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Abstract

In this paper we present a framework that is able to re-
liably and completely autonomously detect abnormal be-
havior in surveillance images. As input, we rely solely on
a long-wave infrared (LWIR) image sensor. Our abnor-
mal behavior detection pipeline consists of two consecutive
stages. In a first stage, we perform efficient and fast pedes-
trian detection and tracking. In a second step, the detected
paths are fed into a semi-supervised classifier that detects
abnormal behavior. As test-case we recorded a unique real-
life LWIR train station dataset – which will be made publicly
available – containing natural occurrences of both normal
and abnormal behavior. Our experiments indicate that our
proposed framework achieves excellent accuracy results at
real-time processing speeds.

1. Introduction

The detection of abnormal behavior in surveillance im-
ages has received a considerable amount of attention in re-
cent literature. Indeed, several works are found concern-
ing this topic [1, 8, 9, 10, 13, 21]. In this paper, however,
we aim to detect abnormal behavior in long-wave infrared
(LWIR) images. For this, we recorded and labeled an ex-
tensive LWIR pedestrian dataset focusing on the detection
of abnormal behavior at a train station. Fig. 1 displays an
example frame of our dataset (with detections – see further),
which we made publicly available1. The goal of this work
is to automatically detect abnormal behavior by fusing two
modalities. We first perform pedestrian detection and track-
ing in the LWIR images. These detection tracks are then
automatically evaluated in a second stage, using a Markov
model of the normal behavior of passengers on the plat-
form. If the likelihood of a given track according to the
model falls below a certain threshold, the track is flagged
as abnormal. This method has the benefit that it does not
require an exhaustive enumeration of the different kinds of
abnormal behavior that should be detected. Indeed, there is

1http://eavise.be/viper/

Figure 1. LWIR frame from our Brugge dataset with detections.

a wide range of possible abnormal behavior that should be
flagged: the main focus is on suicide prevention (i.e., de-
tecting the typical behavioral pattern exhibited on the plat-
form by people with the intent of committing suicide), but
additionally, we should also detect such incidents as peo-
ple fighting, crossing the train tracks, etc. The main ad-
vantage of using LWIR images over more traditional RGB
images is that even in low-light and harsh weather condi-
tions (e.g., fog, heavy rain), pedestrians remain clearly vis-
ible. Furthermore, since pedestrians are not recognizable,
LWIR images inherently avoid privacy issues which exist
when utilizing traditional RGB images. However, the de-
tection of pedestrian in LWIR images is more challenging.
Indeed, color-sensitive features are not present, and we can
only rely on a single gray scale image representation of the
radiated heat. In summary, our main contributions are:

• We recorded and labeled an extensive LWIR pedes-
trian dataset (the Brugge dataset), resulting in 25000
frames in which 30000 pedestrians were labeled.
• We present an efficient pedestrian detection methodol-

ogy for LWIR images. We apply scene constraints to
increase the accuracy of our pedestrian detector. We
track all detections and generate pedestrian paths.
• We present a semi-supervised classification methodol-

ogy, which is able to efficiently detect abnormal be-
havior using only these generated pedestrian paths.
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The remainder of this paper is structured as follows. We dis-
cuss related work in Section 2. Next, we present details on
our complete detection pipeline, the abnormal behavior de-
tection stage, and our LWIR recordings in Section 3. In Sec-
tion 4, we experimentally validate our approach. Finally, we
conclude and discuss future improvements in Section 5.

