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Abstract

No two physical objects are exactly the same, even when manufactured with
a nominally identical process. For example, two sheets of paper that are
indistinguishable with the naked eye, still differ considerably in their nanoscale
fiber structures. Although manufacturing variability is usually undesired, the
associated ability to uniquely identify a physical object, which is constrained to
an integrated circuit (IC) in this thesis, can be leveraged for security purposes.
To facilitate the registration of unique features, a so-called physically unclonable
function (PUF) can be implemented on the IC. A PUF circuit is designed to be
sensitive to process variations, i.e., challenged with a binary input, it provides a
binary, device-unique response. This building block can hence be understood as
the silicon equivalent of human biometrics.

PUFs can augment the security architecture of an ever-increasing number of
electronic devices that access our personal data and/or represent our identities.
This includes but is not limited to smartphones, credit cards, access badges,
the sensors and actuators of automated home, and medical implants. PUFs
usually need to team up with other building blocks, e.g., true random number
generators (TRNGs), cryptographic algorithms, error-correcting codes, non-
volatile memory (NVM), etc. We analyze the security of such multi-component
systems in a format that allows for comparisons among proposals that have
similar or identical objectives. Numerous newly revealed flaws and attacks are
presented throughout this thesis. On the bright side, the lessons learned can
help improve the quality of future PUF-based systems.
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Samenvatting (Dutch)

Twee fysische objecten zijn nooit exact hetzelfde, zelfs wanneer ze met een
identiek proces gefabriceerd worden. Bijvoorbeeld, twee vellen papier die
men met het blote oog niet kan onderscheiden, verschillen desondanks in
hun vezelstructuur op nanoschaal. Alhoewel zulke procesvariaties normaal
gezien ongewenst zijn, de mogelijkheid om als dusdanig een fysisch object
uniek te identificeren, kan gebruikt worden voor veiligheidsdoeleinden. In deze
thesis focussen we op de beveiliging van een geïntegreerde schakeling. Om de
registratie van unieke kenmerken te vergemakkelijken, kan een zogenaamde
fysisch onkloonbare functie, of kortweg een PUF in het Engels, op de chip
geïmplementeerd worden. Een PUF schakeling is ontworpen om gevoelig te zijn
aan procesvariaties, i.e., gegeven een binaire invoer, produceert het een binaire,
chip-specifieke uitvoer. Deze bouwblok kan dus begrepen worden als het silicium
equivalent van menselijke biometrie.

PUFs kunnen de veiligheidsarchitectuur van een steeds toenemend aantal
elektronische apparaten die toegang hebben tot onze persoonlijke gegevens
en/of onze identiteiten representeren versterken. Dit omvat maar is niet beperkt
tot smartphones, kredietkaarten, toegangsbadges, de sensoren en actuatoren van
een geautomatiseerd huis, en medische implantaten. PUFs moeten gewoonlijk
samenspelen met andere bouwblokken, e.g., toevalsgenerators, cryptografische
algoritmes, foutcorrigerende codes, niet-volatiel geheugen, enzovoort. We
analyseren de veiligheid van zulke systemen in een formaat waarmee voorstellen
die gelijkaardige of identieke doeleinden hebben vergeleken kunnen worden.
Talrijke nieuw ontdekte zwakheden en aanvallen worden gepresenteerd in deze
thesis. Aan de positieve kant, de geleerde lessen kunnen helpen om de veiligheid
van toekomstige PUF-gebaseerde systemen te verbeteren.
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Chapter 1

Introduction

Nowadays, the term physically unclonable function (PUF) usually refers to
an embedded electrical circuit that is designed to be prone to manufacturing
variations while remaining fairly resistant to noise. From a black-box perspective,
a binary input, i.e., the challenge, is mapped to a binary, device-specific, and
slightly noisy output, i.e., the response. Subsequent to the manufacturing of the
first silicon PUFs by Lofstrom et al. [107] and Gassend et al. [51] in the early
2000s, research efforts have vastly increased over time. Moreover, PUF-enabled
products became commercially available, as exemplified by companies such as
Intrinsic-ID [72] and Verayo [173]. Applications of PUFs mostly relate to the
security architecture of a low-cost, resource-constrained electronic device.

The remainder of this chapter is organized as follows. Section 1.1 provides
a broad introduction to the security architecture of a lightweight electronic
device, and highlights the role of PUFs in this regard. Section 1.2 outlines the
contributions of this PhD thesis to the analysis of presumably secure PUF-based
systems, while briefly summarizing the contents of each remaining chapter.

1.1 Securing Electronic Devices

We are increasingly surrounded by miniaturized devices that collect, store, and
process our personal data, thereby possibly representing our identities. Many
of us carry around smartphones, tablet computers, electronic identity cards,
access badges, and smart cards for public transit. Even in closer proximity to
our bodies, wearable and implantable medical devices can monitor physiological

1



2 INTRODUCTION

signals and administer treatment accordingly. Consider for example insulin
pumps that treat diabetes patients and implantable cardioverter-defibrillators
that correct cardiac arrhythmias.

Still in our immediate vicinity, a smart home is equipped with a plethora of
automated systems. Consider for example motion-activated light switches and a
refrigerator that keeps track of its contents and corresponding expiration dates.
A similar trend holds for corporate and public infrastructure. Radio-frequency
identification (RFID) tags can facilitate the supply chain management of a
company. Unlike a traditional barcode, tags are not required to be within the
line of sight of the reader. Outdoors, spatially distributed sensors can monitor
various environmental parameters in real-time. This includes air pollution in
congested cities as well as radiation levels around nuclear power plants [25].
Moreover, forest fires can be detected in an early stage by measuring temperature,
humidity, carbon dioxide concentrations, etc.

Many of the aforementioned electronic devices are interconnected through
a wireless local network. Depending on the context, this can be referred to
as a personal area network, a body area network, a wireless sensor network,
etc. Communication standards with a range of about 1 m to 100 m usually
rely on electromagnetic waves, e.g., Wi-Fi and Bluetooth. Standards with a
range of several centimeters, e.g., near-field communication, usually rely on
electromagnetic induction between two loop antennas. Individual devices and
local networks as a whole may in turn be connected to the Internet, which
ultimately results in the Internet of things [5]. Unfortunately, the networked
nature inherently expands the attack surface. Cryptographic protocols are
indispensable for securing the many information streams against eavesdropping
and manipulation, and can also prevent identity theft.

The objectives of a cryptographic protocol can typically be broken down into
fundamental security needs, as illustrated in a threefold manner. First, there
is the authentication of data. Consider for example a tablet-enabled online
banking application where any malicious modification to an otherwise genuine
transaction should be detected. A second security goal, which is usually required
in addition to the first, is the confidentiality of data. Consider for example
smartphone users who might want to keep the contents of their text, audio,
and video conversations secret from the outside world. A third security need
is entity authentication. A device, and by extension also its owner, then prove
their identity to another party. Consider for example an electronic access badge
that is used to enter a private facility.

Cryptographic protocols achieve their goals through a set of algorithmic
building blocks. This can include the use of block ciphers, stream ciphers, and
cryptographic hash functions, for example. Protocol and algorithm specifications
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are usually considered to be public knowledge. According to Kerckhoffs’
principle [82], a cryptosystem should be secure even if the attacker knows
everything about the system, except the key. The latter refers to a secret binary
string that is usually stored in the embedded, non-volatile memory (NVM)
of a device, i.e., contents are preserved during the power-off state. Despite a
history of broken systems, plenty of algorithmic solutions have been analyzed
extensively over time by a large, international community of cryptologists and
remain unbroken to date.

Unfortunately, a secure algorithm does not necessarily result in a secure
implementation. Due to the mobile, distributed nature of modern electronic
devices, an attacker might easily obtain physical access to the integrated circuit
(IC). Measuring physical characteristics while the IC performs cryptographic
operations could hence leak information about the key. Even with relatively
affordable equipment, power consumption [86], electromagnetic radiation [45,
134], and other so-called side-channels can be recorded and digitized into a time
series. Statistical analysis of a certain number of traces could suffice to recover
the key. As an either alternative or complementary threat, fault attacks [9]
actively disrupt the nominal computational behavior of the IC via physical
channels in order to extract information about the key.

Regardless of the cryptographic algorithms, a more direct approach is to
physically attack the NVM that stores the key. Memories usually consist of an
array of identically designed cells that each store a single bit. Unauthorized
reading and writing of cell contents via, e.g., optical channels or a focused
ion beam (FIB), is feasible [90, 69, 59, 158] after having decapsulated the IC,
although potentially tedious for large data sizes. The nearby bus, i.e., a small
set of parallel, conductive wires, that connects the NVM with other components
provides an alternative target. A microprobe, i.e., a fine-tipped needle, allows
an attacker to access the bus and its serialized data streams through a single
location [3, 90].

Unfortunately, perfect resistance to physical attacks does not exist. The
capabilities of a FIB workstation are quite impressive, for example. This
highly expensive tool allows for nanoscale modifications to the circuit, e.g., the
removal and deposition of conductive material so as to cut and create electrical
connections respectively. System providers usually aim to foresee a device with
sufficient countermeasures in order to resist attackers with a more limited budget
in terms of time and money. Unfortunately, these countermeasures impose a
considerable overhead on the implementation. In the ideal case, physical attacks
are rendered economically infeasible, i.e., the benefits of having performed a
successful attack do not outweigh the required resources.



4 INTRODUCTION

As an alternative to key-storage in NVM, the use of a PUF can be considered.
The latter building block can greatly benefit from a custom-designed circuit
and layout, which complies with an application-specific integrated circuit
(ASIC). Nevertheless, several PUF designs circumvent the restrictions of a
field-programmable gate array (FPGA) on the selection, placement, and routing
of circuit elements reasonably well. Most frequently, the device-unique but
noisy and non-uniformly distributed responses of a PUF are post-processed
into a stable, uniformly distributed secret key. This approach hinges on the
assumption that the PUF and its post-processing logic offer a higher resistance
to physical attacks than NVM, especially during the power-off state. There also
exist more lightweight proposals that avoid the detour of generating a secret key
and directly leverage the device-unique functional behavior of the PUF instead.
Numerous authentication protocols that adopt the latter approach have been
published, for example.

1.2 Thesis Outline and Contributions

The remainder of this PhD thesis consists of five chapters. Their contents and
technical contributions are as follows:

• Chapter 2: Preliminaries. In addition to introducing the notation,
sufficient technical background is provided to make this thesis self-
contained. Basic concepts from statistics, coding theory, cryptology, and
other disciplines are reviewed.

• Chapter 3: Security Analysis of PUF Circuits — Novel Methods.
We investigate PUFs as an isolated building block and develop new
methods for assessing their security. A first, theoretical contribution
proves that the functional behavior of several PUFs is not as uniquely tied
to a given device as is typically assumed. To be precise, we derive tight
upper bounds on the min-entropy of their responses, and these evaluate
to surprisingly low numbers. This fundamentally constrains the usability
of the assessed PUFs for applications such as key generation. A second,
experimental contribution showcases the vulnerability of several PUFs to
a new type of physical attack. Noise serves as an inherent side-channel,
and its enhancement through environmental changes could result in a
more efficient fault attack.

• Chapter 4: A Survey on PUF-Based Key Generation. We analyze
the algorithmic security of numerous methods that aim to post-process
the responses of a PUF into a stable, uniformly distributed secret key.
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Apart from revealing unanticipated threats, it turns out that the security
of most error-correction methods can only be proven for ideal PUFs. To
be precise, it is assumed that responses are uniformly distributed, or
slightly more general, that response bits are independent and identically
distributed. Such assumptions are hard to meet in practice. Better but still
problematic, several constructions based on coding theory can handle all
distributions that have a relatively high min-entropy. We derive improved
bounds on the min-entropy loss of the latter constructions so as to handle
a large variety of distributions more efficiently.

• Chapter 5: A Survey on PUF-Based Entity Authentication.
We analyze the security and usability of 21 PUF-based authentication
protocols. In order to treat all proposals equally, we rigorously apply
a newly developed framework of custom-tailored protocol requirements.
Apart from revealing numerous unanticipated threats, it turns out that
many proposals again rely on ideal PUFs. To be precise, it is often assumed
that responses are noiseless, that challenges and responses are both vectors
of arbitrary length, and/or that challenge-response pairs are independent.
Such assumptions are not realistic in practice. We also contribute to the
design of a new protocol that aims to resolve the issues of two existing
protocols.

• Chapter 6: Conclusions and Further Work. We revisit the main
contributions of this thesis and make suggestions for further research.





Chapter 2

Preliminaries

This chapter is organized as follows. Section 2.1 introduces the notation that will
be used throughout this thesis. Sections 2.2 to 2.6 review preliminary knowledge
of statistics, coding theory, technologies for embedded NVM, and cryptology.
Section 2.7 provides a conceptual introduction to PUFs.

2.1 Notation

The following notational system is used consistently throughout this thesis:

• Variables. Vectors are denoted by a bold-faced, lowercase character, e.g.,
x = (x1 x2). All vectors are row vectors. All-zeros and all-ones vectors are
denoted by 0 and 1 respectively. Matrices are denoted by a bold-faced,
uppercase character, e.g., X. The q × q identity matrix is denoted by Iq.
A random variable is denoted by an uppercase character, e.g., X. A set,
often but not necessarily referring to all possible outcomes of a random
variable, is denoted by an uppercase, calligraphic character, e.g., X . The
set of all λ-bit row vectors is denoted by {0, 1}λ. If the length λ is variable
rather than constant, we denote this set by {0, 1}?. Variables that change
over time are occasionally denoted with an additional counter between
round brackets, e.g., x(1), x(2), etc.

• Operations. Assignment operations are denoted by an arrow, e.g., x←
0. For binary vectors and binary matrices, addition, e.g., x ⊕ y, and
multiplication, e.g., X y are performed modulo 2. Bitwise inversion is

7
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denoted by an overline, e.g., (1 0 1) = (0 1 0). The cardinality of a set X ,
i.e., the number of elements of X , is denoted by |X |. Custom-defined
procedure names are printed in a sans-serif font, e.g., Hamming weight
HW(x) and Hamming distance HD(x,y). The concatenation of row vectors
is denoted by a double vertical bar, e.g., x‖y.

• Probabilities. The probability of an event is denoted by P(·). The
expected value of a random variable X is denoted by Ex←X [X]. The
probability density function (PDF) of a continuous random variable and
the probability mass function (PMF) of a discrete random variable are
both denoted by f(·). Likewise, the cumulative distribution function (CDF)
of a random variable is denoted by F(·).

2.2 Min-Entropy

The min-entropy [136] of a discrete random variable X as defined in (2.1) is a
worst-case predictability measure. The probability that an attacker guesses a
secret x← X first time right is quantified on a logarithmic scale. It holds that
0 ≤ H∞(X) ≤ log2(|X |); the upper bound corresponds to a uniform distribution.
For binary vectors, i.e., X = {0, 1}λ, it holds that 0 ≤ H∞(X) ≤ λ.

H∞(X) def= − log2

(
max
x∈X

P(X = x)
)
. (2.1)

Consider now a pair of possibly correlated random variables: (X,Y ). The
conditional min-entropy [39] of X given Y is as defined in (2.2). Terms of the
expectation with P(Y = y) = 0 are evaluated as 0. The definition still quantifies
the probability that an attacker guesses the secret x first time right, on a
logarithmic scale. It holds that 0 ≤ H̃∞(X|Y ) ≤ H∞(X); the upper bound
corresponds to cases where X and Y are independent.

H̃∞(X|Y ) def= − log2

(
Ey←Y

[
max
x∈X

P((X = x)|(Y = y))
])
. (2.2)

A proven property [39] of conditional min-entropy is given in (2.3). In absence
of random variable Y2, the inequalities simplify to H̃∞(X|Y1) ≥ H∞((X,Y1))−
log2(|Y1|) ≥ H∞(X)− log2(|Y1|).

H̃∞(X|(Y1, Y2)) ≥ H̃∞((X,Y1)|Y2)− log2(|Y1|)

≥ H̃∞(X|Y2)− log2(|Y1|).
(2.3)
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Although we consistently adopt the notion of min-entropy in this thesis, it is
worth mentioning that Shannon entropy is frequently used for the analysis of
PUF-based systems as well. The latter notion, as is defined in (2.4), quantifies
the amount of information in a discrete random variable X. To be precise,
H(X) comprises a lower bound on the expected number of bits that a lossless
compression algorithm may output for a given x ∈ X . In terms of security,
Shannon entropy quantifies the average-case predictability of X, and is hence
less conservative than min-entropy. It can be seen easily that H∞(X) ≤ H(X),
regardless of the distribution of X.

H(X) def= −Ex←X
[
log2

(
P(X = x)

)]
. (2.4)

Likewise, conditional Shannon entropy, as is defined in (2.5), is less conservative
than conditional min-entropy. After applying Jensen’s inequality to (2.2), i.e.,
log2(E[·]) ≥ E[log2(·)], given that the logarithm is a concave function, it can be
seen that H̃∞(X|Y ) ≤ H̃(X|Y ), regardless of the distribution of (X,Y ).

H̃(X|Y ) def= −Ey←Y
[∑
x∈X

P((X = x)|(Y = y)) log2
(
P((X = x)|(Y = y))

)]
.

(2.5)

2.3 Probability Distributions

Random variables are described by a probability distribution. The PDF and
CDF of a normally distributed random variable X ∼ N(µ, σ2) with mean µ
and variance σ2 are given in (2.6). For a standard normal distribution N(0, 1),
the notation simplifies to fnorm(x) and Fnorm(x) respectively.

Fnorm(x;µ, σ) def=
∫ x

−∞
fnorm(y;µ, σ) dy def=

∫ x

−∞

1√
2πσ

exp
(
− (y − µ)2

2σ2

)
dy.

(2.6)

The PDF of a λ-variate normal distribution N(µ,Σ), with Σ the symmetric
covariance matrix, is given in (2.7). If y = τ + x B is an affine transformation
of X ∼ N(µ,Σ), then Y ∼ N(τ + µB,BT Σ B).

fnorm(x;µ,Σ) def= 1√
(2π)λ det(Σ)

exp
(
−1

2(x− µ)Σ−1(x− µ)T
)
. (2.7)
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The PMF and CDF of a binomial distribution B(λ, p) with λ independent
Bernoulli trials that each have success probability p is given in (2.8). Its mean
and variance are λp and λp(1− p) respectively.

Fbino(η;λ, p) def=
η∑
i=0

fbino(i;λ, p) def=
η∑
i=0

(
λ

i

)
pi(1− p)λ−i. (2.8)

More generally, the Poisson binomial distribution captures the number of
successes for independent Bernoulli trials that are not necessarily identically
distributed. The PMF and CDF are given in (2.9).

Fpoisbino(η; p1, p2, . . . , pλ) def=
η∑
i=0

fpoisbino(i; p1, p2, . . . , pλ)

def=
η∑
i=0

∑
J⊆{1,2,...,λ}

such that |J |=i

∏
j∈J

pj
∏

j∈{1,2,...,λ}\J

(1− pj).
(2.9)

The statistical distance [55] between two discrete random variables X1 and X2
with a joint set of outcomes X is as defined in (2.10).

SD(X1, X2) def= 1
2
∑
x∈X
|P(X1 = x)− P(X2 = x)|. (2.10)

2.4 Coding Theory

A binary code ζ is a bijection from a set of messagesM to a set of codewordsW ⊆
{0, 1}n. The minimum distance d is the minimum number of bits in which any
two distinct codewords differ. An encoding procedure maps a message m ∈M
to a codeword w ∈ W, i.e., w← Encode(m). Most error-correction procedures
can handle t = b(d− 1)/2c errors for any noise-corrupted codeword w̃ = w⊕ e,
i.e., Correct(w̃) = w if HW(e) ≤ t. In some cases, more than t errors can be
corrected. For convenience, we also define a decoding procedure that returns the
corresponding message instead, i.e., m̂← Decode(w̃). Equation (2.11) expresses
the Hamming bound [108]. The equality holds for perfect codes only; it then
holds that any vector in {0, 1}n is within distance t of a codeword. All other
codes are subject to the inequality.
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t∑
i=0

(
n

i

)
|M| ≤ 2n. (2.11)

A binary [n, k, d] block code ζ restricts the message length k = log2(|M|) to an
integer. For linear block codes, which are discussed next, any linear combination
of codewords is again a codeword. A k×n generator matrix G, having full rank,
can then implement the encoding procedure, i.e., w = m G. For any translation
τ ∈ {0, 1}n and linear code ζ, the set {τ ⊕w : w ∈ W} is referred to as a coset.
Two cosets are either disjoint or coincide [108]. Therefore, the set {0, 1}n is
fully covered by 2n−k cosets. The minimum weight vector e in a coset is called
the coset leader. In case of a conflict, i.e., a common minimum HW(e) > t, an
arbitrary leader can be selected. The minimum distance d of a linear code equals
the minimum Hamming weight of its nonzero codewords. A linear code ζ is
cyclic if every circular shift of a codeword results again in a codeword belonging
to ζ.

A generator matrix is in standard form if G = (Ik P), i.e., the first k bits of a
codeword equal the message, followed by n− k redundancy bits. A parity-check
matrix H, with dimensions (n− k)× n, determines the so-called syndrome ϕ =
w̃ HT of a possibly corrupted codeword w̃. The syndrome captures all the
information necessary for decoding w̃. For each codeword w, it holds that
w HT = 0. Therefore, the syndrome can be rewritten as ϕ = e HT . It can
be seen easily that two vectors w̃1 and w̃2 have the same syndrome ϕ if and
only if they belong to the same coset. Generator and parity-check matrices
can be derived from each other, e.g., for a generator matrix in standard form,
H = (PT In−k).

A binary (η, λ) convolutional code, where η is the output data rate and λ is
the constraint length, has an arbitrary message length k. The encoder slides a
window of length λ over a message m ∈ {0, 1}k and XORs its contents into η
codeword bits at any given position. If both sides of message m are padded
with 0s, then the length n of a codeword w equals (k + λ− 1)η. Convolutional
codes are linear and could for a given message length k hence be represented
by a generator matrix G. Despite the small minimum distance d ≤ η λ, on
average, a number of errors that is considerably larger than t = b(d− 1)/2c can
be corrected [174].
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2.5 Embedded, Non-Volatile Memory

Some of the variables that are used in cryptographic protocols require permanent
storage in a miniaturized electronic device. Table 2.1 lists three categories of
embedded, non-volatile memory (NVM). The more flexibility in terms of write
cycles, the higher the manufacturing cost, and the higher the required resources
such as the silicon area per bit. The first category is hard-wired read-only
memory (ROM). Its mask-defined contents are shared by each manufactured
device.

Table 2.1: Embedded NVM.

Type Write cycles Mature technologies
ROM 1×, pre-manufacturing hard-wired
OTP 1×, post-manufacturing fuses, antifuses
MTP ∞×, post-manufacturing EEPROM, Flash, battery-

backed SRAM

The second category is one-time programmable (OTP) NVM. Technologies are
based on either fuses or antifuses, where a conductive path is irreversibly broken
and created respectively, and are either foundry-specific or foundry-independent.
Several intellectual property providers offer foundry-independent OTP NVMs
that require neither additional masks nor additional manufacturing steps with
respect to a regular complementary metal–oxide–semiconductor (CMOS) process.
This includes eMemory [43], Kilopass [84], NSCore [128], Sidense [154], and
SST [155]. A limited number of write cycles can be emulated via the partitioning
of a large OTP NVM. Writing involves disabling and enabling the current and
next partition respectively.

The third category is true multiple-time programmable (MTP) NVM, supporting
a number of write cycles that is virtually unlimited with respect to a typical
lifetime of a device. Unfortunately, traditional technologies are expensive.
Electrically erasable programmable read-only memory (EEPROM) and its
successor Flash require floating-gate transistors, which results in additional
masks and processing steps. Battery-backed static random-access memory
(SRAM) relies on a CMOS-compatible volatile memory, but batteries are
considered to be expensive. There are cell structures for MTP NVM that do not
further complicate the manufacturing process, as provided by, e.g., eMemory [43].
However, these initiatives should not be considered as a commodity yet.
Furthermore, the storage density is typically lower than for EEPROM/Flash.
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2.6 Cryptographic Algorithms

The bulk of this thesis relates to symmetric-key cryptography. It is then assumed
that two or more parties have access to a shared secret k that is chosen uniformly
at random from {0, 1}κ. Brute-force attacks that enumerate all 2κ possible values
of the key should be computationally infeasible. A frequently recommended key
size nowadays is κ = 128; the advent of quantum computers can be anticipated
by choosing κ = 256 [127]. Below, we review seven efficiently-implementable
primitives. For abstraction purposes, these primitives are often modeled by an
ideal specification that cannot be realized in practice. Another side note is that
there exist generic constructions to convert one primitive into another one.

• A block cipher consists of two paired algorithms: encryption a ←
Encrypt(m; k) and decryption m← Decrypt(a; k), with m,a ∈ {0, 1}λ a
plaintext and a ciphertext respectively. For any given key k ∈ {0, 1}κ,
encryption comprehends a permutation of the set {0, 1}λ and decryption
comprehends the inverse permutation. A well-known cipher instance is
the Advanced Encryption Standard (AES) [35], issued by the United
States’ National Institute of Standards and Technology (NIST) in 2001.
Although the block size λ is a constant, several modes of operation provide
confidentiality for arbitrary-length messages m ∈ {0, 1}?. An ideal, non-
realizable block cipher would comprise a list of 2κ permutations that
are selected independently, randomly, and uniformly from the set of all
possible permutations of {0, 1}λ.

• A cryptographic hash function a ← Hash(m) maps an arbitrary-length
input m ∈ {0, 1}? to a fixed-length digest a ∈ {0, 1}λ. The following three
security properties are of interest. First, pre-image resistance implies that
for a given digest a, it should be computationally infeasible to find any
input m such that a = Hash(m). Furthermore, second pre-image resistance
implies that for a given input m1, the attacker cannot find a second input
m2, with m1 6= m2, such that Hash(m1) = Hash(m2). Finally, collision
resistance implies that the attacker cannot find two inputs m1 and m2,
with m1 6= m2, such that Hash(m1) = Hash(m2). Due to the birthday
paradox, a brute-force attacker is expected to find a first collision by
evaluating roughly 2λ/2 inputs. A standardized instance is the Secure
Hash Algorithm 3 (SHA-3), as released by NIST in 2015 [42]. An ideal,
non-realizable hash function would behave as a random oracle, i.e., a
deterministic mapping from inputs m to responses a that are selected
independently, randomly, and uniformly from {0, 1}λ.
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• A message authentication code (MAC) is the fixed-length output a ∈
{0, 1}λ of a MAC algorithm a← MAC(m; k), also referred to as a keyed
cryptographic hash function, and is usually appended to the arbitrary-
length input m ∈ {0, 1}? so as to enable verification of its authenticity.
For a secure unforgeable MAC, an attacker cannot compute the MAC
value a1 of a given message m1 without knowledge of the key k, even when
given the MAC value a2 of many adaptively chosen messages m2 with
m1 6= m2. Although instances are not necessarily based on cryptographic
hash functions, a well-known, standardized proposal is the keyed-hash
message authentication code (HMAC) [93].

• A pseudorandom function family (PRF) a ← PRF(m; k), with key k ∈
{0, 1}κ, consists of 2κ functions that each map an input m ∈ {0, 1}λ to
an output a ∈ {0, 1}η. For a secure PRF, it should be computationally
infeasible to distinguish between a function that is chosen uniformly at
random from the family and a random oracle, the latter of which is
non-realizable. This holds even if the attacker is given access to many
adaptively chosen input–output pairs (m,a).

• A synchronous stream cipher expands a key k ∈ {0, 1}κ into an arbitrary-
length pseudorandom stream a ∈ {0, 1}? and typically performs encryption
and decryption through XORing, i.e., b ← m ⊕ a and m ← b ⊕ a
respectively. This comprehends an approximation of the information-
theoretically secure but impractical cipher that is referred to as a one-time
pad. It then holds that k,a,b ∈ {0, 1}κ, i.e., key size κ tends to be
prohibitively large. For both stream ciphers and one-time pads, keys are
not to be reused, as this would imply that b1 ⊕ b2 = m1 ⊕m2.

• A cryptographically secure pseudorandom generator [41] expands a random
seed n ∈ {0, 1}λ into an output a ∈ {0, 1}? such that it is computationally
infeasible to distinguish a from true randomness. We, however, refer to a
pseudorandom number generator (PRNG) as an algorithm that does not
necessarily satisfy this property. The most notable inclusion is a linear-
feedback shift register (LFSR); it is then straightforward to recover the
λ-bit state from λ output bits.

• A key derivation function (KDF) [92] converts a secret x ∈ {0, 1}λ that
is not necessarily uniformly distributed into one or more secret keys
k ∈ {0, 1}κ. Formally, (k1,k2, . . .) ← KDF(x,n), where the optional
argument n ∈ {0, 1}η is a uniformly distributed seed.

A fundamental limitation of symmetric-key cryptography is that parties require
a secure channel for the initial exchange of a secret key k. Depending on the
application, this can be an either tolerable or prohibitive constraint. Public-
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key cryptography provides an alternative in the latter case, at the cost of
computational efficiency. Each party then owns a pair of mathematically related
keys: a public key kpub and a private key kpriv, both of which are typically
larger than a symmetric key k in order to achieve the same security level against
brute-force attacks. An example of a widely adopted algorithm is RSA [139],
which is named after the initials of its coauthors Rivest, Shamir, and Adleman.
We review two popular uses of public-key cryptosystems:

• Public-key encryption allows an arbitrary sender to transmit confidential
data by using the public key kpub of a recipient, i.e., a← Encrypt(m; kpub),
with m the cleartext and a the ciphertext. Only the recipient possesses
the corresponding private key kpriv and can hence decrypt the ciphertext,
i.e., m← Decrypt(a; kpriv).

• A digital signature a is appended to a message m in order to protect its
authenticity. In contrast to a MAC, it also provides non-repudiation, i.e.,
the sender cannot deny having signed the message m. The private key
kpriv of the sender is used in the signing procedure a← Sign(m; kpriv). An
arbitrary recipient can verify the signature using the public key kpub of the
sender, i.e., b← Verif(m,a; kpub), with bit b denoting either acceptance or
rejection. For messages m of considerable size, it is usually more efficient
to sign and verify a digest Hash(m) instead. This also precludes certain
forgeries of RSA signatures.

2.7 Physically Unclonable Functions

Physically unclonable functions (PUFs) comprehend the central theme of this
thesis. This primitive lacks a formal, unambiguous definition that is widely
accepted and adopted by the research community. Most authors hence opt for
an informal description through the enumeration of compelling properties that
comply with most practical designs. We first provide such an enumeration, and
elaborate our vision on formal definitions afterwards.

2.7.1 Informal

• A PUF captures the inherent manufacturing variability of a physical
object through a set of challenge–response pairs (CRPs). The term object
distinguishes PUFs from the related field of human biometrics. For the
majority of recent applications, the object comprehends an IC. Process
variations such as random dopant fluctuation imply that each transistor
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exhibits unique characteristics in terms of currents and voltages. Most
silicon PUFs allow us to query CRPs within the perimeter of the IC
itself, thereby removing the need for external actuation and measurement
equipment. Furthermore, challenges and responses are usually binary
vectors rather than analog signals so as to facilitate interaction with other
building blocks of the IC. We limit the scope of this thesis to the latter
type of silicon PUF and do not further consider designs that rely on,
e.g., randomly distributed particles in optical tokens [131] and magnetic
media [71].

• Unfortunately, the same design techniques that make a PUF sensitive
to process variations cause it to pick up noise as well. Variability and
noise refer to deviations from the nominal behavior that are reproducible
and irreproducible respectively. While the former is defined through the
structural rigidity of the solid materials that constitute an IC, the latter
is a time-dependent phenomenon that originates from randomly moving
particles. For example, Johnson-Nyquist noise comprises the unavoidable
vibrations of electrons and other thermally agitated charge carriers. Even
in perfectly stable laboratory conditions, a PUF’s response to a given
challenge is hence not perfectly reproducible.

• Perturbations of the IC’s environment further deteriorate the repro-
ducibility. For example, the waveform of an externally provided supply
voltage could deviate from its nominal counterpart. Moreover, the outside
temperature continuously changes, especially if there are other heat-
generating elements in the IC’s vicinity. Even within the perimeter of
the IC, various building blocks could interfere with the behavior of the
PUF. Depending on the magnitude of the previously listed perturbations,
the expected error rate of a response bit with respect to a previously
recorded reference usually ranges from 5% to 20%. Apart from a few PUF
designs where the reference response is either formed [33] or reinforced [18]
by applying high physical stresses after the manufacturing of the IC,
reported error rates below 5% typically do not include perturbations
in the experimental setup. Note, however, that consumer products are
supposed to remain functional in spite of environmental changes.

• Aging effects alter the nominal behavior of a PUF. Strong electric fields
slowly but steadily cause structural damage to an IC. For example,
electromigration causes the raster of ions that constitutes a metallic wire to
gradually break down due to the mechanical impact of colliding electrons.
Moreover, negative-bias temperature instability alters the current-voltage
characteristics of a transistor. Given that reference responses are usually
only prerecorded once, their reproducibility progressively deteriorates
in the long term. A considerable obstacle for the release of commercial
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products with an expected lifetime of several years is that the exact
increase in error rate is hard to predict. Accelerated aging experiments
that put a PUF-enabled device under high physical stresses for a short
period of time provide an approximation at best.

2.7.2 Formal

An ideal PUF can be defined with relative ease, as exemplified in Definition 1
for silicon targets.

Definition 1 (Ideal PUF). For a given manufacturing process of an IC with
a given layout, an ideal PUF is a manufactured building block that realizes
a function with domain C ⊆ {0, 1}λ and codomain R ⊆ {0, 1}η, where each
instantiated function depends on process variations and is modeled as a random
oracle. For each challenge c ∈ C, a given function instance then deterministically
returns a response r that is chosen uniformly at random from R, regardless of
environmental changes and aging. All relevant environmental parameters are
bounded, e.g., supply voltage VS ∈ [αV , βV ] and temperature T ∈ [αT , βT ], and
a maximum lifespan βL is defined. The evaluation time of any given function
instance has an upper bound βE. Tamper-evidence is imposed as an additional
requirement, i.e., fully invasive attacks either damage or alter the functional
behavior.

A crucial problem with Definition 1 and various other definitions of ideal
PUFs [131, 49, 53] is that practical realizations are non-existent [144, 110]. Or
at the very least, most designs that are generally regarded as a PUF do not
meet the constraints. Less restrictive definitions are considerably more difficult
to devise and are even more prone to personal opinions. Several authors [26,
110] proposed such a definition, none of which gained a widespread following,
presumably in part because PUF literature already proliferated into chaos,
i.e., authors are used to informal, do-it-yourself descriptions that avoid non-
strictly required notational complexities. We nevertheless aim to capture a large
variety of non-ideal designs in Definition 2, which is tailored for PUF-based key
generation. To be precise, there is compatibility with so-called secure sketches
and fuzzy extractors [39], both of which will be defined in Chapter 4. Note that
the ‘F’ in PUF is a misnomer, given that a mathematical function is supposed
to be deterministic.

Definition 2 (Non-ideal PUF). For a given manufacturing process of an IC
with a given layout, a non-ideal PUF is a manufactured building block that realizes
a non-deterministic mapping from a set C ⊆ {0, 1}λ to a set R ⊆ {0, 1}η, where
the distribution of each random variable Ri, with i ∈ [1, |C|], depends on process
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variations, noise, environmental variables, and aging. All relevant environmental
parameters are bounded, e.g., supply voltage VS ∈ [αV , βV ] and temperature T ∈
[αT , βT ], and a maximum lifespan βL is defined. The evaluation time of any given
PUF has an upper bound βE. Let x denote the result of concatenating a PUF’s
responses r1, r2, · · · , rg to a list of publicly known challenges c1, c2, · · · , cg.
Considering the infinite set of PUFs in their nominal environment, i.e., supply
voltage VS = vnom, where vnom ∈ [αV , βV ], temperature T = tnom, where
tnom ∈ [αT , βT ], etc., at the beginning of their life cycle, it should hold that the
min-entropy H∞(Xnom) ≥ αX . Finally, it should hold that the αH-th percentile
of HD(Xnom, Xrec), where reproduced response Xrec complies with environmental
and lifespan constraints, has an upper bound t.



Chapter 3

Security Analysis of PUF
Circuits � Novel Methods

We develop new methods for the security analysis of a stand-alone PUF
circuit. A first contribution is the derivation of tight upper bounds on the
min-entropy of several PUFs, i.e., Ring Oscillator Sum, Loop, Arbiter, Feed-
Forward Arbiter, S-ArbRO, and XOR PUFs. This constrains their usability
for the fuzzy extraction of a secret key, as an alternative to storing keys in
NVM. For example, it is shown that ideally manufactured Arbiter PUFs with
64 stages cannot provide more than 197 bits of min-entropy. Van Herrewege
et al. [171] previously assumed that 1785 bits of min-entropy can be extracted,
which renders their 128-bit key generator instantly insecure. We also derive
upper bounds that comply with non-ideally manufactured PUFs, as is the case
in practice for silicon realizations. As a side contribution, we refute the claim
that S-ArbRO PUFs are highly resistant to machine learning attacks.

Second, we are the first to experimentally demonstrate that the noisiness of the
responses of a PUF can be leveraged as a side-channel. By repeatedly measuring
the response bit r to an identical challenge c, the one and only internal non-
linearity of both Ring Oscillator Sum and Arbiter PUFs is bypassed. Therefore,
a predictive model can be constructed by solving a system of linear equations,
i.e., the attacker is faced with trivial mathematics. Moreover, we experimentally
demonstrate that the noisiness of a PUF, and hence also the efficiency of
the attack, can be increased by applying environmental changes to the IC.
Although the attack remains less efficient than state-of-the-art machine learning
attacks, follow-up work by other authors turned the tables. A hybrid attack
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that combines noise measurements with a machine learning algorithm turns out
to be the most effective and efficient method for modeling XOR PUFs to date,
for example.

Version History. The version history of this chapter is as follows. Our
publication at the 1st Asian IEEE symposium on Hardware-Oriented Security
and Trust (AsianHOST 2016) is considerably extended. Our contributions to
the 6th IEEE symposium on Hardware-Oriented Security and Trust (HOST
2013) and the IEEE Transactions on Circuits and Systems I (TCAS-I 2014)
are summarized more briefly, given the improvements by other authors. The
author of this PhD thesis is the main contributor to all three publications.

Organization. The remainder of this chapter is organized as follows. Section 3.1
specifies a representative set of PUF circuits that is used for illustrative purposes
throughout this thesis. Section 3.2 derives upper bounds on the min-entropy
of several of the selected PUFs. Section 3.3 presents the experimental results
of our noise-based physical attacks on two of the selected PUFs. Section 3.4
concludes this chapter.

3.1 A Representative Set of PUF Circuits

A staggering number of PUF circuits has already been published and new designs
keep being proposed with no end in sight. Luckily, the underlying mechanisms
are fairly similar, and there is hence no urgent need for exhaustive listings
here. We present a small but representative set of PUF circuits that merely
serves to illustrate our main technical contributions later-on in this thesis. Our
set includes the three most well-known and well-studied PUFs, i.e., Arbiter
PUFs [100, 105], SRAM PUFs [98, 53, 68], and Ring Oscillator PUFs [161, 183],
as well as some of their variations.

Every PUF circuit comprises an analog core that is encapsulated by a digital
shell. The waveform of analog signals within the core, i.e., currents and voltages,
deviates from its nominal counterpart due to both process variations and noise.
A conversion from analog to digital quantities is needed such that the process
variations are captured without amplifying the noise. The selected PUF designs
all perform this conversion by comparing the waveform of two nominally identical
signals. Environmental perturbations and process drift might affect both signals
equally and hence cancel out to some extent. A naive design where the waveform
of a single signal is compared against a hardcoded reference is not only less
portable across technologies, but also more susceptible to environmental changes.
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3.1.1 Two Design Flavors: Weak and Strong PUFs

Given that silicon area is a scarce resource, two opposing design topologies
emerge according to the number of CRPs that a PUF provides. For so-called
weak and strong PUFs, the number of unique challenges c scales polynomially
and exponentially with the circuit area respectively. Polynomial coefficients are
as such that when given unrestricted access to a reasonably sized weak PUF,
one can exhaustively query and tabulate all CRPs in relatively limited time and
hence construct a software clone. For strong PUFs of sufficient size, however,
it is infeasible to enumerate all CRPs. This entails a world of difference for
cryptographic applications.

The most straightforward weak PUF design consist of an array of autonomous,
identically laid-out cells. Each cell produces a single bit, or occasionally, a few
bits. The address of a single cell, or alternatively, a cluster of cells serves as the
challenge c, i.e., cardinality |C| scales linearly with the circuit area. The primary
use of weak PUFs in a security architecture is the generation of a device-unique
secret key k ∈ {0, 1}κ. To be precise, a read-out of the complete array of cells,
hereby enumerating all possible challenges c ∈ C in, e.g., counter mode, provides
a noisy secret x ∈ {0, 1}λ, with λ > κ, that can be post-processed into a stable
secret key k. As cells are intended to operate autonomously, the distribution of
the secret X has the potential to be fairly uniform with respect to the infinite
set of manufactured devices.

Based on their virtually unlimited number of challenges c, strong PUFs are a
seemingly more versatile component in the security architecture of an electronic
device. The other side of the coin, however, is that their CRPs are highly
correlated. One manifestation thereof is that machine learning algorithms allow
for the construction of an accurate predictive model, given a relatively small
training set of CRPs {(c1, r1), (c2, r2), . . . , (cg, rg)}. Commonly used learning
techniques include artificial neural networks, logistic regression, and evolution
strategies. The resistance of a given strong PUF design is usually quantified by
both the number of training CRPs, i.e., g, and the algorithm runtime that are
needed to accurately model an instance.

There does not exist a single well-validated design of a strong PUF that is
known to be fully resistant to machine learning attacks, i.e., given unrestricted
access to the CRPs, the construction of a software clone is always feasible in
practice. In 2012, Maes [110] questioned whether the design of a resistant strong
PUF is at all possible, and also several years later, it remains an open problem.
Occasionally, the introduction of a new design is accompanied by sensational
resistance claims. However, analysis by independent parties tends to refute such
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claims, sooner or later. Just like their weak cousins, strong PUFs usually would
have to team up with cryptographic algorithms in order to provide excellent
security guarantees.

Three reasons limit our optimism for a true breakthrough in terms of modeling
resistance. First, there are no success stories yet, although Gassend et al. [50]
mapped a strong PUF to silicon in 2002 already, and although the quest
for a resistant design remained an active research topic ever since. Second,
strong PUFs extract their enormous number of CRPs from a limited silicon
area only, hereby incorporating a relatively small number of circuit elements.
A highly correlated structure that reuses elementary contributions to the
overall manufacturing variability is the unavoidable consequence. Third, unlike
cryptographic algorithms, strong PUF designs are highly constrained in their use
of confusion and diffusion techniques. Otherwise, contributions from local noise
sources would accumulate and render the response bits prohibitively unstable.

As a side note, the above subdivision into weak and strong PUFs comprehends a
popular adaptation of more restrictive notions that were proposed by Guajardo
et al. [53] in 2007. Originally, weak and strong PUFs were also required to
be tamper evident, i.e., physical invasion is supposed to permanently alter the
functional behavior of a PUF. Moreover, the knowledge of an arbitrary CRP
(c1, r1) may only provide a negligible amount of information on the response r2
to any challenge c2, with c1 6= c2. The latter requirement seems hard to meet
for strong PUFs in particular. Although relevant as the specification of an ideal
PUF, we stick to the more recent notions as these adequately subdivide the
designs that are realizable and in use today.

3.1.2 Selected Weak PUFs

We describe several weak PUFs.

SRAM and Other Memory-Based PUFs

An unmodified SRAM can be adopted as a PUF, as first proposed by Layman
et al. [98], and later also by Guajardo et al. [53] and Holcomb et al. [68]. Its
initial state after power-up provides a device-unique fingerprint. Note that
on transistor-level, an SRAM cell can be understood as pair of cross-coupled
inverters, i.e., NOT gates. Random process variations cause one inverter to
operate faster than the other, and depending thereupon each cell exhibits a
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preference to initialize as either a 1 or a 0. Functional behavior is inherently
foreseen, i.e., the memory address serves as the challenge c and the corresponding
cell contents serve as the response r.

Other bistable cells that consist of a positive feedback loop are known to
exhibit PUF behavior as well. Various latches and flip-flops, which operate in a
synchronous and asynchronous manner respectively, have been used. The cell
of Su et al. [160] comprises a set-reset latch that consists of two cross-coupled
NOR gates. Likewise, the cell of Maes et al. [113] comprises of a single D-type
flip-flop. Unfortunately, its responses turn out to be highly biased [113, 104,
89, 81], i.e., 0s and 1s are not equally likely to occur. This can presumably be
attributed to an asymmetry in the circuitry. Each cell of the Butterfly PUF
of Kumar et al. [97] comprises two cross-coupled D-type flip-flops. The cell of
Simons et al. [156] comprises a bus-keeper, i.e., a weak latch that consists of
two cross-coupled inverters.

