
Scalable Multirotor UAV Trajectory Planning
using Mixed Integer Linear Programming

Jorik De Waen1, Hoang Tung Dinh2, Mario Henrique Cruz Torres2 and Tom Holvoet2

Abstract— Trajectory planning using Mixed Integer Linear
Programming (MILP) is a powerful approach because vehicle
dynamics and other constraints can be taken into account.
However, it is currently severely limited by poor scalability. This
paper presents a new approach which improves the scalability
regarding the amount of obstacles and the distance between the
start and goal positions. While previous approaches hit compu-
tational limits when the problem contains tens of obstacles, our
approach can handle tens of thousands of polygonal obstacles
successfully on a typical consumer computer. This performance
is achieved by dividing the problem into many smaller MILP
subproblems using two sets of heuristics. Each subproblem
models a small part of the trajectory. The subproblems are
solved in sequence, gradually building the desired trajectory.
The first set of heuristics generate each subproblem in a way
that minimizes its difficulty, while preserving stability. The
second set of heuristics select a limited amount obstacles to
be modeled in each subproblem, while preserving consistency.
To demonstrate that this approach can scale enough to be useful
in real, complex environments, it has been tested on maps of
two cities with trajectories spanning over several kilometers.

I. INTRODUCTION

Trajectory planning for multirotor UAVs is a complex
problem because flying is inherently a dynamic process.
Proper modeling of velocity and acceleration are required to
generate a feasible trajectory that is both fast and safe, that is,
the UAV should be able to effectively navigate corners while
maintaining momentum. The fastest trajectory is not always
the shortest one, since the UAV’s velocity may be different.
The UAV dynamics are often not the only constraints placed
on the trajectory. Different laws in different countries also
affect the properties of the trajectory. The operators of the
UAV may also wish to either prevent certain scenarios or
ensure that specific criteria are always met.
In this paper we present a scalable approach which is capable
of generating fast and safe trajectories, while also being
easily extensible by design. We model the trajectory planning
problem as a Mixed Integer Linear Program (MILP). The
trajectory is represented in discrete time steps where each
step describes the UAV’s dynamic state at that moment. An
objective function encodes one or more properties, like time
or trajectory length, to be optimized. A general solver is then
used to find the optimal solution for the problem. Because
the problem is defined declaratively, additional constraints
can easily be added.

1Jorik De Waen is a student at KU Leuven, 3001 Leuven, Belgium
jorik.dewaen@student.kuleuven.be

2Hoang Tung Dinh, Mario Henrique Cruz Torres and Tom
Holvoet are with imec-DistriNet, KU Leuven, 3001 Leuven, Belgium
{hoangtung.dinh, mariohenrique.cruztorres,
tom.holvoet}@cs.kuleuven.be

We demonstrate our approach in 2D environments. We
assume that all obstacles are polygons, static and known
in advance. Our algorithm is designed for offline planning,
ensuring that a feasible trajectory exists before the UAV
starts executing its task. Other papers have used MILP for
trajectory planning [1], their approaches could not be used
to generate long trajectories through complex environments.
Our main contribution is an approach which improves the
scalability by dividing the problem into many MILP subprob-
lems. Each subproblem models only a part of the trajectory.
The subproblems are solved sequentially. A first set of
heuristics uses a Theta* path to generate the subproblems.
The second set of heuristics select which obstacles should
be modeled in each subproblem, limiting the amount of
obstacles that need to be modeled while ensuring that no
collisions can occur.

Schouwenaars et al. [1] were the first to demonstrate
that MILP could be applied to trajectory planning problems.
They used discrete time steps to model time with a vehicle
moving through 2D space. Obstacles are modeled as grid-
aligned rectangles. To limit the computational complexity,
they presented a receding horizon technique so the problem
can be solved in multiple steps. However, this technique is
essentially blind and could easily get stuck behind obstacles.
Bellingham [2] recognized that issue and proposed a method
to prevent the trajectory from getting stuck behind obstacles,
even when using a receding horizon. However Bellingham’s
approach still scales poorly in environments with many
obstacles.
Flores [3] and Deits et al. [4] use Mixed Integer Pro-
gramming with functions of a higher order to model the
trajectory as a continuous curve. The work by Deits et al. is
especially relevant to this paper, since they also use convex
safe regions to solve the scalability issues when faced with
many obstacles. Recent work [5], [6], [7] has focused on
online operation and control of the individual rotors of the
UAV. Other than the work by Deits et al. [4], we did not
find any literature which attempts to improve MIP trajectory
planning performance in scenarios with many obstacles.

