

Scheduling Markovian
PERT networks to
maximize the net present
value: new results
Hermans B, Leus R.

KBI_1709

Scheduling Markovian PERT networks to

maximize the net present value: New results

Ben Hermans∗,a and Roel Leus†,a

aResearch Center for Operations Research & Business Statistics (ORSTAT), Faculty
of Economics and Business, KU Leuven, Belgium

Abstract

We study the problem of scheduling a project so as to maximize its
expected net present value when task durations are exponentially dis-
tributed. Based on the structural properties of an optimal solution we
show that, even if preemption is allowed, it is not necessary to do so.
Next to its managerial importance, this result also allows for a new algo-
rithm which improves on the current state of the art with several orders
of magnitude, both in CPU time and in memory usage.

Keywords: project scheduling, net present value, exponentially distributed
activity durations, Markov decision process, monotone optimal policy

1 Introduction

Consider a project in which a set of tasks N = {1, . . . , n} needs to be performed
in order to reach a given goal; think for example of a new product development
project. The strict partial order A ⊂ N × N defines precedence constraints,
with (i, j) ∈ A indicating that task j can only start if i is finished. We suppose
task n reflects the project’s completion and (i, n) ∈ A for all i ∈ N \ {n}. Each
task i ∈ N has a random duration d̃i with support R≥0 and, initially, we require
activities to be processed without interruption. Finally, each task has a cash
flow which is discounted to take into account the time value of money.

In this article, we study the problem of deciding when to start each task
so as to maximise the project’s expected net present value (eNPV), i.e. the
expected sum of discounted cash flows. Throughout, we assume independent
and exponentially distributed activity durations (d̃i)i∈N with rate parameter
(λi)i∈N ∈ Rn>0. This problem was also studied by [1, 2, 8]; we briefly review
these articles below. For an excellent and more detailed literature review, also
for the case where task durations are not exponentially distributed, see [10].

All models in [1, 2, 8] are based on the seminal work of Kulkarni and Ad-
lakha [5], who use a continuous-time Markov chain to evaluate the moments and
distribution of the project’s earliest completion time. Buss and Rosenblatt [1]

∗The research was funded by a PhD Fellowship of the Research Foundation – Flanders.
†Corresponding author. E-mail: roel.leus@kuleuven.be.

1

mailto:roel.leus@kuleuven.be

adapt this Markov chain to evaluate the eNPV when each task is initiated as
soon as possible. Next, they determine the optimal delay for up to two activ-
ities beyond their earliest possible starting time. While the delays in [1] are
fixed before the project’s start, Sobel et al. [8] consider the more general case of
making scheduling decisions adaptively during the project’s execution, solving
the problem using a stochastic dynamic program (SDP). To mitigate the SDP’s
excessive memory usage, Creemers et al. [2] partition the state space such that
not all states have to be stored in memory at the same time. This significantly
improves performance and their algorithm is considered to be the current state
of the art [10].

We address the same problem as [2], which we define in Section 2 and for
which we give a new SDP-formulation in Section 3. The major difference is that
we act as if activities can be interrupted, but show that, even if preemption is
allowed, it is not necessary to do so (Section 4). Consequently, the preemptive
case solves the non-preemptive case as well. Next to its managerial importance,
this result also allows for a new algorithm that improves on the method of [2]
with several orders of magnitude, both in CPU time and in memory usage
(Section 5).

2 Problem definition

We assume that executing task i ∈ N leads to a cash flow ci ∈ R per time
unit, such that cid̃i equals the activity’s total cash flow. Applying a continuous
discount rate r ∈ R>0 to task i starting at time τ then yields a net present

value
∫ τ+d̃i
τ

cie
−rt dt. We make the, often realistic, assumption that ci ≤ 0 for

i ∈ N \ {n} and cn > 0; think e.g. of a new product development project where
the company only obtains a revenue after launching the product [1].

A solution is a policy that specifies which task to start at which decision
moment, possibly depending on events predating this decision moment. De-
note the set of all feasible policies by Π, then any policy π ∈ Π maps realisa-
tions d := (di)i∈N of the random durations d̃ := (d̃i)i∈N into starting times
(si(d | π))i∈N . To be feasible, policy π has to respect the precedence con-
straints: si(d | π) + di ≤ sj(d | π) for any (i, j) ∈ A and any realisation d

of d̃. Moreover, the non-anticipativity constraint states that, when making a
decision, the project manager cannot use information that becomes available af-
ter the decision moment. Formally, this means that, for any two realisations d
and d′ of d̃, we have si(d | π) = si(d

′ | π) as long as dj = d′j for any j ∈ N with
sj(d | π) + dj ≤ si(d | π). We obtain the following problem:

max
π∈Π

E

[∑
i∈N

∫ si(d̃|π)+d̃i

si(d̃|π)

cie
−rt dt

]
.