Ring Oscillator PUFs

A ring oscillator (RO), i.e., a self-oscillating loop that consist of an odd number
of inverters, is a commonly used building block for crafting a PUF. Its frequency
of oscillation f , i.e., the reciprocal of the total propagation delay, depends on
random process variations. Counting the number of rising and/or falling edges
within a fixed time span provides a digital estimate thereof.

Consider an array of frequencies: f1, f2, . . . , fm. The following three PUF designs
generate response bits r via pairwise comparisons fi ≶ fj , with i 6= j. In
simplified form, the design of Yu et al. [183] partitions the ROs into |C| = bm/2c
disjunct pairs that each generate one response bit r. Maiti and Schaumont [116]
subdivide the ROs into |C| = (m − 1) overlapping pairs instead. Suh and
Devadas [161] allow for the selection of every possible pair, i.e., |C| =

(
m
2
)

=
m(m− 1)/2.

3.1.3 Selected Strong PUFs

We describe several strong PUF designs that are based on the propagation delay
of logic gates, or better, the variability thereof. Formally, we specify a function
r ← PUF(c, δ), where δ ∈ Rη collects the relevant delay-based quantities. This
abstraction of an ideally manufactured PUF assumes that propagation delays
and corresponding frequencies are representable by a single constant. It is hence
neglected that, in practice, rising and falling edges are sloping rather than
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instantaneous. Moreover, noise is not yet taken into account. We also specify
for each design an invertible transformation that maps a challenge c ∈ {0, 1}λ
to a more convenient representation γ ∈ {−1, 0, 1}η.

RO Sum PUFs

As is the case with weak PUFs, several designs of a strong PUF are again
RO-based. A first design is the RO Sum PUF of Yu and Devadas [186].
Consider the measurement of m pairwise frequency differences, i.e., δ =(
f2 − f1 f4 − f3 · · · f2m − f2m−1

)
. The challenge c determines for each pair

i ∈ [1,m] whether either δi or its opposite value −δi is accumulated to a
variable ω. Written as a dot product, ω = δ γT , where γ ∈ {−1, 1}m. A
comparison ω ≶ 0 results in a single response bit r. Recall that the number of
challenges, i.e., |C| = 2m, scales exponentially with the circuit area.

S-ArbRO PUFs

Similarly, S-ArbRO-2 PUFs were proposed by Ganta and Nazhandali [46]. This
design generalizes an RO Sum PUF such that only a subset of q oscillator pairs
contributes to ω, where q ∈ [1,m] is a constant. The selection of q pairs is part
of the challenge c. Written as a dot product, ω = δ γT , where γ ∈ {−1, 0, 1}m
and

∑m
i=1 |γi| = q. The number of unique challenges c equals

(
m
q

)
2q.

The same authors also proposed S-ArbRO-4 PUFs. The set of m RO pairs, with
m even, is then subdivided into m/2 partitions that contain two pairs each.
Only a subset of q partitions contributes to ω, where q ∈ [1,m/2] is a constant.
The selection of q partitions is part of the challenge c. Within each contributing
partition, either one out of two frequency differences δ is accumulated to ω,
without flipping signs. Written as a dot product, ω = δ γT , where γ ∈ {0, 1}m,∑m

i=1 γi = q, and ∀i ∈ [1,m/2], γ2i + γ2i−1 ∈ {0, 1}. The number of unique
challenges c equals

(
m/2
q

)
2q.

Loop PUFs

Gassend et al. [51] were the first to map a strong PUF to silicon. Their design
consists of a single reconfigurable RO, where challenge-driven multiplexers allow
to locally switch among parallel path segments. A sequential measurement of
the frequency f for two different configurations eventually results in a response
bit r. As an alternative, the authors suggest comparing the frequencies f of two
identically laid-out, reconfigurable ROs. There is a virtually endless number of
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combinations in which a reconfigurable RO can be constructed from buffers,
inverters, non-inverting multiplexers, inverting multiplexers, and other logic
gates, as reflected by the large number of slightly differing proposals [99, 116,
184, 32, 47, 138].

One such proposal is the so-called Loop PUF of Rioul et al. [138], which
considerably simplifies the challenge sequencer of the original, affiliated design
by Cherif et al. [32]. The term loop refers to the reconfigurable oscillator that is
shown in Figure 3.1. Let δi, with i ∈ [1,m], denote the difference between the
propagation delays of stage i when configured with challenge bits ci = 1 and
ci = 0 respectively. Given the dot product ω = δ γT , where γ ∈ {−1, 1}m, the
corresponding response bit r is generated through a comparison ω ≶ 0.

c1 cm

Figure 3.1: A Loop PUF with m stages, as proposed by Rioul et al. [138]. The
frequencies of the oscillator when configured with a challenge c ∈ {0, 1}m and
its additive inverse c respectively are compared in order to generate a response
bit r.

Arbiter PUFs

The Arbiter PUF of Lee et al. [100, 105] is shown in Figure 3.2. A rising edge
propagates through two reconfigurable paths with nominally identical delays.
Because of process variations however, there is a delay difference ω between
both paths. An arbiter element decides which path ‘wins’ the race through a
comparison ω ≶ 0, and generates a response bit r.

A r

c1
= 0

c2
= 1

c3
= 1

cm−1
= 0

cm
= 1

Figure 3.2: An Arbiter PUF with m stages, as proposed by Lee et al. [100, 105].
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The two paths are constructed from a series ofm switching elements. Challenge c
determines for each stage whether path segments are either crossed or uncrossed.
As shown in Figure 3.3, each stage has a unique contribution to the time
difference ω, depending on the value of its challenge bit c. Equation (3.1) writes
ω as a dot product [105]. The number of unique challenges c equals 2m.

δin

δout =
δin + δi,0 δin

δout =
−δin + δi,1

ci = 0 ci = 1

Figure 3.3: The delay behavior of a single stage of an Arbiter PUF.

ω = δ γT , with δ = δ? B,

δ? =
(
δ1,0 δ1,1 δ2,0 δ2,1 . . . δm,0 δm,1

)
,

B = 1
2



1 −1 0 0 0 0 . . . 0 0 0 0
1 1 1 −1 0 0 . . . 0 0 0 0
0 0 1 1 1 −1 . . . 0 0 0 0
...

...
...

...
...

... . . . ...
...

...
...

0 0 0 0 0 0 . . . 1 1 1 −1
0 0 0 0 0 0 . . . 0 0 1 1



T

,

and γ =


(1− 2c1)(1− 2c2) . . . (1− 2cm)

(1− 2c2) . . . (1− 2cm)
...

(1− 2cm)
1


T

.

(3.1)

Feed-Forward Arbiter PUFs

To improve the resistance to machine learning attacks, Lee et al. [100] also
proposed a feed-forward variant of their Arbiter PUF, as shown in Figure 3.4.
Each out of q ≥ 1 additional arbiter elements then compares the accumulated
time difference after a stage i ∈ [1,m − 1] against a threshold 0, and drives
the challenge bit cj of a stage j ∈ [i+ 1,m]. Note that |C| = 2m−q challenges
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remain selectable. In practice, unfortunately, noise effects are amplified by the
additional arbiter elements, i.e., an upper bound on q is imposed. Therefore,
machine learning attacks remain feasible [118, 145].

A

A r

c1
= 0

ci
= 1 cj

cm
= 1

Figure 3.4: A Feed-forward Arbiter PUF with m stages and q = 1 loop.

XOR PUFs

As proposed by Suh and Devadas [161], the response bits of a strong PUF can
be XORed before release so as to improve the resistance to machine learning
attacks. The original single-sentence specification is equally ambiguous as ours,
but Rührmair et al. [145] popularized the following interpretation. The XOR
PUF comprises q > 1 identically designed circuits of a strong PUF that are
laid-out in parallel. An identical challenge c is fed to all q component PUFs, and
their respective response bits rj , with j ∈ [1, q], are XORed in order to obtain
the final response bit, i.e., r = r1 ⊕ r2 ⊕ . . .⊕ rq. Although initially proposed
for Arbiter PUFs, the use of this technique has later also been suggested for
other strong PUFs, e.g., Bistable Ring PUFs [178]. The larger the number of
component PUFs, the harder to learn the input–output behavior of the XOR
PUF. In practice, unfortunately, the corresponding increase in noisiness imposes
an upper bound on q.

Majzoobi et al. [118, 117] proposed a more extensively parameterized alternative
to the previously described XOR PUF. Given again the use of q parallel
component PUFs, a first crucial difference is that the outgoing XOR network
may allow for the extraction of multiple response bits. An example instance
with q = 5, which is graphically represented by the authors [118, 117], defines
the response r of the XOR PUF as given in (3.2). However, as pointed out by
Sahoo et al. [151], an attacker can XOR well-chosen bits of response r so as to
obtain easier-to-learn targets. For the given example, an attacker can learn all
2-component combinations, i.e., r1 ⊕ r2, r1 ⊕ r3, . . . , r4 ⊕ r5, which also implies
knowledge of all 4-component combinations.
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r =


r1 ⊕ r2 ⊕ r3 ⊕ r4
r2 ⊕ r3 ⊕ r4 ⊕ r5
r3 ⊕ r4 ⊕ r5 ⊕ r1
r4 ⊕ r5 ⊕ r1 ⊕ r2


T

. (3.2)

A second crucial difference is that all q component PUFs do not necessarily
evaluate the same challenge c. Majzoobi et al. [118, 117] point out for the Arbiter
PUF in particular that its response r is not equally sensitive to a change in value
of each of its challenge bits c. As can be derived from (3.1), inverting the value
of challenge bits c1 and cm causes response r to flip with a probability of nearly
0 and nearly 1 respectively, for example. As a resolution, the authors suggest
feeding challenge c and its reversed counterpart

(
cm cm−1 . . . c1

)
to component

PUFs with index j ∈ [1, q] odd and even respectively. Rührmair et al. [145] later
confirmed for XOR PUFs with a single response bit, i.e., r = r1 ⊕ r2 ⊕ · · · ⊕ rq,
that the resistance to machine learning attacks is indeed improved this way.

Yu et al. [190, 188] suggest feeding a completely different challenge to each
component PUF. This variation of the XOR PUF assumes that challenge bits
are produced by a PRNG, which now has to increase its production with a
factor q, i.e., q m challenge bits c are needed for every response bit r. Control
over the applied challenge bits is limited this way. In the hypothetical case of
absolute control, an attacker could fix the challenge of q − 1 component PUFs
to a constant value and gather CRPs so as to model the remaining component
PUF individually. However, given the presence of a well-designed PRNG, the
resistance of the proposed XOR PUF to machine learning attacks is observed
to be higher than for the original proposal of Suh and Devadas [161].

Another XOR PUF variation of Yu et al. [188] consists of a single component
PUF only. Its serialized response

(
r1 r2 · · · rq

)
to q subsequent challenges is

then XORed into a single response bit r. The use of a well-designed PRNG as
challenge generator should again ensure that the attacker has limited control.
Serialized XORing can be combined with the previously described parallel
techniques.

3.1.4 Machine Learning

In spite of Definition 1, realizations of strong PUF do not behave as a random
oracle, as is clear from the small-sized variability models δ in Section 3.1.3. One
manifestation thereof is that the strict avalanche criterion [176] is not satisfied.
Similar to what has already been mentioned for Arbiter PUFs in particular,
other strong PUF designs also have challenge bits c that, when flipped, do not
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necessarily cause the response bit r to flip with a probability of 50%. Although
a more detailed quantization of this effect can be insightful [118], we focus on
another manifestation of the inherent functional dependencies: machine learning
algorithms allow for the construction of an accurate predictive model. Given
a relatively small training set of CRPs, i.e., {(c1, r1), (c2, r2), . . . , (cg, rg)}, the
response rg+1 to an unseen challenge cg+1 is predicted with a higher success
rate than random guessing would.

The accuracy of a predictive model is formalized in (3.3), where N is the
uniformly distributed seed of the possibly randomized training algorithm. It is
assumed that challenges ci are sampled independently and randomly from a
common set C. Monte Carlo experiments allow for an approximate evaluation
of the accuracy. Each expectance operator then deteriorates to an average of a
relatively small number of random samples. Normally, the function Accuracy(g)
increases monotonically with the number of training CRPs g, and its codomain
is [1/2, 1].

Accuracy(g) = Ec1←C1

[
Ec2←C2

[
. . .Ecg+1←Cg+1

[
En←N

[
Eδ←∆

[
P
(
Predict(cg+1; c1, r1, c2, r2, . . . , cg, rg,n) = rg+1

)]]]
. . .
]]
,

with ∀i ∈ [1, g + 1], ri ← PUF(ci, δ).

(3.3)

The internal mechanisms of RO Sum, S-ArbRO-2, S-ArbRO-4, Loop, and
Arbiter PUFs are fairly similar. There is a linear part, i.e., the dot product ω =
δ γT , followed by a non-linear part, i.e., the threshold operation ω ≶ 0. Machine
learning is greatly facilitated by using pairs (γi, ri) as training data instead of
pairs (ci, ri), given that this enhances the inherent linearity of the input–output
behavior. Out of many techniques that can tackle this fairly straightforward
learning problem, we opt for linear regression [56]: a least squares solution δ̂ of
the usually overdetermined system of linear equations in (3.4) is then computed.
This training method is fully deterministic, i.e., the set of seeds N = ∅. A
response bit rg+1 is predicted through a comparison

(
γg+1 1

)
δ̂ ≶ 1/2. Bias,

i.e., an imbalance between the expected number of 0s and 1s, can be captured
by making the models affine rather than linear. Except for the variability
model of an Arbiter PUF, which already incorporates an intercept, transformed
challenges γ are therefore extended with a constant 1.
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
γ1 1
γ2 1
...

...
γg 1

 δ =


r1
r2
...
rg

 . (3.4)

Figure 3.5 plots machine learning results for all five PUF designs. Ideal RO Sum
PUFs and ideal Loop PUFs are mathematically equivalent, so we only simulate
one. S-ArbRO-2 and S-ArbRO-4 PUFs [46] were claimed to be highly resistant
to machine learning attacks, especially in comparison with an Arbiter PUF.
Our results clearly refute this claim. The authors wrongly assumed that it is
necessary to learn a separate model for all possible selections of q contributing
stages.
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Figure 3.5: The modeling accuracy of ideal (I) RO Sum, S-ArbRO-2, Arbiter,
and (II) S-ArbRO-4 PUFs as a function of g, i.e., the number of training CRPs.
All designs are instantiated with m = 64 stages. For S-ArbRO-2 and S-ArbRO-4
PUFs in particular, we choose q = 32 and q = 16 contributing stages respectively,
as this maximizes their number of unique challenges c. Pairwise frequency and
delay differences ∆i are assumed to be independent and identically distributed
(i.i.d.) normal random variables. For improved visibility, we did fit a smoothing
spline through the raw Monte Carlo results.

Three out of four learning curves approximately coincide. The main anomaly,
apart from a sudden dip in performance around g = m = 64, is that S-ArbRO-4
PUFs are relatively easy to model if the system of equations in (3.4) is
underdetermined, i.e., g < m. The root cause of this anomaly is a newly revealed
issue: bias. Even when ideally manufactured, the instances of an S-ArbRO-4
PUF are considerably in favor of producing either 0s or 1s. As is clear from
Figure 3.6, the probability pbias = P(Ri = 1) for a given instance tends to differ
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considerably from 1/2. Given the high number of competing, bias-free PUF
designs, it seems unlikely to us that a system provider would be willing to deal
with bias-induced complications.
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Figure 3.6: An estimated PDF of the bias ratio Pbias for ideal (I) RO Sum PUFs,
(II) S-ArbRO-2 PUFs, (III) S-ArbRO-4 PUFs, and (IV) Arbiter PUFs. Pairwise
frequency and delay differences ∆i are assumed to be i.i.d. normal random
variables. All designs are instantiated with m = 64 stages. For S-ArbRO-2 and
S-ArbRO-4 PUFs in particular, we choose q = 32 and q = 16 contributing
stages respectively. For 105 randomly generated instances of each PUF design,
we evaluate the response r to 1000 randomly generated challenges c. Each
normalized histogram consists of 101 bins.

The fact that each out of m frequency differences δ of an S-ArbRO-4 PUF
always contributes with the same sign to ω is conjectured to be responsible
for the bias. Note that the same holds for the two delay differences δ that
comprise the last stage of an Arbiter PUF. This results in a milder version
of the bias issue, given that the signs of the first 2(m− 1) delay differences δ
are still randomized by the challenge. The bias characteristics of RO Sum and
S-ArbRO-2 PUFs are the most favorable, i.e., the behavior of a random oracle
is approximated.

Recall that XOR PUFs and Feed-forward PUFs are harder to learn than their
ancestors. Their learning curves are not reproduced in this thesis, and we hence
refer to the related literature [145, 110, 118, 165]. Another side note is that PUF
realizations on an ASIC or an FPGA might be somewhat harder to learn than
their ideal abstractions. A first reason is that part of the internal, real-world
mechanisms might not have been captured by the variability model δ. A second
reason is that both training and testing data are polluted by noise and possibly
also environmental changes. However, a temporal majority vote (TMV) [37] can
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to some extent ‘undo’ the noisiness. As formalized in (3.5) for an odd number
of votes q, each challenge c is then evaluated q times, and the most frequently
occurring value of the corresponding response bit r is retained.

r =


1, if r̂(1) + r̂(2) + . . .+ r̂(q) >

q − 1
2

0, otherwise.
(3.5)

As has been suggested earlier on, the ability to construct a predictive model
does not necessarily result in a security threat. The use of a strong PUF can
still be considered in multi-component systems where access to the CRPs is
highly restricted. The most notable inclusion is PUF-based key generation. In
Section 3.2, we therefore still aim to quantify the min-entropy that can be
provided by the given strong PUF designs.

3.1.5 An Accurate Variability�Noise Model

In practice, the previously discussed PUFs produce response bits ri that are
not perfectly reproducible. So as to provide insights into this phenomenon, we
describe an accurate and well-validated variability–noise model [157, 112, 109].
We will frequently use this model throughout the remainder of this thesis, given
that it can be applied to many PUF designs, especially when each individual
response bit ri is generated through the comparison of two nominally identical
signals. Prior to the elucidation of further details, a warning against the use of
oversimplified models is provided.

Naive, Homogeneous

For a manufactured PUF, the reproducibility is generally observed to differ
considerably among the response bits ri. While some response bits ri are
relatively stable, others are relatively unstable. A naive, homogeneous model
might nevertheless assume that all response bits ri are equally reproducible,
given that this simplifies the mathematical analysis of error-correction methods
for PUFs. The average-case behavior of several methods has been approximated
this way [21, 22, 103, 88], but care is obviously advised. In this thesis, we rely
on a more accurate, heterogeneous model instead.
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Accurate, Heterogeneous

We describe an accurate, heterogeneous variability–noise model that was
first introduced by Škorić et al. [157], and later refined by Maes et al. [112,
109] so as to account for bias. There are earlier uses in the related field of
human biometrics [106]. There are numerous works in literature, including our
aforementioned IEEE papers, where at least part of the model is experimentally
validated. The most complete validation is published by Maes [109]. The
cornerstone of the model is that the output variables of a highly complicated
physical process tend to be normally distributed, according to the central limit
theorem. The contributions of both variability and noise are the result of complex
underlying dynamics and are hence approximated this way. It is further assumed
that both effects are independent and additive. For ease of notation, we assume
that the evaluation of a given challenge c results in a single response bit r only.

The model consists of a parameterized probability distribution for the j-th
evaluation of response bits r̂1, r̂2, · · · , r̂λ, given a list of corresponding challenges
c1, c2, · · · , cλ. Two random variables are incorporated in (3.6). First, there
are the variability contributions Ωvar, which are defined with respect to the
IC’s reference environment. For example, reference values for the external
temperature T and the supply voltage VS could be 25 ◦C and 1.2 V respectively.
A random variate ωvar ∈ Rλ is drawn only once for any given PUF. The
off-diagonal elements of the covariance matrix Σvar account for spatial and
functional correlations. For example, the respective responses r1 and r2 of two
neighboring cells of an SRAM PUF might tend to be equal and could hence
exhibit a positive covariance, i.e., Σvar,1,2 > 0. Similarly for Arbiter PUFs, the
responses r1 and r2 to challenges c1 and c2 that differ in their last bit cm
exclusively, exhibit a negative covariance, i.e., Σvar,1,2 < 0.

∀i ∈ [1, λ],∀j ∈ [1,∞), r̂(j)
i =

1, if
(
ωvar,i + ω̂

(j)
noise,i

)
> ωthres,

0, otherwise,

where Ωvar ∼ N(0,Σvar) and Ω̂(j)
noise ∼ N

(
µ

(j)
noise,Σ

(j)
noise

)
.

(3.6)

The second random variable Ω̂(j)
noise comprises the contributions of additive noise.

Its distribution depends on the environment of the IC at the given time j.
Note that the properties of noise sources inside the IC might be influenced by
the environment, e.g., Johnson-Nyquist noise in metallic wires and transistors
increases with the temperature T . A random variate ω̂noise ∈ Rλ is drawn for
each evaluation j of the response r̂. If the environment at time j happens to
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be identical to the reference, then the offset µnoise = 0. We often assume i.i.d.
contributions of the noise, i.e., Ω̂noise ∼ N

(
µnoise 1, σ2

noise Iλ
)
. In the ideal case,

the threshold ωthres is zero, but nonzero values can incorporate bias, i.e., an
imbalance between the expected number of 0s and 1s.

Every model has limitations, and also here, certain physical effects might not
have been incorporated adequately. Nevertheless, the chosen model provides an
excellent trade-off between accuracy and mathematical complexity. Moreover,
given that in related literature, the mathematical analysis of error-correction
methods for PUFs is often reliant on the homogeneous model, the use of a
heterogeneous model entails an improvement in terms of accuracy.

3.2 Min-Entropy

PUFs are most frequently used for the generation of a device-unique secret
key k ∈ {0, 1}κ. Unfortunately, concatenating responses r1, r2, . . . to a list of
publicly known challenges c1, c2, . . . does not immediately result in a secret key k.
Apart from the noisiness, the concatenated string x ∈ {0, 1}λ is most likely non-
uniformly distributed. As will be discussed in Chapter 4, a fuzzy extractor [39]
provides an information-theoretically secure mechanism to transform x into a
stable secret key k. However, in order to guarantee that K is indeed uniformly
distributed over {0, 1}κ, a tight lower bound on the min-entropy of X needs to
be derived.

3.2.1 Overview

Unfortunately, developing proven solutions to the previously stated problem
might very well be infeasible for any silicon PUF [110]. Under the assumption of
an ideally manufactured design though, it is fairly trivial for several weak PUFs
to express the min-entropy of X in an exact manner, which is even better than
a lower bound. Our newly developed theory focuses on the more difficult case of
a strong PUF instead; tight upper bounds on the min-entropy of X are derived
for several designs. Although upper bounds are not usable for the provably
secure instantiation of a fuzzy extractor, it nevertheless results in novel insights.
Our theory demonstrates that designers of PUF-based systems are often too
optimistic about the min-entropy provided.
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Weak PUFs

Several weak PUF designs consists of an array of identically designed cells that
each produce a single bit r. As exemplified in Section 3.1.2, this includes the
SRAM PUF [98, 53, 68] and other memory-based designs [160, 113, 97, 156], as
well as the RO PUF of Yu et al. [183]. The most prominent entropy-degrading
effects for such PUFs are bias and spatial correlations. Bias comprehends an
imbalance between the expected number of 0s and 1s. Spatial correlations
implicate that neighboring cells might influence each other.

The latter non-uniformities are frequently observed for real-world PUFs [81, 89,
113, 104, 7], i.e., designs that are fabricated on either an ASIC or an FPGA.
Although a tight lower bound on the min-entropy of X cannot be evaluated
in a proven manner, the derivation of an upper bound tends to be a more
feasible alternative. To the best of our knowledge, feeding response bits into a
lossless compression algorithm is the only tool available so far [70, 104]. The
average number of retained bits converges to an upper bound on the min-entropy.
Katzenbeisser et al. [81] apply this technique to all six PUFs that comprise the
65 nm CMOS ASIC of the European research project UNIQUE [89].

Under the assumption of an ideally manufactured SRAM-like PUF, the
concatenated response x ∈ {0, 1}λ would be uniformly distributed, i.e.,
H∞(X) = λ. Statistical tests that detect non-uniformities can indicate to
which extent such an assumption is realistic. NIST specified a test suite [147]
that is frequently used worldwide. However, tests are designed to operate on a
one-dimensional bitstream. This complies with a TRNG, for example, but for
two-dimensional SRAM-like PUFs it is somewhat less suitable. Concatenating
either rows or columns into a one-dimensional bitstream may obfuscate spatial
correlations in the perpendicular direction. The latter remark also applies to
lossless compression algorithms that operate on a one-dimensional bitstream.

Another uniformity metric that is popular for PUFs in particular is the inter-
device distance. Given two PUF-enabled devices v1 and v2, the Hamming distance
between the respective responses r1, r2 ∈ {0, 1}η to an identical challenge c
is averaged according to (3.7). Note that for SRAM-like PUFs, an exhaustive
evaluation of all challenges c ∈ C is within reach. For an ideal PUF, which
behaves as a random oracle according to Definition 1, the random variable
Dinter exhibits a binomial distribution B(η, 1/2) with respect to the infinite set
of device pairs. It is a common practice to tabulate both the sample mean and
the sample standard deviation of Dinter [110], as can be computed for a limited
number of manufactured devices. The obtained values should be compared
against the ideal values η/2 and √η/2 respectively; differences can be attributed
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to bias and correlations respectively. To enable comparison among different PUF
architectures, one can divide the inter-device distance dinter by the length η and
hence normalize the codomain to [0, 1].

dinter(v1, v2) def= Ec←C
[
HD(r1, r2)

]
,

with ∀i ∈ {1, 2}, ri ← PUF(c, δi) and δi ← ∆.
(3.7)

Recall that, in practice, SRAM-like PUFs are often observed to exhibit bias
and/or spatial correlations. In order to estimate the min-entropy of X, one
could define a non-uniform distribution that closely resembles the experimental
data according to statistical tests. Consider for example a scenario where spatial
correlations seem to be absent, but there is a bias that remains approximately
constant with respect to the spatial coordinates of the two-dimensional array.
Formally, one could then assume that response bits Xi, with i ∈ [1, λ], are i.i.d.
and that P(Xi = 1) = pbias, where constant pbias ∈ [0, 1]. The min-entropy is
then H∞(X) = −λ log2(max(pbias, 1−pbias)). Although this again comprehends
an unproven technique, its usage is worthy of consideration due to the lack of
proven alternatives.

Katzenbeisser et al. [81] estimate the min-entropy of a single SRAM cell,
conditioned on the knowledge of the physically neighboring cell contents.
Formally, H̃∞(Xi,j |(Xi−1,j , Xi+1,j , Xi,j−1, Xi,j+1)) is determined, where the
indices are coordinates in a two-dimensional array. The numerical results,
however, are irrelevant for the fuzzy extraction [39] of a PUF-based key, and
merely serve as a statistical test for detecting spatial correlations. Recall that
the min-entropy of a long multi-bit secret X should be determined.

Not all weak PUFs consist of an array of autonomous cells that each produce a
single bit r. Even under the assumption of an ideally manufactured design, the
distribution of X is then not necessarily straightforward. Consider for example
the RO-based PUFs of Suh and Devadas [161] and Maiti and Schaumont [116].
The analysis of their min-entropy relies on methods that can also be used for
strong PUFs, as discussed hereafter.

Strong PUFs

Techniques that work well for SRAM-like PUFs are not necessarily suitable for
strong PUFs. When applying the NIST non-uniformity tests and/or a lossless
compression algorithm to the concatenated response x ∈ {0, 1}λ of a strong
PUF, the challenges ci are once again ignored. However, given that challenges ci
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no longer correspond to spatial coordinates, functional correlations among CRPs
are completely lost. Katzenbeisser et al. [81] nevertheless observe a considerable
compression rate for the 65 nm CMOS Arbiter PUFs that were manufactured
in the European research project UNIQUE. This can mainly be attributed to
bias though, and hence not to functional correlations.

We are the first to derive tight upper bounds on the min-entropy of X for various
strong PUFs, hereby incorporating the highly correlated functional behavior.
Although techniques are not necessarily limited thereto, we focus on RO Sum,
S-ArbRO-2, S-ArbRO-4, Loop, Arbiter, Arbiter Feed-forward, and XOR PUFs.
Three newly developed methods produce bounds via a black-box, gray-box, and
white-box approach respectively, i.e., the internal mechanisms of the PUF are
disregarded, easily incorporated, and extensively analyzed respectively. A brief
summary of each method is given below:

• The black-box approach relies on easy-to-obtain machine learning results
in order to evaluate the bound. PUFs simulated in software as well as
hardware implementations on either an FPGA or an ASIC can be modeled
and are therefore supported. The more efficient the learning algorithm,
the tighter the upper bound on the min-entropy of X. It is assumed that
challenges Ci are i.i.d. random variables.

• The white-box approach requires mathematical analysis of the PUF
internals. We rely on the variability models δ in order to render this
approach feasible, and assume that their elements ∆i are i.i.d. random
variables. Although hardware implementations do not necessarily comply
with the latter assumptions, it still reflects the ideal-case behavior of the
PUF as intended by its designers. Compared to the black-box approach,
bounds on the min-entropy are further improved.

• The gray-box approach represents the middle ground. Just like the white-
box approach, PUF internals are incorporated, but no extensive analysis
is required. The derivation of the bounds is somewhat similar to the black-
box approach. The assumptions of both the black-box and the white-box
approach are inherited.

Numerical results for all three methods are summarized in Table 3.1. It
demonstrates that designers are often too optimistic about the min-entropy
provided. The PUF-based key generator of Van Herrewege et al. [171] does not
meet its intended 128-bit security level, for example.
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Table 3.1: Numerical results for three newly developed methods that produce
upper bounds on the min-entropy H̃∞(X|(C1, C2, . . . , Cλ)) that is provided by
a strong PUF. So as to enable comparison among these methods, all data relates
to ideally manufactured PUFs and challenges ci that are selected independently,
randomly, and uniformly from the set of all possible challenges C.

Black-box Gray-box White-box

Assumptions
independently and randomly
selected challenges /

/ ideally manufactured PUF
RO Sum PUF
with m = 64 ≈ 248 bit

if λ = 500
≈ 381 bit

if λ = 1000
≈ 493 bit

if λ = 1500

≈ 221 bit
if λ = 500

≈ 303 bit
if λ = 1000

≈ 360 bit
if λ = 1500

≈ 193 bit
Loop PUF
with m = 64
S-ArbRO-2 PUF
with m = 64
and q = 32

?

S-ArbRO-4 PUF
with m = 64
and q = 16

64 bit

Arbiter PUF
with k = 64 ≈ 197 bit
Feed-forward
Arbiter PUF
with k = 64

? ?

RO Sum
XOR PUF
with m = 64
and q = 2

?

≈ 416 bit
if λ = 500

≈ 597 bit
if λ = 1000

≈ 703 bit
if λ = 1500

≈ 387 bit
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3.2.2 Black-Box Bounds

A first proven method to evaluate upper bounds on the min-entropy of X adopts
a black-box approach. We rely on machine learning results exclusively, regardless
of the internals of the PUF circuit. The method can therefore be applied to
simulated PUFs and/or FPGA/ASIC implementations. The performance of
machine learning techniques is always suboptimal in practice, i.e., Accuracy(g)
in (3.3) is not the theoretical maximum with respect to a given number of
training CRPs g. This implies that an upper bound on the min-entropy of X is
the best achievable result, i.e., a lower bound or an exact value is inherently
out of reach.

Theory

The min-entropy of X obviously depends on the given list of hardcoded
challenges, i.e., c1, c2, . . . , cλ. It is our goal, however, to assess the quality
of a given PUF design in a universal manner, regardless of the implementation
details of a particular challenge generator. We therefore resort to the conditional
min-entropy in (3.8), where the success rate of an attacker’s best guess is
averaged over the set of all possible challenge generators. It is fair to assume
that challenges Ci are i.i.d. uniform random variables. Challenge generators
are typically designed to produce pseudorandom bitstreams whose properties
approximate the properties of truly random sequences.

H̃∞(X|(C1, C2, . . . , Cλ)) = − log2

(
Ec1←C1

[
Ec2←C2

[
. . .Ecλ←Cλ

[
max
x∈X

P
(
(X = x)|((C1 = c1) ∩ (C2 = c2) ∩ . . . ∩ (Cλ = cλ))

)]
. . .
]])

.

(3.8)

Consider a possibly randomized procedure x̂← Guess(c1, c2, . . . , cλ, n), where
N is a uniformly distributed seed, used by the attacker to make an educated
guess of the concatenated response x. An upper bound on its success rate is
defined by the optimal guessing procedure, which deterministically returns the
most likely value of X with respect to the given set of challenges. A performance
evaluation of a non-ideal realization of Guess hence results in an upper bound
on the min-entropy that is produced by the PUF, as shown in (3.9).
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H̃∞(X|(C1, C2, . . . , Cλ)) ≤ − log2

(
Ec1←C1

[
Ec2←C2

[
. . .Ecλ←Cλ

[
En←N

[
P
(
(X = Guess(c1, c2, . . . , cλ,n))|

((C1 = c1) ∩ (C2 = c2) ∩ . . . ∩ (Cλ = cλ))
)]]

. . .
]])

.

(3.9)

Consider the following realization of Guess, making use of a machine learning
algorithm. The first g bits of the concatenated response x, where g ∈ [1, λ] is a
constant, are guessed at random, which involves sampling a random variable U
that is uniformly distributed over {0, 1}g whenever Guess is evaluated. The
success probability thereof is (1/2)g, regardless of the distribution of X. The
resulting set of g hopefully correct CRPs comprehends the input of a possibly
randomized training algorithm that outputs a predictive model of the PUF. A
procedure Predict can then provide the last (λ− g) bits of prospective response
x̂. The upper bound on the min-entropy produced by the PUF reduces to (3.10).

H̃∞(X|(C1, C2, . . . , Cλ)) ≤ − log2

(
Ec1←C1

[

Ec2←C2

[
. . .Ecλ←Cλ

[
En←N

[
Eδ←∆

[(1
2

)g
λ∏

i=g+1
P(Xi = Predict(ci; c1, x1, c2, x2, . . . , cg, xg,n)

]]]
. . .

]])
, with ∀i ∈ [1, λ], xi ← PUF(ci, δ).

(3.10)

Given that challenges Ci are independent, the modeling accuracy as defined
in (3.3) reappears. We hence obtain the bound in (3.11). For a given response
length λ, the value of g that results in the tightest bound is of primary
interest. We emphasize that the min-entropy of a sizable multi-bit response X
is being bounded here, as this has immediate application to a subsequent fuzzy
extractor [39]. Katzenbeisser et al. [81] and Maes [110] previously considered
a less complicated but also less useful scenario where the min-entropy of a
single response bit is bounded, i.e., H̃∞(Rg+1|(C1, R1, . . . , Cg, Rg, Cg+1)) ≤
− log2(Accuracy(g)).



MIN-ENTROPY 41

H̃∞(X|(C1, C2, . . . , Cλ)) ≤ g − (λ− g) log2(Accuracy(g)). (3.11)

Numerical Results

Figure 3.7 plots upper bounds on the min-entropy of ideal, simulated Arbiter
PUFs. This result clearly undermines the security of the 128-bit key generator of
Van Herrewege et al. [171], which relies on an Arbiter PUF with m = 64 stages
as well. Their 1785-bit response X was assumed to be uniformly distributed,
while our bound implies that the min-entropy does not exceed 550 bits. Note
that we consider simulated PUFs, which differs from the 65 nm CMOS ASIC
that was manufactured during the research project UNIQUE. Nevertheless, the
conclusion hardly changes when plugging in the learning curve of the latter [110].
Upper bounds on the min-entropy of ideal RO Sum PUFs, ideal Loop PUFs,
ideal S-ArbRO-2 PUFs, and ideal S-ArbRO-4 PUFs are approximately the same,
given that the learning curves in Figure 3.5 approximately coincide.

3.2.3 Gray-Box Bounds

Unlike the previously derived black-box bounds, the evaluation of gray-box
bounds requires knowledge of the PUF internals. We limit ourselves to ideally
manufactured PUFs, although it might be feasible to incorporate certain non-
idealities that occur in hardware implementations. Frequencies Fi and delay
differences ∆i are assumed to be i.i.d. normal random variables. Furthermore,
we assume that frequencies can be measured with infinite precision, which differs
from the digital counters used in hardware.

Finally, it is assumed that the concatenated response x of a PUF can be evaluated
in a noiseless manner, which is not necessarily a far-fetched assumption in
practice. As will be discussed in Chapter 4, a reference value of x, which in turn
determines the value of the key k, is usually drawn during the enrollment of a
PUF-enabled device, where the environment can be ultra-stable. Environmental
changes that later occur during the in-the-field deployment of a device hence do
not affect the min-entropy of X and K. Moreover, TMV as previously formalized
in (3.5) can suppress noise during the enrollment.
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Figure 3.7: An upper bound on the min-entropy H̃∞(X|(C1, C2, . . . , Cλ)) of a
simulated Arbiter PUF with m = 64 stages. (a) For λ = 1785 challenges, the
best bound is approximately 550 bits, hereby using g = 242 CRPs as training
set. (b) For each response length λ, the optimal number of training CRPs g can
be selected so as to obtain the best possible bound.

Theory

The variability model of each strong PUF in Section 3.1.3 is instantiated by a
list of independent, zero-centered normal random variables ∆i ∼ N(0, σ2

i ), with
i ∈ [1, η]. As illustrated in Figure 3.8, we partition the domain of each random
variable ∆i into 2q equiprobable intervals, where q ∈ {1, 2, 3, . . .} is a constant.
Within each interval [αi,j , βi,j ], with j ∈ [1, 2q], an arbitrary center value δi,j
is subsequently selected. We opt for the expected value of ∆i, conditional on
αi,j < ∆i < βi,j . As elaborated in (3.12), the expected value of a truncated
normal distribution can be computed easily.
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Figure 3.8: Partitioning the domain of a standard normal distribution ∆i ∼
N(0, 1) into 2q equiprobable intervals, with (a) q = 1 and (b) q = 2. The center
value δi,j of each interval j ∈ [1, 2q] is indicated by an arrow.

δi,j = 2q
σi

∫ βi,j

αi,j

δ fnorm

( δ
σi

)
dδ = 2qσi

(
fnorm

(αi,j
σi

)
− fnorm

(βi,j
σi

))
,

with αi,j = F−1
norm

(j − 1
2q

)
σi, βi,j = F−1

norm

( j
2q
)
σi, and j ∈ [1, 2q].

(3.12)

Suppose that we modify a randomly instantiated PUF such that each δi
is replaced by the center value δi,j that belongs to the same interval. The
respective accuracy as defined in (3.13) can be evaluated easily via Monte
Carlo experiments. Normally, Accuracy(q) increases monotonically with the
quantization parameter q.

Accuracy(q) = Ec←C

[
Eδ←∆

[
P
(
PUF

(
c, δ) = PUF(c, δ)

)]]
,

with ∀i = [1,m],∃j = [1, 2q] such that δi, δi,j ∈ [αi,j , βi,j ].
(3.13)

Similar to our derivation of the black-box bounds, we consider a randomized
procedure x̂ ← Guess(c1, c2, . . . , cλ, n), where N is a uniformly distributed
seed, used by the attacker to make an educated guess of the concatenated
response x. The following two-step instantiation of Guess is adopted. First, an
interval [αj , βj ] is selected uniformly at random for each random variable ∆i.
Hopefully, αj ≤ δi ≤ βj so that center value δj could serve as an accurate
estimate. The probability that all intervals are guessed correctly equals (1/2mq).
Second, the variability model of the PUF instantiated with all m center values
allows for the evaluation of response bits.
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Given that challenges are independent, we obtain the upper bound on the
min-entropy given by (3.14). For a given response length λ, the value of q that
results in the tightest bound is of primary interest.

H̃∞(X|(C1, C2, . . . , Cλ)) ≤ mq − λ log2(Accuracy(q)). (3.14)

Numerical Results

Figure 3.9 plots upper bounds on the min-entropy of ideal, simulated RO
Sum PUFs. Numerical results for ideal Arbiter PUFs, ideal loop PUFs, ideal
S-ArbRO-2 PUFs, and ideal S-ArbRO-4 PUFs are approximately the same.
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Figure 3.9: Gray-box bounds on the min-entropy H̃∞(X|(C1, C2, . . . , Cλ)) of
(a) an RO Sum PUF with m = 64 stages, and (b) an RO Sum XOR PUF with
2 chains of m = 64 stages each. The domain of each variable ∆i is subdivided
into 2q equiprobable intervals with (I) q = 1, (II) q = 2, (III) q = 3, and (IV)
q = 4. Note that the bounds are linear functions of the number of challenges λ.
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3.2.4 White-Box Bounds

The white-box approach requires extensive analysis of the PUF internals, but
can result in tighter bounds and improved insights. We derive upper bounds on
the min-entropy of the gigantesque |C|-bit concatenated response X, obtained
by evaluating all possible challenges c. The bound is hence valid for all possible
challenge generators, typically producing a small subset of C only. The min-
entropy of a random variable, in this case X, can only decrease or remain
equal when part of its bits are discarded. As for the gray-box bounds, we limit
ourselves to ideally manufactured PUFs.

Weak, RO-Based PUFs

The response bits r of the RO-based PUF of Suh and Devadas [161] are clearly
correlated. For example, knowledge of f1 < f2 and f2 < f3 implies f1 < f3.
Assume that the response bits r to all challenges c ∈ C are concatenated into
a multi-bit secret x of length m(m − 1)/2. The authors conclude that the
min-entropy is H∞(X) = log2(m!), given that all m! frequency orderings, i.e.,
permutations, are equally likely. For a challenge generator that produces a
subset of C only, the previously derived expression is to be considered as an
upper bound, i.e., H∞(X) ≤ log2(m!).

Similarly, the RO-based PUF of Maiti and Schaumont [116] generates a secret
response x of length (m−1). In contradiction to the authors’ claim, the response
bits are not independent. This has been pointed out by Yin and Qu [181] through
an intuitive counterexample with m = 3 ROs. We considerably extend their
analysis by evaluating the min-entropy as a function ofm. Consider the following
Monte Carlo experiment on small-scale PUFs. For any given m ∈ [2, 20], we
evaluate the (m− 1)-bit response x of 105 randomly generated PUF instances.
Test results indicate that the alternating sequences x =

(
0 1 0 1 . . .

)
and x =

(
1 0 1 0 . . .

)
are the most likely to occur, which corresponds to

f1 < f2 > f3 < . . . and f1 > f2 < f3 > . . . respectively. The min-entropy of X
is hence upper-bounded as shown in (3.15), regardless of whether m is small or
large. We do not formally exclude that another outcome is more likely to occur
and therefore claim to have derived an upper bound rather than an exact result.

H∞(X) ≤ − log2

(
P
(
X =

(
0 1 0 1 . . .

)))
. (3.15)
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Theory on Euler numbers and alternating permutations [159] allows for an
exact evaluation of (3.15). We obtain (3.16), where 2 eul(m) equals the number
of alternating permutations of size m. There exist more efficient methods to
compute the given recurrence relation for eul(m), but we do not further elaborate
this matter.

H∞(X) ≤ log2

(
m!

eul(m)

)
,

with eul(m) =


m−1∑
i=0

(
m− 1
k

)
eul(i)eul(m− 1− i) if m ≥ 2,

1 if m ∈ {0, 1}.

(3.16)

Figure 3.10 plots the min-entropy of both weak, RO-based PUFs. It can be seen
that the incorrect result H∞(X) = (m − 1) of Maiti and Schaumont [116] is
overly optimistic.

2 8 14 200
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40

60
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(II) (III)
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H̃∞

Figure 3.10: The min-entropy of two weak, RO-based PUFs that consist of m
oscillators. (I) The exact result H∞(X) = log2(m!), which holds for the design
of Suh and Devadas [161]. (II) The invalid result H∞(X) = (m − 1) of
Maiti and Schaumont [116]. (III) Our newly derived upper bound H∞(X) =
log2(m!/eul(m)) shows a considerable discrepancy with the latter result. Each
dot corresponds to a Monte-Carlo experiment of size 105 that verifies the
correctness of (3.16).
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RO Sum PUFs

We carry-out the following Monte Carlo experiment on small-scale RO Sum
PUFs. For a given m ∈ [1, 5], i.e., the number of stages, we evaluate the 2m-bit
concatenated response x of 106 randomly generated PUF instances. Test results
indicate that the 2m outcomes where exactly one δi dominates are the most
likely to occur. For instance, δ1 > |δ2| + |δ3| + . . . + |δm|, degenerating the
thresholding procedure to γ1 δ1 ≶ 0. The min-entropy of X is hence upper-
bounded as shown in (3.17), regardless of whether m is small or large. For
ease of notation, the pairwise frequency differences are assumed to be standard
normal random variables, i.e., ∆i ∼ N(0, 1), with i ∈ [1,m]. The standard
deviation can be chosen arbitrarily due to thresholding with 0. As before, we do
not formally exclude that another outcome is more likely to occur and therefore
claim to have derived a bound rather than an exact result.

