
S

KATHOLIEKE UNIVERSITEIT LEUVEN

FACULTEIT WETENSCHAPPEN

FACULTEIT TOEGEPASTE WETENSCHAPPEN

DEPARTEMENT COMPUTERWETENSCHAPPEN

Celestijnenlaan 200A | 3001 Leuven

KNOWLEDGE REPRESENTATION AND REASONING IN

INCOMPLETE LOGIC PROGRAMMING

Promotoren :

Prof. Dr. D. DE SCHREYE

Prof. Dr. J. DENEF

Proefschrift voorgedragen tot

het behalen van het doctoraat

in de informatica

door

Marc DENECKER

September 1993

2

Abstract

The central research theme in logic programming is the development of a computer

system in which the programmer can represent his knowledge on the problem

domain in a declarative manner and which solves computational problems on the

domain by means of domain independent procedures.

The thesis contains a number of contributions on the declarative and the pro-

cedural level. So far, an important problem of logic programming was that incom-

plete knowledge about the problem domain could not be described accurately. We

show that the formalism of abductive logic programs is an expressive logic for the

declarative speci�cation of this form of knowledge. In the thesis we propose an in-

tuitive interpretation for this formalism, we investigate the existing semantics and

extend them. On the procedural level we develop NMGE, a generic procedure for

model generation in �rst order logic with a generic equality theory, and SLDNFA,

a family of abductive procedures for abductive logic programs. New theoretical re-

lationships between abduction, deduction, model generation, consistency proving

and deductive database updating are presented. The potential of the NMGE pro-

cedure for the solution of declaratively speci�ed problems is illustrated by a simple

application. The interest of abductive logic programs and SLDNFA is shown by

two applications in the domain of temporal reasoning. In these applications we

show how SLDNFA can be used to emulate other computational paradigms.

3

4

Preface

When I am asked how it feels to make a PhD, I tend to compare it with a long

intellectual "survival journey". Indeed, it is a lonely and challenging experience.

During the journey, I was on some point almost drowning in the moors, but I also

enjoyed great satisfaction when exploring new untrodden abstract mathematical

areas. Now that it seems that I have survived, it is time to thank many people

who have contributed in one way or the other to the realisation of this thesis.

I am grateful to Prof. Yves Willems for arousing my interest in Prolog and com-

putational logic through his courses "Theorie der programmeertalen" and "Werk-

seminarie logisch programmeren". Also, I thank him for the trust that he put in

my colleague, Patrick Weemeeuw, and me when he engaged us for an ambitious

informatics project on protein engineering. Although this �rst project was not re-

ally successful, the intuitions and experiences that I acquired during the project

and also in the discussions with him, have formed the foundation for my research.

I would like to thank also the other members of the logic programming group,

in the �rst place Prof. Maurice Bruynooghe, Prof. Danny De Schreye and Prof.

Bart Demoen, who together with Prof. Willems, are responsible for creating a

stimulating, high standard work environment. I thank them for many fruitful dis-

cussions and their constructive and, when necessary, merciless criticism on my

work. I am mostly indebted to my promotor Prof. Danny De Schreye. His many

critical remarks, his unrelenting perfectionism on both mathematical rigour and

writing style have been vital for the realisation of this work. As Hendrik Conscience

taught our people to read, Danny taught me to write. Danny made me aware of

the rules underlying a good paper, the subtle battle of the author with his audi-

ence, the art of telling a coherent story and leading the reader through a labyrinth

of potential objections and distracting remarks. If these qualities sometimes seem

missing in this text, then I am to blame for being a bad student.

My research has bene�ted from multiple exchanges of ideas with Bern Martens

and Lode Missiaen. Lode Missiaen raised my interest in temporal reasoning and

event calculus. Eddy Bevers introduced me to the world of term rewriting. Also

Robert Kowalski and Raymond Reiter have in
uenced my work through construc-

tive discussions. I thank the other members of the department, in particular my

5

6

o�ce mates, the db-group and my climbing partners for their share in the pleasant

atmosphere that I experienced during the past years.

I thank Prof. Jan Denef for accepting to be co-promotor of my thesis. I am

grateful to him and to the other members of my jury, Prof. Maurice Bruynooghe,

Prof. Bart Demoen, Prof. Yves Willems, Prof. Marek Sergot and Prof. Els Laenens

for reading my work and for providing valuable comments on it.

Finally, I want to express my special gratitude to mywife. Christel and I started

a PhD almost at the same time. During six years, she was my sister-in-arms and I

could count on her for support and understanding. She has defeated me by several

boat's lengths by �nishing her thesis six months earlier. Since then, she has taken

much more than her share of the daily struggle for live on her shoulders. Now

that I join her as a doctor, I confess that I could not have managed without her.

Therefore, I dedicate my work to her.

August, 1993

Contents

Abstract 3

Preface 5

Table of contents 7

1 Introduction 9

2 Preliminaries 17

2.1 Syntax and Semantics of First Order Logic : : : : : : : : : : : : : 17

2.2 What is in a model? : 22

2.3 Syntax and (some) semantics for Logic Programs : : : : : : : : : : 25

3 Duality of Abduction and Model Generation 31

3.1 Introduction : 31

3.2 Extended programs. : 36

3.3 Concepts of Term Rewriting. : 37

3.4 A framework for Model Generation : : : : : : : : : : : : : : : : : : 42

3.5 Duality of SLD+Abduction and Model Generation. : : : : : : : : : 56

3.6 Implementing NMGE : 64

3.7 Executing declarative speci�cations : : : : : : : : : : : : : : : : : : 65

3.8 Discussion : 69

3.9 Summary : 71

4 A Semantics for Abductive Logic Programs 73

4.1 Introduction. : 73

4.2 Justi�cation Semantics for logic programs : : : : : : : : : : : : : : 76

4.3 Consistency and relationships. : 83

4.4 Direct Justi�cation Semantics versus completion semantics. : : : : 94

4.5 Relationship with stable and well-founded semantics : : : : : : : : 97

4.6 On duality of abduction and model generation : : : : : : : : : : : 102

4.7 Negation as failure as abductive reasoning : : : : : : : : : : : : : : 103

7

8 CONTENTS

4.8 On the nature of negation : 105

4.9 Representing incomplete knowledge : : : : : : : : : : : : : : : : : : 107

4.10 Expressivity of logic programs : 114

4.11 Summary : 119

5 An abductive procedure for normal incomplete programs 121

5.1 Introduction : 121

5.2 Basic computation steps in SLDNFA : : : : : : : : : : : : : : : : : 123

5.3 The SLDNFA procedure : 130

5.4 Primitive inference operators : 137

5.4.1 Soundness of Uni�cation : 139

5.4.2 Soundness of SLDNFA inference operators : : : : : : : : : : 141

5.5 Soundness of SLDNFA : 146

5.6 Completeness of SLDNFA : 151

5.6.1 The completeness theorems : : : : : : : : : : : : : : : : : : 151

5.6.2 The explanation formula : 153

5.6.3 Completeness proof : 156

5.7 Extensions of the abductive procedure. : : : : : : : : : : : : : : : : 158

5.8 Discussion : 165

5.9 Summary : 169

6 A translation of A to incomplete situation calculus. 171

6.1 Introduction : 171

6.2 The temporal language A : 172

6.3 Translation to Incomplete Logic Programs : : : : : : : : : : : : : : 175

6.4 Reasoning on incomplete logic programs : : : : : : : : : : : : : : : 185

6.5 The Gelfond & Lifschitz approach : : : : : : : : : : : : : : : : : : 186

6.6 Dung's approach : 189

6.7 Discussion : 191

6.8 Summary : 193

7 Temporal reasoning in Incomplete Event Calculus 195

7.1 Introduction : 195

7.2 A theory on time, state, action and change : : : : : : : : : : : : : 197

7.3 Extending SLDNFA for linear order : : : : : : : : : : : : : : : : : 203

7.4 Representing temporal domains : 215

7.4.1 Incomplete knowledge: other examples : : : : : : : : : : : : 215

7.4.2 Events versus Actions : 217

7.4.3 Pre-conditions and context dependent e�ects of actions : : 219

7.4.4 Indeterminate events : 219

7.4.5 The rami�cation problem : : : : : : : : : : : : : : : : : : : 220

7.4.6 Reasoning on time intervals and events with duration : : : 226

7.4.7 Concurrent Events : 227

CONTENTS 9

7.5 Declarative singularities : 228

7.6 Planning with Incomplete Event Calculus : : : : : : : : : : : : : : 231

7.7 Discussion : 234

7.8 Summary : 236

8 Conclusion 239

Bibliography 243

A Expressive power of the Extended Clause formalism. 253

B Mathematical foundation for Justi�cations. 259

C Acyclic incomplete programs. 261

10 CONTENTS

Chapter 1

Introduction

At the origin of logic lies the goal of constructing a formal and universal language

to express human knowledge [Fre67]. By its precise semantics and its universal ap-

plicability, logic was acknowledged as a tool to replace natural language in these

domains where precise reasoning was of importance, as in mathematics. From the

early days of computer science, the potential of logic for knowledge representation

and automated reasoning was acknowledged. At the end of 50's, it was assumed

that the role of logic in the computer systems of the future would be as follows.

In contrast to procedural languages, logic would allow to represent any problem

domain in a purely declarative way. From this declarative theory, di�erent prop-

erties would be formally derivable through deduction. Computer systems would

be based on powerful and general automated theorem provers. The input of these

machines would be declarative theories describing the problem domain and for-

mulas representing some question about a property of the problem domain. Using

the declarative theory and a domain independent proof procedure, the computer

would be able to answer the question.

Motivated by this perspective, an ambitious research program for automated

theorem was launched in the 60's and early 70's. An important step in the evo-

lution was the development of a revolutionary proof procedure, the resolution by

Robinson in 1965 [Rob65]. Earlier deductive systems were based on systems of

axioms and a number of primitive inference rules. Resolution replaces all infer-

ence rules and all axioms at once which makes it very well suited as the basis for

mechanising deduction. Further research to more e�cient control strategies over

resolution eventually resulted in the development of an e�cient proof procedure

by Kowalski [Kow74] for de�nite clauses, a subclass of the �rst order logic. Later

this procedure was called SLD-resolution [AE82], standing for Linear Resolution

with Selection function for De�nite programs. An important aspect of the same

paper is that Kowalski points out that under SLD-resolution, de�nite clauses have

a simple, elegant procedural interpretation. Kowalski's paper gave the start to

11

12 Introduction

a new, more pragmatic and procedurally oriented discipline, logic programming.

This discipline has extended into a wide �eld, where the individual topics range

from theoretical foundations, over language extensions and implementation issues

to a variety of applications, many of which are related to arti�cial intelligence and

deductive databases. Common in most work is still the focus on implementation

and procedural issues. This is in particular the case for Prolog, logic programming's

most widely known product, which has grown to a full-
edged procedural language

with a large number of primitives without declarative interpretation such as read

and write commands, assert and retract and the famous cut. At the same time,

a Prolog programming style was developed which often gives a more procedural

than declarative impression.

At present, some of the original enthusiasm for the declarative representation

of knowledge in logic seems to have disappeared. This may be due partly to the

evolution in logic programming, in which the nature and the role of declarative

knowledge representation seems somewhat blurred, and partly to the failure of the

theorem proving project of the 60's and 70's. Despite important progress, current

theorem provers still lack a good control of the search and su�er from a combi-

natorial explosion of the search space. In and outside the logic community, this

failure has led some to the conclusion that a practical system based on a purely

declarative logic cannot be realised, due to computational problems. An evalua-

tion of the theorem proving project is beyond the scope of this thesis. Let me

just put forward an important weakness in the project that to my opinion justi-

�es some reserve regarding this conclusion. While during the project many e�orts

have been spent on the development of theorem proving techniques, little expertise

has been acquired in how natural problem domains, arising in normal program-

ming practice, can be represented in a declarative way. The negative experiences

with the developed theorem provers were mostly obtained from experiments with

rather formal mathematical examples of which it seems very unlikely that they

are isomorphic with natural problems. An indication of this lack of experience is

also seen in the fact that only during the last decade, it has become clear that

problem solving in a declarative language is often not isomorphic with deduction.

One observes nowadays that the role of deduction in arti�cial intelligence becomes

smaller and smaller and that the importance of other computational paradigms

is growing. This means nothing less than that one of the major premises of the

theorem proving project has been superseded, namely the role of deduction as the

universal computational paradigm. Because the point is important in the thesis,

we illustrate it below with an example. The problem domain is the scheduling of

examinations at a university. The knowledge about this domain can be represented

in a number of �rst order logic rules. Below we give some of them.

� Each student, enrolled for the exam period, has an exam for each attended

course:

13

8St; C : enrolled(St);attends course(St; C)

! 9T : time(T) ^ exam(St; C; T)

� Each student may be examined only once on a course.

8St; C; T1; T2 : exam(St; C; T1) ^ exam(St; C; T2)

! T1 = T2

� Each student can attend only one exam at the same time:

8St; C1; C2; T : exam(St; C1; T) ^ exam(St; C2; T)

! C1 = C2

� Each professor can attend only one type of exam at the same time:

8St1; St2; C1; C2; T : exam(St1; C1; T) ^ exam(St2; C2; T)^

gives course(Pr;C1)^ gives course(Pr;C2)

! C1 = C2

� Exams can take place in the morning or the afternoon of days of the exam

period:

8T : time(T) $ 9D : in exam period(D)^

(T = morning(D) _ T = afternoon(D))

� A professor can only examine when he is available:

8Pr; T; St : gives course(Pr;C) ^ exam(St; C; T)

! available(Pr; T)

A professor, say y d willems may have his own list of times when he is not

available:

8T : :available(y d willems; T)

$ (T = morning(070693) _ T = afternoon(080693))

The above speci�cation can be extended to a full speci�cation of the prob-

lem. Evidently, it must be extended with facts describing the data, who are the

students, who is enrolled for the exams, which courses the student follows, etc..

Other information may be necessary. Cardinality constraints are needed on the

number of students one professor can examine at the same time; other constraints

should prevent a student being examined on two successive days; other formulas

require that di�erent terms represent di�erent individuals (the so-called unique

name axioms), etc.. These extra conditions can be formulated in logic as well.

14 Introduction

The example nicely illustrates a number of di�erent issues in the declarative

knowledge representation in logic. The problem of computing an exam scheduling

is universally recognised as hard to implement in procedural languages. Therefore

the example shows the potential of logic for declarative knowledge representation,

it illustrates how big the gap between declarative speci�cation and programming

in procedural languages can be, but also how hard the computational problems

are to solve declaratively speci�ed problems in realistic time.

A number of advantages of declarative knowledge representation compared to

procedural programming can be drawn from the example. One advantage is that

the speci�cation can easily be modi�ed: new constraints can be added, old ones

can be dropped. Using the speci�cation, a variety of problems can be solved,

each of which would require major modi�cations in a procedural implementation

of the problem. Here the main computational problem is evidently to compute

an exam schedule. An exam schedule is a set of exam=3 facts which satis�es all

constraints. Formally, it is the subset of exam=3 facts occurring in a model of the

logic speci�cation. As a consequence, the problem of �nding an exam schedule is

equivalent with �nding a model of this speci�cation. In principle the problem can

be solved by applying a model generation procedure on the speci�cation.

There are other problems, of a totally di�erent nature, which can be solved

using the same speci�cation but by applying other procedures. For example, the

theory can be used to query the courses a speci�c student is attending, or to query

whether a speci�c professor is available on a given day. These are deductive prob-

lems, to be solved by a theorem prover. There are other, more complex problems

and procedures. For example, assume that a model/exam schedule has been com-

puted but due to some unforeseen event, a professor cannot attend some exam.

This problem can of course be solved by modifying the original speci�cation and

computing a new model. However, computing a new model may be undesirable

for several reasons: this may be too costly, and it may be highly desirable that

the new schedule should be as close to the old one as possible. Therefore, a better

solution is to patch the existing model/schedule to accommodate for the new con-

straint. Here an incremental procedure is needed which, instead of recomputing

a model, modi�es the existing model in order to satisfy the new constraint. Such

procedures are currently being developed in logic programming. This problem is

congruent with the problem of intentional updates of deductive databases with

integrity constraints. An intentional update procedure tries to modify a database

of facts in order to satisfy a given formula called the intentional update, with-

out violating a set of integrity constraints. If we interpret the original model as a

database, the speci�cation as a set of integrity constraints, and the new constraint

as an intentional update, then an intentional update procedure will try to modify

the model in order to satisfy the new constraint, without violating the original

constraints. This is precisely what is needed here.

The example shows that apart from deduction, also other problem solving

15

paradigms such as model generation are important for solving problems using

declarative speci�cations. During most of its history, �rst order logic has been as-

sociated intimately with deduction, to a degree that often it was identi�ed with

deduction. As [Ram88] observes, many logicians see logic as the study of deductive

truth preserving inference rules (see e.g. [Rei91]). This is not the position that we

take. To us a logic is in the �rst place a synthetic language with a precise seman-

tics. Deduction is but one procedure to reason on logic theories. It is a technique

to solve one -important- type of problems: namely the problem of determining

whether some formula is implied by the theory. As illustrated by the example,

there are other types of problems for which other types of procedures are required.

The picture which arises here is that of a logic formalism with a declarative se-

mantics, for which a number of problem solving procedures are available which

belong to di�erent procedural paradigms and which are related to the declarative

semantics by soundness and/or completeness properties. For example, the sound-

ness property of a deductive procedure is that it proves only valid formulas. The

completeness criterion is that any valid formula can be proven by the procedure.

A model generator is sound if it generates only models and it is complete if for

each consistent logic theory it generates a model (or all models up to isomorphism

or all minimal models up to isomorphism) (possibly in the limit).

More than model generation, one problem solving paradigm which has recently

attracted a lot of attention is abduction. The term was introduced by the logician

and philosopher C.S. Pierce (1839-1914) [Pei55]. Abduction is a procedure which

can be used to generate an explanation for some observed phenomenon on the

problem domain [Pop73] [Sha89]. Formally, given some theory T representing the

problem domain and formula Q representing the observation, an abductive proce-

dure generates a set of ground facts � such that the theory T [� is consistent

and implies Q. The exam scheduling example can be easily reformulated such that

abduction applies. Indeed, let P be the theory consisting of the formulas which

express the data, such as who are the students, which courses do they attend, when

are professors available, etc.. and let Q be the conjunction of formulas expressing

conditions for a correct exam schedule, then a set � of exam=3 facts such that

P +� j= Q represents a correct exam schedule.

An evident but seldom observed property of abduction is that it applies only to

domains with incomplete knowledge. A theory representing complete knowledge

implies a formula or its negation. Abduction collapses to deduction then: any

formula has either the empty set as minimal abductive solution or has no abductive

solution. In the context of logic programming, abductive logic programming can be

seen as a form of inductive logic programming (ILP), yet another computational

paradigm. ILP generalises abduction by allowing general rules and axioms to be

generated as hypotheses in � instead of ground facts only. Abductive reasoning

can be seen a special form of ILP which applies in these situations where the

domain theory T contains reliable general domain knowledge but lacks factual

16 Introduction

knowledge.

During the last decade, the research program for making logic a practical com-

puter language, which has started in the 50's with the development of more e�cient

theorem provers, is gradually evolving to the development of a formal declarative

language with a number of di�erent problem solving computational paradigms.

This is the central theme of this thesis. The work in the thesis must be situated

within the �eld of logic programming. At present it seems that of all the logic

based research �elds, logic programming provides the richest set of problem solv-

ing paradigms and most expertise in implementing these procedures. The thesis

contributes to the �eld and to the area of arti�cial intelligence at di�erent lev-

els. At the language theoretical level, we develop a new semantics for a language

extension of the logic program formalism and show relationships with FOL. At

the implementation level, new algorithms are proposed for model generation and

abduction; theoretical relationships are shown between computational paradigms

such as model generation, abduction and deduction. At the representational level,

two applications of the abductive logic program formalism and the abductive pro-

cedure are presented; both applications are concerned with temporal reasoning.

In Chapter 3, an algorithm for model generation in �rst order logic is pre-

sented. This algorithm extends existing model generators by an e�cient treatment

of equality-atoms occurring in the head of rules. At the same time, a fundamental

relationship between this algorithm and abduction is shown. As was pointed out in

[CTT91], abductive solutions for a de�nite abductive program correspond to mod-

els of the only-if part. We extend this observation by showing that the procedural

semantics of abduction itself can be interpreted dually as our model generation on

the only-if part.

The rest of the thesis is concerned with declarative programming in logic pro-

gramming. Traditionally, logic programming is situated somewhere half-way be-

tween full declarative speci�cation as in �rst order logic and procedural program-

ming as in classical imperative languages. At this moment, there is no uniform

view on Prolog formalism as a declarative logic. The declarative semantics of the

formalism is currently subject of intensive study. Prolog di�ers from declarative

logics by its �xed procedural interpretation [Kow74], originally induced on the

formalism by the SLD resolution procedure. Later, negation as failure was added

to the formalism, and SLD resolution was extended to SLDNF resolution. Under

the depth �rst, left to right computation rule, SLDNF gives a Prolog program its

interpretation as a procedural program

1

. SLDNF is a sound proof procedure with

respect to all currently most accepted semantics for Prolog, and is -in general-

complete wrt none of them. As a procedural language, Prolog di�ers from current

imperative languages, by unconventional features such as uni�cation as parameter

1

Other procedures have been developed for the formalism of Prolog. E.g. in the context of

databases, di�erent deductive procedures were developed, in which the procedural interpretation

of Prolog programs does not hold.

17

mechanism and backtracking.

A major restriction of Prolog from the knowledge representation point of view,

is its inability to represent incomplete knowledge in a declarative way. Due to

the closed world assumption, an atom which cannot be proved is assumed to

be false. As a consequence, many problems cannot be represented declaratively

in Prolog. For example, in the exam schedule speci�cation, there may be many

schedules satisfying the speci�cation. This implies incomplete knowledge on some

atoms: a given atom exam(van belleghem; ips; afternoon(080693)) may be true

in one model and false in another model. This implies that neither the atom nor

its negation can be proven deductively. In Prolog, a failure to prove an atom is

considered as a proof for the negation of the atom. Therefore, the relation exam=3

cannot be implemented in Prolog as a predicate and a speci�cation of the domain

in Prolog is a much more di�cult problem

2

.

One domain in which the representation of incomplete knowledge in logic pro-

gramming has been investigated is temporal reasoning and planning in event cal-

culus. An event calculus is a logic program describing a temporal domain of events,

states and e�ects of events on the state. The original event calculus only supports

the prediction of a goal state, starting from a complete description of the initial

state and the set of events. In planning, however, the goal is to �nd a set of events

which realise some desired �nal state; the set of events is the subject of the search,

and thus, a priori unknown. A solution to this problem is to extend event calculus

with abduction ([Esh88], [Sha89]). In planning problems for example, the pred-

icates which describe the events, i.e. happens=1; act=2 and the time precedence

relation <<, are abductive. An abductive solution for a goal, describing the goal

state, gives a description of a set of events and their order.

The main goal of this work is to investigate the declarative semantics of abduc-

tive logic programming and the use of an abductive procedure as a computational

paradigm. We present results on the declarative level, the procedural level as well

as the application level.

On the declarative level, we take as a starting point, that abductive logic pro-

grams are sets of de�nitions of non-abductive predicates. We study how this is

formalised in several existing semantics. The result of this study (Chapter 4) is a

framework which covers and extends the three currently most widely accepted fam-

ilies of semantic theories for logic programming and abductive logic programming:

completion semantics, stable model semantics and well-founded model semantics.

2

This statement may surprise since it has been proven that Prolog has the expressivity of

recursive functions [AN78]. Equivalently each algorithm can be implemented in Prolog. This the-

orem says little about the declarative capabilities of Prolog: each reasonable computer assembler

language satis�es the same property. A Prolog solution will be based on a functor representation

of the exam=3 relation and will return a list of exam=3 terms as an answer. Such a solution will

be just the formulation of some exam schedule algorithm in Prolog and will be less declarative

than the one that was presented higher. The logic of the problem domain, which was formulated

naturally in our theory, will be represented in an implicit, procedural form. As a consequence,

the program will lack the advantages of the declarative formulation.

18 Introduction

The framework includes a new semantics, called justi�cation semantics, which is

proven to be an extension of the well-founded model semantics.

Two theorems are important to position abductive logic programming as a

language for declarative speci�cation. One important theorem is that under the

justi�cation semantics, a �rst order logic theory can be transformed to a logically

equivalent abductive program. The expressivity of �rst order logic for declarative

speci�cation is widely recognised. This result guarantees nothing less than that the

abductive program formalism is at least as expressive as �rst order logic. Another

theorem says that an abductive procedure can be used to generate models of �rst

order logic theories. Remarkably, this is the reverse of the result of chapter 3

on model generation. There it is shown that under some circumstances, a �rst

order logic model generation procedure can be used to emulate abduction in logic

programming.

On the procedural level, we present a new abductive procedure called SLDNFA

and prove its soundness and several completeness results (chapter 5). As suggested

by its name, it is a (non-trivial) extension of the above mentioned SLDNF pro-

cedure. SLDNFA di�ers from other existing procedures by allowing non-ground

abductive atoms to be selected. This feature makes SLDNFA currently the best

performing abductive procedure. Though we develop only the abductive procedure

as a computational paradigm for abductive logic programs, abduction turns out

to be a most
exible paradigm. We already indicated that -in principle- it can be

used to emulate model generation of �rst order logic theories. In addition, we show

how SLDNFA can be used for sound deduction in abductive logic programs, as an

integrity recovery procedure and for database updating.

On the application level, two signi�cant experiments are presented, both in

the context of temporal reasoning. In one experiment (Chapter 6), a transfor-

mation is presented from a recently introduced temporal language to abductive

logic programming. [GL92] introduces a new temporal language A which allows to

represent a number of well-known benchmark problems involving incomplete tem-

poral knowledge. They proposed a sound transformation to extended programs,

programs with both negation as failure and classical negation. Both the extended

program and the abductive program formalisms are language extensions of the

logic programming formalism, developed for representing incomplete knowledge.

The signi�cance of our experiment is that it allows a comparison of the two for-

malisms.

In a second experiment (Chapter 7), we investigate event calculus for planning

and temporal reasoning, continuing earlier work by [Mis91a]. SLDNFA is extended

for temporal reasoning by adding a constraint solver for the time precedence re-

lation. The resulting procedure is proven to be sound. A number of well-known

benchmark problems are represented in abductive event calculus.

Chapter 2

Preliminaries

2.1 Syntax and Semantics of First Order Logic

A formal logic is a pair of its syntax and its semantics. The syntax or the formalism

describes how well-formed formulas are constructed. The semantics describes the

meaning of the formulas and of sets of formulas. The formalism on which we focus

consists of two components: the classical �rst order logic formalism (FOL) and the

logic programming formalism (LP). In this section we introduce the FOL syntax

and its semantics. We follow mostly [Llo87].

An alphabet is the set of building blocks of a formalism. An alphabet contains

six classes of symbols: variables, function symbols (including constants symbols),

predicate symbols, connectives, quanti�ers and punctuation symbols. Variables will

be denoted by capitals X;Y; Z, functors by f=n; g=n where n denotes the arity

of the functor, constants are seen as 0-ary function symbols, predicate symbols

are often denoted by p=n; q=n; r=n. The (sub-)alphabets of variables, functors,

constants and predicates are user de�ned, the remaining classes of symbols are

user-independent. Connectives are :;^;_; , and $. Quanti�ers are 9 and 8.

Punctuation symbols are ":", "(", ")", ",".

Given an alphabet, a term is de�ned inductively as a variable, a constant or as

a syntactical object of the form f(t

1

; : : : ; t

n

) where f=n is a functor and t

1

; : : : ; t

n

terms. Terms are denoted by t; s. We use a shorthand notation X;Y ; t; s to denote

tuples of variables (X

1

; : : : ; X

n

) and (Y

1

; : : : ; Y

n

) and tuples of terms (t

1

; : : : ; t

n

)

and (s

1

; : : : ; s

n

). An atom of a predicate symbol p=n is of the form p(t) where t

is an n-tuple of terms. A FOL formula is de�ned inductively as an atom or as an

object of the form :F , F ^ G, F _ G, F G, F $ G, 9X : F , 8X : F where

F and G denote FOL formulas and X denotes a variable. A literal is a formula

of the form A or :A where A is an atom. A variable occurs free in a formula if

it occurs in a position not in the scope of a quanti�er. var(F) denotes the set of

19

20 Preliminaries

free variables of F . We use the notation F [X] for a formula F to denote that the

variables of X have free occurrences in F . The universal closure 8(F) of an open

formula F [X] is the closed formula 8X : F . A closed or ground formula or term

contains no free variables, an open formula or term contains free variables.

A class of formulas which has played an important role in logic programming

is the class of the clauses. A clause is a FOL formula of form:

8X : A

1

_ : : :_A

n

_ :B

1

_ : : :_ :B

m

with A

1

; : : : ; A

n

; B

1

; : : : ; B

m

atoms and X are the variables occurring in them.

This formula is equivalent with:

8X : A

1

_ : : :_A

n

 B

1

^ : : :^B

m

Usually, clauses are abbreviated to:

A

1

; : : : ; A

n

 B

1

; : : : ; B

m

The empty clause (n = m = 0) is always false and is denoted by

2

. A negative

clause has n = 0. A Horn clause is a clause in which n � 1. A de�nite clause is

conventionally de�ned as a non-negative Horn clause. However, in section 2.3 we

will distinguish between a FOL de�nite clause and an LP de�nite clause, in order

to clearly distinguish the logic programming formalism from the �rst order logic

formalism.

A FOL language L based on an alphabet is the set of FOL formulas con-

structed of the symbols of the alphabet. A FOL theory based on L is a set of

closed FOL formulas, called its axioms. Below we will always assume that a FOL

theory is recursive, i.e. there exists an algorithm which enumerates all its axioms.

Mathematical logic studies larger theories but the assumption of recursiveness is

a natural assumption in the context of a work about computational logic.

The goal of the semantics of a logic is to formalise what is the meaning of a

logic theory. The search of how to formalise the meaning of the logic programming

formalism is still ongoing and is one of the subjects of this thesis. In contrast, the

semantics of �rst order logic is well-known for a long time. Central are the notions

of interpretation and model; these are formally de�ned below. We start by in-

troducing some convenient notations for dealing appropriately with non-Herbrand

interpretations. A domain (of an interpretation) is a set. Given a domainD, we ex-

tend the conventional notions of terms and formulas by allowing domain elements

to appear in them. We call them domain terms, domain formulas. A domain ele-

ment is denoted x; y; z. A domain term or formula is called open if it contains free

variables. Otherwise it is called closed or ground.

A closed domain formula of the form p(t

1

; : : : ; t

n

) or :p(t

1

; : : : ; t

n

) where

t

1

; : : : ; t

n

are domain terms, is called a fact. In a simple fact, t

1

; : : : ; t

n

are do-

main elements

1

.

1

A domain term (formula) can be seen, more conventionally, as a pair of a term (formula)with

2.1 Syntax and Semantics of First Order Logic 21

An n-ary relation or a predicate can be seen as a subset of D

n

or as a function

fromD

n

to the set ff; tg (where f,t stand for false and true respectively). In [Kle52],

a third truth-value unde�ned or u was introduced. Three-valued relations are func-

tions from D

n

to ff;u; tg. The three truth values are conventionally ordered by

f < u < t. Each truth value has an inverse truth value: f

�1

= t; t

�1

= f;u

�1

= u.

An interpretation is a set theoretic abstraction of a problem situation. It de�nes

a correspondence between functors and predicates with functions and relations on

the problem domain.

De�nition 2.1.1 (3-valued interpretation) Given some theory T based on L.

A pre-interpretation I

0

of L consists of a domain D and a mapping of n-ary functor

symbols of L to n-ary functions on D.

A (3-valued) interpretation I of L consists of a pre-interpretation I

0

on a

domain D

I

, and a truth function H

I

which maps positive simple facts to ff;u; tg.

An incomplete interpretation for a language L consists of a pre-interpretation

and a truth function H

I

which is not de�ned for all predicate symbols of L.

An interpretation I is 2-valued on a predicate p=n if u is not in the range of the

restriction of H

I

to the facts of p=n. I is 2-valued if I is 2-valued on all predicates.

If L contains "=", then we require that the interpretation of this predicate is the

identity relation on D

2

.

An interpretation I can be extended in a unique way to a mapping

~

I on all

domain terms. The extension is de�ned by induction on the depth of the domain

term:

� for any domain element x:

~

I(x) = x

� for any f=n and domain terms t

1

; : : : ; t

n

:

~

I(f(t

1

; : : : ; t

n

) = I

0

(f=n)(

~

I(t

1

); : : : ;

~

I(t

n

))

~

I can be further extended as a mapping from positive and negative facts to simple

facts:

~

I(p(t

1

; : : : ; t

n

)) = p(

~

I(t

1

); : : : ;

~

I(t

n

)) and

~

I(:A) = :

~

I(A).

A variable assignment V is de�ned as a set of tuples X=t with X a variable

and t a domain term. The domain of V (dom(V)) is the set fXj9t : X=t 2 V g.

The range of V (range(V)) is the set ftj9X : X=t 2 V g. This concept of variable

free variables replacing the domain elements and a variable assignment for these free variables.

E.g. p(f(X);x) corresponds to (p(f(X);Y); fY=xg).

2

Classical logic semantics allows counter-intuitive models of "=" in which "=" is interpreted

by an equivalence relation. However, there is a classical result in �rst order logic which says

that any such model can be contracted to an equivalent model in which "=" is interpreted by

identity ([Men72], p. 82). "Equivalent"means here that any formula has the same truth value in

both models. The contracted model is obtained by taking the equivalence classes of "=" as the

elements of the new domain. As a consequence, allowing or disallowing these additional models

has no e�ect on the semantics of FOL.