Note that [2] assume fixed cash flows cFi occurring at task i’s initiation.
Such cash flows can be incorporated into our setting by choosing ci such that

cFi = E[
∫ d̃i

0
cie
−rt dt]. Indeed, as can be derived from the expression above, this

leads to the same decisions and eNPV, see [8, 10]. We model the cash flows as
rates because this feels more natural for the preemptive case.

2

1

2

3

4

5

i(2,−9)

(10,−8)

(1,−40)

(5,−5)

(5, 40)

(E[d̃i], ci)

Figure 1: Example project.

Example. Figure 1 visualises an example project consisting of five activities
N = {1, . . . , 5} represented on the nodes and precedence constraints as implied
by the arrows. The arc 1 → 3, for instance, indicates that task 3 can only
start after activity 1’s completion. The expected task durations E[d̃i] = 1/λi
and cash flow rates ci are shown above the nodes. Together with a continuous
discount rate r = 0.01, this information fully specifies a problem instance.

One possible solution is the early-start policy πe, which initiates each task
as soon as possible. Using the procedure of [1], we find that the eNPV for πe

equals 13.49, while optimally delaying task 3 by 3.57 time units leads to an
eNPV of 14.07. Using the SDP of [8], finally, we find that the maximum eNPV
equals 16.59; the optimal policy π? starts each activity different from task 3 as
soon as possible and, for task 3, waits until tasks 1, 2 and 4 are past.

3 Stochastic dynamic program

In this section, we formulate a new stochastic dynamic program which assumes
that we can interrupt a task at any time during its execution. In Section 4, we
show that an optimal policy for this preemptive case solves the non-preemptive
case as well and, thus, our SDP effectively gives a formulation for the problem
of Section 2.

We define the project’s state at any given time by the set P ⊆ N of activities
that are already finished (past). The project’s state space P collects all states
P ⊆ N such that i ∈ P implies j ∈ P for all (j, i) ∈ A. The terminal state
P = N represents a completed project. The major difference compared to the
SDPs of [2, 8] is that our state definition does not include the set of active tasks,
i.e. tasks that are in process. Since preemption is allowed, we can choose this
set at any moment anew and the additional information is no longer needed.
As will become clear, this significantly reduces the SDP’s number of states and,
thus, its memory requirements.

For any state P ∈ P, define the set of eligible tasks E(P) as the set of
tasks which, in principle, could be active. Formally, E(P) = {i ∈ N \ P |
j ∈ P for all (j, i) ∈ A}. A possible action then is to work on a set of tasks
ϕ ⊆ E(P). Choosing ϕ = ∅ when P 6= N corresponds to project abandonment:
we never execute the remaining tasks N \ P and the project transitions to an
additional terminal state that we simply call ‘abandoned project ’. Section 4.3
discusses the changes if abandonment is not allowed.

It follows from [3] that there is no loss in optimality when choosing actions
at state transitions only. Either it is desirable to work on task i ∈ E(P) in state

3

P ∈ P and we do so during the entire visit of state P , or it is not desirable and
we do not work on task i at all in state P . Intuitively speaking, the exponential
distribution’s memoryless property implies that as long as no transition occurs,
one obtains no additional information that could alter the desirability of working
on task i. This considerably simplifies the problem since we can limit decision
moments to a discrete set of state transitions, while, in general, decisions could
be made at any time, i.e. continuously, during the project’s execution.

Suppose we choose action ϕ ⊆ E(P) in state P ∈ P, then the next state
transition occurs randomly depending on which of the subsequently active tasks
i ∈ ϕ completes first. By the memoryless property of the exponential dis-
tribution, the remaining duration of each active task i ∈ ϕ is exponentially
distributed with parameter λi. The time until the next transition is the mini-
mum of these durations and, thus, is exponentially distributed with parameter
Λϕ :=

∑
i∈ϕ λi. Moreover, the probability that i ∈ ϕ completes first equals

λi/Λϕ and is independent from the time until the next transition. Finally, it
is easily verified that the expected discount rate until the next state transition
equals Λϕ/(r+ Λϕ) and that the expected cash flow incurred during the state’s
visit equals

∑
i∈ϕ ci/(r + Λϕ).

Example. Figure 2 displays the possible sets of past activities P ∈ P for the
example project of Figure 1. The node “1,3”, for instance, represents state
P = {1, 3}. In addition, there is a schematic representation of the possible
transitions in the initial state. The square represents a decision node, indicating
that the possible actions are the subsets of E(∅) = {1, 2}. After choosing action
ϕ = {1, 2}, the chance node (circle) indicates that the next transition occurs
randomly depending on whether task 1 or 2 completes first.