H∞(X) ≤ − log2

(
P
(

∆1 >

m∑
i=2
|∆i|

))
=

− log2

(∫ ∞
0

fnorm(δ1)
∫ δ1

0
2fnorm(δ2)

∫ δ1−δ2

0
2fnorm(δ3)

. . .

∫ δ1−δ2−...−δm−1

0
2 fnorm(δm) dδm . . . dδ3 dδ2 dδ1

)
.

(3.17)

Unfortunately, for large m, the nested integrals in (3.17) cannot be evaluated in
a convenient numerical or analytical manner. The distribution of the sum of zero-
truncated normally distributed random variables is non-trivial. We therefore
integrate over a subregion only, which remains consistent with an upper bound
on H∞(X). As illustrated in Figure 3.11 for m = 3, the complete integration
domain for δ2 to δm is bounded by a simplex with vertices

(
δ1 0 . . . 0

)
to(

0 . . . 0 δ1
)
. The most straightforward reduction comprehends integrating

in a hypercube with vertex
(
δ1/(m− 1) δ1/(m− 1) . . . δ1/(m− 1)

)
. The

resulting expression in (3.18) can be evaluated easily.

P
(

∆1 >

m∑
i=2
|∆i|

)
≥
∫ ∞

0
fnorm(δ1)

(
Fnorm

( δ1
m− 1

)
− Fnorm

(
− δ1
m− 1

))m−1
dδ1.

(3.18)
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Figure 3.11: Reducing the integration domain of (3.17), illustrated for m = 3.
Both an inscribed hypercube and an inscribed hypersphere are represented.

A tighter upper bound on the min-entropyH∞(X) is obtained by integrating over
the inscribed hypersphere instead. A transformation from Cartesian coordinates(
δ2 δ3 . . . δm

)
to hyperspherical coordinates

(
ρ φ1 . . . φm−2

)
is defined

in (3.19).

δ2 = ρ cos(φ1),
δ3 = ρ sin(φ1) cos(φ2),

...
δm−1 = ρ sin(φ1) . . . sin(φm−3) cos(φm−2),
δm = ρ sin(φ1) . . . sin(φm−3) sin(φm−2),

with ρ ∈ R+, φm−2 ∈ [0, 2π), and φ1, · · · , φm−3 ∈ [0, π).

(3.19)

As can be derived from the Jacobian determinant, the volume element for
integration is given in (3.20).

dδ2 dδ3 · · · dδm = ρm−2 sinm−3(φ1) sinm−4(φ2) · · ·

sin(φm−3) dρdφ1 dφ2 · · · dφm−2.
(3.20)

We hence obtain (3.21), which is valid for m ≥ 3.
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P
(

∆1 >

m∑
i=2
|∆i|

)
≥
∫ π

0
sinm−3(φ1) dφ1

∫ π

0
sinm−4(φ2) dφ2 . . .

∫ π

0
sin(φm−3) dφm−3

∫ 2π

0
dφm−2

∫ ∞
0

fnorm(δ1)
(∫ δ1√

m−1

0

ρm−2

(
√

2π)m−1
exp
(
−ρ

2

2

)
dρ
)

dδ1.

(3.21)

The latter product of integrals can be fully elaborated. First, observe the
recurrence relation in (3.22).

∫ π

0
sini(φ) dφ =



2 if i = 1,

π

2 if i = 2,

i− 1
i

∫ π

0
sini−2(φ) dφ if i > 2.

(3.22)

For m odd, (3.23) hence holds.

m−3∏
i=1

(∫ π

0
sini(φ) dφ

)
= π(m−3)/2

(m−3
2 )!

. (3.23)

Combined with repeated partial integration, we obtain the bound in (3.24),
valid for m odd.

H∞(X) ≤ − log2

(
1
2

(
1−

√
m− 1
m

(m−3)/2∑
i=0

(2i)!
(i!)2(4m)i

))
. (3.24)

Fig. 3.12 plots upper bounds on min-entropy using the inscribed hypercube and
the inscribed hypersphere respectively. As an additional validation of the latter
case, we compute (3.21) and (3.24) with MATLAB and Maple respectively, i.e.,
the same numerical results are produced by two different tools.
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Figure 3.12: Upper bounds on the min-entropy of an ideal RO Sum PUF as
a function of the number of stages m. Top and bottom curves correspond to
integration via an inscribed hypercube and hypersphere respectively.

Loop PUFs

The mathematical abstractions of an m-stage Loop PUF and an m-stage RO
Sum PUF are identical. Therefore, the previously derived upper bound (3.24)
still applies. Another result of interest that applies to both PUF designs is
proven by Rioul et al. [138]: for a well-chosen set of m challenges, it is possible
to extract a uniformly distributed response, i.e., H∞(X) = m. To be specific,
the challenges should correspond to the rows of an m×m Hadamard matrix. A
remarkable consequence of this derivation is that given 2m non-reconfigurable
oscillators, an RO Sum PUF and the weak RO-based PUF of Yu et al. [183] are
both able to provide an m-bit uniformly distributed response.

Arbiter PUFs

The upper bound in (3.24) on the min-entropy of an RO Sum PUF with
m+ 1 stages applies to an Arbiter PUF with m stages equally well. As has been
mentioned in Section 2.3, if δ = δ? B is a linear transformation of ∆? ∼ N(µ,Σ),
then ∆ ∼ N(µB,BT Σ B). With B defined in (3.1) and ∆? ∼ N(0, I2m), it
hence holds that ∆ ∼ N(0, diag(1/2, 1, . . . , 1, 1/2)). As all m+ 1 variables are
independent, we evaluate a lower bound on the probability P(∆2 > |∆1|+ |∆3|+
|∆m+1|) similar to (3.21). Compared to the black-box approach in Figure 3.7,
the upper bound on the min-entropy is considerable improved. The bound on
the 1785-bit response of an arbiter PUF with m = 64 stages is reduced from
approximately 550 bits to approximately 197 bits.
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Feed-forward Arbiter PUFs

The upper bound on the min-entropy of an Arbiter PUF with m stages applies
to its feed-forward variant with an equal number of stages m stages as well,
regardless of the number of loops q and the corresponding tap positions. The
main insight is that the feed-forward variant covers only a subset of 2m−q
out of 2m transformed challenges γ, i.e., part of the gigantesque concatenated
response x can be discarded. Despite being more resistant to machine learning
attacks [145], the min-entropy hence does not increase, which highlights the
superiority of the white-box approach to the black-box approach. This also
implies that the feed-forward variant is not very suitable for the fuzzy extraction
of a secret key, given that for the same min-entropy, it consumes more resources
while providing less stable responses.

S-ArbRO-4 PUFs

There is a trivial upper bound on the min-entropy of an S-ArbRO-4 PUF
with m RO pairs, i.e., H∞(X) ≤ m. This corresponds to the probability that
the signs of all m frequency differences δi are either all negative or all positive,
making concatenated response x either 0 or 1. Despite outputting up to

(
m/2
q

)
2q

response bits, the produced min-entropy is hence not larger than for the weak
RO-based PUF of Yu et al. [183], given an equal number of 2m ROs.

XOR PUFs

Consider all XOR PUFs that condense the responses of q parallel and identically
laid-out component PUFs into a single bit, regardless of the chosen strong
PUF design, and regardless of whether component challenges are identical [161,
145], permuted [118, 117], or virtually independent [188]. As shown in (3.25), a
generic upper bound on the min-entropy H∞(X1 ⊕X2 ⊕ . . .⊕Xq) of an XOR
PUF can be derived from an upper bound on the min-entropy H∞(Xj) of its
component PUFs.

H∞
(
Xj

)
≤ β =⇒ H∞

(
X1 ⊕X2 ⊕ . . .⊕Xq

)
≤ q β. (3.25)

The reasoning for the case of identical component challenges [161, 145] is given
in (3.26). A lower bound α on the probability of occurrence of the most likely
response x of a component PUF can be raised to the power of q for the XORed
counterpart.
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∀x ∈ X ,P
(
X1 = x

)
= P

(
X2 = x

)
= . . . = P

(
Xq = x

)
≥ α

=⇒ P

(
X1 ⊕X2 ⊕ . . .⊕Xq =

{
x if q ∈ {1, 3, 5, . . .}
0 if q ∈ {2, 4, 6, . . .}

)
≥ αq.

(3.26)

A more general reasoning for permuted [118, 117] and independent [188]
component challenges is given in (3.27), with responses x having length |C| and
|C|q respectively.

∀x1,x2, . . . ,xq ∈ X ,

P
(
X1 = x1

)
= P

(
X2 = x2

)
= . . . = P

(
Xq = xq

)
≥ α

=⇒ P
(
X1 ⊕X2 ⊕ . . .⊕Xq = x1 ⊕ x2 ⊕ . . .⊕ xq

)
≥ αq.

(3.27)

For specific instances of an XOR PUF, a tighter upper bound may be derived.
Consider for example an m-stage RO Sum XOR PUF with identical component
challenges and q even. Recall that 2m responses of an RO Sum PUF were
identified to be equally likely and we derived a lower bound α on their identical
probability of occurrence in (3.21). There are hence (2m)q/2 combinations that
produce with probability αq an XORed response X1 ⊕X2 ⊕ . . . ⊕Xq = 0 in
(3.26) rather than only one. The improved bound is given in (3.28).

H∞
(
X1 ⊕X2 ⊕ . . .⊕Xq

)
≤ q β − q

2

(
1 + log2(m)

)
,

with β ≥ − log2

(
P
(
∆1 > |∆2|+ |∆3|+ . . .+ |∆m|

))
.

(3.28)

In fact, the looser bound in (3.25) already reveals that XOR PUFs are not very
suitable for the fuzzy extraction of a secret key. In terms of min-entropy, it
is more efficient to omit the XOR operation and let each out of q identically
laid-out component PUFs autonomically provide a fraction 1/q of the response
bits. This also reduces the error rates, which results in further savings.
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3.3 Physical Attacks

PUFs were initially praised for their resistance to physical attacks. This in
part relies on the intuitive insight that invasion of the IC might permanently
alter the behavior of the PUF and hence destroy the secret. Furthermore, in
contrast to NVM, the power-off state is presumed to be highly secure because
the secret is hidden in nanoscale process variations. However, it would be a
stretch to conclude that PUFs offer comfortable security guarantees by default.
Side-channel analysis is non-invasive and hence cannot destroy the secret.
Likewise, fault attacks may alter the behavior of a PUF temporarily rather
than permanently. Finally, invasive techniques do not necessarily damage the
elements of the PUF that harvest process variations.

From the early 2010s onwards, i.e., roughly a decade after the first silicon PUFs
were manufactured [107, 51], the first successful physical attacks on PUFs were
being reported. We summarize the current state-of-the-art. Afterwards, our
contribution is elaborated in more detail. We were the first to experimentally
demonstrate that noise can be exploited as a side-channel. This fundamentally
differs from the side-channel analysis of cryptographic algorithms, where noise is
usually a prohibiting factor rather than an exploit. After our work was published,
we received word [146] that Rührmair et al. previously pitched the core idea
of our attack as part of a single paragraph [145]. The respective novelty of our
work is hence to be understood as an extensive elaboration and a first proof
of concept, hereby relying on experimental data. Moreover, a newly proposed
extension to fault attacks is experimentally validated as well.

3.3.1 Related Literature

Several physical attacks on PUF circuits have been reported. Below, we
summarize them according to the primary physical channel that is being
exploited. Evidently, all attacks have limitations, e.g., the feasibility of most
invasive attacks has only been demonstrated for older technologies, and various
countermeasures have been proposed, but we do not discuss these further.

• Electromagnetic emissions. First theoretically [122] and later experi-
mentally [121, 120], Merli et al. demonstrated that RO-based PUFs can
be prone to electromagnetic analysis. From the IC’s frontside [120] or
backside [121] and in a semi-invasive manner, oscillator frequencies are
captured and response bits are hence revealed. As a side note, Bayon et
al. [11] later used a similar exploit for RO-based TRNGs.
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• Photonic emissions. From the IC’s backside, Helfmeier et al. [58] capture
photons that are emitted by transistors in saturation. The contents of an
SRAM PUF are obtained this way, in a semi-invasive manner. Likewise,
Tajik et al. [163] use photons to measure the propagation delay of logic
gates. Arbiter PUFs, RO-based PUFs, and other delay-based designs are
hence at risk as well.

• Laser stimulation. From the IC’s backside and in a semi-invasive manner,
Nedospasov et al. [124] stimulate the inverters of an SRAM PUF cell with
a near-infrared laser. This causes local heating, which in turn triggers an
electric current that can be detected through the power supply and hence
reveal the cell contents. Likewise, Tajik et al. [164] use a laser to iteratively
disable all but one arbiter chains that constitute an XOR PUF. Machine
learning of each individual chain eventually results in a predictive model
of the XOR PUF. This attack is performed on a rebootable FPGA-like
device so that induced faults can be undone. The authors are also able to
disable the individual oscillators of an RO-based PUF.

• Focused ion beam. Helfmeier et al. [58] either trim or remove transistors
with an FIB workstation so that the possibly unknown initial state of
an SRAM PUF can be overwritten. If an initial state has been retrieved
via other means, this would also allow for the construction of a physical
clone. As a side note, the so-called Coating PUF of Tuyls et al. [168]
is claimed to be resistant to FIB attacks. This design harvests process
variations from a custom-designed coating directly above the metal layers.
The authors performed an experimental attack from the IC’s frontside
that inadvertently implants ions into the coating and hence alters the
PUF characteristics.

• Power consumption. Becker and Kumar [14] and Rührmair et al. [146]
measure power traces in order to model Arbiter and Arbiter XOR PUFs
respectively.

• Remanence Decay. Zeitouni et al. [191] experimentally recover the
initial state of an SRAM PUF via remanence decay. Despite its volatile
nature, cell-specific data remanence effects that decay over time are
observed to be present.

The primary focus of the aforementioned attacks is the collection or alteration
of otherwise inaccessible CRPs. For weak PUFs, this corresponds to a direct
characterization of the secret. For strong PUFs, an additional machine learning
step might be required for the attack to be successful.
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3.3.2 Exploitation of Noise

We describe our work on the exploitation of noise.

Idea

Given direct access to the interface of a strong PUF, an attacker can obtain
the noisy response r̂i to any challenge ci. We point out that by measuring the
reproducibility of ri, which involves a repeated evaluation of ci, the attacker
can recover an internal, analog secret that facilitates the learning problem.
Consider the heterogeneous variability–noise model of Section 3.1.5 where all
response bits are equally affected by noise. As is clear from (3.29), reproducibility
measurements allow for an estimate of the internal variability aggregate ωi.
An attacker can hence bypass the threshold operation of a PUF circuit, i.e., a
non-linearity that increases the resistance to modeling is eliminated.

P(R̂i = 1) = Fnorm((ωi − ωthres)/σnoise). (3.29)

We experimentally demonstrate the exploit for both Arbiter and RO Sum PUFs.
The threshold operation is then the only non-linearity. When bypassed, an
attacker can hence construct a predictive model by solving a system of linear
equations. For our proof-of-concept attack, randomly chosen challenges ci are
evaluated q times each, and we retain the ones with rather noisy responses,
i.e.,

(
r̂

(1)
i + r̂

(2)
i + · · ·+ r̂

(q)
i

)
/q ∈ [0.1, 0.9]. The most stable bits are discarded,

given that small errors on P(R̂i = 1) are then amplified to large errors on the
variability component ωi.

The noisier the PUF, the higher the retention ratio pret for CRPs, and hence
the more efficient the attack. For this reason, we consider the two measurement
setups in Figure 3.13. Given that the attacker needs the obtain a predictive
model of the PUF under nominal conditions, the most intuitive approach is to
gather CRPs with the IC in its nominal environment. However, by changing the
environment across the q evaluations, the retention ratio pret can be increased. So
as to maintain a high modeling accuracy under nominal conditions, perturbations
are symmetrical with respect to the nominal environment.
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Figure 3.13: Two measurement setups for the modeling a strong PUF via
physical noise. The response ri to a given challenge ci is measured q > 1 times.
(a) In the first setup, responses are passively recorded with the IC in its nominal
environment. Noise is hence exploited as a side-channel. (b) In the second setup,
we actively change the IC’s environment so that responses are less stable. This
classifies as a fault attack, which aims to facilitate the exploitation of noise as a
side-channel.

Target Device

Our experiments are performed on a 65 nm CMOS ASIC that was manufactured
during the European research project UNIQUE. A considerable bias has
previously been reported for its Arbiter PUFs [89, 81, 110]. As is clear from
the gate-level schematics [141], an asymmetry in the arbiter element seems to
be responsible. A buffering inverter for reading out the response bit r causes
one half of an otherwise symmetric latch to have a higher capacitive load. The
addition of a dummy inverter would have restored the symmetry and hence
improved the bias characteristics. The missing replica is not really a problem for
our purposes though. On the contrary, it demonstrates that our newly developed
modeling attacks can handle bias.

The ASIC also houses a batch of 4096 identically designed ROs. Each oscillator
consists of 80 inverters and one NAND gate, which is able to start and stop
the oscillation. For improved testability, the approximate number of oscillations
was designed to be reconfigurable. All oscillations stop as soon as the counter of
one dedicated RO, which consists of 64 inverters and one NAND gate, reaches
a reconfigurable threshold. This feature allows for a flexible trade-off between
latency and noise, as experimentally confirmed in Figure 3.14. The longer an
RO oscillates, the more stable the measurement of its number of oscillations
becomes. As our newly developed attacks exploit noise, it would be convenient to
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keep the counter values low. However, such testability features are not expected
to be a part of a final market product. We hence adopt the perspective of a
system provider instead and fix the number of oscillations to approximately
1000.

0 1,000 2,000 3,0000

1

2 ·10−3

µf

σf
µf

Figure 3.14: The trade-off between latency and noise for the ROs of the
65 nm CMOS ASIC that was designed during the European research project
UNIQUE [89, 81, 110]. For various threshold values and for each out of eight
ROs, the mean µf and the standard deviation σf of a sample of 20 measured
counter values is computed. For improved visibility, we average the sample
means µf and the normalized sample standard deviations σf/µf over all eight
ROs before plotting. As indicated by the arrow, we fix the number of oscillations
to approximately 1000.

Sensitivity to the Environment

We investigate the sensitivity of our target PUFs to the environment. In this
work, the environment is defined by the supply voltage VS and the outside
temperature T . Their nominal values are VS = 1.2 V and T = 20 ◦C respectively.
Other environmental influences such as electromagnetic interference are not
investigated here. For the supply voltage VS , we perform a sweep from 0.95 V to
1.45 V in steps of 0.05 V, while keeping the temperature T at its nominal value.
Likewise, we use a TestEquity Half Cube temperature chamber to perform a
sweep from −20 ◦C to 60 ◦C in steps of 10 ◦C, while keeping the supply voltage VS
at its nominal value. The ASIC is observed to remain operable and undamaged
throughout our experiments. Results for the Arbiter and RO-based PUFs are
shown in Figures 3.15 and 3.16 respectively.
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Figure 3.15: The sensitivity of our target Arbiter PUFs to the environment. The
responses r̂i of 32 PUF instances to λ = 2000 randomly chosen challenges ci
are evaluated q = 15 times each. (a) The fraction pret of CRPs that is deemed
to be noisy, i.e.,

(
r̂

(1)
i + r̂

(2)
i + · · · + r̂

(q)
i

)
/q ∈ [0.1, 0.9]. (b) The fraction of

post-TMV responses ri that flips with respect to the nominal environment. (c)
The probability pbias = (r1 + r2 + · · ·+ rλ)/λ) of the PUF instances: both the
sample mean and the ±1 sample standard deviation interval are shown.
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Figure 3.16: The sensitivity of our target ROs to the environment. The
responses r̂i of λ = 2048 randomly chosen oscillator pairs are evaluates
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pbias = (r1 + r2 + · · ·+ rλ)/λ) of the PUF cells.
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We conclude that both PUFs are considerably more sensitive to changes of the
supply voltage VS than to changes of the outside temperature T . Therefore, we
accelerate our modeling attacks by changing VS exclusively.

Numerical Results

Tables 3.2 and 3.3 summarize the performance of our noise-based modeling
attacks on Arbiter and RO Sum PUFs respectively, where the response r̂ to each
challenge ci is evaluated q = 3 times each. The more to the right in either table,
the larger the perturbations of the supply voltage VS . We observe no significant
decrease in modeling accuracy with respect to the side-channel case, given that
perturbations are chosen to be symmetrical around the nominal value. For the
largest perturbations, the retention ratio pret and hence also the efficiency of
our attacks increases with a factor 17.9/7.5 ≈ 8.7/3.7 ≈ 2.4 for both Arbiter
and RO Sum PUFs.

Even when applying changes to the IC’s environment, the retention ratio pret
remains relatively small. Compared to state-of-the-art machine learning attacks,
which usually retain all CRPs as training data, more evaluations of an Arbiter or
RO Sum PUF are hence required so as to obtain a given modeling accuracy. In
the concluding sections of our IEEE publications, we did suggest joining efforts
rather than competition though, i.e., the development of a hybrid attack that
combines noise measurements with a machine learning algorithm was proposed
as further work. It has later been demonstrated by other authors that such a
hybrid attack can indeed outperform stand-alone machine learning attacks.

Follow-up Work

We consider three categories of follow-up work:

• First, hybrid attacks that combine noise measurements with a machine
learning algorithm have been developed. Kumar and Burleson [95, 96]
applied a hybrid attack to both Feed-forward Arbiter PUFs and Leakage
Current-based PUFs. Furthermore, Becker [13] applied a hybrid attack to
Arbiter XOR PUFs that considerably outperforms stand-alone machine
learning attacks.

• Second, Becker [12] demonstrated that with the stability information
of responses exclusively, i.e., disregarding whether the nominal values
are either 1 or 0, an accurate predictive model of an Arbiter PUF can
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Table 3.2: The performance of our noise-based modeling attacks with the Arbiter
PUFs of the UNIQUE ASIC as target. The responses r̃ to randomly generated
challenges c are evaluated q = 3 times each until g unstable CRPs can be
retained. Accuracies are computed through a test set of 3000 randomly chosen
CRPs that are collected under nominal conditions, i.e., VS = 1.20 V. TMV with
15 votes is applied to the test responses. Accuracies are computed for 32 PUF
instances: both the sample mean and the ±1 sample standard deviation interval
is given.

Side- Fault
channel injection

1.15 V 1.10 V 1.05 V 1.00 V 0.95 V
VS 1.20 V 1.20 V 1.20 V 1.20 V 1.20 V 1.20 V

1.25 V 1.30 V 1.35 V 1.40 V 1.45 V
pret 7.5% 8.4% 10.3% 12.9% 15.4% 17.9%

100 85.1% 87.4% 88.7% 89.3% 88.3% 87.4%
±9.9% ±6.9% ±3.8% ±2.6% ±2.5% ±3.2%

200 93.6% 93.8% 93.9% 93.7% 93.6% 93.4%
±1.5% ±1.4% ±1.2% ±1.0% ±1.0% ±1.3%

300 94.6% 94.7% 95.0% 95.0% 95.0% 94.8%
±1.2% ±0.9% ±0.7% ±0.7% ±0.7% ±0.7%

400 95.3% 95.3% 95.6% 95.6% 95.6% 95.3%
±0.8% ±0.7% ±0.7% ±0.6% ±0.5% ±0.5%

500 95.6% 95.7% 95.9% 95.7% 95.9% 95.7%
±0.6% ±0.6% ±0.6% ±0.6% ±0.5% ±0.5%

g Accuracy of predictive model

still be constructed. This comprehends a novel threat for PUF-based
systems that hide response bits but not their respective stabilities from
the attacker [171].

• Third, PUFs and PUF-based systems that aim to mitigate noise-related
threats have recently been proposed. Consider for example the Multiplexer
PUFs of Sahoo et al. [150] and the second so-called lockdown protocol of
Yu et al. [188].
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Table 3.3: The performance of our noise-based modeling attacks with the RO
Sum PUFs of the UNIQUE ASIC as target. The responses r̃ to randomly
generated challenges c are evaluated q = 3 times each until g unstable CRPs
can be retained. Accuracies are computed through a test set of 5000 randomly
chosen CRPs that are collected under nominal conditions, i.e., VS = 1.20 V.
TMV with 15 votes is applied to the test responses.

Side- Fault
channel injection

1.15 V 1.10 V 1.05 V 1.00 V 0.95 V
VS 1.20 V 1.20 V 1.20 V 1.20 V 1.20 V 1.20 V

1.25 V 1.30 V 1.35 V 1.40 V 1.45 V
pret 3.7% 4.4% 5.7% 6.9% 7.5% 8.7%
100 96.1% 94.5% 95.2% 96.1% 95.4% 92.4%
200 98.0% 98.3% 97.7% 97.6% 97.8% 96.4%
300 98.4% 98.6% 98.4% 98.5% 98.2% 97.4%
400 98.8% 99.0% 98.6% 98.7% 98.6% 98.0%
500 98.8% 98.9% 98.8% 99.0% 98.9% 98.2%
g Accuracy of predictive model

3.4 Conclusion

The security analysis of a PUF is a multifaceted and currently non-standardized
discipline. We demonstrated the severity of threats that were quasi unknown
and hence unexplored before. A first contribution proves that the functional
behavior of several strong PUFs is not as uniquely tied to a given device as is
often assumed. Three methods for deriving upper bounds on the min-entropy of
a PUF were developed. Although they cannot guarantee the secure instantiation
of future key generators, they can show that instantiations from the past are
certainly insecure. We also showed that S-ArbRO PUFs are an easy target for
machine learning attacks, despite the proposing authors’ claim.

Our second contribution comprehends the first experimental validation that
noise can be used as a side-channel for constructing a predictive model of a
strong PUF. An attacker who measures the noisiness of responses can recover
an internal analog secret that lowers the complexity of the learning problem.
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Although our attacks were initially not optimized for speed, other authors later
confirmed our hypothesis that combining noise measurements with machine
learning techniques is highly efficient.





Chapter 4

A Survey on PUF-Based Key
Generation

Cryptographic systems usually rely on reproducible, uniformly distributed secret
keys. Affordable, physically secure key-storage in embedded NVM is hard to
obtain though. Harvesting entropy from PUFs presents an alternative that
lowers the vulnerability during the power-off state. Unfortunately, response bits
are corrupted by noise and non-uniformities are bound to occur. Furthermore,
a certain level of control on the key might be required, while response bits are
determined by uncontrollable variations during the manufacturing process. A
helper data algorithm (HDA) might nevertheless allow for the extraction of a
reproducible, uniformly distributed, and controllable key. Helper data is public
and reveals information about the response bits though; the system provider
should hence quantify how much min-entropy remains. We contribute to the
analysis of two categories of HDAs:

• Fuzzy extractors guarantee the correction of a predefined number of
errors and are information-theoretically secure for all distributions of
which the min-entropy exceeds a lower bound. The building block for
handling noisiness, i.e., the secure sketch, provides error-correction with
most frequently a binary [n, k, d] block code. For instantiation purposes,
the conservative, universal (n− k) upper bound on the min-entropy loss is
usually applied. Unfortunately, for non-uniform distributions, the residual
min-entropy is underestimated, which implies that more response and
helper bits than necessary have to be used. Expensive die area is hence
blocked by circuits that are not strictly required to obtain the desired

65
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security level, i.e., symmetric key length. Moreover, given that considerable
error rates have to be supported, it is often infeasible to instantiate a secure
key generator for distributions that have a relatively low min-entropy.
We derive new, improved bounds on the min-entropy loss of a secure
sketch for various PUF-induced distributions with practical relevance.
Our bounds are easy-to-evaluate and can hence be used to improve the
implementation efficiency. This is showcased for two predominant PUF
imperfections, i.e., independent but potentially biased response bits as
well as spatially correlated response bits, although a large variety of
distributions could be supported. Moreover, a variety of commonly used
codes is covered, e.g., Bose–Chaudhuri–Hocquenghem (BCH), Golay, and
Reed–Muller codes, regardless of their algebraic complexity. Our newly
developed theory is also used to disprove the common belief that secure
sketches are reusable, i.e., we refute the claim that repeated helper data
exposure does not result in additional min-entropy loss. This is bad news
for the reverse fuzzy extractor, a lightweight mode of operation that is
gaining momentum in the design of PUF-based protocols.

• Numerous other HDAs, which do not satisfy the definition of a fuzzy
extractor, have been proposed. If there is a security proof, it usually applies
to ideal-case distributions only, i.e., uniformly distributed responses, or
slightly more general, independent but biased response bits. Although
these assumptions are not necessarily realistic in practice, we complete
and review derivations of the min-entropy loss accordingly. We show for
example that bias is amplified for selection schemes that retain and discard
the most and least stable response bits respectively. Moreover, we point
out that the min-entropy loss of the soft-decision decoding scheme has
been underestimated by its authors.
Given that fuzzy extractors remain the default solution for PUF-based
key generation, our improvements upon the (n− k) bound allow for fair
comparisons with these alternative methods. We illustrate this explicitly
for the index-based syndrome (IBS) and von Neumann debiasing schemes,
both of which are tailored for i.i.d. response bits. The existential motivation
of both schemes hinges on the assumption that a stand-alone secure sketch
cannot handle biased distributions. We eliminate the need for an educated
guess that originates from the extrapolation of repetition code insights
and/or the application of the overly conservative (n − k) bound. It is
concluded that for highly biased distributions, both debiasing schemes
still have reason to exist.
Another contribution is the development of a new category of helper data
manipulation attacks. Designers of HDAs usually assume that an attacker
has read-access to the helper data, and analyze the min-entropy loss
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accordingly, but often overlook that an attacker may also have write-access.
By applying well-chosen manipulations, and comparing the corresponding
failure rates for key reconstruction, an attacker may gain additional
information about the secret responses. It turns out that most HDAs
are vulnerable to some extent. In the worst-case scenario, it can even
result in complete key-recovery, as is the case for certain instances of the
pattern matching and soft-decision decoding schemes, for example. Luckily,
cryptographic solutions can detect manipulations of the helper data, and
hence counter the presented attacks. It is nevertheless important to raise
awareness, so that future implementations are protected adequately.

Version History. The version history of this chapter is as follows. Our
publication in the IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (TCAD 2015) is updated, improved, and considerably
extended. Our publication at the 18th Conference on Cryptographic Hardware
and Embedded Systems (CHES 2016) is considerably extended. Our contributions
to both the Cryptographers’ Track at the RSA Conference (CT-RSA 2014) and
the 17th Design, Automation & Test in Europe Conference & Exhibition (DATE
2014) are summarized more briefly. The author of this PhD thesis is the main
contributor to all four publications; Matthias Hiller and Mandel Yu extensively
reviewed the CHES paper.

4.1 System Overview

4.1.1 Reference: Key-Storage in Physically Secure NVM

Figure 4.1 shows the conventional security architecture of an electronic device,
where the embedded OTP NVM is assumed to be physically secure. There
are two consecutive phases subsequent to the manufacturing of a device: one-
time enrollment and in-the-field deployment, which take place in a trusted and
untrusted environment respectively. During the enrollment, a cryptographic key
kapp is programmed into the device. This key can be symmetric, but may equally
well comprise the private and/or public key of an asymmetric system. Note that
a public key requires integrity protection only, i.e., its confidentiality is of no
concern. The procedure KeyGen that generates kapp relies on the presumably
uniformly distributed output n of a true random number generator (TRNG).
While for symmetric systems, it could be presumed that k = n, asymmetric
systems require a more complicated procedure, as exemplified by the primality
test of RSA [139].
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TRNG KeyGen Secure
OTP NVM Application Attackern kapp a

b
×

IC

Enrollment (1×) In-the-field deployment (∞×)

Figure 4.1: Key-storage in physically secure OTP NVM. The symbol × on
the boundary of the IC denotes a one-time interface that is disabled after the
enrollment.

The programming interface of the IC is permanently disabled after the
enrollment. While the device is deployed in the field, a cryptographic application
that interacts with the outside world requests the key kapp whenever needed.
For applications that do not require an a priori shared secret with other parties,
it could be beneficial to generate kapp within the device perimeter. Although
the TRNG and the procedure KeyGen then have to be implemented on a
resource-constrained IC, such an encapsulation lowers the degree of trust that
is needed during the enrollment. All public-key systems where a unique key
pair is assigned to each device are compatible with this approach, but also
symmetric-key applications are not to be excluded. Consider for example a
self-encrypting, password-protected Flash drive that uses AES internally.

4.1.2 An HDA for PUF-Based Key Generation

The previously described architecture relies on embedded OTP NVM that is
assumed to be physically secure. As this is hard to obtain in practice, the
implementation of an alternative PUF-based architecture as shown in Figure 4.2
can be considered. During the enrollment, helper data h is generated via a
possibly randomized procedure h← Gen(x,n), whereX is the reference response
of the PUF and N is a uniformly distributed secret. As before, Gen can be
implemented either off-chip or on-chip. The OTP NVM that stores the helper
data h can be assumed to be fully R/W-insecure. The problem is in fact shifted
to several newly introduced building blocks that all require a physically secure
implementation instead.

The first building block is a PRNG with a hardcoded seed that generates a list
of publicly known challenges c. This way, the respective responses r of the PUF
can be concatenated into a lengthy secret x. In the conventional case where a
weak PUF rather than a strong PUF is used for key generation purposes, the
challenge generator may be as simple as a counter. The consecutive steps of the
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Figure 4.2: A generic PUF-based key generator. Not necessarily all steps of the
HDA are present in a practical implementation. The symbol × on the boundary
of the IC denotes a one-time interface that is disabled after the enrollment.
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HDA, which are extensively analyzed throughout this chapter, are summarized
below. Not necessarily all steps have to be present; typical implementations of
a full-fledged key generator [115, 19, 66] comprise a more limited subset.

• Despite our prior specifications in Chapters 2 and 3 that the challenge c is
the single input of a PUF, several RO-based designs [182, 181] also accept
helper data h. By choosing the value of h for each manufactured instance
of the PUF design individually, the noise and/or uniformity characteristics
of the challenge-response behavior can be improved.

• Only a subset of the bits of the concatenated response x is selected
for further processing. By retaining and discarding stable and unstable
bits respectively, the reproducibility can be improved. Alternatively, a
selection procedure may aim to improve the uniformity characteristics
instead. Regardless of the objective, indices of either retained or discarded
bits need to be stored as helper data h.

• A temporal majority vote (TMV) involves a repeated evaluation of each
ingoing bit, as formalized in (3.5). This favors the reproducibility. No
helper data is required. In contrast to all other steps, TMV can be
implemented during the enrollment exclusively, during the reconstruction
exclusively, or during both phases independently.

• A spatial majority vote (SMV) enhances the reproducibility by aggregating
several ingoing bits into a single output bit. The term spatial assumes
that the PUF consists of an array of autonomous cells, which complies
with an SRAM PUF for example. For, e.g., Arbiter PUFs, techniques still
apply but the terminology is less intuitive.

• A final error-correction step produces a reproducible but usually non-
uniformly distributed secret z. Most frequently, but not necessarily, this
involves a construction that relies on coding theory.

• A KDF converts the usually non-uniformly distributed secret z into one
or more symmetric keys k. The seed is stored as helper data h. As a side
note, k is occasionally referred to as a physically obfuscated key [49] in
related work.

• PUFs inherently allow for the extraction of a symmetric key k that is
determined by process variations. In order to gain full control over the
keying material, an arbitrary application key kapp can be encrypted by
a symmetric PUF-derived key k. This also enables the use of public-key
cryptography.
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• An attacker may manipulate the helper data h of all previous steps so
as to obtain information about the key k. Another issue, which is of
a non-malicious nature, is that excess noise can occasionally cause the
reproduced key k̂ to differ from its enrolled counterpart k. Therefore, it is
recommended to perform an integrity check on the helper data ĥ and/or
the key k̂.

In related literature, the term syndrome occasionally refers to the helper data h
of all kinds of initial steps that deal with errors. Somewhat confusingly, one
frequently used error-correction scheme happens to rely on the syndrome ϕ of
a possible corrupted codeword w̃, as is defined by a parity-check matrix H. In
order to avoid ambiguity, we preserve the term syndrome for the latter usage
exclusively.

4.1.3 Failure Rate

The application key kapp of an enrolled device v is supposed to be reproducible.
In-the-field reproduction usually succeeds on the condition that the newly
generated response x̂ is sufficiently close to its enrolled counterpart x. Each
enrolled device v nevertheless exhibits a certain failure rate pfail as is defined
in (4.1), i.e., the probability that its application key kapp cannot be recovered
due to an excessively noisy evaluation of its PUF. A typical, desired value for the
failure rate is 10−6. Although it is not impossible that an erroneous reproduction
ẑ 6= z nevertheless results in the correct application key k̂app = kapp, this term
can safely be neglected.

pfail = P
(
(K̂app 6= kapp)|(Kapp = kapp)

)
≈ P

(
(K̂ 6= k)|(K = k)

)
≈ P

(
(Ẑ 6= z)|(Z = z)

)
.

(4.1)

The distribution of Pfail is usually non-trivial, but under the assumption of i.i.d.
response bits Xi, exact formulas can be derived for the expectance Ev←V [Pfail],
i.e., the failure rate averaged over the infinite set of enrolled devices V . Ultimately,
Ev←V [Pfail] can be expressed in terms of Ev←V [Perror,x], i.e., the expected error
rate of the i.i.d. response bits Xi. The crucial insight is that all analyzed
selection, TMV, and SMV methods produce i.i.d. output bits given i.i.d. input
bits. Expected values of the bit error rate hence propagate through the HDA
and are updated with every step. That is until the final error-correction step,
where Ev←V [Pfail] can be computed.
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We define the initial error rate perror,x as the probability that a regenerated
response bit x̂(i) differs from its enrolled, post-TMV counterpart x. The
application of TMV during the enrollment can significantly reduce the expected
bit error rate Ev←V [Perror,x]. A formalization of this one-time procedure for
an odd number of votes q has already been given in (3.5). Depending on the
testing infrastructure of a given IC manufacturing process, the required counters
may even be implemented externally rather than on each individual device,
which would correspond to an economical head start in the reduction of the
expected failure rate Ev←V [Pfail]. Moreover, given that the error rate perror,x of
each individual response bit x might have to be estimated anyway in order to
enable the enrollment of other HDA steps [187, 112, 157], TMV can piggyback.

Under the assumption of i.i.d. response bitsXi and the heterogeneous variability–
noise model in Section 3.1.5, the expected post-TMV error rate Ev←V [Perror,x]
as a function of the number of votes q is given in (4.2). For q → ∞ votes,
the integrand simplifies to fnorm(ω)p∞error(ω). For the degenerate case of q = 1
vote, the integrand simplifies to 2fnorm(ω)p∞error(ω)(1−p∞error(ω)). As is shown in
Figure 4.3, the expected error rate Ev←V [Perror,x] in the former case is reduced
with approximately a factor 0.7 compared to the latter case.

Ev←V
[
Perror,x

]
=
∫ ∞
ω=−∞

fnorm(ω)
(
p∞error(ω) Fbino

(q − 1
2 ; q, p∞error(ω)

)

+
(

1− p∞error(ω)
)(

1− Fbino

(q − 1
2 ; q, p∞error(ω)

)))
dω,

with p∞error,x(ω) = lim
q→∞

[
perror,x(ω)

]
= Fnorm

(
−|ω − ωthres|

σnoise

)
.

(4.2)

4.1.4 Min-Entropy Loss

Procedures for estimating the min-entropy of concatenated response X have
been discussed in Chapter 3. Unfortunately, this does not yet incorporate
the min-entropy losses that are to be expected in every step of the HDA, as
formalized in (4.3). The integrity check is omitted for simplicity reasons. For
the most part, the inequalities are to be understood as the repercussions of
monotonically decreasing the expected bit error rate. Given, e.g., a uniformly
distributed response X with an expected bit error rate Ev←V [Perror,x] = 0.1, it
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Figure 4.3: The expected error rate Ev←V [Perror,x] for reproducing i.i.d., post-
TMV response bits Xi, given (I) q = 1, (II) q = 3, and (III) q → ∞ votes
respectively. The curves correspond to an unbiased PUF, i.e., ωthres = 0.

is not unusual that thousands of response bits as well as thousands of helper
bits would be needed in order to obtain, e.g., a uniformly distributed 128-bit key
K that can be reproduced with an expected failure rate Ev←V [Pfail] = 10−6.

H̃∞(X|Hx) ≥ H̃∞(Y |(Hx, Hy)) ≥ H̃∞(Z|(Hx, Hy, Hz))

≥ H̃∞(K|(Hx, Hy, Hz, Hk)) ≥ H̃∞(Kapp|(Hx, Hy, Hz, Hk, Happ)).
(4.3)

In order to guarantee that key k ∈ {0, 1}κ is uniformly distributed, even for
those who observe all helper data h, the losses in terms of min-entropy should
be quantified. With the notable exception of a fuzzy extractor [39], it turns
out that this is only feasible for ideal-case distributions of the concatenated
response x ∈ {0, 1}λ. The most popular abstraction [112, 187, 62, 111, 170]
involves i.i.d. response bits Xi, with i ∈ [1, λ], and is parameterized by a
single constant P(Xi = 1) = pbias. For an unbiased PUF, i.e., pbias = 1/2, this
corresponds to a uniform distribution over {0, 1}λ. Under the assumption of the
heterogeneous variability–noise model in Section 3.1.5, the post-TMV constant
pbias as a function of the number of votes q is given in (4.4). For q →∞, the
value of pbias converges to Fnorm(−ωthres). The bias slightly increases with the
number of votes q, i.e., there is a larger deviation from the ideal value pbias = 1/2.

pbias =
∫ ∞
ω=−∞

fnorm(ω)Fbino

(
q − 1

2 ; q,Fnorm

(ωthres − ω
σnoise

))
dω. (4.4)
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Given the initial min-entropy H∞(X) = −λ log2
(
max(pbias, 1 − pbias)

)
, we

analyze the losses that are incurred by each HDA step. Although a single,
unregulated exposure of helper data h is our primary focus, an attacker could
have access to additional information and hence induce higher losses. For
example, the attacker could force a device to reproduce its key k numerous
times so as to obtain an estimate of the failure rate pfail. This induces additional
losses if Pfail and the concatenated response X are correlated. Likewise, a system
provider might discard all devices with, e.g., pfail > 10−5, prior to deployment,
which modifies the in-the-field distribution of X. Moreover, several PUF-based
protocols [171, 110, 7] release helper data for not one but multiple noisy versions
of the concatenated response X. HDA steps of which the min-entropy loss does
not depend on the number of exposures are referred to as reusable.

4.2 Cryptographic Back-End

The final steps of our generic HDA in Figure 4.2 all involve cryptographic
algorithms.

4.2.1 Encryption of an Application Key

The cryptographic application dictates the requirements for the final keying
material kapp. PUFs inherently allow for the extraction of a stable, uniformly
distributed secret k ∈ {0, 1}κ, which complies with symmetric-key algorithms
such as AES. Unfortunately, public-key cryptography is not inherently supported:
a key pair (kpriv,kpub) needs to satisfy certain mathematical constraints, as
exemplified by the primality test of RSA [139]. Even symmetric-key applications
might occasionally face issues if the value of key k is determined by the inherent
randomness of a PUF. Consider for example two PUF-enabled devices that are
supposed to interact with each other and that are hence required to generate an
identical key k. Another example is the potentially required ability to replace a
malfunctioning device while preserving the value of its key k.

A universal solution [99, 152] is to use the PUF-derived key k for the
encryption of an arbitrary application key kapp, where the corresponding
ciphertext is published as helper data happ. While deployed in the field, a
device can then perform a decryption so as to recover kapp. An authenticated
encryption scheme, which efficiently provides both data confidentiality and
data integrity, could be considered for implementation purposes. We refer to
the proposals of the currently ongoing CAESAR competition [27]. A more
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traditional Encrypt-then-MAC [16] strategy nevertheless remains attractive.
The helper data (hx,hy,hz,hk) of all previous HDA steps requires integrity
protection only, i.e., a separate MAC algorithm has to be implemented anyway.

There exist alternatives to the encryption of an arbitrary application key kapp.
For public-key systems, a PUF-derived key k can be adopted as the random seed
of a procedure KeyGen that generates the key pair (kpriv,kpub) [162]. No helper
data happ is required, but the computational workload during the reconstruction
phase is expected to be high. For symmetric-key systems, one could consider
that several selection and error-correction schemes [74, 187, 62] inherently allow
for the extraction of a secret key k of which the value does not depend on the
value of the concatenated response x. Care is advised though: configuring two
devices with an identical key k, for example, can cause additional min-entropy
loss for each. Although the concatenated responses x differ, an attacker is given
more helper data h for the recovery of an identical secret z, as is formalized in
(4.5).