2. Related work
The detection of abnormal behavior in surveillance im-

ages receives a considerable amount of attention in the cur-
rent literature. Existing work often relies on standard RGB
images as input [1, 8, 21]. However, LWIR cameras are
increasingly installed in real surveillance applications be-
cause of their superior performance during low-light condi-
tions (i.e. night), and their decreasing hardware costs. These
thermal images are often fused with RGB images to in-
crease the detection accuracy [9, 10]. The work in this paper
however relies solely on LWIR images, which significantly
increases the difficulty due to the lack of color and texture
information. Traditionally, pedestrian detection in LWIR
images therefore relies on simple cues. Existing techniques
exploit the fact that in most cases a significant difference in
temperature is found between a person and the background.
Thus, pedestrians are simply detected as hot spots using
e.g., shape measures [19] or Maximally Stable Extremal
Regions (MSER) [16]. However, these methods fail when
limited contrast is available (e.g., during warm weather or
heavy rain). To overcome these limitations, in this work
we employ an appearance-based LWIR pedestrian detec-
tion approach (see subsection 3.2). Furthermore, the de-
tection of abnormal behavior is often analyzed based on the
activity analysis of human motion, such as optical flow [13],
gait or gestures [18]. Our detection pipeline however uses a
Markov model to detect abnormal behavior. Such Markov
models are used in several contexts, for example [20] uses a
Markov-chain based approach for analyzing observed activ-
ities in a computer - network system to detect cyber attacks,
and [12] for characterizing specific behaviors in trajecto-
ries. In [11], the authors represent routes of pedestrians as
sequences of probability distributions around a central axis.
Their approach works well to determine if the place where
someone is walking is abnormal, but seems to offer little
solution for errant behaviors that still follow normal routes.
In [6] a Markov model technique is applied to analyze be-
havioral patterns in movement. This method forms the base
of our approach to separate normal and abnormal behavior.
However, the model they used is not very performant in sit-
uations where pedestrians tend to stand still or walk around
in circular patterns, as is often the case in our railway plat-
form environment. Furthermore, [5] attempts to detect ab-
normal behavior using a modified probabilistic neural net-
work. The position of every person’s head is tracked, and its
speed magnitude is used as input feature. The results are ac-

curate, but training time is long and increases dramatically
with more samples. The fact that it uses the head’s speed as
the only feature also limits the usefulness for our case.

3. Technical details
As previously discussed, our detection pipeline consists

of two consecutive steps. In this section we now discuss all
technical details of both the pedestrian detection stage (sub-
section 3.2) and the abnormal behavior classification stage
(subsection 3.3). However, we first present an overview of
the technical details of our LWIR dataset.

3.1. Dataset statistics

To validate and train our abnormal classification system
we recorded and labeled an extensive LWIR image dataset.
Our dataset was recorded at the train station of Brugge (Bel-
gium), in cooperation with the thermal imaging company
FLIR Systems. As mentioned, the use of LWIR images fa-
cilitates the detection of pedestrians during difficult condi-
tions (e.g., low-light, heavy fog or rain) since it relies on
the radiated body heat. An example frame of our dataset,
coined the Brugge dataset, is shown in Fig. 1. The im-
ages have a resolution of 640 × 512 and a frame rate of
7 frames per second. In total we labeled 24831 frames,
divided over 27 videos. In the first 14 videos pedestrians
cross the train tracks. The remaining 13 videos include
mostly people strolling the railway platforms, waiting for
their train to arrive. Occasionally a person crossing the train
tracks is seen. In total 30128 pedestrians were labeled, of
which 4523 pedestrians were occluded (an occluded flag is
included in the labels). Aside from individual pedestrian
labels, all pedestrian paths were also uniquely labeled, re-
sulting in 79 track IDs. Our dataset is subdivided into a
training and validation set. This is done in an interleaved
manner to ensure that the training and validation set contain
the same ratio of normal versus abnormal behavior. For this,
we assigned all 27 videos alternately for training and test-
ing. In the next subsections we now use this dataset to train,
perform detection and evaluate both our pedestrian detector
and the final complete abnormal behavior detection scheme.

3.2. Pedestrian detection in LWIR images

A commonly-used method for detecting pedestrians in
fixed-camera surveillance images is background subtrac-
tion, often using relatively simple background estimation
techniques, such as Gaussian Mixture Models (GMM) [22]
or Fuzzy background subtraction [14]. These methods are
not usable on our LWIR images. Indeed, while standard
GMM techniques might sometimes work, they suffer from
a multitude of problems. First, pedestrians walking close
to each other are often merged. Second, the LWIR camera
performs auto-contrast to achieve optimal temperature con-
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KAIST model − upscaled (AP=52.3%)

KAIST model (AP=49.5%)

Brugge model (AP=78.9%)

Figure 2. Accuracy of the KAIST model (red/green) and Brugge
model (blue) on our LWIR Brugge validation set.

trast, which may cause the background to suddenly reap-
pear as foreground. Third, selecting an appropriate “mem-
ory size” (i.e. number of frames) is also problematic in our
application. In order for passing trains to be classified as
background, this memory should be relative short, but then
waiting passengers—who tend to stand still for relatively
long periods of time—will also blend into the background.
Therefore, we do not consider background subtraction an
appropriate method for our application. Instead, we employ
a rigid pedestrian detection methodology, which relies on
appearance-based features. In particular, we use the well-
know Aggregated Channel Features (ACF) detector, intro-
duced by Dollár et al. [3]. This detector works as follows.
First, ten feature channels are calculated from the original
image: three color channels (LUV), six gradient orienta-
tion histogram channels, and a gradient magnitude channel.
Then, a sliding window approach is applied to the entire in-
put image (and at multiple scales), in which multiple weak
classifiers (decision trees) are evaluated using specific posi-
tions in the feature channels.