1 1,3 1,2,3

∅ 1,2,3,4 1,2,3,4,5

2 1,2 1,2,4

1

12

2

1

1

2
2

abandoned project
∅

Figure 2: Illustration of states and transitions.

Define the value function V (·) as the mapping that assigns to each state
P ∈ P the maximum eNPV that is attainable by the remaining activities when
the tasks in P are past. It then follows from [7] that V (·) satisfies the Optimality
Equation

V (P) = max
ϕ⊆E(P)

{∑
i∈ϕ λiV (Pi) + ci

r +
∑
i∈ϕ λi

}
(1)

and that choosing actions which attain the maximum constitute an optimal
policy. Here, and in the sequel, we denote Pi := P ∪{i}, Pij := P ∪{i, j} and so
forth. Since every task completion increases the cardinality of P with one unit,
a backward recursion with boundary condition V (N) = 0 identifies V (P). Our
goal is to compute V (∅) and to identify a policy which attains this maximum.

4

Let m := maxP∈P |E(P)| denote the maximum number of tasks that can
be active in parallel, then it is not difficult to show that |P| is bounded above
by
∑m
i=0

(
n
i

)
; see [4]. Indeed, P is completely determined by E(P) and

(
n
i

)
bounds the number of states having |E(P)| = i. In fact, by the binomial
theorem, (1 + n)m =

∑m
i=0

(
m
i

)
ni ≥

∑m
i=0 n

i ≥
∑m
i=0

(
n
i

)
and the number of

states is polynomial in n for a fixed value of m. Since the completion of every
subset ϕ ⊆ E(P) leads to a feasible state P ∪ϕ, we also have |P| ≥ 2m, implying
that the number of states is exponential in m. If preemption is not allowed, we
need to include the set of active tasks in each state [8]. Since all Y ⊆ E(P), i.e.
2|E(P)| subsets for each P ∈ P, are possible sets of active tasks, the number of
states for the non-preemptive case is bounded above by

∑m
i=0

(
n
i

)
2i and bounded

below by 3m. This suggests that the preemptive case is computationally more
tractable than the non-preemptive one.

4 Structural properties

In the first part of this section, we characterize an optimal preemptive policy
with a structure that facilitates the recursive computation of a state’s value.
Next, we use this structure to show how this optimal preemptive solution solves
the non-preemptive case as well. Finally, we discuss the changes if project aban-
donment is not allowed. We will frequently use the following simple equivalence
between (in)equalities:

Lemma 1. For any u, v ∈ R and w, λ ∈ R>0 holds that

v ≥ u

w
⇐⇒ u+ λv

w + λ
≥ u

w
⇐⇒ v ≥ u+ λv

w + λ
,

and likewise for “=” or “≤” instead of “≥”.

4.1 Structure of an optimal preemptive policy

Remember that ci is the cash flow per time unit for working on task i ∈ N .
V (Pi), in turn, equals the value when i completes, while λi is the rate at which
the task completes. Consequently, we can interpret λiV (Pi) as the value per
time unit generated by the possible completion of task i. Now define

ψi(P) :=
1

λi
(λiV (Pi) + ci) = V (Pi) +

ci
λi
,

then, since 1/λi equals task i’s expected duration, ψi(P) reflects the total ex-
pected value of working on task i. Finally, denote

ϕ?(P) := {i ∈ E(P) | ψi(P) ≥ V (P)} ,

then the next result states that we should work on task i whenever the total
expected value of working on i is not less than the current value V (P).

Proposition 1. Let P ∈ P, then ϕ?(P) is an optimal action in state P .

Proof. Given a state P ∈ P, consider an eligible task i ∈ E(P) and action
ϕ ⊆ E(P) such that i /∈ ϕ. From the first equivalence in Lemma 1,

ψi(P) ≥
∑
j∈ϕ λjψj(P)

r +
∑
j∈ϕ λj

(2)

5

if and only if ∑
j∈ϕ λjψj(P) + λiψi(P)

r +
∑
j∈ϕ λj + λi

≥
∑
j∈ϕ λjψj(P)

r +
∑
j∈ϕ λj

.

By Optimality Equation (1), V (P) equals the maximum of Inequality (2)’s
right-hand side over all actions ϕ ⊆ E(P) and, thus, working on task i never
decreases value if ψi(P) ≥ V (P). Similarly, from Lemma 1’s second equivalence,
an optimal action never includes task i if ψi(P) < V (P).