H̃∞(Z|(Hx,1, Hy,1, Hz,1)) ≥ H̃∞(Z|(Hx,1, Hx,2, Hy,1, Hy,2, Hz,1, Hz,2)). (4.5)

4.2.2 Integrity of Helper Data

The need for PUF-based key generation hinges on the absence of read-secure
OTP NVM, i.e., a system provider cannot simply store kapp according to the
architecture of Figure 4.1. It should hence be assumed that an attacker has
read-access to the helper data {hx,hy,hz,hk,happ,h?}, which is stored in OTP
NVM instead. A stronger and commonly adopted motivation for PUFs hinges
on the assumption that OTP NVM is not only read-insecure but also write-
insecure. The alternative assumption that physical attacks are unidirectional
seems artificial to us. Moreover, the stronger model allows the system provider
to store helper data off-chip, where it is possibly managed by another party.
Finally, several PUF-based authentication protocols [171, 110, 7] require the
transfer of helper data over a fully insecure communication channel, where it
can easily be intercepted and manipulated by an attacker. We consider three
categories of threats that rely on the manipulation of helper data:

• An attacker might be able to trigger a modification to the reconstructed
key k̂ that is unknowingly accepted by the cryptographic application. In
the worst-case scenario, k̂ is partially known or even reduced in size and
hence easy to recover completely via subsequent brute-force methods. If
only the mathematical relationship to its original value k is known, a
related-key attack on the application might still be feasible.
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• An attacker might be able to measure the failure rate pfail for the
reconstruction of key k after some well-chosen helper data manipulation
has been performed. In its simplest form, such an experiment can reveal
the value of a single bit of k, or alternatively, whether or not two bits of
k are equal. An increase in the number of experiments can result in the
recovery of the full key.

• Physical attacks on the reconstruction logic of the HDA can be facilitated
by performing certain manipulations of the helper data.

The feasibility of the first two categories of threats depends on the cryptographic
application. We distinguish between two types of applications, as summarized
in Table 4.1. For simplicity, it is assumed that kapp = k. The first type of
application, which is referred to as interactive, is more vulnerable as it allows
an attacker to distinguish between any pair of keys. Consider for example an
authentication protocol where a token proves its identity to another party by
computing the MAC value of a received nonce n. The second type of application,
which is referred to as silent, is less vulnerable. An attacker can only check
whether the initial key k is reproduced correctly. Consider for example a secure
boot mechanism, where the integrity of processor code is verified by recomputing
a hardcoded signature b.

Table 4.1: Two types of cryptographic applications, differing in their vulnerability
to helper data manipulation. The second column abstracts the information
obtained by an attacker as queries to an oracle.

Type Oracle Example

Interactive k̂ ?= k, a← MAC(n; k)
k̂

(1) ?= k̂
(2)

Silent k̂ ?= k a←

{
1, if MAC(n; k) = b
0, otherwise

A scheme that with high probability detects helper data manipulation can be
implemented on each device. There is a thin border with schemes that detect
non-malicious failures, as can be attributed to an excessively noisy evaluation
of the PUF. If either event is detected, operations can be aborted prematurely.
Afterwards, a retrial may be launched. Four schemes are represented in Table 4.2.
Variations can be applied to each scheme, but the main purpose here is to
provide an overview of the design flavors and their associated issues. All schemes
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require the implementation of a cryptographic algorithm. Note, however, that
resources can be shared with the cryptographic application and/or other steps
of the HDA.

Boyen et al. [24, 40] propose the use of three protective mechanisms. First, helper
data h is fed into a MAC-like algorithm where the PUF-derived secret z serves
as a key, and the output h? is stored as helper data. The given realization relies
on a cryptographic hash function that is modeled as a random oracle. Second,
an upper bound t on the number of correctable errors is imposed. Third, only if
the latter two checks are passed, a key k̂ of which the value directly depends
on the helper data ĥ is computed. In practice, most malicious modifications to
(h,h?) will be detected. However, it is not excluded that for some well-chosen
manipulations of h, an attacker could force a device to reproduce a partially or
fully known value ẑ. Despite detecting most algorithmic helper data attacks as
well as non-malicious failures, there is no protection against the enhancement of
physical attacks. By the time that a device can verify its MAC h?, side-channel
traces already have been gathered.

Kevenaar et al. [83] adopt a simplified version where only the key k is fed into
a cryptographic hash function. The digest is stored as helper data, i.e., h? ←
Hash(k). The proposed alternative offers less protection against algorithmic
helper data attacks though. For several key-recovery attacks described later-on,
potentially assuming a silent application, the attacker only needs to know
whether or not a certain manipulation of the helper data results in a failure to
reconstruct the key k. It does not matter whether the occurrence of a failure is
observed via either the application or the detection scheme.

Hiller et al. [66] only maintain the last out of three protective mechanisms
of Boyen et al. [24, 40] and modify it as follows. The helper data h is fed
into a cryptographic hash function and the resulting digest is XORed with
the PUF-derived secret z so as to obtain the secret key k. We observe that
the proposed scheme is potentially insecure against related-key attacks; any
modification of the helper data h that maintains the value of secret ẑ results in
a related key k̂ with a known additive XOR pattern. The original computation
of k ← Hash(z,h) is deemed more secure and also eliminates the implicit
assumption that Z given H is uniformly distributed.

Tuyls et al. [168] adopt public-key cryptography. Let (kpriv,kpub) denote the
key pair of a trusted party. During the enrollment of a given device, helper
data (hx,hy,hz,hk,happ) is signed with the private key kpriv, and the result is
published as helper data h?. Given that every device stores the public key kpub
in write-secure ROM, the signature ĥ? can be verified in the field. A unique
feature of the proposed scheme is that physical attacks on the reconstruction



78 A SURVEY ON PUF-BASED KEY GENERATION

Table
4.2:Four

schem
es

for
the

detection
ofhelper

data
m
anipulation

and/or
non-m

alicious
failures.In

the
random

oracle
m
odeland

w
hen

applied
to

a
secure

sketch,the
schem

e
of

B
oyen

et
al.[24,40]is

provably
secure

against
algorithm

ic
attacks.T

he
label‘m

edium
’accounts

for
cases

w
here

the
definition

ofa
secure

sketch
is

not
satisfied.

Boyen
et

al.[40]
K
evenaar

et
al.[83]

H
iller

et
al.[66]

Tuyls
et

al.[168]

Enrollm
ent

h
?
←

H
ash

1 (z
,h),

k
←

H
ash

2 (z
,h)

h
?
←

H
ash(k)

k
←

z
⊕

H
ash(h)

h
?
,1
←

Sign(h;k
priv ),

h
?
,2
←

Sign(H
ash(k);k

priv )

R
eproduction

ĥ
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ẑ
⊕

H
ash(ĥ)
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logic cannot be enhanced via helper data manipulation. A potential drawback
is that the scheme hinges on the assumption that ROM is more write-secure
than embedded OTP NVM.

4.2.3 Key Derivation Function

A KDF converts the stable but usually non-uniformly distributed secret Z into
one or more secret keys k ∈ {0, 1}κ. For the derivation of a single uniformly
distributed key K, a strong (randomness) extractor [126, 39] as is formalized in
Definition 3 can efficiently instantiate the KDF. For brevity, we did omit the
adjective average-case in average-case strong extractor. For our generic HDA in
Figure 4.2, the seed n is published as new helper data hk and h⊥ = (hx,hy,hz).
The constant ε is usually negligibly small, e.g., ε = 2−κ.

Definition 3 (Strong Extractor). A strong extractor is a function k ←
Ext(z,n), where z ∈ {0, 1}λ, n ∈ {0, 1}η, and k ∈ {0, 1}κ. The evaluation time
is polynomial in λ and η. For any distribution of (Z,H⊥) with H̃∞(Z|H⊥) ≥ α,
where α is a constant, it holds that SD((K,H⊥, N), (U,H⊥, N)) ≤ ε, where U
is uniformly distributed over {0, 1}κ, N is uniformly distributed over {0, 1}η,
and ε is a constant.

Universal hash functions [29] are excellent randomness extractors, according to
the leftover hash lemma (LHL) [55]. Their min-entropy loss α− κ = 2 log2(1/ε)
is the best that can be achieved by any extractor, but remains nevertheless
substantial. As is clear from Table 4.3, the extraction of a 128-bit key K requires
input Z given H⊥ to have a min-entropy of at least 384 bits. The seed h, which
comprehends a randomly selected member from a family of hash functions, is of
substantial length and therefore poses another practical burden. The Toeplitz
universal hash function is a popular choice in practice due to its convenient
LFSR-based architecture. Nevertheless, implementations by Bösch et al. [22]
and Maes et al. [114] short-cut the min-entropy loss to zero for efficiency reasons.

Table 4.3: The min-entropy loss α− κ of a randomness extractor.

Hash function Theory Min-entropy loss
Universal LHL [55] 2κ for ε = 2−κ

Generalized LHL [8] κ for ε = 2−κ

Cryptographic Random oracle 0



80 A SURVEY ON PUF-BASED KEY GENERATION

For a wide range of applications, the min-entropy loss can be reduced according
to the generalized LHL [8]. The most notable omissions are PRFs and stream
ciphers. For the extraction of a 128-bit key K, it is then required that input
Z given H⊥ has a min-entropy of at least 256 bits. Also the length η of the
seed h can be reduced. As the overall overhead is still substantial, practical
key generators often rely on a cryptographic hash function that is assumed
to behave as a random oracle. The latter idealized heuristic results in zero
min-entropy loss as well as the absence of helper data h. Consider for example
the SPONGENT cryptographic hash function [20], as implemented by Maes et
al. [115].

As a side note, the previous hashing step is occasionally referred to as privacy
amplification. The latter term might be more relevant to its original context
where the biometric features of a user are stored for future authentication
purposes [106]. The privacy of the users remains intact even if an attacker
obtains the hashed file contents. The seed value provides an elegant salting
mechanism, similar to existing best practices for storing textual passwords.

If not a single but multiple keys k need to be derived, the sizes of the PUF, the
strong extractor, and all intermediate building blocks could be scaled accordingly.
A more efficient solution, however, is the implementation of an extract-then-
expand approach [92]. This includes, for example, the concatenation of a strong
extractor and a PRF.

4.3 Error-Correction with a Secure Sketch

Error-correction, which is also referred to as information reconciliation in
the related literature, is most frequently performed by a secure sketch. The
popularity of this primitive originates from the fact that for any distribution
of input Y , it provides a lower bound on the error-correcting capabilities, and
simultaneously also an upper bound on the min-entropy loss.

4.3.1 De�nition

A secure sketch restores a noisy version ỹ of the reference input y to its
original value, given that both vectors are sufficiently close to each other. The
original definition of Dodis et al. [39] supports various metric spaces Y and
distance functions dist that are all relevant to the field of human biometrics.
Our recapitulation in Definition 4 is tailored for PUFs and hence restricts the
scope to binary vectors y ∈ {0, 1}n and the Hamming distance HD. For brevity,
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the adjective average-case in average-case secure sketch has been omitted, given
that all realizations that will be discussed in this chapter allow for the inclusion
of the random variable H⊥. Note that for our generic HDA in Figure 4.2,
H⊥ = (Hx, Hy).

Definition 4 (Secure Sketch). A secure sketch consists of a pair of efficient
and possibly randomized procedures: the sketching procedure h← SSGen(y,n),
where N is a uniformly distributed seed, and the recovery procedure ẑ ←
SSRep(ỹ,h). Two properties hold:

• (Correctness). If HD(y, ỹ) ≤ t, where t is a constant, correctness of
reconstruction is guaranteed, i.e., ẑ = z. If HD(y, ỹ) > t, there is no
guarantee whatsoever.

• (Security). For all distributions of (Y,H⊥) with H̃∞(Y |H⊥) ≥ αY , where
αY is a constant, a corresponding lower bound on the residual min-entropy
holds, i.e., H̃∞(Z|(H⊥, H)) ≥ αZ , where αZ is a constant.

For convenience, we have generalized the original definition of a secure sketch
such that its nominal output z is not necessarily equal to y. The prior notion
of fuzzy commitment [74] can hence be supported as well. We then commit
to an arbitrary secret z by binding it to y. One may decommit given a noisy
version ỹ that is sufficiently close to y. Constructions that return a substring
z of y [76] are supported as well. For all discussed realizations, αZ can easily
be determined for any given αY . This can be attributed to a universal upper
bound on the min-entropy loss, i.e., for all distributions of (Y,H⊥) it holds that
H̃∞(Y |H⊥)− H̃∞(Z|(H⊥, H)) ≤ β, where β is a constant.

As is clear from the following thought experiment [28], a secure sketch can
only be guaranteed to handle inputs of which the min-entropy is relatively
high. Consider all distributions of (Y,H⊥) such that H⊥ = ∅ and such that
only d2αY e outcomes y in the set Y have a nonzero probability of occurrence.
Evidently, these probabilities cannot exceed 2−αY , given that H∞(Y ) ≥ αY
holds. If there exist distributions such that all d2αY e possible outcomes fit
within a hypersphere of radius t, then an attacker can recover y by executing
SSRep on the center of the hypersphere, which implies H̃∞(Z|(H⊥, H)) = 0.
The lower bound on αY in (4.6) ensures that no such distributions exist.

αY > log2

(∑t
i=0
(
n
i

))
> −n

(
t
n log2

(
t
n

)
+
(
1− t

n

)
log2

(
1− t

n

))
− 1

2 log2(n)− 1
2 .

(4.6)
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A slightly modified notion brings us to the fuzzy extractor [39] in Definition 5.
Output K is then guaranteed to be nearly-uniform, even for those who observe
helper data (H,H⊥), and can hence be used as a symmetric key. The constant ε
is usually chosen to be negligibly small, e.g., ε = 2−κ. There is a proven standard
method to craft a fuzzy extractor from a secure sketch: a strong randomness
extractor, as previously discussed in Section 4.2.3, could derive a key from the
sketch output, i.e., k← Ext(z,nk), where Nk is a uniformly distributed seed.

Definition 5 (Fuzzy Extractor). A fuzzy extractor consists of a pair of
efficient and possibly randomized procedures: the sketching procedure h ←
FEGen(y,n), where N is a uniformly distributed seed, and the recovery procedure
k̂← FERep(ŷ,h). Two properties hold:

• (Correctness). If HD(y, ŷ) ≤ t, where t is a constant, correctness of
reconstruction is guaranteed, i.e., k̂ = k. If HD(y, ŷ) > t, there is no
guarantee whatsoever.

• (Security). For all distributions of (Y,H⊥) with H̃∞(Y |H⊥) ≥ αY , where
αY is a constant, the output k ∈ {0, 1}κ is guaranteed to be nearly uniform,
even for those who observe the helper data (h⊥,h). Adopting the statistical
distance as defined in (2.10) as a metric of uniformity, it holds that
SD((K,H⊥, H), (U,H⊥, H)) ≤ ε, where U is uniformly distributed over
{0, 1}κ and ε is a constant.

4.3.2 Constructions using a Block Code

Table 4.4 specifies seven realizations of a secure sketch that all rely on a binary
code ζ with minimum distance d. Correctness of the reconstruction is guaranteed
if HD(y, ỹ) ≤ t, where t = b(d − 1)/2c is the error-correcting capability of ζ.
The expected failure rate for key reconstruction is given in (4.7), under the
assumption of i.i.d. response bits Yi. Although a decoding algorithm might
occasionally be able to handle more than t errors, for the sake of simplicity, it
is assumed that HD(y, ỹ) > t always results in a failure.

Ev←V
[
Pfail

]
= 1− Ev←V

[
Fpoisbino(t, Perror,1, Perror,2, · · · , Perror,n)

]
= 1− Fbino

(
t;n,Ev←V [Perror]

)
.

(4.7)

We prove that all seven constructions exhibit an identical min-entropy loss.
The equivalency proofs are established in a pairwise manner, as guided by
Figure 4.4. For a given distribution of (Y |H⊥), any two constructions, when
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instantiated with an identical code ζ, are shown to result in the same residual
min-entropy H̃∞(Z|(H⊥, H)), as defined in (4.8). Pairwise equivalencies that
are established in other works [175, 63] consider fewer methods and/or impose
unnecessary restrictions on the distribution of Y . We hence make progress in
terms of completeness and generality. We emphasize that the min-entropy loss
does not depend on the decoding method, simply because the helper data h is
not affected.

H̃∞(Z|(H⊥, H)) def=

− log2

(
E(h⊥,h)←(H⊥,H)

[
max
z∈Z

P
(
(Z = z)|((H⊥ = h>) ∩ (H = h))

)])
.

(4.8)

Dodis et al. [39]

Juels et al. [74]

Tuyls et al. [166]

Bennett et al. [17]

Yu [185]

Kang et al. [76]

Ahlswede et al. [1]

st
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rm

lin
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r

[65]

Figure 4.4: Pairwise min-entropy loss equivalencies among seven sketches, as
indicated by the arrows. Transitive relations apply when following the arrows.
E.g., the schemes of Dodis et al. [39] and Kang et al. [76] are equivalent, given
that both are instantiated with a linear code in standard form.

For [n, k, d] block codes in particular, the well-known (n − k) upper bound
on the min-entropy loss holds, i.e., H̃∞(Y |H⊥) − H̃∞(Z|(H⊥, H)) ≤ (n − k),
as proven by Dodis et al. [39]. More generally, this extends to H̃∞(Y |H⊥) −
H̃∞(Z|(H⊥, H)) ≤ n− log2(|M|). Due to the equivalence among secure sketch
constructions, the bound apply to all seven.

Code-O�set Methods

The code-offset method of Juels et al. [74], as represented in Table 4.4, requires
a code ζ that is not necessarily linear. Even more, it is not required be a
block code either. Linear codes (BCH, Golay, repetition, etc.) remain the most
frequently used though due to their efficient decoding algorithms [108]. Table 4.4
also represents a modification where Rep returns sketch input y rather than
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codeword w, as proposed by Dodis et al. [39]. For the latter, it was proven that
the (n − k) upper bound on the min-entropy loss holds, given a block code.
Table 4.4 also lists another minor modification where Rep returns message m, as
suggested by Tuyls et al. [166]. This necessitates an implementation of Decode
rather than Correct.

All three code-offset methods produce the same helper data h but differ in their
reconstructed output z. Nevertheless, we argue that the residual min-entropy
in (4.8) evaluates to the same value for all three methods. This follows from
an underlying one-to-one correspondence, given in (4.9). The algorithm Encode
comprehends a bijection between the set of all messagesM and the set of all
codewordsW . Furthermore, for given helper data h, there is a bijection between
W and a reduced set of responses Y ′ = {h ⊕ w | w ∈ W} ⊆ Y. Note that
|M| = |W| = |Y ′|.

∀(h⊥,h,m) ∈ (H⊥ ×H×M),P
(

(M = m)|
(
(H⊥, H) = (h⊥,h)

))
= P

((
W = Encode(m)

)
|
(
(H⊥, H) = (h⊥,h)

))
= P

((
Y = Encode(m)⊕ h

)
|
(
(H⊥, H) = (h⊥,h)

))
.

(4.9)

Min-entropy loss can be understood as a one-time pad imperfection. The sketch
input y is masked with a random codeword w, the latter of which is not
uniformly distributed: H∞(W ) = log2(|M|) < n. For linear codes in particular,
we highlight a convenient interpretation using cosets. The helper data h then
reveals in which coset reference y resides. It can be seen easily that h is equal
to a random vector in the same coset as y. The residual min-entropy in (2.2)
hence reduces to (4.10) for linear codes, where e denotes a coset leader.

H̃∞(Z|(H⊥, H)) = − log2

(
E(h⊥,e)←(H⊥,E)

[
max
w∈W

P
(

(Y = e⊕w)|
(
(H⊥, E) = (h⊥, e)

))])
.

(4.10)

Syndrome Method

The syndrome method of Bennett et al. [17], as specified in Table 4.4, was
initially proposed as part of a quantum oblivious transfer protocol, but maps
quite easily to the secure sketch framework of Dodis et al. [39]. The method
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requires a linear code ζ with parity-check matrix H. The well-known (n− k)
upper bound on the min-entropy loss holds, as proven by Dodis et al. [39]. This
is a trivial consequence from the universally valid expression in (2.3), given that
the helper data h is limited to (n− k) bits.

The syndrome method of Bennett et al. [17] and the code-offset method of
Dodis et al. [39] both reconstruct z = y. Furthermore, for both methods, helper
data h reveals in which coset y resides. For the syndrome method, this is a
trivial consequence from the one-to-one correspondence between cosets and
syndromes. Note that the code-offset method is being instantiated with a linear
code, given that the syndrome method is restricted to this case. The residual
min-entropy of both methods can hence be written as shown in (4.10).

Systematic Methods

The method of Yu [185], as specified in Table 4.4, requires a linear code C with a
generator matrix in standard form, i.e., G = (Ik P). We observe that the (n−k)
upper bound on the min-entropy loss holds due to (2.3), given that helper data
h is limited to (n− k) bits. Table 4.4 also represents a slightly modified method
where Rep returns (y1 y2 . . . yk) rather than y. This was first proposed by Kang
et al. [76] and independently also by Hiller et al. [65]. Nevertheless, (4.11)
indicates that the residual min-entropy in (4.8) is identical. The main insight is
that (y1 y2 . . . yk) and h fully determine (yk+1 yk+2 . . . yn).

∀(h⊥,h,y) ∈ (H⊥ ×H× Y),

P
((

(Y1, Y2, · · · , Yk) = (y1, y2, · · · , yk)
)
|
(
(H⊥, H) = (h⊥,h)

))
= P

((
Y = (y1 y2 . . . yk)G⊕ (0 h)

)
|
(
(H⊥, H) = (h⊥,h)

))
.

(4.11)

The methods of Bennett et al. [17] and Yu [185] both reconstruct the sketch
input, i.e., z = y. We are the first to observe though that the helper data h is
identical as well, as proven in (4.12). Of course, this assumes a generator matrix
in standard form, i.e., G = (Ik P), given that Yu’s method is restricted to this
case.

h = y HT = y
(

P
In−k

)
= (y1 y2 . . . yk) P⊕ (yk+1 yk+2 . . . yn). (4.12)
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Multi-Code Method

The method of Ahlswede et al. [1], as specified in Table 4.4, was initially
proposed for secret key transport with correlated sources. It nevertheless maps
quite easily to our framework of interest, as observed by Hiller et al. [65].
A distinguishing feature is the use of multiple codes ζj , covering mutually
disjoint sets of codewords. We restrict our attention to [n, k, d] block codes
with j ∈ [0, 2n−k − 1]. Every y ∈ Y then coincides with exactly one codeword,
guaranteeing correctness. Furthermore, the (n− k) upper bound on the min-
entropy loss holds due to (2.3), given that helper data h = j is limited to (n−k)
bits.

Hiller et al. [65] proposed an efficient implementation where all codes are derived
from a single parent code C0. In particular, ζ0 is a linear code in standard form,
i.e., G = (Ik P), and all other codes ζj are cosets: Wj = {w⊕ (0‖h) | w ∈ W0}.
This turns out to be fully equivalent with the method of Kang et al. [76] in
Table 4.4, i.e., helper data h and reconstructed output z are identical. We
consider a slightly more general case. In particular, a linear code ζ0 that is not
necessarily in standard form, as required by the method of Bennett et al. [17] as
well. All child codes ζj are again formed as the cosets of ζ0. Therefore, helper
data h = j still reveals in which coset y resides and (4.10) holds once again.
The one-to-one correspondence of output z in (4.13) finalizes our proof.

∀(h⊥,h,y) ∈ (H⊥ ×H× Y),P
(

(Y = y)|
(
(H⊥, H) = (h⊥,h)

))
= P

((
M = Decode(y; Ch)

)
|
(
(H⊥, H) = (h⊥,h)

))
.

(4.13)

4.3.3 Repeated Execution of a Concatenated Code

Optimized implementations of a secure sketch often rely on a concatenated code
ζ2◦ζ1 that processes q non-overlapping blocks of response bits independently [22,
115]. The inner code ζ2 is usually a small [n2, k2 = 1, d2 = n2] repetition code,
with n2 odd, allowing to support a high bit error rate E[Perror]. A large [n1, k1, d1]
outer code ζ1, e.g., a BCH code [108], is faced with a considerably lower bit
error rate so that its min-entropy loss can be relatively small. The size of ζ1
is nevertheless limited due to the implementation footprint of Correct/Decode.
Response y hence needs to be partitioned into q blocks in order to generate a
key k of sufficient length.
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It is convenient to encapsulate the operation q × [n2, k2, d2] ◦ [n1, k1, d1] in a
single umbrella block code with [n = q · n1 · n2, k = q · k1, d = d1 · d2]. Only
a maximum of t = t1(t2 + 1) ≤ b(d − 1)/2c errors is guaranteed to provide
correctness of reconstruction. The average-case behavior is more optimistic
though, as reflected by the expected failure rate in (4.14) under the assumption
of i.i.d. response bits. The (n− k) upper bound on the min-entropy loss can be
applied to the umbrella block code.

Ev←V
[
Pfail

]
= 1−

(
Fbino

(
t1, n1, 1− Fbino(t2, n2,Ev←V [Perror])

))q
. (4.14)

4.3.4 Convolutional Codes

Despite the popularity of binary [n, k, d] block codes, Hiller et al. [66] implement
a secure sketch with a binary (η, λ) convolutional code. Used in conformity with,
e.g., the code-offset method in Table 4.4, it is clear that the (n − k) upper
bound on the min-entropy loss still applies. For example, the authors adopt an
(η = 2, λ = 7) convolutional code as an [n = 268, k = 128, d = 8] block code,
exhibiting a min-entropy loss of at most 140 bits.

4.3.5 Tight Bounds on the Min-Entropy Loss

System providers who implement a secure sketch currently rely on the (n− k)
upper bound on the min-entropy loss [115]. Unfortunately, this bound often
leads to an overly conservative design when instantiating security parameters
accordingly. We aim to improve this situation through the development of a
graphical framework that produces tight bounds on the residual min-entropy
H̃∞(Y |H) for typical distributions of SRAM-like PUFs. Previous HDA steps are
assumed to be absent, i.e., Y = X and H⊥ = ∅. The critical first-order effects
of bias and spatial correlations are captured. Both lower and upper bounds
are supported. The lower bounds are of primary interest for a conservative
system provider, who evidently entertains the worst-case scenario. Considerable
improvements upon the (n− k) bound, i.e., the leftmost inequality in (4.15),
are obtained. Therefore, one is even able to handle low-entropy distributions
that are deemed impossible according to (4.6).
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max
(
H∞(Y )− (n− log2(|M|)), 0

)︸ ︷︷ ︸
worst-case

≤ H̃∞(Y |H)

≤ min
(
log2(|M|),H∞(Y )

)︸ ︷︷ ︸
best-case

.
(4.15)

We also improve upon the rather trivial upper bounds [39] that comprehend the
rightmost inequality in (4.15). Our lower and upper bounds combined define a
relatively narrow interval in which the exact value of the residual min-entropy
H̃∞(Y |H) is enclosed. We cover a variety of codes, regardless of their algebraic
complexity, as well as a variety of distributions. Our bounds are easy-to-evaluate
and are able to handle large codes. Although derived for the code-offset sketch
of Dodis et al. [39] in particular, the bounds hold for all seven constructions in
Table 4.4 due to the previously established equivalencies in Section 4.3.2.

Distributions

Our derivation is generic in the sense that a large variety of distributions
of response Y could be covered. We only require that the set of all possible
responses Y = {0, 1}n can be partitioned into a limited number of subsets
Yj , with j ∈ [1, λ], such that all elements of Yj have the same probability
of occurrence pj . Formally, P(Y = y) = pj if and only if y ∈ Yj . These
probabilities are strictly monotonically decreasing, i.e., pj > pj+1, with j ∈
[1, λ− 1]. Occasionally, pλ = 0. The ingoing min-entropy is easily computed as
H∞(Y ) = − log2(p1).

We evaluate bounds on the residual min-entropy H̃∞(Y |H). The runtime of the
corresponding algorithms is roughly proportional to the number of subsets λ.
The crucial observation is that a small λ might suffice to capture realistic models
of an SRAM-like PUF. Below, we describe a parameterized distribution of Y
for both biased and spatially correlated PUFs. Both distributions are to be
considered as proof-of-concept models, used in showcasing the feasibility of a
new research direction. If a given PUF is not approximated accurately enough,
one can opt for an alternative and possibly more complicated second-order
distribution. As long as λ is limited, bounds can be evaluated in milliseconds to
minutes on a standard desktop computer.

• Biased distribution. We assume that response bits Yi, with i ∈ [1, n], are
i.i.d. such that P(Yi = 1) = pbias, where pbias ∈ [0, 1] is a real-valued
constant. For pbias = 1/2, this corresponds to a uniform distribution.
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• Correlated distribution. We assume that responses are distributed such
that P(Yi = Yi+1) = pcorr, with i ∈ [1, n− 1] and a real-valued constant
pcorr ∈ [0, 1]. This extends to (4.16) for larger neighborhoods. There is no
bias, i.e., P(Yi = 1) = 1/2. For pcorr = 1/2, the latter model corresponds
to a uniform distribution. Although spatial correlations are frequently
encountered in experimental work, e.g., byte-level dependencies for the
SRAM PUFs in [172, 7], these are often neglected in information-theoretic
work due to their complexity. We hope that our results may help turn the
tide on this.

pcorr,i,j = P(Yi = Yj) =
b|i−j|/2c∑
u=0

fbino(2u; |i− j|, 1− pcorr),

with i, j ∈ [1, n].

(4.16)

Table 4.5 specifies the subsets Yj for both proof-of-concept distributions. For the
biased distribution, we partition the set Y according to HW(y). The probability
that a random sample y belongs to Yj can be described by a binomial distribution
with j − 1 successes for n Bernoulli trials that each have success probability
p? = min(pbias, 1 − pbias). For the correlated distribution, we partition the
set Y according to

∑n−1
i=1 HD(yi, yi+1), i.e., the number of transitions in y. The

responses in subset Yj exhibit j − 1 transitions and obey either one out of two
forms, i.e., y = (0 1 0 · · · ) or y = (1 0 1 · · · ). A related observation is that if
y ∈ Yj , then so is its additive inverse, i.e., y ∈ Yj . This explains the factors
2 and 1/2 everywhere. The cardinalities |Yj | are further determined with stars
and bars combinatorics [44]. To be precise, we separate n indistinguishable stars
into j distinguishable bins by adding j − 1 out of n− 1 bars.

We treat the degenerate case pbias = pcorr = 1/2, i.e., a uniform distribution,
separately. There is only one set then. Formally, λ = 1, |Y1| = 2n, and p1 = 1/2n.
As proven by Reyzin [137], the min-entropy loss of a secure sketch is maximal
for a uniformly distributed input, which makes this a case of special interest.

Generic Bounds

We derive generic bounds that can be applied to any distribution of response Y
where the number of subsets λ is limited. Equation (4.17) holds for the code-
offset construction of Dodis et al. [39], given that a codeword w is selected
uniformly at random during the enrollment.
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Table 4.5: Subsets Yj for both the biased and spatially correlated distribution.
We define p? = min(pbias, 1− pbias) and p? = min(pcorr, 1− pcorr) respectively.

Biased distribution Correlated distribution

j |Yj | pj j |Yj | pj

1 1 (1− p?)n 1 2 1
2 (1− p?)n−1

2 n p?(1− p?)n−1 2 2(n− 1) 1
2p?(1− p?)n−2

...
...

...
...

...
...

j
(
n
j−1
)

(p?)j−1(1− p?)n−j+1 j 2
(
n−1
j−1
) 1

2 (p?)j−1(1− p?)n−j
...

...
...

...
...

...
n n (p?)n−1(1− p?) n− 1 2(n− 1) 1

2 (p?)n−2(1− p?)
n+ 1 1 (p?)n n 2 1

2 (p?)n−1

P
(
(H = h)|(Y = y)

)
=
{

1/|M|, if ∃w,h = y⊕w,
0, otherwise.

(4.17)

Equation (4.18) applies Bayes’ rule to the definition of conditional min-entropy
in (4.8) and fills in (4.17). The 0 case is resolved by switching variables for the
max operator. A direct exhaustive evaluation of the resulting formula requires
up to 2n|M| operations.

H̃∞(Y |H) = − log2

(∑
h∈H

�����P(H = h) max
y∈Y

P(Y = y)P((H = h)|(Y = y))
�����P(H = h)

)

= − log2

(
1
|M|

∑
h∈H

max
w∈W

P(Y = h⊕w)
)
.

(4.18)

For linear codes, the workload can be reduced substantially. With a similar
derivation as before, we rewrite (4.10) as shown in (4.19). Up to 2n operations
suffice. Nevertheless, direct evaluation is only feasible for small codes. In order
to handle large codes, as is typically the case for a practical key generator,
further steps are required.
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H̃∞(Y |H) = − log2

(∑
e∈E

max
w∈W

P(Y = e⊕w)
)
. (4.19)

Observe that (4.18) iterates over all helper vectors h and selects each time the
most likely response y that is within range, via the addition of a codeword
w ∈ W . We now reverse the roles, as is shown in Figure 4.5. We iterate over all
responses y, from most likely to least likely, i.e., from Y1 to Yλ. Within a certain
subset Yj , the order of the y’s may be chosen arbitrarily. Subsequently, we assign
helper vectors h to each y, as represented by the black squares, until the set H
of size 2n is depleted. For each assigned h, we assume that the corresponding
y is the most likely vector, according to (4.18). Let sh

j denote the number of
black squares that are assigned to subset Yj . The residual min-entropy is then
easily computed as in (4.20).

H̃∞(Y |H) = − log2

(
1
|M|

λ∑
j=1

sh
j pj

)
. (4.20)

Both linear and non-linear codes are supported by the former graphical
representation. Nevertheless, we elaborate linear codes as a special case due
to their practical relevance. Figure 4.6 swaps the order of iteration in (4.19).
Only one row suffices, i.e., each column of helper data vectors h in Figure 4.5
is condensed to a single square. Black and white squares are now assigned to
cosets, as represented by their coset leaders e. Let se

j denote the number of black
squares that are assigned to subset Yj . The residual min-entropy is then easily
computed as in (4.21), hereby dropping denominator |M| compared to (4.20),
given that sh

j = 2k se
j .

H̃∞(Y |H) = − log2

( λ∑
j=1

se
jpj

)
. (4.21)

In the worst-case scenario, the most likely responses y all map to unique helper
vectors h, without overlap, resulting in a lower bound on the residual min-
entropy H̃∞(Y |H). For a linear code, this would be the case if the first 2n−k
responses y all belong to different cosets. In the best-case scenario, our sequence
of y’s exhibits maximum overlap in terms of helper data h, resulting in an
upper bound on H̃∞(Y |H). For a linear code, this would be the case if the
first 2k y’s all map to the same coset, and this repeated for all 2n−k cosets.
Algorithms 1 and 2 comprehend a literal transcript of Figure 4.5 and compute
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|Y1| |Yj−1| |Yj | |Yj+1| |Yλ|
y
⊕w

h

|M|

mod(2n,
|M|)

b2n/|M|c(a)

h

|M|

mod(2n,
|M|)

|M| |M| mod(2n, |M|)(b)

Figure 4.5: Reversal of the roles in (4.18). (a) A lower bound on H̃∞(Y |H). (b)
An upper bound on H̃∞(Y |H). Black squares represent terms that contribute
to H̃∞(Y |H), one for each w ∈ W. White squares represent non-contributing
terms, overruled by the max operator. In general, there are few black squares
but many white squares, 2n versus (|M| − 1)2n to be precise. For block codes,
i.e., |M| = 2k, the last column of black squares is completely filled.

the lower bound and upper bound respectively. Auxiliary variables sh and sy

accumulate black and gray squares respectively. We abstain from special case
algorithms for linear codes, although it would result in a few simplifications.

Algorithms 1 and 2 may now be applied to a variety of distributions. For a
uniform distribution, the lower and upper bound both evaluate to H̃∞(Y |H) =
log2(|M|), regardless of other code specifics. Or simply k, for block codes
in particular. The min-entropy loss is hence exactly (n − k) bits, given that
H∞(Y ) = n. Reyzin’s proof [137] therefore implies that the universal (n− k)
bound cannot be tightened any further. Although numerical results are fairly
presentable already for the biased and correlated distributions, we further
tighten their bounds first.
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|Y1| |Yj−1| |Yj | |Yj+1| |Yλ|
y
⊕w

e

2n−k(a)

e

2k 2k 2k(b)

Figure 4.6: Reversal of the roles in (4.19), as applied to linear codes. (a) A
lower bound on H̃∞(Y |H). (b) An upper bound on H̃∞(Y |H). Black squares
represent terms that contribute to H̃∞(Y |H), one for each e ∈ E . White squares
represent non-contributing terms, overruled by the max operator.

Algorithm 1: BoundWorstCase
Input: List 〈|Yj |, pj〉
Output: Lower bound on H̃∞(Y |H)
j, p, sh ← 0
while sh < 2n do

j ← j + 1
sh
j ← min(|Yj ||M|, 2n − sh)
sh ← sh + sh

j

p← p+ sh
j pj

H̃∞(Y |H)← − log2(p/|M|)

Algorithm 2: BoundBestCase
Input: List 〈|Yj |, pj〉
Output: Upper bound on H̃∞(Y |H)
j, p, sh, sy ← 0
while sh < 2n do

j ← j + 1
sy ← sy + |Yj |
sh
j ← d(sy − sh)/|M|e|M|
sh
j ← min(max(sh

j , 0), 2n − sh)
sh ← sh + sh

j

p← p+ sh
j pj

H̃∞(Y |H)← − log2(p/|M|)
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Tighter Bounds

Tighter bounds can be obtained by leveraging code and distribution properties
more effectively. Algorithms 3 and 4 generalize Algorithms 1 and 2 respectively.
In the former case, an additional input imposes an upper bound on the
accumulated number of black squares, i.e., ∀j, (sh

1 + sh
2 + . . . + sh

j ) ≤ (βh
1 +

βh
2 + . . .+ βh

j ). In the latter case, an additional input imposes a lower bound
on the accumulated number of black squares, i.e., ∀j, (sh

1 + sh
2 + . . . + sh

j ) ≥
(αh

1 + αh
2 + . . .+ αh

j ). We now provide several examples.

Algorithm 3: BoundWorstCase2
Input: List 〈|Yj |, pj , βh

j 〉
Output: Lower bound on H̃∞(Y |H)
j, p, sh, βh ← 0
while sh < 2n do

j ← j + 1
βh ← βh + βh

j

sh
j ← min(|Yj ||M|, βh − sh)
sh
j ← min(sh

j , 2n − sh)
sh ← sh + sh

j

p← p+ sh
j pj

H̃∞(Y |H)← − log2(p/|M|)

Algorithm 4: BoundBestCase2
Input: List 〈|Yj |, pj , αh

j 〉
Output: Upper bound on H̃∞(Y |H)
j, p, sh, sy, αh ← 0
while sh < 2n do

j ← j + 1
sy ← sy + |Yj |
αh ← αh + αh

j

sh
j ← d(sy − sh)/|M|e|M|
sh
j ← max(sh

j , α
h − sh, 0)

sh
j ← min(sh

j , 2n − sh)
sh ← sh + sh

j

p← p+ sh
j pj

H̃∞(Y |H)← − log2(p/|M|)

We further tighten the lower bound on H̃∞(Y |H) for the correlated distribution.
The improvement applies to linear codes that have the all-ones vector 1 of
length n as a codeword. This includes Reed–Muller codes of any order [108].
This also includes many BCH, Hamming and repetition codes, on the condition
that these are cyclic and having d odd, as easily proven hereafter. Consider
an arbitrary codeword with Hamming weight d. XORing all 2n circular shifts
of this codeword results in the all-ones codeword, which ends the proof. As
mentioned before, each set Yj of the correlated distribution can be partitioned
into pairs {y,y}, with y the additive inverse of y. Paired inputs belong to the
same coset, i.e., maximum overlap in terms of helper data h. Therefore, we
impose the cumulative upper bound in (4.22).

βh
j = |M| |Yj |2 = 2k−1|Yj |. (4.22)
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For instance, consider linear/cyclic [n, k = 1, d = n] repetition codes, i.e.,
having generator matrix G = 1, with n odd. Algorithms BoundWorstCase2 and
BoundBestCase then converge to the exact result H̃∞(Y |H) = 1, not depending
on parameter pcorr. This is the best-case scenario, given the universal bound
H̃∞(Y |H) ≤ k. Figure 4.7 illustrates the former with squares for n = 5. The
result also holds if the repetition code is neither linear/cyclic nor odd. As long
as w1 ⊕w2 = 1, the elements of each Yj can be paired into cosets. Although
the term coset is usually preserved for linear codes, translations of a non-linear
repetition code are either disjunct or coincide and still partition the space
{0, 1}n. As a side note, the result offers a refutation of the repetition code pitfall
of Koeberl et al. [87], a work that overlooks that (n − k) is an upper bound
only.

2 8 12 8 2
y
⊕w

h

Figure 4.7: The exact residual min-entropy H̃∞(Y |H) for the correlated
distribution and an [n = 5, k = 1, d = 5] repetition code.

We improve the upper bound on H̃∞(Y |H) for both the biased and correlated
distribution. In particular, we take minimum distance d into account. The main
insight is that two slightly differing inputs yu 6= yv do not overlap in terms of
helper data h. More precisely, if HD(yu,yv) ∈ [1, d − 1], then {yu ⊕w : w ∈
W} ∩ {yv ⊕w : w ∈ W} = ∅. For the biased distribution, the following holds:
HD(yu,yv) ∈ [1, d− 1] if yu 6= yv and yu,yv ∈ (Y1 ∪Y2 ∪ . . .∪Yt+1). Or stated
otherwise, the elements of the first t+ 1 sets all result in unique h’s. Therefore,
we can impose the constraint given in (4.23). Figure 4.8 depicts the squares.

αh
j =

{
|Yj ||M|, if j ∈ [1, t+ 1],
0, otherwise.

(4.23)

There is an interesting observation for perfect codes in particular. As clear
from the Hamming bound in (2.11), all unique h’s are covered by the first t+ 1
sets exclusively. BoundWorstCase and BoundBestCase2 hence produce the same
output, implying that the residual min-entropy is evaluated exactly, as further
simplified in (4.24). For [n, k = 1, d = n] repetition codes with n odd, the result
provides a refutation of the repetition code pitfall [87]. Maes et al. [111] later
presented a similar contribution, differing in its use of Shannon entropy rather
than min-entropy.
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|Yt+1||Yt+2| |Yλ|
y
⊕w

h

|M|

mod(2n,
|M|)

t∑
i=0

(
n
i

) t∑
i=0

(
n
i

)
(|M| − 1)

|M| mod(2n, |M|)

Figure 4.8: A tightened upper bound on H̃∞(Y |H) for the biased distribution,
hereby making use of (4.23).

H̃∞(Y |H) = − log2

(∑t+1
j=1 |Yj | pj

)
= − log2

(
Fbino

(
t;n,min(pbias, 1− pbias)

))
.

(4.24)

For codes that do not happen to be perfect, there is still margin for improvement.
We inject some promising thoughts but abstain from numerical results later-on.
Consider a linear code of which the Hamming weight distribution of the coset
leaders e is well-understood. Let |Eh| denote the number of cosets such that
h = HW(e). Clearly, |Eh| =

(
n
h

)
for h ∈ [0, t]. Our interest concerns |Eh| for

h > t, all of which are exactly known in the ideal case, as in [30] for certain BCH
codes. The largest h for which |Eh| > 0 is also referred to as the covering radius
hcr of the code. For a bias pbias < 1/2, (4.25) comprehends the exact residual
min-entropy. The latter expression extends to pbias > 1/2 in case the all-ones
vector 1 is a codeword. This includes Reed–Muller codes as well as cyclic codes
with d odd, as has been argued earlier on. If only bounds on |Eh| and/or hcr
are known, one might still be able to further tighten the bounds on H̃∞(Y |H)
correspondingly.

H̃∞(Y |H) = − log2

(
1
|M|

hcr∑
h=0
|Eh| |M| ph+1

)
= − log2

( hcr∑
h=0
|Eh| ph+1

)
.

(4.25)
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For instance, consider [n, k = 1, d = n] repetition codes with n even. These
form the non-perfect and therefore less popular counterpart of n odd. Inputs y
belonging to Yj and Yn+2−j are still paired in order to form the cosets. Unlike
n odd, there is a central set Yt+2 that contains both members of each pair.
Therefore, hcr = t+ 1 and |Et+1| = |Yt+2|/2. As argued before, the operational
principles of cosets extend to non-linear repetition codes. Fig. 4.9 depicts the
squares for n = 4. Equation (4.26) evaluates the residual min-entropy.

1 4 6 4 1
y
⊕w

h

Figure 4.9: The exact residual min-entropy H̃∞(Y |H) for the biased distribution
and an [n = 4, k = 1, d = 4] repetition code.

H̃∞(Y |H) = − log2

(
Fbino

(
t;n,min(pbias, 1− pbias)

)
+1

2

(
n
n
2

)(
pbias(1− pbias)

)n
2

)
.

(4.26)

Also for the correlated distribution, the distance d might be incorporated to
tighten the upper bound on H̃∞(Y |H). First of all, we assign |M| unique h’s
to one out of two elements in Y1. For ease of understanding, assume y = 0,
comprehending the first case in (4.27). For each set Yj , with j ∈ [2, n], we
then count the number of inputs y ∈ Yj such that h = HW(y) ≤ t. The latter
constraint guarantees all assigned h’s to be unique. We distinguish between two
forms, y = (0‖1‖0‖ . . .) and y = (1‖0‖1‖ . . .), resulting in two main terms. For
each form, we apply stars and bars combinatorics twice. In particular, we assign
h indistinguishable stars, i.e., ones, to distinguishable bins and independently
also for n − h zeros. Note that αh

j = 0 for j > 2t + 1. To ensure formula
correctness, one may verify numerically that αh

1 + αh
2 + . . .+ αh

2t+1 equals the
left hand side of the Hamming bound in (2.11).