The paper is structured as follows: In Section II, we
discuss the MILP trajectory planning model we used in the
algorithm. Section III introduces our new algorithm which
segments the problem to improve performance. In Section
IV, we discuss the performance of the algorithm using
several testing scenarios.

II. MODELING PATH PLANNING AS A MILP PROBLEM

This section covers how a trajectory planning problem can
be represented as a MILP problem. The problem represen-
tation is based on the work by Bellingham[2].

A. Time and UAV state

The trajectory planning problem can be represented with
N discrete time steps and a set of state variables at each time
step [2]. The number of time steps determines the maximum
amount of time the UAV has to reach its goal.

p0 = pstart (1)

pn+1 = pn + ∆t ∗ vn 0 ≤ n < N − 1 (2)

Eq. (1) and (2) represent the state of the UAV at each
time step. For each time step n, the position in the next
time step pn+1 is determined by the current position pn,
the current velocity vector vn and the time step size ∆t.
Velocity, acceleration and other derivatives are represented
the same way. The number of derivatives needed depends
on the specific use case.

B. Objective function

The objective is to minimize the time before the UAV
reaches the goal position.

minimize −
N−1∑
n=0

donen (3)

Eq. (3) shows the objective function [2]. Reaching the goal
causes a state transition from not being done to being done.
This is represented as the value of binary variable donen.
When donen = 1, the UAV has reached its goal on or before
time step n.

done0 = 0, doneN−1 = 1 (4)

donen+1 = donen ∨ cdonen+1, 0 ≤ n < N − 1 (5)

Eq. (4) states that the UAV must reach its goal eventually.
Lamport’s state transition axiom method [8] was used to
model state transitions. In Eq. (5), the state will be done
at time step n + 1 if the state is done at time step n or if
there is a state transition from not done to done at time step
n+ 1, represented by cdonen+1.

cdonen = |xn−xgoal| < εp ∧ |yn− ygoal| < εp, 0 ≤ n < N
(6)

The goal position requirement is fulfilled if the UAV is closer
than εp to the goal position in both dimensions [2].

C. UAV state limits

Modeling the maximum velocity of a UAV requires cal-
culating the the velocity vector’s 2-norm which is non-
linear. However, the maximum velocity constraint can be
approximated to an arbitrary degree using multiple linear
constraints [2]. The acceleration and other vector properties
of the UAV can be limited in the same way.

(a) (b)

Fig. 1: A visual representation of how obstacle avoidance
works. Fig. 1a shows the UAV’s current position as the
black circle. The color of the edges of the obstacle represent
whether or not the UAV is in the safe zone for that edge.
An edge is yellow if the UAV is in the safe zone, and red
otherwise. Fig. 1b shows the safe zones defined by a yellow
and red edge in yellow and red respectively.

D. Obstacle avoidance

The most challenging part of the problem is modeling
obstacles. Any obstacle between the UAV and its goal will
inherently make the search space non-convex. Because of
this, integer variables are needed to model obstacles. Assum-
ing that obstacles are convex polygons, for each obstacle, the
UAV needs to be on the “safe” side of at least one edge to not
collide with the obstacle (see Fig. 1). Indicator constraints
were used to model obstacle avoidance. This requires one
boolean variable slack per edge. If slack is false, the UAV
is on the safe side of the edge. For each obstacle at least one
of the slack variables need to be false. For every convex
obstacle o with the coordinates of vertex i being xo,i and
yo,i [2]:

dxo,i = xo,i − xo,i−1, dyo,i = yo,i − yo,i−1

ao,i =
dyo,i
dxo,i

, bo,i = yo,i − ao,ixo,i 0 ≤ i < Nvertices

slacko,i,n ⇒

{
bo,i ≤ pn,y − ao,ipn,x dxo,i < 0

bo,i ≥ pn,y − ao,ipn,x dxo,i > 0
(7)

¬
∧
i

slacko,i,n 0 ≤ n < N (8)

Modeling obstacles this way is problematic because an
integer variable is needed for every edge of every obstacle,
for every time step. MILP scales exponentially with the
amount of integer variables [9], so performance is mostly
determined by the amount of obstacles and time steps.

III. SEGMENTATION OF THE MILP PROBLEM

In this section we propose a preprocessing pipeline that
makes the problem more scalable. Alg. 1 shows the outline
of the algorithm.