While the result of Proposition 1 is intuitively appealing, it does not help
from a computational point of view. Indeed, when searching for the optimal
action in state P we obviously do not know the value V (P) yet. The next result
expresses ϕ?(P) in terms of the value function evaluated at sets of past activities
with cardinality |P | + 1. As such, it is useful for the backward recursion. For
any P ∈ P and i ∈ E(P), define

τi(P) :=

∑
j∈E(P):ψj(P)>ψi(P) λjV (Pj) + cj

r +
∑
j∈E(P):ψj(P)>ψi(P) λj

,

then τi(P) can be interpreted as the value of choosing action ϕ = {j ∈ E(P) |
ψj(P) > ψi(P)} in Optimality Equation (1). The intuition behind Theorem 1
is as follows. Since ψi(P) reflects the value of working on i, we prefer to work on
tasks having higher ψi(P). The result then states that we want to ‘add’ task i
to the set of active tasks if working on i does not decrease value compared to
the situation where we only work on tasks j with ψj(P) > ψi(P).

Theorem 1. Let P ∈ P, then ϕ?(P) = {i ∈ E(P) | ψi(P) ≥ τi(P)}.

Proof. It suffices to show that, for each P ∈ P and i ∈ E(P), it holds that
ψi(P) ≥ V (P) if and only if ψi(P) ≥ τi(P). The result that ψi(P) ≥ V (P)
implies ψi(P) ≥ τi(P) immediately follows from the fact that V (P) ≥ τi(P).
Indeed, {j ∈ E(P) | ψj(P) > ψi(P)} is feasible for Optimality Equation (1)
and leads to value τi(P).

For the other direction, i.e. that ψi(P) ≥ τi(P) implies ψi(P) ≥ V (P),
define the set L := {j ∈ E(P) | ψj(P) ≥ τj(P)} and a permutation ρ on L
such that ψρ(l) ≥ ψρ(l+1) for all l = 1, . . . , |L| − 1. Induction on l will show that
ψj(P) ≥ V (P) for all j ∈ L.

Suppose that ψρ(1)(P) < V (P), then, by definition of ρ, ψj(P) < V (P)
for all j ∈ L. Moreover, by definition of L and the first part, ψj(P) < V (P)
for all j ∈ E(P) \ L as well. Proposition 1 then implies that ϕ?(P) = ∅ and
V (P) = 0. Together with 0 = τρ(1) ≤ ψρ(1)(P) this gives the contradiction:
0 ≤ ψρ(1) < V (P) = 0. Consequently, ψρ(1)(P) ≥ V (P).

Now take arbitrary k ∈ {2, . . . , |L|} and assume ψρ(l)(P) ≥ V (P) for l < k.
The induction step consists of showing that ψρ(k)(P) ≥ V (P) as well. If not,
then similar reasoning as above yields ψρ(l) < V (P) for all l = k+1, . . . , |L| and
ψj < V (P) for j ∈ E(P) \ L. Since ψρ(k) < ψρ(k−1), the induction hypothesis
and Proposition 1 imply V (P) = τρ(k)(P) and, together with τρ(k) ≤ ψρ(k)(P),
this gives a contradiction. Consequently, ψρ(k)(P) ≥ V (P).

6

4.2 Optimality of a non-preemptive policy

Not exercising preemption can be seen as a monotonicity in the actions: if we
decide to work on task i ∈ E(P) in state P ∈ P, we want to work on it in
any successor state Pj with j ∈ E(P) \ {i} as well. Such monotonicity would
imply that an optimal preemptive solution solves the non-preemptive case as
well. This is useful for at least two reasons. First, from a computational point of
view, the preemptive case is easier to deal with (see Section 3). In addition, from
a managerial point of view, it is interesting to know under which circumstances
it is not useful to consider preemption.

The remainder of this section shows that a monotone preemptive policy is
indeed optimal. First, Lemma 2 gives the intuitively obvious result that, since
ci ≤ 0 for i ∈ N \{n}, the completion of an intermediary task does not decrease
the value function. Lemma 3, in turn, delivers the key step by showing that
the change in value thanks to a task’s completion does not decrease if another
task finishes first. It proves that V (·) is supermodular, a property underlying
numerous monotonicity proofs [6, 9]. Since the proof for Lemma 2 is relatively
straightforward and the one for Lemma 3 rather lengthy, they are both included
in appendix.

Lemma 2. Let P ∈ P with n /∈ E(P), then for any i ∈ E(P): V (Pi) ≥ V (P).

Lemma 3. Let P ∈ P with |E(P)| ≥ 2, then for any i, j ∈ E(P) with i 6= j:
V (Pij)− V (Pj) ≥ V (Pi)− V (P).

Proposition 2. Let P ∈ P with |E(P)| ≥ 2, then for any i, j ∈ E(P) with
i 6= j: i ∈ ϕ?(P) implies i ∈ ϕ?(Pj).