22 Preliminaries

assignment generalises both the classical notion of variable assignment and the

notion of (variable) substitution. In our terminology, a substitution is a variable

assignment which assigns terms without domain elements to variables. Substitu-

tions will as usual be denoted by �, �. Application of a variable assignment on

terms, facts, domain formulas and sets of these are de�ned as usual. We denote

the result as V (F). V (F) is called an instance of F , as usual. A variable assign-

ment or substitution is called grounding for some open formula F if it assigns to

each free variable a ground (domain) term.

Variable assignments (and substitutions) can be composed. The composition

V

1

oV

2

is de�ned when dom(V

1

)\dom(V

2

) = �. Then V

1

oV

2

is the set V

1

(V

2

) [V

1

.

One easily veri�es that this composition is natural: for each term t: V

1

(V

2

(t)) =

V

1

oV

2

(t).

We de�ne the semantics of FOL formulas as a (notational) variant of the 3-

valued logic of [Kle52]. It is obtained by extending the truth function H

I

of an in-

terpretation I with domainD to all facts and closed domain formulas. For any posi-

tive fact F = p(t

1

; : : : ; t

n

), we de�ne H

I

(F) = H

I

(

~

I(F)) = H

I

(p(

~

I(t

1

); : : : ;

~

I(t

n

))).

Using this convention, H

I

can be extended for negative facts and closed domain

formulas as follows:

H

I

(:F) = H

I

(F)

�1

H

I

(F

1

_ F

2

) = maxfH

I

(F

1

);H

I

(F

2

)g

H

I

(F

1

^ F

2

) = minfH

I

(F

1

);H

I

(F

2

)g

H

I

(8X : F) = minfH

I

(fX=xg(F)) j x 2 Dg

H

I

(9X : F) = maxfH

I

(fX=xg(F)) j x 2 Dg

H

I

(F

1

 F

2

) = H

I

(F

1

_ :F

2

)

H

I

(F

1

$ F

2

) = H

I

(F

1

^ F

2

_ :F

1

^ :F

2

)

Below, we write M j= F to denote that H

M

(F) = t.

De�nition 2.1.2 Let T be a FOL theory based on L.

A model M of <L; T> is a interpretation M of L such that for each formula F

in T , H

M

(F) � u. M is called a weak model if in addition there is some formula

F in T such that H

M

(F) = u. Otherwise it is a strong model.

Classical FOL is based on two-valued interpretations. For two-valued interpre-

tations, any closed (domain) formula is either true or false. A FOL theory T based

on L implies or entails some formula F i� H

M

(F) = t for each two-valued model

M of <L; T>. We denote this by <L; T>j=

FOL

F , or when L is clear from the

context, by T j=

FOL

F . F is called valid wrt T .

The de�nitions below are taken from FOL, but apply to any logic. A theory

T based on L is complete if for each closed formula F of L T j= F or T j= :F .

A theory T is a complete axiomatisation of some problem domain, represented

2.1 Syntax and Semantics of First Order Logic 23

by some interpretation M if T is complete and M is a model of T . A su�cient

condition under which T is a complete axiomatisation of M is when M is the

only model of T modulo isomorphism. An isomorphism between two models is

a one-to-one correspondence between the domains of the models which preserves

functions and predicates (for a formal de�nition, see de�nition 3.4.8). When all

models are isomorphic with M , it holds for each closed formula F that M j= F i�

T j= F . Since for each F , either M j= F or M j= :F , we have T j= F or T j= :F .

Hence, T is a complete axiomatisation of M .

Finally, we introduce a strong notion of equivalence between two theories. In

the thesis we de�ne at several occasions transformations of a theory based on some

language L to a theory based on a language L' which is an extension of L. A notion

of equivalence between such theories is needed. First two notions of extensions of

interpretations are de�ned.

De�nition 2.1.3 Let L

0

be an extension of a �rst order language L. Let I, I

1

be

interpretations of L, I

0

of L

0

.

The restriction I

00

of I

0

to (the symbols of) L is the interpretation of L with do-

main D

I

, with pre-interpretation I

00

O

which maps functors f=n of L to I

0

0

(f=n) and

with truth function H

I

00

which maps simple facts F = p(x

1

; : : : ; x

n

) of predicates

of L to H

I

0

(F).

I

0

is a symbol extension of I i� the restriction of I

0

to L is identical to I.

I

1

is a augmenting extension of I i� I and I

1

have the same pre-interpretation

and for each positive simple fact F , it holds that H

I

(F) � H

I

1

(F).

Especially in case of Herbrand interpretations, one should be careful about the no-

tion of restriction of an interpretation. E.g take a language L with constant a and

predicate p=1 and an extension L

0

which contains also constant b. The Herbrand in-

terpretation fp(a)g of L

0

is an interpretation I = (D = fa; bg; fa!a; b!bgfp(a)

t

).

The restriction of I to the symbols of L is the following non-Herbrand interpre-

tation of L: (D = fa; bg; fa ag; fp(a)

t

g) and not the following Herbrand inter-

pretation of L: fp(a)g = (D = fag; fa!agfp(a)

t

g) .

The following de�nition expresses a strong form of equivalence between the

original theory and its transformation.

De�nition 2.1.4 Given is a language L, an extension L' of L, a theory T based

on L, a theory T ' based on L'.

The theory <L

0

; T

0

> is an elementary extension of <L; T> i� each model M

of <L; T> has a symbol extension M

0

which is a model of <L

0

; T

0

> and if, vice

versa, the restriction of each model of <L

0

; T

0

> to L is a model of <L; T>.

Another strong form of equivalence is the notion of conservative extension

[Sho67]: <L

0

; T

0

> is a conservative extension of <L; T> if it holds that each for-

mula F of L which is entailed by <L; T> is entailed by <L

0

; T

0

> and vice versa,

24 Preliminaries

each formula of L which is entailed by <L

0

; T

0

> is entailed by<L; T>. The notion

of elementary extension is at least as strong as the notion of conservative extension.

Proposition 2.1.1 If <L

0

; T

0

> is an elementary extension of <L; T> then <L

0

; T

0

>

is a conservative extension of <L; T>.

Proof Assume that <L

0

; T

0

> is an elementary extension of <L; T>. We prove

that it is a conservative extension of <L; T>. Assume that F is a formula

based on L and F is entailed by <L

0

; T

0

>. Take any modelM of <L; T>. By

de�nition of elementary extension, M has a symbol extension M

0

which is a

model of <L

0

; T

0

>. Clearly H

M

(F) = H

M

0

(F) = t. Vice versa, assume that

F is entailed by <L; T>. Let M be any model of <L

0

; T

0

>. By de�nition of

elementary extension, the restriction of M to L is a model M

0

of <L; T>.

Clearly, H

M

(F) = H

M

0

(F) = t. 2

2.2 What is in a model?

A logic theory describes knowledge about some problem domain. The goal of a

semantic theory for a logic is to formalise what is the knowledge represented by

the theory. It is interesting to spend some more attention to this aspect of the FOL

model theory, because it clari�es the view on interpretations, models, negation, in-

complete knowledge, etc. in classical logic. Many researchers in logic programming

view a model as a description of what atoms are known to be true, what atoms

are known to be false and what atoms have unknown truth value. In the sequel

we call this the knowledge state semantics. In contrast, the FOL model semantics

is a possible state semantics: a model represents a possible state of the problem

domain. Things are well-illustrated by bringing two roles on the scene: the role of

the Knowledge Engineer and of the System Engineer.

The task of the Knowledge Engineer is to represent a given problem domain in

a logic theory. In a �rst step, he must recognize the relevant objects, the relevant

functions and the relevant relations between the objects of the problem domain.

This boils down to making a set theoretic abstraction of the problem domain. In a

second step, he chooses logical symbols to denote these relevant objects, functions

and relations. This de�nes a logical language and, at the same time, an inter-

pretation of the new language. This special interpretation is called the intended

interpretation. In the third step, the Knowledge Engineer makes explicit knowl-

edge about the problem domain by writing logical formulas (or logic programs)

based on the logical language.

For the Knowledge Engineer, there are two natural quality criteria for his logic

theory: correctness and completeness. The correctness criterion is that the in-

tended interpretation should be a model, i.e. all formulas of the theory must have

truth value t in the intended interpretation, the abstracted problem domain. In

2.2 What is in a model? 25

practice, it is often impossible to check this formally, for di�erent reasons: the

mathematical construction of the intended interpretation may be too complex, or

the knowledge engineer may have only incomplete knowledge on the problem do-

main. In principle however, the correctness of the formulas can easily be veri�ed

informally by checking the correctness of the declarative reading of the formulas:

given the intended interpretation, any FOL formula can easily be translated to

an English sentence (or dutch), called its declarative reading. All connectors and

quanti�ers in FOL have a close natural language equivalent, and there is a clear

isomorphism between formal truth of a formula and the truth of its natural lan-

guage translation. E.g. if p(X;Y) has intended interpretation that X is a parent

of Y and q(X;Y) has intended interpretation that X is a grandparent of Y , then

the declarative reading of the following formula:

8X;Y; Z : p(X;Y) ^ p(Y; Z)! q(X;Z)

is the (true) sentence: for all X, Y , Z: if X is a parent of Y and Y is a parent

of Z then X is a grandparent of Z. All this is obvious, but nevertheless of crucial

importance: this is a key feature which makes classical logic such a suitable medium

for representing knowledge.

A second quality criterion of a theory for the Knowledge Engineer is complete-

ness. A theory does not embody all knowledge of the Knowledge Engineer if he

observes that his theory has a model of which he knows that it does not correspond

to a possible state of the world. Therefore, the completeness criterion is that all

models of the theory correspond to possible states of the world.

A totally di�erent role is that of the System Engineer. His task is to develop

domain independent procedures which use some logic theory to compute correct

information. With respect to deduction, his task is to develop domain indepen-

dent theorem provers which nevertheless derive true statements about the problem

domain. A theorem prover derives information which is true in all models of the

theory. Therefore, under the assumption that the theory is correct (that the in-

tended interpretation is a model), any sound theorem prover derives information

which is true in the problem domain, even though the System Engineer and his

theorem prover have absolutely no knowledge on what is the users "external" in-

terpretation of the symbols. This way, classical model semantics formalises in a

beautiful way how at the same time a Knowledge Engineer gives some speci�c in-

terpretation to the symbols of its theory, while a theorem prover does not and still

can produce correct results. If the theory of Knowledge Engineer does not satisfy

the completeness criterion, then a model theorem may not be able to infer infor-

mation which is correct in the conception of the Knowledge Engineer. A model

generator applied on such a theory may generate models which are not possible

according to the Knowledge Engineer.

Some further observations are related to the content of this thesis. We already

addressed the fact that the Knowledge Engineer may have only incomplete knowl-

edge on his problem domain. Essentially, this means that his knowledge allows the

26 Preliminaries

problem domain to be in more than one state. This is re
ected on the formal side,

by the fact that his theory will have multiple, essentially di�erent models, set-

theoretic abstractions of the possible states of the problem domain. E.g. suppose

he knows that John is accountant or secretary without knowing which of the two.

There will be models of his theory in which accountant(john) is true and others

in which secretary(john) is true. In all models, has job(john) will be true. The

insight that incomplete knowledge corresponds to theories with di�erent models,

is of particular importance in our work: in chapter 4, we de�ne a semantics for

abductive logic programs in which an abductive program may have many models

and prove that the formalism is as expressive as FOL for representing incomplete

knowledge.

A second observation is on negation. Currently, negation is an important topic

in logic programming. Recently, a logic program formalism was proposed [GL90a]

which includes two types of negation; classical negation and negation by default.

It is therefore interesting to look at how negation is viewed in classical logic. In

classical logic, the law of the excluded middle holds:

8X : p(X) _ :p(X)

This is a direct consequence of the fact that classical logic is based on two-valued

interpretations. The law of excluded middle corresponds to the natural language

use of negation. E.g. when John andMary are not in the situation of being married,

then John and Mary are not married. If they are not in the situation of not being

married, then they are married.

The law of excluded middle gives a precise declarative characterisation of nega-

tion in FOL: a predicate symbol p=n and its negation :p=n should only be used

to represent complementary concepts: two concepts are complementary when they

are not true at the same time and when one is false then the other is true. The law

of excluded middle is not satis�ed in three-valued interpretations. In chapter 4 we

give an example where this feature of three-valued semantics is used to represent

two non-complementary concepts by a predicate symbol and its negation.

We �nish this section with a comment on model theory. Is model theory the

only way of giving a formal account of meaning? [Rei91] expresses his doubts

concerning this as follows:

However, even given the need for semantics, the question arises why

you should prefer the type of formal treatment of meaning, and truth,

that is part of logic over all the possible accounts of meaning. Surely,

there are alternatives, and maybe some of the alternatives are as good

as the model-theoretic account of meaning given in �rst order logic.

There is no way to refute the existence of alternative semantic theories, but it

cannot be easy to develop an alternative semantics which captures as much of

the meaning of a logic theory as does model semantics. Note that at least two

2.3 Syntax and (some) semantics for Logic Programs 27

elementary concepts are based directly on the notion of a model as a mathematical

abstraction of (a possible state of) the problem domain: the concept of declarative

reading of a formula and the related notion of intended interpretation. Of more

practical importance is the role of model generation as a problem solving paradigm,

as illustrated by the exam scheduling problem in chapter 1. The use of a model

generator to search for possible states of the problem domain, depends crucially

on the fact that a model is a mathematical abstraction of (a possible state of) the

problem domain.

One might even argue to the contrary that for any formal language with a

formal semantics, it should be possible to develop a model theory. Surely, any

formal language has the intention to describe some external domain. A program

or theory in a formal language essentially describes this domain by restricting

its possible states. The notions of interpretation and model are only mathematical

abstractions of the state of the problem domain and a state of the problem domain

which is allowed by the program or theory. Model theory is the mathematical

description of the notion of interpretation and the relationship between a program

and its models.

2.3 Syntax and (some) semantics for Logic Pro-

grams

The logic programming formalism has its origin in clausal logic. Kowalski's work

[Kow74] gave the start to use the de�nite program formalism as a procedural

language. From then on, logic programming gradually moved away from classical

logic, both on the syntactical level and on the semantical level. At this moment,

the �rst order logic formalism and the logic programming formalism are really two

di�erent formalisms.

It was mentioned earlier that the original LP formalism is the de�nite clause

formalism. It was extended a �rst time by allowing negative literals to appear in

the body of the rules. Later it was further extended by allowing complete FOL

formulas to appear in the body and with abductive predicates.

In order to distinguish explicitly LP formulas from FOL formulas, we introduce

a new connective " :- " to replace the clausal operator " ". A general clause is a

formula of the form:

A :-B

1

; : : : ; B

n

where A is an atom and B

1

; : : : ; B

n

are FOL formulas. A normal clause is a general

clause in which B

1

; : : : ; B

n

are literals. In a de�nite clause, B

1

; : : : ; B

n

are atoms.

A general query Q is a formula of the form:

 B

1

; : : : ; B

n

28 Preliminaries

where B

1

; : : : ; B

n

are FOL formulas. It denotes the formula 8X : :B

1

_ : : : _

:B

n

, where X are the free variables. :Q denotes the formula 9X : B

1

^ : : :^B

n

(sometimes this can be confusing: in general, :Q is the formula one is interested in

and must be proved). A normal query and a de�nite query are de�ned analogously

as normal and de�nite clauses. A de�nite query corresponds to a negative clause.

The set of general clauses and queries de�nes the logic program formalism. An LP

language L is the set of all general clauses and general queries. The logic formalism

that will be used in the context of this paper is the union of FOL formalism and

of the logic program formalism. When necessary, we call a language of this united

formalism an LP-FOL language.

A general de�nition for a predicate p=n of L is a set of general clauses, each

having a head of predicate p=n. Analogously, normal and de�nite de�nitions can

be de�ned. We de�ne a (general) (normal) (de�nite) logic program as a set of (gen-

eral) (normal) (de�nite) de�nitions for predicates not including =. We distinguish

between de�ned predicates having a (possibly empty) de�nition and unde�ned

predicates which have no de�nition. Note that being an unde�ned predicate is

not the same as having an empty de�nition. A logic program is complete if each

predicate symbol of L except "=" is de�ned, otherwise it is incomplete. These

de�nitions di�er from the more conventional de�nitions. What conventionally is

called a general program corresponds in our terminology to a complete general

logic program. The conventional abductive program corresponds to an incomplete

logic program and an abductive predicate corresponds to an unde�ned predicate.

Originally, abductive logic programs were only used in the context of abductive

execution. An abductive logic program was seen as a tuple of a set of normal or

general clauses and a set of abductive predicates for which the program contains

no de�nition. An abductive procedure computes for a given query Q a set of hy-

potheses � consisting of ground abductive facts such that P +� is consistent and

P +� j= :Q. However, at present, declarative semantics for abductive predicates

have been de�ned (see chapter 4) and other types of computational paradigms can

be implemented for it. Therefore, in the sequel we mostly use the term incomplete

logic program.

A theory T based on an LP-FOL language L consists of a logic program T

d

and a FOL theory T

c

, both based on L. In the sequel, we call the FOL formulas

the FOL axioms. Instead of writing a logic program T

d

as a set of de�nitions (=set

of general clauses), we use the conventional way of writing it as a set of clauses.

The empty de�nition of a predicate p=n is denoted by p(X)

2

(instead of by

�). Below, a theory is given with a de�nition for p=1, the empty de�nition for q=1

and one FOL axiom:

fp(a) :-p(X) ; p(X) :- q(X); q(X) :-

2

; 9X : q(X)g

In the sequel, we shall mostly focus on normal clauses. A logic program is under-

stood to contain only normal clauses, unless explicitly mentioned.

2.3 Syntax and (some) semantics for Logic Programs 29

The search for the semantics of the logic programming formalism is still ongo-

ing. Two semantics of historical importance for LP are the least Herbrand model

semantics for complete de�nite logic programs [vEK76] and the completion seman-

tics for complete normal or general logic programs [Cla78]. We recall �rst the least

Herbrand model semantics.

The Herbrand universe of L is the set of all ground terms of L and is denoted by

HU (L) or HU when L is obvious from the context. The Herbrand base of L is the

set of ground atoms based on L and is denoted by HB(L) or HB. A special class

of interpretations are the Herbrand interpretations. A Herbrand interpretation M

is an interpretation with domain HU (L) and for each functor f=n of L, M (f=n)

is the (trivial) function which maps terms t

1

; : : : ; t

n

to the term f(t

1

; : : : ; t

n

).

Note that for Herbrand interpretations, the notions of simple fact and ground

atom coincide and that the set of atoms which are true is a subset of HB(L). As

a matter of fact, it is clear that there is a one to one correspondence between 2-

valued Herbrand interpretations and subsets of HB(L). This gives an alternative

de�nition of a Herbrand interpretation (which is restricted to 2-valued interpre-

tations). Using this alternative de�nition, the subset relation � de�nes a partial

order on the set of (2-valued) Herbrand interpretations.

The following result is due to [vEK76].

Proposition 2.3.1 Let P be a de�nite program. There exists a unique (2-valued)

least Herbrand model M

P

of P . Or, for each (2-valued) Herbrand model M , M

P

�

M .

Moreover, M

P

is the set of valid atoms of P :

M

P

= fAjA 2 HB(L) ^ P j= Ag

In the sequel, the least Herbrand model of a theory <L; P> is denoted by

LHM (<L; P>). Note that it is by de�nition a model according to FOL semantics.

The special features of the least Herbrand model has lead van Emden and

Kowalski to use it as a basis for a new semantics: the least Herbrand model se-

mantics. Under this semantics, a de�nite program has one unique model, the least

Herbrand model. It is important to realise that the meaning of a de�nite program

P under least Herbrand model semantics (in the sequel, LHM semantics) di�ers

considerably from its meaning under FOL semantics. A de�nite program P under

FOL semantics does not imply a negative ground literal. This follows directly from

the fact that the Herbrand base itself is a model of P wrt FOL semantics. On the

other hand, a de�nite program P under LHM semantics implies lots of negative

information: for each formula F (and a fortiori, each atom), P implies either F or

:F . This is a trivial consequence of the fact that a de�nite program has only one

model under LHM semantics.

This has obviously implications with respect to the declarative reading of a

de�nite program. Consider the program P :

30 Preliminaries

p(a) :-

p(s(s(X))) :-p(X)

where the intended interpretation is the domain of the natural numbers with a

corresponding to 0, s=1 corresponding to the successor function and p(X) repre-

senting that X is even. The declarative reading of P under FOL semantics is:

0 is an even number and

If X is an even number then X + 2 is an even number

This declarative reading of a formula is still correct under LHM semantics (formally

this is because the least Herbrand model is a classical FOL model) but gives

a highly incomplete picture of the meaning of the program. According to FOL

semantics, the meaning of P is given strictly by the conjunction of these two

English sentences, without excluding for example that 1 is also an even number,

that 1 is equal to 0 or that there are other elements in the problem domain than

the natural numbers. According to LHM semantics, P means more than that:

a number which cannot be proven to be even is not even (this corresponds to

the Closed World Assumption as it was called later by [Rei78b]). In addition, the

domain of interpretation is isomorphic with the natural numbers, and two numbers

cannot be equal.

Recall that a theory is correct from the point of view of the Knowledge Engineer

if its intended interpretation is a model of the theory. Under LHM semantics, a

de�nite program is correct i� the intended interpretation is (isomorphic with) the

least Herbrand model. An implication is that a de�nite program cannot be used

to represent incomplete knowledge in a declarative way, since it allows only one

state of the problem domain. Another indication of this is that a de�nite program

under LHM semantics is complete: every formula is either implied or its negation

is implied.

The LHM semantics cannot directly be extended to normal logic programs. A

restriction of the LHM semantics is that it does not work for normal and general

logic programs. The �rst semantics developed for normal (complete) logic programs

was the completion semantics of [Cla78]. In [Llo87], it was extended to general

complete logic programs. In [CTT91], it was further extended to abductive logic

programs. The completion of a general (abductive) logic program P is a classical

logic theory, denoted comp(P). One part of comp(P) is the Free Equality theory

(FEQ(L)), also called Clark's Equality theory. It contains the standard theory of

equality and some additional axioms, given by the following de�nitions.

De�nition 2.3.1 (EQ(L)) The standard theory of equality for a �rst order lan-

guage L, denoted EQ(L), is the following theory

3

:

8X : X = X

3

Note that all the axioms of EQ(L) are tautologies when "=" is interpreted by identity.

2.3 Syntax and (some) semantics for Logic Programs 31

8X;Y : X = Y Y = X

8X;Y; Z : X = Z X = Y; Y = Z

For each functor f=n in L (n > 0):

8X;Y : f(X) = f(Y) X

1

= Y

1

; : : : ; X

n

= Y

n

For each predicate symbol p=n in L, di�erent from =:

8X;Y : p(X) p(Y); X

1

= Y

1

; : : : ; X

n

= Y

n

De�nition 2.3.2 (FEQ(L)) The Free Equality theory for a �rst order language

L, denoted FEQ(L), consists of EQ(L) and in addition of the following axioms:

For each functor f/n in L (0 < n) and for each i; 1 � i � n):

8X;Y : f(X) = f(Y)!X

i

= Y

i

For each pair of di�erent functors g/m and f/n in L (n;m � 0):

8X;Y : :g(X) = f(Y)

For each t, a term which contains the variable X:

8(:t = X)

Observe that both EQ(L) and FEQ(L) are Horn clause theories.

The second part of comp(P) consists of the completed de�nitions of the de�ned

predicates of P . The completed de�nitions are obtained in two steps. In the �rst

step each general clause:

p(t) :-B

with variables Y , is transformed to a formula:

p(X) :-9Y

1

; ::; Y

m

: X

1

= t

1

^ ::^X

n

= t

n

^B

where X are fresh variables. Assume that in this �rst step for a given de�ned

predicate p=n, we obtained the formulas p(X) :-�

1

, : : : , p(X) :-�

k

. In the second

step, these formulas are replaced by:

8(p(X)$ �

1

_ : : :_ �

k

)

comp(P) is a FOL theory and de�nes indirectly a model semantics for P . In

the sequel, a model of P wrt completion semantics is meant to be a classical model

of comp(P).

comp(P) can be seen as the conjunction of the if-part of the de�nitions, corre-

sponding to P itself and the only-if part of the de�nitions. We de�ne only-if(P) as

the theory consisting of the axioms of FEQ(L) and of the formulas of the form:

8(p(X)! �

1

_ : : :_ �

k

)

The completed de�nition of the predicate even=1 in the natural number exam-

ple is the following:

8X : even(X) $ X = a _ 9Y : X = s(s(Y)) ^ even(Y)

32 Preliminaries

The declarative reading of P under completion semantics is the FOL declarative

reading of the completed de�nition of even=1 and FEQ(L) under the intended

interpretation. For the natural number program P , this reading is obviously cor-

rect. It grasps some of the information content of P under LHM semantics but not

all: it excludes that all odd numbers are even but does not exclude that there are

other domain elements than the natural numbers for which even is true. Below we

construct an example of such a model.

Example De�ne the domain of the interpretation M as the disjunct union of IN

andZ.M (s=1) is the union of the successor functions on the natural numbers

and on the integer numbers. The interpretation of even=1 is de�ned as:

feven(2 � n)

t

jn 2 INg [feven(2 � z + 1)

t

jz 2Zg

One easily veri�es that this is a model of comp(P).

A �nal comment is on the " :- " connective. We have introduced it to distinguish

between the logic program clauses and the FOL formulas. In [Prz90], " :- " was

introduced as a new connective in the FOL formalism with a di�erent (FOL)

meaning on 3-valued interpretations than " ". In the sequel we do the same. For

any interpretation I, I's truth function is de�ned on F

1

:-F

2

in the following way:

H

I

(F

1

:-F

2

) = t i� H

I

(F

1

) � H

I

(F

2

)

H

I

(F

1

:-F

2

) = f i� H

I

(F

1

) < H

I

(F

2

)

Note that for 2-valued interpretations the truth function for " " and for " :- "

coincides.

In the same way as a de�nite program can be interpreted as a FOL theory of

de�nite FOL clauses, the introduction of :- as a FOL connective implies that a

logic program P can now also be interpreted as a FOL theory. It should be stressed

that P interpreted as a logic program has a di�erent semantics than P interpreted

as a FOL theory.

Chapter 3

Duality of Abduction and

Model Generation

3.1 Introduction

The work reported here was motivated by some recent progress made in the �eld of

Logic Programming to formalise abductive reasoning as logic deduction [CTT91]

[Bry90]. In [Kow91], Kowalski presents the intuition behind this approach. He

considers the following simple de�nite abductive logic program:

P = f wobbly-wheel :-
at-tyre

wobbly-wheel :- broken-spokes

at-tyre :- punctured-tube

at-tyre :- leaky-valve g

where the predicates broken-spokes, punctured-tube and leaky-valve are the ab-

ductive predicates. Given a query Q = wobbly-wheel, abductive reasoning allows

to infer the assumptions:

S

1

= f punctured-tube g,

S

2

= f leaky-valve g, and

S

3

= f broken-spokes g .

These sets of assumptions are abductive solutions to the given query Q in the

sense that for each S

i

, we have that P [S

i

j= :Q

1

.

Kowalski points out that we can equally well obtain these solutions by deduc-

tion, if we �rst transform the abductive program P [fQg into a new logic theory

T . The transformation consists of taking the only-if part of every de�nition of a

1

In this chapter, "j=" should be understood as "j=

FOL

".

33

34 Duality of Abduction and Model Generation

non-abducible predicate in the Clark-completion of P and by adding the negation

of Q. In the example, we obtain the (non-Horn) theory T :

T = f wobbly-wheel !
at-tyre, broken-spokes

at-tyre ! punctured-tube, leaky-valve

wobbly-wheel g

Minimal models for this new theory T are:

M

1

= f wobbly-wheel,
at-tyre, punctured-tube g,

M

2

= f wobbly-wheel,
at-tyre, leaky-valve g, and

M

3

= f wobbly-wheel, broken-spokes g.

Restricting these models to the atoms of the abducible predicates only, we precisely

obtain the three abductive solutions S

1

, S

2

and S

3

of the original problem.

The above observation points to an interesting issue; namely the possibility

of linking these dual declarative semantics by completely equivalent dual proce-

dures. Figure 3.1 shows this duality between an SLD+Abduction tree (see [CP86])

and the execution tree of Satchmo, a theorem prover based on model generation

[MB87].

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.
.

.

.

.
.
.
.

.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
..
.
..
.
..
.
..
.
..
.
...
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.

.
..
..
..
..
...
..
..
..
..
.

.
.
.
.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.
.
.
.
.

.
.
.
.
.
.
.

.

.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.

.

.
.
.

.

.

.
.
.
.
.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.
.
.
.
.

.

.

.

.
.
.
.

.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.
.
.
.
.

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
..
.
.
.
.
..
.
.
.
.
..
.
.

.
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
.

....
.....
....
.....
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..

.

..
..
..
..
..
..
..
..
...
.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

S

0

= �

 punctured tube

 flat tyre

 broken spokes

 wobbly wheel

 leaky valve

S

1

= S

0

[fwobbly wheelg

S

2

= S

1

[fbroken spokesg

S

3

= S

2

[fleaky valveg

S

3

= S

2

[fpunctured tubeg

S

2

= S

1

[fflat tyreg

Figure 3.1: Procedural Duality of Abduction and Satchmo

Although this example illustrates the potential of using deduction or more

precisely, model generation, as a formalisation of abductive reasoning, an obvious

restriction of the example is that it is only propositional. Would this approach

also hold for the general case of de�nite abductive programs? An example of a

non-propositional program and its only-if part is given in �gure 3.2.

3.1 Introduction 35

Abd = fq=2g

P = f p(a; b) :-

p(a;X) :- q(X;Y) g

Q = p(X;X)

only-if(P) = FEQ[

f p(Y;Z)!

(Y = a ^ Z = b)_

(9V : Y = a ^ q(Z;V)) g

:Q = 9X : p(X;X)

Figure 3.2: A predicate example

The theory only-if(P) consists not only of the only-if part of the de�nitions of

the predicates but comprises also the axioms of Free Equality (FEQ), also known

as Clark Equality [Cla78]. The abductive solutions and models of only-if(P) are

displayed in �gure 3.3.

� = fq(a; a)g ; � = fX=ag

� = fq(a; b)g ; � = fX=bg

� = fq(a; sk)g ; � = fX=skg

M = fp(a; a); q(a; a)g

M = fp(a; a); q(a; b)g

M = fp(a; a); q(a; sk)g

Figure 3.3: Abductive solutions and models

The duals of the abductive solutions are again identical to models of only-if(P).

This example suggests that at least the duality on the level of declarative semantics

is maintained.However, on the level of procedural semantics, some di�culties arise.

An SLD+Abduction derivation tree is given in �gure 3.4. After skolemisation of

the residue q(a; V), we obtain the third abductive solution.

.

.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
..
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.
.
.
.

.

.

...
..
.
..
..
..
..
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

uni�cation

fails q(a; V)

 p(X;X)

� = fX=ag

Figure 3.4: Abductive derivation tree

With respect to the model generation, a �rst problem is that only-if(P) is

not clausal and Satchmo can not deal with non-clausal theories directly (without

36 Duality of Abduction and Model Generation

normalisation to clausal form). Fortunately, the extension of Satchmo, Satchmo-1

[Bry90], can deal with such formulas directly. A second problem is that Satchmo

and Satchmo-1 were not designed to cope with equality atoms occurring in the

head: the generated models satisfy FEQ only when no equality atoms occur in the

head of the rules. The solution is to treat equality as any other predicate and to add

FEQ explicitly to the theory. But then a third problem arises: FEQ is not in range-

restricted form. Satchmo-1 can only handle range-restricted formulas. However,

any theory can be transformed to range-restricted form. After performing this

transformation and without dealing with the technical details of the computation,

one may obtain the computation tree as presented in �gure 3.5.

.

..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.

.

.
.
.
.
.
.

.
.
.
.
.
.
.
.

.

.

.

...
..
...
...
..
...
...
.

.

.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.

.

.

.
.
.
.

.
.
.
.
.

.
.
.
.

.

.

.

...
..
..
..
..
..
..
..
..
.

.

.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
......
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
.....
....

.
..
.
..
..
.
..
..
.
..
.
....
.....
....
.....
...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...

.

..
.
.
.
..
.
.
.
.
..
.
.
.
.....................

.

..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..

.

.

.

.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
....
...
..
...
...
..
...

.

..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
..
..
..
..
.
..
.

.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.......
......
.....

failure

X a

X b

X sk

1

V sk

2

success

p(sk

1

; a)

p(a; sk

1

)

substitution

symmetry

re
exivity

... ...

...

...

...

symmetry

transitivity

 a = b

S

0

= �

p(a; a)

q(a; sk

2

)

V a

V b

V sk

1

S

0

[fp(sk

1

; sk

1

)g

S

1

[fsk

1

= a; q(sk

1

; sk

2

)g

S

1

[fsk

1

= a; sk

1

= bg

Figure 3.5: Execution tree of Satchmo-1

Globally, the structure of the SLD+Abduction tree of �gure 3.4 can still be

seen in the Satchmo-1-tree. Striking is the duality of variables in the abductive

derivation and skolem constants in the model generation. However, one di�erence

3.1 Introduction 37

is that the Satchmo-1 tree comprises many additional inference steps due to the

application of the axioms of FEQ. In the abductive derivation the additional steps

correspond to the uni�cation operation (e.g. on both left-most branches, the fail-

ure of the uni�cation of fX = a;X = bg corresponds to the derivation of the

inconsistency of the facts fsk

1

= a; sk

1

= bg).

