB-VRP with
heuristic-based methods. Moreover, although some classic neighborhoods were adapted to
consider SB-VRP characteristics, the limited number of neighborhoods exploiting problem-
specific features is noteworthy.

Table 1: Overview of previous SB-VRP strategies in the literature

Feature / characteristics
Challenge participants Others

HG2014/2017 Lum2015 THUJG2016 MB2017 Absi2016

Construction heuristic
Cluster-first
route-second

SA (VRP)
Cluster-first
route-second

Cluster-first
route-second

Heterogeneous
fleet VRP

Metaheuristic strategy VNS SA, VND GVNS GRASP
Multiple
strategies

Population based - - - - X
Parallel computing X - X X X

Intra-route neighborhoods
relocate X - X - X
swap - - - - X
2-opt X X X X X
3-opt X - - - -

Inter-route neighborhoods
relocate X - X X X
swap X X X X X
multiple swap - X X - -
3-exchange X - - - -
or-opt - X - X -

Problem-specific neighborhoods
Change swap location X - - - -
Truck-only customer migration - X - - -
Route downgrade (single truck) - - - X -
Repair procedure(s) - - - - X

Other problems bearing many similarities with the SB-VRP have been studied by various
authors. Gerdessen (1996), for instance, presented a study on the Vehicle Routing Problem
with Trailers (VRPT). Like the SB-VRP, the VRPT considers two vehicle configurations:
trucks and trucks with an attached trailer (trains). Although all customers may be served
by trains in the VRPT, it proves inconvenient to visit some customers with a large vehicle,
such as those located in the city center. The degree of inconvenience is measured by what
Gerdessen calls manoeuvring time, which consists of the additional time required by trains,
as opposed to trucks, when serving a specific customer. Trailers can be parked at any
customer site with two additional simplifications considered: firstly, each trailer is parked
exactly once and, secondly, all customers have unit demands. Gerdessen proposed three
constructive heuristic algorithms and an improvement heuristic based on local search.

Another similar problem is the Truck and Trailer Routing Problem (TTRP), introduced

6

by Chao (2002). The TTRP is a real-world extension of the VRP in which a limited fleet of
trucks and trailers with fixed capacities serve a set of customers from a central depot. Note
that, in contrast to the SB-VRP, obtaining a feasible solution for the TTRP is not trivial,
on account of the limited number of vehicles. The objective is to satisfy customers’ demands
while minimizing the total travel distance. Similarly to the SB-VRP, customers are divided
in groups: (i) vehicle customers, reachable by either a complete vehicle (truck and trailer)
or by a truck alone, and (ii) truck customers, reachable only by trucks alone. As with the
SB-VRP and the VRPT, trailers may be temporarily parked, enabling truck customers to
be served exclusively by trucks. Any customer site may serve as a parking place for trailers.
Chao (2002) proposed a three-step constructive heuristic and a Tabu Search (TS) method
for the TTRP. The algorithm obtained feasible solutions for all instances, despite the high
demand-to-capacity ratio (above 90%).

Several papers elaborate upon the TTRP literature. Scheuerer (2006) proposed two con-
structive algorithms and a TS method, improving the best known results for all instances.
Later, Lin et al. (2009) proposed a Simulated Annealing algorithm with a two-level solution
representation which employed dummy depots/roots, in conjunction with random neighbor-
hood structures employing three different types of moves. Lin et al. (2009) further improved
the best known results for several instances. Caramia and Guerriero (2009) proposed a very
interesting hybrid approach based on local search and mathematical programming. They
heuristically decompose the problem and use CPLEX to solve two subproblems sequentially.
First, each customer is assigned to a route with the objective of minimizing the fleet size.
Next, by considering the customers assigned to each vehicle, the individual routes are opti-
mized by minimizing their total tour length. The hybrid algorithm adds constraints to the
formulation during each iteration while using a tabu-like customer-route matrix to avoid
previously analyzed allocations. Some new best results were produced, in addition to lower
bounds for assessing solution quality. Villegas et al. (2013) present a two-phase matheuristic
approach to the TTRP which employs locally optimal routes as columns in a set-partitioning
formulation. Routes are generated with a metaheuristic consisting of a hybrid GRASP and
ILS. Route pool sizes may can be controlled, offering a trade-off between solution quality
and running time. Very competitive results are obtained compared to previous methods.

Other papers focus on variants of TTRP such as the relaxed TTRP with unlimited avail-
ability of trucks and trailers and the TTRP with time windows (TTRPTW), introduced by
Lin et al. (2010) and Lin et al. (2011) respectively. Recently, the TTRPTW was further stud-
ied by Parragh and Cordeau (2017), who proposed a tailor-made branch-and-price algorithm
capable of optimally solving instances of up to 100 customers.

Much like with the SB-VRP, the majority of the literature on the VRPT and the TTRP
address the problem with local search based algorithms. In fact, the majority of the best
results for these problems were obtained by metaheuristics relying on local search. This ob-
servation, coupled with the NP-hardness of the SB-VRP, further motivated the development
of local search algorithms when approaching the problem.

7

4. Local Search algorithm

A stochastic local search based algorithm is proposed for the SB-VRP. The algorithm
begins by building a naive feasible solution. Once an initial solution is obtained, the algo-
rithm proceeds to the local search phase that considers several neighborhood structures. A
learning algorithm is responsible for choosing the neighborhood to apply at each iteration.
To enable escaping from local optima, a hybridization of the metaheuristics Iterated Local
Search (ILS) (Lourenço et al., 2003) and Late Acceptance Hill-Climbing (LAHC) (Burke
and Bykov, 2017) is considered.

The algorithm’s components are explained throughout the following sections. Section 4.1
details the constructive algorithm while Section 4.2 introduces the hybrid algorithm com-
bining ILS and LAHC. The neighborhood structures employed and the learning mechanism
are discussed later in Section 5.

4.1. Constructive algorithm

A simple and straightforward constructive algorithm is considered for quickly producing a
feasible solution. The algorithm generates separate routes from the depot to each customer.
Both truck-only and flexible customers are initially served by trucks, whereas train-only
customers are served by trains.

The produced solution is expected to be very poor in terms of cost. However, it can be
generated quickly in O(|C|), where |C| is the number of customers. Additionally, providing
good feasible solutions to threshold acceptance algorithms, such as the LAHC, may limit
the search space and result in poor final solutions, especially if the initial solution happens
to be a local optimum. It is possible to avoid this drawback by feeding the LAHC with
a cost larger than the initial solution’s. This may, however, result in several worsening
modifications at the execution’s beginning, eventually wasting the additional effort required
to produce a good initial solution.

4.2. Hybrid local search algorithm

The proposed algorithm is a hybridization of the Iterated Local Search (ILS) and the
Late Acceptance Hill-Climbing (LAHC) procedures. The ILS metaheuristic was introduced
by Lourenço et al. (2003) and relies upon perturbations to escape from local optima. The
main principle behind the hybridization is to apply these ILS-like perturbations to the best
solution obtained by the LAHC, before re-executing LAHC on the perturbed solution.

The LAHC is a metaheuristic introduced by Burke and Bykov (2008) and further dis-
cussed by Burke and Bykov (2017). It is an adaptation of the classic Hill-Climbing heuristic
in which the quality of a “late” solution, obtained l iterations before the current, determines
whether a new solution is accepted or rejected. This permits the algorithm to accept wors-
ening solutions, enabling it to eventually escape from local optima. Successful applications
of the LAHC have been reported by Özcan et al. (2009), Verstichel and Vanden Berghe
(2009), Abuhamdah (2010), Goerler et al. (2013) and Yuan et al. (2015), among others.

The LAHC approach to the SB-VRP is presented in Algorithm 1. Three arguments
are required: (i) an initial solution S, (ii) the list size l and (iii) the maximum number of

8

consecutively rejected neighbors m. The algorithm begins by filling the late acceptance list,
F , with the initial solution cost (lines 1-2). Following this, the best solution is stored and
counters p and r are initialized (lines 3-4), where p is a cyclic pointer to a position in the
late acceptance list and r the current number of consecutive rejections. The main loop (line
5) begins by selecting a neighborhood (line 6). The learning algorithm is responsible for this
selection. Afterwards, a new neighboring solution is generated (line 7). If this solution is
at least as good as the previous or has a lower objective value than the considered entry in
the late acceptance list, it is accepted (line 8-9). Note that counter r is reset only if S ′ is an
improving solution over S (lines 10-11). If the best solution S∗ is improved, it is updated
(lines 12-13). Next, the late acceptance list is updated (line 14) as well as counters p and
r (lines 15-16). Finally, the best solution obtained is returned once the main loop finishes
(line 17).