Proof. By definition of ϕ?(P) and ψi(P), it holds that i ∈ ϕ?(P) if and only if
V (Pi) − V (P) ≥ −ci/λi. This implies i ∈ ϕ?(Pj) as well since, by Lemma 3,
V (Pij)− V (Pj) ≥ V (Pi)− V (P) ≥ −ci/λi.

Theorem 2. ϕ?(·) fully determines an optimal non-preemptive policy.

Proof. From Proposition 2, ϕ?(·) never interrupts a task which was active in a
previous state. Consequently, the resulting policy is non-preemptive and, thus,
is optimal for the non-preemptive case as well.

4.3 Project abandonment

From Lemma 2, V (P) > 0 for all P ∈ P if V (∅) > 0. Thus, either we never
abandon the project, or we do not initiate it. This result was also proposed by
Sobel et al. [8, Proposition 2]; Lemma 2 gives an alternative proof.

One could think of situations, however, where we want to know the maximum
eNPV, even if it is negative. This means that choosing ϕ = ∅ in Optimality
Equation (1) is forbidden. In order to deal with this situation, let P ∈ P and
take arbitrary

i?(P) ∈ arg max
i∈E(P)

{
λiV (Pi) + ci

r + λi

}
.

Next, consider the action

ϕ̄?(P) :=

{
i?(P) if ψi(P) ≤ 0 for all i ∈ E(P);

ϕ?(P) otherwise.

7

It then follows that ϕ̄?(·) describes a policy where we perform the tasks sequen-
tially as long as the value function is negative and switch to ϕ?(·) as soon as
the value function becomes positive. The next proposition shows that ϕ̄?(·) is
optimal if it is not allowed to abandon the project.

Proposition 3. Let P ∈ P, then ϕ̄?(P) is an optimal action in state P if
choosing ϕ = ∅ is forbidden. Moreover, ϕ̄?(·) is non-preemptive.

Proof. If ψi(P) ≤ 0 for all i ∈ E(P), then

ψi(P) =
λiV (Pi) + ci

λi
≤ λiV (Pi) + ci

r + λi

and the optimality of initiating task i?(P) follows from the definition of i?(P)
in combination with the first equivalence of Lemma 1.

On the other hand, if ψi(P) > 0 for some i ∈ E(P), then V (P) > 0 and
applying Lemma 2 yields V (P ′) > 0 for all successor states P ′ of P as well.
Consequently, no abandonment will occur in the remainder of the project and
Proposition 1 proves the optimality of ϕ?(P).

Finally, to see that ϕ̄?(·) is non-preemptive, first note that ϕ̄?(·) only initiates
a single activity if ψi(P) ≤ 0 for all i ∈ E(P); this task will be finished in the
next state and no preemption occurs. Next, if ψi(P) > 0 for some i ∈ E(P),
non-preemption is guaranteed by Proposition 2.

5 Algorithm and performance

Algorithm 1 presents our new procedure to identify a project’s maximum eNPV
for both the non-preemptive and preemptive case. The set Pk collects all
states P ∈ P having exactly k ∈ {0, 1, . . . , n} completed tasks and, thus,
(P0,P1, · · · ,Pn) forms a partition of P. As suggested by [5], this partition-
ing of P into different stages significantly reduces the memory requirements
since, after having evaluated the value function for all states in Pk−1, we no
longer need the information in Pk.

Algorithm 1 Determine the maximum eNPV.

input: N,A, (ci, λi)i∈N , r
1: V (N)← 0; ϕ?(N)← ∅; Pn ← {N}
2: for stage k ← n downto 1 do
3: based on Pk, determine states in Pk−1

4: for states P ∈ Pk−1 do
5: determine ϕ?(P) and V (P)
6: end for
7: free memory occupied by Pk
8: end for
9: return V (∅)

In the remainder, we compare the performance of Algorithm 1 with the
procedure of Creemers et al. [2] based on a number of test instances grouped
by their value of n and order strength (OS). The latter measures the project
network’s density and equals the ratio of the number of pairs in A, i.e. |A|, and

8

the maximum number of such pairs, i.e. n(n−1)/2. We reuse the dataset of [2],
who generated 30 instances for each combination of n ∈ {10, 20, . . . , 120} and
OS ∈ {0.8, 0.6, 0.4}. We follow [2] by not allowing for project abandonment.

All experiments were performed with an Intel Core i7-4790 processor with
3.60 GHz CPU speed and we used an upper bound of 1 GB of RAM. Table 1
shows the average CPU time in seconds and the number of instances solved
without violating the memory constraint. Tables 2-3, in turn, display the av-
erage total number of states as well as the average maximal fraction of these
states kept in memory at the same time. This fraction measures how effectively
the state space’s partitioning mitigates memory requirements. All averages are
taken over solved instances only.