Another di�erence is that the generated model

fp(a; a); q(a; sk

2

); p(sk

1

; a); p(a; sk

1

); p(sk

1

; sk

1

); q(sk

1

; sk

2

);

sk

1

=a; a=sk

1

; a=a; sk

1

=sk

1

; sk

2

=sk

2

g

is much larger than the model which is dual to the abductive solution. Satchmo-1

generates besides the atoms of this model also all logical implications of FEQ,

comprising all substitutions of a by sk

1

. It is clear that in general this will lead to

an exponential explosion.

However, observe that we obtain the desired model by contracting sk

1

and a in

the generated model. Therefore, extending Satchmo-1 with methods for dynamic

contraction of equal elements would solve the e�ciency problem and would restore

the duality on the level of the declarative semantics.

Contraction of a model is done by taking one unique witness out of every

equivalence class of equal terms and replacing all terms in the facts of the model

by their witnesses. In turns out that techniques studied in Term Rewriting are

useful to implement this. The idea is to consider the set of inferred equality facts

as a Term Rewriting System (TRS), to transform the set to an equivalent complete

TRS which then allows to normalise all terms in the model. Normalisation is a

procedural way to replace terms by their witnesses.

However, a problem with the completion and normalisation procedures in Term

Rewriting is that they are developed for standard equality (EQ) instead of FEQ.

This has led us to develop a framework for model generation with a generic under-

lying equality theory (section 3.4). The framework is based on generalised notions

of completion and normalisation wrt an arbitrary equality theory. Two instances

of the framework have been implemented (section 3.6). One instance is a model

generator for EQ, obtained by embedding existing completion and normalisation

techniques from Term Rewriting in Satchmo-1. The second instance is a model

generator for FEQ. It is based on the completion and normalisation procedures

which we developed for FEQ (section 3.5). At �rst sight, these procedures may

seem alien to Logic Programming, but the contrary is true: they restore the broken

duality between SLD+Abduction and Satchmo-1:

� the completion procedure corresponds dually to uni�cation.

The dual of the mgu (by replacing variables by skolem constants) is the

completion of the set of equality atoms.

� the normalisation corresponds dually to applying the mgu.

38 Duality of Abduction and Model Generation

Therefore, incorporating these techniques in Satchmo-1 also restores the duality

on the level of procedural semantics.

The starting goal for the research reported here, was to investigate the duality

between abduction and model generation. This goal led us to a second goal, namely

the extension of current techniques for model generation with e�cient treatment

of equality. This goal is valuable in its own right, as we argued in chapter 1: model

generation is an important computational paradigm for executing declarative spec-

i�cations.

The chapter presents a contribution to both goals. There are other spin-o�s.

An illustration of this is found in the context of planning as abduction in the event

calculus. The event calculus contains a clause, expressing that a property holds at

a certain moment if there is an earlier event which initiates this property, and the

property is not terminated (clipped) in between:

holds at(P; T) :-happens(E); initiates(E;P);

E <T;:clipped(E;P; T)

A planner uses this clause to introduce new events which initialise some desired

property. Technically this is done by �rst skolemising and then abducing the hap-

pens goal. However, skolemisation requires explicit treatment of the equality pred-

icate as an abducible satisfying FEQ [Esh88]. The techniques proposed in this

chapter allow e�cient treatment of the abduced equality atoms. In chapter 5, the

techniques developed in this chapter will be incorporated in an abductive proce-

dure for e�ciently dealing with abduced equality facts.

This chapter is structured as follows. In section 3.2, we present the class of

theories for which the model generation is designed. Section 3.3 recalls and extends

the basic concepts of Term Rewriting. In section 3.4, the framework for model

generation is presented and important semantic results are formulated. In section

3.5, the duality with abductive reasoning is formalised. Section 3.6 is about the

implementation of the framework. In section 3.7, we present a simple experiment.

Section 3.8 discusses future and related work. A short version of this chapter

appeared as [DD92a]. A long paper will be published as [DD94].

3.2 Extended programs.

In this section we introduce the formalism for which the model generation will be

designed. This formalism should at least cover any theory that can be obtained as

the only-if part of the de�nition in the Clark-completion of de�nite logic programs.

The extended clause formalism introduced below, generalises both this kind of

formulas and the clausal form.

De�nition 3.2.1 Let L be a �rst order language.

3.3 Concepts of Term Rewriting. 39

An extended clause or rule is a closed formula of the type:

8(G

1

; : : : ; G

k

! E

1

; : : : ; E

l

)

where E

i

has the general form:

9Y

1

; : : : ; Y

m

: s

1

= t

1

^ : : :^ s

g

= t

g

^ F

1

^ : : :^ F

h

such that all G

i

are atoms based on L, all F

i

are non-equality atoms based on L.

De�nition 3.2.2 An extended program is a set of extended clauses.

Interestingly, the extended clause formalism can be proved to provide the full

expressivity of �rst order logic. Any �rst order logic theory can be translated to

a logically equivalent extended program, in the sense that they share exactly the

same models. (Recall that the equivalence between a theory and its clausal form

is much weaker: the theory is consistent i� its clausal form is consistent.) We refer

to appendix A for the proof of this result.

In the sequel, a theory T , based on L, is called a theory with equality if it

comprises EQ(L). A theory T , based on L is called an equality theory if it is a

theory with equality in which "=" is the only predicate symbol in all formulas

except for the substitution axioms of EQ(L).

3.3 Concepts of Term Rewriting.

The techniques we intend to develop for dealing with equality, are inspired by Term

Rewriting. However, work in this area is too restricted for our purposes, because

the concepts and techniques assume the standard equality theory EQ (de�nition

2.3.1) underlying the term rewriting. To be able to deal with FEQ, we extend the

basic concepts for the case of an arbitrary underlying equality theory E. In the

sequel, equality and identity will be denoted distinctly when ambiguitymay occur,

resp. by "=" and "�". For an overview of the basic notions of TR, see [DJ89]. We

recall the general ideas.

De�nition 3.3.1 Let L be a �rst order language.

A reduction rule based on L is of the form s!t where

� s; t are terms based on L,

� s is not a variable,

� all variables in t are contained in s.

The logical meaning of a reduction rule s!t is: "8(s = t)". Procedurally these

axioms are used in a one way direction: a term containing the left-hand term of a

reduction rule is reduced by replacing this subterm by the right-hand term.

40 Duality of Abduction and Model Generation

De�nition 3.3.2 A Term Rewriting System (TRS) based on L is a �nite set of

reduction rules based on L.

In what follows, Term Rewriting Systems are denoted by the symbols
 and

�. With a Term Rewriting System, a reduction relation between terms can be

associated.

De�nition 3.3.3 Given a Term Rewriting System
 its reduction relation

 ;L

�! is

a binary relation on the set of all terms based on L such that t

1

 ;L

�! t

2

i� there

exists a reduction rule s!t and a substitution � such that �(s) occurs in t

1

and t

2

is obtained by replacing �(s) by �(t).

A Term Rewriting System can be seen both in a procedural way as a set

of reduction rules s!t and in a declarative way as a theory of equality axioms

"8(s = t)". In the sequel,
 will be used in both ways; the context will determine

how to interpret it.

Recall that Herbrand Universe and Herbrand Base based on a language L are

denoted by HU (L), HB(L) resp. and that the least Herbrand model of a theory

T based on L is denoted LHM (<L; T>).

De�nition 3.3.4 The re
exive, symmetric, transitive closure of

 ;L

�! is denoted

;L

 !

�

. It's restriction to the set of ground terms HU (L) is denoted

 ;L

=== .

Observe that EQ(L) +
 is a de�nite program and hence has a least Herbrand

model [vEK76]. This is the set of all ground atoms based on L which are logical

consequences of EQ(L)+
 . The following property indicates the relationship with

 ;L

===.

Proposition 3.3.1

 ;L

=== is LHM (<L;EQ(L) +
>)

Proof It is easy to see that

;L

=== satis�es all the axioms of EQ(L) +
. Since it

is a Herbrand interpretation, LHM (<L;EQ(L) +
>) �

;L

===. Vice versa,

the interpretation of "=" in LHM (<L;EQ(L) +
>) is re
exive, symmetric

and transitive and if s

 ;L

�!t then s = t 2 LHM (<L;EQ(L) +
>). Hence,

 ;L

=== � LHM (<L;EQ(L) +
>). 2

A Term Rewriting System associates with every term a reduction tree: a tree

of terms such that t

2

is a son of t

1

i� t

1

 ;L

�!t

2

. Such a tree corresponds to all

possible reductions of the root term. A Noetherian Term Rewriting System has

3.3 Concepts of Term Rewriting. 41

the property that each reduction tree is �nite. A con
uent or Church-Rosser Term

Rewriting System has the the property that for any pair of nodes in any reduction

tree, there exist paths leaving from this nodes, and leading to an identical term.

From the procedural point of view, a Noetherian and Church-Rosser TRS satis�es

the desirable property that the reduction tree of any term t is �nite and that all its

leaves are labelled by the same term, called the normal form of t and denoted
(t).

This normalisation operation can be extended to atoms, formulas and sets of these

in a natural way. A term which cannot be reduced any further is called normal. In

Term Rewriting, a noetherian and Church-Rosser TRS is called complete. Below

we extend this concept for an underlying equality theory E.

De�nition 3.3.5 Let E be an equality theory based on a language L,
 a Term

Rewriting System based on L.

 is complete wrt to E i�
 is noetherian and Church-Rosser and, moreover,

for each language L

0

extending L with constants, <L

0

; E +
> has a least Herbrand

model, which is the set of ground atoms s = t constructed from terms in HU (L

0

)

such that
(s)�
(t).

The introduction of the extension L

0

of L in the third condition assures that

the property of being complete is language independent. This will prove to be im-

portant for the remainder of the chapter, because during model generation skolem

constants are introduced dynamically.

This de�nition extends the normal de�nition in Term Rewriting by the third

condition. However, for E = EQ, it was proved in [Hue80] that this condition

is implied by the Noetherian and Church-Rosser properties (see also Proposi-

tion 3.3.2(a)). This is not the case for an arbitrary equality theory (as FEQ). For

example take any language comprising constants a and b and take E = FEQ(L).

De�ne
 = fa! bg.
 is noetherian and Church-Rosser but FEQ+
 is inconsistent

and hence has no least Herbrand model. In section 3.5, we prove that FEQ(L) has

only trivial complete Term Rewriting Systems, in the sense that for each reduction

rule s! t of a complete Term Rewriting System s is a constant of L

0

n L.

Much work in Term Rewriting concentrates on complete TRSs (with of course

EQ as underlying equality theory). One of the central themes in TR, is the validity

problem: given some TRS
 and terms s; t, decide whether EQ(L) +
 j= 8(s = t).

In general, the validity problem is undecidable but for a complete TRS
, it is

decidable since EQ(L) +
 j= 8(s = t) if and only if
(s)�
(t). This interesting

result has motivated the research in TR to develop methods to transform a TRS

into a logically equivalent (wrt EQ) but complete TRS. This operation is called

the completion. The best-known and oldest completion algorithm was proposed by

Knuth and Bendix [KB70]. The problem of �nding a complete TRS for a given set

of equations wrt EQ, is in general unsolvable (otherwise, the validity problem could

be solved). However, the completion of a ground TRS (wrt EQ) can be computed

[Der87]. That su�ces for our purposes, since during model generation only ground

42 Duality of Abduction and Model Generation

instances of rules are applied, hence the equality sets to be completed are always

ground.

Remember from section 3.1, that our main goal was to introduce dynamic

contraction during model generation. The main reason why here we introduce

the notion of a complete TRS is not to solve some validity problem but because

a complete TRS
 allows to contract the partially constructed model. Indeed,

because two terms equal wrt EQ(L) +
 have the same normalisation, and since

a term and its normalisation occur obviously in the same equivalence class, it

follows directly that each equivalence class contains precisely one normal term.

Hence the normal terms can be taken as the unique witnesses, and normalisation

is the procedure to contract models by replacing terms by their unique witnesses.

In the following proposition, some basic properties of complete TRSs are ex-

plored.

Proposition 3.3.2 (a) if
 is noetherian and Church-Rosser, then
 is complete

wrt EQ(L).

(b) if
 is complete wrt E then
 is complete wrt EQ(L).

(c) If
 is complete wrt E then for each L

0

extending L with constants:

LHM (<L

0

; E +
>) = LHM (<L

0

;EQ(L) +
>)

Proof For a proof of (a), de�ne S = fs = tjs; t 2 HU (L

0

) and
(s)�
(t)g. We

show that S is

 ;L

0

===. First observe that if s

 ;L

0

�!t then the reduction tree of

t occurs in the reduction tree of s, so
(s)�
(t). Hence S subsumes

 ;L

0

�!.

Further on, it is trivial to see that S de�nes a re
exive, symmetric and

transitive relation, hence

 ;L

0

=== � S.

Vice versa, clearly each atom s =
(s) is an element of

 ;L

0

===. Because of this

and of the symmetry and transitivity of "=" in

 ;L

0

===, for any pair of terms

s; t based on L

0

,
(s)�
(t) implies s = t 2

;L

0

===. So, S �

 ;L

0

===.

Since by Proposition 3.3.1,

;L

0

=== is LHM (<L

0

;EQ(L) +
>), we �nd that

s = t 2 LHM (<L

0

;EQ(L) +
>) i�
(s)�
(t). Hence,
 is complete wrt

EQ(L).

Item (b) is a direct consequence of (a): a complete TRS
 wrtE is noetherian

and Church-Rosser, so by (a)
 is complete wrt EQ(L).

Item (c) follows also directly from (a). If
 is complete wrt E then by

de�nition LHM (<L

0

; E +
>) = S. By (a), we have that

S = LHM (<L

0

;EQ(L) +
>)

3.3 Concepts of Term Rewriting. 43

2

De�nition 3.3.6 A completion of a TRS
 wrt <L; E> is:

� f

2

g if <L; E +
> is inconsistent

� a complete TRS

c

based on L, such that <L; E> j=
 $

c

We denote the completion of
 by TRS-comp(
).

Our framework for model generation is developed for logical theories consisting

of two components, an extended program P and an underlying equality theory E.

This distinction re
ects the fact that the model generation mechanism applies

only to the extended clauses of P , while E is dealt with in a procedural way, using

completion and normalisation. E has to satisfy the conditions of the following

de�nition.

De�nition 3.3.7 An equality theory with completion E based on a language L,

is a clausal equality theory equipped with a completion procedure which for each

ground TRS based on an extension of L by constants, produces a ground comple-

tion.

Some remarks are of interest. The condition for an equality theory of hav-

ing a completion procedure is very restrictive. An equality theory E which does

not consists purely of Horn clauses has in general not a least Herbrand model,

hence it cannot have a completion procedure. Even Horn equality theories will

in general not have a completion procedure. For example, let
 be a non-ground

Term Rewriting System ff(X) ! g(X)g based on the language with functors

f=1; g=1; b=0. This is a complete Term Rewriting System wrt EQ. Suppose that

EQ +
 has completion procedure TRS-comp. By de�nition TRS-comp(") is a

ground term rewrite system � such that for each language extension L

0

of L,

LHM (<L

0

;EQ(L) +
>) = LHM (<L

0

; EQ(L) + �>). In general, this is impos-

sible due to the fact that � is ground and
 is not. Indeed, let L' be a language

extension of L containing a new constant a. LHM (<L

0

;EQ(L) +
>) contains

f(a) = g(a). On the other hand, it is clearly impossible to rewrite f(a) = g(a) to

identical terms by a ground Term Rewriting System which is based on L.

As far as we know, no general technique exists to check whether an equality

theory has a completion procedure. For an equality theory with completion, the

completion procedure depends totally on the equality theory. In this chapter we

present two theories with completion with totally di�erent completion procedures.

In section 3.5, we will prove that FEQ(L) is an equality theory with completion and

that its completion procedure is dual to the uni�cation procedure. As indicated

earlier, EQ(L) has also a completion procedure which is a variant of the Knuth-

Bendix procedure. Hence, EQ(L) is an equality theory with completion.

Another concept taken from Term Rewriting is E-uni�cation.

44 Duality of Abduction and Model Generation

De�nition 3.3.8 Let t; s be terms,
 a TRS. An E-uni�er � of t and s wrt
 is a

substitution such that EQ+
 j= 8(�(s) = �(t)). An E-uni�er of atoms p(t

1

; : : : ; t

n

)

and p(s

1

; : : : ; s

n

) is an E-uni�er of the tuples (t

1

; s

1

); : : : ; (t

n

; s

n

). An E-uni�er of

a set of pairs of atoms is an E-uni�er of all the pairs of atoms.

3.4 A framework for Model Generation

Informally a model generator constructs a sequence

2

(Cl

d

; j

d

)

n

1

, where Cl

d

is the

ground instance of a rule applied at the d-th inference step, and j

d

the index

indicating the conclusion of Cl

d

that was selected, an increasing sequence of sets

of asserted ground facts (M

d

)

n

0

of non-equality predicates, a sequence of complete

Term Rewriting Systems (

d

)

n

0

, each of which is equivalent with the set of asserted

equality facts, and an increasing sequence of sets of skolem constants (Sk

d

)

n

0

,

obtained by skolemising the existentially quanti�ed variables.

Below, a substitution is called normalwrt some TRS
 if it assigns normal terms

to each variable. The normalisation of a substitution � is the substitution obtained

by normalising all right-hand terms in �. We denote the normalised substitution

by
(�). An instance of an extended clause is obtained by applying a grounding

substitution for the extended clause. A normal instance is an instance obtained by

applying a normal substitution. Note that this does not imply that all terms in

the normal instance are normal. Only the terms assigned to variables are normal.

De�nition 3.4.1 Let L be a language, L

sk

an in�nite countable alphabet of skolem

constants, not occurring in L, T a theory based on L and consisting of an extended

program P and of an equality theory E with completion, equipped with completion

procedure TRS-comp.

A Nondeterministic Model Generator with Equality (NMGE) K is a tuple of

four sequences (Sk

d

)

n

0

, (M

d

)

n

0

, (

d

)

n

0

and (Cl

d

; j

d

)

n

1

where n 2 IN [f1g. The

sequences satisfy the following conditions:

1. M

0

= Sk

0

= fg;

0

= TRS-comp(fg)

2. For each d such that 0 < d � n, Cl

d

, j

d

, Sk

d

, M

d

and

d

are obtained from

Sk

d�1

, M

d�1

and

d�1

by applying the following steps:

(a) Selection of rule and conclusion

Select nondeterministically a rule C = G

1

; : : : ; G

k

!E

1

; : : : ; E

l

of P and

a substitution � such that the following conditions hold:

� � is a grounding substitution of C, normal wrt

d�1

and based on

L+ Sk

d�1

.

� there exist atoms A

1

; : : : ; A

k

from M

d�1

such that � is an E-uni�er

of the set f(G

1

; A

1

); : : : ; (G

k

; A

k

)g wrt

d�1

.

2

(A

d

)

n

i

denotes a sequence (A

i

; : : : ; A

n

).

3.4 A framework for Model Generation 45

De�ne Cl

d

as �(C). If l = 0, de�ne Sk

d

= fg, M

d

=

d

= f

2

g and

n = d.

Otherwise, select nondeterministically a conclusion �(E

j

) from the head

of Cl

d

. De�ne j

d

= j. We say that the rule Cl

d

applies with its j

d

'th

conclusion.

(b) Skolemisation

Let �(E

j

d

) be of the form:

9Y

1

; : : : ; Y

m

: s

1

= t

1

^ : : :^ s

g

= t

g

^ F

1

^ : : :^ F

h

Replace Y

1

; : : : ; Y

m

by fresh skolem constants sk

1

; : : : ; sk

m

from the lan-

guage L

sk

nSk

d�1

. De�ne Sk

d

= Sk

d�1

[fsk

1

; : : : ; sk

m

g

(c) Completion

De�ne

d

= TRS-comp(

d�1

+ fs

1

= t

1

; : : : ; s

g

= t

g

g). If

d

is f

2

g

then de�ne M

d

= f

2

g and n = d.

(d) Normalisation+Assertion

De�ne M

d

=

d

(M

d�1

[fF

1

; : : : ; F

h

g), obtained by computing the nor-

mal form of all facts in these sets.

K is failed if n is �nite and

n

= M

n

= f

2

g. This situation occurs when Cl

n

is a negative clause, or when E +

n�1

+ fs

1

= t

1

; : : : ; s

g

= t

g

g is inconsistent.

If K is not failed then K is called successful.

Notice that (a) requires an E-uni�er � of the body of the rule C and facts of

M

d�1

. In Proposition 3.5.3, we will show that with FEQ as underlying equality

theory with completion, E-uni�cation collapses to uni�cation, i.e. � is an E-uni�er

i� � is a uni�er.

Not all NMGEs generate models of P + E. For example, the empty NMGE

((fg), (fg), (TRS-comp(fg)), ()) trivially satis�es the de�nition of an NMGE,

but will not generate a model if P contains one positive extended clause, i.e. an

extended clause with empty body. In that case the empty NMGE is an example of

an unfair NMGE: there exists a rule with a true body, but which is never applied.

Only fair NMGEs generate models:

De�nition 3.4.2 A NMGE K is fair i� K is failed or else if the following condi-

tion is satis�ed: If Cl = G

1

; : : : ; G

k

!E

1

; : : : ; E

l

is a ground instance of a rule of

P , and there exists a d such that Cl is based on L+ Sk

d

and the body of Cl holds

in LHM

d

then there exists a d

0

such that E

1

_ : : :_E

l

holds in LHM

d

0

.

De�nition 3.4.1 does not exclude that some NMGE continues to apply the

same rule an in�nite number of times. From a procedural point of view, it is

uninteresting to apply a rule whose head is satis�ed in LHM

d�1

. NMGEs which

apply only rules when necessary are called nonredundant.

46 Duality of Abduction and Model Generation

De�nition 3.4.3 An NMGE is redundant i� at least one rule is applied (say at

step d) which is satis�ed in LHM

d�1

.

Example Take EQ as underlying equality theory with completion (de�nition

2.3.1) and consider the following theory P :

! a = f(a)

p(X)! a = X

! p(b)

An NMGE is obtained as follows. In the �rst step, the �rst rule is selected.

We have � = "; Cl

1

= (!a = f(a)) and j

1

= 1. The completion of a = f(a)

is computed by applying Knuth-Bendix completion [KB70]. This returns

1

= ff(a) ! ag. The sets M

1

and Sk

1

remain empty.

In the second step, the third rule is selected. We have again � = "; Cl

2

=

(!p(b)) and j

2

= 1.

2

is identical to

1

. p(b) is in normal form, and M

2

=

fp(b)g. Sk

2

remains empty.

In the third step, the second rule is applied. We have � = fX=bg; Cl

3

=

(p(X) ! a = X) and j

3

= 1. Now, we must compute the completion of

ff(a) = a; a = bg. A solution is

3

= ff(a) ! a; b ! ag. With this TRS,

M

2

is normalised to M

3

= fp(a)g. Sk

3

is still empty.

At this point, all rules are satis�ed. We obtain a fair NMGE which generates

the �nite model (D = fag; fa ! a; b!a; f(a)!ag; fa = a; p(a)g). Notice

that a model generator without special treatment for equality will loop on

EQ+P . During this loop, an in�nite number of facts will be derived: for each

n and m: p(f

n

(a)), p(f

n

(b)), f

n

(a) = f

m

(b), etc.. are logical implications

and will be derived.

Now assume that we add the axiom p(f(f(f(f (f (a)))))) !. The previous

NMGE must be extended by a fourth step. In this fourth step, the E-uni�er

between p(f

5

(a)) and p(a) wrt

3

is computed. The empty substitution is an

E-uni�er between these atoms, and we obtain failure. Notice that a model

generator without special treatment of equality will also eventually stop, but

this will last until p(f

5

(a)) is derived by application of the axioms of EQ. In

general, a high number of other useless atoms will be derived before.

Finally, observe that if FEQ was the underlying equality theory, then failure

would occur when the rule ! a = f(a) is selected. This atom is inconsistent

with the occur-check axioms.

Example Take FEQ as underlying equality theory and consider the following

theory P .

3.4 A framework for Model Generation 47

9X : p(f(h(X); X)) ^ q(X)

p(X)! (9Z : X = f(Z; g(a)))

q(g(Z))!

An NMGE selects �rst the �rst extended clause as Cl

1

. We have � = " and

j

1

= 1. The variable X is skolemised and the two atoms are asserted. This

yields M

1

= fp(f(h(sk

1

); sk

1

)); q(sk

1

)g;

1

= "; Sk

1

= fsk

1

g.

In the second step, the second rule is selected as Cl

2

. We have:

� = fX=f(h(sk

1

); sk

1

)g and j

2

= 1

Z is skolemised to sk

2

and we derive the equality atom f(h(sk

1

); sk

1

) =

f(sk

2

; g(a)). The completion of this atom is obtained by applying a dual

form of uni�cation; this yields:

2

= fsk

1

! g(a); sk

2

! h(g(a))g

After normalisation, we obtain:

M

2

= fp(f(h(g(a)); g(a))); q(g(a))g; Sk

2

= fsk

1

; sk

2

g

In the third step, the third rule is selected as Cl

3

. We have � = fZ=g(a)gg

and j

3

= 0. Failure occurs.

One remark to be made here is that since the language comprises the functor

f=1, FEQ comprises an in�nite number of disequality axioms. Hence, it is

impossible to use a model generator without special treatment of FEQ. A

second remark is that the above theory is consistent under EQ. Indeed, a

completion under EQ of the equality fact f(h(sk

1

); sk

1

) = f(sk

2

; g(a)) under

EQ is ff(h(sk

1

); sk

1

) ! f(sk

2

; g(a))g. From this TRS, sk

1

= g(a) cannot

be derived. Therefore, the third rule cannot be applied.

Below, LHM

d

denotes the least Herbrand model of < L+ Sk

d

;EQ(L) +M

d

+

d

>.

Proposition 3.4.1 (LHM

d

)

n

0

is a monotonically increasing sequence.

The proof of this proposition uses the next lemma.

Lemma 3.4.1 Let E be an equality theory with completion, based on L. Let

be a Term Rewriting System, � = TRS-comp(
), M a set of ground non-equality

atoms, normal wrt �, and
, � and M based on L+ Sk.

For each extension L

0

of L+ Sk by constants, the following equalities hold:

(a) LHM (<L

0

; E +
 +M>) = LHM (<L

0

; E + � +M>)

48 Duality of Abduction and Model Generation

(b) LHM (<L

0

; E + � +M>) = LHM (<L

0

;EQ(L) + � +M>)

(c) LHM (<L

0

;EQ(L) + � +M>) =

�;L

0

=== [fAjA 2 HB(L

0

) and �(A) 2Mg

Proof The lemma follows straightforwardly from the equivalence of
 and � wrt

E, Proposition 3.3.2 and Proposition 3.3.1 and the substitution axioms for

the predicates. 2

Proof (of Proposition 3.4.1)

We have that:

LHM

d

= LHM (<L+ Sk

d

;EQ(L) +M

d

+

d

>)

� LHM (<L+ Sk

d+1

;EQ(L) +M

d

+

d

>)

= LHM (<L+ Sk

d+1

; E +M

d

+

d

>) (Lemma 3.4.1(b))

� LHM (L+ Sk

d+1

; E +M

d

+ fF

1

; : : : ; F

h

g+

d

+

fs

1

= t

1

; : : : ; s

g

= t

g

g

= LHM (<L+ Sk

d+1

; E +M

d+1

+

d+1

>)

(Lemma 3.4.1(a))

= LHM

d+1

(Lemma 3.4.1(b))

2

An NMGE performs a �xpoint computation, the result of which can be seen

as an interpretation of the language L and, as we later show, as a model of

<L; P + E>.

De�nition 3.4.4 The skolem set used by an NMGE K is [

n

0

Sk

d

and is denoted by

Sk(K). [

n

0

LHM

d

de�nes a Herbrand interpretation for the language L+ Sk(K),

and is denoted K". The non-Herbrand interpretation of L obtained by restricting

K" to the symbols of L is denoted by K"

L

and is de�ned as follows:

� domain: HU (L+ Sk(K))

� for each functor f=n of L (n � 0): K"

L

(f/n) is the function which maps

terms t

1

; : : : ; t

n

of HU (L+ Sk(K)) to the term f(t

1

; : : : ; t

n

).

� for each predicate of L: K"

L

(p/n) is the set of p(t

1

; : : : ; t

n

) facts in K".

Corollary 3.4.1 If K is a �nite successful NMGE of length n, then K" = LHM

n

The following proposition establishes a number of basic results which will be

used frequently in this and the following section. The �rst result assures us that

if the head of some instance of a rule holds in LHM

d

, then it also holds both in

each later LHM

d

0

(d

0

> d) and in K". Note that the head of an extended clause is

a disjunction of existentially quanti�ed conjunctions of atoms, which constitutes

3.4 A framework for Model Generation 49

the main di�erence with Proposition 3.4.1. A second result relates the truth of

an instance of an open formula to the truth of the normal instance of the same

formula. A third result indicates a relationship between the fairness condition and

the E-uni�cation in NMGE: the body of an instance of a rule is true wrt LHM

d

i� the instance is obtained by applying an E-uni�er of the body of the rule with

facts of M

d

.

Proposition 3.4.2 (a) Let I

1

; I

2

be Herbrand interpretations of L and of an

extension L

0

of L resp., such that I

1

� I

2

. Let F be a closed formula based

on L without negation and universal quanti�ers. If I

1

j= F then I

2

j= F .

(b) Let F be an open formula and � a grounding substitution of F . LHM

d

j=

�(F) if and only if LHM

d

j=

d

(�)(F). Here

d

(�) denotes the normalisation

of � wrt

d

.

(c) Let �(C) be a ground instance of a rule based on L+Sk

d

. � is an E-uni�er of

the body of C and atoms in M

d

wrt

d

i� the body of �(C) holds in LHM

d

.

Proof Items (a) and (b) can easily be proved by induction on the structure of

F . Intuitively, what goes wrong with negation and universal quanti�ers in

(a) is that a new fact in I

2

nI

1

may contradict a negative fact in I

1

and a

new domain element in HU (L

0

)nHU (L) may delete a universal property of

I

1

.

Item (c) clari�es the role of E-uni�cation appearing in the de�nition of

NMGE. Assume that the body of C is of the form G

1

; : : : ; G

k

. If � is an

E-uni�er of G

j

and some B in M

d

wrt

d

, then for each pair of arguments

(t

i

; s

i

) of �(G

j

) and B, EQ(L) +
 j= t

i

= s

i

. By the substitution axioms,

�(G

j

) belongs to LHM

d

.

Vice versa, assume �(G

j

) belongs to LHM

d

. By Lemma 3.4.1 (c), there

exists a B in M

d

such that

d

(�(G

j

)) = B. Hence for each pair of terms

(t

i

; s

i

) of �(G

j

) and B,

d

(t

i

)�s

i

. From this it follows that � is an E-uni�er

of G

j

and B, wrt

d

. 2

Theorem 3.4.1 (Soundness) If K is a fair successful NMGE, then K"

L

is a

model for <L; P +E> and P + E is consistent (a fortiori).

We say that K"

L

is the model generated by K.

Recall from de�nition 2.1.3 that an interpretation I

0

is called a symbol exten-

sion of an interpretation I i� the restriction of I

0

to the symbols of I is identical to

I. The proof of the theorem and other proofs below use the following observation:

Lemma 3.4.2 Let L

0

be an extension of L, T a theory based on L, M

0

an inter-

pretation of L

0

, and M the restriction of M

0

to the symbols of L. Equivalently, M

0

is a symbol extension of M .

Then M

0

is a model of <L

0

; T> i� M is a model of <L; T>.

50 Duality of Abduction and Model Generation

The proof of this lemma is trivial, since the validity of a formula wrt an interpre-

tation depends only on the interpretation of the symbols in the formula.

Proof (of Theorem 3.4.1)

First we prove that K"

L

is a model of <L; E>. Because of Lemma 3.4.2, it

su�ces to show that K" is a model of <L+ Sk(K); E>. Consider the two

sequences:

(A

d

)

n

0

= (LHM

d

)

n

0

= (LHM (<L+ Sk

d

;EQ(L) +M

d

+

d

>))

n

0

(B

d

)

n

0

= (LHM (<L+ Sk(K);EQ(L) +M

d

+

d

>))

n

0

Both sequences consist of subsets of the Herbrand Base HB(L+Sk(K)). We

show that they have the same union, namelyK". One direction follows easily

from the fact that for each d,A

d

� B

d

, therefore K" =

S

n

d=0

A

d

�

S

n

d=0

B

d

.

For the other direction, we must show that for each d:

LHM (<L+ Sk(K);EQ(L) +M

d

+

d

>) � K"

Let A be an atom of LHM (<L+ Sk(K);EQ(L) +M

d

+

d

>). Because A

contains only a �nite number of skolem constants, there must be a d

0

� d

such that A 2 HU (L + Sk

d

0

). Because E + M

d

0

+

d

0

j= M

d

+

d

and

by Lemma 3.4.1(b), it holds that EQ(L) + M

d

0

+

d

0

j= M

d

+

d

. As a

consequence, A occurs in LHM

d

0

and hence in K".

(B

d

)

n

0

is a monotonically increasing sequence of Herbrand models of the

theory <L+ Sk(K); E>: from Lemma 3.4.1(b) follows that it is a sequence

of models of <L+ Sk(K); E> and that it is increasing can be proven in a

similar way as proposition 3.4.1. A well-known property of clausal theories

is that the �xpoint of a monotonically increasing sequence of models is a

model. Since E is a clausal theory (by de�nition of equality theory with

completion), K" is a model of <L+ Sk(K); E>.

It remains to be proved that K" is a model of P . Assume that there exists a

ground instance G

1

; : : : ; G

k

!E

1

; : : : ; E

l

of a rule of P which is not satis�ed

by K". So none of E

1

; : : : ; E

l

holds in K", and G

1

; : : : ; G

k

hold in K".