Algorithm 1: Late Acceptance Hill-Climbing
Input: Initial solution S, list size l and maximum consecutive rejections m
LAHC(S, l, m)

1 foreach p ∈ {0, ..., l − 1} do
2 Fp ← f(S)

3 S∗ ← S
4 p← r ← 0
5 while r ≤ m and time limit is not reached do
6 N ← selected neighborhood structure
7 S′ ← random neighbor N(S)
8 if f(S′) ≤ f(S) or f(S′) ≤ Fp then
9 S ← S′

10 if f(S′) < f(S) then
11 r ← 0

12 if f(S) < f(S∗) then
13 S∗ ← S

14 Fp ← f(S)
15 p← (p+ 1) mod l
16 r ← r + 1

17 return S∗

The hybrid algorithm combining ILS and LAHC is presented in Algorithm 2. It begins by
producing the initial solution (line 1) and setting the perturbation level ρ to 1 (line 2). The
main loop (line 3) first calls the LAHC algorithm (line 4). If the solution produced by LAHC
is better than the current best solution, the best solution is updated and the perturbation
level is reset to 1 (lines 5-7). Otherwise, the current solution is reset to the best solution (lines
8-9). Afterwards, the perturbation is executed (lines 10-12), which corresponds to applying
ρ random moves to the current solution. Next, the perturbation level ρ is increased (line
13) and the loop repeated. Note that the given maximum perturbation level ρ+ is never
exceeded: ρ is reset to 1 after ρ+ is reached. Once the time limit is reached, the best solution
produced is returned (line 14).

9

Algorithm 2: Hybrid Algorithm (ILS and LAHC)

Input: LAHC list size l, maximum consecutive rejections m and maximum perturbation level ρ+

SBVRP Solver(l, m, ρ+)
1 S∗ ← S ← initial naive solution
2 ρ← 1
3 while time limit is not reached do
4 S ← LAHC(S, l,m)
5 if f(S) < f(S∗) then
6 S∗ ← S
7 ρ← 1

8 else
9 S ← S∗

10 for i = 0 to ρ do
11 N ← selected neighborhood structure
12 S ← random neighbor N(S)

13 ρ← (ρ mod ρ+) + 1

14 return S∗

5. Neighborhood structures

Several neighborhoods were developed to explore the search space of the SB-VRP, being
categorized within three groups: (i) neighborhood structures based on classical VRP moves,
(ii) neighborhood structures based on SB-VRP specific moves and, finally, (iii) neighborhood
structures based on subproblem optimization. On the one hand, the first two groups generate
neighbors by applying move(s) to the solution. These neighborhoods are sampled randomly
rather than being fully explored, as detailed within Section 4. The neighborhoods based on
subproblem optimization, on the other hand, generate neighbors by solving a subproblem.
In this case, randomization occurs when generating the subproblem.

All different neighborhoods are considered together as possible approaches in generating
new (neighboring) solutions. The probability of selecting each neighborhood in a given
iteration is determined by a learning automaton.

Section 5.1 begins by introducing the neighborhood size reduction procedure, responsible
for pruning away potentially less attractive neighbors. Next, the different neighborhood
structures are explained. Classical VRP neighborhoods are discussed in Section 5.2, those
based on SB-VRP specific moves are presented in Section 5.3 and those based on subproblem
optimization are described in Section 5.4. Finally, Section 5.5 details the learning automaton.

5.1. Neighborhood size reduction

A neighborhood size reduction procedure is applied to limit the number of solution
neighbors. This procedure avoids considering solutions in which certain pairs of customers
are visited consecutively in one route. The primary motivation behind this approach is that
two geographically distant customers tend not to be visited one after the other, and thus
analyzing them as consecutive customers in a route likely results in wasted time.

10

The procedure requires a preprocessing step. First, a list of possible preceding and
succeeding customers in the same route is computed for each customer. Both time and
capacity constraints are considered. For instance, two train-only customers can never be in
the same route since the sum of their capacities exceeds the capacity of a train. Once the list
is built, it is sorted according to the cost of traveling either from or to each other customer,
whichever is smaller. This cost is computed as the sum of time and distance costs.

Once the ordered lists are built for each customer, neighborhood reduction may be ap-
plied. The procedure limits possible customer allocations to the first η in each customer list
(ignoring the other possibilities). Note that η ∈ Z+ with η ≤ |C|. When η = |C|, no neigh-
borhood reduction is applied. At the other extreme, when η = 1 the number of neighboring
solutions is drastically limited. Therefore, the value of η determines the possible achievable
neighborhood reduction.

During ILS perturbations, η is always set to |C|. This disables neighborhood reduction
and may lead to diverse solutions, which is the primary objective of the perturbation. In
the other contexts, each neighborhood may have a different value for η. Depending on its
value and on the instance characteristics, the procedure may cut the optimal solution away
from the search space. Hence, setting an appropriate value for η is crucial for the proposed
algorithm’s efficiency.

A neighborhood is defined by both its structure and the value of η. Therefore, one
neighborhood structure is considered in multiple neighborhoods, each with a different value
for the neighborhood reduction parameter η. The principle behind this is that the learning
algorithm should select the most appropriate neighborhoods, giving very low probabilities
for inefficient selections.

5.2. Classical neighborhood structures

Neighborhood structures based on four classical VRP moves are considered. Whenever
possible, neighborhood reduction (Section 5.1) is applied. The moves are as follows:

Swap move

The swap move consists of simply swapping two customers in the solution. The customers
may belong to the same or to different routes.

2-opt move

This move is the classical 2-opt move proposed by Croes (1958). It is important to note,
however, that when dealing with the SB-VRP both routes and sub-routes are considered,
with sub-routes being treated as independent routes.

Random insert move

This move consists of removing one or more customers and re-inserting them into random
routes and positions.

Ejection-chain move

This move is a standard ejection-chain (Glover, 1991, 1996), and consists of re-arranging a
chain of consecutive customers in a route. The size of the chain is given as a parameter.

11

5.3. Problem-specific neighborhood structures

Five neighborhood structures were developed to explore specific characteristics of the
SB-VRP. Again, neighborhood reduction (Section 5.1) is applied whenever possible. The
neighborhood structures are based on the following five moves:

Change swap location move

Given a route that includes a swap location, this move essentially changes the vertex (loca-
tion) of one of the route’s swap locations. Note that moving to certain swap locations may
render the solution infeasible due to the limit imposed on route durations. To circumvent
this issue, only swap locations close enough (so as to maintain feasibility) are considered.
The new vertex is randomly selected from one of these locations.

Convert to route move

This move consists of converting a sub-route into a new (truck) route. The improvement
probability of this move is limited, nevertheless it proves useful as a diversification tool.

Add sub-route move

The add sub-route move consists of adding a swap location to a train route, resulting in
a new sub-route inside the route. Two steps must be executed: (i) defining the vertex
(location) of the swap location and (ii) defining the positions in which the swap location
will be added. This move requires all customers within the sub-route to be truck-only or
flexible customers. Two operations are performed at the swap location: (i) park and then
(ii) pickup. Capacity and time constraints must also be checked.

Split to sub-routes move

This move is similar to the add sub-route move, but instead of adding one sub-route, it adds
two sub-routes at the same swap location, such that each sub-route is conducted with a
different swap body. Three operations are defined at the swap location: (i) park, (ii) swap,
and finally (iii) pickup.

Merge routes move

This move consists of merging two truck routes into a train route. Initially, two truck routes
are selected. Then the swap location closest to both routes is selected and a new route
including this swap location created. Afterwards, the two truck routes are added to the
route as sub-routes. As with the split to sub-routes move, three operations are performed
at the swap location: (i) park, (ii) swap, and finally (iii) pickup.

5.4. Subproblem optimization scheme

Additional neighborhood structures based on a subproblem optimization scheme have
been developed. The subproblems require the reallocation of a subset P ∈ C of the customers
while minimizing the solution cost. In other words, subproblems are SB-VRP problems in
which a subset P̄ of customers, P̄ = C\P , have their routes predefined.

12

Two questions arise from this approach. Firstly, how many customers may be added
to P without negatively impacting on the subproblem computation time? Secondly, which
customers should be added to P? Both questions are addressed in this section.

The initial idea of the subproblem optimization was to solve the subproblems to op-
timality by an Integer Linear Programming (ILP) approach. However, only very small
subproblems (small P) appear solvable in short runtimes by currently available ILP solvers
such as CPLEX and Gurobi. Experiments revealed that heuristic (sub-optimal) solutions for
larger subproblems yielded much better final results than optimal solutions for very small
problems. The difference is more profound when the runtime limit imposed by the VeRoLog
challenge of 600 seconds is considered. Hence, the approach proposed by the present paper
does not guarantee optimality of subproblem solutions. They are produced by a straight-
forward best-fit constructive heuristic, henceforth called Cheapest Inserter procedure.