First, we find an initial path with the Theta* algorithm
(line 2). Unlike a trajectory, a path is not time-dependent
and does not take dynamic properties into account. Then,
we find all the turns in that path (line 3). After that, we
generate path segments based on those turns (line 4). Each
path segment contains the information needed to construct

Algorithm 1 General outline

1: T ← {} . The list of solved subtrajectories
2: path← THETA*(scenario)
3: events← FINDTURNEVENTS(path)
4: segments← GENSEGMENTS(path, events)
5: for each segment ∈ segments do
6: UPDATESTARTSTATE(segment)
7: GENSAFEREGION(scenario, segment)
8: GENSUBMILP(scenario, segment)
9: T ← T ∪ { SOLVESUBMILP }

10: end for
11: result←MERGETRAJECTORIES(T)

a MILP subproblem. Finally, for each segment, a MILP
subproblem is constructed and solved (line 8-9). Before
the MILP subproblem is solved, a heuristic selects several
obstacles to be modeled in the problem. A genetic algorithm
generates a convex safe region which is allowed to overlap
those selected obstacles only (line 7). Because the UAV must
stay within the safe region, it cannot collide with obstacles.
For all but the first segment, the starting state for the UAV in
the MILP problem is updated to match the final state of the
UAV in the previous segment (line 6). Once all the segments
have been solved, their trajectories are merged into the final
result (line 11). Because the starting state in a segment is the
same as the final state in the previous segments, the resulting
trajectories can be appended to each other without further
processing.
Our goal is to divide the problem into subproblems so that
only a minimal number of obstacles need to be modeled
in each subproblem, while still resulting in a relatively
fast trajectory. Subproblems based on shorter segments with
fewer obstacles are easier to solve, but the UAV will need
to travel at a lower velocity. This is because there is no
information available about the next segment. If the next
segment contains a tight turn, the UAV may not be able to
slow down enough if it is going too fast. Longer segments
allow the UAV to travel faster, but they need more time to
solve.
For the best results, we want to find segments which are as
large as possible but contain as few obstacles as possible. By
generating a segment for each turn in the Theta* path, we can
make the segments just large enough so the UAV can always
slow down in time to execute the turn. This way the UAV
will always turn efficiently, without making the segments too
large to solve in an acceptable amount of time.
An important downside of segmenting the problem is that
our algorithm is unlikely to find the optimal trajectory.

A. Finding the initial path

The first step in Alg. 1 is finding the Theta* path (line
2), which will be used to divide the problem into segments.
The MILP problem generated from each segment needs an
intermediate goal to guide the UAV closer the final goal
position.
We use Theta* [10] to find an initial path which connects

Fig. 2: A typical A* path in red compared to a Theta* path
in blue. The gray rectangle is an obstacle.

Fig. 3: The red/yellow shapes are the obstacles modeled
in the MILP problem, using the same color scheme as
in Fig. 1a. The blue shapes are the remaining obstacles.
The green circles depict the transitions between segments.
The dark gray shape is the convex safe area generated by
the genetic algorithm. The solid black circle represents the
current position of the UAV, with the hollow circles showing
the position in previous time steps.

the start and goal positions. Theta* is a variant of A*
which eliminates the jagged paths associated with A* as
demonstrated in Fig. 2. This path does not take any of
the vehicle dynamics into account. Multirotor UAVs can
hover, so the UAV can always follow this path by moving
in straight lines and stopping at each node of the path. This
ensures that successful navigation to the goal position is
possible.

B. Detecting turn events

Because the shortest path between two points in Euclidian
geometry is a straight line, any turn at a node in the Theta*
path must have at least one obstacle on the inside of that
turn. A turn without an obstacle on the inside can always
replaced by a shorter, straight line segment. This means that
by definition these ”inner” obstacles make the search space
non-convex. A shape is convex if every point on the line
between any two points inside the shape is also inside the
shape. Because moving in a straight line between two valid
positions on either side of the turn is not possible, the search
space must be non-convex if turns in the Theta* path exist.
Non-convexity of the search space is the main cause for the
poor performance of Mixed Integer Programming [4]. We
have shown that the turns in the path correspond with parts
of the problem which must be non-convex. Because of this,
we have chosen to generate the segments such that there
is at most a single turn in each segment. This limits the
non-convexity for each subproblem, significantly improving

execution time.
In some cases, a Theta* path contains multiple nodes for
a single turn. Alg. 2 groups those nodes together into turn
events.