However, since (LHM

d

)

n

0

is monotonic, there exists a d such that G

1

; : : : ; G

k

is in LHM

d

. Since K is fair, there is a d

0

such that at least one E

j

holds in

LHM

d

0

. By Proposition 3.4.2(a), E

j

also holds K". This is in contradiction

with our assumption.

2

To state the completeness result, we require an additional concept: the NMGE-

Tree. Analogously with the concept of SLD-Tree, an NMGE-Tree is a tree of

NMGEs obtained by applying all di�erent conclusions of one rule in the descen-

dants of a node.

3.4 A framework for Model Generation 51

De�nition 3.4.5 Let L be a language, E an equality theory with completion, P

an extended program based on L.

An NMGE-Tree (NMGET) W for <L; P +E> is a tree such that:

� Each node is labelled with a tuple (Sk;M;
) where Sk is a skolem set, M a

set of non-equality facts based on L+ Sk, and
 is a ground TRS based on

L+ Sk.

� To each non-leaf N , a ground instance Cl of a rule of P is associated. For

each conclusion with index j in the head of Cl, there is an arc leaving from

N which is labelled by (Cl; j). If Cl has no conclusion then one arc leaves

with label Cl.

� The sequence of labels on the nodes and arcs on each branch of W constitute

an NMGE.

De�nition 3.4.6 An NMGET is fair if each branch is fair.

De�nition 3.4.7 An NMGET is failed if each branch is failed.

Observe that a failed NMGET contains only a �nite number of nodes. Also if

T is inconsistent then because of the soundness Theorem 3.4.1, each fair NMGET

is failed.

As a completeness result, we want to state that for any model of P + E, the

NMGE contains a branch generating a smaller model. In a context of Herbrand

models, the smaller-than relation can be expressed by set inclusion. However, be-

cause of the existential quanti�ers and the resulting skolem constants, we cannot

restrict to Herbrand models only. In order to de�ne a smaller-than relation for

general models, we must have a mechanism to compare models with a di�erent

domain. A solution to this problem is provided by the concept of homomorphism.

Recall that an interpretation I is de�ned as a triple of a domain, pre-interpretation

of the functor symbols and a truth function H

I

mapping simple facts on truth val-

ues. Here, interpretations are two-valued. Truth values are ordered according to

f < t.

De�nition 3.4.8 Let I

1

, I

2

be interpretations of a language L with domains D

1

,

D

2

.

A homomorphism from I

1

to I

2

is a mapping h: D

1

!D

2

which satis�es the

following conditions:

� For each functor f/n (n � 0) of L and x; x

1

; : : : ; x

n

2 D

1

:

x�I

1

(f(x

1

; : : : ; x

n

)))h(x)�I

2

(f(h(x

1

); : : : ; h(x

n

)))

� For each predicate symbol p/n (n � 0) of L and x

1

; : : : ; x

n

2 D

1

:

H

I

1

(p(x

1

; : : : ; x

n

)) � H

I

2

(p(h(x

1

); : : : ; h(x

n

)))

52 Duality of Abduction and Model Generation

Intuitively a homomorphism is a mapping from one domain to another, such

that all positive information in the �rst model is maintained under the mapping.

Therefore the homomorphisms in the class of models of a theory can be used to

represent a ": : :contains less positive information than: : :" relation. We denote the

fact that there exists a homomorphism from interpretation I

1

to I

2

by I

1

� I

2

.

This notation captures the intuition that I

1

contains less positive information than

I

2

.

For NMGETs we can prove the following powerful completeness result.

Theorem 3.4.2 (Completeness) Let E be an equality theory with completion,

P an extended program, both based on L.

1. There exists a fair, non-redundant NMGET for <L; P +E>.

2. For each model M of <L; P + E> and each fair NMGET W , there exists a

successful branch K of W such that K"

L

� M .

The �rst item in the proof is concerned with the fairness condition. The condi-

tion of fairness is quite strong and is stated in a non-constructive way. The proof

provides a construction of a fair NMGE. This construction is based on the follow-

ing two lemmas. The �rst lemma states that after applying a rule, the rule holds.

The second lemma constructs a sequence which contains each ground instance of

each rule an in�nite number of times. This sequence will be used to construct a fair

NMGE. Starting from the �rst clause, for each element in the sequence it is tested

on whether or not the rule is violated (not satis�ed). A violated rule is applied. In

this way, we obtain a fair NMGE, since each rule is tested an in�nite number of

times and is applied when violated.

Lemma 3.4.3 If a ground instance �(C) of a rule C is applied at step d, then the

conclusion of �(C) holds in LHM

d

.

Proof The straightforward proof is omitted. 2

Lemma 3.4.4 Let P be an extended program based on L, L

sk

a countable alphabet

of skolem constants. There exists a countable sequence (C

g

) which contains every

ground instance of a rule based on L+ L

sk

an in�nite number of times.

Proof A well-known result is that for any countable set, the set of �nite se-

quences of this set is countable. Each ground instance of a rule is a �nite

sequence of the countable set of functor symbols of L and L

sk

, logical con-

nectors, logical quanti�ers, brackets and the period ",". Therefore the set

of possible ground instances of rules is countable.

So there is a countable sequence (C

0

g

) which contains each ground instance

of a rule of P , based on L+L

sk

at least one time. This sequence can easily

be transformed to the desired sequence:

(C

g

)

1

0

= (C

0

1

; C

0

1

; C

0

2

; C

0

1

; C

0

2

; C

0

3

; C

0

1

; : : :)

3.4 A framework for Model Generation 53

or more formally: (C

g

)

1

0

is obtained by concatenating the �nite sequences

(C

0

1

; : : : ; C

0

n

) for increasing n. 2

Proof (of Theorem 3.4.2)

First, using the sequence (C

g

) from Lemma 3.4.4, we can construct a fair

NMGET. With each node N , starting with the root, an index g(N) is as-

sociated which points to the rule in (C

g

) whose normalization is applied to

obtain N . The descendants of N are obtained by searching the �rst rule

C

h

in (C

g

), such that C

h

is violated and h > g(N). It is the normalisation

of this rule which is applied to obtain the descendants of N , and for each

descendant N

0

of N , g(N

0

) is de�ned as h. Technically the construction

proceeds by induction on the depth of the nodes:

� the root N

0

is de�ned as in the de�nition of NMGET. We de�ne

g(N

0

) = �1.

� let N

d

be a non-failed node on depth d with index g(N

d

). N

d

is a leaf of

a branch (N

0

; : : : ; N

d

), with associated sequences (Sk

i

)

d

0

, (M

i

)

d

0

, (

i

)

d

0

,

(LHM

i

)

d

0

and (Cl

i

; j

i

)

d

1

.

Now we look for the �rst rule C

h

in (C

g

), such that h > g(N

d

) , C

h

is

based on L+Sk

d

and C

h

is violated in LHM

d

. If such a C

h

does not

exist anymore, then we obtain a �nite fair branch and N

d

is a leaf in the

constructed tree. If C

h

is found, then it is of the form �(C) where C is a

rule of P . Let �

0

be

d

(�). Since �(C) has a true body, �

0

(C) also has a

true body wrt LHM

d

(Proposition 3.4.2(b)). By Proposition 3.4.2(c),

�

0

is a normal E-uni�er wrt

d

of the atoms in the body of C and facts

of M

d

. So �

0

(C) can be selected. The descendants of N

d

are obtained

by applying �

0

(C) with each conclusion. For each descendant N , we

de�ne g(N) = h.

It is easy to see that this NMGET is non-redundant: only violated rules

are applied. The NMGET is fair: if some rule Cl based on the language

of some node N is violated in LHM

N

, this rule reappears in the sequence

(C

g

)

1

g(N)+1

at least one time, say as the h'th element (h > g(N)). Because g

strictly increases for descendants, in each non-failing branch departing from

N , the integrity of C

h

will be restored after at most h� g(N) steps: either

"by accident" by applying other rules of C

g(N)+1

; : : : ; C

h�1

, or by applying

the normalisation of C

h

(Lemma 3.4.3, Proposition 3.4.2(b)).

Now we prove the second part of the completeness theorem. The idea of

the proof is as follows. We will construct by induction a path K through

the NMGET W , such that for each node N

d

on the path, LHM

N

d

can be

mapped into M by a homomorphism. At the d+1'th step, the selected rule

has a true body in LHM

N

d

and hence in M . Therefore, one of the conclu-

sions of the selected rule must hold in M . We extend the path by selecting

54 Duality of Abduction and Model Generation

the descendant of N

d

corresponding to this conclusion. As a consequence,

the homomorphism from LHM

N

d

toM can be extended to LHM

N

d+1

. The

resulting branch K returns a fair NMGE such that K"

L

�M .

Using W and M , we construct a branch K = (N

d

)

n

0

in W with corre-

sponding NMGE (Sk

d

)

n

0

, (M

d

)

n

0

, (

d

)

n

0

, and (Cl

d

; j

d

)

n

1

and a sequence of

interpretations (I

d

)

n

0

of L+Sk

d

, such that for each d the following invariant

relation holds:

(a) I

d

is a symbol extension of M by assigning to each skolem in Sk

d

an

element of the domain of M .

(b) If d > 0, then I

d

is a symbol extension of I

d�1

by assigning to each

skolem in Sk

d

nSk

d�1

an element of the domain of M .

(c) I

d

is a model of <L+ Sk

d

; E + P>.

(d) I

d

is a model of <L+ Sk

d

; E +M

d

+

d

>.

Note that the extension

~

I

d

of I

d

to the Herbrand universe HU (L+ Sk

N

d

)

de�nes a mapping from LHM

N

d

to the domain of M and I

d

. As we will

show, this mapping is a homomorphism from LHM

N

d

to M .

The branch is found by induction on the depth d:

� N

0

is the root of W . I

0

is de�ned as M . Clearly the invariant relation

holds.

� Assume that we have found a path in W of length d� 1, and N

d�1

is

not a leaf ofW . By de�nition of NMGET, the descendants of N

d�1

are

obtained by applying all the conclusions of the same ground instance

Cl

d

of a rule C of P :

Cl

d

= G

1

; : : : ; G

k

!E

1

; : : : ; E

l

By Proposition 3.4.2(c), the G

1

; : : : ; G

k

hold in the least Herbrand

model LHM

d�1

of <L+ Sk

d�1

; E +M

d�1

+

d�1

>. By the invariant,

I

d�1

is a model of<L+ Sk

d�1

; E +M

d�1

+

d�1

>, therefore G

1

; : : : ; G

k

hold wrt I

d�1

. Since I

d�1

is a model of P , it is a model of the rule C

of which Cl

d

is an instance. Therefore, for at least one i, E

i

holds wrt

I

d�1

. We select the i'th descendant of N

d�1

as N

d

.

Now we extend I

d�1

for the new symbols of Sk

d

n Sk

d�1

. Let E

i

be

9Y

1

; : : : ; Y

m

: s

1

= t

1

^: : :^s

g

= t

g

^F

1

^: : :^F

h

. Let V be the variable

assignment fY

1

=a

1

; : : : ; Y

m

=a

m

g such that V (s

1

= t

1

^ : : :^ s

g

= t

g

^

F

1

^ : : : ^ F

h

) holds wrt I

d�1

. Let each Y

j

be assigned the skolem

constant sk

j

in N

d

. We extend I

d�1

to I

d

by de�ning I

d

(sk

j

) = a

j

.

Clearly (a) and (b) of the invariant relation hold. (c) is a direct consequence

of (a), the fact that I

d

is a symbol extension ofM and Lemma3.4.2. That (d)

3.4 A framework for Model Generation 55

holds can be seen as follows. I

d

is a symbolic extension of I

d�1

, therefore I

d

is a model of<L+ Sk

d

; E +M

d�1

+

d�1

> (Lemma3.4.2). By construction

of I

d

, I

d

is also a model of fs

1

= t

1

; : : : ; s

g

= t

g

g and of fF

1

; : : : ; F

h

g. One

easily veri�es that the following proposition holds:

E j= (M

d�1

+ fF

1

; : : : ; F

h

g +

d�1

+ fs

1

= t

1

; : : : ; s

g

= t

g

g ,

M

d

+

d

)

Since I

d

is a model of E, I

d

is a model of M

d

+

d

.

The construction above returns a successful branch K in W . Since W is

fair, K is a fair NMGE. Because of Theorem 3.4.1, K"

L

is a model of

<L; P +E>. It remains to show that there is a homomorphism from K"

L

toM . Because each I

d

is consistent with all its predecessors in the sequence,

the union of the sequence (I

d

)

n

0

de�nes an interpretation I of L + Sk(K).

Remember from section 2.1 how I is extended to a mapping

~

I fromHU (L+

Sk(K)) to the domain ofM . We prove that

~

I is a homomorphism fromK"

L

to M .

By its de�nition,

~

I trivially satis�es the �rst condition of homomorphism.

The second condition of homomorphism is that for any atom p(t

1

; : : : ; t

n

) 2

K", it should hold thatM j= p(

~

I(t

1

); : : : ;

~

I(t

n

)). Assume p(t

1

; : : : ; t

n

) 2 K".

There exists a d such that p(t

1

; : : : ; t

n

) 2 LHM

d

. Hence, E +M

d

+

d

j=

p(t

1

; : : : ; t

n

) and because of invariant (d), I

d

j= p(t

1

; : : : ; t

n

). Since I is

a symbol extension of I

d

, I j= p(t

1

; : : : ; t

n

). This is equivalent with I j=

p(

~

I(t

1

); : : : ;

~

I(t

n

)) (by de�nition of truth of an atom wrt to some interpre-

tation). Since I and M interpret p=n by the same relation, it holds that

M j= p(

~

I(t

1

); : : : ;

~

I(t

n

)).

2

The construction of the fair NMGET in Theorem 3.4.2 does still not give a clue

on how to implement the fairness condition in a practical way. This problem will

be dealt with properly in section 3.6.

As a corollary we obtain the following reformulation of a traditional complete-

ness result.

Corollary 3.4.2 If <L; P +E> is consistent then in each fair NMGET there

exists a successful branch.

If there exists a failed NMGET for <L; P + E>, then <L; P + E> is inconsis-

tent, and all fair NMGETs are failed.

The completeness result does not imply that all models are generated. For

example for P = fp qg, the model fp; qg is not generated by an NMGE. The fol-

lowing example shows that di�erent NMGETs for the same theory might generate

di�erent models.

56 Duality of Abduction and Model Generation

Example P = f p; q p g

Depending on which of these clauses is applied �rst, we get two di�erent non-

redundant NMGETs. If p is applied �rst, then p; q holds already and is

not applied anymore. So we get an NMGET with one branch of length 1.

On the other hand if p; q was selected �rst, then two branches exist and

we get the solutions fpg and fp; qg.

Therefore it would be interesting if we could characterize a class of models which

are generated by each NMGET. The second item of the completeness Theo-

rem 3.4.2 gives some indication: for any given model M , some successful branch

of the NMGET generates a model with less positive information than M . For the

clausal case, models with no redundant positive information are minimalHerbrand

Models. From this observation one would expect that for a clausal program, each

fair NMGET generates all minimal models. Indeed, the following completeness

theorem holds:

Theorem 3.4.3 (Minimal Herbrand models) If P is clausal, then for each

fair NMGET W , each minimal Herbrand model is generated by a branch in W .

The proof is easy: for a clausal theory, each successful branch in each fair

NMGET W generates a Herbrand model (since no skolemisation is necessary).

From Theorem 3.4.2 it follows that for each minimal Herbrand model M , there

exists a branch K in W such that K" � M . Since for Herbrand models, � corre-

sponds to �, and since M is minimal it follows that K" = M .

Now we return to the general case. Since we have to deal with non-Herbrand

models, the concept of minimal model must be extended.

De�nition 3.4.9 Let T be a theory based on a language L.

A model M

1

has the same information content as or is IC-equivalent with a

model M

2

if there exists a homomorphism from M

1

to M

2

and a homomorphism

from M

2

to M

1

.

A model M

m

of <L; P> is minimal i� for each model M

0

of T such that

M

0

�M

m

, M

0

is IC-equivalent with M

m

.

The notion of IC-equivalence of models is weaker than the notion of isomor-

phism. Consider T = fp(a) 9X : P (X) g. There exist two di�er-

ent non-redundant NMGE-trees, depending on the selection of the �rst extended

clause. Selecting �rst the rule p(a) one obtains M

1

= fp(a)g. Selecting the

other rule �rst yields M

2

= fp(sk), p(a)g. These models are not isomorphic but

they are IC-equivalent: h

1

(a)�a de�nes a homomorphism from M

1

to M

2

and

h

2

(a)�h

2

(sk)�a de�nes a homomorphism from M

2

to M

1

.

It is straightforward that IC-equivalence de�nes an equivalence relationship

between models and that a model IC-equivalent with a minimal model is minimal

3.5 Duality of SLD+Abduction and Model Generation. 57

also. This de�nition is a generalization of the concept of minimality for Herbrand

models: for clausal theories, one can easily prove using Theorem 3.4.3 that a model

is minimal i� it is IC-equivalent with a minimal Herbrand model.

Each fair NMGET generates all minimal models, modulo IC-equivalence, but

not modulo isomorphism:

Theorem 3.4.4 (Completeness on minimal models) Let C be a class of IC-

equivalent minimal models and W a fair NMGET. Then there exists a branch of

W generating a minimal model of C.

This theorem is a simple consequence of the completeness Theorem 3.4.2.

In [Bry90], the following completeness theorem for Satchmo-1 was formulated:

Satchmo-1 is complete for �nite satis�ability, i.e. if a theory T has a �nite model,

then Satchmo-1 generates a �nite model. NMGE does not satisfy this property.

Consider for example the following theory:

f9X : p(a;X)) (9Z : p(Y; Z)) p(X;Y)g

This theory has only an in�nite NMGE, generating the model fp(a; sk

1

);

p(sk

1

; sk

2

); p(sk

2

; sk

3

); : : :g. However, the interpretation fp(a; a)g is a �nite model.

Satchmo-1 generates both the �nite an the in�nite model.

This distinction between Satchmo-1 and NMGE is caused by a distinct treat-

ment of existential quanti�ers. In an NMGE, each existential variable is skolemised.

On the other hand, Satchmo-1 keeps track of the domain of interpretation, and

assigns each of the existing domain elements to the existential variable (giving rise

to di�erent branches in the computation) before introducing a new skolem con-

stant as a �nal alternative. Hence, each Satchmo-1 computation tree comprises an

NMGET (if no equality atoms in the head occur). As a consequence, the treatment

of existential variables as in NMGE is more e�cient for showing inconsistency of

a theory whereas the treatment in Satchmo-1 is more suitable for showing consis-

tency of a theory. However, it should be noted that the main issue of this chapter,

i.e. the technique for dealing with equality, stands orthogonal on the way the ex-

istential quanti�ers are dealt with. The techniques that are proposed here can

as well be incorporated in a procedure which treats existential quanti�ers as in

Satchmo-1.

3.5 Duality of SLD+Abduction and Model Gen-

eration.

The NMGE framework allows to formalise the observations that were made in the

introduction. We prove that FEQ is an equality theory with completion and that

the completion procedure is dual to the uni�cation procedure. We �rst introduce

the notion of a dualisation more formally.

58 Duality of Abduction and Model Generation

De�nition 3.5.1 Let L be a �rst order language with variables L

V

and L

sk

an

alphabet of skolem constants which do not occur in L.

A dualisation mapping is a one-to-one correspondence D : L

sk

!L

V

.

The dualisation mapping D can be extended to a mapping from HU (L+L

sk

)[

HB(L+ L

sk

) to the set of terms based on L by induction on the depth of terms:

� for each constant c of L : D(c)�c

� for each term or atom f(t

1

; : : : ; t

n

) :

D(f(t

1

; : : : ; t

n

))�f(D(t

1

); : : : ; D(t

n

))

D can be further extended to any formula or set of formulas. Under dualisation,

a ground TRS
 based on L+L

sk

corresponds to an equation set D(
) with terms

based on L.

De�nition 3.5.2 A ground TRS
 is said to be in solved form i� D(
) is an

equation set in solved form [MM82].

An equation set is in solved form i� it consists of equations X

i

= t

i

, such that

the X

i

's are distinct variables and do not occur in the right side of any equation.

So a TRS is in solved form if the left terms are distinct skolem constants of L

sk

which do not occur at the right. A TRS in solved form can also be seen as the

dual of an idempotent variable substitution.

Proposition 3.5.1 Let
 be a TRS in solved form.

(a)
 is complete wrt to <L;FEQ>.

(b) For each compound term f(t

1

; : : : ; t

n

), it holds that:

(f(t

1

; : : : ; t

n

))�f(
(t

1

); : : : ;
(t

n

))

and for each constant c of L:
(c)�c.

Proof Item (b) follows straightforwardly from the fact that a TRS in solved

form does not contain compound terms at the left.

With respect to item (a), it is intuitively clear that for each term t, its

reduction tree is �nite and all leaves contain the same term. Otherwise

said,
 is noetherian and Church-Rosser. For a formal proof, we can rely

on a theorem in Term Rewriting for irreducible TRSs. A TRS
 is called

irreducible i� for each s!t 2
; t is in normal formwrt to
 and s is in normal

form wrt
nfs!tg. Clearly a TRS in solved form is irreducible. In [Met83]

it was proved that an irreducible TRS is noetherian and Church-Rosser. By

Proposition 3.3.2(a), a TRS in solved form is complete wrt EQ(L).

It remains to be proved that for each pair of terms s; t based on an extension

L

0

of L by constants, it holds that

s = t 2 LHM (<L

0

;FEQ(L) +
>) i�
(s)�
(t)

3.5 Duality of SLD+Abduction and Model Generation. 59

De�ne S = fs = tjs; t 2 HU (L

0

) and
(s)�
(t)g. Since
 is complete

wrt EQ(L), S is LHM (<L

0

;EQ(L) +
>). Since FEQ(L) is an extension of

EQ(L), it holds that S � LHM (<L

0

;FEQ(L) +
>).

Vice versa, to prove is that S is a Herbrand model of FEQ(L)+
. It su�ces

to show that S satis�es the axioms in FEQ(L)nEQ(L):

� Assume
(f(t

1

; : : : ; t

n

))�
(f(s

1

; : : : ; s

n

)). By item (b) of the propo-

sition, it directly follows that for each i,
(t

i

)�
(s

i

). Hence t

i

= s

i

belongs to S.

� Because of item (b), two terms with distinct main functors f=n and

g=m cannot be rewritten to the same term by
.

� Finally the consistency of the occur-check axioms must be proved. As-

sume that there exist a pair of terms s, t such that
(s)�
(t) and

s contains t. However, again because of item (b), it holds that if s

contains t then
(s) contains
(t). Hence,
(s) contains itself. This is

impossible.

2

The theorem below expresses the procedural duality between the uni�cation

and completion, as announced in section 3.1. Here, the notion of procedural duality

refers to a form of isomorphism between two procedures. Both procedure must be

decomposable as sequences of basic operations. The isomorphism then refers to

the fact that, if the procedures are activated on dual input, then there must be a

one-to-one mapping between the two resulting sequences of basic operations, such

that the input and output of each two corresponding operators are dual. In the

theorem, we take uni�cation as the �rst procedure with an equality set as input.

The dual of the input is the ground TRS obtained by interpreting variables as

skolem constants, and the dual of uni�cation is completion.

Theorem 3.5.1 (Duality of completion and uni�cation) FEQ(L) is an e-

quality theory with completion. The completion procedure is dual to uni�cation.

The dual of the completion of a ground TRS
 based on an extension L

0

of L with

constants, is the mgu of D(
). Or D(TRS-comp(
)) = mgu(D(
)).

Proof Below the algorithm of [MM82] is dually reformulated. The symbol x

denotes a skolem constant, t a term, E denotes a set of equality atoms. The

algorithm proceeds by iteratively transforming a TRS
 by applying the

following rewrite rules:

(1) ff(t

1

; : : : ; t

n

) = f(s

1

; : : : ; s

n

)g [E

) ft

1

= s

1

; : : : ; t

n

= s

n

g [E

(2) ff(t

1

; : : : ; t

m

) = g(s

1

; : : : ; s

n

)g [E where f=m�= g=n

60 Duality of Abduction and Model Generation

) f

2

g

(3) fx = xg [E) E

(4) ft = xg [E where t is not a skolem constant

) fx = tg [E

(5) fx = tg [E where x�= t and x appears in t

) f

2

g

(6) fx = tg [E where x�= t, x does not appear in t, and x has

another occurrence in E

) fx = tg [fx=tg(E)

The algorithm terminates when no rewrite rule can be applied. Its termina-

tion follows directly from the termination of the dual algorithm ([MM82]).

It returns f

2

g or a TRS � in solved form. By Proposition 3.5.1, it follows

that � is complete. To see that
 and � are equivalent wrt FEQ(L), just

verify that each rewrite rule maintains equivalence wrt FEQ(L).

2

We call � the solved form of
.

An interesting property of the completion wrt FEQ is that it is incremental.

De�nition 3.5.3 The composition operation "o" on Term Rewriting Systems in

solved form is de�ned as the dual of composition of variable substitutions. Or, let

1

;

2

be complete Term Rewriting Systems, dual to the substitutions �

1

; �

2

. Then

1

o

2

is de�ned as D

�1

(�

1

o�

2

).

Proposition 3.5.2 Let
; � be two ground TRSs,

c

the completion of
, �

c

the

completion of

c

(�). Then, �

c

o

c

is a completion of
 [�.

Proof Applying the completion algorithm on
 [�, it is always possible to

�rst transform
 into solved form, thus obtaining

c

. One easily veri�es

that during this transformation, � is transformed gradually to

c

(�), the

normalized form wrt

c

. So, the result of this �rst stage is

c

[

c

(�). Then

the completion proceeds by bringing

c

(�) in solved form, which returns �

c

.

Similarly to the �rst phase, the e�ect on the equations of

c

is that all terms

are normalized wrt to �

c

. So, the total equation set is �

c

(

c

) [�

c

. This is

nothing else than �

c

o

c

.

Notice that this result is dual to the property of uni�cation that if � is a

mgu of an equation set E

1

and � is the mgu of �(E

2

), then �o� is the mgu

of E

1

[E

2

. 2

Also interesting from a practical point of view is that E-uni�cation wrt a TRS

in solved form collapses to uni�cation:

3.5 Duality of SLD+Abduction and Model Generation. 61

Proposition 3.5.3 Let
 be a TRS in solved form, s; t normal terms. � is a

normal E-uni�er of (s; t) wrt
 i� � is a uni�er of s and t.

Proof Assume � is a normal E-uni�er of (s; t). Hence, EQ(L) +
 j= 8(�(s) =

�(t)) and since
 is complete,
(�(s))�
(�(t)). Since s; t and � are nor-

mal, none of the skolem constants at the left of
 appear in them. Hence

�(s)�
(�(s))�
(�(t))��(t). So � is a uni�er of s and t.

Vice versa, any uni�er is a trivial E-uni�er. 2

A direct consequence of this proposition is that step (a) in the NMGE process

can be simpli�ed by replacing E-uni�cation by uni�cation. Indeed, the terms oc-

curring in M

d�1

are in normal form wrt

d�1

. Also, all terms in the body of a rule

of P are in normal form wrt

d�1

since they are based on L.

As was observed in the introduction, the duality between uni�cation and com-

pletion can be extended further to the complete process of SLD+Abduction. The

latter procedure is a simple extension of SLD-resolution for de�nite abductive

programs [CP86]. Distinction is made between de�ned predicates which have a

de�nition (i.e. a possibly empty set of de�nite clauses with head matching the

predicate) and abductive predicates which have no de�nition. An SLD+Abduction

refutation is a �nite SLD-derivation during which only atoms of de�ned predicates

are selected for resolution and such that the �nal resolvent contains only abductive

atoms. So, given a de�nite abductive program P and a de�nite query Q, we can

describe an SLD+Abduction derivation of length n, n 2 IN [f1g, for Q as usual

as a triplet of sequences:

� (R

d

)

n

1

of resolvents with R

1

= Q.

� (C

d

)

n

2

of renamings of program clauses, sharing no variables with each other

or with Q.

� (�

d

)

n

2

of substitutions

such that each R

d

(d > 1) is derived from R

d�1

using C

d

and �

d

.

Below we assume without loss of generality that no "="-atom occurs neither

in a body of a de�nite clause of P or in Q. If this special predicate was to occur

in P , rename it by a new predicate, for example by eq=2, whose de�nition consists

of the unique clause:

eq(X;X)

The SLD+Abduction procedure takes as input a de�nite abductive program

and de�nite query. Below we de�ne the dual interpretation of the input. Recall

that a query Q = L

1

; : : : ; L

n

denotes a formula of the form 8(:L

1

_ : : :_:L

n

).

Therefore, :Q denotes the formula 9(L

1

^ : : :^L

n

).

62 Duality of Abduction and Model Generation

De�nition 3.5.4 Given a de�nite abductive program P and a de�nite query Q.

We de�ne the dual P

D

of (P;Q) as the extended program only-if(P) [f:Qg.

An example of a pair of a program and query and its dual were given in �gure

3.2.

Lemma 3.5.1 P

D

nFEQ is a range restricted extended program. For each de�ned

predicate p=n of P , one rule C

p

occurs in P

D

, having p(X) as the unique atom in

its body.

Range restricted means that every universal variable which occurs in the head

occurs in the body. The lemma is a straightforward consequence of the de�nition

of only-if(P).

Below, the duality between SLD+Abduction and NMGE suggested by the

example in section 3.1 is expressed formally. Informally, the selection of a de�ned

atom p(t) corresponds dually to the selection of the instance of the rule C

p

, having

the dual of the selected atom in its body. With each clause in the de�nition of p

corresponds a conclusion in C

p

. Therefore, we can associate with the selection of

a clause the selection of a conclusion of the rule. The uni�cation of the selected

atom and the head of the clause corresponds dually to the completion operation

of the equality atoms in the selected conclusion. The application of the mgu on

resolvent corresponds to the normalisation.

Lemma 3.5.2 Let L be a �rst order language, with an alphabet of variables L

V

,

L

sk

an alphabet of skolem constants disjunct from L, and D : L

sk

!L

V

a dual-

isation mapping. Let P be a de�nite abductive program, Q a de�nite query, both

based on L. Let (R

d

)

n

1

, (C

d

)

n

2

and (�

d

)

n

2

be an SLD-derivation for (P;Q) and

p

d

(t

1

; : : : ; t

n

d

) the atom selected at step d.

A unique rule C

p

d

=n

d

in P

D

corresponds with p

d

=n

d

and a conclusion E

j

d

corresponds with the clause C

d

. Let �

d

be the uni�er of the body of C

p

d

=n

d

with

D

�1

(p

d

(t

1

; : : : ; t

n

d

)). We de�ne Cl

d

; Sk

d

;

d

and M

d

as follows:

Cl

1

= :Q; Cl

d

= �

d

(C

p

d

=n

d

)

Sk

0

= fg; Sk

d

= D

�1

(var(fQ;C

2

; C

3

; : : : ; C

d

g)

0

=

1

= fg;

d

= D

�1

(�

d

o : : : o�

1

)

M

0

= fg; M

d

= D

�1

(f�

d

o : : :o�

i+1

(G

j

)j0 � i � d and

G

j

is an atom in R

i

g.

The tuple of sequences (Sk

d

)

n

0

, (M

d

)

n

0

, (

d

)

n

0

and (Cl

d

; j

d

)

n

1

de�nes a NMGE.

As an example consider the successful SLD+Abduction derivation in �gure 3.4.

The sequence of resolvents is:

 p(X;X) q(a; V)

3.5 Duality of SLD+Abduction and Model Generation. 63

The sequence of mgus is:

fg fX=ag

The sequence (Sk

d

)

2

0

of the dual NMGE is

fg fsk

1

g fsk

1

; sk

2

g

where D(sk

1

) = X and D(sk

2

) = V . The sequence (

d

)

2

0

is

fg fg fsk

1

!ag

The sequence of derived facts of the dual NMGE is

fg fp(sk

1

; sk

1

)gfp(a; a); q(a; sk

2

)g

Proof The lemma can be checked by a straightforward case analysis of the

operations that occur during a resolution step and a NMGE computation

step. The following correspondences are easily shown.

The selection of the atom in the resolvent and the clause correspond dually

to the selection of the rule and the conclusion respectively. Here we need

the fact that each rule in P

D

is range restricted: each universal variable in

the rule occurs in the body. If that was not the case, then additional choices

had to be made to instantiate the variables occurring in the conclusion only.

The duality would be broken.

The renaming of the program clause can be seen as the dual of the skolemi-

sation. This is because the used clauses and the query do not share variables.

The computation of the mgu corresponds to the completion of the set of

equalities. This is due to the fact that the completion can be computed

incrementally (Lemma 3.5.2) and the fact that the equation set to be solved

for the uni�cation corresponds exactly to the dual of the set of equality

atoms to be completed.

The application of the mgu and the addition of the literals of the used clause

to the resolvent correspond to the normalisation and assertion phase.

2

Theorem 3.5.2 For any de�nite query Q, an abductive refutation for Q and P

can be dually interpreted as a successful fair NMGE for only-if(P) + :Q. The set

of atoms of the generated model, restricted to the abducible predicates is the dual

of the abductive solution. The dual of the answer substitution is the restriction of

n

to the skolem constants dual to the variables in the query.

A failed SLD+Abduction derivation corresponds dually to a failed NMGE.

A fair SLD+Abduction derivation corresponds dually to a fair NMGE.

A (fair) SLD+Abduction tree corresponds dually to a (fair) NMGE-tree.