The Cheapest Inserter procedure operates as follows. First, P is defined as an ordered
set and its customers are removed from the solution. Next, they are sequentially inserted
following P ’s order into the routes and positions incurring the lowest cost increase. This
procedure executes O(|P | × |P̄ |) operations in the worst case. When applying the neighbor-
hood reduction presented in Section 5.1, only the η closest customers are considered by the
Cheapest Inserter. This speeds up the procedure by considerably reducing the number of
comparisons. The size of P therefore does not prevent the algorithm from quickly producing
a solution to the subproblem.

Six strategies have been developed for customer selection in a subproblem. Each strategy
requires the maximum number of customers (size) as a parameter in addition to the value
for the neighborhood size reduction η, applied within the Cheapest Inserter. Note that all
strategies have a certain degree of randomization.

Ruin and recreate strategy

This strategy randomly selects size customers and adds them to P .

Remove chains strategy

In this strategy, small chains of consecutive customers are added to P . The total number of
customers is bounded by the parameter size, while the number of chains is bounded by the
parameter k. The customers may be added to P in three possible orders: (i) random, (ii)
original, or (iii) inverse original route. One of the three sorting criteria is randomly selected.

Remove route strategy

All customers from one or more randomly selected routes are added to P . Similar to the
previous strategy, customers may be disposed in three possible orders: (i) random, (ii) route,
and (iii) inverse route.

Remove sub-routes strategy

This strategy is similar to the remove routes strategy except that, instead of routes, only
sub-routes are considered.

13

Limited ruin and recreate strategy

This strategy is similar to the ruin and recreate strategy, but only routes close to one an-
other are considered when selecting customers. Note that the parameter η (Section 5.1) is
employed when defining close routes, meaning that only routes containing geographically-
nearby customers are selected. This strategy has two parameters: size, which indicates the
number of customers to be added to P , and k, which indicates the maximum number of
routes to be considered.

Ruin and randomized recreate strategy

This strategy is similar to the ruin and recreate strategy except for the differing behavior of
the Cheapest Inserter. Rather than always selecting the cheapest insertion, the algorithm
may select another insertion based on a probability given by a Heuristic-Biased Stochastic
Sampling (HBSS) (Bresina and Bresina, 1996). Any customer may potentially be chosen,
with the best ones having a much higher probability of selection. The chances of selecting
the i-th cheaper insertion is given by f(i) = e−i.

5.5. Learning automaton

A learning automaton (Narendra and Thathachar, 1989) provides a simple reinforcement
learning approach commonly used in single state environments. It maintains and updates a
probability distribution γ for all possible actions.

In the proposed algorithm, the learning automaton determines the probabilities of select-
ing each of the available neighborhoods. Therefore, for each neighborhood k a probability
γke is assigned to each event (or iteration) e. The value of γke is updated according to the
feedback provided by the local search algorithm from the previous event, e − 1. Generally,
the probabilities are updated according to Equations (1) and (2). Equation (1) is applied to
update the probability of selecting the current neighborhood while Equation (2) is applied
to update the probabilities of the remaining neighborhoods.

γk,e+1 = γke + α+βe(1− γke)− α−(1− βe)γke (1)

γk,e+1 = γke − α+βeγke + α−(1− βe)
(

1

|M | − 1
− γke

)
(2)

In Equations (1) and (2), constants α+ ∈ [0, 1] and α− ∈ [0, 1] are the reward and
penalty parameters, respectively. βe ∈ [0, 1] indicates the improvement gained by event e
and, finally, |M | is the number of available neighborhoods. The objective of this update
scheme is to increase the probability of a neighborhood in case of success and to decrease it
in case of failure. A linear reward-penalty (LR−P) strategy is employed, meaning that the
reward and penalty parameters are equal: α+ = α−. The improvement gain calculation is
also simplified: βe is defined such that βe ∈ {0, 1}. It assumes a value of one if successful
and zero in case of failure. This approach was shown to be successful for improving heuristic
search algorithms by Wauters (2012).

14

6. Experiments

The proposed algorithm was coded in Java 1.8 and executed on Intel(R) Xeon E5-
2680v3 CPU @ 2.5GHz computers with 64GB of RAM memory running Red Hat Enterprise
Linux ComputeNode 6.5. All computational experiments were performed according to the
VeRoLog challenge rules: the running time was limited to 600 seconds per instance and at
most 4 CPU cores were used per execution.

The LAHC list size and the maximum number of consecutively rejected neighbors were
manually tuned. After a significant number of experiments considering different values for
the parameters, four sets were selected based on their performance: (i) l=5000 and m=5000;
(ii) l=12500 and m=12500; (iii) l=25000 and m=25000; (iv) l=25000 and m=50000. Each
set is considered by the solver in a different thread.

This section begins by presenting the instances provided by the VeRoLog Solver Chal-
lenge in Section 6.1. Section 6.2 briefly analyzes the neighborhood size reduction’s impact.
Section 6.4 shows the behavior induced by the learning automata by presenting the evolu-
tion of certain neighborhood selection probabilities. The results obtained for the VeRoLog
datasets are presented in Section 6.5 and, finally, Section 6.6 introduces new SB-VRP in-
stances aimed at stimulating future research.

6.1. VeRoLog challenge datasets

In total, six instance sets have been published by the VeRoLoG challenge committee:
small, medium, large, presel, final and final random datasets. The first three datasets were
introduced prior to the challenge. The presel dataset was used to evaluate algorithms
during the pre-selection phase, while the remaining two datasets, final and final random,
were considered to determine the challenge winner. Each dataset contains three instances:

Table 2: Characteristics of VeRoLog challenge instances

Instance |C| |C1| |C2| |C3| |S| T Q
∑
qi

small all with 57 0 56 1 20 8h 500 8445
small normal 57 15 41 1 20 8h 500 8445
small all without 57 57 0 0 20 8h 500 7950

medium all with 206 0 206 0 41 11h 1000 24790
medium normal 206 20 186 0 41 11h 1000 24790
medium all without 206 206 0 0 41 11h 1000 24000

large all with 548 0 548 0 99 11h 1000 65080
large normal 548 50 498 0 99 11h 1000 65080
large all without 548 548 0 0 99 11h 1000 63090

presel all with 550 0 550 0 101 11h 1000 58845
presel normal 550 50 500 0 101 11h 1000 58845
presel all without 550 550 0 0 101 11h 1000 58845

final normal all with 549 0 549 0 102 18h 1000 58785
final normal 549 50 499 0 102 18h 1000 58785
final normal all without 549 549 0 0 102 18h 1000 58785

final rand all with 549 0 549 0 102 18h 1000 327388
final rand 549 50 499 0 102 18h 1000 331239
final rand all without 549 549 0 0 102 18h 1000 325815

15

one in which all customers can be visited by trains (all with), one containing all customer
types (normal) and one in which no customer can be visited by trains (all without).

Table 2 shows the characteristics of these instances. The nomenclature presented during
Section 2 is employed and

∑
qi represents the sum of the demands of all customers i ∈ C.

Note that the number of train-only customers (|C3|) is either one or zero. All instance files1

are available online2.

6.2. Neighborhood size reduction analysis

A quick analysis on optimal Capacitated Vehicle Routing Problem’s (CVRP) solutions
was performed insofar as providing some insight regarding the neighborhood size procedure
(Section 5.1). The objective is to show some values of the parameter η that would not
prevent generating an optimal solution for most instances.

The datasets from Augerat et al. (1995) (sets A, B and P), Christofides and Eilon (1969)
(set E), Christofides et al. (1979), Fisher (1994) (set F), Golden et al. (1998), Li et al. (2005)
and Uchoa et al. (2017) were employed for the analysis. When no proven optimal solution
was available for an instance, the best known solution was considered. In total, 241 instances
were evaluated, of which 102 had a proven optimal solution. The evaluation consisted of
identifying how many optimal (or best known) solutions would be deliberately pruned for a
certain value of η. This occurs whenever a customer i ∈ C is not connected to one of its η
nearest neighboring customers.

Figure 4 depicts a graph visualizing the impact of a relative value for η, or more precisely
of setting η = θ|C|, where θ ∈ [0, 1] is the percentage of customers considered in the
neighborhood size reduction. Note that the impact of parameter η depends upon individual
instance characteristics, such as how the customers are distributed. Given the small number
of SB-VRP instances and the lack of available information concerning optimality, CVRP
instances were utilized. The conclusions may therefore not apply directly to the SB-VRP,
but continue to provide valuable insights. Figure 4 enables one to conclude that at least
one optimal (or best known) CVRP solution satisfies the neighborhood reduction criterion
if η ≥ 0.45|C| for all 241 instances considered. Furthermore, setting θ = 0.15, for instance,
would include at least one optimal (or best known) solution for over 93% of the instances.
This is a strong indication that neighborhood reduction techniques such as the one presented
are worth investigation.