This evaluation is performed in a cascaded manner: the
decision trees are evaluated sequentially and evaluation for
a specific window stops when the score drops below a spe-
cific threshold. The specific features, sequence and thresh-
old are learned during an off-line training phase. However,
traditionally these detection models are trained on standard
RGB images. Therefore, for our application we first need to
train a detection model using only LWIR images, which we
input as gray scale images. To obtain preliminary detection
results, we first trained an LWIR detection model (coined
the KAIST model) using training data from the publicly
available KAIST dataset [4]. This KAIST dataset is a multi-
spectral pedestrian dataset; it consists of about 100.000 im-
age pairs containing both RGB and LWIR images. The im-
ages are captured using a color camera, thermal camera and
beam splitter (and thus are perfectly aligned). For training,
we learned a detection model of 50 × 20.5 pixels (proven
to be ideal according to [2]), aiming for 4096 weak classi-
fiers consisting of depth-5 decision trees. Every 20th frame

Figure 3. Employing ground plane constraints. We define two
ground planes and fit a first order plane through the annotations.

was used for training, resulting in 2500 images containing
2120 annotations. A total of 3496 positive patches were re-
trieved (annotations were mirrored and pruned if too small),
while about 50.000 negatives were randomly sampled in the
dataset. The training automatically stopped after 2701 weak
classifiers since the miss-rate showed no further significant
decrease. As a qualitative result, Fig. 1 visualizes the detec-
tion output of the trained KAIST model on a single frame
of our platform validation data. Fig. 2 displays the entire
Precision-Recall curve (red) of this model on our data set.

As seen, we achieve an average precision (AP) of 49.5%.
Since the model size is 50 pixels, upscaling is needed to
detect smaller pedestrians. We opted to upscale the image
such that pedestrians up to 40 pixels (representing 80% of
all annotations) are detected, resulting in the green curve.
Although slightly better, the accuracy is far from optimal.
This is of course not surprising, because the training and
evaluation dataset are significantly different [17]. There-
fore, we trained a new ACF LWIR model using our own
recorded Brugge training set. The model specifications and
number of negatives remain identical, and every 5th im-
age was used for training (resulting in 2921 annotations
and 4212 positive patches). The accuracy of this detection
model—coined the Brugge model—is shown as the blue
curve (again for pedestrians up to 40 pixels). As can be
seen, we now achieve excellent accuracy. For example, at a
precision of 90%, the recall is 75% (AP = 78.9%).

To further increase the detection accuracy, we exploit
scene constraints. For this, we assume a fixed and flat
ground plane. This implies that—for the specific camera
viewpoint in our application—a linear relationship exists
between the height of the pedestrians and their location in
the image [15]. Thus, after a one-time calibration (based
on the annotations), we know the expected height at each
position in the image, and can reject detections which sig-
nificantly diverge from this expected height. This concept is
illustrated in Fig. 3. We define two ground planes (one for
the platform and one for the train tracks, due to their differ-
ence in height), extract the height for all annotations in each
zone and fit a first order plane through these data points.
Both planes are then used as lookup function (LUF): for
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Deviation of 5% allowed (AP=26.4%)

Deviation of 10% allowed (AP=53.4%)
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Figure 4. The detection accuracy with ground plane estimation.

each new detection we validate whether the divergence is
tolerable or not. Fig. 4 displays the accuracy results (com-
pared to the original Brugge model, drawn in black) versus
different levels of allowed deviation.

If we only allow a small deviation, the recall drops sig-
nificantly (since correct detections are also discarded – blue
curve). On the other hand, if much deviation is allowed,
almost no detections are discarded and we converge to the
original detection accuracy (dark green curve). An optimal
point is found for an allowed deviation of about 40% (yel-
low curve). Here, the accuracy significantly increases: e.g.,
for a recall of 75%, the precision increases by about 5%.