64 Duality of Abduction and Model Generation

Proof An SLD+Abduction derivation is failed when in the last resolvent an

atom of a de�ned predicate p=n with an empty de�nition is chosen or else a

clause whose head does not unify with the atom. In the �rst case, the rule

C

p=n

is of the form p(X

1

; : : : ; X

n

)!. Hence the NMGE fails. In the second

case, the completion of the atoms returns f

2

g and the NMGE fails also.

In a fair SLD-derivation, each atom occurring in a resolvent is eventually

selected. That this implies that the dual NMGE is fair seems evident. For-

mally, the proof goes as follows. Consider any de�ned atomA = p(t

1

; : : : ; t

n

)

in LHM

d

and the corresponding de�nition

C

p=n

= p(X)!E

1

; : : : ; E

l

De�ne �

A

= fX

1

=t

1

; : : : ; X

n

=t

n

g. We show that LHM

d

0

j= �

A

(E

1

_: : :_E

l

)

for some d

0

� d. This is equivalent of showing LHM

d

0

j=

d

0
(�

A

)(E

1

_ : : :_

E

l

) (by Proposition 3.4.2(b)).

Since A occurs in LHM

d

,

d

(A) 2M

d

(Lemma 3.4.1(c)). Two possibilities

exist (by Lemma 3.5.2): or

d

(A) is the normalisation of an atom B =

�

B

(p(X)) selected for step d or earlier, or

d

(A) is the dual of an atom in

R

d

.

In the �rst case LHM

d

j=

d

(�

B

)(E

1

_ : : :_E

l

) (Lemma 3.4.3 and Propo-

sition 3.4.2(a+b)). It su�ces to prove that

d

(�

A

)�

d

(�

B

). We have that

d

(�

A

)(p(X))) =

d

(A) =

d

(B) =

d

(�

B

(p(X)). The identity of

d

(�

A

)

and

d

(�

B

) follows straightforwardly from this equation and the fact that

both substitutions have X as domain.

We �nd that LHM

d

j=

d

(�

A

)(E

1

_ : : :_E

l

) and we can take d

0

= d. The

second case can be proven in an analogous way using the fairness of the

SLD-derivation.

Since the selection in a refutation is fair, a refutation corresponds to a fair

successful NMGE.

Because of all previous results, a fair SLD+Abduction tree corresponds to

a fair NMGET.

2

What happens if we drop FEQ from only-if(P)? In that case, we must replace

it by EQ. This implies that the completion procedure of FEQ, i.e. the dual inter-

pretation of uni�cation must be replaced by a completion procedure of EQ, for

example Knuth-Bendix completion. As a consequence the declarative and proce-

dural duality between the model generation and the abduction ceases to exist.

Consider the following trivial program P and query Q:

r(a)

 r(b)

3.6 Implementing NMGE 65

SLD(+Abduction) will fail on this query and this corresponds dually to the fact

that with FEQ, only-if(P) + :Q is inconsistent. If we replace FEQ by EQ in

only-if(P), the set fa = b; r(a)g can be extended to a model of only-if(P)+not(Q).

This model corresponds to the abductive solution fa = bg. Most current abductive

procedures will not return this solution and this shows that currently, FEQ is

inherently present in most current work on abduction in LP.

The following corollary was proved �rst by Clark [Cla78] for normal programs.

For the de�nite case it follows immediately from the theorem above.

Corollary 3.5.1 An SLD-refutation for a query Q and a de�nite program P with-

out abductive predicates is a consistency proof of only-if(P) + :Q. A failed SLD-

tree for a ground query Q and P is an inconsistency proof of only-if(P)+:Q, and

therefore of comp(P) + :Q.

Theorem 3.5.2 gives a duality in one direction: an SLD+Abduction refutation

can be dually interpreted as a fair NMGE. The reverse direction does not hold:

there exists fair NMGEs which do not correspond to SLD+Abduction refutations

and there exists models generated by fair NMGEs which do not correspond to

abductive solutions. Here is a trivial example of this situation. Consider the de�nite

program P = fp pg and the query p without unde�ned predicates. No SLD-

refutation for the query exists and the SLD-tree consists of one in�nite branch

p p p : : :. only-if(P)+:Q is the theory fp p pg. The dual of the in�nite

SLD-derivation is a fair NMGE and generates the model fpg. The NMGE dually

corresponds to an SLD-derivation but not to an SLD-refutation. In general, in

a fair SLD+Abduction tree, all branches correspond dually to fair NMGEs, and

hence dually generate models. However, only the �nite branches generate abductive

solutions. So, in the case of an in�nite branch, the duality is broken.

What this example shows is that in�nite fair NMGEs may generate models

which do not correspond to abductive solutions. Do �nite NMGEs always gener-

ate models corresponding to abductive solutions? Unfortunately, this is not the

case either. Consider the following NMGE for the same theory as in the previous

paragraph:M

0

= �;M

1

= fpg. This is a �nite fair NMGE, but the set of abductive

atoms in the model (= �) is not an abductive solution.

There is an important class of de�nite abductive programs where the duality

is perfect, namely for de�nite abductive acyclic programs and bounded queries

[AB90]. For these programs and queries, an SLD+Abduction tree is always �nite.

Using this fact and the completeness Theorem 3.4.2, it is easy to prove that the

abductive atoms in each model of the dual theory form an abductive solution.

3.6 Implementing NMGE

We have implemented two instances of the NMGE framework, one for FEQ and

one for EQ. Both instances are implemented not only for only-if parts of de�nite

66 Duality of Abduction and Model Generation

logic programs, but more generally for theories consisting of extended clauses. The

model generator for FEQ is easy to implement, since E-uni�cation can be replaced

by uni�cation (Proposition 3.5.3) and FEQ has a simple, incremental completion

procedure. Two technical problems deserve special attention. One problem is that

all universal variables of a rule being applied must be instantiated with ground

terms and the procedure matching bodies of rules with elements of M

d

only in-

stantiates variables of the body. We circumvent this problem by requiring that

the rules are in range restricted form (i.e. all universal variables occurring in the

head occur in the body in a non-equality atom), and by transforming each theory

violating this condition to range restricted form. This can be done by introducing

a domain predicate U=1 representing the domain of interpretation. For each uni-

versal variable X not occurring in the body, U(X) is added to the body. For each

existential variable X in a disjunct of the head, U(X) is added to the disjunct. For

example, a rule

p(X;X); q(f(X)) ! 9Z : p(g(X;Z); Y)

is transformed to:

p(X;X); q(f(X));U (Y)! 9Z : U(Z) ^ p(g(X;Z); Y)

In addition, rules of the form U(X

1

); : : : ;U(X

n

)!U (f(X

1

; : : : ; X

n

)) are added for

each functor f=n (n � 0).

A second problem is related to the fairness condition. Theorem 3.4.2 proves

that a fair NMGET exists, but without clarifying how to implement the condition.

The solution that we have adopted is the one used in Satchmo [MB87]: level

saturation. The idea is to generate conclusions level by level. For a given level

with associated M

d

;

d

, normal instances of rules which are violated in LHM

d

are

selected, conclusions are selected, skolemisation is performed but all facts in the

selected conclusion are stored apart. Only when all violated instances have been

applied, the completion

d+1

of

d

and the derived equality facts is computed, the

derived non-equality facts are added to M

d

and normalisation is applied, yielding

M

d+1

.

A second instance that was implemented is for EQ as underlying equality the-

ory. The completion of a ground TRS can be computed [Der87], [Sny89] and more-

over, e�cient algorithms exist ([Sny89]). Hence, EQ is an equality theory with

completion.Our prototype uses narrowing [MMR86] to compute normal E-uni�ers,

and an optimised form of the Knuth-Bendix algorithm [KB70] as completion pro-

cedure. The model generator operates on range restricted programs. The fairness

condition is implemented using level saturation.

Experiments with both systems are promising. They show that the dynamic

contraction, implemented by dynamic completion and normalisation, often avoids

exponential explosion and looping caused by the equality axioms. However, at

this point our prototypes are too primitive to be already of practical interest, as

3.7 Executing declarative speci�cations 67

was proven by the experiment described in the next section. In the future, the

implementation should be re�ned.

3.7 Executing declarative speci�cations

In chapter 1, we argued that model generation is an interesting problem solving

paradigm for declarative speci�cations. In principle, model generation is of use

whenever the problem to be solved is to �nd a possible state of some domain,

satisfying some set of constraints.

A type of problem which often can be naturally formulated in these terms, is

a puzzle. We illustrate this with a solution of the well-known �ve-houses puzzle,

also called the zebra puzzle. Five houses have di�erent colours and are occupied

by persons of di�erent nationality. Each person has his own drink, pet and pro-

fession. Additional information about the houses and their attributes is given. We

use the predicates has nat=2, has color=2 has drink=2, has prof=2, has pet=2

to represent the relations between the houses and their di�erent attributes. The

constraints are speci�ed as follows:

The Englishman lives in the red house:

9H : has nat(H; englishman) ^ has color(H; red)

The Spaniard has a dog:

9H : has nat(H; spaniard)^ has pet(H; dog)

The Japanese is a painter:

9H : has nat(H; japanese) ^ has prof(H; painter)

The Italian drinks tea:

9H : has nat(H; italian)^ has drink(H; tea))

The Norwegian lives in the �rst house on the left:

has nat(h1; norwegian)

In the green house, one drinks co�ee:

9H : has drink(H; coffee) ^ has color(H; green))

The white house is next to the blue one:

9H1;H2 : has color(H1; white) ^ next(H1;H2)^

has color(H2; green)

The sculptor breeds snails:

9H : has prof(H; sculptor) ^ has pet(H; snails)

In the yellow house lives a diplomat:

9H : has prof(H; diplomat) ^ has color(H; yellow)

In the middle house, one drinks milk:

has drink(h3;milk)

The blue house is near the house of the Norwegian:

9H1;H2 : has color(H1; blue) ^ near(H1;H2)^

has nat(H2; norwegian)

68 Duality of Abduction and Model Generation

The violinist drinks wine:

9H : has drink(H;wine)^ has prof(H; violinist)

The person with the fox lives near the doctor:

9H1;H2 : has pet(H1; fox) ^ near(H1;H2)^

has prof(H2; doctor)

The one with the horse lives near the diplomat:

9H1;H2 : has pet(H1; horse) ^ near(H1;H2)^

has prof(H2; diplomat)

Somebody has a zebra and somebody drinks water:

9H : has pet(H; zebra)

9H : has drink(H;water)

In order to complete the speci�cation, implicit information must be made ex-

plicit and added to the speci�cation:

The houses stand in a row:

next(H1;H2)! H1 = h1 ^H2 = h2 _H1 = h2 ^H2 = h3_

H1 = h3 ^H2 = h4 _H1 = h4 ^H2 = h5

next(h1; h2)^ next(h2; h3)^ next(h3; h4)^ next(h4; h5)

What means being near?

near(H1;H2)! next(H1;H2) _ next(H2;H1)

next(H1;H2)! near(H1;H2)

next(H1;H2)! near(H2;H1)

The predicates has color=1, has nat=2, has prof=2, has drink=2 and has pet=2

are typed:

has color(H;C)! house(H) ^ color(C)

has nat(H;N)! house(H) ^ nat(N)

has prof(H;S)! house(H) ^ prof(S)

has drink(H;D)! house(H) ^ drink(D)

has pet(H;P)! house(H) ^ pet(P)

We know what are the houses, the colours, the nationalities, the drinks,

the professions and the pets:

house(H)! H = h1 _H = h2 _H = h3 _H = h4 _H = h5

house(h1) ^ house(h2) ^ house(h3)) ^ house(h4)) ^ house(h4)

color(C)! C = red _C = yellow_

C = green _ C = blue _ C = white

color(red) ^ color(yellow) ^ color(green) ^ color(blue) ^ color(white)

pet(P)! P = dog _ P = horse _ P = snails _ P = fox _ P = zebra

pet(dog) ^ pet(horse) ^ pet(snails) ^ pet(fox) ^ pet(zebra)

nat(N)! N = norwegian _N = italian _N = japanese

_N = spaniard _N = englishman

3.7 Executing declarative speci�cations 69

nat(norwegian) ^ nat(italian) ^ nat(japanese)

^nat(spaniard) ^ nat(englishman)

prof(S) ! S = doctor _ S = violinist _ S = diplomat_

S = painter _ S = sculptor

prof(doctor) ^ prof(violinist) ^ prof(diplomat) ^ prof(painter)

^prof(sculptor)

drink(D)! D = wine _D = coffee _D = milk _D = tea_

D = water

drink(wine) ^ drink(coffee) ^ drink(milk) ^ drink(tea)^

drink(water)

Finally, we must express that each house has one colour, nationality, profession,

drink and pet:

has color(H;C1); has color(H;C2)! C1 = C2

has nat(H;N1); has nat(H;N2)! N1 = N2

has prof(H;S1); has prof(H;S2)! S1 = S2

has drink(H;D1); has drink(H;D2)! D1 = D2

has pet(H;P1); has pet(H;P2)! P1 = P2

house(H)! 9C;N; S;D; P : has color(H;C) ^ has nat(H;N)^

has prof(H;S) ^ has drink(H;D)^ has pet(H;P)

The problem is to �nd out the nationality, colour, drink, pet and profession of

each house. Just as for the exam scheduling example in chapter 1, the solution of

the problem is given by a model of the speci�cation. Note that equality appears

in the head and that two distinct constants represent always distinct objects.

Therefore, the NMGE instance for FEQ as equality theory with completion applies.

NMGE is able to solve the problem. However, the prototype shows an important

e�ciency problem, due to the clauses of the form:

nat(N)! N = norwegian _N = italian _N = japanese _ : : :

NMGE generates for each derived fact nat(sk) each of the �ve possibilities by

naive backtracking. This results in a combinatorial explosion, which in cooperation

with the other ine�ciencies of the prototype results in the long execution time.

This combinatorial explosion could be avoided by integrating constraint solving

techniques in NMGE. The impact of such techniques is important, as was shown

by [Van89], who presents a CLP solution for the puzzle.

Recently, important e�orts were made in the context of the Japanese Fifth

Generation Computer Systems project to implement an e�cient model generator.

This resulted in the implementation of MGTP, a e�cient parallel model generator

implemented on the Parallel Inference Machine [FHKF92]. A restriction of MGTP

is that it does not provide special treatment for equality. Integrating our tech-

niques for dealing with equality and techniques for constraints solving in NMTP

70 Duality of Abduction and Model Generation

could result in an e�cient procedure able to solve declaratively speci�ed model

generation problems.

In our opinion, the major distinction between our speci�cation and a solution

as in [Van89], even though the latter is less verbose than ours, is that our speci-

�cation can be developed without taking in account the problem to be solved. If

our problem would have been to know how many pets there are, or whether the

Japanese occupies the middle house, or -in case the speci�cation would have been

inconsistent- which fact should be deleted to restore the consistency, for each of

these problems, our domain speci�cation would have been of use. The same can not

be said of the solution in [Van89]. Here is -in our opinion- an essential distinction

between a speci�cation and a program. A logic speci�cation can be constructed as

a description of the domain knowledge, without looking at what problem is to be

solved (except that relevant information must be present). In contrast, a program

is built to solve a speci�c problem and encodes a problem speci�c representation

of the problem domain.

It should be noted that the above speci�cation can be simpli�ed by a di�erent

representation. Note that the predicates has nat=2, has color=2, etc. represent

one to one correspondences. Hence, these predicates could be represented by a

functor, e.g. a functor house of=1 which maps a colour, nationality, pet drink

or professions on houses. The formulation that the white house is near the blue

one becomes near(house of(white); house of(blue)). In this representation, the

axioms of FEQ do not apply any longer: e.g. house of(white) is equal to one of the

constants h

1

; : : : ; h

5

. Hence the instance of NMGE with EQ applies. Unfortunately,

now lots (60) of disequality facts are needed: h1 6= h2 , englishman 6= italian,

etc.. What is needed here is a new instance of the framework in which distinction

is made between constructor functors for which the axioms of FEQ hold, and

function functors for which FEQ does not hold. In the above example, all constants

representing houses, pets, etc.. are constructor constants, whereas house of=1 is

a function functor. This is a subject for future research.

3.8 Discussion

The current duality framework is limited to de�nite (abductive) programs. How

could the duality be extended to the normal case and to (abductive extensions

of) SLDNF? A natural dual interpretation for SLDNF, which extends the duality

of SLD, should interpret SLDNF derivations as model generations or at least as

consistency proofs in the only-if part of the completion. When constructing a fail-

ure tree for some atom to prove its negation, Clark showed that SLDNF basically

proves the negated atom using the only-if part of the completion. However, as its

name says, a failure tree shows in the �rst place a failure to construct a refutation

for the atom, hence it can be seen as a consistency proof of the negative literal wrt

the if-part of the program. Or, SLDNF's reasoning using the if-part corresponds

3.8 Discussion 71

to some form of model generation in the only-if part, while its reasoning in the

only-if part corresponds to consistency proving in the if-part. This suggests that

the dual theory of a normal abductive program should be the whole completion

of the program, and that an SLDNF refutation could be dually interpreted as a

form of model generation or at least consistency proof of :Q+ comp(P).

Unfortunately, this does not work. A trivial program shows this. Consider

the program P = fr :-:r q :-:p p :- falseg. The query q has a success-

ful SLDNF refutation. However, comp(P) + fqg is not consistent (and the dual

interpretation of SLDNF can de�nitely not be a model generation or consistency

proving wrt comp(P)).

This unpleasant conclusion made us wonder whether the problem to extend

the duality was not due to inherent problems of the completion semantics. It was

this problem that has triggered our research on the semantics of abductive logic

programs. The result of this work is presented in the next chapter. In the semantics

that we de�ne there, the duality will have a very nice extension, which goes as

follows:

Given is an abductive logic programP , a query Q and a set of abducible

facts �.

P + � j= :Q i� P and :Q are consistent and have a model which

extends �.

Therefore, any sound abductive procedure which returns a solution �

for a query Q, proves not only P +� j= :Q but also the consistency

of P +�. This implicit consistency proof can be seen as the dual in-

terpretation of the abductive derivation and replaces model generation

as dual interpretation of SLD+Abduction.

Related to our work, [Bry90] also indicates a relationship between abduction

and model generation. The nature of this work di�ers from ours. The goal of

[Bry90] is to develop an abductive procedure in the context of updating deductive

databases. A meta-theory is proposed which takes a query and an abductive pro-

gram P as input and, when executed by a model generator, generates abductive

solutions. Our work takes the alternative approach of executing the model gener-

ator directly on only-if(P). This allows us to present a more explicit duality, not

only on the level of the abductive solutions and the generated models, but also on

the �ne grained computational steps involved in the applied abduction and model

generation procedures. The meta-approach of [Bry90] makes no reference to the

only-if part of the abductive program. In addition, on a more technical level, no

equality atoms appear in the head of the meta-program and therefore, no special

treatment for FEQ is necessary.

In [CTT91], another approach is taken for abduction through deduction. An

abductive procedure is presented which for a given normal abductive program P

72 Duality of Abduction and Model Generation

and query Q, derives an explanation formula E equivalent with Q under the

completion of P :

comp(P) j= (Q, E)

The explanation formula is built of abductive predicates and equality only. It

characterises all abductive solutions in the sense that for any set � of abducible

atoms, � is an abductive solution i� it satis�es E.

Although this approach departs also from the concept of completion, it is of

a totally di�erent nature. In the �rst place, our approach aims at contributing

to the procedural semantics of abduction. This is not the case with the work in

[CTT91]. Another di�erence is that this approach is restricted to queries with a

�nite computation tree. If the computation tree contains an in�nite branch, then

the explanation formula cannot be computed.

Finally, we want to draw attention to an unexpected application of the duality

framework. An uncommon form of abduction is obtained if FEQ is replaced by

general equalityEQ and the equality predicate is abducible. This form of abduction

is presented in [CEP92]. Take the program P = fr(a) g. For this program, the

query r(b) has a successful abductive derivation.

 r(b) � = fg

2

� = fb = ag

 r(b) succeeds under the abductive hypothesis fb = ag. The duality framework

provides the technical support for e�ciently implementing this form of abduction.

The di�erence with normal abduction is that the completion procedure for FEQ

-the dual of uni�cation- must be replaced by a completion procedure for EQ, for

example Knuth-Bendix completion.

3.9 Summary

We summarise the contributions of this chapter. The starting point was the ques-

tion whether the well-known duality on the declarative level between abductive

solutions for a de�nite abductive program and models of the only-if part of its com-

pletion, could be extended to the procedural semantics. Dualizing uni�cation and

application of mgus in the abductive procedure, we found techniques for dealing

e�ciently with equality in model generation. The dual techniques extend existing

techniques found in Term Rewriting. The intuition of our approach is simple: dur-

ing model generation in a theory with equality in the head of rules, sets of facts are

generated which contain subsets of ground equality facts. By contracting the sets

of generated facts wrt to their ground equality facts, a compact representation is

obtained of the sets plus all their (possibly in�nite) logic consequences under the

3.9 Summary 73

underlying equality theory. The contraction is performed by transforming the set

of equality facts in a complete term rewriting system and normalising the gener-

ated non-equality facts wrt to this term rewriting system. The completion of the

equality facts corresponds dually with the computation of the mgu. The normal-

isation corresponds dually with the application of the mgu on the resolvent. For

theories with equality, we have shown that our NMGE procedure will often avoid

the in�nite loops which occur in an execution of the normal procedure. We have

illustrated the potential that such a procedure might have for executing declar-

ative speci�cations. Transferring the methods back to abduction, we will obtain

techniques for e�cient treatment of abduced equality atoms and for abduction

under the standard equality theory (instead of Free Equality).

74 Duality of Abduction and Model Generation

Chapter 4

A Semantics for Abductive

Logic Programs

4.1 Introduction.

Traditionally, logic programming is situated somewhere halfway between declara-

tive knowledge representation as in �rst order logic and procedural programming

as in classical imperative languages. At this moment, a uniform view on the normal

clause formalism as a declarative logic lacks. A large number of di�erent seman-

tics have been proposed [vEK76] [Cla78] [Fit85] [Kun89] [ABW88] [Prz88] [GL88]

[VRS91] [Prz90] [KM90b] [Dun91] [KM90c] [CTT91] etc.. . Recently, a number of

studies have been published which provide a �rst step towards more uniformity.

These studies integrate some of the above semantics in a unifying semantic frame-

work [Prz90] [BLMM92] [Bon92] [Dix92]. Such frameworks provide a formal way

of comparing di�erent semantics, showing relationships and dissimilarities. Here,

we present a unifying framework for the semantics of normal abductive logic pro-

grams with FOL axioms. The framework covers and extends the currently most

widely accepted families of semantics: completion semantics, stable and stationary

semantics and well-founded semantics.

In general, programmers view their logic programs as sets of de�nitions de-

scribing the truth of facts in terms of more primitive facts. This view extrapolates

to abductive logic programs: an abductive logic program can be considered as an

incomplete de�nition set, containing a number of unde�ned predicates. This view

motivated us to investigate how the truth values of facts in a model are constructed

in diverse types of semantics. The framework is based on the concept of justi�-

cation. A justi�cation can be seen as a mathematical object justifying the truth

value of facts in terms of truth values of other facts. Three di�erent instances of

the framework are obtained by de�ning three di�erent notions of justi�cations.

75

76 A Semantics for Abductive Logic Programs

A �rst notion of justi�cation is found in completion semantics [Cla78]. In the

completion semantics, a fact F is true i� it occurs in the head of a rule with a true

body. This suggests the following de�nition for what we call a direct justi�cation

of F : a set of facts occurring in the body of a ground instance of a rule with head

F . Not all direct justi�cations are successful: a direct justi�cation which contains

a false fact cannot be used to "justify" the truth of F . Since we allow 3-valued

interpretations, we can associate one of the values false (f), unknown (u) or true

(t) to a direct justi�cation, depending on the minimal truth value of its elements.

A directly justi�ed model is de�ned as an interpretation in which the truth value

of each fact is the value of its most successful direct justi�cation.

In completion semantics, de�nitions are not constructive: a program P

1

=

fp :- pg has a model fpg, in which p is directly justi�ed by itself. It is precisely

this feature, which makes the model so counter intuitive for many people. Pro-

grams like P

1

and like the well-known transitive closure program, which contain

positive loops, have motivated the development of other semantics, such as stable

semantics [GL88] and well-founded semantics [VRS91]. Recently, [Fag90] exposed

the notion of justi�cation underlying the stable semantics: direct justi�cations can

be concatenated to form trees of direct justi�cations. For a positive fact which

is justi�ed via an atomic rule we add true (denoted by) as descendant. For a

positive fact which does not match with the head of any rule we add false (de-

noted by

2

) as descendant. By maximally extending justi�cation trees, we obtain

trees in which all leaves contain ,

2

, unde�ned facts or negative de�ned facts

:F but no positive de�ned facts. In [Fag90], a justi�cation is de�ned as the set

of all non-root nodes of such trees. Instead, in our framework we use the trees as

justi�cations and call them partial justi�cations. The partial justi�cation of p in

P

1

is p p : : :. Now the cycle is apparent. It su�ces to assign the value f to

partial justi�cations with positive loops, to avoid the counter intuitive models. In

general a partial justi�cation which contains a false negative de�ned or unde�ned

fact in a leaf or which contains an in�nite branch of positive facts is assigned f as

value. Otherwise, if it contains an unknown fact in a leaf, it is assigned u as value.

Otherwise, its value is t. A justi�cation with value t has �nite depth and contains

only true leaves.

There remains a class of problematic programs for which de�nitions are still

not constructive, programs which are looping over negation. A standard example is

P

2

= fp :-:q q :-:pg. This program has stable models fpg and fqg. The justifying

partial justi�cation of p in the �rst model is p :q. The problem is that :q itself

depends on p. Or, stable semantics accept models with cyclic dependencies over

negation. Well-founded semantics do not, and the unique well-founded model is

fp

u

; q

u

g.

How can the notion of justi�cation be re�ned to detect these cyclic dependen-

cies? What is needed here is some structure which records dependencies of negative

facts on other facts. Our solution is based on an extension of the notion of direct

4.1 Introduction. 77

justi�cation for negative facts. A direct negative justi�cation for a negative fact

:F is a set obtained by selecting one fact from the body of each ground instance

of a rule whose head matches F , and adding the negation of this fact to the set.

E.g. the unique direct negative justi�cation for :q in P

2

is fpg. This set records

a one level dependency of :q on p. We de�ne a justi�cation as a maximal tree

obtained by concatenating direct positive and direct negative justi�cations. Such

trees have only

2

, and unde�ned facts in the leaves. In the program P

2

, the loop

over negation for p becomes apparent in the justi�cation p :q p : : :. This

notion of justi�cation turns out to be very similar to the notion of WFM-tree,

which was introduced in [PAA91a] in the context of a derivation procedure for

propositional logic programs under the well-founded semantics.

For a positive fact F to be true, intuitively one requires that it can be associated

a loop-free partial justi�cation with true leaves and, moreover, that this partial

justi�cation should be extendible to a justi�cation which contains no loop over

negation. Also, this justi�cation should comprise for each contained positive fact its

associated loop-free partial justi�cation. Justi�cations satisfying these conditions

are assigned the value t. Justi�cations that contain correct partial justi�cations

but loops over negation, are assigned the value u. Note that a justi�cation with

value t may contain negative loops: if we add the rule q :-:p to the program P

1

,

then q has justi�cation q :p :p : : :, which contains a negative loop. The

resulting justi�ed model is fq

t

g

1

. In general, we obtain the following de�nition:

the value of a justi�cation with a false leaf or with a positive loop is f. Otherwise,

if the justi�cation contains an unknown leaf or a loop over negation, its value is

u. Otherwise we de�ne its value as t. Justi�cations with value t have only true

leaves and all in�nite branches are negative loops.

The framework is based on 3-valued general interpretations and is de�ned for

abductive logic programs. Not only does it cover the existing semantics but it also

incorporates extensions of them, e.g. a new 3-valued completion semantics for ab-

ductive logic programs; e.g. justi�cation semantics as an extension of well-founded

semantics for abductive programs with general interpretations. As a result, the

framework still augments the abundance on di�erent semantics. However, by mak-

ing explicit how true facts are constructed in di�erent semantics, the framework

also shows that not all semantics are equal implementations of the view of pro-

grams as sets of constructive de�nitions. Well-founded semantics and its extension,

justi�cation semantics, are the only semantics in which a true positive fact never

depends on itself. Or, well-founded and justi�cation semantics provide the most

constructive formalisation of logic programs as sets of de�nitions.

1

That negative loops are allowed in true justi�cations, makes apparent this remarkable asym-

metry between positive facts and negative facts which is present in the closed world assumption

and in virtually all semantics for logic programs, starting from the Least Herbrand Model se-

mantics: a negative fact needs no proof: it su�ces that it is consistent with the theory to be true.

Therefore a true negative fact may depend on itself.

78 A Semantics for Abductive Logic Programs

A part of our work (sections 4.7, 4.8, 4.9) is devoted to exploring this view

of logic programs as constructive de�nitions (in the sequel the constructive de�-

nition view). From this point of view, a program with a loop over negation, like

P

2

, makes no sense. A rational solution would be to de�ne the program as con-

tradictory. The solution in well-founded semantics and justi�cation semantics of

assigning such facts truth value u seems better. Often inconsistencies of this type

are located in a small part of the program, and the rest of the program will have a

sensible meaning. Therefore, the use of u to allow local inconsistencies is a better,

more permissive solution because it enables graceful degradation of information

retrieval in the presence of inconsistent data

2

. Therefore, we propose to interpret

u as locally inconsistent instead of the weaker unknown. This does not mean that

no uncertainty can be represented in the formalism. As a matter of fact, an impor-

tant theorem of the framework is that any �rst order theory can be transformed to

a logically equivalent abductive logic program (wrt justi�cation semantics). The

expressivity of FOL for representing uncertainty is widely accepted. One success-

ful experiment of the representation of incomplete knowledge in abductive logic

programming, in which we have been mostly interested, is in temporal reasoning:

abductive event calculus has been successfully applied for AI-planning and tem-

poral reasoning under uncertainty [Esh88], [Sha89], [DMB92] (see also chapters 6

and 7).

The chapter is structured as follows. In sections 4.2 and 4.3, we de�ne three

notions of justi�cations and the associated notions of model and investigate the

properties of the resulting semantics. In section 4.4, the relationship with comple-

tion semantics is elaborated. In section 4.5, the relationship with stable, stationary

and well-founded model semantics is shown. In section 4.6, we present a duality

theorem: a theorem which extends the work in the previous chapter for normal

abductive programs. In section 4.7, the constructive de�nition view is compared

with the popular view of negation as negation by default or negation as abduction.

The two following sections 4.8 and 4.9 explore di�erent aspects of the constructive

de�nition view, such as the nature of negation and the representation of incom-

plete knowledge. The chapter ends with a conclusion (section 4.11). A short paper

on these results was published as [DD93a].

4.2 Justi�cation Semantics for logic programs

We de�ne the semantics of logic theories T consisting of a normal logic program

T

d

and a theory T

c

of FOL axioms. The semantics of T

c

is as de�ned in chapter

2. The semantics of the logic programs is based on the concept of justi�cation: a

2

In the presence of inconsistent data (e.g. p ^ :p), a �rst order theory entails any formula.

This abrupt collapse has been considered by many as a serious problem of classical logic, e.g. see

[THT87]. The introduction of local inconsistency in logic provides an adequate answer to this

critique.

4.2 Justi�cation Semantics for logic programs 79

de�ned fact is true if and only if it has a justi�cation.

Below we extend each language L with new propositional predicates and

2

. We extend each interpretation I such that H

I

() = t and H

I

(

2

) = f. For

notational simplicity, we de�ne a negation operator s on the set of positive and

negative facts: if F is a positive fact, then sF is de�ned as :F . If F is a negative

fact :F

0

, then sF is de�ned as F

0

. Observe that ::F is not identical to F ,

whereas ssF and F are identical. s can be extended to sets and sequences of

facts. We de�ne s =

2

and vice versa. The semantics de�ned in the following

section are based on 3-valued general interpretations. In the sequel of this chapter

we will denote normal atomic clauses p(t) :- by p(t) :- .

Recall from section 2.1 that for a ground fact F = p(t

1

; : : : ; t

n

),

~

I(F) denotes

the simple fact p(

~

I(t

1

); : : : ;

~

I(t

n

)).

De�nition 4.2.1 (Direct Positive justi�cation) Given is a language L, an

interpretation I, a logic program T

d

and a simple positive fact F of a de�ned

predicate p=n.

A set J is called a direct positive justi�cation (DPJ) for F if there exists a

ground instance F

0

:-F

1

; ::; F

k

of a rule of the de�nition of p=n with

~

I(F

0

) = F

and J = f

~

I(F

1

); ::;

~

I(F

k

)g.

If no such ground instance exists for F , then we call f

2

g a direct positive

justi�cation of F .

The intuition for allowing f

2

g as a justi�cation, is that F can only be true if

2

is true, i.e. in case of inconsistency. Due to this trick, each simple positive de�ned

fact has a direct justi�cation, and a direct justi�cation is never empty (due to our

notation for atomic rules A :-). A direct positive justi�cation is always �nite.

Example Consider a transitive closure program:

P

trans

= f tr(X;Y) :-p(X;Y)

tr(X;Z) :-p(X;Y); tr(Y; Z)

p(a; a) :-

p(b; c) :-

In any Herbrand interpretation, the fact tr(a; b) has the following direct justi-

�cations: fp(a; b)g, fp(a; a); tr(a; b)g, fp(a; b); tr(b; b)g, fp(a; c); tr(c; b)g.

The counterpart of a DPJ for a negative fact is the direct negative justi�cation

for negative facts.