The impact of the neighborhood size reduction on the SB-VRP algorithm’s final solution
was also evaluated. Figure 5 illustrates the algorithm’s performance with and without the
neighborhood size reduction. The figure presents the gap to the best solution obtained for
each dataset provided by the challenge (small, medium, presel, final and final random). For
each dataset, two boxplots are presented: the first one represents the algorithm with neigh-
borhood size reduction and the second one represents the algorithm without it. Each dataset
contains three instances, all with, normal and all without. The algorithm was executed 20
times with different random seeds for each instance, and therefore each boxplot aggregates

1The VeRoLog Challenge organizers gently provided the instances and permitted us to publish them.
2http://benchmark.gent.cs.kuleuven.be/sbvrp

16

http://benchmark.gent.cs.kuleuven.be/sbvrp

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

𝜃=0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figure 4: Impact of parameter η, with η = θ|C|, on CVRP benchmark instances

60 solutions (20 solutions per instance). The runtime limit of 600 seconds is enforced, and η
has been set to 50 or 75, depending on the neighborhood. The learning automaton approach
was considered when selecting these values (more details are provided in Section 6.4).

0.0

0.5

1.0

1.5

2.0

2.5

3.0

G
ap

 (%
) t

o
be

st
 so

lu
tio

n

Figure 5: Results (gap to the best solution) produced by the algorithm with (left) and without (right) the
neighborhood size reduction procedure

Figure 5 demonstrates how, despite the possibility of pruning away an optimal solution,
the neighborhood size reduction procedure positively impacts the algorithm’s performance.
Permitting a larger number of (improving) iterations within the time limit results in superior
solutions. When small and medium instances are considered, however, the advantage of
employing the neighborhood size reduction is less profound. This behavior is expected since
small instance solutions have fewer neighbors. Hence, the performance improvement in these
cases is smaller, as there is much less pruning by the neighborhood size reduction.

6.3. Neighborhood groups

Experiments isolating each neighborhood group (Section 5) were performed to evalu-
ate their impact on the final solution quality. Let N be the set containing all developed

17

neighborhoods. These neighborhoods are divided into three subsets: N1 represents the clas-
sical VRP neighborhoods, N2 the problem-specific neighborhoods, and N3 the subproblem
optimization neighborhoods. Table 3 compares the results obtained by the algorithm consid-
ering different combinations of neighborhood subgroups. The average gap to the solutions
obtained with all neighborhoods are presented. The values are aggregated by instance type:
all with, normal and all without. Each line shows the average gap for 60 executions, 10
for each instance. A runtime limit of 600 seconds was imposed for all executions. The
overall average gap is also presented providing a rough ranking with regard to the different
strategies.

Table 3: Average gap obtained by employing different neighborhood group combinations

All neighborhoods Disabling one neighborhood group Single neighborhood group

N1 ∪N2 ∪N3 N1 ∪N2 N1 ∪N3 N2 ∪N3 N1 N2 N3

all with 0.00% 0.90% -0.06% 0.15% 0.76% 66.90% 0.12%
normal 0.00% 2.29% 1.21% 0.21% 2.09% 68.81% 1.56%
all without 0.00% 9.06% 9.45% 0.42% 9.72% 74.41% 10.21%

Average 0.00% 4.08% 3.54% 0.26% 4.19% 70.04% 3.97%

Table 3 enables one to draw some interesting conclusions. Firstly, considering the entire
neighborhood set appears to be the best strategy on average. Secondly, it is clear that
the subset of problem-specific neighborhoods is incapable of independently producing good
quality solutions, as expected. Thirdly, the characteristic of the instances largely impact the
relationship between the neighborhoods. Note how excluding the problem-specific neigh-
borhoods was beneficial when dealing with “all with” instances. These instances enable
visiting all customers with trains and therefore the swap locations tend to be less frequently
employed, since swap operations become optional. Contrastingly, huge gaps were obtained
when the problem-specific neighborhood set was ignored for the “all without” instances.
These instances prohibit visiting customers with trains. Swap locations consequently be-
come essential for storing bodies of trains, as without them only trucks may be used. Finally,
the table reveals how including subproblem optimization neighborhoods was on average more
beneficial than including classical VRP neighborhoods in almost all situations.

6.4. Learning automaton and neighborhoods

The learning automaton algorithm presented in Section 5.5 has been employed in two
different contexts: first as an offline tuning tool to assess the initial probabilities of selecting
each neighborhood, and second as an online fine-tuning tool to update these probabilities.

The learning automaton has one parameter: reward-penalty α, also known as the learning
rate. This parameter defines how much the probabilities may change in each iteration. For
offline tuning the reward-penalty was set to α = 10−5 and the resulting probabilities were
employed to help determining initial neighborhood probabilities. Two main criteria were
considered for each neighborhood: its time complexity, given by the number of operations
executed to generate a neighbor, and the average probability given by the learning automaton
after several rounds of LAHC. The principle behind this is that fast and relatively efficient

18

neighborhoods should initially have higher chances of selection than slow ones. Due to very
low probabilities resulting from the offline tuning phase, some neighborhoods were dropped.

Table 4 shows the selected neighborhoods and their respective “importance”, given
by v. The probability of each neighborhood is given by its importance divided by the
sum of all neighborhoods’ importance. The initial importance values considered are v ∈
{1, 5, 10, 20, 50, 100}. The table also details the values for parameters size, k and η, when
required by a neighborhood. If the value for η is hidden, then no neighborhood reduction is
applied (η = |C|).

Table 4: Initial probabilities and considered neighborhoods

Neighborhood v Neighborhood v

Swap(η=50) 50 RuinRecreate(10, η=50) 5
TwoOpt() 100 RuinRecreate(15, η=50) 5
ChangeSwapLocation() 50 RuinRecreate(20, η=50) 5
ConvertToRoute() 10 RuinRecreate(25, η=50) 5
AddSubRoute(η=50) 5 RuinRecreate(35, η=50) 5
SplitToSubRoute() 10 RuinRecreate(50, η=50) 5
MergeRoutes() 10 RemoveRoute(η=150) 1
RandomInsert(size=1) 10 RemoveSubRoute() 10
RandomInsert(size=2) 10 RemoveSubRoute(η=150) 10
RandomInsert(size=3) 10 RemoveChains(size=1, k=100, η=50) 10
RandomInsert(size=4) 10 RemoveChains(size=2, k=100, η=50) 10
EjectionChain(size=3, η=50) 20 RemoveChains(size=3, k=100, η=50) 10
EjectionChain(size=4, η=50) 20 RemoveChains(size=4, k=100, η=50) 10
EjectionChain(size=5, η=50) 20 RemoveChains(size=5, k=100, η=50) 10
EjectionChain(size=10, η=50) 20 RemoveChains(size=6, k=100, η=50) 10
EjectionChain(size=15, η=50) 10 RemoveChains(size=7, k=100, η=50) 10
EjectionChain(size=20, η=75) 10 RemoveChains(size=8, k=100, η=50) 10
EjectionChain(size=25, η=75) 10 LimRuinRecreate(size=4, k=4, η=50) 10
EjectionChain(size=30, η=75) 10 LimRuinRecreate(size=2, k=5, η=50) 10
RuinRecreate(size=1, η=50) 5 LimRuinRecreate(size=5, k=2, η=50) 10
RuinRecreate(size=2, η=50) 5 RuinRandRecreate(size=1) 5
RuinRecreate(size=3, η=50) 5 RuinRandRecreate(size=2) 5
RuinRecreate(size=4, η=50) 5 RuinRandRecreate(size=3) 5
RuinRecreate(size=5, η=50) 5 RuinRandRecreate(size=4) 5

The online fine-tuning phase, present in the final algorithm, considers a lower reward-
penalty α = 10−6. The goal is to avoid drastic changes in the probabilities while still
fine-tuning them. After each execution of the LAHC algorithm, the probabilities are reset
to their initial values.

6.5. Results

Table 5 presents the average and best results from 20 algorithm executions for all in-
stances published by the First VeRoLog Challenge. These results are compared against the
best results reported in the literature:

HG2014 : Huber and Geiger (2014) executed their approach 30 times on an Intel Xeon X5650
2.66 GHz;

Lum2015 : Lum et al. (2015) reported the best results obtained on a 2012 MacBook Air
(precise computer unspecified);

19

Absi2016 : Absi et al. (2015) employed an Intel Xeon 2.8 GHz and ran their relax-and-repair
heuristic 10 times;

THUJG2016 : Todosijević et al. (2016) experimented both their Parallel and Sequential GVNS
on an Intel i7-4900MQ 2.80 GHz;

MB2017 : Miranda-Bront et al. (2017) executed their algorithm 10 times on an Intel Core
i5-3320M;

HG2017 : Huber and Geiger (2017) utilized an Intel Xeon X5650 2.66 GHz. They report the
best solutions out of a very large set of experiments considering different param-
eters and algorithm versions. Each of these experiments consists of 30 algorithm
executions.