Finally, we integrate temporal information in our detec-
tion pipeline using a tracking approach: we aim to assign
a single tracking ID to each unique pedestrian, which is
then fed into our abnormal behavior classification stage.
Furthermore this approach enables us to cope with miss-
ing detections (due to e.g., a low gradient). For this, we
employ the well-know Kalman tracker [7]. A constant
velocity motion model is used (with state vector xk =[
x y vx vy

]T
, using the center of mass of the detec-

tions). We perform the aforementioned pedestrian detection
scheme on each new input image, and evaluate for each de-
tection if it matches a predicted pedestrian track using the
Euclidean distance. When no match is found, a new track
is started. When a track is not matched for a number of
frames in a row—called the Time To Live (TTL)—the track
is discarded. Fig. 5 displays the accuracy when tracking is
included, for multiple values of the TTL (compared with
our best ground plane constraint model in black). Again, an
optimal value for the TTL needs to be determined. For low
values of the TTL, a smaller increase in recall is observed,
whereas for higher values the precision drops (since false
detections are tracked as well). Our best implementation
achieves an average precision of 84.6%. Concerning the
detection speed, we achieve on average 8 frames per sec-
ond on the upscaled images, and 10.98 frames per second if
no upscaling is performed (evaluated on a CPU only imple-
mentation, running on an Intel Xeon E5-2687 at 3.1GHz).
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Brugge model + ground plane (AP = 79.6%)

Tracking − TTL2 (AP = 83.9%)

Tracking − TTL4 (AP = 84.6%)

Tracking − TTL8 (AP = 83.8%)

Figure 5. The detection accuracy with tracking.

3.3. Abnormal behavior detection

We are mainly interested in detecting three different
behavioral patterns, namely suicidal demeanor, reckless
and/or aggressive movements, and crossing the railroad
tracks. The latter could be detected rather easily by adding
a regional exclusion zone to the pixel area corresponding
to the railroad tracks and flagging every detection in this
zone as an abnormality. However, this is much harder to
do for the former two patterns. Furthermore, the defini-
tion of such a zone is an extra manual tuning step which
we would have to redo for every different track or camera
viewpoint. Rather than defining precisely the kind of ab-
normal behavior that is to be detected, we therefore adopt
a different approach: we construct a model of the normal
behavior and flag each behavior that deviates significantly
from this norm. The details of this approach are as follows.

First, we automatically divide the camera image into sep-
arate regions. By doing this, we reduce the spacial state
space from w×h to n, with w and h the width and height of
the camera view (in pixels) and n as the number of regions.
In order to make our system fully automated, this step is
preformed by a clustering algorithm, which clusters the dif-
ferent location at which pedestrians have been detected into
larger regions. In particular, we use structured agglomera-
tive clustering. This is a bottom-up hierarchical clustering
approach in which a dendrogram is constructed by repeat-
edly merging the clusters with the smallest spacing between
them. The structure, provided by a k-nearest neighbor graph
computed on a representative sample of detection coordi-
nates, adds connectivity constraints to the clusters and also
decreases the calculation time. We measure the distance
between individual detection coordinates a, b using the Eu-
clidean distance d(a, b), and the distance between different
clusters A,B using the average linkage criterion D(A,B):

d(a, b) = ‖a− b‖2 =

√√√√ 2∑
i=1

(ai − bi)2 (1)



Figure 6. Clustering (n = 15) applied to the Brugge dataset.

D(A,B) =
1

|A||B|
∑
a∈A

∑
b∈B

d(a, b) (2)

The corresponding clusters for the other pixels in the im-
age are generated by a k-nearest neighbors classifier, which
uses the detections sampled and clustered earlier as train-
ing input. This approach generally leads to clusters of
different sizes, where large clusters contain a large num-
ber of detection points and small clusters a small num-
ber. An example of this clustering can be seen in Fig. 6.
Once this clustering has been computed, we use it to
transform each pedestrian track from sequence of pixel
coördinates ((x0, y0), . . . , (xn, yn)) into a sequence of re-
gions (r0, . . . , rn). Note that it may be the case that ri = rj
for subsequent steps i > j. In particular, for slow-moving
pedestrians, this will often be the case.

Second, we then use these sequences to estimate an ini-
tial position probability matrix and a transition probability
matrix, forming the base of a Markov chain. The dimen-
sions of the matrices are m× 1 for the initial position prob-
abilities and m×m for the transition probabilities, with m
the number of clusters. To learn these matrices, we use a
maximum likelihood estimation method2. Once the matri-
ces have been learned, we can then use the Markov model to
calculate the probability of a particular sequence. Three ob-
servations about the probability of a sequence can be made
when examining the output of the model evaluation: (i) it
decreases slightly with increasing length, (ii) it decreases
strongly when it incorporates a region with a low transi-
tional probability, (iii) it decreases strongly when it passes
through many different regions. These observations are in
accordance with the kind of abnormal behavior we want
to detect: people with suicidal intent tend to walk the en-
tire length of the platform to its very end (iii), where they
pace back and forth during a long time (i); and people who
cross the railroad tracks are relatively rare, so the “forbid-
den” zones have a very low transitional probability (ii).