De�nition 4.2.2 (Direct Negative Justi�cation) A set J is called a direct

negative justi�cation (a DNJ) for a negative simple fact :F of a de�ned predicate

i� it is obtained by selecting from each DPJ J

0

of F a fact G and adding sG to

J . Formally:

80 A Semantics for Abductive Logic Programs

� for each DPJ J

0

of F : sJ

0

\J 6= �

� for each F

0

2 J , there exists a DPJ J' of F : sF

0

2 J

0

A direct justi�cation (DJ) is a DPJ for a positive fact and a DNJ for a

negative fact.

Example One of the 8 DNJ 's for :tr(a; b) in P

trans

is:

f:p(a; b);:tr(a; b);:p(a; c)g

Analogously as for positive facts, each simple negative fact :F has a direct negative

justi�cation and a direct negative justi�cation is never empty. A direct negative

justi�cation can be in�nite. For example, consider the language with functors

0; f=1 and predicates p=0; q=1. The program consists of the rules

fp :- q(X) ; q(X) :-

2

g

The least Herbrand model of this program is �. The fact :p has an in�nite direct

negative justi�cation f:q(x)jx 2 HUg.

Before we de�ne the semantics associated with direct justi�cations, we intro-

duce the two other notions of justi�cations, called partial justi�cations and justi-

�cations. Both types are special cases of trees obtained by concatenating direct

justi�cations. In general, we call such a tree an open justi�cation.

De�nition 4.2.3 (Justi�cations) An open justi�cation J for a simple fact F

is a (possibly in�nite) tree of simple facts with F in the root. Each non-leaf node

contains a de�ned fact such that the set of descendants of the node form a direct

(positive or negative) justi�cation for F .

A partial positive justi�cation (PPJ) for a positive de�ned simple fact F is

an open justi�cation for F such that all non-leaves contain positive de�ned facts

and no leaf contains a positive de�ned fact.

A partial negative justi�cation (PNJ) for a negative de�ned simple fact F is

an open justi�cation for F such that all non-leaves contain negative de�ned facts

and no leaf contains a negative de�ned fact.

A justi�cation (J) J for F is an open justi�cation for F such that no leaf

contains a de�ned fact.

Example In any Herbrand interpretation of P

trans

, tr(a; b) has a unique partial

justi�cation without

2

, but it contains an in�nite branch of tr(a; b) facts.

This is shown in �gure 4.1. The negative fact :tr(a; b) has also partial justi-

�cation without

2

. It contains an in�nite branch of negative facts :tr(a; b).

This partial justi�cation is shown in �gure 4.2.

Both the partial justi�cations for tr(a; b) and :tr(a; b) are examples of jus-

ti�cations since they do not contain de�ned facts of the opposite sign in the

4.2 Justi�cation Semantics for logic programs 81

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
..
..
..
...
..
..
..
.

.

.

.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..

.
..
..
..
..
..
..
..
..
...
.
.
.

.

.
.
.
.

.

.
.
.

.

.
.
.

.

.

.

..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.

.
...
..
..
...
..
...
..
....
..
..
...
..
..
...
..

$p(a,a)$

$tr(a,b)$

VV

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
...
..
..
..
..
..
..
.

.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.

..
..
..
..
..
.
..
..
..
...
.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.

.

..
...
..
..
...
..
...
...
..
...
..
...
..
..
...

$p(a,a)$

$tr(a,b)$

VV

...

Figure 4.1: Partial Positive Justi�cation of tr(a; b)

...
..
..
...
..
..
...
...
...
..
...
..
..
...
..
.

:p(a; c)

.

.
.
.
..
.
.
.
..
.
.
.
.
..
.
......................
..
...
..
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
..
...
..
.

.

..
..
...
..
...
..
..
....
..
...
..
..
...
..
...

............
........
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.

.
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..
..
..
...
..
..
..
..
.

....
...
....
....
...
..
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..

:tr(a; b)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
.
.
.
.
..
.
.
.
.
.
.
..
.
.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

..
...
..
..
...
..
...
...
..
...
..
...
..
..
...

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
...
..
...
..
..
....
..
...
..
..
...
..
...

:tr(a; b)

:p(a; b)

Figure 4.2: Partial Negative Justi�cation of :tr(a; b)

leaves. Now we add the clause q :-:tr(a; b) to P

trans

. q has a partial justi-

�cation p :tr(a; b). It has a justi�cation obtained by concatenating the

justi�cation of :tr(a; b) in �gure 4.2 to the partial justi�cation of q. This

justi�cation is shown in �gure 4.3.

Example Consider the following program in which r is unde�ned:

P = f p :- r;:q

q :- r;:p g

Figure 4.4 gives a justi�cation for p in an interpretation in which r is true.

Note that it contains an in�nite branch with an in�nite number of positive

and negative facts.

In appendix B, we show that the concept of open justi�cation is well-de�ned

82 A Semantics for Abductive Logic Programs

.

.
..
.
.
.
..
.
.
.
..
.
.
.
.
.....................
..
..
...
..
...
..
...
..
...
..
...
..
..
...
..
...
..
...
..
...
..
..
..

..
..
..
...
..
...
..
..
....
..
...
..
..
...
..
..

......
..............

.

..
.
.
.
.
.
..
.
.
.
.
.
..
.

..
..
..
..
...
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
...
..
..

..
....
....
...
....
...
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.

.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
.

:tr(a; b)

...
..
...
..
..
...
..
....
..
..
...
..
...
..
..
.

:p(a; c)

...
..
...
..
..
...
..
....
..
..
...
..
...
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.
..
.
.
..
.
.
..
.
.
..
.
.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

..
...
..
...
..
..
...
...
...
..
..
...
..
...
..

.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.

.

.
.
.
.
.
.

.

.

.

.
.
.
.
.

.

.

.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.

.

.
.
.
.
.
.
.

.

.

.
.
.
.
.
.

.

.

.

.
.
.
.
.

.

.

.

.

.
.
.
.

.
.
.
.
.
.
.
.

.

.

.

.
..
...
..
..
...
..
...
...
..
...
..
...
..
...
..

q :tr(a; b)

:p(a; b)

Figure 4.3: Justi�cation of p

.

..
.
..
.
..
.
.
..
.
..
.
...
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
...
..
...
..
..
....
..
...
..
..
...
..
...
.

..
..
...
..
...
..
..
....
..
...
..
..
...
..
...
.

p :q

r

.

..
.
..
.
..
.
.
..
.
..
.
...
.
.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

..
..
...
..
...
..
..
....
..
...
..
..
...
..
...
.

..
..
...
..
...
..
..
....
..
...
..
..
...
..
...
.

p :q

r

Figure 4.4: Justi�cation of p

and that the set of justi�cations is equipped with a partial order which is de�ned

as follows:

J

1

< J

2

i� J

2

is obtained by extending J

1

at the leaves.

Moreover, < satis�es the important property, that each monotonically increas-

ing sequence of open justi�cations has a LUB or a �xpoint. On the set of open

justi�cations, a concatenation operation is de�ned. Formally, this operation can

be de�ned as follows. Let J be an open justi�cation, S a subset of the leaves of J ,

h a mapping with domain S which maps a node N in S to an open justi�cation

of the label of N . We de�ne the concatenation of J and h as the extension of J

obtained by attaching h(N) to J in N for each N in S.

In the sequel, we distinguish between a path and a branch in an open justi-

�cation J . A path is a sequence of facts (F

0

; F

1

; : : :) with F

0

in the root of J ,

and each F

i

a descendant of F

i�1

in J . A branch is a maximal path. A positive

loop is a branch with an in�nite number of positive facts and a �nite number of

negative facts. An example is the sequence of tr(a; b) facts in �gure 4.1. A negative

loop is a branch with an in�nite number of negative facts and a �nite number of

positive facts. Examples are the branches with an in�nite number of :tr(a; b) facts

4.2 Justi�cation Semantics for logic programs 83

in �gures 4.2 and 4.3. A loop over negation is a branch with an in�nite number of

positive and negative facts. An example is the branch with an in�nite number of

p and :q facts in �gure 4.4. J is looping if it contains a positive loop or a loop

over negation. Otherwise it is called loop-free (observe that loop-free justi�cations

may contain negative loops).

In the context of building a PPJ , we call the leaves of an open justi�cation

with positive de�ned facts open leaves and the branches leading to them open

branches. In the context of building a PNJ , the leaves with negative de�ned facts

and the branches leading to such leaves are called open. In the context of building

a J , leaves with positive and negative de�ned facts and branches leading to them

are called open.

Next we de�ne the value of a justi�cation as a measure for its success.

De�nition 4.2.4 (value of a justi�cation) Let I be an interpretation.

Let B be a branch. If B is �nite and has F as leaf then the value of B under I

is H

I

(F). With respect to in�nite branches, we de�ne the value of a positive loop

as f, the value of a loop over negation as u and the value of a negative loop as t.

We denote the value of B under I by val

I

(B).

Let J be an open justi�cation. The value of J under I is minfval

I

(B)jB is a

branch of Jg. We denote J 's value by val

I

(J). J is false, weak, strong under I if

val

I

(J) is f, u, t respectively.

Observe that for any branch B, val

I

(sB) = val

I

(B)

�1

.

The essential idea in our semantics is that an interpretation is a model of

a logic program P i� for each de�ned positive simple fact F , its truth value is

equal to the value of its most successful (direct justi�cation)(partial justi�cation)(

justi�cation). We call these values the supported values of F wrt (DJS) (PJ S)

(J S) and denote them by SV

DJ

(P; I; F), SV

PJ

(P; I; F), SV

J

(P; I; F) respectively.

Here (DJS) (PJS) (J S) stand for (direct justi�cation)(partial justi�cation)

(justi�cation) semantics. Formally (SV

DJ

(P; I; F)) (SV

PJ

(P; I; F)) (SV

J

(P; I; F))

denote maxfval

I

(J)jJ is a (DJ) (PJ) (J) of F in Pg. In general, when P is clear

from the context, we drop it as an argument, writing SV

DJ

(I; F), SV

PJ

(I; F),

SV

J

(I; F).

De�nition 4.2.5 A (directly justi�ed) (partially justi�ed) (justi�ed) model of a

logic program T

d

is an interpretation I of L such that for every simple positive

de�ned fact F :

H

I

(F) = (SV

DJ

(I; F))(SV

PJ

(I; F))(SV

J

(I; F))

Moreover the interpretation of unde�ned predicates is two-valued.

A (directly justi�ed)(partially justi�ed)(justi�ed) model of a theory T consist-

ing of a logic program T

d

and FOL axioms T

c

is a (directly justi�ed)(partially

justi�ed)(justi�ed) model of T

d

and a model of T

c

.

84 A Semantics for Abductive Logic Programs

De�nition 4.2.6 (Entailment) Given is some theory T and closed formula F

both based on L.

We de�ne T j=

DJS

F i� for any directly justi�ed model M of T , H

M

(F) = t.

We de�ne T j=

PJS

F and T j=

J S

F in the analogous way.

Example Let L be the language with functors 0/0 and f/1, and predicate p=1.

P

2

= f p(X) :-p(f(X)) g

A fact p(f

n

(0)) in a Herbrand interpretation has the direct justi�cation:

p(f

n

(0)) p(f

n+1

(0))

A directly justi�ed Herbrand model is:

fp(f

n

(0))

t

jn 2 INg

This interpretation is not a partially justi�ed or justi�ed model. E.g. p(0) has

(partial) justi�cation p(0) p(f(0)) : : :, which contains a positive loop.

Hence, the only (partially) justi�ed Herbrand model is the empty Herbrand

interpretation. This example shows that a positive loop is not always caused

by cyclic dependencies.

Example The transitive closure program P

trans

has a unique partially justi�ed

Herbrand model, in which tr(a; b) is false. However, there exists a non-

Herbrand model in which tr(a; b) is true:

(D = fxg; fa! x; b! x; c! xg; fp(x; x)

t

; tr(x; x)

t

g)

p(x; x) has the strong partial justi�cation p(x; x) , using for example

the atomic rule p(a; a) :- of P . tr(x; x) has the strong partial justi�cation

tr(x; x) p(x; x) , using the rule tr(X;Y) :- p(X;Y). In order to avoid

this undesired model, FEQ must be added.

Example Let L again be the language with functors 0/0 and f/1, and predicate

p=1.

P

3

= f p(X) :-:p(f(X)) g

A fact p(f

n

(0)) has direct justi�cation p(f

n

(0)) :p(f

n+1

(0)). Two di-

rectly justi�ed and partially justi�ed Herbrand models are:

fp(f

2�n

(0))

t

jn 2 INg

fp(f

2�n+1

(0))

t

jn 2 INg

4.3 Consistency and relationships. 85

These interpretations are not justi�ed models. E.g. p(0) in the �rst interpre-

tation has justi�cation p(0) :p(f(0)) p(f

2

(0)) : : : which contains a

loop over negation. Hence, the only justi�ed Herbrand model is:

fp(f

n

(0))

u

jn 2 INg

This example shows that a loop over negation is not always caused by cyclic

dependencies.

It is absolutely indispensable that unde�ned predicates have two-valued inter-

pretations. Consider a trivial theory T

0

with empty de�nition set and with FOL

axioms fpg. The least one expects is that this theory entails p. If we would al-

low 3-valued interpretations for p, then p is not entailed because there is a weak

model where p is not true. We could weaken the notion of entailment, and say

that T j= F i� F is at least u in all models of P . Then T

0

entails p but other

undesirable e�ects pop up. Extend T

0

with p! q. In any case we expect that the

new theory entails q. However, fp

u

; q

f

g is a weak model in which q is false.

In the sequel, we extend the notion of supported value to unde�ned facts and

negative facts. The supported value under I of an unde�ned fact F is de�ned as

H

I

(F). The supported value under I of a negative simple fact F can be de�ned

analogously as for positive simple facts: it is equal to the value of the best (direct)

(partial) justi�cation of F .

4.3 Consistency and relationships.

The �rst theorem is of fundamental importance in our theory. It asserts that a fact

and its negation have inverse supported values in the three types of semantics.

Theorem 4.3.1 (consistency) Let I be an interpretation, F be a simple fact.

(a) SV

DJ

(I; F) = SV

DJ

(I;sF)

�1

(b) SV

PJ

(I; F) = SV

PJ

(I;sF)

�1

(c) SV

J

(I; F) = SV

J

(I;sF)

�1

A direct consequence of this theorem is that in a model of each type, the truth

value of negative facts is also equal to their supported value. This restores the

asymmetry between positive and negative facts in the de�nition of model which

requires only that positive facts have truth value equal to their supported value. In

the future, when we refer to a fact F , F may be both positive or negative, unless

explicitly indicated.

Despite the conceptual simplicity of the theorem, its proof turns out to be

tedious. It uses the following lemma.

Lemma 4.3.1 Let F be a simple fact.

86 A Semantics for Abductive Logic Programs

(a) For any direct justi�cation J

1

for F and J

2

for sF : J

1

\sJ

2

6= �.

(b) For any partial justi�cation J

1

for F and J

2

for sF , there exist branches

B

1

, B

2

in J

1

, J

2

resp. such that B

2

= sB

1

.

(c) For any justi�cation J

1

for F and J

2

for sF , there exist branches B

1

, B

2

in J

1

, J

2

resp. such that B

2

= sB

1

.

Proof (a) is trivial by de�nition of DNJ .

(b) and (c) can be proven in a similar way by applying (a) repeatedly. We

prove only (b). Assume that F is a positive fact. We build two sequences

of paths (B

i

) and (B

0

i

) in J

1

and J

2

. For each i, B

i

and B

0

i

are paths of

length i in J

1

and J

2

resp. If i > 0, then B

i

, B

0

i

are extensions of B

i�1

, B

0

i�1

respectively and B

i

= sB

0

i

.

We de�ne B

1

and B

0

1

as paths of length 1, containing F;sF respectively.

Assume that we obtained B

i

and B

0

i

for some i � 0. The terminal nodes

of B

i

and B

0

i

are labelled with F

0

and sF

0

. If F is an unde�ned fact, so is

sF

0

; if F

0

is a negative de�ned fact, then sF

0

is a positive de�ned fact. In

both cases, F and sF

0

are leaves of J

1

and J

2

resp. and the lemma follows

from the induction hypothesis.

Assume that the terminal facts of B

i

and B

0

i

are not leaves of J

1

and J

2

.

Now we can apply (a) of the lemma. Consider the direct justi�cations Jd

1

of F

0

in J

1

, and Jd

2

of sF

0

in J

2

. There exists a fact F

00

in Jd

1

, such that

sF

00

is a fact in Jd

2

. De�ne B

i+1

as the path leading to F

00

, B

0

i+1

as the

path leading to sF

00

. Clearly B

0

i+1

= sB

i+1

.

2

Proof of theorem 4.3.1

(a) Let F be a positive simple fact. Consider a maximal DPJ J for F :

val

I

(J) = SV

DJ

(I; F). Every DNJ J

0

for sF contains the negation of a

fact from J . Therefore,

val

I

(J

0

)� maxfH

I

(sG)jG 2 Jg

= (minfH

I

(G)jG 2 Jg)

�1

= (val

I

(J))

�1

= SV

DJ

(I; F)

�1

So SV

DJ

(I;:F) = max(fval

I

(J

0

)jJ

0

is a DNJ of :Fg) � SV

DJ

(I; F)

�1

.

To �nd the reverse inequality, we construct aDNJ J for sF in the following

way: for every DPJ J

0

of F , select a fact from J

0

with minimal truth value

and add its negation to J . The value of J can be computed as follows:

val

I

(J) = minfH

I

(sG)j9J

0

: J

0

is a DPJ of F: val

I

(J

0

) = H

I

(G)g

4.3 Consistency and relationships. 87

= (maxfH

I

(G)j9J

0

: J

0

is a DPJ of F: val

I

(J

0

) = H

I

(G)g)

�1

= (maxfval

I

(J

0

)jJ

0

is a DPJ of Fg)

�1

= SV

DJ

(I; F)

�1

Therefore: SV

DJ

(I;:F) � val

I

(J) = SV

DJ

(I; F)

�1

.

(b) The proof of (b) consists of three steps. In the �rst step we show

for any simple fact F , SV

PJ

(I; F) � SV

PJ

(I;sF)

�1

. This implies that

if SV

PJ

(I; F) = t then SV

PJ

(I;sF) = f. In the second step, we show that

for any positive simple fact F , if SV

PJ

(I; F) � u then SV

PJ

(I;:F) � u.

These two items together imply directly that for a simple positive fact F , if

SV

PJ

(I; F) = u, then SV

PJ

(I;:F) = u: indeed, by the �rst SV

PJ

(I;:F) �

u; SV

PJ

(I;:F) cannot be equal to t; otherwise by the �rst item, SV

PJ

(I; F)

was necessarily f. In the third step, we show that for any positive simple

fact F , if SV

PJ

(I; F) = f then SV

PJ

(I;sF) = t.

The three items prove (b) for positive facts F . The proof of (b) for negative

facts can be derived directly from the case for positive facts.

Consider the �rst step. Let F be a de�ned fact and consider a maximal PJ

J of sF . Every PJ J

0

of F comprises the negation of a branch B of J

(lemma 4.3.1). As in (a):

val

I

(J

0

) � val

I

(sB)

� maxfval

I

(sB

0

)jB

0

is a branch of Jg

= (minfval

I

(B

0

)jB

0

is a branch of Jg)

�1

= (val

I

(J))

�1

= SV

PJ

(I;sF)

�1

Hence, SV

PJ

(I; F) = max(fval

I

(J

0

)jJ

0

is a PJ of Fg) � SV

PJ

(I;sF)

�1

The second step is more di�cult to prove. Let F be a positive fact such

that SV

PJ

(I; F) � u. We construct a monotonically increasing sequence

(J

i

) of open justi�cations which converges to a PNJ for :F which is at

least weak. Each J

i

satis�es the following conditions:

(i) J

i

is an open justi�cation for :F with depth � i.

(ii) All non-leaves in J

i

contain negative de�ned facts and all leaves con-

taining negative de�ned facts occur at depth i.

(iii) All unde�ned leaves and positive de�ned leaves in J

i

are at least un-

known.

(iv) For each de�ned negative fact :F

0

in a leaf, SV

PJ

(I; F

0

) � u.

De�ne J

0

as the tree with as root and only node :F . J

0

satis�es the con-

ditions in a trivial way. We construct J

i+1

by simultaneously extending all

88 A Semantics for Abductive Logic Programs

open leaves of J

i

containing a negative fact :F

0

with a DNJ J

dn

. We must

select from each DPJ J

dp

of F

0

one fact G and add sG to J

dn

. G is se-

lected as follows: if J

dp

contains an unde�ned or negative de�ned fact which

is false or unknown, then we select this fact. Otherwise, since F

0

has no

strong PPJ , there must exist a positive de�ned fact in J

dp

which has no

strong PPJ . We select this fact as G.

One easily veri�es that J

i+1

satis�es the four conditions. This sequence is

monotonically increasing, hence it has a �xpoint J , which is obviously a

PNJ for :F , and since all leaves are at least unknown, J is at least weak.

The third step is the case that a positive F has only false PPJ 's. In a very

similar way as the second step, we construct a monotonically increasing

sequence (J

i

) of open justi�cations for :F , which has a PNJ as limit.

Each J

i

satis�es the following conditions:

(i) J

i

is an open justi�cation for :F with depth � i.

(ii) All non-leaves in J

i

contain negative de�ned facts and all leaves con-

taining negative de�ned facts occur at depth i.

(iii) All unde�ned leaves and positive de�ned leaves in J

i

are true.

(iv) For each de�ned negative fact :F

0

in a leaf, SV

PJ

(I; F

0

) = f.

De�ne J

0

as the tree with as root and only node :F . J

0

satis�es the con-

ditions in a trivial way. We construct J

i+1

by simultaneously extending all

open leaves of J

i

containing a negative fact :F

0

with a DNJ J

dn

. We must

select from each DPJ J

dp

of F

0

one fact G and add sG to J

dn

. G is se-

lected as follows: if J

dp

contains an unde�ned or negative de�ned fact which

is false, then we select this fact. Otherwise, since F

0

has only false PPJ 's,

there must exist a positive de�ned fact in J

dp

which has only false PPJ 's.

We select this fact as G.

As for the second case, J

i+1

satis�es the four conditions. The �xpoint J is

a strong PNJ of :F . This �nishes the proof of (b).

(c) The proof of (c) is very similar to (b). As in (b), we �nd from lemma

4.3.1 that for each simple fact F , SV

J

(I; F) � SV

J

(I;sF)

�1

. Below we

will proof that for any positive or negative simple fact F , if SV

J

(I; F) � u

then SV

J

(I;sF) � u. This su�ces for the theorem. Indeed, from the �rst

item it follows that if SV

J

(I; F) = t then SV

J

(I;sF) = f; if SV

J

(I; F) = u

then from the �rst item SV

J

(I;sF) � u but cannot be t since otherwise

by the �rst item SV

J

(I; F) = SV

J

(I;ssF) = f. If SV

J

(I; F) = f, then

by the second item, SV

J

(I;sF) � u, but SV

J

(I;sF) = u is impossible,

since we just showed that then SV

J

(I; F) = SV

J

(I;ssF) = u. Hence,

SV

J

(I;sF) = t.

4.3 Consistency and relationships. 89

It remains to prove that if SV

J

(I; F) � u, then sF has at least a weak J .

In a �rst step, we show that if SV

J

(I; F) � u, then there exists a loop-free

partial justi�cation J

p

for sF such that all unde�ned leaves of J

p

are at

least unknown and for all de�ned leaves F

0

, SV

J

(I;sF

0

)) � u.

Using this result, the proof of the theorem can then be terminated easily as

follows. Observe that for each of the leaves F

0

, sF

0

satis�es the condition

as F in the �rst step, namely SV

J

(I;sF

0

)) � u. Hence we can re-apply

the �rst step on the leaves of the PPJ . We can continue to do so, and

this process yields a sequence (J

i

) of open justi�cations which converges to

a justi�cation J of sF with all unde�ned leaves at least unknown and no

positive loops. Hence, we �nd SV

J

(I;sF) � u.

The proof of the �rst step is split up in two cases, depending on the sign of F .

We �rst consider the case that F is a positive fact. Assume SV

J

(I; F) � u.

We construct a monotonically increasing sequence (J

i

) which converges to

a PNJ J

p

of :F . All unde�ned leaves of J

p

are at least unknown. For each

positive de�ned leaf F

0

, SV

J

(I;:F

0

)) � u. The construction is very similar

as in (b). Each J

i

satis�es the following conditions:

(i) J

i

is an open justi�cation for :F with depth � i.

(ii) All non-leaves in J

i

contain negative de�ned facts and all leaves con-

taining negative de�ned facts occur at depth i.

(iii) All unde�ned leaves in J

i

are at least unknown.

(iv) For each positive or negative de�ned leaf F

0

, SV

J

(I;sF

0

) � u.

De�ne J

0

as usual. We construct J

i+1

by simultaneously extending all open

leaves of J

i

containing a negative fact :F

0

with a DNJ J

dn

. J

dn

is con-

structed by selecting from each DPJ J

dp

of F

0

one fact G and adding sG

to J

dn

. If J

dp

contains an unde�ned fact which is false or unknown, then

we select this fact as G. Otherwise, since SV

J

(I; F

0

) � u, there must exist

a positive or negative de�ned fact in J

dp

whose supported value � u. We

select this fact as G. Clearly, J

i+1

satis�es the conditions.

The �xpoint of (J

i

) is a PNJ for :F , such that all unde�ned leaves are at

least unknown and all de�ned leaves are positive and their negations have

supported value � u.

Now take the second case in which for a negative fact :F , it is given that

SV

J

(I;:F) � u. We must show that F has a loop-free PPJ , with all

unde�ned leaves at least unknown and for all negative de�ned leaves :F

0

,

SV

J

(I; F

0

) � u. We proceed here by assuming the converse, that F has no

such a PPJ and then constructing a strong J for :F .

By assumption, each PPJ of F has a false unde�ned leaf or contains a

positive loop or contains a negative de�ned leaf :F

0

such that SV

J

(I; F

0

) =

90 A Semantics for Abductive Logic Programs

t. We construct a PNJ J

p

for :F such that all unde�ned leaves are true and

all positive de�ned leaves have a strong J . Using J

p

, it is straightforward

to construct a strong J for :F . This contradicts SV

J

(I;:F) � u.

J

p

is constructed as the �xpoint of a monotonically increasing sequence (J

i

).

Each J

i

satis�es the following conditions:

(i) J

i

is an open justi�cation for :F with depth � i.

(ii) All non-leaves in J

i

contain negative de�ned facts and all leaves con-

taining negative de�ned facts occur at depth i.

(iii) For all unde�ned facts or positive de�ned facts F

0

in a leaf, it holds

that SV

J

(I; F

0

) = t

(iv) For each de�ned negative fact :F

0

in a leaf, F

0

satis�es the same

condition as F , namely each PPJ of F

0

has a false unde�ned leaf or

contains a positive loop or contains a negative de�ned leaf :F

0

such

that SV

J

(I; F

0

) = t.

De�ne J

0

as usual. We construct J

i+1

by simultaneously extending all open

leaves of J

i

containing a negative fact :F

0

with a DNJ J

dn

. We select from

each DPJ J

dp

of F

0

one fact G and add sG to J

dn

. If J

dp

contains a false

unde�ned fact or a negative de�ned fact whose negation has a strong J ,

then we select such a fact as G.

Assume J

dp

does not contain such a fact. Assume moreover that for each

positive de�ned fact F

00

in J

dp

, there exists a PPJ of F

00

with all leaves at

least unknown and no positive loops and all negative de�ned leaves have a

negation with supported value at most unknown. By concatenating all these

PPJ s with J

dp

we obtain a PPJ for F

0

which contradicts condition (iv).

Hence, there exists at least one positive de�ned fact which does not satisfy

the assumption. Select such a fact as G.

The �xpoint of (J

i

) is a PNJ for :F , and all unde�ned leaves are true,

all de�ned leaves have a strong J . Hence :F has a strong J , which is the

desired contradiction.

So, at this point we have that for each fact F for which SV

J

(I; F) � u, sF

has a loop-free PJ such that all unde�ned leaves are at least unknown and

for all de�ned leaves F

0

, SV

J

(I; F

0

) � u. Moreover, each de�ned fact occurs

at least at depth 1 (since F and the de�ned leaves in its partial justi�cation

have a di�erent sign). As indicated before we can now construct a mono-

tonically increasing sequence (J

i

) of open justi�cations for F , such that all

unde�ned leaves are at least unknown, all de�ned leaves occur at least at

depth i and moreover, the de�ned leaves of J

i+1

have a di�erent sign than

the de�ned leaves of J

i

. The sequence (J

i

) converges to a justi�cation for F ,

which comprises only leaves which are at least unknown. No positive loop

4.3 Consistency and relationships. 91

can occur since all partial justi�cations are loop-free and signs of de�ned

leaves of J

i

and J

i+1

are di�erent. Hence the justi�cation is at least weak.

2

Since a justi�cation comprises a partial justi�cation which comprises a direct

justi�cation, one expects a relationship between the corresponding semantics.

Theorem 4.3.2 A justi�ed model of a program is a partially justi�ed model. A

partially justi�ed model is a directly justi�ed model.

Proof Let I be a justi�ed model. It su�ces to show that for each positive or

negative fact F : SV

PJ

(I; F) = SV

J

(I; F). Consider a maximal justi�cation

J of F . Clearly, J contains a partial justi�cation J

p

for F as a subtree. We

show that val

I

(J) � val

I

(J

p

). First, if val

I

(J) is f, then nothing has to be

proved. Second, assume that val

I

(J) is t. All unde�ned leaves of J and J

p

are true. For all de�ned leaves of J

p

, J comprises a strong justi�cation, so

they must be true. J and therefore J

p

do not contain a positive loop. Hence,

J

p

is strong.

Third assume val

I

(J) is u. Again all unde�ned leaves of J

p

are true and J

p

does not contain a positive loop. All de�ned leaves of J

p

must be at least

unknown since J contains for each of them at least a weak justi�cation.

Hence, val

I

(J

p

) is at least u.

This proves that for each fact F : SV

PJ

(I; F) � SV

J

(I; F). Assume that for

some fact SV

PJ

(I; F) > SV

J

(I; F). Then by theorem 4.3.1, SV

PJ

(I;sF) <

SV

J

(I;sF). This is a contradiction.

In exactly the same way it can be proved that a partially justi�ed model is

a directly justi�ed model. 2

An important consequence of this theorem is that wrt entailment, a logic con-

sequence wrt DJS is a logic consequence wrt PJS. A logic consequence wrt PJS

is a logic consequence wrt J S.

Theorem 4.3.3 Let T be a theory, F some FOL formula both based on L.

(a) If T j=

DJS

F then T j=

PJS

F

(b) If T j=

PJS

F then T j=

J S

F

The proof is trivial. The theorem is important: it guarantees that a deductive or

abductive procedure which is sound wrt DJS is also sound wrt PJS and J S

3

.

If it is sound wrt PJS it is sound wrt J S. Given that DJS is equivalent with

completion semantics (as was announced in the introduction and will be proved

3

A model generation procedure sound wrt DJS is obviously not necessarily sound wrt PJS

and JS .

92 A Semantics for Abductive Logic Programs

in section 4.4), the theorem implies also that the completion of a logic program

can always be used as a sound �rst order logic approximation of the meaning of a

program under PJS or J S.

The next theorem asserts that each logic program is consistent wrt (DJS)

(PJS) (J S). Recall from section 2.1 that an incomplete interpretation for some

subset of the predicates of L is a partial interpretation of which the truth function

is de�ned only for the speci�ed predicates.

Theorem 4.3.4 Given is a logic program T

d

and an incomplete interpretation I

for the unde�ned predicates of L only.

(a) There exists a directly justi�ed model of T

d

extending I.

(b) There exists a partially justi�ed model of T

d

extending I.

(c) There exists a unique justi�ed model of T

d

extending I.

Proof By theorem 4.3.2, (a) and (b) follow trivially from (c).

Let I be an incomplete interpretation for the unde�ned predicates. We de�ne

the interpretations of the de�ned predicates in the following way. Consider

the set of all justi�cations for all positive de�ned facts in I. Observe that

all leaves of a justi�cation contain unde�ned facts. Therefore, given I, the

value of a justi�cation is completely determined. We extend H

I

by de�ning

for any de�ned simple positive fact F :

H

I

(F) = SV

J

(I; F)

By de�nition of H

I

, the extension of I is a justi�ed model. Moreover, since

the values of the justi�cations are completely determined by I, I can be

extended in only one way. 2

Contrary to well-founded semantics, a logic program will have a class of justi�ed

models, one for each incomplete interpretation.

Another theorem gives a relation between a logic program P interpreted as a

program and as a set of FOL axioms. It says that a directly justi�ed model of a

de�nition set P is a model of P interpreted as a set of FOL axioms.

Theorem 4.3.5 Let P be a program and M a (directly justi�ed)(partially justi-

�ed)(justi�ed) model of P . M is a model of P interpreted as a set of FOL axioms.

Proof By theorem 4.3.2, it su�ces to prove this for DJS. To prove is that for

any ground instance F :-L

1

; : : : ; L

n

, H

M

(F) � H

M

(L

1

^ : : :^ L

n

). This is

because H

M

(F) = SV

DJ

(

~

M (F) = max(fval

M

(J

d

)jJ

d

is a DJ of

~

M (F)g) �

H

M

(L

1

^ : : :^ L

n

).

2

4.3 Consistency and relationships. 93

The reverse direction is not true. For example, the set of FOL axioms fp :-

2

g has

a model in which p is true.

After having established relationships between the three types of semantics, we

now investigate the di�erences between them.We will do so by taking the strongest

concept of justi�cation (J) and investigating it in the context of the three types

of semantics.

Lemma 4.3.2 (a) Let M be a directly justi�ed model.

� A true fact has a justi�cation with only true nodes.