With the exception of Absi et al. (2015), who included results from 20-minute runs, run-
times were limited to 10 minutes by all other authors. Table 5 highlights how the algorithm
proposed in this paper clearly outperforms all approaches described in the literature. For
the majority of the instances, the average over all runs provides a better value than the best
solution generated by other algorithms. The produced solutions are available online3.

Table 5: Results for VeRoLog challenge instances

Instance
Proposed Algorithm

HG2014 Lum2015 Absi2016 THUJG2016 MB2017 HG2017

Average Best

small all with 4716.50 4715.78 4730.92 4873.05 4716.58 4731.02 4728.93 4716.58
small normal 4797.69 4797.55 4804.97 4959.00 4802.38 4847.63 4806.97 4797.55
small all without 4858.53 4839.64 4839.64 5356.36 4981.70 5249.18 4855.62 4839.64

medium all with 7745.80 7708.63 7755.43 8335.57 7763.13 7754.39 7847.30 7734.61
medium normal 7818.29 7803.54 7817.83 8297.25 7810.93 7834.78 7942.22 7795.98
medium all without 8007.11 7980.01 8045.47 8628.37 8058.89 8382.80 8169.69 7982.76

large all with 19851.04 19806.75 20215.26 21317.00 20495.70 20066.40 20516.70 20058.99
large normal 20039.92 19985.88 20524.54 22051.40 20760.30 20496.40 20738.50 20298.82
large all without 20728.43 20640.72 21255.51 22419.40 21580.60 22310.60 21522.50 21003.51

presel all with 24475.56 24402.67 25072.36 26658.10 25021.70 24965.10 25573.20 24767.63
presel normal 24859.76 24800.16 25425.85 26712.40 25529.50 25443.20 25894.40 25069.86
presel all without 25510.38 25448.55 25835.85 26712.40 25975.50 26515.90 26524.50 25719.19

final all with 33118.08 33014.03 - - - - 34997.90 33753.48
final normal 34254.51 33927.04 - - - - 36305.80 34649.78
final all without 36574.23 36347.28 - - - - 38826.20 36814.84

final random all with 129356.15 129049.18 - - - - 131445.00 129257.44
final random 132758.74 132341.83 - - - - 135509.00 132295.68
final random all without 144588.22 144331.84 - - - - 152587.00 144725.57

Gap from best result: 0.33% 0.01% 1.36% 6.83% 1.97% 2.93% 3.28% 0.81%

Figure 6 presents boxplot graphs illustrating the proposed approach’s performance for
instance groups large, presel, final and final random. The dashed lines indicate previous

3http://benchmark.gent.cs.kuleuven.be/sbvrp

20

http://benchmark.gent.cs.kuleuven.be/sbvrp

best solutions. For 9 out of 12 instances, every solution produced by the proposed algorithm
lies below the dashed line. This further supports the claim that the proposed approach
outperforms all methods in the literature. Figure 6 also enables one to conclude that the
algorithm is very robust. In fact, the maximum gap between two solutions obtained by
the algorithm after 600 seconds is 1.5% (instance small all without : costs of 4839.64 and
4913.39). The average gap to the best solution when considering all 360 solutions produced
for the 18 instances is only 0.33%.

all with normal all without
33000

33500

34000

34500

35000

35500

36000

36500

37000

final

all with normal all without
128000

130000

132000

134000

136000

138000

140000

142000

144000

146000

final random

all with normal all without
19800

20000

20200

20400

20600

20800

21000

21200

large

all with normal all without
24400

24600

24800

25000

25200

25400

25600

25800

presel

Figure 6: Boxplots comparing the solutions obtained with the proposed approach and the best results
reported in the literature for large instances (more than 500 customers)

21

6.6. Additional instances

New instances are proposed to stimulate additional research in the field, varying many
characteristics in contrast to those proposed by the VeRoLog Solver Challenge. These new
instances are generated from Uchoa et al. (2017)’s benchmark CVRP instances which are
produced by distributing customers within a 1000 × 1000 grid in accordance with various
strategies. Uchoa et al. (2017)’s instances are modified via the addition of either 4, 20 or
100 swap locations and the definition of costs for trains and trucks. Swap locations are
generated by first selecting a random customer before randomly selecting a point on a circle
of radius 100 from the selected customer’s location. If this point lies within the CVRP’s
1000× 1000 grid then the point is accepted as a swap location. This process continues until
the required number of swap locations have been added to the instance. The cost of a truck
is fixed at one per distance unit. The cost of a train is given by c per distance unit, with
c ∈ {1.2, 1.4, 1.6}. Customers are distributed within truck-only and flexible customers, such
that |C1| = bk×|C|c and |C2| = |C|−|C1|, where |C1| and |C2| are the number of truck-only
and flexible customers, respectively. No train-only customers are generated. Moreover, swap
body capacity simply corresponds to a vehicle’s capacity in the CVRP instances.

Note that these new instances have significant differences from those proposed during the
VeRoLog Solver Challenge. The instances proposed here have symmetric distances, impose
no limits on route durations and do not include service times at customers or operation
times at swap locations.

An example4 comparing CVRP and SB-VRP is shown in Figure 7. Instance sbvrp-n936-
s4 adds four swap locations to instance X-n936-k151. Customers may be visited only by
trucks, and the train’s cost is set to 120% of the truck’s cost. Note how the four swap
locations are utilized extensively within this example, resulting in a 2.5% reduction in the
objective function value (129633.4 against 132926.0).

Table 6 presents the characteristics of the generated instances (including characteristics
of the original CVRP instances). The columns indicate:

|C| : number of customers;

Dep : placement of the depot, which can be at the center (C), at a random position (R) or at
the corner of the grid (E);

Cust : placement of the customers, which may be random (R), in n clusters (C(n)), or “randomly-
clustered” (RC(n));

Dem : demand distribution, which may be completely unitary (U), uniformly distributed in a
range between n1 and n2 (n1-n2), depending on quadrant (Q) or with “many small and
few large values” (SL);

Q : vehicle capacity (or capacity of each swap body);

|S| : number of swap locations;

c : cost of a train (trucks have cost fixed to 1.0 per distance unit);

4For more examples, the reader is directed to http://benchmark.gent.cs.kuleuven.be/sbvrp, where
solution files and the software for visualizing them are provided.

22

http://benchmark.gent.cs.kuleuven.be/sbvrp

(a) CVRP solution for X-n936-k151 (b) SB-VRP solution for sbvrp-n936-s4

Figure 7: Example of CVRP and SB-VRP solutions for instances derived from Uchoa et al. (2017)

k : coefficient of customers categorization, |C1| = bk × |C|c and |C2| = |C| − |C1|.

Detailed information concerning the characteristics of the original CVRP instances may
be found within Uchoa et al. (2017). Table 6 also presents the average and best results out
of 20 algorithm executions with a runtime limit of 10 minutes and 1 hour, respectively. Note
that the proposed algorithm was executed using the same parameters as those employed in
the experiments of Section 6.5.

Table 6: Characteristics of the proposed instances and computational results

Instance
Characteristics (Uchoa et al., 2017) SB-VRP Results (10min) Results (1h)

|C| Dep Cust Dem Q |S| c k Avg. Best Avg. Best

1 sbvrp-n101-s100 100 R RC(7) 1-100 206 100 1.2 0.9 22540.70 22494.80 22506.68 22492.80
2 sbvrp-n106-s20 105 E C(3) 50-100 600 20 1.6 1.0 23661.37 23615.40 23643.09 23629.60
3 sbvrp-n110-s4 109 C R 5-10 66 4 1.4 0.5 15920.79 15891.60 15897.86 15891.60
4 sbvrp-n115-s100 114 C R SL 169 100 1.4 0.1 12302.95 12191.00 12223.85 12186.20
5 sbvrp-n120-s4 119 E RC(8) U 21 4 1.6 0.0 13503.40 13484.20 13486.12 13390.60
6 sbvrp-n125-s20 124 R C(5) Q 188 20 1.2 0.1 36515.15 36461.60 36476.56 36439.20
7 sbvrp-n129-s4 128 E RC(8) 1-10 39 4 1.6 1.0 30469.39 30386.60 30408.99 30355.40
8 sbvrp-n134-s100 133 R C(4) Q 643 100 1.4 0.9 9960.20 9896.60 9918.03 9890.40
9 sbvrp-n139-s20 138 C R 5-10 106 20 1.2 0.0 12679.34 12647.60 12660.45 12647.60