αh
j =


|M|, if j = 1,
|M|

(∑t
h=bj/2c

(
h−1
bj/2c−1

)(
n−h−1
dj/2e−1

)
+
∑t
h=dj/2e

(
h−1
dj/2e−1

)(
n−h−1
bj/2c−1

))
, otherwise.

(4.27)
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Numerical Results

Figure 4.10 presents numerical results for various BCH codes. We focus on small
codes, given that these allow for an exact exhaustive evaluation of the residual
min-entropy using (4.18) and/or (4.19). This way, the tightness of various bounds
can be assessed adequately. Figure 4.10(d) nevertheless demonstrates that our
algorithms are able to support large codes equally well, in compliance with a
practical key generator. Note that only half of the bias interval pbias ∈ [0, 1]
is depicted. The reason is that all curves mirror around the vertical axis of
symmetry pbias = 1/2. The same holds for the correlated distribution with
parameter pcorr.

Especially the lower bounds perform well, which benefits a conservative system
provider. The best lower bounds in Figure. 4.10(a), (b) and (c) visually coincide
with the exact result. The gap with the (n− k) bound is the most compelling
around pbias, pcorr ≈ 0.7, where the corresponding curves hit the horizontal axis
H̃∞(Y |H) = 0. Also our upper bounds are considerably tighter than their more
general alternatives in (4.15). Nevertheless, the latter bounds remain open for
further improvement, with the exception of Figure 4.10(b). An [n = 7, k =
4, d = 3] code is perfect and lower and upper bounds then converge to the exact
result for the biased distribution.

Table 4.6 quantifies the reduction in implementation footprint for a fuzzy
extractor that produces a 128-bit key from a biased PUF. A concatenated code
ζ2 ◦ ζ1 is independently applied to q non-overlapping blocks of PUF response
bits. We consider all 70 BCH codes ζ1 with n2 ≤ 255 and all 7 repetition codes
ζ2 with n2 ≤ 13 and n2 odd. The degenerate case n2 = 1 ensures that our
search space of 490 codes includes stand-alone BCH codes. Given a bias pbias
and an expected bit error rate Ev←V [Perror,y], we retain the code that minimizes
the number of response bits n while satisfying the following two constraints.
First, the residual min-entropy H̃∞(Y |H) ≥ 128. Due to i.i.d. response bits Yi,
algorithm BoundWorstCase can be applied to an [n1 ·n2, k1, d1 ·d2] umbrella code
and the residual min-entropy thereof is multiplied by q. A second constraint
states that the expected failure rate for key reconstruction Ev←V [Pfail] ≤ 10−6.
Due to i.i.d. response bits Yi, we can compute Ev←V [Pfail] as given in (4.14).

According to the (n− k) bound, a modest bias is highly detrimental already.
Most notably, for pbias = 0.56, there is no code within the search space that
satisfies all the design constraints. According to the newly derived bound, PUFs
with a considerable bias can be supported. We emphasize that a carefully
balanced PUF circuit with a custom-designed layout tends to have a low bias.
Notable cases of a high bias can typically be attributed to an asymmetry in
either the PUF circuit or its layout, e.g., the D flip-flop PUF in [113, 104, 89,
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(a) Bias; [n = 15, k = 7, d = 5].
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(b) Bias; [n = 7, k = 4, d = 3].
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(c) Correlation; [n = 15, k = 7, d = 5].
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(d) Bias; [n = 127, k = 64, d = 21].

Figure 4.10: The min-entropy loss of a secure sketch for various BCH codes.
Dots correspond to an exact exhaustive evaluation of (4.18)/(4.19). The legend
of the curves is as follows. (I) The ingoing min-entropy H∞(Y ) = − log2(p1).
(II) The lower bound H̃∞(Y |H) = max(H∞(Y )− (n− k), 0). (III) The lower
bound on H̃∞(Y |H) according to BoundWorstCase. (IV) The upper bound on
H̃∞(Y |H) according to BoundBestCase. (V) The lower bound on H̃∞(Y |H)
according to BoundWorstCase2. (VI) The upper bound on H̃∞(Y |H) according
to BoundBestCase2.
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81] with pbias > 0.7. For low-bias PUFs, with pbias ∈ [0.42, 0.58], a stand-alone
secure sketch will later turn out to be competitive with state-of-the-art debiasing
schemes [187, 62, 104, 170, 111].

4.3.6 Reusability

A secure sketch is occasionally claimed to be reusable, as exemplified by the
so-called reverse fuzzy extractor protocols [171, 110, 7], but this is incorrect.
Our counterexamples show that repeated helper data exposure may result in
additional min-entropy loss. The revealed flaw is attributed to the misuse of
a reusability proof of Boyen [23]. For the code-offset construction with linear
codes, the exposure of h(1) ← SSGen(y) and h(2) ← SSGen(y⊕ e), where the
perturbation e is known and fully determined by the attacker, is indeed provably
equivalent. The latter helper data reveals that y belongs to an identical coset
{h(1) ⊕w : w ∈ W} = {h(2) ⊕ e⊕w : w ∈ W}. However, the perturbation e is
determined by the inherent noisiness of a PUF rather than by the attacker and
its release hence reveals new information.

Given a sequence of q exposures, the attacker can estimate all individual bit error
rates perror,i with i ∈ [1, n], as well as the coset to which reference y belongs.
For this purpose, the attacker collects helper data h(j) ← SSGen(y ⊕ e(j)),
with j ∈ [1, q]. The difference vector among each pair of noisy responses can
be recovered as long as its Hamming weight does not exceed t; consider a non-
redundant set (e(1) ⊕ e(j)) with j ∈ [2, q]. For q →∞, the estimates in (4.28)
converge to their exact counterpart.

lim
q→∞

[{
(0, pi), if pi < 1/2,
(1, 1− pi), otherwise

]
= (e(1)

i , perror,i) with pi =
q∑
j=2

e
(1)
i ⊕ e

(j)
i

q − 1 .

(4.28)

For ease of understanding, assume Y = X. The exposure of a bit error rate
perror,i = Fnorm(−|ωi − ωthres|/σnoise) then implies knowledge of the threshold
discrepancy |ωi − ωthres|. The residual min-entropy of reference response X is
captured by (4.29).
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H̃∞(X|(H,Perror,1, . . . , Perror,n))

= − log2

(
Ev←V

[
maxw∈W P(Ω = ωw)∑

w∈W P(Ω = ωw)

])
,

with ωw,i = ωthres + (1− 2wi)(ωi − ωthres) and i ∈ [1, n].

(4.29)

Figure 4.11 quantifies the residual min-entropy of X with the exclusion and
inclusion of revealed bit error rates perror,i respectively. In the latter case, we
rely on a Monte Carlo evaluation of (4.29), as enabled by choosing a small
[n = 15, k = 7, d = 5] BCH code, given that an analytical approach is not
straightforward. For both the biased and correlated distribution, it turns out
that repeated helper data exposure results in additional min-entropy loss.

0.5 0.75 10

7

pbias

H̃∞

(a) Bias; [n = 15, k = 7, d = 5].

0.5 0.75 10
1

7

pcorr

H̃∞

(a) Correlation; [n = 15, k = 7, d = 5].

Figure 4.11: The additional min-entropy loss attributed to revealed bit error
rates. Solid lines represent H̃∞(X|H), as computed with BoundWorstCase2;
Figure 4.10 previously confirmed the visual overlap with the exact result. Dots
correspond to H̃∞(X|(H,Perror,1, . . . , Perror,n)), hereby relying on Monte Carlo
evaluations of size 106, i.e., the number of samples v ← V .

The crucial insight for the biased distribution is that majority and minority
bits tend to exhibit lower and higher error rates respectively. Note that
Ev←V [Perror,x|Xi = 1] < Ev←V [Perror,x|Xi = 0] if pbias > 1/2 and vice versa
otherwise. The attacker obtains the bit-specific bias pbias,i = P(Xi = 1|Perror,i =
perror,i) in (4.30), which is more informative than pbias = P(Xi = 1).

pbias,i = fnorm(ωthres + |ωi − ωthres|)
fnorm(ωthres + |ωi − ωthres|) + fnorm(ωthres − |ωi − ωthres|)

. (4.30)
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The crucial insight for the correlated distribution is that correlation among Ωi
and Ωj , with i, j ∈ [1, n], implies correlation among Perror,i and Perror,j . We
compute P(Ω = ωw) = fnorm(ωw,0,Σ) in (4.29) with Σi,j = sin(π(ci,j − 1/2))
and ci,j defined in (4.16). The latter relation can be proven by integrating (4.31)
in polar coordinates. The diagonal elements Σi,i = 1.

ci,j = 2
∫ ∞

0

∫ ∞
0

fnorm

((
ωi ωj

)
;
(
0 0

)
,

(
1 Σi,j

Σi,j 1

))
dωi dωj . (4.31)

Observe in Figure 4.11 that the overly conservative (n− k) bound compensates
for the additional, unanticipated min-entropy loss. This observation, however,
does not necessarily hold for every possible distribution. Moreover, the use of the
(n− k) bound in part undermines the lightweight intentions of a reverse fuzzy
extractor [171, 110, 7]. Further theoretical work may determine to which extent
and at which cost reverse fuzzy extractors can be repaired. A potential resolution
already exists for biased distributions, as will be discussed in Section 4.5.5.

4.3.7 Helper Data Manipulation

Out of seven secure sketch constructions in Table 4.4, the three code-offset
methods generate the most helper data h, i.e., 2n rather than 2n−k bits, and
are hence presumed to be the most vulnerable to manipulation attacks. We
therefore focus on the code-offset case exclusively, and list four types of threats
below:

First, consider the code-offset method of Tuyls et al. [166], instantiated with a
linear code, and applied to a nearly-uniform input Y . The output Z = M is then
nearly-uniform as well, which allows the system provider to omit the subsequent
hash function, i.e., a key k = z is generated [65]. Under the assumption of
an interactive application, as defined in Table 4.1, this unfortunately enables
related-key attacks. XORing the helper data with a codeword w results in a
related key k̂ = k⊕m.

Second, manipulations of the helper data allow an attacker to estimate the error
rates perror,i of individual response bits. As is showcased in Section 4.3.6, the
release of this information can increase the min-entropy loss. For the code-offset
methods, the attacker flips an arbitrary bit hi of the helper data. Even under
the assumption of a silent application, as defined in Table 4.1, an attacker
can evaluate the changes in failure rate for the code-offset method of Tuyls
et al. [166]. For the code-offset method of Dodis et al. [39], an interactive
application would be required.
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Third, given that a large response y is usually partitioned into smaller blocks that
are processed independently, divide-and-conquer attacks might apply. We assess
the possibilities for launching a brute-force search on each block independently.
Linear codes, which are omnipresent in the literature, are found to be secure.
Non-linear codes with three or more codewords w, which have not been used in
the literature so far, are not necessarily secure. Algorithm 5 can then retrieve
the response bits of each partition. Regardless of whether 0 ∈ W, set I is
expected to contain a single element in the end. Depending on the code, false
positives might occur in the occasional case that the sum of three codewords is
again a codeword. This can easily be resolved via an extension of the algorithm.

Algorithm 5: Attack on the code-offset construction of Dodis et
al. [39]
Input: Codewords w1,w2, · · · ,w|M| of the non-linear code ζ
Input: Helper data h
Output: Response section y
I ← {1, 2, . . . , |M|}
for i← 1 to |M| do

j ← mod(i, |M|) + 1
Modify helper data: ĥ← h⊕wi ⊕wj

if key reconstruction fails then
I ← I\{i, j}

y← h⊕wI

Codes and decoding algorithms with some sort of non-uniformity for the error-
correcting capability t might be in danger as well. Consider the following
examples. First, the capability to correct 1→ 0 and 0→ 1 errors might differ.
Second, the number of errors that can be corrected might differ per codeword
and/or might depend on the position of the errors. In the former cases, an
attacker can iterate again over all potential codewords and test hypotheses via
the failure rate pfail.

Fourth, the manipulation of helper data can facilitate physical attacks. Merli et
al. [122] and Karakoyunlu and Sunar [77] both target the code-offset method,
collect power traces for various helper vectors, and successfully recover the secret
PUF response. Merli et al. [123] later proposed a countermeasure for linear
codes where the sketch input is masked, i.e., XORed, with a randomly chosen
codeword. This requires the implementation of a physically secure TRNG.
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4.4 Other Error-Correction Schemes

We discuss several error-correction schemes that do not satisfy the definition of
a secure sketch.

4.4.1 Exhaustive Search

A PUF-enabled device could perform an exhaustive search for the error pattern
e = y⊕ ŷ ∈ {0, 1}λ [130]. An integrity check as given in Table 4.2 serves as a
stopping criterion. This approach is only practical if the expected bit error rate
E[Perror,y] is sufficiently low, e.g., due to the application of a prior bit selection
scheme and/or TMV, and if λ is limited. The availability of individual bit error
rates could accelerate the search. In fact, the workload of the most efficient
search is quantified by the Shannon entropy H(E), as given in (4.32) under the
assumption of i.i.d. response bits Yi.

H(E) = −λ
(
Ev←V [Perror,y] log2(Ev←V [Perror,y])

+(1− Ev←V [Perror,y]) log2(1− Ev←V [Perror,y])
)
.

(4.32)

4.4.2 Soft-Decision Decoding

Maes et al. [112] were the first to apply soft-decision decoding to the recovery
procedure SSRep of a secure sketch, and implemented a PUF-based key generator
accordingly [114]. The main benefit is that the error-correcting capabilities of the
secure sketch are improved with respect to traditional hard-decision decoding.
A considerable drawback is that the error rates perror,i of all ingoing response
bits yi need to be published as helper data herror, in addition to the helper data h
that is inherent to the secure sketch itself. For the three code-offset methods
in Table 4.4, a soft-decision maximum-likelihood (SDML) decoder recovers the
randomly selected codeword w according to (4.33). Given that an exhaustive
search over all |M| candidate codewords ŵ is involved, only small codes can be
used. So as to obtain a key k of sufficient length, the response y should hence
be subdivided into q partitions that are each processed independently.

ŵ = arg max
w∈W

n∏
i=1

(1− perror,i)hi⊕ỹi⊕wi(perror,i)hi⊕ỹi⊕wi⊕1. (4.33)
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For implementation purposes, it is usually more efficient to use the log-likelihood
in (4.34) instead. A product is then converted into a sum. The logarithms can
be computed in advance, e.g., by publishing (log(1− perror,i)− log(perror,i)) as
helper data herror instead of perror,i.

ŵ = arg max
w∈W

n∑
i=1

(−1)hi⊕ỹi⊕wi
(
log(1− perror,i)− log(perror,i)

)
. (4.34)

Nevertheless, the computational burden remains substantial. For convolutional
codes, Viterbi’s decoding algorithm [174] provides a more efficient alternative.
For Reed–Muller codes, the generalized multiple concatenated (GMC) decoding
algorithm improves the runtime, although it does not guarantee maximum-
likelihood.

Min-Entropy Loss

As previously elaborated in Section 4.3.6, the exposure of bit error rates perror,i
can result in additional min-entropy loss. Maes et al. [112] have proven the
seemingly more optimistic result in (4.35), valid for i.i.d. response bits Yi with
P(Yi = 1) = pbias and under the assumption of the heterogeneous variability–
noise model in Section 3.1.5. It is also assumed that noise is suppressed during
the enrollment, which complies with a joint effort for majority voting and the
estimation of bit error rates.

H∞(Y ) = H̃∞(Y |(Perror,1, Perror,2, . . . , Perror,n)). (4.35)

An outline of the proof is given in (4.36). For the bit-specific bias pbias,i =
P((Yi = 1)|(Perror,i = perror,i)) given in (4.30), it holds that pbias,i ∈ (0.5, 1) if
pbias ∈ (0.5, 1) and pbias,i ∈ (0, 0.5) if pbias ∈ (0, 0.5). An attacker’s best guess
is hence still either y = 0 or y = 1.

H̃∞(Y |(Perror,1, Perror,2, . . . , Perror,n))

= −n log2

(
Eω←Ω

[
max(pbias,i(ω), 1− pbias,i(ω))

])
= −n log2

(
max

(
Eω←Ω

[
pbias,i(ω)], 1− Eω←Ω

[
pbias,i(ω)]

))
= −n log2(max(pbias, 1− pbias)) = H∞(Y ).

(4.36)
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Unfortunately, the helper data h of the code-offset method has not been
incorporated. Although the exposure of bit error rates perror,i does not induce
min-entropy loss by itself, it can amplify the min-entropy loss that is attributed
to h, as suggested in (4.37). Section 4.3.6 quantified the additional losses for
the biased distribution in particular.

H̃∞(Y |H) ≥ H̃∞(Y |(H,Perror,1, Perror,2, . . . , Perror,n)). (4.37)

Helper Data Manipulation

Maes et al. [114] mention that the integrity of helper data should be verified,
but implement a key generator that lacks such protective measures. We observe
that, depending on the specifics of the implementation, and even for silent
applications as defined in Table 4.1, manipulation of the published error rates
might result in a complete recovery of the secret key k.

Consider an SDML decoder that is applied to q partitions of response y
independently. A crucial insight is that the decisive impact of any response
bit ŷi on the likelihood computation in (4.33) can be nullified by setting the
corresponding error rate perror,i to 1/2. For ease of understanding, assume that
the response bits are noiseless, i.e., ŷi = yi. As illustrated in Figure 4.12 for a
small-sized [n, k, d] BCH code, an attacker who manipulates the helper data k
times and observes the corresponding failure rates pfail for key reconstruction,
might be able to recover the secret codeword w of any given partition. By
repeating the same mechanism for each partition, the secret key k is eventually
recovered.

Also [n, k = 1, d = n] repetition codes, which are usually adopted as part of
a concatenated code ζ2 ◦ ζ1, are vulnerable to manipulation attacks. Consider
an attacker who sets the published error rates perror of any given partition to(

1/2 1/2 · · · 1/2
)
. Codewords w1 and w2 are then equally likely, according

to (4.33). A given implementation of an SDML decoder might, for example,
deterministically return codeword w1 in case of such a tie. A single observation
of the failure rate pfail for key reconstruction hence suffices to recover the secret
codeword w of the given partition.

Not a Secure Sketch

Although Maes et al. [112] build upon the code-offset method, their scheme
as a whole should not be regarded as a secure sketch. First of all, the authors
analyzed the min-entropy loss for i.i.d. response bits Yi exclusively, while a
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(1 1 1 1 1 1 1) 1 1 0 1
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ŵ

p̂error

pfail

Figure 4.12: A helper data manipulation attack on the SDML decoding scheme
of Maes et al. [112, 114]. The working principle is illustrated for an [n = 7, k =
4, d = 3] BCH code, where the exhaustive search for the most likely codeword ŵ
is performed in the given order, from top to bottom. In case of a maximum-
likelihood tie, it is assumed that the first codeword ŵ that takes part in the
tie is returned. By observing the failure rate pfail for key reconstruction, given
k = 4 well-chosen helper data patterns ĥerror, an attacker can uniquely identify
the enrolled codeword w.
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secure sketch can handle all distributions of Y with a given lower bound on the
min-entropy. Moreover, it is not straightforward to impose a meaningful lower
bound t on the number of errors that can be corrected. In theory, the errors
could all occur at indices i where perror,i is relatively low, and hence mislead
the soft-decision decoder.

Computing Bit Error Rates On-The-Fly

Van der Leest et al. [103] later proposed an alternative scheme where the bit error
rates perror,i are estimated on-the-fly during the reconstruction phase rather
than stored as part of helper data. This variation relies again on the code-offset
method, instantiated with a concatenated code ζ2 ◦ ζ1 that processes q non-
overlapping blocks of response bits independently. In addition to a hard-decision
output, the decoder of the repetition code ζ2 provides a level of confidence
that can be used by the subsequent soft-decision decoder of ζ1. The (n − k)
upper bound on the min-entropy loss still applies; the previously discussed
manipulation attack is precluded.

4.4.3 Pattern Matching

Paral and Devadas [132, 133] were the first to adopt pattern matching as an
error-correction technique for PUFs, followed by Majzoobi et al. [119, 140].
During the enrollment, a substring w ∈ {0, 1}η of the response y ∈ {0, 1}λ, the
former of which is referred to as a pattern, is selected uniformly at random and
published as helper data h. The corresponding index z ∈ [1, q] serves as keying
material. The following three variations for the selection of a substring have
been proposed. First, the response y can be partitioned into non-overlapping
substrings, i.e., λ = q η. Second, the substrings of y can be allowed to overlap,
i.e., λ = q + η − 1. Third, the response y can be considered as cyclic while
having overlapping substrings, i.e., λ = q.

The reconstruction involves shifting the helper data pattern h along a
regenerated response ŷ so that the Hamming distance at each index ẑ ∈ [1, q]
can be computed. The following two variations for the retrieval of the enrolled
index z have been proposed. First, the condition HD(h, ĥ) ≤ t, where threshold
t is a constant, is expected to be satisfied at the index ẑ = z while at all other
indices ẑ 6= z it is not. We assume that the reconstruction fails if zero indices
satisfy this condition. We also assume that either the first or the last matching
index is deterministically returned in case of a tie. A second, non-parametric
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recovery procedure outputs the index ẑ that minimizes the Hamming distance
instead. Again, we assume that a tie is resolved via the deterministic selection
of either the first or the last matching index.

In order to obtain a key k of sufficient length, the previously described
enrollment and reproduction steps are performed on g non-overlapping responses
y1,y2, . . . ,yg independently. Binary representations of indices z1, z2, . . . , zg are
concatenated to obtain the outgoing secret z.

So far, the proposal complies with both weak and strong PUFs. For the latter
type of PUF in particular, machine learning attacks are counteracted by the
secret decoupling of challenges and responses. As an additional protective
measure, the secret index z of each round can fork the next round of the
challenge generator [132]. Stated otherwise, the CRP stream of each round
depends on the secret indices z of all previous rounds. As a consequence, the
link between challenges and responses becomes less and less traceable with
each round. As an alternative additional countermeasure [140], each published
pattern h can be padded with random bits.

Min-Entropy Loss

Regardless of all the variations and under the assumption of i.i.d. response
bits Yi with bias pbias, the concatenation z of substring indices is uniformly
distributed even for an attacker who observes the helper data w. However, the
proof-of-concept implementation relies on an Arbiter XOR PUF and correlations
among the response bits Yi are hence to be expected.

Failure Rate

We analyze the expected failure rate under the assumption of a uniformly
distributed response Y and non-overlapping patterns h. An exact expression
for the first recovery procedure, which has a parameter t, is given in (4.38).
Counter i represents the number of indices ẑ 6= z that satisfies the Hamming
distance condition in addition to ẑ = z.

E[Pfail] = 1−
(

Fbino
(
t, η,E[Perror,y]

) q−1∑
i=0

fbino
(
i, q − 1,Fbino(t, η, 0.5)

)
i+ 1

)g
.

(4.38)
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The expected failure rate for the second, non-parametric recovery procedure
is given in (4.39). Counter i represents the number of indices ẑ 6= z that joins
index ẑ = z in a minimum Hamming distance tie.

E[Pfail] = 1−
(

η∑
t=0

fbino
(
t, η,E[Perror,y]

)
q−1∑
i=0

(
q−1
i

)(
fbino(t, η, 0.5)

)i(1− Fbino(t, η, 0.5)
)q−1−i

i+ 1

)g
.

(4.39)

As is clear from Figure 4.13, the second recovery procedure performs better than
the first one. This ratifies the intuitive insight that the first recovery procedure
does not properly distinguish among indices ẑ that exhibit a low Hamming
distance.
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Figure 4.13: The expected failure rate E[Pfail] for pattern matching with q = 32
non-overlapping patterns of length η ∈ [1, 32]. The averaged bit error rate
E[Perror,y] = 0.1 and only g = 1 round is considered. Curve (I) corresponds
the first recovery procedure as given in (4.38), with parameter t chosen so as
to minimize the expected failure rate. Curve (II) correspond to the second,
non-parametric recovery procedure as given in (4.39). Each dot corresponds
to a Monte Carlo experiment of size 105 that verifies the correctness of the
analytic results.
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Helper Data Manipulation

Depending on the chosen variation, pattern matching might be vulnerable to
helper data manipulation attacks. Consider for example basic pattern matching
with overlapping substrings where the key is used by an interactive application
as defined in Table 4.1. As illustrated in Figure 4.14, an attacker can then
iteratively shift the given pattern h along response y, and determine the value
of one previously unrevealed bit with every move.

y

h

h

h

1 0 0 1 0 1 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 0 1

0 1 0 0 0 1 0 1
1
0 0 1 0 0 0 1 0

1
0 1 0 1 0 0 0 1

Figure 4.14: A first helper data manipulation attack on a basic pattern matching
key generator with overlapping substrings. Only a single round is depicted.

Regardless of the chosen recovery procedure, the key at any given index is more
and less stable with a correctly and incorrectly guessed helper bit respectively.
With every move, the attacker hence needs to measure the failure rate for key
reconstruction twice. A large number of measurements might be required in
order to statistically distinguish both failure rates with sufficient confidence.
In order to accelerate this test, the attacker can temporarily flip a fraction of
the previously revealed bits in both patterns, i.e., both failures rates can be
increased to a more favorable range.

If the response y is non-cyclic, then the attacker observes a sudden increase of
both failure rates when the first (or last) index is exceeded. Therefore, the index
of the original pattern is revealed, and by repeating the same mechanism for all
rounds, the original secret key can hence be recovered. This is not the case for
a cyclic response y, although the attacker still retrieves previously unrevealed
response bits, which might in turn facilitate an alternative attack vector.

Even under the assumption of a silent application as defined in Table 4.1, some
variations of pattern matching are prone to key-recovery through helper data
manipulation. We refer to our CT-RSA 2014 publication for more details.
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4.5 Computationally Straightforward Front-End

The front-end of our generic HDA in Figure 4.2 consists of three consecutive
steps that require straightforward computations only, i.e., subset selection, TMV,
and SMV. These steps are usually instantiated in a coordinated manner, and we
therefore discuss them in a joint effort. The primary objective of the proposals
in Table 4.7 is a reduction in error rate, i.e., E[Perror,y] < E[Perror,x], and/or a
reduction in bias, i.e., |P(Yi = 1)− 1/2| < |P(Xi = 1)− 1/2|. Often, a reduction
in either one is at the expense of the other. Moreover, response bits are usually
lost in the process, and the size of the helper data h can be considerable.

Table 4.7: Proposed methods for the computationally straightforward front-end
of a PUF-based key generator.

Consecutive steps Properties

Proposal Subset TMV SMV Bias perror Choose y

Bolotnyy et al. [21] X ↓ ×
Škorić et al. [157] X ↑ ↓ ×
Suh and Devadas [161] X ↑ ↓ ×
Maes et al. [113] X ↓ ↑ ×
van der Leest et al. [103] X ↑ ↑↓ ×
Koeberl et al. [88] X X ↑ ↓ ×
von Neumann [111] X ↓ ↑ ×
IBS [187, 62] X X ↓ ↑↓ X

A byproduct of TMV/SMV comprises the estimates of individual bit error
rates perror. The enables the enrollment of several forms of subset selection,
as well as the use of the previously discussed soft-decision scheme of Maes et
al. [112], where error rates are stored as helper data h. Alternatively, the error
rates required for soft-decision decoding can be estimated on-the-fly during
the reconstruction phase, as proposed by van der Leest et al. [103]. Finally, an
exhaustive search for the error pattern, as discussed in Section 4.4.1, can be
accelerated if the bit error rates are known.
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4.5.1 Temporal Majority Vote

TMV, as previously discussed for the enrollment in Sections 4.1.3 and 4.1.4,
can be performed during the reconstruction phase as well [37, 21, 113, 183].
However, then it is not a one-time effort anymore, and additional circuitry is
indispensable, i.e., counters that could previously be implemented externally
now have to be implemented on the PUF-enabled device always.

Bit Error Rates

Under the assumption of i.i.d. response bits Xi, the expected post-TMV error
rate E[Perror,y] is given in (4.40), where p∞error(ω) is as defined in (4.2). We
assume that an equal number of votes q is used during both the enrollment
and the reconstruction. Errors on relatively stable response bits are successfully
suppressed, but for the relatively unstable bits, high error rates unfortunately
remain high.

Ev←V
[
Perror,y

]
= 2

∫ ∞
ω=−∞

fnorm(ω) Fbino

(q − 1
2 ; q, p∞error(ω)

)
(

1− Fbino

(q − 1
2 ; q, p∞error(ω)

))
dω, with q odd.

(4.40)

As is clear from the heterogeneous variability–noise model in Section 3.1.5, TMV
is never sufficient by itself if the IC’s environment in the field differs from during
the enrollment, i.e., µnoise 6= 0. Subsequent and/or preceding error-correction
steps have to be implemented as well.

Neither Min-Entropy Loss nor Helper Data Manipulation

The absence of helper data h is a considerable benefit. Most notably, attacks
that rely on the manipulation of helper data do not apply. Moreover, given
that we consider the application of TMV during the reconstruction phase, the
enrolled secret x remains unaffected, and there is hence no min-entropy loss.
This differs from the application of TMV during the enrollment: under the
assumption of i.i.d. response bits Xi, it was shown that bias is slightly amplified
according to (4.4).
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4.5.2 Suh and Devadas

The scheme of Škorić et al. [157], which has later been adopted by several
others [161, 4, 67, 66, 19], outputs a string y ∈ {0, 1}η where the most and
least reliable bits of response x ∈ {0, 1}λ have been retained and discarded
respectively. The fraction of retained bits, i.e., pret = η/λ, is a parameter. The
smaller the retention ratio, the smaller the expected bit error rate E[Perror,y], but
the more response bits x that are lost in the process. Suh and Devadas [161] later
generalized the scheme such that response x is first subdivided into partitions
of size λ, and subsequently, the η most stable bits of each partition are retained.
Figure 4.15 provides an illustration.
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Figure 4.15: The η-out-of-λ selection scheme of Suh and Devadas [161], with
η = 2 and λ = 8. Only the enrollment is depicted.

Several formats for the storage of helper data h have been proposed, given
that there is a trade-off between its size and its in-the-field interpretation effort.
Bhargava and Mai [19] assign a dedicated helper bit h to each response bit x, i.e.,
helper data h serves as a mask. This format is size-efficient if the retention ratio
pret ≈ 1/2. Alternatively, for pret < 1/2 and pret > 1/2, it could be more efficient
to store the indices of the retained and discarded bits respectively, especially if
λ is small. Hiller et al. [66] suggest storing the distances between consecutive
retained/discarded response bits x instead. Representing these distances with
a fixed number of bits is not necessarily efficient though. The same authors
therefore proposed the use of a run-length encoding scheme.

As pointed out by Armknecht et al. [4], there is a good symbiosis between the
η-out-of-λ selection scheme and TMV. First of all, estimations of individual
bit error rates perror,x, which enable the enrollment of the selection scheme,
happen to be a natural byproduct of TMV. Moreover, the response bits x for
which TMV is effective and ineffective respectively are retained and discarded
respectively.
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Bit Error Rate

Even under the assumption of i.i.d. response bits Xi, it is not straightforward to
evaluate the expected error rate E[Perror,y] in an exact, analytical manner. The
joint PDF f

(
ω(1), ω(2), · · · , ω(λ)

)
= λ! f

(
ω(1)

)
f
(
ω(2)

)
· · · f

(
ω(λ)

)
of order statistics

ω(1) < ω(2) < . . . < ω(λ) [2] results in nested integrals that do not simplify well.
Nevertheless, relatively simple formulas arise for two extreme cases that together
bound the behavior of all other instances. A first, asymptotic case λ→∞ is
elaborated in (4.41), where p∞error,x(ω) is as defined in (4.2). For convenience,
the retention ratio pret is mapped to an offset δ ∈ [0,∞) from the threshold
value ωthres.



lim
λ→∞

[
pret
]

= 1− Fnorm(ωthres + δ) + Fnorm(ωthres − δ),

lim
λ→∞

[
E[Perror,y]

]
= lim
λ→∞

[
pret
](∫ ωthres−δ

−∞
fnorm(ω)p∞error,x(ω) dω

+
∫ ∞
ωthres+δ

fnorm(ω)p∞error,x(ω) dω
)
.

(4.41)

A second extreme case is the selection of only η = 1 bit per partition.
Equation (4.42) is valid for the non-degenerate case λ ≥ 2.

E[Perror,y] =∫ ωthres

−∞

∫ 2ωthres−ω(1)

ω(1)

f
(
ω(1), ω(λ)

)
p∞error,x

(
ω(1)

)
dω(λ) dω(1)

+
∫ ∞
ωthres

∫ ω(λ)

2ωthres−ω(ω)

f
(
ω(1), ω(λ)

)
p∞error,x

(
ω(λ)

)
dω(1) dω(λ),

with f
(
ω(1), ω(λ)

)
= λ(λ− 1)fnorm

(
ω(1)

)
fnorm

(
ω(λ)

)
(

Fnorm
(
ω(λ)

)
− Fnorm

(
ω(1)

))λ−2
if ω(1) < ω(λ).

(4.42)

Figure 4.16 shows numerical results for (4.41) and (4.42). All possible instances
of η-out-of-λ selection reside in the banana-shaped region that is bounded by
either curve. Subdividing response x into partitions is clearly not Pareto-optimal.
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An intuitive explanation thereof is that the bits of response x with the lowest
error rates perror are not necessarily equally spread over the various partitions.
Nevertheless, partitioning might allow for smaller helper data h, so the analysis
of this approach remains relevant. The expected bit error rate E[Perror,y] can
be made arbitrarily low by discarding more and more response bits x. This way,
Bhargava and Mai [19] were able to manufacture a reliable key generator on
a 65 nm CMOS ASIC, without relying on error-corrections methods like for
instance a secure sketch.
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Figure 4.16: Trade-off between the retention ratio pret and the expected bit error
rate E[Perror,y] for the η-out-of-λ selection scheme of Suh and Devadas [161]
with (I) λ → ∞, and (II) η = 1. The response X is assumed to be uniformly
distributed. The Gaussian noise is chosen to have a standard deviation σnoise =
0.325 so that the ingoing bit error rate E[Perror,x] ≈ 10% after a perfect majority
vote, i.e., q → ∞. Solid lines correspond to the analytic formulas, which are
validated by Monte Carlo experiments that produce nearly coinciding dots. For
106 randomly generated responses x of size λ and with variability components
ω drawn from Ω ∼ N(0, Iλ), the error rates of the retained bits are averaged.
We approximate the asymptotic curve (I) by choosing λ = 2048.

Min-Entropy Loss

In general, H∞(X)/λ 6= H̃∞(Y |H)/η, i.e., the ratio of the min-entropy to
the number of bits is not preserved. There is for instance an amplification of
bias. Again under the assumption of i.i.d. response bits Xi, the outgoing bias
P(Yi = 1) = pbias,y is given in (4.43) and (4.44) for the extreme cases λ→∞
and η = 1 respectively. Figure 4.17 quantifies the corresponding min-entropy
loss for retention ratios pret ∈ {1/2, 1/8}.
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Figure 4.17: The min-entropy loss for the η-out-of-λ selection scheme of Suh
and Devadas [161], as applied to i.i.d. response bits Xi with P(Xi = 1) = pbias,x.
The (I) ingoing min-entropy H∞(Xi) = − log2(pbias,x) is considerably higher
than the outgoing min-entropy H∞(Yi) = − log2(pbias,y) for parameter values
(II) η = 1 and λ = 2, (III) pret = 1/2 and λ → ∞, (IV) η = 1 and λ = 8, and
(V) pret = 1/8 and λ→∞. Each dot corresponds to a Monte Carlo experiment
where the estimate p̂bias,y for 105 randomly generated responses x of size λ is
averaged. We approximate curves (III) and (V) of the asymptotic case λ→∞
by choosing λ = 2048.

lim
λ→∞

[
pbias,y

]
= 1− Fnorm(ωthres + δ)

1− Fnorm(ωthres + δ) + Fnorm(ωthres − δ)
. (4.43)

pbias,y =
∫ ∞
ωthres

∫ ω(λ)

2ωthres−ω(λ)

f
(
ω(1), ω(λ)

)
dω(1) dω(λ). (4.44)

Helper Data Manipulation

As pointed out by Hiller et al. [64], the η-out-of-λ selection scheme is highly
vulnerable to helper data manipulation. Even for silent applications as defined
in Table 4.1, the unpartitioned case can result in a quasi-complete recovery of
the secret key k. Assume that each retained bit y of response x has discarded
neighbors to both its left and right. By shifting the index of such a retained
bit y to an otherwise discarded neighbor, while observing the difference in the
failure rate pfail for key reconstruction, it is revealed whether or not both bits
are equal. Eventually, the response x is completely revealed, except for one
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degree of freedom that corresponds to a bit-wise inversion of x. Also for the
partitioned case with η ≥ 2, the attack is fairly effective, given that at most 1
bit of min-entropy remains within each partition.

For the partitioned case with η = 1, the previously described attack is less
effective. Nevertheless, exposure of all equalities and inequalities within each
individual partition can still result in additional min-entropy loss. For example,
when the response bits Xi are biased, an attacker can determine whether a
retained bit y is part of the either the presumed minority or the presumed
majority.

4.5.3 Spatial Majority Vote

Koeberl et al. [88] proposed three schemes for the execution of a spatial majority
vote (SMV), referred to with Roman numerals I, II, and III in Figure 4.18. The
SMV I and SMV II schemes require helper data, while the SMV III scheme
does not. As a side note, Maes et al. [113] previously proposed an SMV-like
debiasing scheme that is not further discussed in this thesis.
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Figure 4.18: The schemes of Koeberl et al. [88], where SMV is applied to subsets
of η-out-of-λ response bits. The enrollment is depicted for three variations of the
scheme that are instantiated with partitions of size λ = 9: (a) the SMV I scheme,
which allows for the correction of at most t = 2 errors among η = 5 reproduced
bits, (b) the SMV II scheme with η = 3, which allows for the correction of at
most t = 1 error among η reproduced bits, and (c) the SMV III scheme, which
allows for the correction of a variable number of errors t ∈ [0, λ− 1] among λ
reproduced bits.
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The SMV I scheme retains the first η = (λ+1)/2 majority bits within partitions
of size λ exclusively, where λ ∈ {5, 9, 13, . . .}. Helper data indicates whether a
given response bit x is either retained or discarded. Up to t = (η − 1)/2 errors
can be corrected among each selection of η reproduced bits. The SMV II scheme
initially draws each outgoing bit y randomly and uniformly from {0, 1}. We then
randomly select η ∈ {3, 5, 7, . . .} out of λ ∈ {2η, 2η+1, 2η+2, . . .} response bits x
that are equal to y. If an insufficient number of bits is available, the complement
of y is enrolled and reproduced instead. Again, up to t = (η − 1)/2 errors can
be corrected. The SMV III scheme outputs the most occurring outcome among
λ ∈ {3, 5, 7, . . .} response bits during both the enrollment and reconstruction
phase. The number of errors t that can be corrected varies.

Min-entropy Loss

Under the assumption of i.i.d. but potentially biased response bits Xi, Koeberl et
al. [88] derived the residual min-entropy of an outgoing bit Yi as is given in (4.45).
All three schemes amplify bias, as represented more clearly in Figure 4.19. The
SMV II scheme suffers less from this issue in comparison with the SMV I and
SMV III schemes.

H̃∞(Yi|H) = − log2(max(pbias,y, 1− pbias,y)), with pbias,y =
1− Fbino

(λ− 1
2 ;λ, pbias,x

)
for SMV I, III

1− Fbino(η − 1;λ, pbias,x) + Fbino(λ− η;λ, pbias,x)
2 for SMV II.

(4.45)

The SMV I scheme is specified to retain the first η majority bits [88], but
this is presumed to be an oversight. Clearly, the η retained indices should be
selected uniformly at random among the majority bits, similar to the SMV II
scheme. Otherwise, the attacker gains an additional advantage for biased PUFs
in distinguishing whether y is either 0 or 1. E.g., for pbias > 1/2, the indices of
the retained bits would tend to be evenly distributed and clustered towards the
start for y = 0 and y = 1 respectively.
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Figure 4.19: The SMV schemes of Koeberl et al. [88] amplify bias, as is
quantified for i.i.d. response bits Xi. (I) The ingoing min-entropy H∞(Xi) =
− log2(max(pbias,x, 1 − pbias,x)). The residual min-entropy H̃∞(Yi|H) for (II)
the SMV I and SMV III schemes with λ = 5, (III) the SMV I and SMV III
schemes with λ = 9, and (IV) the SMV II scheme with λ = 9 and η = 3. Each
dot corresponds to a Monte Carlo evaluation of size 106, so as to verify the
correctness of (4.45).

Bit Error Rate

Koeberl et al. [88] do not take into account that the conditional bit error rates
E[Perror,x=0] and E[Perror,x=1] are not necessarily equal, as is the case for a
biased PUF. A more accurate reliability analysis under the assumption of i.i.d.
response bits relies on (4.46).

E[Perror,y] = pbias,yE[Perror,y=1] + (1− pbias,y)E[Perror,y=0]. (4.46)

The expression for E[Perror,y=1] is given in (4.47). The expression for E[Perror,y=0]
is similar and hence not explicitly listed here.
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E[Perror,y=1] =



1− Fbino

(λ− 1
4 ; λ+ 1

2 ,E[Perror,x=1]
)

for SMV I,

1− Fbino

(η − 1
2 ; η,E[Perror,x=1]

)
for SMV II,

λ∑
i=(λ+1)/2

fbino(i;λ, pbias,x)

λ−i∑
j=0

fbino(j, λ− i,E[Perror,x=0])

Fbino(i− j, i, 1− E[Perror,x=1]) for SMV III.

(4.47)

Helper Data Manipulation

Although Koeberl et al. [88] mention that helper data can possibly be stored
off-chip, its manipulation by an attacker has not been considered. For the SMV I
and SMV II schemes, there is a similar exploit as for the 1-out-of-λ selection
scheme of Suh and Devadas [161] in Section 4.5.2.

4.5.4 Index-Based Syndrome

The index-based syndrome (IBS) scheme of Yu and Devadas [187], where the
term syndrome is a synonym for helper data, serves a debiasing purpose. To
be precise, i.i.d. but potentially biased response bits Xi are transformed into a
pre-chosen, uniformly distributed secret Y . We further consider the generalized
IBS scheme of Hiller et al. [62], which has two parameters instead of only one.
As is shown in Figure 4.20, the response x is first subdivided into partitions of
size λ, and subsequently, η somewhat stable bits are retained for each partition.
The main difference with the scheme of Suh and Devadas [161] in Section 4.5.2
is that the retained bits x should reconstruct a pre-chosen secret y.

Although the secret Y could be uniformly distributed, a joint optimization with
the subsequent secure sketch limits its set of outcomes Y to the codewords w ∈
W1 of a block code ζ1. In conjunction with the codewords w ∈ W2 of the
IBS scheme, a concatenated code ζ2 ◦ ζ1 appears. Compared to the sketch
constructions in Table 4.4, the enrollment reduces to the selection of a random
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Figure 4.20: The generalized IBS scheme of Hiller et al. [62], where η = 5 response
bits x are selected for each partition of size λ = 8. During the enrollment, a
secret bit Yi is chosen uniformly at random for each partition and encoded to
either one out of two codewords w that have approximately the same Hamming
weight, e.g., w ∈ {(0 1 0 1 0), (1 0 1 0 1)}. Helper data h locally rearranges part
of the response bits x such that codewords w can be reconstructed in the most
reliable manner possible. If all nominal ones within a certain partition are
depleted, the least reliable zeros serve as a replacement, and vice versa. During
the reconstruction phase, decoding operations ŷ ← Decode(w̃) can handle up
to (η − 1)/2 = 2 errors for each partition.

codeword w ∈ W1, i.e., no helper data h needs to be stored in addition to the
index pointers. Likewise, the reconstruction reduces to either ŷ← Correct(ỹ) or
ẑ← Decode(ỹ).

Min-Entropy Loss

For stand-alone IBS, and under the assumption of i.i.d. response bits Xi, the
pre-chosen secret Y remains uniformly distributed, even for those who observe
the index pointers H. For the joint optimization with a subsequent secure sketch,
it holds that Z remains uniformly distributed. As a side note, Yu et al. [189]
applied the IBS scheme to the concatenated response X of a RO Sum PUF. As
discussed in Chapter 3, the latter design suffers from functional correlations,
and the assumption of i.i.d. response bits Xi is hence not necessarily valid. Some
theory, but not a rigid security proof, was developed in support. According to
Becker et al. [15], the suggested instances exhibit a larger entropy loss than
what is claimed.
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Bit Error Rate

Even under the assumption of i.i.d. response bits Xi, it is not straightforward to
evaluate the expected bit error rate E[Perror,y] in an exact, analytical manner. As
for the scheme of Suh and Devadas [161] in Section 4.5.2, order statistics result in
nested integrals that do not simplify well. For ease of analysis, we only consider
instances of the generalized IBS scheme where η = 1 bit is selected for each
partition of size λ, i.e., the single-parameter version of Yu and Devadas [187].
An exact formula is then given in (4.48), where p∞error(ω) is as defined in (4.2).