Algorithm 2 Finding Turn Events

1: function FINDTURNEVENTS(path)
2: ∆max← max. acc. distance * turn tolerance
3: events← {} . The list of turn events found so far
4: i← 1 . Skip the start node, it can’t be a turn
5: while i < |path| − 1 do . Skip the goal node
6: event← {path(i)} . Start new turn event
7: turnDir ← TURNDIR(path(i))
8: i← i+ 1
9: while i < |path| − 1 do

10: if ||path(i− 1)− path(i)|| > ∆max then
11: break . Node is too far from previous
12: end if
13: if TURNDIR(path(i)) 6= turnDir then
14: break . Node turns in wrong direction
15: end if
16: event← event ∪ {path(i)} . Add to event
17: i← i+ 1
18: end while
19: events← events ∪ {event}
20: end while
21: return events
22: end function

In the Theta* path, all but the first and last nodes are
turns in the path. The second node is always the first node
in a new turn event (line 5). Subsequent nodes in the path
which are not too far away from the previous node (line 9)
and turn in the same direction (line 12) are added to the
current turn event (line 15). The maximum distance between
nodes in the same turn depends on the maximum acceleration
distance of the UAV and a turn tolerance parameter (line
2). The maximum acceleration distance is the distance the
UAV needs to accelerate from zero to its maximum velocity,
or slow down from the maximum velocity to zero. Once a
node is found which does not belong in the event, the event
is stored (line 18), a new event is created for that node (line
5) and the process repeats until no more nodes are left.

C. Generating path segments

Each path segment contains the information needed to
construct a MILP subproblem. Alg. 3 constructs the segments
using turn events. Each segment needs to be large enough so
the UAV can safely approach and exit each turn. A multirotor
UAV can always safely navigate a turn if it can come to a
complete stop before the turn. That is satisfied if the segment
starts at least the maximum acceleration distance away from
the turn. If the segment starts even earlier, the UAV has
more space to maneuver and can navigate the turn more
efficiently. However, as the segment gets larger, so does the
difficulty of the segment. The approach margin multiplier
determines the expansion distance around turn events, based

Algorithm 3 Generating the segments

1: function GENSEGMENTS(path, events)
2: segments← {}
3: catchUp← true
4: lastEnd← path(0)
5: for i← 0, |events| − 1 do
6: event← events(i)
7: if catchUp then
8: expand event.start backwards
9: add segments from lastEnd to event.start

10: lastEnd← event.start
11: end if
12: nextEvent← events(i+ 1)
13: if nextEvent.start is close to event.end then
14: mid← middle between event & nextEvent
15: add segment from lastEnd to mid
16: lastEnd← mid
17: catchUp← false
18: else
19: expand event.end forwards
20: add segment from lastEnd to event.end
21: lastEnd← event.end
22: catchUp← true
23: end if
24: end for
25: add segments from lastEnd to path(|path| − 1)
26: return segments
27: end function

on the maximum acceleration distance.
To generate the segments, Alg. 3 considers each turn event
in turn. It keeps track of the end point of the last segment
it generated with lastEnd. When constructing a segment, it
considers the distance between the end of the current turn
event and the start of the next turn event. On line 13, two
events are too close to each other if they are separated by
less than three times 1 the expansion distance. In that case,
the segment is constructed to end in the middle between
the current and next event (line 14-16). If the events are
far enough apart, the end of the current event is expanded
forwards by the full expansion distance(line 19-21). Because
the next turn event is a long distance away, the catchUp flag
is set to true (line 22), ensuring that one or more segments
are added to catch up to the start of the next event (line
7-10). To limit the size of segments, they can be no longer
than the distance the UAV can travel at maximum velocity
in Tmax time.

D. Generating the safe region for each segment

The last step of preprocessing determines which obstacles
will be modeled in the MILP subproblem for each segment.
Not all obstacles need to be modeled in the MILP problem

1Requiring three (instead of two) times the expansion distance as sepa-
ration between turn events ensures that the segment between those turns is
also at least as long as the expansion distance. This prevents some issues
that can occur with very short segments.