10 sbvrp-n143-s100 142 E R 1-100 1190 100 1.4 0.5 14824.00 14736.40 14754.40 14736.40
11 sbvrp-n148-s4 147 R RC(7) 1-10 18 4 1.6 0.9 45448.99 44096.80 44030.44 43252.00
12 sbvrp-n153-s20 152 C C(3) SL 144 20 1.2 0.0 14815.98 14770.80 14797.89 14773.20
13 sbvrp-n157-s20 156 R C(3) U 12 20 1.6 0.1 15477.34 15426.80 15417.12 15376.00
14 sbvrp-n162-s100 161 C RC(8) 50-100 1174 100 1.4 0.5 13807.98 13719.40 13745.48 13719.40
15 sbvrp-n167-s4 166 E R 5-10 133 4 1.2 1.0 19815.63 19767.20 19777.78 19695.20
16 sbvrp-n172-s100 171 C RC(5) Q 161 100 1.2 0.0 30032.52 30024.00 30026.21 30024.00
17 sbvrp-n176-s4 175 E R SL 142 4 1.6 0.9 49130.29 46707.60 46866.35 45484.00

(continued on next page)

23

Table 6: Characteristics of the proposed instances and computational results (continued)

Instance
Characteristics (Uchoa et al., 2017) SB-VRP Results (10min) Results (1h)

|C| Dep Cust Dem Q |S| c k Avg. Best Avg. Best

18 sbvrp-n181-s20 180 R C(6) U 8 20 1.4 0.5 22143.19 22091.00 22104.73 22056.80
19 sbvrp-n186-s4 185 R R 50-100 974 4 1.2 1.0 25651.45 25553.40 25491.21 25131.80
20 sbvrp-n190-s100 189 E C(3) 1-10 138 100 1.6 0.1 15463.47 15359.40 15372.54 15301.00
21 sbvrp-n195-s20 194 C RC(5) 1-100 181 20 1.4 0.1 37900.65 37695.80 37658.32 37471.20
22 sbvrp-n200-s100 199 R C(8) Q 402 100 1.6 1.0 50723.48 50592.40 50579.62 50427.00
23 sbvrp-n204-s4 203 C RC(6) 50-100 836 4 1.2 0.5 20133.14 20068.60 20079.93 20043.40
24 sbvrp-n209-s20 208 E R 5-10 101 20 1.4 0.0 26738.25 26658.80 26668.98 26622.40
25 sbvrp-n214-s100 213 C C(4) 1-100 944 100 1.6 0.9 10822.29 10758.00 10763.21 10704.80
26 sbvrp-n219-s4 218 E R U 3 4 1.2 0.9 101295.38 100729.00 100978.25 100649.00
27 sbvrp-n223-s20 222 R RC(5) 1-10 37 20 1.4 0.5 36704.39 36459.00 36516.64 36417.00
28 sbvrp-n228-s20 227 R C(8) SL 154 20 1.2 1.0 22649.59 22431.20 22515.39 22427.60
29 sbvrp-n233-s4 232 C RC(7) Q 631 4 1.4 0.1 19258.70 18954.60 19107.78 18941.80
30 sbvrp-n237-s100 236 E R U 18 100 1.6 0.0 25454.56 25234.20 25279.33 25205.40
31 sbvrp-n242-s20 241 E R 1-10 28 20 1.2 1.0 62482.20 62171.20 62266.32 62108.60
32 sbvrp-n247-s100 246 C C(4) SL 134 100 1.4 0.1 28221.79 28058.60 28058.08 27911.40
33 sbvrp-n251-s4 250 R RC(3) 5-10 69 4 1.6 0.9 41014.91 37218.60 37626.60 37010.80
34 sbvrp-n256-s4 255 C C(8) 50-100 1225 4 1.6 0.5 22023.10 21687.80 21639.21 19426.80
35 sbvrp-n261-s100 260 E R 1-100 1081 100 1.2 0.0 21136.92 20986.60 21041.61 20986.80
36 sbvrp-n266-s20 265 R RC(6) 5-10 35 20 1.4 1.0 63312.60 63079.20 63118.29 62917.80
37 sbvrp-n270-s20 269 C RC(5) 50-100 585 20 1.2 0.5 31361.16 31195.00 31243.23 31118.80
38 sbvrp-n275-s4 274 R C(3) U 10 4 1.4 0.0 18940.07 18888.80 18903.71 18871.80
39 sbvrp-n280-s100 279 E R SL 192 100 1.6 0.9 32197.82 31886.20 31959.69 31722.20
40 sbvrp-n284-s100 283 R C(8) 1-10 109 100 1.6 0.1 19381.85 19202.60 19235.35 19110.60
41 sbvrp-n289-s20 288 E RC(7) Q 267 20 1.4 0.0 71748.75 71639.00 71542.48 71434.60
42 sbvrp-n294-s4 293 C R 1-100 285 4 1.2 0.9 50338.40 47632.80 47703.31 45380.20
43 sbvrp-n298-s100 297 R R 1-10 55 100 1.4 1.0 31715.41 31502.60 31485.55 31246.20
44 sbvrp-n303-s4 302 C C(8) 1-100 794 4 1.6 0.1 22832.06 22711.40 22717.58 22645.20
45 sbvrp-n308-s20 307 E RC(6) SL 246 20 1.2 0.5 23563.78 23324.00 23185.37 22928.60
46 sbvrp-n313-s4 312 R RC(3) Q 248 4 1.2 0.5 75694.01 73087.00 72755.57 72562.20
47 sbvrp-n317-s100 316 E C(4) U 6 100 1.4 0.0 58438.25 58312.80 58380.68 58279.40
48 sbvrp-n322-s20 321 C R 50-100 868 20 1.6 0.1 31153.38 30819.20 30791.26 30634.00
49 sbvrp-n327-s4 326 R RC(7) 5-10 128 4 1.2 1.0 26987.69 26801.80 26763.68 26489.60
50 sbvrp-n331-s100 330 E R U 23 100 1.4 0.9 28513.69 28260.20 28105.76 27788.20
51 sbvrp-n336-s20 335 E R Q 203 20 1.6 0.5 123044.32 122533.40 122361.76 121921.00
52 sbvrp-n344-s4 343 C RC(7) 5-10 61 4 1.2 0.9 45302.97 41666.20 43216.76 40842.00
53 sbvrp-n351-s20 350 C C(3) 1-100 436 20 1.6 1.0 26112.07 26021.00 26010.77 25919.00
54 sbvrp-n359-s100 358 E RC(7) 1-10 68 100 1.4 0.0 42537.92 42286.60 42303.67 41983.60
55 sbvrp-n367-s20 366 R C(4) SL 218 20 1.6 0.1 22322.04 22101.60 21996.53 21656.80
56 sbvrp-n376-s100 375 E R U 4 100 1.4 0.1 111893.74 111476.20 111517.40 111264.00
57 sbvrp-n384-s4 383 R R 50-100 564 4 1.2 0.0 45656.69 45470.40 45441.98 45304.80
58 sbvrp-n393-s100 392 C RC(5) 5-10 78 100 1.6 1.0 36832.35 36519.40 36552.43 36286.60
59 sbvrp-n401-s20 400 E C(6) Q 745 20 1.4 0.9 53737.96 53452.00 53495.55 53338.80
60 sbvrp-n411-s4 410 R C(5) SL 216 4 1.2 0.5 19278.39 18803.60 18770.09 18603.60
61 sbvrp-n420-s4 419 C RC(3) 1-10 18 4 1.2 0.5 95750.59 93630.60 91132.09 90620.80
62 sbvrp-n429-s100 428 R R 50-100 536 100 1.4 0.9 56865.53 56636.00 56494.73 56307.80
63 sbvrp-n439-s20 438 C RC(8) U 12 20 1.6 0.0 35549.16 35016.40 35294.73 35009.60
64 sbvrp-n449-s100 448 E R 1-100 777 100 1.2 0.1 41953.47 41570.80 41412.53 40982.20
65 sbvrp-n459-s20 458 C C(4) Q 1106 20 1.4 1.0 25046.39 24685.40 24520.72 24187.20
66 sbvrp-n469-s4 468 E R 50-100 256 4 1.6 0.1 190409.37 189868.80 189656.37 189426.60
67 sbvrp-n480-s4 479 R C(8) 5-10 52 4 1.6 0.5 97438.81 89458.20 87876.17 86695.20
68 sbvrp-n491-s20 490 R RC(6) 1-100 428 20 1.2 0.0 46023.17 45883.40 45806.53 45679.60
69 sbvrp-n502-s100 501 E C(3) U 13 100 1.4 1.0 54480.57 54261.80 54327.01 54200.00
70 sbvrp-n513-s100 512 C RC(4) 1-10 142 100 1.6 0.9 24686.73 24472.40 24460.20 24326.80
71 sbvrp-n524-s4 523 R R SL 125 4 1.4 0.5 133072.77 131259.60 129852.68 128261.40
72 sbvrp-n536-s20 535 C C(7) Q 371 20 1.2 0.9 71373.16 71191.00 71130.96 70945.80
73 sbvrp-n548-s100 547 E R U 11 100 1.2 0.1 63100.78 62789.20 62610.65 62343.00
74 sbvrp-n561-s4 560 C RC(7) 1-10 74 4 1.6 1.0 52142.10 51781.60 51764.28 51511.60
75 sbvrp-n573-s20 572 E C(3) SL 210 20 1.4 0.0 39728.09 39521.00 39515.33 39401.00
76 sbvrp-n586-s20 585 R RC(4) 5-10 28 20 1.2 0.9 145081.50 144678.00 144430.92 144269.80