Given the discussion in Section 3, it is not surprising that OS is a major
determinant of performance for both methods since a sparser network allows for
more tasks executable in parallel. Our method clearly improves on the procedure
of [2] with several orders of magnitude, both in memory usage and CPU time.
To explain the reduced memory requirements, remember from Section 3 that
the bounds on the number of states for our SDP are considerably lower than
the ones for the method of [2]. It is interesting to note that the fraction of
states in memory for our method is not only lower, but is also less sensitive
to the order strength. This results from the fact that, contrary to the method
of [2], Algorithm 1’s partitioning of the state space does not depend on the
number of tasks executable in parallel. Finally, to explain the reduction in
CPU time, note that, in addition to the decrease in computational effort thanks
to the reduced number of states, Theorem 1 enables to determine ϕ?(P) without
enumerating all subsets of E(P). Since memory usage rather than CPU time
still constitutes the algorithm’s bottleneck, further research should focus on
identifying additional properties which could mitigate the algorithm’s memory
usage.

Table 1: Average CPU time in seconds and number (#) of solved instances out
of 30.

Creemers et al. [2] Algorithm 1

OS=0.80 OS=0.60 OS=0.40 OS=0.80 OS=0.60 OS=0.40

n CPU # CPU # CPU # CPU # CPU # CPU #

10 0.00 30 0.00 30 0.00 30 0.00 30 0.00 30 0.00 30
20 0.00 30 0.01 30 0.27 30 0.00 30 0.00 30 0.00 30
30 0.00 30 0.19 30 15.71 30 0.00 30 0.00 30 0.02 30
40 0.02 30 3.84 30 1,213.43 29 0.00 30 0.01 30 0.31 30
50 0.08 30 50.70 30 11,287.77 2 0.00 30 0.06 30 3.95 30
60 0.42 30 1,288.93 30 0 0.01 30 0.29 30 58.96 30
70 1.63 30 5,230.08 17 0 0.01 30 1.52 30 420.62 26
80 6.06 30 25,628.35 2 0 0.03 30 5.72 30 0
90 27.60 30 0 0 0.06 30 38.58 30 0

100 98.09 30 0 0 0.12 30 151.44 30 0
110 590.56 30 0 0 0.30 30 501.76 27 0
120 2,495.16 26 0 0 1.18 30 1,473.39 10 0

9

Table 2: Average total number (#) of states and average maximal fraction (%)
of states in memory for the method of Creemers et al. [2].

Creemers et al. [2]

OS=0.80 OS=0.60 OS=0.40

n # states % # states % # states %

10 71 40 206 52 695 57
20 484 35 4, 006 46 55, 016 58
30 1, 995 29 49, 388 42 1, 560, 364 50
40 7, 860 29 534, 014 41 47, 072, 515 48
50 26, 667 31 4, 346, 215 41 348, 684, 057 23
60 92, 003 32 42, 278, 506 41
70 286, 831 32 165, 870, 016 36
80 829, 741 28 603, 402, 153 20
90 2, 596, 419 31

100 6, 868, 100 34
110 24, 235, 588 34
120 112, 181, 874 25

Table 3: Average total number (#) of states and average maximal fraction (%)
of states in memory for Algorithm 1.

Algorithm 1

OS=0.80 OS=0.60 OS=0.40

n # states % # states % # states %

10 22 29 41 32 84 33
20 88 21 330 21 1, 620 24
30 254 14 1, 898 16 17, 096 17
40 662 12 9, 480 13 193, 848 14
50 1, 544 11 40, 379 12 1, 659, 705 12
60 3, 564 10 175, 288 11 13, 790, 968 11
70 7, 754 10 727, 948 10 77, 917, 666 9
80 16, 364 8 2, 259, 476 8
90 34, 057 8 9, 845, 427 9

100 66, 670 8 31, 268, 023 8
110 146, 910 8 90, 918, 894 7
120 515, 785 7 239, 953, 385 5

References

[1] A. H. Buss and M. J. Rosenblatt. Activity delay in stochastic project
networks. Operations Research, 45(1):126–139, 1997.

[2] S. Creemers, R. Leus, and M. Lambrecht. Scheduling Markovian PERT
networks to maximize the net present value. Operations Research Letters,
38(1):51–56, 2010.

[3] E. A. Feinberg. Continuous time discounted jump Markov decision pro-

10

cesses: a discrete-event approach. Mathematics of Operations Research, 29
(3):492–524, 2004.

[4] E. Gutin, D. Kuhn, and W. Wiesemann. Interdiction games on Markovian
PERT networks. Management Science, 61(5):999–1017, 2014.