� An unknown fact has at least one justi�cation with only true or unknown

nodes. Each such justi�cation contains an in�nite branch of unknown facts.

� For a false fact, each justi�cation contains a branch with false facts.

(b) Let M be a partially justi�ed model.

� A true de�ned fact F has a strong or weak justi�cation.

� An unknown fact F has a weak justi�cation and no strong justi�cation.

� A false fact has only false or weak justi�cations.

A true fact in a directly justi�ed model may have a false justi�cation, which

nevertheless contains only true facts. For example, consider the theory

fq :- ; p :- q; pg

The interpretation fq

t

; p

t

g is a directly justi�ed model. p has a false justi�cation

with only true leaves and an positive loop over p. On the other hand :p is false but

has a strong justi�cation with a negative loop over :p, but this branch contains

only false facts, as indicated by the lemma.

A true fact in a partially justi�ed model may have only a weak justi�cation.

Consider the theory with de�nitions p :-:q; q :-:p. The interpretation fp

t

; q

f

g is

a partially justi�ed model. p has only a weak justi�cation but all facts in it are

true.

Proof of lemma 4.3.2

(a) In a directly justi�ed modelM , each true or unknown simple fact F has

a DJ with value H

M

(F). This allows to build a monotonically increasing

sequence (J

i

) of open justi�cations with root F , such that for each J

i

, all

nodes have a truth value � H

M

(F) and all open leaves occur at depth i. The

�xpoint of this sequence contains only nodes with truth value � H

M

(F) and

no open leaves.

94 A Semantics for Abductive Logic Programs

Assume F and sF are unknown. Hence, they have both a justi�cation, say

J

1

and J

2

, in which all nodes are at least unknown. By lemma 4.3.1, there

exists a branch B

1

in J

1

such that sB

1

occurs in J

2

. This branch necessarily

contains only unknown facts, and since a �nite branch terminates in a true

or false fact, it must be an in�nite branch.

Each false fact F is the negation of a true fact who has a justi�cation with

only true facts. Hence, by lemma 4.3.1, each justi�cation of F must have a

branch of false facts.

(b) The proof of (b) is very similar to (a). In a partially justi�ed model,

each true or unknown has a strong or weak partial justi�cation. Using this

information, it is possible to construct a justi�cation which is at least weak.

If F is unknown then so is sF . Since F and sF have at least weak justi-

�cations and because of theorem 4.3.1, it follows that F has a weak but no

strong justi�cation. A fact which is false cannot have a strong justi�cation,

otherwise sF could have only false justi�cations.

2

Proposition 4.3.1 (a) Let M be a directly justi�ed model. A fact with a strong

justi�cation without in�nite branches is true.

(b) Let M be a partially justi�ed model. A fact with a strong justi�cation is

true.

Proof (a) Let M be a directly justi�ed model. If a fact F has a strong justi�-

cation J of �nite depth, then by lemma 4.3.1, each justi�cation of sF has

a �nite branch with a false fact. Since by lemma 4.3.2, a true or unknown

fact has a justi�cation without false facts, sF must be false. Hence, F is

true.

(b) is a direct consequence of lemma 4.3.2: the only facts which can have

strong justi�cations are true facts.

2

(b) has a consequence which is an extension of a result by [Prz90], that the

well-founded model of program is the F-weakest stationary model. A stationary

model is a 3-valued version of a stable model. The following de�nition for F-weaker

is an extension of a de�nition for Herbrand interpretations given in [Kun89]:

De�nition 4.3.1 An interpretation I

1

is F-weaker than an interpretation I

2

if

they share the same pre-interpretation and for each positive fact F which is true

or false according to I

1

, H

I

1

(F) = H

I

2

(F).

In other words, for all facts where I

1

di�ers from I

2

, this can only be by having

more unknown facts. I

1

contains less information than I

2

.

4.3 Consistency and relationships. 95

Lemma 4.3.3 (a) Let an interpretation I

1

be F-weaker than an interpretation I

2

.

For each closed domain formula F which is true or false according to I

1

, H

I

1

(F) =

H

I

2

(F).

(b) Let M

0

be a model of a theory T

c

of FOL axioms. If an interpretation M

is F-weaker than M

0

, then M is a model of T

c

.

Proof (a) can be easily veri�ed by induction on the structure of the domain

axioms. (b) is a direct consequence of (a). Indeed, for each FOL axiom F of

T

c

, since H

M

0

(F) = t or u, H

M

(F) cannot be false. 2

Theorem 4.3.6 Let T be a theory consisting of program T

d

and FOL axioms T

c

.

For any partially justi�ed model M , there exists a unique partially justi�ed model

M

0

minimally F-weaker than M . M

0

is a justi�ed model. If I is the incomplete

interpretation obtained by restricting M to the unde�ned predicates, then M

0

is

the unique justi�ed model extending I.

Proof Let M be a partially justi�ed model. Observe that because the inter-

pretation of an unde�ned predicated is two-valued, any F-weaker partially

justi�ed model necessarily has the same interpretation for the unde�ned

predicates. Since the value of a justi�cation depends only on the value of

the unde�ned facts in the leaves and the type of loops occurring in it, in

all F-weaker partially justi�ed models, each justi�cation for a de�ned fact

has the same value as in M . By proposition 4.3.1 (b), each fact with a

strong justi�cation in M is true in M and in any F-weaker partially justi-

�ed model. Each fact with only false justi�cations is the negation of a fact

with a strong justi�cation (theorem 4.3.1), which must be true in M and in

all F-weaker partially justi�ed models. The fact itself must then be false in

all these models.

By theorem 4.3.4 there exists a unique justi�ed model M

0

of T

d

which

extends the restriction of M to the unde�ned predicates. By theorem 4.3.2,

M

0

is a partially justi�ed model of T

d

. By the reasoning in the previous

paragraph, M

0

is the F-weakest partially justi�ed model of T

d

. That M

0

is

a model of T

c

follows from lemma 4.3.3. 2

The theorem says that for a partially justi�ed model, there exists a unique

F-weaker justi�ed model, which may be strong or weak. The following example

gives a strong partially justi�ed model with only a weak F-weaker justi�ed model.

fp :-:q; q :-:p; p_ :pg

The interpretation fp

f

; q

t

g is a strong partially justi�ed model. The Justi�ed

model is fp

u

; q

u

g which is only a weak model since H

I

(p _ :p) = u.

Theorem 4.3.3 proved that entailment wrt PJS is subsumed by entailment wrt

JS . A direct consequence of the above theorem is that with respect to entailment,

96 A Semantics for Abductive Logic Programs

3-valued partially justi�ed model semantics and 3-valued justi�ed model semantics

are equivalent.

Theorem 4.3.7 Let T be a theory. For any closed formula F :

T j=

PJS

F , T j=

J S

F

Proof By theorem 4.3.3, it holds that

T j=

PJS

F) T j=

J S

F

So assume T j=

J S

F . For any partially justi�ed model M , there is a

unique F-weaker justi�ed model M

0

. It follows that H

M

0

(F) = t. Lemma

4.3.3(a) implies that H

M

(F) = t. Hence T j=

PJS

F .

2

Another consequence is:

Proposition 4.3.2 Let T be a theory with only two-valued justi�ed models.

Every partially justi�ed model of T is a justi�ed model.

Proof For any partially justi�ed model M of T , there exists an F-weaker jus-

ti�ed model M

0

of T . Since M

0

is two-valued, M and M

0

are necessarily

identical. 2

Proposition 4.3.3 For hierarchical logic programs, DJS PJ Sand J S coincide

and are 2-valued. For de�nite programs, PJS and J S coincide and are 2-valued.

Proof Justi�cations in hierarchical programs and in de�nite programs cannot

contain loops over negation. Hence, justi�ed models are always 2-valued and

partially justi�ed models are justi�ed models.

All justi�cations in a hierarchical program have �nite depth, and hence, all

justi�cations are either strong or false. By proposition 4.3.1(a), a fact F

with a strong justi�cation in a directly justi�ed model M is true. A fact

F with only false justi�cations in M must be false: by theorem 4.3.1, :F

has a strong justi�cation and must be true. We �nd that for all facts F ,

H

M

(F) = SV

J

(M;F) and M is a justi�ed model.

2

4.4 Direct Justi�cation Semantics versus com-

pletion semantics.

As argued in section 4.1, direct justi�cations are underlying to completion seman-

tics. Clark's completion semantics [Cla78] was the �rst semantics for complete

4.4 Direct Justi�cation Semantics versus completion semantics. 97

normal logic programs with negation. According to this semantics, the meaning

of a program P is given by (the 2-valued models of) a classical theory comp(P)

which consists of the theory of Free Equality (FEQ(L)), also called Clark equality

and the set of completed de�nitions of the predicates. Since then, completion se-

mantics have been extended several times: [Fit85] and [Kun89] proposed 3-valued

completion semantics. [CTT91] proposed a 2-valued completion semantics for in-

complete logic programs. The completion of an incomplete program contains only

completed de�nitions for the de�ned predicates.

In [Fit85] and [Kun89], the classical equivalence operator $ is replaced by

a new operator , . The truth function associated to some interpretation I is

extended for , as follows:

H

I

(E

1

, E

2

) = t i� H

I

(E

1

) = H

I

(E

2

)

H

I

(E

1

, E

2

) = f i� H

I

(E

1

) 6= H

I

(E

2

)

For two-valued interpretations, the meaning of the normal logical equivalence

$ and , is the same.

In order to show the relationship with all these semantics in an economic

way, we will �rst de�ne a completion semantics which can be seen as the least

upper-bound of the current completion semantics. Our completion semantics is for

(possibly) incomplete general logic programs, is 3-valued and allows non-Herbrand

interpretations.

Let P be a complete or incomplete general logic program. We de�ne comp

3

(P)

as the union of FEQ(L) and the set of completed de�nitions of de�ned predicates,

in which " , " is substituted for "$ ". For any theory T consisting of a logic

program T

d

and FOL axioms T

c

, we de�ne that an interpretation M of L is a

model of a theory T wrt 3-valued completion semantics i� M is a model of the set

of FOL axioms comp

3

(T

d

) + T

c

which is 2-valued on the unde�ned predicates.

Theorem 4.4.1 Let T be a theory with normal logic program P (with �nite def-

initions) and FOL axioms T

c

. T

c

includes FEQ(L). Let M be an interpretation

of L.

(a) M is a directly justi�ed model of P + FEQ(L) i� M is 3-valued model of

comp

3

(P).

(b) M is a directly justi�ed model of T i� M is a model of T wrt 3-valued

completion semantics.

The theorem explicitly requires that P should not contain in�nite de�nitions.

Obviously, the completion de�nition of a predicate with in�nite de�nition is not

well-de�ned since the completed de�nition of a predicate with in�nite number

of clauses is not de�ned. On the other hand, the direct justi�cation semantics for

in�nite de�nitions is well-de�ned. We will use this later when we consider abductive

solutions � as possibly in�nite de�nitions for the unde�ned predicates.

98 A Semantics for Abductive Logic Programs

Proof (a) Models of comp

3

(P) and directly justi�ed models of P +FEQ(L) are

models of FEQ(L). Hence, it su�ces to show that a directly justi�ed model

of P is a model of comp

3

(P) without FEQ(L) and vice versa. Let M be an

interpretation and let p(x

1

; : : : ; x

n

) be a simple de�ned fact of I. Assume

p=n has a completed de�nition of the form p(X

1

; : : : ; X

n

) , �

1

_ : : :_�

k

).

Let V be the variable assignment fX

1

=x

1

; ::; X

n

=x

n

g. We must show that

SV

DJ

(M;p(x

1

; : : : ; x

n

)) = H

M

(V (�

1

_ : : :_ �

k

)).

By de�nition of H

M

, we have:

H

M

(V (�

1

_ : : :_ �

k

)) = maxfH

M

(V (�

1

)); : : : ;H

I

(V (�

k

))g

For each �

i

, there exists a rule of P of the form p(t

1

; ::; t

n

) :-B such that �

i

is 9Y

1

; ::; Y

m

: X

1

= t

1

^ :: ^X

n

= t

n

^ B. The only places where the X

j

's

occur in V (�

i

) is precisely in the equalities X

j

= t

j

. Therefore, V (�

i

) is of

the form 9Y

1

; ::; Y

m

: x

1

= t

1

^ :: ^ x

n

= t

n

^ B. Y

1

; ::; Y

m

are precisely the

variables of the rule p(t

1

; ::; t

n

) :-B. Or, any variable assignment V

0

for the

variables Y

1

; ::; Y

m

corresponds with a ground instance of the rule. We have

that:

H

M

(V (�

1

_ : : :_ �

k

)) = maxfH

M

(V

0

(x

1

= t

1

^ ::^ x

n

= t

n

^B))j

V

0

(p(t

1

; ::; t

n

) :-B) is a ground instance of a rule of Pg

Because the interpretation of "=" is the identity relation, V

0

(x

1

= t

1

^ ::^

x

n

= t

n

) is not false i� for each 1 � j � n,

~

M (V

0

(t

j

)) = x

j

. The other

instances may be dropped from the set in the right of the equation. The

instances which satisfy the condition, have the property that the conjunction

of equalities is true and that

~

M (V

0

(p(t

1

; ::; t

n

))) = p(x

1

; ::; x

n

). Or, such

an instance corresponds to a direct positive justi�cation J for p(x

1

; ::; x

n

).

Moreover, val

M

(J) = H

M

(V

0

(B)) = H

M

(V

0

(x

1

= t

1

^ :: ^ x

n

= t

n

^ B)).

We �nd that H

M

(V (�

1

_ : : :_ �

k

)) is equal to

maxfval

M

(J)jJ is a direct justi�cation of p(x

1

; ::; x

n

)g

which is equal to SV

DJ

(M;p(x

1

; ::; x

n

)). This proves the theorem

4

.

The proof of (b) follows easily from (a). There is a subtle point: the reasoning

is based on monotonicity of FOL semantics. In general a model of a theory

T

1

+T

2

in a nonmonotonic logic is not necessarily a model of T

1

and of T

2

.

4

The theorem would not hold without the restriction that "=" is interpreted by identity.

Consider the program P = fp(a) :- g. The interpretation (D = fx; yg; fa ! xg;fx = y

t

; y =

x

t

; x = x

t

; y = y

t

; p(x)

t

; p(y)

t

g) is a model of comp

3

(P) but is not a directly justi�ed model of

P because p(y)

t

has no direct justi�cation. A solution would be to consider the homogeneous

form of the rules : p(X) :-X = a. For such programs, the theorem holds even when "=" is not

interpreted by identity.

4.5 Relationship with stable and well-founded semantics 99

Below, we make a careful reasoning. Consider any interpretationM . Assume

thatM is a directly justi�ed model of P+T

c

.M is a directly justi�ed model

of P and a model of T

c

, a model of FEQ(L) (by monotonicity of FOL) and

a directly justi�ed model of P + FEQ(L). Now we can apply (a), which

guarantees that M is a model of comp

3

(P). Again by the monotonicity of

FOL, we �nd that M is a model of T = comp

3

(P)+T

c

. The other direction

is completely analogous.

2

Since all current completion semantics can be considered as instances of the

completion semantics de�ned above, the following theorem is a direct consequence.

Theorem 4.4.2 Let P be a logic program (with �nite de�nitions), M an inter-

pretation of L. First, assume P is a complete logic program.

M is a model of P according to Clark's completion semantics [Cla78] and

M interprets "=" as identity i� M is a 2-valued directly justi�ed model of P +

FEQ(L).

5

M is a model of P according to Fittings completion semantics [Fit85] i� M is

a directly justi�ed Herbrand model of P + FEQ(L).

M is a model of P according to Kunen's completion semantics [Kun89] i� M

is a directly justi�ed model of P + FEQ(L).

Second, assume P is an incomplete logic program. M is a model of P according

to the completion semantics of Console, Theseider Dupre and Torasso [CTT91]

and M interprets "=" as identity i� M is a 2-valued directly justi�ed model of

P + FEQ(L).

4.5 Relationship with stable and well-founded

semantics

As shown �rst by [Fag90], the notion of justi�cation found in stable models [GL88]

is the partial justi�cation. Stable semantics were developed for complete logic

programs and are based on 2-valued Herbrand interpretations. [Prz90] extended

stable semantics to 3-valued semantics for complete logic programs, called sta-

tionary semantics. [KM90b] extended stable semantics to 2-valued semantics for

incomplete logic programs with FOL axioms, and called it generalised stable se-

mantics. [PAA91b] extended well-founded semantics for incomplete logic programs

in a similar way.

Partial justi�cation semantics is strictly more general than each of these se-

mantics, due to the fact that partially justi�ed models can be 3-valued non-

Herbrand interpretations. The relationships between justi�cation semantics and

5

For an uncontracted model of Clark's completion semantics, we have that its contraction

over M("=") is a directly justi�ed model of P + FEQ(L).

100 A Semantics for Abductive Logic Programs

well-founded, stable and stationary model semantics are given in two separate

steps. In the �rst step we show that by restricting (partial) justi�cation semantics

to Herbrand interpretations, we obtain stable, stationary and well-founded mod-

els. In the second step we show how by adding FEQ and a strong domain closure

axiom, we can restrict justi�cation semantics such that all models are isomorphic

with a stable, stationary or well-founded model.

We start by recalling de�nitions for stationary, stable and well-founded models,

taken from [Prz90].

Given a Herbrand interpretation I, P

I

is de�ned as the de�nite program ob-

tained by taking all ground instances of rules of P and replacing the negative

literals :A by special symbols ,

2

or

2

depending whether H

I

(:A) is t, u or f

respectively. We de�ne H

I

(

2

) = u and s

2

=

2

.

Stationary models are de�ned via the notion of 3-valued least Herbrand model

of the set of FOL axioms P

I

. On the set of Herbrand interpretations, the relation-

ship � can be de�ned as expected, namely I

1

� I

2

, 8A 2 HB(L) : H

I

1

(A) �

H

I

2

(A). � de�nes a partial order on the set of Herbrand interpretations. It was

proven in [Prz90] that a de�nite program (allowing ,

2

and

2

) interpreted as a

set of FOL axioms, has always a least Herbrand model.

Using these de�nitions, one can de�ne stationary, stable and well-founded mod-

els as follows. Given some complete logic program P , a stationary model M of P

is a Herbrand interpretation such that M is the least Herbrand model of P

M

. A

stable model is a 2-valued stationary model. The well-founded model is the unique

F-weakest stationary model of P

6

. A generalised stable model for an incomplete

logic program P and a set of FOL axioms is a model for the FOL axioms and a sta-

ble model of the complete logic program consisting of P and de�nitions for each of

the unde�ned predicates. Each de�nition is a possibly in�nite set of ground atomic

rules. Similarly, a model of in incomplete logic program P wrt to the semantics of

[PAA91b] is the well-founded model of the complete logic program consisting of P

and de�nitions for each of the unde�ned predicates.

Theorem 4.5.1 (a) A partially justi�ed Herbrand model of a complete logic pro-

gram is a stationary model and vice versa.

(b) A 2-valued partially justi�ed Herbrand model of a complete logic program

is a stable model and vice versa.

(c) A 2-valued partially justi�ed Herbrand model of an (incomplete) logic pro-

gram is a generalised stable model and vice versa.

The proof of the theorem is based on the following lemma.

Lemma 4.5.1 Let P be a complete de�nite program based on a language L.

The least Herbrand model of P interpreted as a set of FOL axioms is the unique

justi�ed and partially justi�ed Herbrand model of P .

6

This is not the original de�nition of well-founded model, but a theorem in [Prz90].

4.5 Relationship with stable and well-founded semantics 101

Proof By theorem 4.3.4, there is a unique justi�ed Herbrand model M of P .

By proposition 4.3.3, M is the unique partially justi�ed model of P .

We show thatM is the least Herbrand model of P wrt � where we interpret

P here as a set of FOL axioms. By theorem 4.3.5, M is a model of P . To

prove that M is the Least Herbrand model, it su�ces to show that every

positive simple fact F with a strong PJ J is true and every positive fact

F with a weak PJ J is at least unknown in all Herbrand models which

extend I. The proof is an easy induction on the depth n of J and is left to

the reader.

2

Proof of theorem 4.5.1 The whole theorem is based on (a). Since a stable model

is a two-valued stationary model, (b) follows directly from (a). As a gener-

alised stable model is de�ned as a stable model of an incomplete program

augmented with some (possibly in�nite) de�nition for the unde�ned predi-

cates, also (c) directly follows from (a).

The proof of (a) follows easily from lemma 4.5.1. Let M be a partially

justi�ed Herbrand model of P . Consider P

M

. Clearly, each PJ for a positive

fact in P can be turned into a PJ for the same fact in P

M

by replacing

negative facts in the leaves by the predicates ,

2

or

2

depending on the

truth value of the negative facts. This transformation preserves the value of

the PJ . Hence M is a partially justi�ed model of P

M

, and by lemma 4.5.1,

it is the least Herbrand model of P

M

. Hence M is a stationary model of P .

The other direction is completely similar: since M is the least Herbrand

model,M is the partially justi�ed model of P

M

. Due to the correspondence

of PJ 's in P and in P

M

, it follows that M is a partially justi�ed model of

P .

2

Theorem 4.5.2 (a) The justi�ed Herbrand model of a complete logic program is

the well-founded model.

(b) A justi�ed Herbrand model of an incomplete logic program is a model wrt

the semantics of [PAA91b] and vice versa.

Proof (a) and (b) follow from theorem 4.5.1(a) and the fact that the F-least

stationary model is the well-foundedmodel and the F-least partially justi�ed

model is the justi�ed model (theorem 4.3.6). 2

We have found that by adding FEQ and a strong domain closure axiom (DCA),

partial justi�cation semantics coincides with stable, generalised stable and station-

ary semantics and justi�cation semantics is equivalent with well-founded seman-

tics. The DCA expresses that all elements in the domain correspond to terms. A

102 A Semantics for Abductive Logic Programs

well-known weak approximation of the DCA is the FOL formula:

8X : (9Y

1

: X = f

1

(Y

1

)) _ :::_ (9Y

m

: X = f

n

(Y

n

))

where f

1

; ::; f

n

are all the functors and constants of L[Rei78a] [Llo87]. The weak

DCA is not su�cient for languages which contain functors with arity > 0. As a

well-known example, take the language with one functor f/1. Since it does not

contain constants, the associated Herbrand universe is empty. However, here is a

nonempty model of 8X : 9Y : X = f(Y): take the integer numbers and interpret

f/1 as X + 1. However, interestingly, under (partial) justi�cation semantics the

DCA can be expressed using a simple complete logic program and one FOL axiom.

De�nition 4.5.1 The Strong Domain Closure Axiom (SDCA) for a language L

consists of a de�nition for a special predicate U=1 and one FOL axiom. For each

functor f=n (n > 0) of L, the de�nition contains the de�nite clause :

U(f(X1; ::; X

n

)) :-U(X

1

); ::;U(X

n

)

For each constant c of L, the de�nition contains:

U(c) :-

The FOL axiom is:

8X : U(X)

Note that the program consists only of de�nite clauses. Therefore, a partial jus-

ti�cation is a justi�cation and a partially justi�ed model is a justi�ed model. In

a justi�ed model I of the SDCA, U(x) has a �nite justi�cation for every domain

element x. With this �nite justi�cation, a �nite term t can be associated such that

~

I(t) = x. Therefore each domain element is in the image of the Herbrand universe.

Adding FEQ avoids that two terms are mapped on the same domain element.

The combination of the SDCA and FEQ allows only models isomorphic with some

Herbrand interpretation. This is proved in the following theorem.

Theorem 4.5.3 Any (partially) justi�ed model of SDCA and FEQ is isomorphic

with a Herbrand interpretation.

Proof Let M be a justi�ed model of SDCA and FEQ. Remember that M can

be extended as a mapping

~

M of all domain terms to D. We de�ne h as the

restriction of

~

M to HU and prove that h is a one-to-one correspondence

from HU to D.

Since M is a model of FEQ, two distinct terms necessarily are mapped on

di�erent domain elements. That each domain element is in the image of

h can be seen as follows. It holds that M is a justi�ed model of SDCA.

Hence, any domain element x has a justi�cation J

x

for U(x). Now, we show

4.5 Relationship with stable and well-founded semantics 103

that with J

x

a unique term t

x

can be associated, moreover h(t

x

) = x. We

de�ne this association by induction: if the depth of J

x

is 1, then it is by

using a rule U(c) :- , where c is a constant. By de�nition,M (c) = h(c) = x.

Assume that J

x

is of depth n, and the theorem holds for terms of depth n�1

(n > 0). Then the top of J

x

is an application of an instance of some rule

U(f(X

1

; ::; X

n

)) :-U (X

1

); ::;U(X

m

) with m > 0. Hence, there is a variable

assignment V of domain elements to variables X

1

; ::; X

m

such that x =

~

M (f(V (X

1

); ::; V (X

m

))). Moreover, U(V (X

i

)) has a justi�cation of depth at

most n�1 for each i. By the induction hypothesis, there exist terms t

1

; ::; t

m

such that h(t

i

) = V (X

i

). Hence, h(f(t

1

; ::; t

m

)) =

~

M(f(t

1

; ::; t

m

) = x.

This concludes the proof that h is a one-to-one correspondence between

HU and D. Using h, we can de�ne the isomorphic Herbrand interpretation

I by de�ning for all facts p(t

1

; ::; t

n

), H

I

(p(t

1

; ::; t

n

)) = H

M

(p(t

1

; ::; t

n

)). h

is obviously an isomorphism between M and I. 2

It can easily be veri�ed that the SDCA under DJS is equivalent with the weak

domain closure assumption in FOL. Hence, a model of a theory including FEQ and

SDCA under DJS is not necessarily equivalent with a Herbrand interpretation.

Finally we obtain the following theorems.

Theorem 4.5.4 (a) Stable semantics [GL88] for a complete logic program P

is equivalent with 2-valued partial justi�cation semantics for P augmented with

SDCAand FEQ.

(b) Generalised stable semantics [KM90b] for an incomplete program P is equiv-

alent with 2-valued partial justi�cation semantics for P augmented with SDCA and

FEQ.

(c) Stationary semantics [Prz90] for a complete logic program P is equivalent

with partial justi�cation semantics for P augmented with SDCA and FEQ.

Theorem 4.5.5 (a) Well-founded model semantics for a complete logic program

P is equivalent with justi�cation semantics for P augmented with SDCA and FEQ.

(b) The semantics of [PAA91b] for incomplete logic programs P is equivalent

with justi�cation semantics for P augmented with SDCA and FEQ.

In the theorems, equivalence means that any model according to one semantics

is a model or is isomorphic to some model according to the other semantics.

Both theorems are direct implications of theorems 4.5.1, 4.5.2 and 4.5.3 and

the fact that a Herbrand interpretation of P satis�es SDCA and FEQ.

104 A Semantics for Abductive Logic Programs

4.6 On duality of abduction and model genera-

tion

In chapter 3.8, we showed a duality between abduction and model generation.

Abductive solutions of a de�nite logic programs were shown to correspond to

models of the dual theory only-if(P). Here we prove some related properties which

extend this to normal programs. Below we interpret a set � of ground unde�ned

atoms based on L as a set of de�nitions of unde�ned predicates (mapping an atom

A 2 � to a clause A :-). With �, an incomplete Herbrand interpretation I

�

for the unde�ned predicates is associated as follows H

I

�

(A) = t if A 2 � and

H

I

�

(A) = f if A =2 �.

Theorem 4.6.1 (Weak Duality) Given a logic program P , a query Q and a set

� of (possibly in�nite) de�nitions for the unde�ned predicates of P consisting of

ground atoms.

(a) P +� j= :Q wrt (DJS)(PJS)(J S) implies that P + :Q and P +� are

consistent wrt (DJS)(PJS)(J S). I

�

can be extended to a model of P + :Q.

(b) P + FEQ +� j= :Q wrt (DJS)(PJS)(J S) implies that P + FEQ+ :Q

and P + FEQ + � are consistent wrt (DJS)(PJS)(JS). I

�

can be extended to

a model of P + FEQ+ :Q.

(c) P+FEQ+SDCA+� j= :Q wrt (DJS)(PJS)(J S) implies that P+FEQ+

SDCA+ :Q and P + FEQ + SDCA + � are consistent wrt (DJS)(PJS)(J S).

I

�

can be extended to a model of P + FEQ + SDCA+ :Q.

Proof (a) and (b) can be proven like (c). We prove only (c). By theorem

4.3.4 the theory P + FEQ + SDCA + � has a Herbrand model M wrt

(DJS)(PJ S)(J S). Since P+FEQ+SDCA+� j= :Q,:Q is true inM . It is

straightforward thatM is a model of the incomplete program P . Note that a

necessary condition for this is that the interpretations of the unde�ned predi-

cates should be two-valued. This is the case since � is a hierarchical program

(proposition 4.3.3). Hence, P+FEQ+SDCA+:Q and P+FEQ+SDCA+�

are consistent wrt (DJ S)(PJS)(J S). Clearly M is an extension of I

�

.

Hence, I

�

can be extended to a model of P + FEQ + SDCA + :Q. 2

Therefore, any sound abductive procedure which returns a solution � for a query

Q, proves not only P + � j= :Q but also the consistency of P + �(+:Q) and

performs a form of partial model generation generating a partial model I

�

. The

implicit consistency proof and partial model generation can be seen as the dual

interpretation of the abductive derivation. A pleasant side-e�ect is that it simpli�es

the task of computing abductive solutions, since proving the consistency of the

abductive solution with the program is not longer necessary. This consistency

checking is necessary in other semantics and is costly (see [SI92] for the generalised

stable semantics).

4.7 Negation as failure as abductive reasoning 105

There is a stronger theorem which was announced in section 3.8.

Theorem 4.6.2 (Strong Duality) Given a logic program P , a query Q and a

set � of (possibly in�nite) de�nitions for the unde�ned predicates of P consisting

of ground atoms.

P +� + SDCA + FEQ j=

J S

:Q i� P + SDCA + FEQ + :Q has a justi�ed

(Herbrand) model which extends I

�

.

Proof The only-if direction was proved in theorem 4.6.1(c). It su�ces to prove

the if direction. Consider this justi�ed Herbrand model M of P + SDCA +

FEQ + :Q which interprets the unde�ned predicates by I

�

. Evidently it

is a model of the complete program P + �. Hence, it is a justi�ed model

of P + � + SDCA + FEQ. However, by theorem 4.5.3 all justi�ed models

of P + � + SDCA + FEQ are isomorphic with M . Hence, in all justi�ed

models, :Q holds. 2

4.7 Negation as failure as abductive reasoning

By making explicit how true facts are constructed in di�erent semantics, the frame-

work shows that only in well-founded and justi�cation semantics, a true fact never

depends on itself, and therefore these semantics provide the best formalisations of

the view of logic programs as sets of constructive de�nitions. However, the stable

semantics for logic programs is supported by a competing view on logic programs

which has been promoted in [EK89], [Dun91], [KM90c]. According to this view,

negation as failure corresponds to a special form of abductive or default reasoning.

The theory is based on maximal sets � of negative literals, such that P +� has a

least Herbrand model. This least Herbrand model turns out to be a stable model.

As an example, consider the following program:

P

1

= f p :-:q

q :-:p

r :-p

r :- q g

The set of abductive hypotheses � = f:qg is maximally consistent with P : it is

consistent since q cannot be derived from P+�. It is maximal in the sense that the

addition of any negative literal to � causes � to be inconsistent with P . When �

is added to the program, the stable model fp

t

; r

t

g is obtained. Another maximal

consistent set of abductive hypotheses is f:pg. The corresponding stable model is

fq

t

; r

t

g.

The two views are not equivalent and lead to di�erent programming styles.

According to the view of programs as constructive de�nitions, the above example

is simply a bad program, with unique well-founded/justi�ed model fp

u

; q

u

; r

u

g.

106 A Semantics for Abductive Logic Programs

Remember that we interpret u as locally inconsistent. Despite the di�erence be-

tween the two views, it is important to note that procedures developed for stable

semantics or for partially justi�ed semantics may be correctly applied for all good

programs under the constructive de�nition view. The good programs or theories

are those for which each model is contradiction-free. Formally, we call a theory

overall consistent if all its justi�ed models are two-valued. We have the following

property:

Proposition 4.7.1 An overall consistent theory has the property that all partially

justi�ed models are justi�ed models.

This property is a direct consequence of theorem 4.3.6.

Programmers whom adhere to the constructive de�nition view, can be assumed

to write overall consistent theories. The above proposition implies that for overall

consistent theories, any theorem prover or abductive procedure or what ever proce-

dure which satis�es some correctness property wrt partial justi�cation semantics,

satis�es this property also wrt justi�cation semantics. An important consequence

is that procedures developed for stable semantics, stationary or partially justi�ed

semantics are acceptable for execution under justi�cation semantics, under the

provision that the user tries to avoid "bad" theories, i.e. theories which are not

overall consistent.

The following theorem indicates some classes of overall consistent theories.

Theorem 4.7.1 The following classes of theories are overall consistent:

� theories with de�nite logic programs

� theories with hierarchical logic programs

� theories with strati�ed logical programs

� theories with locally strati�ed programs and with SDCA and FEQ

� theories with acyclic programs and with SDCA and FEQ

Proof An unknown fact in a partially justi�ed model has a weak justi�cation,

i.e. a justi�cation which contains a loop over negation. Such justi�cations

do not exist for de�nite clauses. For hierarchical programs, justi�cations

never contain an in�nite branch. For strati�ed programs, any justi�cation

can only contain a �nite number of switches over negation. A model of a

theory containing SDCA and FEQ is isomorphic with a Herbrand model. In

a Herbrand model of a locally strati�ed program, justi�cations never contain

a loop over negation. The same reasoning holds for acyclic programs with

SDCA and FEQ

7

.