Algorithm 4 Genetic Algorithm

1: function GENSAFEREGION(scenario, segment)
2: pop← SEEDPOPULATION
3: for i← 0, Ngens do
4: pop← pop∪ MUTATE(pop)
5: EVALUATE(pop)
6: pop← SELECT(pop)
7: end for
8: return BESTINDIVIDUAL(pop)
9: end function

10: function MUTATE(pop)
11: for each individual ∈ pop do
12: add vertex with prob. P(add vertex)
13: OR remove vertex with prob. P(remove vertex)
14: for each gene ∈ individual.chromosome do
15: randomly nudge vertex
16: if new polygon is legal then
17: update polygon
18: else
19: try again at most Nattempts times
20: end if
21: end for
22: end for
23: return BESTINDIVIDUAL(pop)
24: end function

to prevent collisions. Obstacles on the inside of turns in the
Theta* path ”cause” those turns and make the search space
non-convex. However, collisions with obstacles which are
further away or on the outside of the turn can be avoided
without the reducing the convexity of the search space.
We select the obstacles to be modeled in the MILP by
constructing the convex hull of the start and goal positions
of the segment, as well as all Theta* path nodes between
them. Any obstacle which overlaps this convex hull will be
modeled.
The convex hull can be considered a safe region. If the UAV
stays inside this region, it cannot collide with obstacles since
any obstacle that overlaps with the safe region is modeled
in the MILP problem. However, this safe region restricts the
movements of the UAV more than necessary.
To make the safe region less restrictive, we use a genetic
algorithm which attempts to grow it. We use a genetic
algorithm because it can provide acceptable solutions with
a minimum of development effort. In our implementation
(Alg. 4), each individual in the population represents a single
legal polygon. A legal polygon is convex, does not self-
intersect, can only overlap with the selected obstacles and
contains every node in the Theta* path for that specific
segment. The latter requirement prevents the polygon from
drifting off. Each individual has a single chromosome, and
each chromosome has a varying number of genes. Each gene
represents a vertex of the polygon.
The only operator is a mutator (line 4). Contrary to how
mutators usually work, the mutation does not change the

(a) Up/Down Scenario

(b) A small part of the
San Francisco Scenario

(c) A small part of the
Leuven Scenario

Fig. 4

original individual. This means that the every individual can
be mutated in every generation, since there is no risk of
losing information. This mutator can add or remove vertices
of the polygon by adding or removing genes (lines 12-13),
but only if the amount of genes stays between a specified
minimum and maximum. The mutator attempts to ”nudge”
every vertex/gene to a random position inside a circle around
the current position (line 15). If the resulting polygon is not
legal, it retries a limited number of times (line 16-19).
Tournament selection is used as the selector, with the fitness
function being the surface area of the polygon (line 5-6).
Fig. 2 Shows the obstacles modeled in the MILP problem
in yellow and red, as well as the polygon generated by the
genetic algorithm in dark gray.

IV. RESULTS

We test our algorithm in several different scenarios. Each
scenario was tested with two different problem sizes. All
tests were executed on an Intel Core i5-4690K running
at 4.4GHz with 16GB of 1600MHz DDR3 memory. The
reported times are averages of 5 runs. The machine runs
on Windows 10 using version 12.6 of IBM CPLEX. Fig. 4
shows these scenarios visually. Table I shows a table with
detailed information about the scenarios and execution times.
Table II shows the parameters used in the execution of the
algorithm.

A. Up/Down Scenario

The first test scenario has very few obstacles, but lays them
out in a way such that the UAV needs to slalom around
them. The small scenario has only 5 obstacles, while the
larger one has 9. Fig. 4a shows the large variant. This is a
challenging scenario for MILP because every obstacle causes
a turn, making the problem significantly less convex. Without
segmentation on the small version of the scenario, the solver

scenario #obstacles world size path length #segments Theta* time GA time MILP time score
Up/Down Small 5 25m x 20m 88m 7 0.09s 1.10s 20.8s 26.6s
Up/Down Large 9 40m x 20m 146m 11 0.14s 1.62s 40.1s 43.6s
SF Small 684 1km x 1km 1392m 28 2.04s 9.56s 59.2s 105.7s
SF Large 6580 3km x 3km 4325m 84 18.14s 18.21s 231s 316.0s
Leuven Small 3079 1km x 1km 1312m 29 2.29s 29.83s 152s 95.9s
Leuven Large 18876 3km x 3km 3041m 61 18.74s 83.69s 687s 217.6s

TABLE I: The experimental results for the different scenarios

grid size 2m turn tolerance 2
approach multiplier 2 population size 10
generations 25 max. nudge distance 5m
min. # vertices 4 max. # vertices 12
P(add vertex) 0.1 P(remove vertex) 0.1
max nudge attempts 15 Tmax 5s
time step size 0.2s

TABLE II: The parameters used for testing

does not find the optimal trajectory within 30 minutes. If
execution is limited to 10 minutes, the best trajectory it finds
takes 26.0s to execute by the UAV. That is less than a second
faster than the segmented result while it took more than 20
times more execution time to find that trajectory. For the
larger scenario with 9 obstacles, the solver could not find
a trajectory within 30 minutes. This scenario clearly shows
the advantages of segmentation, even if there only are a few
obstacles.