[5] V. G. Kulkarni and V. G. Adlakha. Markov and Markov-regenerative PERT
networks. Operations Research, 34(5):769–781, 1986.

[6] M. L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley & Sons, 1994.

[7] R. F. Serfozo. Technical note – an equivalence between continuous and
discrete time Markov decision processes. Operations Research, 27(3):616–
620, 1979.

[8] M. J. Sobel, J. G. Szmerekovsky, and V. Tilson. Scheduling projects with
stochastic activity duration to maximize expected net present value. Eu-
ropean Journal of Operational Research, 198(3):697 – 705, 2009.

[9] D. M. Topkis. Minimizing a submodular function on a lattice. Operations
Research, 26(2):305–321, 1978.

[10] W. Wiesemann and D. Kuhn. The stochastic time-constrained net present
value problem. In Handbook on Project Management and Scheduling, vol-
ume 2, pages 753–780. Springer, 2015.

Appendix – Proof of Lemma 2 and Lemma 3

Proof of Lemma 2. The proof uses induction on the cardinality of P . First,
consider the situation where |P | = n− 2 such that P = N \ {i, n}, E(P) = {i},
Pi = N \ {n} and E(Pi) = {n}. It follows that

V (P) = max

{
0;
λiV (Pi) + ci

r + λi

}
and V (Pi) = max

{
0;

cn
r + λn

}
.

From ci ≤ 0 < cn then follows that V (P) ≤ V (Pi).
Next, take arbitrary P ∈ P with |P | < n−2. The induction hypothesis states

that V (P ′k) ≥ V (P ′) for any P ′ ∈ P with |P ′| = |P | + 1 and any k ∈ E(P ′).
This implies V (P) ≤ V (Pi) since

V (P) ≤ max
ϕ⊆E(P)

{
λiV (Pi)I(i ∈ ϕ) +

∑
k∈ϕ\{i} λkV (Pk) + ck

λiI(i ∈ ϕ) + r +
∑
k∈ϕ\{i} λk

}

≤ max
ϕ⊆E(Pi)∪{i}

{
λiV (Pi)I(i ∈ ϕ) +

∑
k∈ϕ\{i} λkV (Pik) + ck

λiI(i ∈ ϕ) + r +
∑
k∈ϕ\{i} λk

}
= V (Pi).

Here, the indicator function I(·) yields 1 when the condition within parentheses
is satisfied and 0 otherwise. The first inequality follows from ci ≤ 0, while the
second results from the induction hypothesis and E(P) ⊆ E(Pi)∪{i}. Lemma 1
and Optimality Equation (1), finally, imply the equality.

11

Proof of Lemma 3. The proof is by induction on the cardinality of P . First,
assume P has maximal cardinality in the sense that no other P ′ ∈ P exists for
which |E(P ′)| ≥ 2 and |P ′| > |P |. Denote this maximal cardinality |P | by q.
Call i and j the two1 activities in E(P) and note2 that E(Pj) = {i}.

Suppose V (Pj) = 0, then Lemma 2 implies V (P) = 0 and V (Pij)−V (Pj) ≥
V (Pi)−V (P) follows from V (Pij) ≥ V (Pi). For V (Pj) > 0, in turn, E(Pj) = {i}
implies

V (Pj) =
λiV (Pij) + ci

r + λi
⇐⇒ V (Pij)− V (Pj) =

rV (Pj)− ci
λi

.

On the other hand, i ∈ E(P) implies

V (P) ≥ λiV (Pi) + ci
r + λi

⇐⇒ V (Pi)− V (P) ≤ rV (P)− ci
λi

.

V (Pj) ≥ V (P) then yields V (Pij)− V (Pj) ≥ V (Pi)− V (P).
Next, take an arbitrary P ∈ P with |E(P)| ≥ 2 and |P | < q. The induction

hypothesis is that, for all P ′ ∈ P having |E(P ′)| ≥ 2 and |P ′| > |P |, it holds for
any k, l ∈ E(P ′), k 6= l, that V (P ′kl)−V (P ′l) ≥ V (P ′k)−V (P ′). The inductive
step, in turn, consists of showing that, for any i, j ∈ E(P), i 6= j, this implies
V (Pij)−V (Pj) ≥ V (Pi)−V (P). Define α := V (Pi)+V (Pj)−V (Pij)−V (P),
then it suffices to show that α ≤ 0.

For notational convenience, denote

ϕi := ϕ?(Pi) ϕj := ϕ?(Pj) ϕ∪ := ϕi ∪ ϕj ϕi\j := (ϕi \ ϕj) \ {j}
δi := I(i ∈ ϕj) δj := I(j ∈ ϕi) ϕ∩ := ϕi ∩ ϕj ϕj\i := (ϕj \ ϕi) \ {i}

It then follows that

V (Pi) =

∑
k∈ϕi

λkV (Pik) + ck

r +
∑
k∈ϕi

λk

=

∑
k∈ϕi

(λkV (Pik) + ck) +
∑
k∈ϕj\i

λkV (Pi) + δiλiV (Pi)

r +
∑
k∈ϕ∪

λk
.