Finally, we determine the threshold value Pth that de-
fines the lowest sequence probability that is still considered
as normal behavior. This value depends heavily on the na-

2https://github.com/jmschrei/pomegranate

ture of the dataset (i.e. number of clusters and the order of
the Markov model. In order to choose a Pth that provides a
good working point for our algorithm, we make use of the
following method. First, we estimate the density of the cal-
culated path probabilities using a Gaussian kernel. Second,
we use this density function to calculate the cumulative dis-
tribution function F (x) and its inverse, the quantile function
Q(p) = inf{x ∈ R : p ≤ F (x)}. This function Q(p) maps
a selected fraction p of the most improbable paths to the
corresponding maximum probability of this subset of paths.
By choosing a specific fraction of these ordered estimated
path probabilities, we can thus easily calculate the corre-
sponding Pth, to which all future path probabilities will be
compared. All paths with a lower probability than Pth will
be considered abnormal.

4. Experimental results
In this section, we evaluate the effectiveness of our com-

plete abnormal behavior detection pipeline. Based on dis-
cussions with domain experts, we identified different kinds
of abnormal behavior (e.g., the kind of behavior typical of
people contemplating suicide, people crossing the railroad
tracks) to be detected in the footage. We then manually la-
beled all pedestrian paths which were generated during the
detection stage (using the specific detection threshold for
P=91.5%, R=77.8%) as normal or abnormal accordingly.
Of the 154 pedestrian tracks that were generated, we labeled
36 paths as abnormal. Fig. 7 displays an ROC curve of our
final classification algorithm, where we varied the threshold
Pth set to distinguish abnormal behavior (green curve). As
can be seen, our method has reasonable accuracy, but there
is still room for improvement.

The prediction errors made by our system may be due
to either the classification method or the pedestrian tracking
component. While Section 3.2 has shown that our pedes-
trian detector in itself has excellent detection accuracy, it
may still be the case that track IDs get lost (e.g., when a
passenger temporarily leaves the frame) or switched (e.g.,
due to occlusions). To further analyze our results, we have
therefore also conducted a second experiment, in which we
ran the classification component on the annotated pedes-
trian paths in our dataset (i.e., the ground truth used to
evaluate our pedestrian tracker), rather than on the detected
paths. The classification accuracy on these annotated paths
is shown as the red curve in Fig. 7. We find that this in-
deed improves the results, which demonstrates that part of
the limited prediction accuracy of our entire pipeline was
indeed due to problems with the pedestrian tracking.

In general, the prediction task for this dataset is quite
challenging. To illustrate, Fig. 8 displays all paths in the
dataset, color-coded according to their status w.r.t. our clas-
sification algorithm (for a specific value of Pth, such that
TPR=83.3% and FPR=20.4%, see caption for color cod-

https://github.com/jmschrei/pomegranate


0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
 P

o
s
it
iv

e
 R

a
te

 

 

Classification on detected pedestrian tracks

Classification on annotated pedestrian tracks

Figure 7. Accuracy of our behavior classification system.

Figure 8. Classification result for all paths. Green: true positive,
red: false positive, yellow: true negative, magenta: false negative.

ing). As can be seen, our classification approach is able to
correctly classify most paths, including most of the “easy”
examples of abnormal behavior that involve crossing the
railroad tracks. In addition, our method is also able to
correctly detect some instances of the abnormal behavior
typical of people contemplating suicide. However, several
other paths—typically those that are longer than usual—
erroneously also get labeled as such, mostly on the left plat-
form.

5. Conclusion and future work

In this paper, we presented a framework to autonomously
detect abnormal behavior in LWIR surveillance images of
railway platforms. Our framework consists of two consec-
utive stages: we first perform reliable pedestrian detection,
and then classify the detection paths using a Markov model.
We are able to correctly classify most detected pedestrian
tracks. Our approach is easily generalizable to other appli-
cations where abnormal behavior needs to be detected (e.g.,
shoplifting). However, several future optimizations exist.
In some cases the track assignment fails (e.g., due to oc-
clusion). Furthermore a different spatial segmentation ap-
proach might be evaluated.
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