Ev←V [Perror,y] = 1
2

∫ ∞
−∞

f
(
ω(1)

)
p∞error(ω(1)) dω(1)

+1
2

∫ ∞
−∞

f
(
ω(λ)

)
p∞error(ω(λ)) dω(λ),

with f
(
ω(λ)

)
= λ fnorm

(
ω(λ)

)(
Fnorm

(
ω(λ)

))λ−1

and f
(
ω(1)

)
= λ fnorm

(
ω(1)

)(
1− Fnorm

(
ω(1)

))λ−1
.

(4.48)

4.5.5 Von Neumann

Several recently proposed schemes that are based on von Neumann’s [125]
debiasing algorithm from 1951 transform i.i.d. response bits Xi into a uniform
distribution Y , even for those who observe the newly introduced helper data H.
This was first proposed by van der Leest et al. [104], and later also by
Van Herrewege [170] and Maes et al. [111]. Again, a considerable fraction
of the response bits x is discarded in order to restore the balance between
the expected number of 0s and 1s. A crucial difference with IBS [187, 62] in
Section 4.5.4 is that the outgoing secret Y is determined by the response X
rather than pre-chosen.

Figure 4.21 specifies several variations of the von Neumann-based schemes. All
versions start with a biased response x ∈ {0, 1}λ that is partitioned into pairs
of bits. For the most basic version, the first bit of pairs 01 and 10 is retained,
while pairs 00 and 11 are discarded as a whole. Under the assumption of i.i.d.
response bits Xi, the number of retained bits obeys a binomial distribution
B(bλ/2c, 2pbias(1 − pbias)). A second pass of the algorithm on the decimated
discarded pairs increases the expected number of retained bits. Three or more
passes can be performed, but the gain in retention ratio drops rapidly with
each additional pass. The outgoing secret Y is uniformly distributed, under the
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assumption of i.i.d. response bits Xi, and is usually fed into a subsequent secure
sketch. Recall that the min-entropy loss of all sketch constructions in Table 4.4
is exactly (n− k) bits for a uniformly distributed Y .
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Figure 4.21: Several variations of the von Neumann-based debiasing schemes [104,
170, 111]. Only the enrollment is depicted. In the first pass, 01 and 10 sequences
are retained, while 00 and 11 sequences are discarded. Optionally, a second
pass can retain previously discarded 0011 and 1100 sequences, but therefore
not the 0000 and 1111 sequences. A third pass retains previously discarded
00001111 and 11110000 sequences, but therefore not the 00000000 and 11111111
sequences. Originally, only the first bit of each retained sequence contributes to
y. Under the assumption of i.i.d. response bits Xi, secret Y is then uniformly
distributed. A joint optimization with the repetition code ζ2 of a subsequent
secure sketch allows to retain sequences as a whole, i.e., 2, 4, and 8 bits are
retained in the first, second and third pass respectively.

Maes et al. [111] improved the retention ratio for concatenated codes ζ2 ◦ ζ1 that
embed an [n2, k2 = 1, d2 = n2] repetition code ζ2 with n2 even. Undecimated
sequences are retained as a whole and shuffled such that each sequence in y
remains within the boundaries of a single repetition code. There is no additional
min-entropy loss, given that a repetition code reveals all pairwise equalities
among its corresponding response bits anyway. The number of passes imposes a
lower bound on the size of the repetition code, e.g., n2 ≥ 8 if three passes are
performed.

Finally, we highlight that the von Neumann debiasing scheme in Figure 4.22 was
claimed to be reusable [111]. This claim holds, despite overlooking the misuse of
Boyen’s proof and stating that a stand-alone sketch is reusable. An unintended
side effect of introducing placeholder pairs is that individual bit error rates
cannot be estimated anymore. Helper data only allows for the estimation of
pairwise error rates. The scheme is considerably less efficient than other von
Neumann variants though, showing that reusability comes at a price.
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x̃
y
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1 0 ×× 1 0 ×××××××× 0 1 ×××××××× 1 0 ××××××

Figure 4.22: A reusable von Neumann debiasing scheme that allows for the
enrollment of an unlimited number of noisy PUF responses x̃. There is a single
pass that retains 01 and 10 sequences as a whole. The 00 and 11 sequences
merely serve as placeholders, contributing to neither the enrollment nor the
reproduction, i.e., only part of x̃⊕w is released as helper data. The [n2, k2 =
1, d2 = n2] repetition code with n2 even is virtually shortened due to local
placeholder pairs.

Min-Entropy Loss

If only the first bit of each sequence in {01, 10, 0011, 1100, · · · } is retained,
the resulting secret Y is uniformly distributed under the assumption of i.i.d.
response bits Xi. Alternatively, if sequences are retained as a whole, Y is not
uniformly distributed anymore, but the residual min-entropy of the subsequent
secure sketch remains the same.

Failure Rate

Under the assumption of i.i.d. response bits Xi, the expect bit error rate
E[Perror,y] for all von Neumann-based debiasing schemes is given in (4.49).

Ev←V [Perror,y] = 1
2Ev←V [Perror,x|Xi = 0] + 1

2Ev←V [Perror,x|Xi = 1]. (4.49)

However, for the variation of Maes et al. [111] where sequences in {01, 10, 0011,
1100, · · · } are retained as a whole, the outgoing bit error rates Perror,y are not
i.i.d. anymore. The given expression is hence not compatible with the failure
rate of a concatenated code in (4.14). The correct expression for the expected
failure rate of the repetition code ζ2 is given in (4.50). It is assumed that this
failure rate equals 1/2 whenever n2/2 errors are detected.
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Ev←V [Pfail,ζ2 ] = 1−
t∑

j=0
fbino

(
j; n2

2 ,Ev←V [Perror,x|Xi = 0]
)

Fbino

(
t− j; n2

2 ,Ev←V [Perror,x|Xi = 1]
)

−1
2

t+1∑
j=0

fbino

(
j; n2

2 ,Ev←V [Perror,x|Xi = 0]
)

fbino

(
t+ 1− j; n2

2 ,Ev←V [Perror,x|Xi = 1]
)
.

(4.50)

Helper Data Manipulation

In the worst case, helper data manipulation attacks can result in the complete
retrieval of the secret k. Consider the variation of Maes et al. [111] where
sequences in {01, 10, 0011, 1100, · · · } are retained as a whole. Given that the
helper data allows to shuffle sequences, an attacker can swap the order of two
equal-length sequences. By observing the failure rate pfail for reconstructing the
key k, it is known whether they are equal or complementary. This mechanism
is applied iteratively.

4.5.6 Comparisons

A frequently reoccurring problem with the PUF literature is that newly proposed
schemes often lack a proper comparison to what already exists. This remark
certainly applies to the four previously discussed debiasing schemes: skewed
SMV [113], pattern matching [132, 133], IBS [187, 62], and the von Neumann
adaptations [104, 170, 111]. Moreover, for the latter two schemes in particular, it
is conjectured that a stand-alone secure sketch cannot handle biased distributions
well. This corresponds to an educated guess, originating from the extrapolation
of repetition code insights and/or the application of the (n−k) bound. Our newly
developed bounds in Section 4.3.5 can resolve this motivational uncertainty, as
elaborated next.

Table 4.8 quantifies the implementation footprint for a fuzzy extractor that
produces a 128-bit key from a biased PUF. For IBS, the expected failure rate
for reconstructing repetition codewords, i.e., Ev←V [Pfail,C2 ], is approximated
via Monte Carlo simulations of size 106, given that an exact evaluation via joint
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order statistics is not straightforward. A complication for the von Neumann
schemes is that the length of y varies with x. Therefore a yield is defined, i.e.,
the probability that sufficient bits can be provided for the subsequent secure
sketch. An exact analytical evaluation of the retention ratio is computationally
intensive from 3 passes onwards [111], so we rely on Monte Carlo simulations of
size 106 instead.

It turns out that a stand-alone sketch is competitive in the low-bias region, e.g.,
pbias ∈ [0.42, 0.58]. For high-bias situations, either a redesign of the PUF or a
debiasing scheme is needed. It is beneficial to couple the discussed debiasing
schemes to a sketch that has a k-bit rather than an n-bit output. The uniformly
distributed output is then directly usable as a key k, thereby eliminating the
need for a randomness extractor Ext.

4.6 PUFs with Helper Data Input

Several RO-based PUFs have, in addition to a challenge c, a constant helper
data input h. The latter input aims to improve the reliability and/or uniformity
characteristics of the challenge-response behavior. The constructions that we
have analyzed are highly vulnerable to helper data manipulation attacks. We
provide two examples in this thesis, and refer to our DATE 2014 publication
for more details.

• Yin and Qu [182] proposed an algorithm for pairing ROs such that the
respective differences of their frequencies f exceed a certain threshold.
For an array of m ROs, up to bm/2c disjunct pairs that each generate a
response bit r are selected during the enrollment. The oscillator indices of
each pair are stored as helper data h. Compared to the static pairs of Yu
et al. [183], the reproducibility of the response bits improves. However,
even under the assumption of a silent application, as defined in Table 4.1,
an attacker can recover the key k through helper data manipulation. For
example, by swapping the order of two pairs, while observing the failure
rate pfail for key reconstruction, an attacker can determine whether or
not the respective response bits r are equal. After a sufficient number of
iterations, the concatenated response x is completely revealed, except for
one degree of freedom that corresponds to a bit-wise inversion of x.

• After plotting the topology of a two-dimensional array of experimentally
obtained frequencies fi,j , undesired trends are often visible. Systematic
process variations might cause frequencies to be relatively low and high in
opposite corners, for example. One potential resolution is the pairing of
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physically neighboring ROs [116]. Alternatively, Yin and Qu [181] suggest
storing the coefficients of a two-dimensional polynomial that models the
undesired trends. In the field, a substraction can then be performed.
However, key-recovery through helper data manipulation might be feasible
for interactive applications, as defined in Table 4.1. An attacker can
superimpose steep linear or quadratic terms that, depending on how ROs
are paired, might render random process variations insignificant. Most of
the reproduced bits r̂ then have known values, which enables a brute-force
search for the few unknown values.

4.7 Conclusion

Secure sketches are the main workhorse of modern PUF-based key generators.
The min-entropy loss of most sketches is upper-bounded by (n − k) bits
and designers typically instantiate system parameters accordingly. However,
the latter bound tends to be overly pessimistic, resulting in an unfortunate
implementation overhead. We showcased the proportions for a prominent
category of PUFs, with bias and spatial correlations acting as the main non-
uniformities. New considerably tighter bounds were derived, valid for a variety
of popular but algebraically complex codes. These bounds are unified in the
sense of being applicable to seven secure sketch constructions. Deriving tighter
alternatives for the (n − k) bound counts as unexplored territory and we
established the first significant stepping stone. New techniques may have to
be developed in order to tackle more advanced second-order distributions.
Elaborating a wider range of applications would be another area of progress.
We hope to have showcased the potential by debunking the main security claim
of the reverse fuzzy extractor.

Besides from secure sketches and fuzzy extractors, we analyzed the security
of various other HDAs. Our survey showcases that a proven expression on
the min-entropy loss can only be derived for ideal-case distributions, most
notably, i.i.d. response bits. In practice, PUFs typically do not comply with
this assumption. Regardless of whether a universe of ideal-case distributions is
relevant, we at least avoid comparing apples and oranges. It would be unfair
to draw performance comparisons with a secure sketch based on the (n − k)
upper bound on the min-entropy loss, given that better bounds can be obtained
for ideal-case distributions. By using our newly developed bounds, we are the
first to provide proper existential motivation for debiasing schemes. Moreover,
we put a spotlight on the often overlooked helper data manipulation threats.
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Comparing failure rates for the key reconstruction with respect to well-chosen
manipulations turns out to be highly effective: most schemes are vulnerable to
some extent.



Chapter 5

A Survey on PUF-Based
Entity Authentication

We consider a common authentication scenario between two parties: a low-cost,
resource-constrained token and a resource-rich server. Practical instantiations of
a token include the following: RFID tags, smart cards, and the nodes of a wireless
sensor network. Unilateral, i.e., one-way, or possibly mutual, i.e., two-way, entity
authentication is the primary objective. Occasionally, the authentication protocol
is required to preserve the privacy of a token. The server usually has secure
computing and storage at its disposal, while tokens are exposed to physical
attacks. We review 21 PUF-based authentication protocols in chronological
order, starting from the advent of silicon PUFs in the early 2000s, and ending
with the 2016 state-of-the-art. Numerous security and practicality issues are
revealed. The assessment is aided by a unified notation and a transparent
framework of protocol requirements.

Version History. The version history of this chapter is as follows. A first,
preliminary version of our survey was presented at the 16th Conference on
Cryptographic Hardware and Embedded Systems (CHES 2014). The exact same
version was also presented at ChinaCrypt 2014, which is a national conference
without proceedings. A second, journal version was published in the ACM
Computing Surveys. This chapter comprises a third version, where we once again
update, extend, and improve our contributions. The author of this PhD thesis
is the main contributor to the aforementioned publications; Roel Peeters and
Dries Schellekens have given expert advice. As a side contribution, the PRNG of
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Mandel Yu’s newly proposed protocol in the IEEE Transactions on Multi-Scale
Computing Systems (TMSCS) has been designed by the author of this PhD
thesis.

Organization. The remainder of this chapter is organized as follows. Section 5.1
lists the requirements of a PUF-based authentication protocol. Section 5.2
discusses authentication via PUF-based key generation, which is to be considered
as the default solution. Section 5.3 comprises our analysis of 21 alternative
solutions that most frequently make use of a strong PUF. Section 5.4 provides
a summary of our assessment. Section 5.5 concludes this chapter.

5.1 Protocol Requirements

PUFs require a special flavor of protocol design. We are the first to explicitly
list an extensive set of protocol requirements. Sections 5.1.1 to 5.1.10 describe a
mixture of PUF-induced requirements and more conventional concerns. The list
is tailored to the vast majority of PUF-based protocols, where the authenticity
of a token and/or the server is verified, but can be mapped quite easily to
other security objectives. The urgency of individual items ranges from strictly
required to highly desired, as nuanced hereafter.

5.1.1 Complete Speci�cation

A protocol should be specified in a complete, unambiguous manner. Although
this seems obvious, we observe that many proposals do not comply. Furthermore,
the use of a particular PUF design should be suggested, at least for protocols
of which the security and/or functional behavior is highly reliant on, e.g.,
its inherent resistance to machine learning attacks. As a side note, there is
considerable advantage in having a graphical representation of a protocol, clearly
detailing all computations and exchanged messages. This facilitates the analysis
considerably. We observe that many proposals focus on a text-based description,
with only a minimal graphical representation as support. In this work, we specify
each protocol in a detailed graphical manner, while using a unified notation.
For ease of understanding, we make abstraction of non-essential refinements
regarding the two-party setting, e.g., multiple servers, a trusted issuer to aid
the enrollment, a distinction between RFID readers and the back-end server,
etc.
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5.1.2 Resilience against Leakage of NVM Contents

A PUF-based protocol should remain secure even when the contents of a token’s
OTP/MTP NVM, if present, are compromised. The reasoning is as follows.
OTP NVM allows storing a random variate of a uniformly distributed secret
in a noiseless manner, so when presumed to be physically secure, it outclasses
the noisy, non-uniformly distributed responses of a weak, SRAM-like PUF.
Likewise, a random variate stored in OTP MTP can instantiate a noiseless,
device-unique function that is harder to learn than a strong PUF. Consider
for example a challenge-response mapping r← MAC(c; k), where the key k is
stored in physically secure NVM. An ultra-lightweight MAC algorithm might
already suffice to improve upon the modeling resistance of a typical strong PUF
design. Recall that due to the presence of noise, the PUF designs in Section 3.1.3
are constrained to relatively simple operations only, i.e., addition, substraction,
XORing, and comparisons with a threshold 0.

5.1.3 Able to Handle Noise

A PUF-based protocol should remain functional despite the noisiness of the
responses of its PUF. Recall that the expected bit error rate with respect to a
prerecorded reference response is typically 1%−−20%, largely depending on
aging and changes of the IC’s environment. The lowest noise levels apply to
laboratory settings where the environment is ultra-stable. Higher noise levels
apply to market products, which are typically supposed to remain functional in
a wide range of temperatures, for example.

5.1.4 Resistance to Machine Learning Attacks

As previously discussed in Section 3.1.1, strong PUFs are too fragile for
unprotected exposure. This is demonstrated by a history of machine learning
attacks [100, 118, 145]. So far, there does not exist a single well-validated design
of a strong PUF that is both practical and fully resistant to modeling. Existing
designs usually need to team up with a cryptographic algorithm in order to
fully mitigate this threat. Several proposals opt for more lightweight logic, such
as XORing, a PRNG, a TRNG, etc. Mostly, this offers partial protection only,
as becomes clear later-on.
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5.1.5 Expanding the Response of a Strong PUF

So as to counteract brute-force and random guessing attacks on a PUF-based
protocol, the responses should be of sufficient length. Unfortunately, practical
realizations of a strong PUF tend to provide a short response only, most
frequently, a single bit r, as is the case for all designs in Section 3.1.3. Two
methods are frequently used for concatenating single-bit responses r into a long
string x ∈ {0, 1}λ. First, λ replicas of a PUF circuit can evaluate the same
challenge c in parallel [80, 85], which imposes a considerable area overhead.
Second, a single PUF circuit can evaluate a list of λ challenges, which imposes
a considerably latency overhead. Most frequently, a PRNG or a cryptographic
algorithm is used to expand a single master challenge into a list of secondary
challenges [38, 130, 54, 132, 171, 119, 190, 91]. We argue that the expansion
method should be specified as an explicit part of the protocol. In addition to
the importance of properly reflecting the consumed resources, it turns out that
some expansion methods enable new attacks.

5.1.6 Low-Cost and Resource-Constrained

We evaluate the PUF lightweight premise. Low-cost manufacturing is mainly
an issue for proposals that rely on MTP NVM. However, as practically
every protocol building block requires a physically secure implementation,
it might extend to a more general concern, largely depending on the selected
countermeasures. Constraints in available resources are mainly an issue for
proposals that rely on cryptographic algorithms.

5.1.7 Easy-to-instantiate

Ideally, one should not make exacting assumptions about the PUF so that
the protocol can be instantiated easily. There is considerable advantage in
the design of generic protocols that are compatible with most practical PUF
designs. First, efficiency and performance characteristics differ for every PUF
design in terms of speed, area, power, noisiness, etc. Flexibility of choice hence
allows for better optimization with respect to a given set of constraints. Second,
the recent proliferation of physical attacks on PUFs promotes to envision
them as easy-to-replace building blocks. For all surveyed protocols, it is simply
assumed that physical attacks on the PUF are infeasible. Recall that PUF-
based key generation is compatible with quasi every weak or strong PUF. The
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proposals under review are usually more specific and often require a strong
PUF. Furthermore, additional constraints are imposed, most frequently with
respect to the modeling resistance.

5.1.8 Resistance to Protocol Attacks

An authentication protocol should be resistant to conventional impersonation
and denial-of-service (DoS) attacks. In order to distinguish these from the
previously discussed machine learning attacks, this part of our analysis assumes
that the functional behavior of a PUF is ideal, i.e., behaving as a random oracle.
For DoS attacks, the scope is limited to non-invasive, remote exploits such
as the desynchronization of a state. Acts of vandalism where a token is, for
example, burned or crushed are out of scope and would be trivial to perform
anyway under the common assumption that an attacker has physical access.
Additional security claims such as token privacy [60] should be validated as well.
For protocols that claim resilience to the leakage of a token’s NVM contents, the
feasibility of all previously listed attacks should be reevaluated. It even makes
sense to reevaluate the feasibility of DoS attacks, as it could have a benefit to
perform such an attack with delay, in a remote, non-mechanical manner.

The assumed capabilities of an attacker should be realistic with respect to the
intended application. Unfortunately, it is an occasional practice to mitigate
realistic threats with unrealistic assumptions. Luckily, most proposals stick to
a fully insecure communication channel between token and server. Moreover,
physical attacks that retrieve the state of a token are usually assumed to be
feasible. It is realistic to assume that a token and its PUF are still functional
after having performed such an attack. Otherwise, an attacker cannot interfere
with a genuine protocol run anymore, and the benefit of the resilience claim
would be limited. Note that server impersonation and DoS attacks are irrelevant
for a mechanically destroyed token. Only the privacy of past protocol runs and
to some extent also token impersonation attacks would still be relevant.

5.1.9 Scalability: Identi�cation Prior to Authentication

Ideally, the execution time of a protocol should not increase with the number of
registered tokens. Recall that the server might have to interact with thousands
to millions of tokens, depending on the use case. It is essential to distinguish
between the authentication and the identification of a token. The former refers
to the secure verification of an identity while the latter is limited to an unverified
claim. Many of the surveyed protocols instantly provide token authentication.
Unfortunately, identification prior to authentication is more practical. Otherwise,
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the server would have to iterate over all registered tokens in order to establish
a match. There is a simple solution if privacy is of no concern. Each token can
then store a unique identifier i in insecure OTP NVM and transfer its value
to the server at the start of a protocol run. Alternatively, one could opt for
a noisy PUF-generated identifier [107]; matching noisy identifiers is a fairly
straightforward operation. We will not further comment on the absence of an
identification step, except for proposals that simultaneously claim to preserve
the privacy of a token.

5.1.10 On the Mutual Authentication Order

An attacker’s potential to freely query a token is a major security concern.
Therefore, it is a good practice to establish server authenticity first, in the
case of mutual authentication [61]. The corresponding reduction in attack
surface inherently benefits the security and privacy objectives. This might even
be the reason to provide mutual authentication in the first place, rather than
providing token authenticity only. Although several protocols adopt the opposite
authentication order, we do not further discuss this matter, as it comprehends
a guideline rather that a stringent requirement.

5.2 Authentication via PUF-Based Key Generation

The most straightforward method for crafting a PUF-based authentication
protocol is as follows: select a conventional, preferably well-validated authenti-
cation protocol from the literature and replace key-storage in OTP NVM with
PUF-based key generation, given that the latter is often believed to be more
physically secure. Although such concatenations are not the primary interest of
this chapter, they establish a baseline in terms of security, extensibility, and
efficiency. A well-validated protocol combined with a well-understood mechanism
for PUF-based key generation, e.g., a fuzzy extractor [39], might provide excellent
security guarantees. Likewise, the extensibility to security objectives other than
entity authentication is outstanding and might benefit from a large body of
work. Efficiency might be a major concern though, given that cryptographic
algorithms and an error-correcting code are expected to be involved. In order to
facilitate making comparisons with the surveyed PUF-based protocols later-on,
we now embody the common baseline through four reference authentication
protocols.
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Figure 5.1: The hardware of a token for four reference authentication protocols.
Intermediary registers and control logic are not drawn. The symbol × on the
boundary of the IC denotes a one-time interface that is disabled after the
enrollment.

5.2.1 Reference Protocols

We first specify two unilateral authentication protocols that rely on physically
secure OTP NVM, i.e., an assumption that does not necessarily hold in practice.
Reference protocol I-A verifies the authenticity of a token and is specified in
Figure 5.2; a block diagram of the token hardware is shown in Figure 5.1(a). Each
token stores a device-unique secret key k in OTP NVM. A keyed cryptographic
algorithm performs the authentication. Among several possibilities, we opt for a
MAC algorithm. If the number of genuine authentications is large with respect
to the length of nonce n, the repercussions of the birthday paradox are to be
considered when instantiating the protocol for a given security level.

Reference protocol I-B verifies the authenticity of the server instead and is
specified in Figure 5.3; a block diagram of the token hardware is shown in
Figure 5.1(b). Both reference protocols could be intertwined in order to provide
mutual authentication. Intertwinement is not to be confused with the less
secure alternative where both unilateral authentication protocols are executed
independently from each other.



140 A SURVEY ON PUF-BASED ENTITY AUTHENTICATION
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Figure 5.2: Reference protocol I-A. The symbol ∞ denotes that the number of
protocol runs is virtually unlimited rather than truly infinite.
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Figure 5.3: Reference protocol I-B.

Given that physically secure OTP NVM is hard to obtain, we also specify
two unilateral authentication protocols that rely on PUF-based key generation
instead. Reference protocol II-A verifies the authenticity of a token and is
specified in Figure 5.4; a block diagram of the token hardware is shown in
Figure 5.1(c). In principle, a fuzzy extractor could transform the noisy, non-
uniformly distributed secret X into a stable, uniformly distributed key K. We
perform an optimization by reusing the second stage of the fuzzy extractor,
i.e., a cryptographic hash function that is modeled as a random oracle,
for authentication purposes. Public helper data h is stored by the server,
or alternatively, at the token side in physically insecure OTP NVM. Not
only in the former but also in the latter case, we are highly in favor of
implementing an integrity check on the helper data, as is clear from the numerous
manipulation attacks described in Chapter 4. Such a check has been omitted for
simplicity, given that the protocol merely serves as a tool for drawing conceptual
comparisons.

Reference protocol II-B verifies the authenticity of the server instead and is
specified in Figure 5.5; a block diagram of the token hardware is shown in
Figure 5.1(d). Again, both reference protocols could be intertwined in order to
provide mutual authentication.



AUTHENTICATION VIA PUF-BASED KEY GENERATION 141
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Figure 5.4: Reference protocol II-A. Either a weak or a strong PUF could be used.
Its responses r to a list of publicly known challenges c are concatenated into a
lengthy secret x. For a weak PUF, logic for generating a list of challenges might
be as simple as a counter. In case of a strong PUF, an LFSR with a hardcoded
seed could be used, or alternatively, the resources of the cryptographic hash
function could be reused.
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Figure 5.5: Reference protocol II-B.
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5.2.2 Related Literature

Also in the related literature, several authors have specified a PUF-based
authentication protocol where the role of the PUF is limited to the generation of
a secret key. An early proposal, which bears a resemblance to reference protocol
II-A, is the use of a physically obfuscated key by Gassend [49]. Alternatively,
Tuyls et al. [167] use public-key cryptography in order to mitigate the need for
a shared secret between token and server, although their proposal might not
be lightweight. There is the protocol of Bassil et al. [10], which has been badly
broken by Safkhani et al. [149]. The protocol of Kardaş et al. [79] does not fully
fit our scope, given that it aims to defend against the compromise of an RFID
reader.

5.3 Analysis of Protocols

We describe and analyze 21 PUF-based authentication protocols in chronological
order. As some protocols rely on similar design concepts, we also considered
categorizing them. However, given that none of our devised classifications does
fly all the way, we opt for the history of development as the main theme instead.
Sections 5.3.1 to 5.3.21 can be read in arbitrary order, although we recommend
getting acquainted with the basic protocol first.

5.3.1 Basic Authentication (2001)

The first and most basic authentication method is proposed by Pappu in his PhD
thesis [131]. Although originally intended for optical PUFs, the same protocol
has later been applied to silicon PUFs [135, 161, 38, 34]. The protocol is specified
in Figure 5.7; a block diagram of the token hardware is shown in Figure 5.6(a).
During the enrollment phase and for each token v, the server collects the
response x to g challenges c that are selected independently, randomly, and
uniformly from the set C. In the field, a genuine token should be able to reproduce
the prerecorded response x to each selected challenge c. Only an approximate
match is required, i.e., a threshold ε on the Hamming distance HD(x, x̃) takes
the noisiness of the PUF into account.

The server should discard each of its prerecorded CRPs after use. Otherwise,
even a passive, eavesdropping attacker would be able to replay an old protocol
run and impersonate a token. An unfortunate side effect of this countermeasure
is that both the storage requirements and the time needed for the enrollment
scale proportionally with the number of protocol runs g. Furthermore, the
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Figure 5.6: The hardware of a token for all surveyed authentication protocols.
Intermediary registers and control logic are not drawn. The symbol × on the
boundary of the IC denotes a one-time interface that is disabled after the
enrollment.
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Figure 5.6: The hardware of a token (continued).
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Figure 5.6: The hardware of a token (continued).
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Figure 5.6: The hardware of a token (continued).
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Figure 5.7: The most basic PUF-based authentication protocol. Devadas et
al. [38] instantiate the strong PUF with an Arbiter PUF. Moreover, they first
feed challenge c into an LFSR so that the 1-bit responses r to an expanded list
of challenges can be concatenated into a lengthy string x.
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need for a strong PUF with, e.g., |C| = 2128 unique challenges, is evident.
Otherwise, an attacker with physical access to a token could exhaustively collect
and tabulate all CRPs. If g is large compared to |C|, the repercussions of the
birthday paradox might have to be considered as well. Similarly, the length of
concatenated response x should be, e.g., 128 bits. It is then extremely unlikely
that a blind guess of x happens to be correct.

Observe that the protocol is represented in a strictly server-initiated manner.
In the hypothetical case that it was device-initiated instead, an attacker might
exhaustively query and deplete the CRP database of the server, which results
in DoS. Although corresponding countermeasures could be implemented at the
server side, e.g., time-out mechanisms, we do not further discuss this matter.

Machine Learning Attacks (#4)

The proposal does not offer any protection against machine learning attacks.
Given physical access to a token, an attacker can construct a predictive model
of its PUF so as to allow for impersonation later-on. Becker [13] experimentally
demonstrated the feasibility of this attack for a commercial product that relies
on Arbiter XOR PUFs. Given that there is no secure instantiation of the protocol
due to the lack of an appropriate strong PUF, its practical value is rather limited.
We emphasize that this observation applies to silicon PUFs in particular. Optical
PUFs [131] are often believed to be more resistant to machine learning attacks,
but they are unfortunately incompatible with low-cost, integrated applications.

5.3.2 Controlled PUFs (2002)

In order to counter machine learning attacks, Gassend et al. [51, 50, 49, 52]
introduced the rather generic concept of controlled PUFs. We limit ourselves to
its most well-known instantiation. The corresponding protocol is specified in
Figure 5.8; a block diagram of the token hardware is shown in Figure 5.6(b).
A first cryptographic hash function, which precedes the strong PUF, prevents
an attacker from choosing challenges arbitrarily. However, it is only the second
cryptographic hash function, which succeeds the strong PUF, that effectively
counters machine learning attacks. Pre-image resistance implies that an attacker
cannot recover the raw, exploitable response x from a given digest a.

Unfortunately, the second cryptographic hash function necessitates an additional
error-correction module. Otherwise, even a single error in the reproduced
response x̃ would be sufficient to trigger an authentication failure, given
that cryptographic hash functions are designed to satisfy the strict avalanche
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Token v Server

ci,v ← TRNG()
c′i,v ← Hash(ci,v)
xi,v ← SPUF(c′i,v)

hi,v ← SSGen(xi,v)
ai,v ← Hash(xi,v,Hash(ci,v))
gv ← g

i← gv

(c,h,a)← (ci,v,hi,v,ai,v)
gv ← gv − 1

c′ ← Hash(c)
x̃← SPUF(c′)
x̂← SSRep(x̃,h)
â← Hash(x̂, c′)

Abort if a 6= â

verifies

ci,v

xi,v

c,h

â

(1
×
)

(g
×
)

∀i ∈
[1, g]

Figure 5.8: Authentication with controlled PUFs, as proposed by Gassend et
al. [51]. The authors were also the first to propose and manufacture a strong
PUF for a silicon medium. Their design is based on a reconfigurable RO.

criterion [176]. A secure sketch is used for this purpose, and the server stores
accompanying helper data. Moreover, as an optional reinforcement against
machine learning attacks, the authors suggest using the PUF in feedback mode.
The error-corrected PUF output is then fed back as a PUF input, and this for
multiple rounds.

Incomplete Speci�cation (#1)

Although the given strong PUF design provides a single response bit r only,
the authors do not suggest an expansion method to obtain a long response x.
The relatively small-sized digest c′ of the first cryptographic hash function
contains, unlike a PRNG-generated stream, for example, insufficient bits for a
list of challenges for which the responses could hypothetically be concatenated.
Moreover, if the PUF is used in feedback mode, an expansion procedure would
have to be performed multiple times.
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Ine�ciencies (#6)

In terms of efficiency, authentication via controlled PUFs seems to be inferior to
reference protocol II-A, or stated otherwise, inferior to the authors’ own concept
of a physically obfuscated key [49]. First, server storage requirements scale
linearly with g, i.e., the number of authenticati+ons, in contrast to constant-
size. For the same reason, the enrollment phase is expected to take more time as
well. Second, the proposal seems to be overprotected against machine learning,
i.e., the feedback mechanism could be omitted. Third, helper data is transmitted
with every protocol run and cannot efficiently be stored by a token, if desired.

Nevertheless, controlled PUFs might be superior in terms of physical security.
As has been pointed out by the authors, PUF-based key generation relies on the
secrecy of a relatively limited number of bits, i.e., the key k and the associated
PUF response x. With controlled PUFs, there is no single condensed secret that,
if revealed, undermines the security of the whole system. For impersonation
purposes, an attacker would have to extract sufficient CRPs via physical means
in order to enable a subsequent machine learning step. Depending on the
modeling resistance of the strong PUF, this corresponds to an increased number
of executions of a certain physical attack, but it is not to be confused with
stopping physical attacks. Becker and Kumar [14] defeated controlled Arbiter
PUFs with a hybrid physical–learning attack, for example. Moreover, given
a reasonable number of protocol runs g, the helper data h is too large to be
stored in the embedded OTP NVM of a token and is hence trivial to manipulate
during transfer, if this would enhance a certain physical attack.

5.3.3 Bolotnyy and Robins (2008)

The protocol of Bolotnyy and Robins [21] is specified in Figure 5.9; a block
diagram of the token hardware is shown in Figure 5.6(c). The authors claim
that tokens are authenticated in a private manner, under the assumption of a
passive, eavesdropping attacker. Furthermore, the strong PUF is assumed to be
resistant to machine learning. A temporal majority vote (TMV) is suggested as an
error-correction mechanism, during both the enrollment and the reconstruction
phases, as previously discussed in Sections 4.1.3 and 4.5.1 respectively.



150 A SURVEY ON PUF-BASED ENTITY AUTHENTICATION

Private token v Server

a1,v ← TRNG()
Secure MTP NVM: s← a1,v

∀i ∈ [2, g],
ai,v ← TMV(SPUF(ai−1,v))

gv ← 1

â← s
s← TMV(SPUF(s))

Abort if ∀v, â 6= ai,v,
with i← gv

gv ← gv + 1

verifies

a1,v

ai,v

init

â

(1
×
)

(g
×
)

Figure 5.9: The authentication protocol of Bolotnyy and Robins [21].

Incomplete Speci�cation (#1)

The authors do not clearly specify a strong PUF that can be used to instantiate
the protocol, although the Arbiter PUF [100] is cited as part of the paper’s
introduction. Furthermore, the authors do not suggest a method for expanding
a single-bit response r into a long string a.

Physically Secure NVM Undermines PUF Bene�t (#2)

The need for physically secure NVM undermines the main benefit of a strong
PUF, given that the former could hypothetically be used to craft a noiseless,
device-unique function that is harder to learn than the latter. An attacker who
obtains read-access to the state s of a token via physical means would be able
to impersonate it during the next protocol run. Likewise, there is a privacy
breach as well. An attacker who obtains write-access to the state s of a token
via physical means can undermine the system security completely.
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Non-Functional due to PUF Noisiness (#3)

The noisiness of the PUF has not been taken into account properly, which
makes the protocol non-functional. The authors wrongly assume that each
response bit exhibits a small, identical error rate, e.g., constantly 2%. This
would allow to make the overall failure rate of the protocol negligibly small,
even with a relatively limited number of votes. However, in practice, there
is a continuous spectrum from highly stable to highly unstable response bits,
as previously elaborated in Section 3.1.5. TMV is effective and ineffective for
relatively stable and relatively noisy response bits respectively, as previously
discussed in Section 4.5.1. Moreover, if a token’s environment in the field differs
from during the enrollment, TMV is never sufficient by itself.

Machine Learning Attacks (#4)

It is unrealistic to assume that strong PUFs are resistant to machine learning
attacks, which further limits the practical value of the protocol. There is hence
no secure instantiation of the protocol, due to the lack of an appropriate strong
PUF.

Overly Restricted Attacker Capabilities, Denial-of-Service (#8)

As has been acknowledged in the article, the assumption of an eavesdropping
attacker mitigates a DoS threat. Note that an active attacker only needs to
query a token in order to cause a desynchronization with the server. However, we
argue that realistic threats should not be mitigated with unrealistic assumptions.
The protocol is proposed for RFID systems in particular, i.e., an excellent
environment for mounting an active attack. Sending an authentication request
to a token is sufficient for an active attacker to cause desynchronization of the
state s. Either blocking or modifying a token’s response a has a similar effect.

5.3.4 Öztürk et al. (2008)

The protocol of Öztürk et al. [130] is specified in Figure 5.10; a block diagram of
the token hardware is shown in Figure 5.6(d). The proposed system relies on two
strong PUFs for which a predictive model is constructed during the enrollment
phase. The outer strong PUF provides a challenge-response authentication
mechanism, similar to the basic protocol that has been discussed in Section 5.3.1.
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However, in order to prevent machine learning attacks, its challenge is obfuscated
by a secret internal state s. During each protocol run, state s is updated by the
inner strong PUF.

Token v Server

Train models of both PUFs
Secure MTP NVM: s← sv sv ← TRNG()

c← TRNG()
s← TMV(SPUFI(s))
x̃← SPUFO(s⊕ c)

ŝ← PredictI(sv)
If ∃e,HD(x̃, x̂) ≤ ε,

with x̂← PredictO(
ŝ⊕ c⊕ e),

and HW(e) ∈ {0, 1},
sv ← ŝ⊕ e

Else, abort

verifies

sv

c

x̃

(1
×
)

(∞
×
)

Figure 5.10: The authentication protocol of Öztürk et al. [130]. Both the
inner and the outer strong PUFs are instantiated with an Arbiter PUF. The
challenge s(t) ∈ {0, 1}λ of the inner strong PUF is fed into a permutation-based
PRNG such that the single-bit responses r to an expanded list of challenges
can be concatenated into long string s(t+1). To be precise, ∀i ∈ [1, λ], s(t+1)

i ←
SPUFI(πi−1(s(t))), where π is a hardcoded permutation.

A temporal majority vote, as previously discussed in Section 4.5.1, is suggested
as an error-correction mechanism for the inner strong PUF. It is therefore
assumed that desynchronization of the state s seldom occurs, and if so, that
the Hamming distance is exactly one bit. A recovery procedure at the server
side iteratively flips one bit of the state s until the authentication succeeds.

Incomplete Speci�cation (#1)

The authors do not propose a method to expand the single-bit response of
the outer strong PUF into a long string. Furthermore, the permutation π that
expands the single-bit response of the inner strong PUF should be chosen
carefully, as elaborated later-on, but no constraints are imposed.
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Physically Secure NVM Undermines PUF Bene�t (#2)

The need for physically secure NVM undermines the main benefit of the outer
strong PUF. Observe that the former could hypothetically be used to craft
a noiseless, device-unique function that is harder to learn than the latter, at
least for an attacker in the field, while being trivial to model for the server
during the enrollment phase. The motivation for the inner strong PUF is
questionable as well. A well-designed PRNG could update the state equally well,
i.e., s(t+1) ← PRNG(s(t)). Although the specification of its algorithm would
have to be public, the value of the initial state already provides a device-unique
secret, the temporal majority vote could be discarded, and it would allow for a
feedback loop with improved statistical properties.

PUF Noisiness Underestimated (#3)

The synchronization effort attributed to the noisiness of the inner strong PUF
is somewhat underestimated, especially in light of environmental perturbations.
As previously pointed out for the protocol of Bolotnyy and Robins [21] in
Section 5.3.3, a temporal majority vote is ineffective for relatively noisy response
bits. Errors of the state s comprehend a frequent rather than a seldom event,
and are not necessarily limited to a single bit. Although the exhaustive recovery
procedure at the server side could be generalized to account for multiple
erroneous bits, the computational effort rapidly increases to infeasible levels, as
has been discussed in Section 4.4.1.

Denial-of-Service (#8)

There is a simple DoS attack. An attacker only needs to send a challenge c to a
token in order to cause a desynchronization of the state s. Either blocking or
modifying the response x̃ has the same effect.

PRNG Weaknesses (#8)

A first issue with the permutation-based PRNG is that all produced challenges
have the same Hamming weight. Alternative lightweight solutions such as an
LFSR approximate a truly random sequence more effectively. A second issue is
that certain permutations result in a security hazard, but no constraints are
imposed. Consider for example the order q ≥ 1 of a λ-bit permutation, which is
the minimum number of repeated iterations that produces an identity function,
i.e., ∀s ∈ {0, 1}λ, πi(s) = πi+q(s). A low order causes the state s to consist



154 A SURVEY ON PUF-BASED ENTITY AUTHENTICATION

of reappearing substrings, which opposes its presumed uniformity. An exact
formula [177] for the probability that a randomly chosen permutation has order
q is given in (5.1). Figure 5.11 shows that an order q < λ occurs relatively
frequently.

f(q) =
∑
d1|q

µ

(
q

d1

)[
xn
] ∞∑
i=1

(∑
d2|d1

xd2

d2

)i
i! ,

with µ the Möbius function and
[
xn
]
the coefficient of xn.

(5.1)

1 32 640.00

0.06

0.12

q

F(q)

(a)

1 64 1280.00

3.00

6.00 ·10−2

q

F(q)

(b)

Figure 5.11: The CDF of the order q of an λ-bit permutation, with (a) λ = 64
and (b) λ = 128. Solid curves correspond to an accumulation of the exact
formula in (5.1). Each dot corresponds to a Monte Carlo experiment of size 105

that verifies the correctness of this formula.

5.3.5 Hammouri et al. (2008)

The protocol of Hammouri et al. [54] is specified in Figure 5.12; a block diagram of
the token hardware is shown in Figure 5.6(e). The proposed system relies on two
strong PUF for which a predictive model is constructed during the enrollment
phase. The outer strong PUF provides a challenge-response authentication
mechanism similar to the basic protocol that was discussed in Section 5.3.1.
However, in order to counter machine learning attacks, its challenge is obfuscated
by the response x̃I of the inner strong PUF. Two strong PUFs cannot simply be
cascaded without inducing an amplification of the noise. In order to make this
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effect bearable, the authors introduce an additional XOR network Lin. As a result,
two responses r1 ← SPUFO(Lin(c1)⊕cO) and r2 ← SPUFO(Lin(c2)⊕cO) would
tend to be equal if the Hamming distance HD(c1, c2) between both challenges is
small, i.e., the same transfer characteristics as for an RO Sum PUF are obtained.

Machine Learning Attacks are not Excluded (#4)

It is highly unlikely that the overall system is sufficiently resistant to machine
learning attacks. Observe that there is rather delicate balance between the
security of the overall system and the security of both component PUFs.
Individually, the two strong PUFs should be easy-to-model, as this enables the
enrollment, but in cascaded form, the construction of a predictive model should
suddenly be infeasible. To date, no proof-of-concept attack has been published
though. We conjecture that the obtained result is somewhat similar to the use
of XOR PUFs: the overall system is harder to learn than each of its components,
but it is still feasible given that noise imposes an upper bound on the overall
complexity.

Overcomplicated Enrollment with Yield Issues (#7)

Reading out the responses x̃I of the inner strong PUF via a one-time interface
would have made the enrollment easy. This would have allowed to model both
strong PUFs independently from each other. Instead, the authors devised a
rather complicated procedure where the responses x̃I of the inner strong PUF
are recovered through the responses x̃O of the outer strong PUF. The latter
PUF is therefore required to operate in a highly linear manner, which is not
expected to benefit the modeling resistance of the overall system. Note that a
one-time interface is still required in order to seed the LFSR with fixed points.