(continued on next page)

24

Table 6: Characteristics of the proposed instances and computational results (continued)

Instance
Characteristics (Uchoa et al., 2017) SB-VRP Results (10min) Results (1h)

|C| Dep Cust Dem Q |S| c k Avg. Best Avg. Best

77 sbvrp-n599-s4 598 R R 50-100 487 4 1.6 0.0 96508.84 96209.40 95975.48 95793.60
78 sbvrp-n613-s100 612 C R 1-100 523 100 1.4 1.0 54242.47 53891.00 53516.76 53113.40
79 sbvrp-n627-s4 626 E C(5) 5-10 110 4 1.6 0.1 60551.98 59217.40 58944.11 58026.20
80 sbvrp-n641-s20 640 E RC(8) 50-100 1381 20 1.4 0.5 56985.91 56630.00 56207.74 55939.40
81 sbvrp-n655-s100 654 C C(4) U 5 100 1.2 0.5 73269.46 73186.60 72968.71 72824.00
82 sbvrp-n670-s4 669 R R SL 129 4 1.2 0.1 98832.02 98178.20 98238.34 97818.20
83 sbvrp-n685-s20 684 C RC(6) Q 408 20 1.6 0.0 64405.40 63970.60 63740.19 63284.20
84 sbvrp-n701-s100 700 E RC(7) 1-10 87 100 1.4 0.9 69105.02 68307.80 68172.87 67454.60
85 sbvrp-n716-s20 715 R C(3) 1-100 1007 20 1.4 1.0 39078.70 38738.60 38450.13 38168.20
86 sbvrp-n733-s4 732 C R 1-10 25 4 1.6 0.9 155822.25 141618.40 146352.27 135869.80
87 sbvrp-n749-s100 748 R C(8) 1-100 396 100 1.2 0.1 56116.02 55881.00 55723.82 55502.80
88 sbvrp-n766-s100 765 E RC(7) SL 166 100 1.6 1.0 106061.99 105462.80 104980.10 104365.80
89 sbvrp-n783-s4 782 R R Q 832 4 1.4 0.0 61655.59 61231.80 60879.23 60608.80
90 sbvrp-n801-s20 800 E R U 20 20 1.2 0.5 61576.71 60632.80 60179.16 59891.00
91 sbvrp-n819-s100 818 C C(6) 50-100 358 100 1.4 0.5 125217.12 124521.60 124092.90 123375.80
92 sbvrp-n837-s4 836 R RC(7) 5-10 44 4 1.2 0.1 134346.01 133712.00 132976.66 132397.20
93 sbvrp-n856-s20 855 C RC(3) U 9 20 1.6 1.0 88029.31 87743.80 86955.92 85840.20
94 sbvrp-n876-s20 875 E C(5) 1-100 764 20 1.6 0.9 90739.96 90187.60 89977.46 89734.80
95 sbvrp-n895-s4 894 R R 50-100 1816 4 1.2 0.0 42107.46 41907.60 41747.53 41656.80
96 sbvrp-n916-s100 915 E RC(6) 5-10 33 100 1.4 0.0 241110.22 240702.40 240140.84 239844.80
97 sbvrp-n936-s4 935 C R SL 138 4 1.2 1.0 158350.03 154993.20 133332.20 129633.40
98 sbvrp-n957-s100 956 R RC(4) U 11 100 1.4 0.9 73653.74 73133.60 72926.08 72555.80
99 sbvrp-n979-s20 978 E C(6) Q 998 20 1.6 0.5 109252.51 107932.20 107572.13 106815.60

100 sbvrp-n1001-s4 1000 R R 1-10 131 4 1.6 0.1 76996.90 76172.80 75520.17 74188.80

7. Conclusions

The Swap-Body Vehicle Routing Problem (SB-VRP) concerns a relevant VRP generaliza-
tion which poses interesting challenges with respect to developing optimization approaches.
This work presented the stochastic local search algorithm for the SB-VRP that won the
First VeRoLog Solver Challenge (2014).

The presented algorithm explores the problem structure and clearly outperforms all
published approaches to the SB-VRP. It has improved the best reported solution in the
literature for the majority of the instances introduced during the First VeRoLog Solver
Challenge. For large, presel and final instance sets, the worst solution obtained after 20
algorithm runs is better than the previous best known result, indicating the algorithm’s
superior performance. To encourage further research on the problem addressed by this
paper, the CVRP instances proposed by Uchoa et al. (2017) were adapted to the SB-VRP
and an automated benchmark website5 was produced including instances, solutions and a
visualization tool.

All algorithmic components were discussed and analyzed, including the hybrid meta-
heuristic, the considered neighborhoods, the neighborhood size reduction and the learning
automaton. An analysis of the neighborhood size reduction in the context of (academic)
benchmarks was also presented, based on experiments including SB-VRP and CVRP in-
stances. These combined analyses resulted in various insights concerning the development
of competitive local search algorithms to the SB-VRP.

5http://benchmark.gent.cs.kuleuven.be/sbvrp

25

http://benchmark.gent.cs.kuleuven.be/sbvrp

Future research directions include simplifying the presented algorithm. This paper de-
scribed the winning approach of the First VeRoLog Challenge as it was implemented. How-
ever, the large number of neighborhoods and components hinder the understanding of the
algorithm’s behavior and prove a challenge in terms of reproduction. Additionally, core com-
ponents such as the learning automaton may be further explored to prune neighborhoods,
enabling simplification without significant loss in terms of solution quality. Finally, some of
the ideas here presented should be applied to related problems, such as the VRPT and the
TTRP.

Acknowledgements

Work supported by the Belgian Science Policy Office (BELSPO) in the Interuniversity At-
traction Pole COMEX (http://comex.ulb.ac.be), IWT 130855 grant of the Institute for the
Promotion of Innovation through Science and Technology in Flanders (IWT-Vlaanderen) in
cooperation with Conundra (www.conundra.eu), and Leuven Mobility Research Center. The
computational resources and services used in this work were provided by the VSC (Flemish
Supercomputer Center), funded by the Hercules Foundation and the Flemish Government
– department EWI.

In addition, we would like to thank Luke Connolly for providing editorial consultation.

References

Absi, N., Cattaruzza, D., Feillet, D., Housseman, S., 2015. A relax-and-repair heuristic for the swap-body
vehicle routing problem. Annals of Operations Research, 1–22.
URL http://dx.doi.org/10.1007/s10479-015-2098-8

Abuhamdah, A., 2010. Experimental result of late acceptance randomized descent algorithm for solving
course timetabling problems. In: IJCSNS- International Journal of Computer Science and Network Se-
curity, Vol. 10 No. 1, January.

Augerat, P., Belenguer, J., Benavent, E., Corberán, A., Naddef, D., Rinaldi, G., 1995. Computational results
with a branch and cut code for the capacitated vehicle routing problem. Tech. rep., University Joseph
Fourier, Grenoble, France.

Bresina, J., Bresina, L., 1996. Heuristic-Biased Stochastic Sampling. In: AAAI-96 Proceedings. pp. 271–278.
Burke, E. K., Bykov, Y., 2008. A Late Acceptance Strategy in Hill-Climbing for Exam Timetabling Problems.

In: Proccedings of PATAT 2008 conference.
Burke, E. K., Bykov, Y., 2017. The late acceptance hill-climbing heuristic. European Journal of Operational

Research 258 (1), 70 – 78.
URL http://www.sciencedirect.com/science/article/pii/S0377221716305495

Caramia, M., Guerriero, F., 2009. A heuristic approach for the truck and trailer routing problem. Journal
of the Operational Research Society 61 (7), 1168–1180.
URL http://dx.doi.org/10.1057/jors.2009.59

Chao, I. M., 2002. A tabu search method for the truck and trailer routing problem. Computers and Opera-
tions Research 29 (1), 33–51.

Christofides, N., Eilon, S., 1969. An algorithm for the vehicle-dispatching problem. Operational Research
Quarterly (20), 309–318.

Christofides, N., Mingozzi, A., Toth, P., 1979. The vehicle routing problem. In: Christofides, N., Mingozzi,
A., Toth, P., Sandi, C. (Eds.), Combinatorial Optimization. Vol. 1. Wiley Interscience, pp. 315–338.