B. San Francisco Scenario

The San Francisco scenario covers a 1km by 1km section
of the city for the small scenario, and 3km by 3km section
for the large scenario. Fig. 4b shows the small variant. All the
obstacles in this scenario are grid-aligned rectangles laid out
in typical city blocks. Because of this, density of obstacles is
predictable. This scenario showcases that the algorithm can
scale to realistic scenarios with much more obstacles than is
typically possible with a MIP approach.

C. Leuven Scenario

The Leuven scenario also covers both a 1km by 1km
and 3km by 3km section, this time of the Belgian city of
Leuven. This is an old city with a very irregular layout. The
dataset, provided by the local government2, also contains full
polygons instead of the grid-aligned rectangles of the San
Francisco dataset. While most buildings in the city are low
enough so a UAV could fly over, it presents a very difficult
test case for the trajectory planning algorithm. The density
of obstacles varies greatly and is on average much higher
than in the San Francisco dataset. The algorithm does slow
down compared to the San Francisco dataset, but still runs
in an acceptable amount of time. As visible in Fig. 4c, there
are many obstacles clustered close to each other, with many
edges being completely redundant. For a real application, a
small amount of preprocessing of the map data should be
able to significantly reduce both the amount of obstacles as
the amount of edges.

2https://overheid.vlaanderen.be/
producten-diensten/basiskaart-vlaanderen-grb

V. CONCLUSION

Trajectory planning using MIP was previously not compu-
tationally possible in large and complex environments. The
approach presented in this paper shows that these limitations
can effectively be circumvented by dividing the path into
smaller segments using several steps of preprocessing. The
final trajectory is generated by a solver so the constraints
on the trajectory can easily be changed to account for
different use cases. The experimental results show that the
algorithm works well in realistic, city-scale scenarios, even
when obstacles are distributed irregularly and dense.
We demonstrate that our new approach can be used to im-
prove the scalability of MILP trajectory planning. However,
more work is required to use the algorithm with an actual
UAV. Extending the algorithm to 3D is the next step. We
expect the extension to 3D to bring more performance chal-
lenges due to the higher dimensionality of the solution space.
A complimentary, short-term online planner is necessary for
a physical UAV to execute the generated trajectory.

REFERENCES

[1] T. Schouwenaars, B. De Moor, E. Feron, and J. How, “Mixed integer
programming for multi-vehicle path planning,” in Control Conference
(ECC), 2001 European, pp. 2603–2608, IEEE, 2001.

[2] J. S. Bellingham, Coordination and control of uav fleets using mixed-
integer linear programming. PhD thesis, Massachusetts Institute of
Technology, 2002.

[3] M. E. Flores, Real-time trajectory generation for constrained non-
linear dynamical systems using non-uniform rational B-spline basis
functions. PhD thesis, California Institute of Technology, 2007.

[4] R. Deits and R. Tedrake, “Efficient mixed-integer planning for uavs
in cluttered environments,” in Robotics and Automation (ICRA), 2015
IEEE International Conference on, pp. 42–49, IEEE, 2015.

[5] Y. Hao, A. Davari, and A. Manesh, “Differential flatness-based tra-
jectory planning for multiple unmanned aerial vehicles using mixed-
integer linear programming,” in American Control Conference, 2005.
Proceedings of the 2005, pp. 104–109, IEEE, 2005.

[6] I. D. Cowling, O. A. Yakimenko, J. F. Whidborne, and A. K. Cooke,
“A prototype of an autonomous controller for a quadrotor uav,” in
Control Conference (ECC), 2007 European, pp. 4001–4008, IEEE,
2007.

[7] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in Robotics and Automation (ICRA), 2011
IEEE International Conference on, pp. 2520–2525, IEEE, 2011.

[8] L. Lamport, “A simple approach to specifying concurrent systems,”
Communications of the ACM, vol. 32, no. 1, pp. 32–45, 1989.

[9] R. M. Karp, “Reducibility among combinatorial problems,” in Pro-
ceedings of a symposium on the Complexity of Computer Computa-
tions, held March 20-22, 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York., pp. 85–103, 1972.

[10] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle
path planning on grids,” Journal of Artificial Intelligence Research,
vol. 39, pp. 533–579, 2010.