Moreover, the inner strong PUF is instantiated with a rather far-fetched
design. The effectiveness of its custom-designed modeling procedure hinges
on assumptions about the layout of its circuit and has not been tested on either
simulated or experimental data. One could, for example, have opted for a more
generic solution r̃ ← SPUFI(LFSR(cI)), where the design of the inner strong
PUF and its learning algorithm can be chosen arbitrarily and where fixed points
of the LFSR are blocked. Although we would recommend using a one-time
interface for reading-out the responses x̃I of the inner strong PUF during the
enrollment, more in line with the original proposal, one could opt to disable the
state updates of the LFSR so that each challenge cI is evaluated λ times and
x̃I ∈ {0,1}, apart from potential noisiness.
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Token v Server

W-secure ROM: s
cI ← TRNG()

cO ← 0
x̃I,1 ← SPUFI(cI ,0)
x̃O,1 ← SPUFO(Lin(x̃I,1)⊕ cO)
x̃I,2 ← SPUFI(cI ,1)
x̃O,2 ← SPUFO(Lin(x̃I,2)⊕ cO)
cI ← TRNG()

cO ← TRNG()
x̃I ← SPUFI(cI , s)
x̃O ← SPUFO(Lin(x̃I)⊕ cO)

cI ← TRNG()
cO ← TRNG()

x̃I ← SPUFI(cI , s)
x̃O ← SPUFO(Lin(x̃I)⊕ cO)

x̂I ← PredictI(cI , s)
x̂O ← PredictO(Lin(x̂I)
⊕cO)

Abort if HD(x̃O, x̂O) > ε

verifies

cI
cO

x̃O,1,
x̃O,2
cI
cO

x̃O

cI
cO

x̃O

(1
×
)

(∞
×
)

Train
model
inner
PUF

Train
model
outer
PUF

Figure 5.12: The authentication protocol of Hammouri et al. [54]. The outer
strong PUF is instantiated with anm-stage Arbiter PUF. Its single-bit response r
is expanded into a long string x̃O ∈ {0, 1}λ by running the protocol λ times, i.e.,
λ challenge pairs (cI , cO) are exchanged. The non-linearities that are attributed
to the switching behavior are eliminated through a challenge transformation
Lin(c) = (c1⊕c2 c2⊕c3 · · · cm−1⊕cm cm). The inner strong PUF is instantiated
with a custom-tailored design that interleaves two Arbiter PUFs into a single
circuit. Its single-bit responses r to a list of challenges

(
cI , s(i)), where i ∈ [1, λ],

are concatenated in order to obtain a long string x̃I ∈ {0, 1}λ. States s(i) are
provided by an LFSR that starts cycling from a hardcoded seed s(1). During
the enrollment, seed value s(1) is set to fixed points 0 and 1 instead so that
responses x̃I ∈ {0,1}, apart from potential noisiness. Both values of x̃I can
be distinguished, given that an Arbiter PUF is likely to produce opposite
responses r for challenges Lin(0) = 0 and Lin(1) = (0 0 · · · 0 1).
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Finally, the authors overlook that their enrollment procedure does not always
succeed in practice. It is wrongly assumed that the error rate of response
bits r can be described through a single constant perror. As is clear from the
heterogeneous variability–noise model in Section 3.1.5, the responses ri to
different challenges ci exhibit different error rates perror,i. If for the Arbiter PUF
of a given device, variability aggregate ω ≈ 0 for challenges c ∈ {0, (0 0 · · · 0 1)},
then the responses x̃I of the inner strong PUF cannot be recovered.

5.3.6 Kulseng et al. (2010)

The protocol of Kulseng et al. [94] is specified in Figure 5.13; a block diagram of
the token hardware is shown in Figure 5.6(f). In order to preserve the privacy of
a token, its public identifier i is updated with every protocol run. An attacker
can hence only track a token in between protocol runs. Given that an attacker
may desynchronize the state (s, i) by blocking the last message (a1,a2), recovery
logic is foreseen to mitigate this DoS threat.

Incomplete Speci�cation (#1)

Contradictive information is provided regarding the update of identifier i: either
the current state s or its successor x̃ may be used. Although both possibilities
result in an equally insecure system, we align our interpretation with prior
cryptanalysis of Kardaş et al. [78] and opt for the current state s. Moreover,
the authors of the proposed protocol do not suggest a method to expand the
single-bit response r of the strong PUF into a long string x̃.

Physically Secure NVM Undermines PUF Bene�t (#2)

The need for physically secure NVM undermines the benefit of the strong
PUF, given that the former could hypothetically be used to craft a noiseless,
device-unique function that is harder to learn than the latter.

Non-Functional due to PUF Noisiness (#3)

The noisiness of the PUF response x̃ has not been taken into account, which
makes the protocol non-functional. We make abstraction of this issue in the
remainder of our analysis.
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Private token v Server

Insecure MTP NVM: i← iv iv ← TRNG()
Secure MTP NVM: s← sv sv ← TRNG()
Secure MTP NVM: s−1

Secure OTP NVM: k← kv kv ← TRNG()
xv ← SPUF(s)

Abort if ∀v, i 6= iv and
i 6= PRNG(iv ⊕ sv)

b← kv ⊕ sv
If b = k⊕ s

x̃← SPUF(s)
n← PRNG(s)
i← PRNG(i⊕ s)
s−1 ← s
s← x̃

Else, if b = k⊕ s−1

x̃← SPUF(s−1)
n← PRNG(s−1)

Else, abort
a1 ← x̃⊕ n
a2 ← SPUF(x̃)⊕ PRNG(n)

n← PRNG(sv)
Abort if a1 6= xv ⊕ n
iv ← PRNG(iv ⊕ sv)
sv ← xv
xv ← a2 ⊕ PRNG(n)

verifies

iv
sv

kv
xv

init
i

b

a1,a2

(1
×
)

(∞
×
)

Figure 5.13: The authentication protocol of Kulseng et al. [94]. The strong PUF
is instantiated with an Arbiter PUF; the PRNG is instantiated with an LFSR.
We assume that the current state s and hence not its successor x̃ is used to
update the identifer i, in light of the somewhat ambiguous specification.
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Server Impersonation (#8)

The proposed desynchronization recovery logic allows an attacker to impersonate
the server. Replaying the message b of the last, genuine protocol run suffices.

Denial-of-Service (#8)

As pointed out by Kardaş et al. [78], there is a simple DoS attack. An attacker
can interfere with a genuine protocol run, i.e., modify the output a2 of a token
to an arbitrary value, and hence cause desynchronization with the server.

Token/Server Impersonation and Privacy Breach (#8)

Kardaş et al. [78] previously described an attack that results in full system
disclosure. The initial λ-bit state of an LFSR can easily be recovered from an
arbitrary λ-bit output sequence. Given two consecutive identifiers, i.e., i(1) and
i(2) = LFSR(i(1) ⊕ s(1)), an attacker can hence recover the state s(1) as well as
all other secret variables. Our analysis reveals the existence of an alternative
attack, which exploits the linearity of the LFSR. Given again two consecutive
identifiers, i.e., i(1) and i(2), an attacker can recover n(1) = i(2) ⊕ LFSR(i(1)) as
well as all other secret variables.

5.3.7 Super High Information Content PUFs (2010)

Authentication with so-called super high information content (SHIC) PUFs, as
proposed by Rührmair et al. [143], is specified in Figure 5.14. A block diagram
of the token hardware is shown in Figure 5.6(g). Both the number of cells
and the read-out latency of the memory-based weak PUF are exceptionally
high by design. Therefore, the time required for a hypothetical read-out of the
entire cell contents exceeds the lifetime of a token, or alternatively, it exceeds
the maximal access time of an attacker. The latter figures can vary from days
to years, depending on the use case. Presumably under the assumption of
uniformly distributed cell contents, the protocol is claimed to be secure against
a computationally unrestricted adversary.
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Token v Server

ci,v ← TRNG()
xi,v ←WPUF(ci,v)

gv ← g

i← gv

(c,x)← (ci,v,xi,v)
gv ← gv − 1

x̃←WPUF(c)
Wait()

Abort if HD(x, x̃) > ε

verifies

ci,v
xi,v

c

x̃

(1
×
)

(g
×
)

∀i ∈ [1, g]

Figure 5.14: Authentication with SHIC PUFs, as proposed by Rührmair et
al. [143]. This type of weak PUF consists of a large memory that is required
to operate slowly. Preferentially, the high latency is inherent to the memory
itself, although alternatively, a dedicated timer could induce a constant delay.
Suggested values for the data size and the read-out throughput are 10 Gbit and
100 bit s−1 respectively. Given uninterrupted access to a token, approximately
three years would hence be needed to read-out the entire cell contents. Emerging
high-density technologies such as resistive random-access memory (RRAM) are
preferred to SRAM.

Ine�ciencies (#6)

Although tokens require the implementation of a single building block only,
the proposed protocol is relatively inefficient. Using modern 10 nm features,
the authors estimate that the size of the RRAM is in the mm2 to cm2 range,
depending on the use case. Despite using an older 65 nm technology, Bhargava
and Mai [19] actually manufactured a full-fledged PUF-based key generator as
well as a cryptographic algorithm with a total size of only 119 µm2. Moreover,
the response time for performing an authentication would be in the µs range
only. Compared to an SHIC PUF with a 100 bit s−1 throughput, the stringent
latency requirements of modern communication standards are hence easier to
meet. Yu et al. [188] recently eliminated the inefficiencies of the SHIC protocol
through a subtle modification, as will be discussed in Section 5.3.21.
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Random Guessing Attacks (#8)

Given that the SHIC protocol lacks computations, we agree that there is no
benefit for an attacker in being computationally unrestricted. However, we
argue that the protocol does not scale to a comfortable security level. A 10 Gbit
memory allows for 228 challenges c that have a 28-bit response x each. An
attacker can hence correctly guess the response x to any unseen challenge c
with a non-negligible probability of 2−28. Likewise, an attacker who previously
queried a token with a single, randomly selected challenge c, can replay the
collected response x in the next server-initiated protocol run with a probability
of 2−28. Actually, the security level is slightly lower than 28 bit, given that the
responses of the SHIC PUF are noisy in practice. The protocol of Yu et al. [188]
easily scales to a comfortable 128-bit security level.

5.3.8 Sadeghi et al. (2010)

The protocol of Sadeghi et al. [148] is specified in Figure 5.15; a block diagram of
the token hardware is shown in Figure 5.6(h). The privacy of a token is preserved
at any time. Physically invasive attacks that recover the NVM contents (k1,h)
of a token are assumed be destructive, i.e., afterwards the given token cannot
circulate in the system anymore. The authors use a strong PUF and a fuzzy
extractor in order to generate a cryptographic key k2.

Incomplete Speci�cation (#1)

The authors do not suggest the use of a particular strong PUF. Moreover, the
need to expand its usually single-bit response r into a long string x has not
been acknowledged either.

Ine�ciencies (#6)

Two inefficiencies have not been addressed. First, the initial key k1 and its OTP
NVM can be omitted. A hardcoded challenge generator suffices for either a
weak or a strong PUF to generate the key k2. Second, joint optimization of
the fuzzy extractor and the authentication logic has not been explored, unlike
reference protocol II-A.
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Private token v Server

Insecure OTP NVM: k1 ← k1,j k1,j ← TRNG()
xv ← SPUF(k1) k2,j ← Hash(xv)
Insecure OTP NVM: h← hv hv ← SSGen(xv)

nS ← TRNG()
nT ← TRNG()
x̂← SSRep(SPUF(k1),h)
k̂2 ← Hash(x̂)
a← PRF(nT ,nS ; k̂2)

Abort if ∀v,
a 6= PRF(nT ,nS ; k2,j)

verifies

k1,j

xv
hv

nS

nT ,a

(1
×
)

(∞
×
)

Figure 5.15: The authentication protocol of Sadeghi et al. [148]. Unlike the
original proposal, we represent the fuzzy extractor as an explicit part of the
protocol. We argue that implicit usage does not properly reflect the related
security and efficiency concerns.

Privacy without Identi�cation (#9)

The proposal does not scale in the number of tokens, which can cause
unacceptable latencies in practical use cases. To conclude a protocol run, the
server needs to exhaustively evaluate a PRF member for each registered token.

5.3.9 Logically Recon�gurable PUFs (2011)

Authentication with so-called logically reconfigurable PUFs, as proposed by
Katzenbeisser et al. [80], is specified in Figure 5.16. A block diagram of the token
hardware is shown in Figure 5.6(i). The authors extend the basic authentication
protocol of Section 5.3.1 to make tokens recyclable. Instead of replacing a token,
an internal state s is reconfigured, if the device is handed over to a different
user, for example. The goal is to reduce the amount of electronic waste and its
associated disposal costs. Moreover, the authors aim to prevent an attacker from
tracking a token across updates of the state s. Observe that this corresponds to
a rather limited form of privacy only; other proposals claim to prohibit tracking
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either completely [148] or across runs of the authentication protocol [21, 94, 73].
An attacker is allowed to have read-access to the current state s; there is no
direct write-access though.

Private token v Server

W-secure MTP NVM: s gv ← g

ci,v ← TRNG()
xi,v ← SPUF(Hash(s, ci,v))

i← gv

(c,x)← (ci,v,xi,v)
gv ← gv − 1

c′ ← Hash(s, c)
x̃← SPUF(c′)

Abort if HD(x, x̃) > ε

verifies

ci,v
xi,v

c

x̃

(1
×
)

(g
×
)

∀i ∈ [1, g]

Figure 5.16: Authentication with logically reconfigurable PUFs, as proposed by
Katzenbeisser et al. [80]. An attacker is given read-access to the state s. Tracking
a token is claimed to be infeasible across updates of the state, i.e., s← Hash(s);
the server enrolls new CRPs after every update. The strong PUF is instantiated
with an Arbiter PUF. Two methods are suggested for expanding its single-bit
response r into a long string x̃ ∈ {0, 1}λ. First, λ identically laid-out arbiter
PUFs can evaluate the challenge c′ in parallel. Second, a single Arbiter PUF
can evaluate a sequence of λ challenges, i.e., c′ = Hash(s, c, i), with i ∈ [1, λ].
Schneider and Schröder [153] proposed a variation on the update mechanism of
the state, i.e., s← TRNG().

Incoherent Speci�cation (#1)

According to the authors, the server does not necessarily need to collect new
CRPs after an update of the state s. The server would collect and store CRPs
(c′,x) of the underlying strong PUF instead, and recompute them into device-
level CRPs (c,x) according to the current value of the state s. However, this
does not comply with authors’ assumption that the cryptographic hash function
is collision-resistant, i.e., the suggested transformation cannot be performed.
Moreover, the authors do not specify a mechanism to make their somewhat
privacy-preserving protocol scalable in the number of registered tokens. This
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issue could potentially be resolved by uniquely initializing the state s during
the enrollment and transferring its possibly updated value to the server at the
start of each protocol run.

Machine Learning Attacks (#4)

The strong PUF is assumed to be resistant to machine learning attacks. Moreover,
extensively elaborated security proofs [80, 153] all rely on the assumption that
its CRPs are unpredictable. In practice, however, there is no secure instantiation
of the protocol due to lack of an appropriate strong PUF. The proof-of-concept
implementation, for example, relies on an Arbiter PUF, for which a predictive
model can be trained easily. The value of the challenge c′ cannot be chosen
arbitrarily due to the pre-image resistance of the cryptographic hash function,
but this hardly counts as a defense. Most machine learning attacks in literature
rely on a set of randomly chosen challenges. Somewhat after the fact, the authors
suggest a crossover with the controlled PUFs of Gassend et al. [51, 50] that
were previously discussed in Section 5.3.2, but neither a detailed specification
nor an implementation of this resolution is provided.

Questionable Bill of Materials (#6)

The proposal aims to the make tokens recyclable so as to reduce electronic waste
and its associated disposal costs. However, unlike what is suggested, access rights
are not necessarily bound to a specific token, and might be flexibly managed by
the server instead. For example, a token with a controlled PUF [51, 50] can be
handed over for the purpose of authenticating a new user, and the server might
grant new access rights accordingly. Moreover, the proposal induces the need
for write-secure MTP NVM. So-called disposable but low-cost tokens are hence
transformed into so-called recyclable but more expensive tokens, i.e., there is
no guarantee for financial benefit.

Denial-of-Service (#8)

There is a simple denial-of-service attack. An attacker can update the state s
of a token and hence invalidate the corresponding CRPs that are stored by
the server. The authors do not describe an authentication mechanism for the
authority that reconfigures the state, which would be required to stop this
attack from happening.
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5.3.10 Reverse Fuzzy Extractors (2012)

The original reverse fuzzy extractor protocol, as proposed by Van Herrewege et
al. [171], is specified in Figure 5.17. A block diagram of the token hardware is
shown in Figure 5.6(j). A lightweight alternative to authentication via PUF-
based key generation is provided. To be precise, the recovery procedure SSRep
of a secure sketch is executed by the resource-rich server exclusively, and hence
not by the resource-constrained tokens. Recall that SSRep usually involves the
error-correction of a corrupted codeword, i.e., a fairly expensive operation. The
procedure SSGen, which tends to be lightweight, is implemented on each token
instead. This raises the concern of repeated helper data exposure. An attacker
is given access to helper data h that corresponds to not one but multiple noisy
versions of a given response x. The authors prove that there is no additional
min-entropy loss with respect to a single exposure only.

Maes, who co-authored the original proposal, later proposed a revised version
in his PhD thesis [110]. The corresponding protocol is specified in Figure 5.18.
A block diagram of the token hardware is shown in Figure 5.6(k). A reversal
of the authenticity checks is stated to be the main difference, i.e., the identity
of the server is verified first in the revised version. There seem to be other
fundamental changes though, all of which happen to improve the security, as
clarified hereafter.

Ine�ciencies (#6)

There are inefficiencies in the original protocol of Van Herrewege et al. [171].
Even when the server would register a single tuple (c,x) only, i.e., g = 1, the
protocol still allows for a virtually unlimited number of authentications. The
replies of a token are already guaranteed to be fresh via the use of nonce n,
i.e., the registration of multiple CRPs does not contribute to the elimination
of replay attacks. The use of g = 1 would result in several simplifications of
the protocol, as has been acknowledged by the authors. Most notably, the
challenge c can be hardcoded and does not need to be transferred with every
protocol run. Moreover, the storage requirements of the server are relaxed this
way. Optionally, this would also enable the use of a weak PUF.

The authors nevertheless promote the use of g > 1, which supposedly offers an
increased resistance to side-channel attacks. We question the effectiveness of
this countermeasure. For the purpose of impersonating a token in the general
case that g > 1, an attacker only would have to extract sufficient CRPs via
physical means so that a subsequent machine learning step can be performed.
Compared to g = 1, there could be an increased number of executions of a
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Token v Server

Insecure OTP NVM: i← iv iv ← TRNG()
ci,v ← TRNG()

xi,v ← SPUF(ci,v)

Abort if ∀v, i 6= iv
i← TRNG()
(c,x)← (ci,v,xi,v)
n← TRNG()

x̃← SPUF(c)
h← SSGen(x̃)
a← Hash(i,n, x̃,h)

x̂← SSRep(x,h)
Abort if a 6= Hash(i,n, x̂,h)
b← Hash(a, x̂)

Abort if b 6= Hash(a, x̃)

verifies

iv
ci,v
xi,v

init
i

c,n

h,a

b

(1
×
)

(∞
×
)

∀i ∈ [1, g]

Figure 5.17: The original reverse fuzzy extractor protocol, as proposed by Van
Herrewege et al. [171]. For its proof-of-concept implementation, the strong PUF
is instantiated with a 64-stage Arbiter PUF. The corresponding challenge c
is first fed into an LFSR so that the 1-bit responses r to an expanded list of
challenges can be concatenated into a 1785-bit string x. The authors impose a
lower bound on the noisiness of this response, so as to avoid the impersonation
of a token via replay. Moreover, the secure sketch is instantiated with the
syndrome construction of Dodis et al. [39]. An [n = 255, k = 21, d = 111] BCH
code is applied to each out of 7 partitions of the response x.
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Token v Server

Insecure OTP NVM: i← iv iv ← TRNG()
xv ←WPUF()

x̃←WPUF()
h← SSGen(x̃)
nT ← TRNG()

Abort if ∀v : i 6= iv
x̂← SSRep(xv,h)
nS ← TRNG()
b← Hash(i,h, x̂,nT ,nS)

Abort if b 6=
Hash(i,h, x̃,nT ,nS)

a← Hash(i, x̃,nS)
Abort if a 6= Hash(i, x̂,nS)

verifies

iv
xv

i,h,nT

b,nS

a

(1
×
)

(∞
×
)

Figure 5.18: The revised reverse fuzzy extractor protocol, as proposed by
Maes [110]. The weak PUF can be instantiated with an SRAM PUF, for
example.

certain physical attack, but this is not be confused with actually stopping the
attack. The aforementioned hybrid physical–modeling attack of Becker and
Kumar [14], for example, is not necessarily limited to controlled PUFs [51, 50].
The suggested countermeasure might hence not outweigh its missed advantages,
and there could be numerous more rewarding countermeasures. Maes [110] does
not discuss the foregoing matter, although he uses g = 1.

Still in their battle against replay attacks, Van Herrewege et al. [171] avoid the
use of a TRNG at the token side and impose a lower bound on the noisiness of
response x̃ instead. The presumed reasoning is that the omission of a building
block should improve the overall efficiency. In practice, however, the obtained
gains are counterbalanced by losses. Given that more conventional design efforts
to stabilize PUFs are obstructed, response x̃ and helper data h are required to
be of a larger size so as to obtain a given security level. The need to withstand
environmental changes amplifies this opposition. An attacker who tries to
impersonate the server via replay, might immerse the token of interest in an
extremely stable environment, i.e., minimize the bit error rates. For genuine
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use, however, large environmental changes are to be anticipated, and system
dimensions should be chosen accordingly. Maes [110] does not discuss the
foregoing matter, although he uses a TRNG at the token side.

Min-Entropy De�ciencies Attributed to the Strong PUF (#8)

The proof-of-concept implementation of Van Herrewege et al. [171] suffers from
a deficit in min-entropy. Without putting forward any evidence, the 64-stage
Arbiter PUF is simply assumed to provide a 1785-bit uniformly distributed secret,
i.e., H∞(X) = 1785. However, as we have previously derived in Section 3.2, the
min-entropy of an ideally manufactured, 64-stage Arbiter PUF cannot exceed
197 bits, i.e., H∞(X) < 197. The min-entropy of the given strong PUF is hence
overestimated with at least a factor 9.

Due to the release of helper data h, the secure sketch induces an additional
min-entropy loss, i.e., H̃∞(X|H) < H∞(X). After updating the value of H∞(X),
application of the (n− k) upper bound on the min-entropy loss results in the
worst-case scenario H̃∞(X|H) ≥ 0. Note, however, that the (n− k) bound is
not very tight for non-uniformly distributed inputs. At this point, it is hence
hard to quantify the magnitude of the min-entropy deficit. Moreover, despite
the presence of a min-entropy deficit, the execution of an accelerated brute-
force search is not necessarily straightforward. The design of an algorithm that
exhaustively iterates over all possible values of response x, given helper data h,
seems far from trivial. We suggest this analysis as future work.

Refuted Reusability Claim (#8)

The proposals of Van Herrewege et al. [171] and Maes [110] both rely on the
reusability of their secure sketch. Unfortunately, in Section 4.3.6, we have refuted
this reusability claim.

PRNG Weaknesses (#8)

The PRNG that is used in the proof-of-concept implementation of Van Herrewege
et al. [171] might enable several impersonation threats. First of all, the authors
do not provide an explicit warning that fixed points of the LFSR, e.g., c = 0,
should be refused. In absence of this check, it would be trivial for an attacker
to successfully impersonate the server a virtually unlimited number of times. A
fixed point makes the PUF evaluate a list of identical challenges. Disregarding
the noisiness of the corresponding response bit, the concatenated response would
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be either x̃ = 0 or x̃ = 1 for any given token. An attacker is hence able to predict
digest b with a success rate that is 1/2 the first time, and 1 from the second time
onwards. The attack still works if the given response bit is slightly noisy. Helper
data h is released, so an attacker computes x̃ ∈ {SSRep(0,h),SSRep(1,h)}.

A second, less obvious LFSR-related threat is elaborated next. For ease
of understanding, first consider the simplified case of a perfectly noiseless
PUF. Although we cover the use of the syndrome construction of Dodis et
al. [39] exclusively, a similar threat applies to all other sketch constructions in
Table 4.4. The release of helper data h ∈ {0, 1}n−k for any given concatenated
response x ∈ {0, 1}n provides the attacker with an underdetermined system
of n− k linear equations in n unknowns. Combined with the use of an LFSR,
this allows an attacker to obtain helper data h for q gradually shifted re-
sponses

(
r1 r2 · · · rn

)
,
(
r2 r3 · · · rn+1

)
, . . . ,

(
rq rq+1 · · · rn+q−1

)
.

All data is subsequently collected in a single system of equations, as given
in (5.2).

A
(
r1 r2 · · · rn+q−1

)T =
(
h(1) h(2) · · · h(q))T ,

with A =


H 0T 0T 0T · · · 0T

0T H 0T 0T · · · 0T
... . . . . . . ...

0T 0T 0T · · · 0T H

 .

(5.2)

Even for a relatively small number of iterations q, the system in (5.2) contains
more equations than unknowns. It is not necessarily solvable though, given that
dependencies among equations have not yet been considered. If the linear code
happens to be cyclic, as is the case for the BCH code of the proof-of-concept
implementation, it actually turns out that rank(A) = n− k + q − 1. Regardless
of the number of iterations q, there are hence always k degrees of freedom. A
complete proof is not provided here, but follows from the fact that elementary
row operations on parity check matrix H =

(
h1 h2 · · · hn

)
can produce a

shifted version
(
hn h1 · · · hn−1

)
.

Although the previous attack might work for non-cyclic codes exclusively, there
is an alternative for cyclic codes. For large q, a divide-and-conquer machine
learning attack can be performed instead, given that response x is partitioned in
smaller sections due to to code size constraints. An Arbiter PUF can be modeled
with only a few thousand CRPs, so consider, e.g., q = 104, which includes both
training and test data. The correct combination of unknowns (only 2k = 221

possibilities) would result in the observable event of a high modeling accuracy.
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We emphasize that the previously described attacks do not apply to the revised
protocol of Maes [110], given that there is no PRNG anymore. Moreover, after
our attacks have first been published, Aysu et al. [6] implemented the original
protocol of Van Herrewege et al. [171] with an SRAM PUF, which again
eliminates the PRNG. If the strong PUF would be maintained, they suggest
replacing the LFSR by a block cipher-based PRF.

Exploitation of Bit Error Rates (#8)

As a follow-up to our work, Becker [12] was able to mount a modeling attack on
the protocol of Van Herrewege et al. [171] that does not depend on the chosen
PRNG. He points out that the functional behavior of an Arbiter PUF can be
learned through the error rates of the response bits exclusively, i.e., without
knowing the values of the response bits themselves. Note that the bit error rates
can easily be estimated via the repeated helper data exposure.

5.3.11 Converse Authentication (2012)

The so-called converse authentication protocol of Kocabaş et al. [85], which
is a revised version of the original proposal by Das et al. [36], is specified in
Figure 5.19. A block diagram of the token hardware is shown in Figure 5.6(l).
The term converse highlights the somewhat unconventional unilateral setting
where tokens authenticate the server. For a given token-generated nonce n, the
server is supposed to select two challenges c for which the XORed difference
vector of the hashed responses b equals n. The restriction n 6= 0 prevents an
attacker from impersonating the server by replaying a previously seen tuple
(c,h) in a duplicated fashion, i.e., ci = cj and hi = hj .

The authors impose several restrictions on the capabilities of an attacker. First
of all, physically invasive analysis of a token is not allowed. Moreover, the
authors assume a passive, eavesdropping attacker, who tries to impersonate the
server after having obtained a bounded number of genuine protocol transcripts.
It is argued that with an active adversary, who may manipulate protocol traffic,
the authentication will fail with overwhelming probability.

Unclear and Overly Restricted Attacker Capabilities (#1)

In addition to their contradictory specification, the capabilities of the attacker
are overly restricted to be practical. First of all, it is unclear whether an attacker
is allowed to gain physical access to a token and perform side-channel analysis,
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Token v Server

ci,v ← TRNG()
xi,v ← SPUF(ci,v)

bi,v ← Hash(xi,v)
hi,v ← SSGen(xi,v)

n← TRNG(), with n 6= 0
Find (i, j) s.t. bi,v ⊕ bj,v = n
If none, (i, j)← TRNG()
(ci,hj)← (ci,v,hj,v)
(ci,hj)← (ci,v,hj,v)

x̂i ← SSRep(SPUF(ci),hi)
b̂i ← Hash(x̂i)
x̂j ← SSRep(SPUF(cj),hj)

b̂j ← Hash(x̂j)

Abort if b̂i ⊕ b̂j 6= n

verifies

ci,v
xi,v

n

ci, hi,
cj , hj

(1
×
)

(∞
×
)

∀i ∈
[1, g]

Figure 5.19: The converse authentication protocol of Kocabaş et al. [85]. The
authors suggest instantiating the strong PUF with an Arbiter PUF. In order to
expand its single-bit response r into a long string x ∈ {0, 1}λ, it is suggested
that λ replicas evaluate the same challenge c in parallel. A server-maintained
database of size g = 225 is supposed to be practical. The protocol can optionally
be extended with the establishment of a session key, i.e., k← Hash(bi,bj).

which is non-invasive by definition. If it is allowed, then the prohibition of
physically invasive techniques would be a fully artificial constraint that a real-
life attacker happily ignores. In the alternative scenario where an attacker is
not allowed to obtain physical access to a token, the need for PUFs would be
questionable. Then one might equally well store a key in physically insecure
OTP NVM and execute reference protocol I-B, which seems to be a more
efficient solution.

The motivation for prohibiting active attacks on the protocol is unclear as well.
By manipulating messages, it is indeed trivial to make an otherwise genuine
protocol run fail, but this statement holds for virtually every protocol that
has been proposed in the history of cryptology. Protocol designers usually only
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consider DoS attacks where the failure is permanent, as attributed to, e.g., the
desynchronization of a state. Moreover, it is unclear whether an attacker is
allowed to freely query the server, given that the protocol is initiated by a token.

Ine�ciencies (#6)

The proposed solution is inferior to reference protocol II-B in terms of efficiency.
Most notably, the storage requirements for the server are high in comparison.
For each token, e.g., g = 225 tuples (c,b,h) need to stored instead of only a
single tuple (x,h). The computational requirements for the server are even
higher. An efficient method to find a matching pair of tuples was not discussed
and seems far from obvious. For each protocol run, we hence assume the need
for an exhaustive search among all g(g− 1)/2 pairs of tuples. For g = 225 tuples,
there are approximately 249 pairs. Moreover, for each protocol run, a token
needs to evaluate its PUF twice instead of only once. The same holds for the
execution of both its recovery procedure SSRep and its cryptographic hash
function. Finally, the converse authentication protocol is more restricted in the
choice of its PUF. Only strong PUFs are part of the optimization domain.

Brute-Force Attacks (#8)

In practice, the proposed protocol does not scale to a comfortable security level.
First, observe the probability that a genuine run of the authentication protocol
succeeds in (5.3), with b ∈ {0, 1}η. This formula expresses the availability of
a randomly generated nonce n among a randomly generated database of g
tuples (c,b,h), where the function Hash(SPUF(·)) is assumed to behave as a
random oracle. We believe that a similar formula of Kocabaş et al. [85] slightly
overestimates the success rate. As is clear from Figure 5.20, we should choose
system parameters such that log2(g) ≈ η/2 + 2. So even with g = 225 tuples, or
equivalently, ≈ 249 pairs of tuples, the hashed responses are only of size η ≈ 46.

psuccess = 1−
(

1− 1
2η − 1

) g(g−1)
2

. (5.3)

We neglect the unclear and overly restricted attacker model of Kocabaş et
al. [85], and consider the more realistic constraints that are adopted by most
competing proposals instead. Given that a token initiates the protocol, an
attacker should then be able to exhaustively query the server and construct a
personal database of 2η tuples (n, ci,hi, cj ,hj). This would allow for unlimited
impersonation of the server. Session keys k, if present, cannot be retrieved. If
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Figure 5.20: The probability that a genuine run of the converse authentication
protocol succeeds, given a database of g hashed responses b of length η ∈
{16, 32, 48}. The solid lines correspond to the exact formula in (5.3). For
verification purposes, each dot corresponds to a Monte Carlo experiment
where the availability of a match for 105 randomly generated nonces n is
checked. Experiments are performed for η = 16 only, due to the computational
requirements. Dashed lines correspond to the incorrect formula of Kocabaş et
al. [85].

the protocol would have been server-initiated instead, a brute-force attacker
still has a non-negligible probability of 1/2η to pass the authenticity check for
each random guess.

Issues of the Original Version

Although the protocol of Kocabaş et al. [85] strongly resembles its original version
by Das et al. [36], it is not described in terms of modifications. We observe six
crucial updates. First, the secure sketch is acknowledged to require helper data.
Second, the responses of the strong PUF are reinforced by a cryptographic hash
function. In its absence, an attacker might be able to impersonate the server if
HW(n) < t, where t denotes the number of errors that SSRep is guaranteed to
correct. Consider an arbitrary response x = SSRep(SPUF(c),h). For both the
syndrome and code-offset constructions of Dodis et al. [39], an attacker might
be able to produce a given n:

Code-offset construction: x⊕ n = SSRep(SPUF(c),h⊕ n).
Syndrome construction: x⊕ n = SSRep(SPUF(c),h⊕ n HT ).
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Third, the nonce n is generated by a TRNG and hence not by a PRNG. To
avoid impersonation of the server via replay, the latter construction would
require a state in physically secure MTP NVM, which undermines the benefits
of using a PUF. Fourth, the restriction n 6= 0 is introduced. However, an explicit
check could be omitted given its negligible probability of occurrence. Fifth, the
protocol is initiated by a token and hence not by the server. Sixth, additional
constraints are imposed on the capabilities of an attacker.

5.3.12 Lee et al. I (2012)

The first protocol of Lee et al. [101] is specified in Figure 5.21; a block diagram
of the token hardware is shown in Figure 5.6(m). An eavesdropping attacker
can easily retrieve the current state s, i.e., s = a ⊕ b. The authors therefore
suggest the use of an update mechanism.

Incomplete Speci�cation (#1,#8)

The update mechanism of the state s is not further specified, but should be
chosen carefully. It is for example crucial that the secret constant k is involved
in the update, i.e., s ← Update(s,k) rather than s ← Update(s). Otherwise,
an attacker could easily impersonate the server. After having eavesdropped on
a genuine protocol run, the attacker replies with an arbitrary challenge c(2)

and computes b(2) ← a(2) ⊕ Update(a(1) ⊕ b(1)). Moreover, the authors do not
specify a countermeasure against DoS attacks. Blocking the last message could
be sufficient for an attacker to desynchronize the state s. Finally, the authors
do not suggest the use of a particular strong PUF. A method to expand its
usually single-bit response r into a long string x is not suggested either.

Physically Secure NVM Undermines PUF Bene�t (#2)

The use of physically secure NVM undermines the benefit of using a PUF.
Under the assumption that a token can store its key k in a secure manner, it is
seemingly more efficient to discard the PUF and use a joint version of reference
protocol I-A and reference protocol I-B instead. Tokens do not necessarily need
a TRNG so as to provide freshness; the update of a physically secure state s
would be an alternative.
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Token v Server

Insecure OTP NVM: i← iv iv ← TRNG()
Secure MTP NVM: s← sv sv ← TRNG()
Secure OTP NVM: k← kv kv ← TRNG()

ci,v ← TRNG()
xi,v ← SPUF(ci,v)

gv ← g

Abort if ∀v, i 6= iv
i← gv

(c,x)← (ci,v,xi,v)
gv ← gv − 1

x̃← SPUF(c)
a← Stream(x̃,k)

Abort if a 6= Stream(x,kv)
b← a ⊕ sv

Abort if b 6= a ⊕ s
Update s

Update sv

verifies

iv
sv
kv
ci,v
xi,v

init
i
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b

ack
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)

∀i ∈ [1, g]

Figure 5.21: The first authentication protocol of Lee et al. [101]. The stream
cipher is instantiated with the affiliated design NLM-128, where x̃ and k act as
the key and the initialization vector respectively.

Non-Functional due to PUF Noisiness (#3)

The authors acknowledge that the responses of a PUF are noisy and mention
the existence of fuzzy extractors [39] as well. However, neither the procedures
SSGen and SSRep nor the transfer of helper data are an explicit part of the
proposed protocol. We therefore assume the complete absence of error-correction
techniques, which makes the protocol non-functional. It is unclear whether the
authors may have intended to use a fuzzy extractor in an implicit manner,
but even if so, its related security and efficiency concerns would not have been
reflected properly. We make abstraction of the noisiness issue in the remainder
of our analysis.
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Cryptanalysis of NLM-128 (#8)

Orumiehchiha et al. [129] published a cryptanalytic attack on the stream cipher
NLM-128, so another algorithm may have to be considered.

5.3.13 Jin et al. (2012)

The protocol of Jin et al. [73] is specified in Figure 5.22; a block diagram of the
token hardware is shown in Figure 5.6(n). The privacy of a token is claimed
to be preserved, i.e., an attacker can only track a token in between protocol
runs. Moreover, the authors claim resistance to physical attacks that recover the
state s, i.e., future runs of the protocol are supposed to remain secure. Finally, it
is acknowledged that an attacker may desynchronize the state s by blocking the
last message b. In order to mitigate this DoS threat, recovery logic is foreseen
at the server side.

Incomplete Speci�cation (#1)

The custom-designed variation of the Feed-forward Arbiter PUF is so vaguely
specified that we were unable to interpret it as a workable design. Moreover, a
method to expand its presumably single-bit response r into a long string x has
not been proposed either.

Physically Secure NVM Undermines PUF Bene�t (#2)

The use of physically secure NVM undermines the benefit of using a PUF.
Although the current value of the state s may leak, there is no such claim for
the key k. Under the assumption that tokens can store their key k in a secure
manner, it is seemingly more efficient to discard the PUF and execute a joint
version of reference protocol I-A and reference protocol I-B instead. It can also
be noted that physically secure OTP NVM would allow for the instantiation of
a noiseless, device-unique function that is harder to learn than a typical strong
PUF.

Non-Functional due to PUF Noisiness (#3)

The responses of the PUF are not acknowledged to be noisy, which makes the
protocol non-functional. We make abstraction of this issue in the remainder of
our analysis.
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Private token v Server

Insecure MTP NVM: s← sv sv ← TRNG()
Secure OTP NVM: k← kv kv ← TRNG()
x1,v ← SPUF(s)

n← TRNG()
x̃1 ← SPUF(s)
x̃2 ← SPUF(x̃1)
a1 ← x̃1 ⊕ x̃2

a2 ← Hash(k⊕ x̃2 ⊕ n)
If ∃v,a2 =

Hash(kv ⊕ x2,v ⊕ n),
with x2,v ← a1 ⊕ x1,v,
b← kv ⊕ ShiftCirc(x2,v)
sv ← x1,v
x1,v ← x2,v

Else if ∃v,a2 =
Hash(kv ⊕ x2,v ⊕ n),
with x2,v ← a1 ⊕ sv,
b← kv ⊕ ShiftCirc(x2,v)

Else, abort
Abort if b 6= k⊕ ShiftCirc(x̃2)
s← x̃1

verifies

sv
kv
x1,v

n

a1,a2

b

(1
×
)

(∞
×
)

Figure 5.22: The authentication protocol of Jin et al. [73]. The function
ShiftCirc rotates its input over half the length, i.e., ShiftCirc

(
(r1 r2 . . . r2λ)

)
=

(rλ+1 . . . r2λ r1 . . . rλ). The strong PUF is instantiated with a custom-designed
variation of the Feed-forward Arbiter PUF.
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Server Impersonation (#8)

After having eavesdropped on a single protocol run, an attacker can impersonate
the server. For this purpose, the attacker sends an arbitrary nonce n(2) to the
token of interest and replies with b(2) ← b(1) ⊕ ShiftCirc

(
a(2)

1
)
.

Denial-of-Service (#8)

Given that the inputs of the cryptographic hash function are XORed, an attacker
is able to desynchronize the state s. We describe two variations of this DoS threat.
According to the first variant, the attacker interferes with an otherwise genuine
protocol run and modifies two messages as follows: n← n⊕ e and a1 ← a1 ⊕ e,
where the error vector e 6= 0 can be chosen arbitrarily. Although the token of
interest rejects the server, the latter inadvertently corrupts its state. According
to the second variation, the attacker first eavesdrops on a genuine protocol run.
During a subsequent run of the protocol, the attacker sends a(2)

2 ← a(1)
2 and

a(2)
1 ← n(1) ⊕ n(2). Again, the server inadvertently corrupts its state. As a side

note, the previously described DoS attacks also result in a conflict with widely
accepted privacy definitions. A single token that is persistently rejected by the
server may easily be distinguished from its neighboring devices.

Token Impersonation after Leakage of the State (#8,#2)

Leakage of the state s allows an attacker to repeatedly impersonate a token.
Moreover, there is a concurrent DoS threat that incapacitates the genuine
token. The attacker first eavesdrops on a genuine protocol run and obtains a(1)

1 .
Subsequently, the state s(2) is obtained via physical channels. The response
x̃(2)

1 ← a(1)
1 ⊕ s(2) can hence be computed. A value for the response x̃(2)

2 can be
chosen arbitrarily, i.e., the PUF can be replaced by an arbitrary function from
now onwards. The attacker sends the corresponding messages a(2)

1 and a(2)
2 to

the server.

Privacy without Identi�cation (#9)

The proposal does not scale in the number of registered tokens, which can cause
unacceptable latencies in practical use cases. During each protocol run and for
each registered token, the server may have to evaluate a cryptographic hash
function twice.
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5.3.14 Slender PUFs (2012)

Authentication with so-called slender PUFs, as proposed by Majzoobi et al. [119],
is specified in Figure 5.23. A block diagram of the token hardware is shown in
Figure 5.6(o). The authors extend the basic strong PUF protocol, as previously
discussed in Section 5.3.1, with a countermeasure to machine learning attacks,
i.e., tokens obfuscate the link between the mutually determined challenges and
the released response bits. To be precise, only a randomly selected substring a
of the complete, concatenated response x is released. Unlike an attacker, the
server can easily de-obfuscate the link between challenges and responses via
pattern matching, given that a predictive model of the strong PUF has been
constructed during the enrollment phase. As a side note, the proposal draws
inspiration from the PUF-based key generator of Paral and Devadas [132], which
has previously been discussed in Section 4.4.3.

Token v Server

Train model of the PUF

cS ← TRNG()
cT ← TRNG()
x̃← SPUF(cS , cT )
n← TRNG()
a← SubCirc(x̃, n)

x̂← Predict(cS , cT )
Abort if ∀n,HD(SubCirc(x̂, n),a) > ε

verifies

cS

cT ,a

(1
×
)

(∞
×
)

Figure 5.23: Authentication with slender PUFs, as proposed by Majzoobi et
al. [119]. The procedure SubCirc selects an η-bit substring from its λ-bit circular
input, i.e., SubCirc((r1 r2 · · · rλ), n) = (rn r(n mod λ)+1 · · · r(n+η−2 mod λ)+1),
with n ∈ [1, λ]. The strong PUF is instantiated with an Arbiter XOR PUF
where challenges are permuted across chains. The challenge (cS , cT ) is first fed
into a PRNG so that the single-bit responses r to an expanded list of challenges
can be concatenated into a long string x. The proof-of-concept implementation
uses PRNG(cS ||cT ) = LFSR(cS)⊕ LFSR(cT ).

More recently, Rostami et al. [140] proposed an extension of their countermeasure
to machine learning attacks. To be precise, substring a is padded with random
bits before transmission, i.e., a← ShiftCirc(a‖npad, n2), where npad ← TRNG()
and n2 ← TRNG(). The procedure ShiftCirc rotates its circular λ-bit input,
i.e., ShiftCirc((r1 r2 · · · rλ), n2) = (rn2 r(n2 mod λ)+1 · · · r(n2−2 mod λ)+1), with
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n2 ∈ [1, λ]. Moreover, the authors propose the establishment of a session key k
as an optional extension of the protocol. This relies on the concatenation of
secret indices n and n2. Tuples (cT , cS ,a) then have to be exchanged several
times so as to obtain a key k of sufficient length.

Machine Learning Attacks are not Excluded (#4)

Although more secure than the basic strong PUF protocol in Section 5.3.1,
machine learning attacks are not excluded. First of all, observe the following
contradiction. On the one hand, the strong PUF should be easy-to-model,
as this enables the enrollment. On the other hand, the same PUF should be
hard-to-model, as this counters attacks. For a monolithic PUF, this would be
an extremely difficult balancing exercise. For composite PUFs, such as the
suggested XOR construction, it works out though. During the enrollment, the
individual component PUFs can be learned separately, i.e., the XOR operation
is bypassed, but for an attacker this is not possible.

Nevertheless, compared to other proposals, it is hard to securely instantiate the
protocol. A system provider should rely on specialized attacks that estimate a
lower bound on the number of chains that needs to be XORed. For example,
Becker [12] defeats instances of both the original and the extended protocol using
simulated Arbiter XOR PUFs with up to four chains. Unfortunately, the system
provider cannot exclude the possibility that an alternative, unpublished attack
might perform better. Moreover, the XOR operation amplifies the noisiness of
the PUF, i.e., an upper bound on the number of chains is imposed as well.

There is another contradiction for the extended protocol with key establishment.
On the one hand, Rostami et al. [140] avoid using cryptographic algorithms
in order to save resources. On the other hand, the establishment of a key is
only useful if there is a cryptographic algorithm to make use of it. We hence
argue that the latter keyed cryptographic algorithm might have been reused
for providing reinforcement against attacks. This includes but is not limited to
machine learning attacks. For example, the functionality of the LFSR-based
PRNG could be provided by the keyed cryptographic algorithm as well.

PRNG Weaknesses (#8,#5)

The PRNG that is used in the proof-of-concept implementation might allow
an attacker to impersonate a token. Although feedback polynomials have not
been specified, we presume that an identical polynomial is used for both LFSRs.
If they were supposed to be different, it seems fair that an explicit statement
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should have been provided. Moreover, implementation results (Table III in [119]
and Table 8 in [140]) strongly suggest that there are two replicas of an identical
LFSR.