26

http://dx.doi.org/10.1007/s10479-015-2098-8
http://www.sciencedirect.com/science/article/pii/S0377221716305495
http://dx.doi.org/10.1057/jors.2009.59

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., Vigo, D., 2007. Chapter 6 Vehicle Routing. In: Barnhart,
C., Laporte, G. (Eds.), Handbooks in Operations Research and Management Science. Vol. 14. Elsevier,
pp. 367 – 428.
URL http://www.sciencedirect.com/science/article/pii/S0927050706140062

Croes, G. A., 1958. A method for solving traveling-salesman problems. Operations Research 6 (6), 791–812.
URL http://dx.doi.org/10.1287/opre.6.6.791

Fisher, M. L., 1994. Optimal solution of vehicle routing problems using minimum k-trees. Operations Re-
search 42 (4), 626–642.
URL http://dx.doi.org/10.1287/opre.42.4.626

Gerdessen, J. C., 1996. Vehicle routing problem with trailers. European Journal of Operational Research
93 (1), 135–147.

Glover, F., 1991. Multilevel tabu search and embedded search neighborhoods for the traveling salesman
problem. Tech. rep., Leeds School of Business, University of Colorado, Boulder.

Glover, F., 1996. Ejection chains, reference structures and alternating path methods for traveling salesman
problems. Discrete Applied Mathematics 65, 223–253.

Goerler, A., Schulte, F., Voß, S., 2013. An application of late acceptance hill-climbing to the traveling
purchaser problem. In: Pacino, D., Voß, S., Jensen, R. (Eds.), Computational Logistics. Vol. 8197 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 173–183.
URL http://dx.doi.org/10.1007/978-3-642-41019-2_13

Golden, B., Wasil, E., Kelly, J., Chao, I.-M., 1998. The impact of metaheuristics on solving the vehicle
routing problem: Algorithms, problem sets, and computational results. In: Crainic, T., Laporte, G.
(Eds.), Fleet Management and Logistics. Centre for Research on Transportation. Springer US, pp. 33–56.
URL http://dx.doi.org/10.1007/978-1-4615-5755-5_2

Heid, W., Hasle, G., Vigo, D., 2014. Verolog solver challenge 2014 – VSC2014 problem description.
URL http://verolog.deis.unibo.it/news-events/general-news/verolog-solver-challenge-2014

Huber, S., Geiger, M., 2014. Swap body vehicle routing problem: A heuristic solution approach. In:
González-Ramı́rez, R., Schulte, F., Voß, S., Ceroni Dı́az, J. (Eds.), Computational Logistics. Vol. 8760 of
Lecture Notes in Computer Science. Springer International Publishing, pp. 16–30.
URL http://dx.doi.org/10.1007/978-3-319-11421-7_2

Huber, S., Geiger, M. J., 2017. Order matters - A variable neighborhood search for the swap-body vehicle
routing problem. European Journal of Operational Research 263 (2), 419 – 445.
URL http://www.sciencedirect.com/science/article/pii/S0377221717303934

Li, F., Golden, B., Wasil, E., 2005. Very large-scale vehicle routing: new test problems, algorithms, and
results. Computers & Operations Research 32 (5), 1165 – 1179.
URL http://www.sciencedirect.com/science/article/pii/S0305054803003150

Lin, S.-W., Yu, V. F., Chou, S.-Y., 2009. Solving the truck and trailer routing problem based on a simulated
annealing heuristic. Computers and Operations Research 36 (5), 1683–1692.

Lin, S.-W., Yu, V. F., Chou, S.-Y., 2010. A note on the truck and trailer routing problem. Expert Systems
With Applications 37 (1), 899–903.
URL http://dx.doi.org/10.1016/j.eswa.2009.06.077

Lin, S.-W., Yu, V. F., Lu, C.-C., 2011. A simulated annealing heuristic for the truck and trailer routing
problem with time windows. Expert Systems With Applications 38 (12), 15244–15252.
URL http://dx.doi.org/10.1016/j.eswa.2011.05.075

Lourenço, H. R., Martin, O. C., Stützle, T., 2003. Iterated local search. In: Glover, F., Kochenberger, G.
(Eds.), Handbook of Metaheuristics. Vol. 57 of International Series in Operations Research & Management
Science. Springer US, pp. 320–353.

Lum, O., Chen, P., Wang, X., Golden, B., Wasil, E., 2015. A Heuristic Approach for the Swap-Body Vehicle
Routing Problem. In: 14th INFORMS Computing Society Conference. pp. 172–187.

Miranda-Bront, J. J., Curcio, B., Méndez-Dı́az, I., Montero, A., Pousa, F., Zabala, P., 2017. A cluster-first
route-second approach for the swap body vehicle routing problem. Annals of Operations Research 253 (2),
935–956.

27

http://www.sciencedirect.com/science/article/pii/S0927050706140062
http://dx.doi.org/10.1287/opre.6.6.791
http://dx.doi.org/10.1287/opre.42.4.626
http://dx.doi.org/10.1007/978-3-642-41019-2_13
http://dx.doi.org/10.1007/978-1-4615-5755-5_2
http://verolog.deis.unibo.it/ news-events/general-news/verolog-solver-challenge-2014
http://dx.doi.org/10.1007/978-3-319-11421-7_2
http://www.sciencedirect.com/science/article/pii/S0377221717303934
http://www.sciencedirect.com/science/article/pii/S0305054803003150
http://dx.doi.org/10.1016/j.eswa.2009.06.077
http://dx.doi.org/10.1016/j.eswa.2011.05.075

URL http://dx.doi.org/10.1007/s10479-016-2233-1

Narendra, K. S., Thathachar, M. A. L., 1989. Learning Automata: An Introduction. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA.

Özcan, E., Bykov, Y., Birben, M., Burke, E. K., 2009. Examination timetabling using late acceptance
hyper-heuristics. In: Proceedings of the Eleventh conference on Congress on Evolutionary Computation.
CEC’09. IEEE Press, Piscataway, NJ, USA, pp. 997–1004.
URL http://dl.acm.org/citation.cfm?id=1689599.1689731

Parragh, S. N., Cordeau, J.-F., 2017. Branch-and-price and adaptive large neighborhood search for the truck
and trailer routing problem with time windows. Computers & Operations Research 83, 28–44.
URL http://www.sciencedirect.com/science/article/pii/S0305054817300266

Scheuerer, S., 2006. A tabu search heuristic for the truck and trailer routing problem. Computers and
Operations Research 33 (4), 894–909.

Todosijević, R., Hanafi, S., Urošević, D., Jarboui, B., Gendron, B., 2016. A general variable neighborhood
search for the swap-body vehicle routing problem. Computers & Operations Research, –.
URL http://www.sciencedirect.com/science/article/pii/S0305054816300120

Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., Subramanian, A., 2017. New benchmark instances for
the Capacitated Vehicle Routing Problem. European Journal of Operational Research 257 (3), 845–858.
URL http://dx.doi.org/10.1016/j.ejor.2016.08.012

Verstichel, J., Vanden Berghe, G., 2009. A late acceptance algorithm for the lock scheduling problem. In:
Voss, S., Pahl, J., Schwarze, S. (Eds.), Logistik Management, Hamburg, 2-4 September 2009. Springer.
URL https://lirias.kuleuven.be/handle/123456789/249443

Villegas, J. G., Prins, C., Prodhon, C., Medaglia, A. L., Velasco, N., 2013. A matheuristic for the truck and
trailer routing problem. European Journal of Operational Research 230 (2), 231 – 244.
URL http://www.sciencedirect.com/science/article/pii/S037722171300324X

Wauters, T., 2012. Reinforcement learning enhanced heuristic search for combinatorial optimization. Ph.D.
thesis, KU Leuven.

Yuan, B., Zhang, C., Shao, X., 2015. A late acceptance hill-climbing algorithm for balancing two-sided
assembly lines with multiple constraints. Journal of Intelligent Manufacturing 26 (1), 159–168.
URL http://dx.doi.org/10.1007/s10845-013-0770-x

28

http://dx.doi.org/10.1007/s10479-016-2233-1
http://dl.acm.org/citation.cfm?id=1689599.1689731
http://www.sciencedirect.com/science/article/pii/S0305054817300266
http://www.sciencedirect.com/science/article/pii/S0305054816300120
http://dx.doi.org/10.1016/j.ejor.2016.08.012
https://lirias.kuleuven.be/handle/123456789/249443
http://www.sciencedirect.com/science/article/pii/S037722171300324X
http://dx.doi.org/10.1007/s10845-013-0770-x

	Introduction
	Problem description
	Literature review
	Local Search algorithm
	Constructive algorithm
	Hybrid local search algorithm

	Neighborhood structures
	Neighborhood size reduction
	Classical neighborhood structures
	Problem-specific neighborhood structures
	Subproblem optimization scheme
	Learning automaton

	Experiments
	VeRoLog challenge datasets
	Neighborhood size reduction analysis
	Neighborhood groups
	Learning automaton and neighborhoods
	Results
	Additional instances

	Conclusions