Here, the first equation follows from the optimality of ϕ?(Pi), while the second
equation results from Lemma 1. Similarly, by interchanging the role of i and j,

V (Pj) =

∑
k∈ϕj

(λkV (Pjk) + ck) +
∑
k∈ϕi\j

λkV (Pj) + δjλjV (Pj)

r +
∑
k∈ϕ∪

λk
.

Note that (ϕ∪) \ {i, j} is a feasible action in state Pij since (E(Pi) ∪ E(Pj)) \
{i, j} ⊆ E(Pij). Consequently,

V (Pij) ≥
∑
k∈ϕ∪\{i,j} λkV (Pijk) + ck

r +
∑
k∈ϕ∪\{i,j} λk

and thus, by Lemma 1,

V (Pij) ≥
∑
k∈(ϕi∪ϕj)\{i,j}(λkV (Pijk) + ck) + δiλiV (Pij) + δjλjV (Pij)

r +
∑
k∈ϕ∪

λk
.

1|E(P)| = 2, if not: |E(Pi)| ≥ 2 and |Pi| > |P | for any i ∈ E(P).
2Maximal cardinality of P implies |E(Pj)| < 2, while i ∈ E(P) implies i ∈ E(Pj).

12

Finally, ϕ∩∪{i, j} is a feasible action in state P since E(P) = (E(Pi) ∩ E(Pj))∪
{i, j}. Consequently,

V (P) ≥
∑
k∈ϕ∩

(λkV (Pk) + ck) + δi(λiV (Pi) + ci) + δj(λjV (Pi) + cj)

r +
∑
k∈ϕ∩

λk + δiλi + δjλj

and thus, by Lemma 1,

V (P) ≥ 1

r +
∑
k∈ϕ∪

λk

(∑
k∈ϕ∩

(λkV (Pk) + ck) +
∑

k∈ϕi\j

λkV (P)

+
∑

k∈ϕj\i

λkV (P) + δi(λiV (Pi) + ci) + δj(λjV (Pi) + cj)
)
.

Substituting the (in)equalities for V (Pi), V (Pj), V (Pij) and V (P) into α,
we obtain

α ≤ 1

r +
∑
k∈ϕ∪

λk

(∑
k∈ϕ∩

λk (V (Pik) + V (Pjk)− V (Pijk)− V (Pk))

+
∑

k∈ϕi\j

λk (V (Pik) + V (Pj)− V (Pijk)− V (P))

+
∑

k∈ϕj\i

λk (V (Pi) + V (Pjk)− V (Pijk)− V (P))

+ δiλi (V (Pi) + V (Pij)− V (Pij)− V (Pi))

+ δjλj (V (Pij) + V (Pj)− V (Pij)− V (Pj))
)
.

From the induction hypothesis, we respectively have for each k ∈ ϕ∩, k ∈ ϕi\j
and k ∈ ϕj\i that

V (Pik) + V (Pjk)− V (Pijk)− V (Pk) ≤ 0;

V (Pik)− V (Pijk) ≤ V (Pi)− V (Pij);

V (Pjk)− V (Pijk) ≤ V (Pj)− V (Pij).

Substituting these inequalities into the inequality for α yields

α ≤ 1

r +
∑
k∈ϕ∪

λk

(∑
k∈ϕi\j

λk (V (Pi) + V (Pj)− V (Pij)− V (P))

+
∑

k∈ϕj\i

λk (V (Pi) + V (Pj)− V (Pij)− V (P))
)

= α

∑
k∈ϕi\j

λk +
∑
k∈ϕj\i

λk

r +
∑
k∈ϕ∪

λk
.

The fact that 0 ≤
∑

k∈ϕi\j
λk+

∑
k∈ϕj\i

λk

r+
∑

k∈ϕ∪ λk
< 1 then proves that α ≤ 0.

13

FACULTY OF ECONOMICS AND BUSINESS
Naamsestraat 69 bus 3500

3000 LEUVEN, BELGIË
tel. + 32 16 32 66 12
fax + 32 16 32 67 91

info@econ.kuleuven.be
www.econ.kuleuven.be

	KBI_1709
	max_eNPV
	Introduction
	Problem definition
	Stochastic dynamic program
	Structural properties
	Structure of an optimal preemptive policy
	Optimality of a non-preemptive policy
	Project abandonment

	Algorithm and performance