Upon receipt of the server-generated challenge cS , the attacker chooses an
identical token-generated challenge cT , i.e., cT ← cS . Under the assumption of
identical feedback polynomials, the output stream of the PRNG is then equal
to 0. The server hence evaluates its predictive model of the strong PUF for a
list of identical challenges. The concatenated response is therefore either x̂ = 0
or x̂ = 1. Choosing substring a accordingly, the attacker passes the authenticity
check with a success probability of 1/2. In case the attacker has previously
eavesdropped on a genuine protocol run, the success probability increases to
1 for that particular token. The attacker chooses c(2)

T ← c(2)
S ⊕ c(1)

S ⊕ c(1)
T and

a(2) ← a(1). For the extended protocol of Rostami et al. [140], old sessions keys
can be replayed as well. We emphasize that a careful redesign of the PRNG
could provide a resolution for the previously described attack.

5.3.15 Xu and He (2012)

The protocol of Xu and He [179] is specified in Figure 5.24; a block diagram of
the token hardware is shown in Figure 5.6(p). In order to preserve the privacy
of a token, its identifier i is updated with every protocol run. An attacker can
hence only track a token in between protocol runs. The authors acknowledge
that an attacker may desynchronize the state i by blocking the last message x2.
To mitigate this DoS threat, recovery logic is foreseen at the server side.

Incomplete Speci�cation (#1)

The authors provide only a vague, informal description of the logic that is used
to recover from a desynchronized state i. It is stated that the server retains an
old identifier i−1,v, but no further details are provided. We filled in the blanks
to the best of our insights and exclude this part from cryptanalysis. Moreover,
the authors do not suggest the use of a particular strong PUF. A method to
expand its usually single-bit response r into a long string x is not suggested
either.
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Private token v Server

Secure MTP NVM: i← iv iv ← TRNG()
Secure ROM: k

ci,v ← TRNG()
x1,i,v ← SPUF(ci,v)
x2,i,v ← SPUF(x1,i,v)
x3,i,v ← SPUF(x2,i,v)

gv ← g

a← i⊕ k
If ∃v, iv = a ⊕ k
i← gv

b← iv ⊕ ci,v
Else, if ∃v, i−1,v = a ⊕ k
i← gv

b← i−1,v ⊕ ci,v
Else, abort
gv ← gv − 1

ĉ← b⊕ i
x̃1 ← SPUF(ĉ)

Abort if x̃1 6= x1,i,v

If iv = a ⊕ k
i−1,v ← iv
iv ← iv ⊕ x3,i,v

x2 ← x2,i,v

x̃2 ← SPUF(x̃1)
Abort if x̃2 6= x2

x̃3 ← SPUF(x2)
i← i⊕ x̃3

verifies

iv

ci,v

x1,i,v,
x2,i,v,
x3,i,v

init
a

b

x̃1

x2

(1
×
)

(g
×
)

∀i ∈ [1, g]

Figure 5.24: The authentication protocol of Xu and He [179]. The key k ←
TRNG() is shared by all tokens. The logic for recovering from a desynchronized
state i is reconstructed to the best of our insights, given its incomplete
specification.
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Physically Secure NVM Undermines PUF Bene�t (#2)

The use of physically secure NVM undermines the benefit of using a PUF, given
that the former could hypothetically be used to craft a noiseless, device-unique
function that is harder to learn than the latter. Moreover, all eggs are put in
the same basket by having a system key k that is shared by all tokens. Only
a single token needs to be compromised for an attacker to easily obtain the
identifier i of any given token, i.e., i = a ⊕ k.

Non-Functional due to PUF Noisiness (#3)

The responses of the PUF are not acknowledged to be noisy, which makes the
protocol non-functional. We make abstraction of this issue in the remainder of
our analysis.

Machine Learning Attacks (#4)

The authors do not acknowledge that strong PUFs are prone to machine learning
attacks and do not offer any protection either. Most notably, a CRP (x1,x2) is
transferred in the clear. Moreover, an additional CRP (x2,x3) can be obtained
given that x(1)

3 = a(1) ⊕ a(2). In practice, an upper bound on the number of
protocol runs g should hence be imposed. This would be of no help though if
the system key k has been compromised. An attacker would then be able to
obtain a virtually unlimited number of CRPs (c,x1) from any given token.

Server Impersonation (#8)

An attacker only needs to eavesdrop on a single protocol run in order to
successfully impersonate the server a virtually unlimited number of times. The
authenticity check is passed by sending b(2) ← b(1)⊕a(1)⊕a(2) and x(2)

2 ← x(1)
2 .

5.3.16 He and Zou (2012)

The protocol of He and Zou [57] is specified in Figure 5.25; a block diagram of
the token hardware is shown in Figure 5.6(q). In order to preserve the privacy
of a token, its identifier i is updated with every protocol run. An attacker can
hence only track a token in between protocol runs. The authors claim resistance
to physical attacks that recover the state (i,k, s), i.e., future runs of the protocol
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are supposed to remain secure. Moreover, it is acknowledged that an attacker
may desynchronize the state by blocking the last message (a1,a2). To mitigate
this DoS threat, the use of recovery logic is suggested.

Incomplete Speci�cation (#1)

The authors provide only a vague, informal description of the logic that is
used to recover from a desynchronized state (i,k, s). It is stated that tokens
should retain their previous state, but no further details are provided. This
by itself can never work, as the server might receive either an old or a new
identifier i. Therefore, we are not able to fill in the blanks, and exclude this
part from cryptanalysis. However, it should be noted that recovery logic, when
not carefully designed, often leads to one or more protocol flaws. Although of
lesser importance, the initialization of the state (i,k, s) is not explicitly covered
either. Moreover, the authors do not suggest a method to expand the single-bit
response r of the Arbiter PUF into a long string x.

Non-Functional due to PUF Noisiness (#3)

The authors wrongly assume that the noisiness of the PUF’s responses is
negligible, which makes the protocol non-functional in practice. We make
abstraction of this issue in the remainder of our analysis.

Denial-of-Service (#8)

An attacker who interferes with an otherwise genuine protocol run can easily
corrupt the state, i.e., cause DoS. It suffices to modify a2 to an arbitrarily chosen
value. The server then inadvertently corrupts its saved response x2,j . Exploiting
the linearity of the LFSR, there is a slightly more complicated alternative as
well. An attacker could perform the following modifications: b1 ← b1 ⊕ e and
b2 ← b2 ⊕ LFSR(e), where the error vector e 6= 0 can be chosen arbitrarily.
The given token then inadvertently corrupts (i,k). As an optional extension of
the latter attack, the update a1 ← a1 ⊕ LFSR(LFSR(e)) could be performed as
well, i.e., both token and server inadvertently corrupt their state.
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Private token v Server

Insecure MTP NVM: i← iv iv ← TRNG()
Insecure MTP NVM: k← kv kv ← TRNG()
Insecure MTP NVM: s← sv
x1,v ← SPUF(s)
x2,v ← SPUF(x1,v)

Abort if ∀v, i 6= iv
n1 ← TRNG()
n2 ← PRNG(n1)
b1 ← kv ⊕ n1

b2 ← x1,v ⊕ n2

n̂1 ← b1 ⊕ k
n̂2 ← PRNG(n̂1)
x̃1 ← SPUF(s)
Abort if x̃1 6= b2 ⊕ n̂2

∀i ∈ {2, 3}, x̃i ← SPUF(x̃i−1)
∀i ∈ [3, 6], n̂i ← PRNG(n̂i−1)
(a1,a2)← (x̃2 ⊕ n̂3, x̃3 ⊕ n̂4)
(i,k, s)← (i⊕ n̂5,k⊕ n̂6, x̃1)

n3 ← PRNG(n2)
x̂2 ← a1 ⊕ n3

Abort if x̂2 6= x2,v

∀i ∈ [4, 6],ni ← PRNG(ni−1)
x̂3 ← a2 ⊕ n4

(iv,kv,x1,v,x2,v)←
(iv ⊕ n5,kv ⊕ n6, x̂2, x̂3)

verifies

iv
kv

x1,v,x2,v

init
i

b1,b2

a1,a2

(1
×
)

(∞
×
)

Figure 5.25: The authentication protocol of He and Zou [57]. The strong PUF
is instantiated with a noiseless Arbiter PUF. The PRNG is instantiated with
an LFSR. The logic for recovering from a desynchronized state (i,k, s) is not
represented due to its incomplete specification.
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Token/Server Impersonation, Denial-of-Service, and Privacy Breach (#8)

The use of an LFSR results in full system disclosure. After having eavesdropped
on a genuine protocol run, the attacker queries a token for its identifier i(2).
This allows for the retrieval of nonce n(1)

5 = i(1) ⊕ i(2). Due to the predictability
of an LFSR, nonces n(1)

1 , n(1)
2 , n(1)

3 , n(1)
4 , and n(1)

6 can be computed as well.
From this point onwards, all other secret variables of the first two protocol runs
can be retrieved straightforwardly.

Full System Disclosure after Leakage of the State (#8)

Regardless of the chosen PRNG, leakage of the state results in full system
disclosure. First, the attacker obtains the current value of the state (i,k, s)
via physical channels. Note that identifier i could have been obtained through
a simple query as well. Subsequently, the attacker eavesdrops on a genuine
protocol run. This allows for the retrieval of n1 = b1 ⊕ k. Repeated evaluation
of the PRNG results in nonces n2, n3, n4, n5, and n6. From this point onwards,
the retrieval of all other secret variables is again straightforward.

5.3.17 Jung and Jung (2013)

The protocol of Jung and Jung [75] is specified in Figure 5.26; a block diagram
of the token hardware is shown in Figure 5.6(r). In order to preserve the privacy
of a token, its state s is updated with every protocol run. An attacker can hence
only track a token in between protocol runs. The authors claim resistance to
physical attacks that recover the state s, i.e., future runs of the protocol are
supposed to remain secure. We presume that this claim extends to the leakage
of token identifier iT , given that an attacker may query a1 = iT ⊕ s. Finally,
note that both token and server make use of timestamps.

Incomplete Speci�cation (#1)

The authors do not specify an implementation of the stamping procedure Time.
It is hence unclear whether the stamps are supposed to be snapshots of either
a synchronized clock or an autonomous local clock. Observe that neither is
trivial to implement on a resource-constrained token. One could also opt for
a monotonic counter that is incremented with every protocol run, but this
would require the implementation of write-secure MTP NVM instead. However,
given that neither party verifies the other party’s timestamp, not even to check
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Private token v Server

Insecure OTP NVM: iT ← iT,v iT,v ← TRNG()
Insecure MTP NVM: s← sv sv ← TRNG()
x1,v ← SPUF(s)

iS

a1 ← iT ⊕ s
nT ← Time()
x̃1 ← SPUF(s)
a2 ← MAC(nT , iT , iS ; x̃1)

Abort if ∀v,a1 6= iT,v ⊕ sv
Abort if a2 6=

MAC(nT , iT,v, iS ; x1,v)
c← TRNG()
nS ← Time()
b1 ← c⊕MAC(nS ,nT ,

iS , iT,v; x1,v)
b2 ← MAC(c; x1,v)

ĉ← b1 ⊕MAC(nS ,nT , iS , iT ; x̃1)
Abort if b2 6= MAC(ĉ; x̃1)
x̃2 ← SPUF(ĉ)
a3 ← x̃2 ⊕ ĉ
a4 ← MAC(nT + 1,nS , iT , iS ; x̃2)
s← ĉ

x̂2 ← a3 ⊕ c
Abort if a4 6= MAC(

nT + 1,nS , iT,v, iS ; x̂2)
sv ← c
x1,v ← x̂2

verifies

iT,v
sv

x1,v

iS

a1,
nT ,a2

nS ,
b1,b2

a3,a4

(1
×
)

(∞
×
)

Figure 5.26: The authentication protocol of Jung and Jung [75]. The server has
a unique identifier iS ← TRNG(). The MAC algorithm is instantiated with the
HMAC standard [93]; responses of the strong PUF serve as its key.
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whether its current value exceeds its previous value, one could equally well opt
for a TRNG. Moreover, the authors do not suggest the use of a particular strong
PUF. A method to expand its usually single-bit response r into long string x
has not been suggested either.

Non-Functional due to PUF Noisiness (#3)

The authors do not acknowledge that the responses of the PUF are noisy, which
makes the protocol non-functional in practice. We make abstraction of this issue
in the remainder of our analysis.

Denial-of-Service (#8)

There is a trivial DoS attack. Either blocking or modifying the last message
(a3,a4) suffices for an attacker to desynchronize the state s.

Full System Disclosure after Leakage of the State (#8)

Leakage of the state results in full system disclosure. After having eavesdropped
on a single protocol run, the attacker obtains token identifier iT and state
s(2) via physical channels. The attacker can hence retrieve the secret response
x(1)

2 = x(2)
1 = a(1)

3 ⊕ s(2). From this point onwards, it is trivial to take full
control: impersonate the server or a token, mount a DoS attack, or breach a
token’s privacy.

5.3.18 Lee et al. II (2013)

The second protocol of Lee et al. [102] is specified in Figure 5.27; a block diagram
of the token hardware is shown in Figure 5.6(s). The authors claim resistance
to physical attacks that recover the stored data (i, s,k) of a token, i.e., future
runs of the protocol are supposed to remain secure.
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Token v Server

Insecure OTP NVM: i← iv iv ← TRNG()
Insecure MTP NVM: s← sv sv ← TRNG()
Insecure OTP NVM: k← kv kv ← TRNG()
xv ← SPUF(s)

xv ← Hash(xv)

n← TRNG()
b1 ← iv ⊕ n

x̃1 ← SPUF(s)
c← Hash(s)
x̃2 ← SPUF(c)
n̂← b1 ⊕ i
a1 ← x̃1 ⊕ s
a2 ← Hash(x̃2)⊕ s
a3 ← MAC(a1,a2, n̂; s)

Abort if a3 6=
MAC(a1,a2,n; sv)

x̂1 ← a1 ⊕ sv
Abort if xv 6= Hash(x̂1)
b2 ← kv ⊕ sv
b3 ← MAC(b2,n; sv)
xv ← a2 ⊕ sv
sv ← Hash(sv)

Abort if b3 6= MAC(b2, n̂; s)
Abort if k 6= b2 ⊕ s
s← c

verifies

iv
sv
kv
xv

b1

a1,
a2,a3

b2,b3

(1
×
)

(∞
×
)

Figure 5.27: The second authentication protocol of Lee et al. [102]. We presume
that state s is also used as the key for computing MAC value b3, given the
authors’ incomplete specification.
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Incomplete Speci�cation (#1)

The authors do not specify the key that is used for computing the MAC value
b3. There is seemingly no objection against the use of state s for this purpose.
Moreover, the authors do not suggest the use of a particular strong PUF. A
method to expand its usually single-bit response r into a long string x has not
been suggested either.

Non-Functional due to PUF Noisiness (#3)

The responses of the PUF are not acknowledged to be noisy, which makes the
protocol non-functional in practice. We make abstraction of this issue in the
remainder of our analysis.

No Guidance on Resources (#6)

The authors claim that their protocol is efficient, given that a token computes
only three hash values and two MAC values during a genuine run. Although we
actually count two instead of three hash values, we want to point a different
matter here. Neither the cryptographic hash function nor the MAC algorithm
has been instantiated, but in order to save silicon area, it might be advisable to
derive the MAC algorithm from the hash function, for example.

Denial-of-Service (#8)

There is a simple DoS attack. Either blocking or modifying the last message
(b2,b3) suffices for an attacker to desynchronize the state s.

Full System Disclosure after Leakage of Stored Data (#8)

Leakage of the stored data of a token results in full system disclosure. After
having eavesdropped on a genuine protocol run, the attacker obtains i, s(2) and
k via physical channels. The attacker can now successfully impersonate the
server. It suffices to first generate an arbitrary nonce n(2) and then compute b(2)

1 ,
b(2)

2 , and b(2)
3 accordingly. At the same time, this also causes desynchronization

between the given token and the real server. Alternatively, interference with a
second, otherwise genuine protocol run allows an attacker to impersonate the
given token from the third run onwards. On receipt of b(2)

1 , the attacker retrieves
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nonce n(2) = b(2)
1 ⊕ i. The attacker replaces the PUF by an arbitrarily chosen

function and outputs x̃1; the values of a2 and a3 are modified accordingly. The
value of a1 is not modified. At the same time, this also causes desynchronization
between the real token and the server.

5.3.19 Noise Bifurcation (2014)

The so-called noise bifurcation protocol of Yu et al. [190] is specified in
Figure 5.28. A block diagram of the token hardware is shown in Figure 5.6(t).
The proposal can be understood as a variation on slender PUFs, which were
discussed in Section 5.3.14. Again, machine learning attacks on the basic strong
PUF protocol in Section 5.3.1 are countered by obfuscating the link between
mutually determined challenges and released response bits. To be precise, only
a randomly decimated version a of a complete, concatenated response x is
released. This effect is referred to as learning noise, which not to be confused
with physical noise. Unlike an attacker, the server can de-obfuscate the link
between challenges and responses, given that a predictive model of the strong
PUF has been constructed during the enrollment phase.

Incomplete Speci�cation (#1)

The authors do not commit to a specific implementation of the LFSR-based
PRNG. Therefore, we are unable to properly assess the security and efficiency
of the proposed protocol. Recall that the LFSR-based PRNG of both the
reverse fuzzy extractor protocol [171] in Section 5.3.10 and the slender PUF
protocol [119, 140] in Section 5.3.14 was found to be insecure.

Machine Learning Attacks are not Excluded (#4)

Although more secure than the basic strong PUF protocol in Section 5.3.1,
machine learning attacks are not excluded. First of all, observe the following
contradiction. On the one hand, the strong PUF should be easy-to-model,
as this enables the enrollment. On the other hand, the same PUF should be
hard-to-model, as this counters attacks. For a monolithic PUF, this would be
an extremely difficult balancing exercise. For composite PUFs, such as the
suggested XOR construction, it works out though. During the enrollment, the
individual component PUFs can be learned separately, i.e., the XOR operation
is bypassed, but for an attacker this is not possible.
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Token v Server

Train model of the PUF

cS ← TRNG()
cT ← TRNG()
x̃← SPUF(cS , cT )
n← TRNG()
a← Decimate(x̃,n)

x̂← Predict(cS , cT )
I ← Mask(x̂)
â← Decimate(x̂,0)
Abort if

∑
i∈I HD(ai, âi) > ε

verifies

cS

cT ,a

(1
×
)

(∞
×
)

Figure 5.28: The noise bifurcation protocol of Yu et al. [190]. The strong PUF
is instantiated with an Arbiter XOR PUF where all chains receive a different
challenge c. The seed (cS , cT ) is fed into an LFSR-based PRNG so that the
single-bit responses r to an expanded list of challenges c can be concatenated into
a long string x. The procedure Decimate subdivides concatenated response x
into q partitions of size λ and retains a randomly selected bit x for each
partition, i.e., Decimate(x, n1, n2, · · · , nq) = (xn1 xn2+λ · · · xnq+(q−1)λ), where
∀i ∈ [1, q], Ni is selected randomly, uniformly, and independently from [1, λ].
The procedure Mask identifies all partitions that contain identical response bits,
i.e., Mask(x̂) = {i ∈ [1, q] | x̂(i−1)λ+1 = x̂(i−1)λ+2 = · · · = x̂i λ}.

Nevertheless, compared to other proposals, it is hard to securely instantiate the
protocol. A system provider should rely on specialized attacks that estimate a
lower bound on the number of chains that needs to be XORed. Yu et al. [190]
were able to defeat instances of their own protocol using simulated Arbiter
XOR PUFs with up to four chains. Tobisch and Becker [165] later performed a
slightly more effective attack. Unfortunately, a system provider cannot exclude
the possibility that an alternative, unpublished attack might further improve
the performance. Moreover, the XOR operation amplifies the noisiness of the
PUF, i.e., an upper bound on the number of chains is imposed as well.
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5.3.20 System of PUFs (2014)

The so-called System of PUFs of Konigsmark et al. [91] is specified in Figure 5.29;
a block diagram of the token hardware is shown in Figure 5.6(u). The authors
propose a two-level authentication scheme. The second level, which consists
of the so-called secure PUF, is identical in nature to the basic authentication
method in Section 5.3.1. Although assumed to be resistant to machine learning
attacks by itself, the authors nevertheless extend the protocol with an insecure
first level. This succession of a so-called hidden PUF and a so-called guard PUF
is easy-to-model by an attacker, given that the server is faced with an identical
effort during the enrollment. The need for the seemingly superfluous first level
hinges on four reasons:

• The time penalty that is incurred by an attacker for modeling the first
level is claimed to disable many threats in real-life use cases.

• The first level is claimed to disable a DoS attack on an otherwise self-
sufficient second level. According to the authors, the basic authentication
method in Section 5.3.1 allows an attacker to deplete the database of
the server, given that it is infeasible for the latter to collect and store an
exponentially large number of CRPs during the enrollment.

• It is claimed that a breach of the first level can be recognized by the
system. An attacker who repeatedly replies with correct responses r̃G to
respective challenges (cH , cG), but incorrect responses r̃S to respective
challenges cS , is detected. Once all challenges cS are depleted, breach
recovery may be initiated.

• Although a predictive model for response xG can easily be obtained
by both the server and an attacker, the latter might actually need an
additional model for the hidden response xH in order to attempt modeling
the second level.

Incomplete Speci�cation (#1)

The suggested, RO-based designs for instantiating the hidden PUF do not
inherently produce stable response bits r, and in fact require the use of an HDA.
Suh and Devadas [161] apply the η-out-of-λ selection scheme that was previously
discussed in Section 4.5.2, while Yu and Devadas [187] apply the IBS scheme,
as previously discussed in Section 4.5.4. The security and efficiency concerns of
storing and transferring helper data h are not reflected in the protocol. Consider,
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Token v Server

cH,i,v ← TRNG()
cG,i,v ← TRNG()

xH ←WPUFH(cH,i,v)
xG ← SPUFG(xH , cG,i,v)

x̂G ← Predict(
cH,i,v, cG,i,v)

cS ← Hash(cH,i,v,
cG,i,v, x̂G)

xS,i,v ← SPUFS(xH , cS)
gv ← g

i← gv

(cH , cG,xS)←
(cH,i,v, cG,i,v,xS,i,v)

x̃H ←WPUFH(cH)
x̃G ← SPUFG(x̃H , cG)

x̂G ← Predict(cH , cG)
Abort if HD(x̃G, x̂G) > ε1

ĉS ← Hash(cH , cG, x̂G)
gv ← gv − 1

x̃S ← SPUFS(x̃H , ĉS)
Abort if HD(x̃S ,xS) > ε2

verifies

cH,i,v,
cG,i,v

xG

cS
xS,i,v

cH , cG

x̃G

ĉS
x̃S

(1
×
)

(g
×
)

∀i ∈
[1, g]

Tr
ai
n
m
od

el

Figure 5.29: The authentication protocol of Konigsmark et al. [91] comprises a
system of three PUFs. The so-called hidden PUF is required to produce highly
stable response bits r, and is instantiated with a weak, RO-based design [161,
187] that has a 16-bit challenge. The so-called guard PUF is instantiated with
an Arbiter PUF that has 32 stages. The so-called secure PUF is assumed to be
resistant to machine learning attacks, and is instantiated with an Arbiter XOR
PUF that has q = 4 chains of m = 64 stages each. Challenges c are fed into a
16-bit, 32-bit, and 64-bit LFSR respectively so that the single-bit responses r
can be concatenated into 16-bit, 32-bit, and 64-bit strings x respectively.
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for example, the prevalence of helper data manipulation attacks. Moreover,
given that helper data h needs to be generated first, either a one-time interface
or an additional module on the device should be implemented.

Machine Learning Attacks (#4)

Although the authors seemingly suggest the opposite, there does not exist a
single well-validated design of a strong PUF that is resistant to machine learning
attacks. Stated otherwise: the secure PUF, and hence also the protocol, cannot
be instantiated in a secure manner. Note that the suggested 4-chain XOR PUF
is relatively easy-to-model, even with techniques that predate the proposal [145].
This issue only got worse with the more effective, hybrid attack of Becker [13].

Ine�ciencies (#6)

Playing along with the assumption of a secure PUF, the first level still seems
superfluous. The reasoning behind each of the authors’ arguments is either
flawed or lacking nuance:

• It is highly unlikely that the time an attacker needs for modeling the first
level significantly enhances the security in practical scenarios. Given the
high throughput for querying CRPs in modern devices [13], as well as the
low latencies that learning algorithms might obtain [145, 13], the total
elapsed time might be in the milliseconds to seconds range. In most use
cases, an attacker with physical access is expected to have more time than
that. If less time is given, it would not be feasible to mount a physically
invasive attack on embedded NVM either, which undermines the need
for PUFs. Moreover, the higher the modeling resistance of the first level,
the higher the burden that is imposed on the enrollment. Note that an
attacker may only need a model for a single device in order to succeed,
while the server needs to obtain a model for every manufactured device.

• It is unfair to state that the basic authentication protocol in Section 5.3.1 is
prone to DoS attacks by default. It all depends on which party initiates the
protocol, i.e., an aspect that has not been covered. Figure 5.7 represents
the common sense version where the server acts as sole initiator. For use
cases that require a PUF-enabled device to initiate the protocol, time-
out mechanisms could be foreseen. In fact, once the attacker obtains a
predictive model for the first level of the newly proposed protocol, the
inherent resistance to DoS attacks is not any better than for the basic
protocol.
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• The potential for recognizing breaches of the first level is much lower than
what is claimed. The authors seemingly assume that an attacker who
modeled the first level blindly engages in a protocol run with the server.
However, playing along with the assumption of a truly secure PUF, this
would be a useless effort, given that response xS is of sufficient length
such that random guessing is of no concern. In real life, where the secure
PUF happens to be insecure, an attacker would be inclined to successfully
model both levels before attempting to engage in a protocol run with the
server.

• Although an attacker seemingly needs a predictive model for the hidden
response xH , while the server does not, the corresponding enhancement of
the system security might be marginal. We conjecture that state-of-the-art
learning techniques can handle the given problem directly, but even if not,
there are at least three potential shortcuts. First, the suggested length of
challenge cH is only 16 bits. This implies that an attacker could attempt
learning 216 predictive models for the second level, i.e., one for each
element of CH . Second, given that the hidden PUF requires helper data in
practice, its manipulation could enable a shortcut for retrieving xH . Third,
the use of LFSRs enables an orthogonal line of threats. For example, by
feeding the target device a fixed point cH = 0, the hidden response xH is
known to be either 0 or 1.

5.3.21 PUF Lockdown (2016)

Yu et al. [188], which includes the author of this PhD thesis, specified two
so-called lockdown protocols. The first, most basic protocol is specified in
Figure 5.30. A block diagram of its token hardware is shown in Figure 5.6(v).
The design prevents an attacker from querying a token for CRPs that have not
yet been disclosed during a prior, genuine protocol run. This way, the issues of
either one out of two previously discussed, unilateral authentication protocols
are resolved. We distinguish between the use of a weak and a strong PUF:

• When instantiated with a weak PUF, the lockdown protocol provides a
more efficient alternative to the SHIC proposal of Rührmair et al. [143]
in Section 5.3.7. The number of cells can be reduced considerably, no
constraints are imposed on the read-out throughput, and a comfortable
128-bit security level can easily be achieved. Under the assumption of
uniformly distributed cell contents, the system is still secure against
a computationally unrestricted adversary. Moreover, there is no need
for emerging high-density technologies like RRAM; a more conventional
SRAM PUF can be used.
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Token v Server

Insecure OTP NVM: i← iv iv ← TRNG()
ci ← Dec2Bin(i)

(x1,i,v,x2,i,v)← PUF(ci)
gv ← g

Abort if ∀v, i 6= iv
i← gv

c← Dec2Bin(i)
(x1,x2)← (x1,i,v,x2,i,v)
gv ← gv − 1

(x̃1, x̃2)← PUF(c)
Abort if HD(x1, x̃1) > ε

Abort if HD(x2, x̃2) > ε

verifies

iv
ci

x1,i,v,
x2,i,v

init
i

c,x1

x̃2

(1
×
)

(g
×
)

∀i ∈ [1, g]

Figure 5.30: The first lockdown protocol of Yu et al. [188]. Despite the presence
of two Hamming distance checks, the authentication is unilateral, given the
lack of token-generated freshness. Either a weak or a strong PUF can be used,
e.g., an SRAM or Arbiter XOR PUF respectively. We emphasize that the
challenge c is small-sized in either case, i.e., |C| = g. For example, if the number
of authentications g is limited to 1024, then the encoding procedure Dec2Bin
outputs challenges c with a length of 10 bit only. In the case of a strong PUF, the
challenge c is first fed into an LFSR-based PRNG so that the 1-bit responses r
to an expanded list of challenges can be concatenated into a long string (x1,x2).



198 A SURVEY ON PUF-BASED ENTITY AUTHENTICATION

• When instantiated with a strong PUF, the lockdown protocol provides a
more secure alternative to the basic authentication proposal [131, 161, 38]
in Section 5.3.1. An attacker cannot freely query a token for a virtually
unlimited number of CRPs anymore; an upper bound on the number
of training CRPs is imposed. A heuristic security analysis is performed,
based on state-of-the-art machine learning techniques.

Side-channel analysis, possibly paired with machine learning techniques in the
case of strong PUF, is a major concern in practice. Observe that an attacker can
force a token to evaluate the response (x1,x2) to a fixed challenge c a virtually
unlimited number of times. First of all, averaging the repeated measurements
of side-channel traces can bring the signal-to-noise ratio to workable levels.
This is illustrated by the photonic emission analysis of Tajik et al. [163] on
delay-based PUFs. Moreover, the noise level of each individual bit in a previously
unlocked response x2 can be estimated, which is a side-channel by itself. Recall
that Becker [13] successfully paired noise measurement and machine learning
techniques for Arbiter XOR PUFs.

The second lockdown protocol, as is specified in Figure 5.31, aims to prevent
the latter types of attacks. A block diagram of its token hardware is shown
in Figure 5.6(w). The main difference with the first protocol is that tokens
now generate a fresh random challenge cT during each run. Although not
advertised as such, the previously discussed slender PUF [119, 140] and noise
bifurcation [190] proposals adopt a similar countermeasure. Even if the latter
two proposals are competitors within their own category, they could individually
join forces with the lockdown protocol. A combined protocol could not only
obfuscate the link between challenges and responses, but also impose an upper
bound on the number of exposed CRPs.

For both protocols, the PRNG consists of a maximum-length LFSR, having a
state s ∈ {0, 1}λ. Initialized with a nonzero, λ-bit seed value, the LFSR starts
cycling through a subset out of 2λ − 1 states, i.e., one challenge bit per state is
produced until the long response pair (x1,x2) is completely evaluated. For the
first protocol, the seed value is s = a‖c, where the initialization vector a is a
hardcoded constant. For the second protocol, the seed value is s = a‖cS‖cT ,
where a is again identical for all fabricated tokens. Given that both LFSRs start
cycling from a partially identical seed, the output of the first few cycles may be
discarded in order to enhance the uniformity characteristics of the challenge
stream. The main danger is that sequences of states, i.e., gray-colored arcs in
Figure 5.32, might overlap across protocol runs. If the corresponding offset turns
out to be an integer multiple of the number of challenge bits of the PUF, part
of a previously disclosed response pair (x1,x2) could be replayed. We eliminate
all forms of overlap as follows:
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Token v Server

Insecure OTP NVM: i← iv iv ← TRNG()
Train model of PUF
gv ← g

cT ← TRNG()
Abort if ∀v, i 6= iv
i← gv

cS ← Dec2Bin(i)
(x1,x2)← Predict(cT , cS)
gv ← gv − 1

(x̃1, x̃2)← SPUF(cT , cS)
Abort if HD(x1, x̃1) > ε

Abort if HD(x2, x̃2) > ε

verifies

iv

init
i, cT

cS ,x1

x̃2

(1
×
)

(g
×
)

Figure 5.31: The second lockdown protocol of Yu et al. [188]. The authentication
is mutual rather than unilateral. The strong PUF is instantiated with an Arbiter
XOR PUF. The server-generated challenge cS is small-sized, i.e., |CS | = g. For
example, if the number of authentications g is limited to 1024, then the encoding
procedure Dec2Bin outputs challenges cS with a length of 10 bit only. The token-
generated challenge cT is considerably larger, e.g., 128 bit. A challenge pair
(cT , cS) is fed into an LFSR-based PRNG so that the 1-bit responses r to an
expanded list of challenges can be concatenated into a long string (x1,x2).

• For protocol I, we suggest to run an exhaustive check during an early
design phase. For a given initialization vector a and for all g entry points,
the designer checks whether or not an entry point reappears in the course
of the LFSR run. Stated otherwise: if, after the seed value s = a‖c is
applied, a state that begins with a reappears, that particular LFSR design
is disqualified. This can be remedied by an alternate value for a, a different
feedback polynomial, etc. We impose the constraint a 6= 0 in order to
disable the fixed point s = 0. For a maximum-length LFSR, which has an
even number of taps, s = 1 cannot be a fixed point.

• For protocol II, an exhaustive check during the design phase is no longer
feasible, but we can use a run-time check instead. If, after the seed value
s = a‖cS‖cT has been applied, a state that begins with a reappears in
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the course of the LFSR run, the protocol run should be aborted. The
run-time check is implemented both at the token side and at the server
side. We impose again the constraint a 6= 0.

cS

s

(a) Lockdown protocol I.

cS‖cT

s

(b) Lockdown protocol II.

Figure 5.32: The LFSR-based PRNG of (a) lockdown protocol I and (b) lockdown
protocol II. The circle represents the complete sequence of 2λ − 1 states s ∈
{0, 1}λ \ {0}, traversed through in clockwise direction. Each gray-colored arc
highlights a sequence of states that ultimately results in a response pair (x1,x2).
Points via which the circular stream can be entered are indicated by an arrow.
These comprise only a very small fraction of the total number of states, i.e., the
attack surface is minimized by design.

5.4 Overview and Discussion

Table 5.1 provides an overview of our analysis in Section 5.3. We adopt the
perspective of an interested system provider who aims to select a protocol for
implementation purposes. Proposals that do not offer any resistance to both
noise and machine learning attacks are discarded. The same holds for proposals
that are vulnerable to conventional protocol attacks. We do not object that
the discarded proposals might contain worthwhile concepts. The remaining
proposals are marked bold for further consideration and are subdivided into
two categories:

• The first category of retained protocols comprehends all forms of PUF-
based key generation, where the authentication is performed with
a keyed cryptographic algorithm. This approach might provide an
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Table 5.1: The symbol X denotes ‘yes’. The symbol × denotes ‘no’. The symbol ∼
denotes the middle ground. An empty cell means ‘non-applicable’. A grayed-out
cell means ‘irrelevant due to a catastrophic issue’.

Token authenticity

Server authenticity

Token privacy

Leakage resilience

#
Authentications

Resistance to noise

Modeling resistance

Token authenticity

Server authenticity

Token privacy

DoS prevention

Leakage resilience

Scalability

Reference II-A X × × ∞ X X X X X

Reference II-B × X × ∞ X X X X X

Basic [38] X × × g ×
Controlled [51] X × × g X X X X X

Bolotnyy et al. [21] X × X × g × × ×
Öztürk et al. [130] X × × × ∞ ∼ ×
Hammouri et al. [54] X × × ∞ ×
Kulseng et al. [94] X X X × ∞ × × × × ×
SHIC [143] X × × g X X ∼ X X

Sadeghi et al. [148] X × X ∼ ∞ X X X X X ∼ ×
Reconfiguration [80] X × ∼ ∼ g × ×
Reverse I [171] X X × ∞ X ∼ ∼ ∼ X X

Reverse II [110] X X × ∞ X X X X X X

Converse [85] × X × ∞ ×
Lee et al. I [101] X X × × g × ×
Jin et al. [73] X X X ∼ ∞ × × × × ×
Slender [140] X × × ∞ X ∼ ∼ X X

Xu and He [179] X X X × g × ∼ ×
He and Zou [57] X X X X ∞ × × × × × ×
Jung and Jung [75] X X X X ∞ × × ×
Lee et al. II [102] X X × X ∞ × × ×
Noise bifur. [190] X × × ∞ X ∼ X X X

System of PUFs [91] X × × g ×
Lockdown I [188] X × × g X ∼ X X X

Lockdown II [188] X X × g X ∼ X X X X

Protocol Claims Our analysis
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excellent resistance to both machine learning and protocol attacks, but
is unfortunately not lightweight. Within this category, reference protocol
II-A can be understood as the weak PUF variant of controlled PUFs [51].
The protocol of Sadeghi et al. [148] is also retained, despite the restrictions
on the physical compromise of its NVM contents. The revised reverse fuzzy
extractor protocol [110] is tentatively retained, given that the repercussions
of the refuted reusability claim might not be catastrophic.

• Retained protocols of the second category avoid the use of crypto-
graphic algorithms and error-correcting codes in order to facilitate a
lightweight implementation. This includes the slender PUF [140] and noise
bifurcation [190] protocols. The former proposal is retained despite the
exploitation of its PRNG, given that a redesign of this building block
might easily offer a fix. Unfortunately, the protective mechanisms against
machine learning attacks rely on the use of physically secure TRNG and
are hard to validate. The security of the PUF lockdown protocol [188] is
somewhat easier to validate, given that there is an upper bound on the
number of CRPs that an attacker can obtain. Moreover, it resolves the
issues of the SHIC protocol [143].

Despite having expanded the scope of our survey from 8 to 19 to 21 PUF-based
authentication protocols, it is hard to catch ’em all. A comprehensive analysis of
the missing proposals, six of which are introduced next, is suggested as further
work. There is the protocol of Tuyls and Škorić [169], which has later been
revised by Rührmair et al. [142] so as to resolve a security issue. The protocol
of Aysu et al. [7] relies on a reverse fuzzy extractor [171, 110]. Unfortunately,
it inherits again the fallout of the refuted reusability claim in Section 4.3.6.
The protocols of Ye et al. [180] and Gao et al. [48] bear a resemblance to the
TRNG-based obfuscation protocols [119, 140, 190] in our survey. Unfortunately,
the latter proposal imposes the restriction of a passive, eavesdropping attacker,
which is in conflict with the distributed, wireless nature of its intended RFID-like
applications. Finally, there is the protocol of Che et al. [31], which again avoids
the use of a cryptographic algorithm.

5.5 Conclusion

We analyzed the security and usability of 21 PUF-based authentication protocols.
In order to treat all proposals equally, we devised a unified notation as well
as a transparent framework of protocol requirements. Numerous security and
practicality issues have been revealed. In fact, only the minority of the proposals
is deemed suitable for consideration and potential implementation by a system
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provider. PUF-based key generation, where a keyed cryptographic algorithm
performs the authentication, remains the preferred approach for devices that
can afford the resources. Such protocols can also be extended easily to security
needs other than entity authentication, e.g., message confidentiality and integrity.
Nevertheless, we also selected existing designs and even contributed to a new
design of a PUF-based authentication protocol for devices that cannot afford
cryptographic algorithms. Hopefully, the observations and lessons learned in
this chapter can facilitate future protocol design.





Chapter 6

Conclusions and Further
Work

We revisit several contributions of this PhD thesis while providing suggestions
for further work. Three crucial themes that run across Chapters 3, 4, and 5 are
elaborated.

6.1 PUFs versus Embedded NVM

The motivation for using PUFs hinges on the assumption that embedded
OTP/MTP NVM is physically insecure. The problem is in fact shifted to
various other building blocks that are all assumed to be physically secure
instead. However, as is clear from the numerous physical attacks on both PUFs
and HDAs that have been published from the early 2010s onwards, the latter two
primitives are not exactly immune either. Regardless of our own experimental
work on the exploitation of both noise and environmental perturbations in
Chapter 3, the sheer scale of the attacks questions the existential motivation
of PUF technology. Further studies would be required in order to properly
compare the inherent resistance of PUF–HDA combos and NVM to physical
attacks. In the ideal case, the footprint and effectiveness of their respective
countermeasures would be analyzed more frequently as well.

Moreover, we observe that all surveyed authentication protocols in Chapter 5
stand or fall by the physical security of their PUF, to the extent that another
newly revealed threat does not yet spoil the party. The development of a two-

205
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factor protocol, which remains secure if either its PUF or its NVM is comprised,
is hence suggested as further work. We also point out in Chapter 4 that numerous
HDAs are vulnerable to the manipulation of their helper data, which has largely
been overlooked in the literature. It seems artificial to us that an attacker would
be able to physically obtain read-access to the NVM storing helper data, but
therefore no write-access. Moreover, several protocols in Chapter 5 transmit
helper data over an insecure communication channel and hence facilitate its
manipulation.

6.2 Min-Entropy

A staggering number of PUF circuits has been proposed in the literature. The
uniqueness of their challenge-response behavior is typically evaluated through
statistical tests that detect non-uniformities, and which require straightforward
computations only. Most frequently, this includes the inter-device distance, and
occasionally also the NIST test suite. Unfortunately, numerical results are hard
to interpret and compare, and correlations may easily go undetected, especially
for strong PUFs. Entropy would be the ultimate uniqueness metric, and has
direct application to the fuzzy extraction of a secret key, but its estimation
is hard and therefore mostly neglected. In Chapter 3, we propose three novel
methods that derive proven upper bounds on the min-entropy of several strong
PUFs. These bounds evaluate to surprisingly low numbers, which implies that
the CRPs are not as uniquely tied to a given device as is often assumed. The
authors of the original reverse fuzzy extractor protocol in Chapter 5, for example,
overestimate the min-entropy of their Arbiter PUF with at least a factor 9.

Despite our newly developed theory, estimating the entropy of a PUF circuit
remains fairly unexplored territory. Other authors might improve upon our
bounds and expand the scope of the analysis to a larger set of PUF designs.
Moreover, the proven existence of an entropy deficiency does not automatically
provide the attacker with an accelerated brute-force search. We invite other
authors to help bridging this gap.

On top of the inherent entropy deficiencies of a PUF, HDAs cause an additional
loss. Our survey in Chapter 4 points out that the losses of most HDAs can only
be derived for nearly ideal distributions, in casu, i.i.d. response bits. Although
this assumption might approximately hold for top-quality SRAM-like PUFs,
most designs and implementations are not covered. Even within an ideal universe
of i.i.d. response bits, security claims are not necessarily satisfied. For example,
the original soft-decision decoding scheme where bit error rates are stored as
helper data exhibits a larger min-entropy loss than what has been acknowledged
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by its authors. Fuzzy extractors are not restricted to i.i.d. response bits and
can handle all distributions of which the min-entropy is sufficiently high. We
derived improved bounds on their min-entropy loss such that a large variety
of low-entropy distributions can be handled more effectively. The gains were
demonstrated for SRAM-like PUFs with either i.i.d. or spatially correlated
response bits. We invite other authors to help improving the bounds and to
investigate distributions that our theory does not support.

6.3 Literature Disconnect

There is a considerable disconnect among the individual proposals of highly
related PUF-based systems. Most notably, the 21 surveyed publications that
propose a PUF-based authentication protocol in Chapter 5 hardly refer and
draw comparisons to one another. There are exceptions to the rule, but in
most cases, proper motivation that urges the need for a new protocol is lacking.
Moreover, the opportunity to learn from mistakes that happened in the past
is missed. Regardless of their technical merits and regardless of whether their
security claims will stand the test of time, this situation improves for a few more
recent proposals that are motivated by our survey results, e.g., the protocols of
Aysu et al. [7] and Yu et al. [188]. The latter proposal, for which the author of
this PhD thesis was a contributor, actually aims to resolve the issues of two
previously published protocols.

Also for the achievement of other goals, there is a never ending stream of
remarkably similar proposals that often lack an in-depth comparison to what
already exists. Consider for example the large number of slightly differing
PUFs that are all based on a reconfigurable RO, as cited in Chapter 3. The
debiasing schemes in Chapter 4 comprehend another example: skewed SMV,
pattern matching, IBS, and the von Neumann adaptations were all proposed
in an autonomous fashion. It is also more than once that the retention and
disposal of respectively stable and unstable response bits has been proposed as
a novel HDA. In a research field where many designs are proposed, but only
few are thoroughly analyzed and compared by independent parties, we aimed
to restore the balance. For future work, we encourage others to only propose a
new design, if for a given set of constraints, and after exhaustive analysis of the
state-of-the-art, it turns out that an overall more favorable alternative does not
yet exist.

Although duplicates and motivational issues cause no harm, this differs for the
designers of PUF-based systems who do not understand and/or acknowledge
what exactly a PUF is. Wrong and unrealistic assumptions seemingly spread
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like wildfire and stall the progress of research. We are primarily referring here
to the protocols in Chapter 5 where the PUF is at least partially assumed to
behave as a random oracle. There are three notable differences though. First, the
responses of a PUF are noisy rather than deterministic. Second, the responses
are not sampled from a uniform distribution, and considerable correlations
among CRPs may exist. For strong PUFs, this implies the existence of machine
learning attacks. Third, challenges and responses are not of arbitrary size. Most
strong PUF designs produce a single response bit only, for example.
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