7

A theorywith a locally strati�ed or acyclic logic programwithout SDCA and FEQ is not nec-

essarily overall consistent. Take the locally strati�ed program fp(a) :-:p(b)g. The interpretation:

(D = fxg;fa! x; b! xg;fp(x)

u

g) is a justi�ed model.

4.8 On the nature of negation 107

2

4.8 On the nature of negation

A declarative characterisation of negation in classical logic is that a predicate

p=n and its negation :p=n represent complementary concepts: two concepts are

complementary if one is true i� the other one is not true. This is re
ected in the

fact that the law of the excluded middle holds. In three-valued logics, the law of

excluded middle does not hold. Therefore, in principle three-valued logics allow

to represent two non-complementary concepts by a predicate and its negation. A

standard example which exploits this phenomenon in well-founded semantics, has

been given in e.g. [GL88], [VRS91], [Prz91]:

winning(X) :-move(X;Y);:winning(Y)

move(a; b) :-

move(b; c) :-

move(d; d) :-

Note that winning(d) has a justi�cation with loop over negation. This program has

one 3-valued justi�ed Herbrand model which interprets winning=2 as fwinning(b)

t

; winning(d)

u

g.

[VRS91] [Prz91] interpret winning(d)

u

as a draw on d. Clearly, winning=1 and

:winning=1 are not complementary since playing a draw is a third alternative.

Here :winning=1 represents the concept of loosing, which is indeed not the com-

plement of winning.

The above interpretation of winning(d)

u

as a draw does not match with the

interpretation of u as local inconsistency. A natural representation of the problem

in the constructive de�nition view is by introducing loosing=1 and draw=1 pred-

icates. Intuitively, X looses if no move from X exists or when a move from X to

Y exists and Y is winning. X wins if a move from X to Y exists and Y is loosing.

The problem is then represented by:

loosing(X) :-:existsmove(X)

existsmove(X) :-move(X;Y)

loosing(X) :-move(X;Y); winning(Y)

winning(X) :-move(X;Y); loosing(Y)

draw(X) :-:loosing(X);:winning(X)

move(a; b) :-

move(b; c) :-

move(d; d) :-

If in addition we add FEQ and SDCA, this program is a correct representation

of the intended meaning. The justi�ed Herbrand model is 2-valued and interprets

winning; loosing and draw as fwinning(b)

t

; loosing(a)

t

; loosing(c)

t

; draw(d)

t

g.

108 A Semantics for Abductive Logic Programs

Both winning(d) and loosing(d) have only false justi�cations which contain the

positive loop : : : winning(d) loosing(d) winning(d) : : :. loosing(c)

has the justi�cation, shown in �gure 4.5:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

:move(c; c)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

:move(c; b)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

:move(c;a)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

:existsmove(c)

loosing(c)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
..
.
.
.
..
.
.
..
.
.
.
.......
..............
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

...
..
.
..
..
..
.
..
..
..
.

.

.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

.

..
..
..
.
..
..
..
.
..
...
.
.
.

.

.

.

.

.

.
.

.

.

.

.

.
.
.

.

.

.

..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.

..............
.......
.
.
.
..
.
.
..
.
.
.
..
.
.
.

...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
...
..
...
...
...
..
...
...
..
...
.

:move(c;d)

Figure 4.5: Justi�cation of loosing(c)

This example illustrates that the constructive de�nition view in justi�cation

semantics can still be reconciled with the classical view on negation to represent

complementary concepts, despite its 3-valued nature. This is due to u's interpre-

tation as locally inconsistent.

The interpretation of negation in logic programming is currently an issue sub-

ject to lively discussions, mainly due to work of [GL90a] on extended logic pro-

gramming. This formalism allows two forms of negation: one is called classical

negation, the other negation as failure or negation by default. The term classical

negation used by [GL90a] does not appeal to what we called the classical view

on negation (negation to represent complementary concepts). As a matter of fact,

the law of excluded middle does not hold for the "classical negation" but it does

hold for the negation by default in extended logic programming. Rather, their

classical negation seems to refer to the meaning of negation in the logic program

interpreted not as a logic program but as a set of FOL implications. The work

of [GL90a] seems an attempt of integrating these two di�erent interpretations of

a logic program (as a program and as a set of FOL formulas) into one formal-

ism. A comparison between the extended logic programming and incomplete logic

programming is found in chapter 6.

4.9 Representing incomplete knowledge

We recall an example of section 4.7:

P

1

= f p :-:q

4.9 Representing incomplete knowledge 109

q :-:p

r :-p

r :- q g

Note that this program under the stable semantics represents incomplete knowl-

edge: it implies r and (p_q)^ (:p_:q) without implying p or implying q. This use

of mutual recursion over negation for representing incomplete knowledge in stable

semantics occurs for example in [Dun92]. The well-founded and justi�ed model of

P

1

is fp

u

; q

u

; r

u

g. By interpreting u as unknown, the program does also repre-

sent incomplete knowledge on p and q. However, it is a poor way of representing

incomplete knowledge: neither (p_ q)^ (:p_:q) nor r are implied. Moreover, P

1

con
icts with the constructive de�nition view.

The interpretation of u as unknown is only sensible in what we called a knowl-

edge state semantics in section 2.2. In this type of semantics, a model represents

what atoms are known to be true, what atoms are known to be false and what

atoms have unknown truth value. At present, it seems that this is the dominant

view on semantics in logic programming. In contrast, we adhere to the classical

view on model semantics and view the justi�cation semantics as a possible state

semantics. In a possible state semantics, a model represents a possible state of

the problem domain. Incomplete knowledge is represented by incomplete theo-

ries which have essentially di�erent models. To represent incomplete knowledge, a

possible state semantics is superior to a knowledge state semantics.

As an example, the incomplete knowledge in P

1

can be represented in jus-

ti�cation semantics as follows. Since there is incomplete knowledge on p and q,

it is natural to choose them as unde�ned predicates and to add the FOL axiom

(p _ q) ^ (:p _ :q) to the theory. One gets the following theory:

T

1

= f (p _ q) ^ (:p _ :q)

r :- p

r :- q g

It is easy to see that T

1

has precisely the same models and logical consequences

under justi�cation semantics as P

1

under stable model semantics. Moreover, this

program is in full agreement with the constructive de�nition view. This use of

unde�ned predicates and FOL axioms is an expressive way of representing incom-

plete knowledge since it comprises �rst order logic. The expressivity of �rst order

logic for representing incomplete knowledge is widely accepted.

To represent incomplete knowledge is also our main motivation for allowing

general interpretations in justi�cation semantics instead of Herbrand interpreta-

tions. Intuitively, to have incomplete knowledge on what are the entities of some

problem domain means that not all possible states of the problem domain have the

same set of entities. In a possible state semantics, this is re
ected by having models

with di�erent domains. Of course, in each model the domain should include the

set of known objects, i.e. the elements of the Herbrand universe. However, other

110 A Semantics for Abductive Logic Programs

elements may occur also. In Herbrand interpretation based semantics, the SDCA

and FEQ are always satis�ed. In all applications in which the domain is known to

correspond to the Herbrand universe, this will result in a correct theory. However,

when the knowledge engineer has incomplete knowledge about the domain of the

intended interpretation, incorrect theorems may be provable from the logic pro-

gram. As a trivial example, consider a language with predicate p=1 and constant

a. The theory is:

P = fp(a) :- g

In any Herbrand based semantics, P implies 8X : p(X). Assuming that the knowl-

edge engineer has incomplete knowledge on the domain, this may be a wrong con-

clusion. It may well be that there is another element b in the intended domain

and for which p(b) does not hold. The only correct behaviour here is that neither

8X : p(X) nor 9X : :p(X) should be implied. This is precisely what happens

under (partial) justi�cation semantics and this is due to the fact that P has (gen-

eral) models in which a is the only domain element and others in which there are

additional domain elements. If the knowledge engineer at a later stage learns that

a is the only element, then he can add the SDCA. P + SDCA implies 8X : p(X).

This way, justi�cation semantics allows to represent the two situations correctly. In

chapter 7, we give a natural example of a domain in which incomplete knowledge

on the problem domain exists.

A remarkable observation is that the pure logic program formalism without

FOL axioms is as expressive as with FOL axioms. Below we show that any set

of FOL axioms can be transformed to an elementary extension consisting of an

incomplete logic program and one simple FOL axiom :false (see de�nition 2.1.4).

This means that every model of the original theory (wrt (DJS)(PJS)(J S)) is

the restriction of a model of the transformed theory (wrt (DJS)(PJS)(J S)), to

the symbols of L and vice versa, a model of the latter theory restricted to the

symbols of L is a model of the original theory.

The transformation was used before in [SK88] in the context of checking in-

tegrity constraints in databases. It is an extension of the well-known procedure

in [LT84] by a pre-processing step, in which each FOL axiom F of the theory is

taken and replaced by the rule false :-:F . In addition the FOL axiom :false is

added to the theory. In the second step, the algorithm of [LT84] is applied on the

de�nition of false.

Algorithm 4.9.1 Given is a theory T = T

d

[T

c

based on L. We assume without

loss of generality that the formulas in T

c

contain only logic operators :, ^, _, 9

and 8. The transformation proceeds as follows:

step 1: De�ne P = ffalse :-:F jF 2 T

c

g

step 2: The algorithm of [LT84] is applied on P . The transformation proceeds by

rewriting P using one of the following rewrite rules, as long as P con-

4.9 Representing incomplete knowledge 111

tains formulas which are not normal clauses. The procedure returns T

d

[

P [f:falseg.

{ A formula H :-:F or H :-L

1

^ : : :^:F ^ : : :^ L

n

in which F is not an

atom, is simpli�ed by moving the negation inside F . I.e., F is replaced

by a formula F

0

which is obtained from F in the normal way:

if F = G _H then F

0

= :G^ :H

if F = G ^H then F

0

= :G_ :H

if F = 9X : G then F

0

= 8X : :G

if F = 8X : G then F

0

= 9X : :G

if F = ::G then F

0

= G

{ A formula of the form H :-F

1

^ : : :^ 9X : F

i

^ : : :^ F

n

is simpli�ed to

H :-F

1

^ : : :^ F

i

^ : : :^ F

n

{ A formula of the form H :-F

1

^ : : :^ (F _G) ^ : : :^ F

n

is replaced by

the rules

H :-F

1

^ : : :^ F ^ : : :^ F

n

H :-F

1

^ : : :^G ^ : : :^ F

n

{ A formula of the form H :-F

1

^ : : :^ 8X : F

i

^ : : :^ F

n

is replaced by

the rules:

H :-F

1

^ : : :^ :p(X

1

; : : : ; X

n

) ^ : : :^ F

n

p(X

1

; : : : ; X

n

) :- 9X : :F

i

Here p=n is a new predicate and X

1

; ::; X

n

are the free variables of

8X : F

i

.

[Dec89] has extended the transformation of [LT84] by a pre-processing step, which

can often avoid
oundering. Another trivial case where better results may be ob-

tained is when T contains expressions which are completed de�nitions. Obviously,

it is better to add the de�nition directly. For example, in the FOL situation calculus

used in [Rei92], equivalences occur which are completed de�nitions of predicates

in the LP version of situation calculus.

[LT84] proves that the algorithm always terminates. The transformed program

contains precisely the same unde�ned predicates as the source theory. The pro-

duced program P on itself is hierarchical. Note however that the body of the

clauses in P may contain literals of the de�ned predicates of T

d

. Hence, P may

depend on T

d

which is in general not hierarchical. For the following theory:

T

1

= f (p _ q) ^ (:p _ :q)

r :- p

r :- q g

the procedure produces :

112 A Semantics for Abductive Logic Programs

T

0

1

= f :false

false :-:p;:q

false :-p; q

r :- p

r :- q g

Theorem 4.9.1 Given is a theory T = T

d

[T

c

based on L. Assume that algorithm

4.9.1, transforms T to T

0

= T

d

[P[f:falseg and T

0

is based on L

0

. Then <L

0

; T

0

>

is an elementary extension of <L; T> wrt (DJS)(PJS)(JS).

Proof The transformation can be seen as an iteration producing a sequence

P

1

; : : : ; P

m

of sets of formulas where P

1

= ffalse :-:F

1

; : : : ; false :-:F

k

g

and P

m

is the resulting set of normal clauses. Consider the following se-

quence of theories:

T

0

= T

T

i

= T

d

[comp

3

(P

i

) [f:falseg(0 < i � m)

T

m+1

= T

0

= T

d

[P

m

[f:falseg

Each of these theories is based on a language L

i

where L

0

= L and L

m

=

L

m+1

= L

0

. We prove that for each i � 0, T

i+1

is an elementary extension of

T

i

wrt (DJS) (PJ S) (J S). Clearly, this implies that T

0

is an elementary

extension of T wrt (DJS) (PJS) (J S).

First take i = 0. Take any model of T

0

. It can be extended to L

1

by

assigning H

M

(false) = f. This is a model of T

1

. Vice versa, any model of

T

1

obviously is a model of T

0

(wrt (DJS) (PJ S) (J S)).

Let 0 < i � m. It can easily be veri�ed that if any except the last trans-

formation step (for universal quanti�ers) of algorithm 4.9.1 is applied, then

comp

3

(P

i

) and comp

3

(P

i+1

) are based on the same language and are log-

ically equivalent in the sense that they have precisely the same models.

Therefore, any model of T

i

(wrt (DJS) (PJS) (J S)) is a model of T

i+1

and vice versa.

So assume that the last transformation step is applied. A formula of the

form

H :-F

1

^ : : :^ 8X : F

j

^ : : :^ F

k

is replaced by the rules

H :-F

1

^ : : :^ :p(X

1

; : : : ; X

n

) ^ : : :^ F

n

p(X

1

; : : : ; X

n

) :- 9X : :F

j

where p=n is a new relation symbol. Consider any model M

0

of T

i+1

(wrt

(DJS) (PJS) (J S)) and any simple fact p(x

1

; : : : ; x

n

). In particularM

0

is

4.9 Representing incomplete knowledge 113

a model of<L

i+1

; comp

3

(P

i+1

)>. Let V be the variable assignment fX

1

=x

1

; : : : ; X

n

=x

n

g.

We have that H

M

0

(:p(x

1

; : : : ; x

n

)) = H

M

0

(V (8X : F

j

). This obviously im-

plies that the restriction of M

0

to L

i

is a model of comp

3

(P

i

), and hence a

model of T

i

(wrt (DJS) (PJS) (J S)).

Vice versa, let M be a model of T

i

(wrt (DJS) (PJS) (J S)) and hence

of <L

i

; comp

3

(P

i

)>. Note that for each ground instance of

p(X

1

; : : : ; X

n

) :- 9X : :F

j

the right side is based on L

i

and therefore, its truth value is completely

determined by M . We extend M to an interpretation M

0

of L

i+1

as follows:

for each simple fact p(x

1

; : : : ; x

n

) with associated V :

H

M

0

(p(x

1

; : : : ; x

m

) = H

M

(V (9X : :F

j

)

It is trivial to see that M

0

is a model of comp

3

(P

i+1

) and a model of T

i+1

(wrt (DJS) (PJS) (J S)).

Finally, take i = m. We must show here that an interpretation M of L

0

is a

model of T

m

= T

d

[comp

3

(P

m

) [f:falseg (wrt (DJS) (PJ S) (J S)) i�

M is a model of T

m+1

= T

d

[P

m

[f:falseg (wrt (DJS) (PJ S) (J S)).

First assume that M is a model of T

m+1

wrt (DJS) (PJS) (J S). M is a

model of :false. Note that the predicates which are de�ned in P

m

do not

appear in T

d

. As a consequence,M is a model of T

d

wrt (DJS)(PJ S) (J S).

It remains to show thatM is a model of comp

3

(P

m

)[f:falseg. By theorem

4.3.2, M is a directly justi�ed model of T

d

[P

m

, and by theorem 4.4.1(b)

of comp

3

(T

d

[P

m

). Since comp

3

(P

m

) is comprised in comp

3

(T

d

[P

m

), M

is a model of comp

3

(P

m

). Together, we �nd that M is a model of T

m

wrt

(DJS) (PJS) (J S).

Second, assume that M is a model of T

m

wrt (DJS)(PJS)(J S). When

M is a directly justi�ed model of T

m

, then it follows easily from theorem

4.4.1 that M is a directly justi�ed model of T

m+1

.

So assume that M is a model of T

m

wrt (PJS) (J S). We must prove that

for each simple fact F of L

0

n L, it holds that

H

M

(F) = (SV

PJ

(M;F))(SV

J

(M;F))

We prove the theorem for PJS. The proof for J S is totally analogous.

M is a directly justi�ed model of T

m

and hence, M is a directly justi-

�ed model of T

m+1

. So, H

M

(F) = SV

DJ

(M;F). It su�ces to prove that

SV

DJ

(M;F) = SV

PJ

(M;F). Note that P

m

is a hierarchical program. Un-

fortunately, T

d

[P

m

is not hierarchical, so that we cannot use proposition

4.3.3 to prove this equality. The proof is by induction of the stratum of F .

114 A Semantics for Abductive Logic Programs

We de�ne the stratum of p=n as 0 when p=n belongs to L. For a predicate

p=n of L

0

n L, we de�ne the stratum of p=n as the maximum of the strata

of predicates occurring in the body of the clauses of the de�nition of p=n

incremented with one.

Let i be the stratum of F . Nothing is to prove when i = 0. Assume that it

has been proven for facts F

0

with stratum < i that H

M

(F

0

) = SV

PJ

(M;F

0

).

First we prove thatH

M

(F) � SV

PJ

(M;F). Let J be a direct justi�cation of

F with maximal value. We have that H

M

(F) = SV

DJ

(M;F) = val

M

(J) =

minfH

M

(F

0

) j F

0

2 Jg. Note that each F

0

2 J is of a lower stratum and

hence, H

M

(F

0

) = SV

PJ

(M;F

0

). So for each de�ned fact F

0

2 J , there

exists a partial justi�cation J

F

0

such that H

M

(F

0

) = val

M

(J

F

0

). We use

this to construct a partial justi�cation J

0

of F . If F is a positive (negative)

fact, then J

0

is obtained by concatenating J with J

F

0

for each positive

(negative) fact F

0

2 J . It is easy to see that val

M

(J

0

) = val

M

(J). Hence

H

M

(F) = val

M

(J

0

) � SV

PJ

(M;F).

This proves that for each fact F of the i'th stratum: H

I

(F) � SV

PJ

(I; F).

Assume that for some fact F , H

I

(F) < SV

PJ

(I; F). sF belongs to the

same stratum. By theorem 4.3.1, H

I

(sF) = H

I

(F)

�1

> SV

PJ

(I; F)

�1

=

SV

PJ

(I;sF). This is a contradiction.

2

A direct but important consequence of the theorem is that any FOL theory

T can be transformed into an incomplete logic program and FOL axiom :false.

This is because the models of T wrt (DJS) (PJS) (J S) are precisely the models

of T wrt 2-valued classical model theory.

Proposition 4.9.1 Let T be a �rst order theory, T ' its translation by algorithm

4.9.1. Then T

0

wrt to (DJS) (PJS) (J S) is an elementary extension of T wrt

the FOL model semantics.

The theorem asserts that any classical model of T can be extended to a model

of T ' wrt (DJS) (PJS) (J S) and vice versa the restriction of any model of T '

wrt (DJ S) (PJS) (J S) to the symbols of the language of T is a classical model

of T . This implies a very strong form of equivalence, for example that for any

formula F based on the original language: F is implied by T wrt the FOL model

semantics i� F is implied by T ' wrt (DJS) (PJS) (JS).

The theorem e�ectively integrates First Order Logic and Logic Programming.

For FOL, the gain one might expect from this integration, is on the computational

level: the e�orts in logic programming on implementation and transformation may

render feasible implementations possible. For logic programming, the gain is on

the representational level: existing work in FOL can be transformed to LP.

4.9 Representing incomplete knowledge 115

Theorem 4.9.1 has some other important implications. One application is that

an abductive procedure, developed for pure incomplete logic programs without

FOL axioms, can be used to deal with theories with FOL axioms. It su�ces to

apply the transformation on the set of FOL axioms and to add the FOL axiom

:false to the query.

Second and related, an abductive procedure can be used as a model generator

for classical logic (with FEQ(L)). For any theory T , an abductive procedure can

execute the goal :false on the transformation of T . If it fails, it has proven

the inconsistency of T . If it succeeds, it has found a �nite model of T . Note that

the transformation of T is a hierarchical program, for which DJS, PJS and J S

coincide.

Theorem 4.9.2 Let T be a FOL theory based on L, its transformation being

T

d

+f:falseg, based on a language L' extending L. Let � be an abductive solution

based on L for the query :false (wrt DJS).

It holds that � is a (FOL) model of T + FEQ + SDCA.

Proof � de�nes a two-valued incomplete Herbrand interpretation I

�

for all

unde�ned predicates of T

d

. I

�

can be extended to a directly justi�ed model

M of T

d

. Obviously, M is a directly justi�ed model of T

d

+�. Hence M j=

:false. Therefore, for any formula F of T , M j= F . Hence, I

�

which is the

restriction of M to L, is a model of T . 2

This theorem shows again the intimate relationship between abduction and

model generation. Whereas in chapter 3, we showed that abduction can be simu-

lated by a model generation procedure, here we �nd the reverse theorem.

The theorem shows also how hard the problem of abduction is.

Proposition 4.9.2 Even for a hierarchical program, the problem of �nding a (pos-

sibly in�nite) abductive solution is undecidable.

Proof The proposition follows directly from theorem 4.9.2 and the fact that it

is undecidable whether a FOL theory has a model. 2

Finally, we mention other interesting approaches for representing incomplete

knowledge in LP. In disjunctive logic programming, the head of rules can contain

disjunctions of atoms [MR90]. A more recent approach is extended logic program-

ming [GL90a]. This formalism was used for representing incomplete knowledge in

[GL92]. At present, a good comparison between all alternative formalisms and se-

mantics is lacking and is a subject for future research. However, a point that can

be made here is that the justi�cation semantics is the only semantics based on gen-

eral interpretations. Therefore, it is the only semantics which allows to represent

incomplete knowledge on the problem domain.

116 A Semantics for Abductive Logic Programs

4.10 Expressivity of logic programs

The LP-FOL-formalism under justi�cation semantics not only integrates FOL

logic, it provides meaningful extra expressivity. A convincing example is natu-

ral number arithmetic. Consider the language L

nat

with functors 0=0 and s=1 and

predicates plus=3 and times=3. Consider the following de�nite program.

P

nat

= f plus(0; X;X) :-

plus(s(X); Y; s(Z)) :-plus(X;Y; Z)

times(0; X; 0) :-

times(s(X); Y; Z) :- times(X;Y; Z1); plus(Y; Z1; Z) g

This is a de�nite logic program and has a unique least Herbrand model,

which is obviously IN;+;�. Under least Herbrand model semantics, P

nat

has only

this model, and therefore it is a complete axiomatisation of IN;+;�. By adding

SDCA + FEQ to P

nat

, IN;+;� is the unique justi�ed model (modulo isomor-

phism) and we obtain a complete axiomatisation under justi�cation semantics

too. By G�odel's incompleteness theorem [K. 31], natural number arithmetic has

no complete axiomatisation in �rst order logic.

This example indicates also that a high price is to be paid for this extra ex-

pressivity. By Church's theorem [Chu36], we know that IN;+;� is undecidable,

hence no complete proof procedure for LP exists. This problem occurs in most LP

semantics, since for de�nite programs, with exception of the completion seman-

tics, most semantics coincide with the least Herbrand model semantics. The lack

of a complete proof procedure was previously reported in [Prz89]. It is often ar-

gued that a formal language for automated problem solving and computing should

have a complete and e�cient proof procedure. The undecidability of deduction for

the LP formalism raises the fundamental question whether the LP formalism is a

suitable language for computing and automated problem solving.

There are at least two reasons why the undecidability in the LP formalismdoes

not prevent the language to be of practical interest. First of all, undecidability is a

worst case complexity.The undecidability is a problem of only a subclass of theories

in the space of problems which can be formulated in the logic. This subclass may

be disjunct with the class of problems which arise in practice. One example of

a theoretically useless system is the simplex algorithm for linear programming.

Despite its exponential complexity (which is almost as bad as undecidability), the

algorithm proves to be very useful. There exist polynomial algorithms for linear

programming, but these are not only more complex but for most applications also

less e�cient than the simplex algorithm.

Secondly, a more fundamental reason is that the complexity of a computational

problem is inherent rather to the problem than to the logic in which it is described.

Therefore, allowing only less expressive but e�cient logics has something of an os-

trich policy. In principle, simple problems may be executed in expressive logics

as e�ciently as in less expressive logics. An example where this seems to happen

4.10 Expressivity of logic programs 117

is constraint logic programming. In constraint logic programming, a general pur-

pose theorem prover for logic programming is extended with a number of highly

specialised problem solvers which can only solve speci�c subclasses of problems.

These speci�c subclasses are "simple" in the sense that e�cient procedures exist

to solve them or that a decision procedure exist. This way CLP combines high

expressivity and remarkable e�ciency [Van89].

For complex problem domains (take the natural numbers), an expressive logic

has the advantage of allowing an accurate representation. Hard problems cannot

be solved by the theorem prover but probably a large class of simpler problems

can be solved. On the other hand, such problem domains cannot even be rep-

resented correctly in e�cient logics, which forces the knowledge engineer to �nd

approximations of his domain. The hard problems cannot be solved because the

approximation is to imprecise.

It is interesting to investigate how the domain of the natural numbers is ap-

proximated in the classical FOL theory on natural number arithmetic, the so called

Peano axioms. We recall the formulation from [Men72]. It uses operators + and

� instead of predicates plus=1 and times=3.

(S1) X = Z X = Y ^ Y = Z

(S2) s(X) = s(Y) X = Y

(S3) :0 = s(X)

(S4) X = Y s(X) = s(Y)

(S5) X + 0 = X

(S6) X + s(Y) = s(X + Y)

(S7) X � 0 = 0

(S8) X � s(Y) = (X � Y) +X

(S9) P [0]^ (8X : P [X]! P [s(X)])! 8X : P [X]

where P[X] denotes any formula with free variable X

One easily veri�es that axioms (S1)-(S4) are included in FEQ. Axioms (S5)-(S8)

correspond to the clauses of P

nat

. The most remarkable fact is the complete lack

of induction axioms (S9) in P

nat

+ SDCA + FEQ, while on the other hand, there

seems no formula in the Peano axioms which corresponds to the SDCA. Despite

their rather di�erent form, the induction axioms and the SDCA are very related:

SDCA subsumes the induction axioms. To see this, assume that in some model I

of the SDCA, for some open formula P [X], 8X : P [X] does not hold. We should

prove that the premise of the corresponding induction axiom is not satis�ed either.

We know that for each domain element x of I, there exists a natural number n

such that

~

I(s

n

(0)) = x. Let n be the minimal number such that P [s

n

(0)] is not

satis�ed in I. Either n = 0 or n > 0 and P [s

n�1

(0)] is true. In both cases, the

premise of the induction axiom is not satis�ed.

This observation shows that the induction axioms must really be interpreted

as approximations of the SDCA. This raises an observation on the computational

118 A Semantics for Abductive Logic Programs

level. Since SDCA subsumes the induction axioms, each theorem which can be

proven by mathematical induction is implied by the same theory with SDCA sub-

stituted for the induction axioms. This implies that under Herbrand model based

semantics or equivalently for theories including SDCA+FEQ, theorem proving

should incorporate a generalised form of mathematical induction for arbitrary lan-

guages.

We conclude this section with some observations of a more speculative nature.

An intriguing question is what is the cause of LP's extra expressivity compared to

FOL. Why can the DCA be expressed in logic programming (under justi�cation

semantics) but not in FOL? Below, we argue that FOL's inadequacy is due to its

failure to express inductively de�ned concepts. The principle of inductive de�nition

is an elementary way of de�ning concepts in mathematics. A remarkable observa-

tion, recognized in the mathematical logic community, but often unnoticed in the

logic programming community, is that �rst order logic in general does not allow to

represent an inductively de�ned concept in a precise way. As an example, consider

the concept of a natural number. It can be inductively de�ned as follows:

0 is a natural number

If n is a natural number, then s(n) is a natural number.

This is a precise mathematical de�nition, yielding f0; s(0); s(s(0)); : : :g. In FOL, it

is impossible to construct a theory describing a predicate nat=1 which represents

exactly the natural numbers. Of course, a theory T with clauses:

nat(0)

nat(s(X)) nat(X)

implies that for each term s

n

(0), T j= s

n

(0). It is even easy to prove that this

theory de�nes the natural numbers nat=1 in the following sense: T j= nat(x) i�

x 2 IN. However, for even easy queries about the natural numbers this does not

su�ce. For example, extend T with the following clauses for odd=1 and even=1:

even(0)

even(s(s(X))) even(X)

odd(s(0))

odd(s(s(X))) odd(X)

In a correct representation of nat=1, it should be possible to prove that each natural

number is either even or odd. T does not imply this. Consider the interpretation

M with domain:

D = fs

n

(0); s

n

(a) j n 2 INg

and H

M

de�ned as follows:

fnat(s

n

(0))

t

; nat(s

n

(a))

t

; even(s

2�n

(0))

t

; odd(s

2�n+1

(0))

t

j n 2 INg

4.10 Expressivity of logic programs 119

M is a model of T but the formula 8X : nat(X)! odd(X)_ even(X) is not true.

Notice that the problem is caused by additional undesired elements s

n

(a) in the

interpretation of nat=1.

It does not su�ce to take the completion comp(T). comp(T) comprises the

completed de�nition of nat=1:

8X : nat(X)$ X = 0 _ 9Y : X = s(Y) ^ nat(Y)

Consider the interpretation M with domain the disjunct union of the natural

numbers IN and the integer numbers Z. M (s=1) is de�ned as the union of the

successor function on the natural numbers and the integer numbers. H

M

is de�ned

as follows:

fnat(n)

t

; nat(z)

t

; even(2 � n)

t

; odd(2� n+ 1)

t

j n 2 IN ^ z 2Zg

M is a model of comp(T), and 8X : nat(X) ! odd(X) _ even(X)g is still not

true. Again, the problem is caused by the undesired elements in the interpretation

of nat=1.

The problem with the two theories above is that they allow models in which

more domain elements belong to nat=1 than the natural numbers. There is simply

no way to avoid this in FOL. This fact is generally known in mathematical logic,

but an explicit proof of the theorem precisely as we need it here, is hard to �nd,

therefore, we give a proof in the following corollary.

Corollary 4.10.1 There exists no consistent FOL theory T

nat

describing a pred-

icate nat=1 such that in each model M , M j= nat(x) , 9n 2 IN :

~

M (s

n

(0)) = x

and if n;m 2 IN and n 6= m then

~

M (s

n

(0)) 6=

~

M (s

m

(0)).

Proof Assume that a FOL theory T

nat

exists, based on a language L, which

satis�es the conditions in the theorem. We prove that we can extend T

nat

to

a theory which allows to decide all properties of IN;+;�. This contradicts

Church's theorem.

Below we de�ne L

nat

as the language with functors 0, s=1 and predicate

symbols plus=3 and times=3. The language L of T

nat

comprises obviously

0, s=1 and nat=1. We assume without loss of generality that L does not

contain the predicate symbols plus=3 and times=3. Below we denote the

set of terms f0; s(0); s(s(0)); : : :g by IN. Observe that for any model M

of <L; T

nat

>, the restriction of

~

M to IN de�nes a mapping h of IN into

the domain of M such that for any two terms n and m, if n 6= m then

h(n) 6= h(m). Consider an extension L' of L with the predicates plus=3 and

times=3. Clearly, any model of <L; T

nat

> extended in arbitrary way to L'

is a model of <L

0

; T

nat

>. Hence, <L

0

; T

nat

> is consistent.

Now observe that any model M of <L

0

; T

nat

> de�nes a Herbrand inter-

pretation M

h

of L

nat

, in the following way: for any plus=3 or times=3

120 A Semantics for Abductive Logic Programs

atom A, H

M

h

(A) = H

M

(A). We call M

h

the associated Herbrand inter-

pretation of M . Vice versa, given some Herbrand interpretation M

h

of L

nat

and any model M of <L; T

nat

>, M can be extended to an interpretation

M

0

of L

0

in a way such that for each atom A of HB(L

nat

), it holds that

H

M

h

(A) = H

M

0

(A). The extension is constructed as follows: for each sim-

ple fact A of plus=3 or times=3, if there exists B 2 HB(L

nat

) such that

~

M (B) = A, de�ne H

M

0

(A) = H

M

h

(B); if such a B does not exist de�ne

H

M

0

(A) = f. We call M

0

the extension of M by M

h

.

So assume that M is a model of <L

0

; T

nat

> with associated Herbrand in-

terpretation M

h

. For any formula F based on L

nat

, there is a related for-

mula F

r

, called the range restricted form of F , based on L', such that

H

M

h

(F) = H

M

(F

r

). F

r

can be constructed by substituting each sub-

formula 8X : F

c

in F for 8X : nat(X) ! F

c

and substituting 9X : F

c

for 9X : nat(X) ^ F

c

. That M

h

and M assign equal truth values to F and

F

r

can easily be proved by induction on the structure of F .

Now consider again the de�nite program P

nat

, de�ned earlier in this sec-

tion. It is easy to see that P

nat

is an acyclic program: a level mapping is

given by de�ning kplus(n;m; z)k = n and ktimes(n;m; z)k = n + m. For

acyclic de�nite programs, [AB90] proves that the least Herbrand model is

the only Herbrand model of the completion comp(P). Consider the the-

ory T

+�

consisting of comp(P

nat

) n FEQ(L

nat

), and the theory T

r

+�

con-

sisting of the range restricted formulas of T

+�

. Consider also the theory

T

IN;+;�

= T

nat

+ T

r

+�

. First of all, note that this theory is consistent.

Indeed, the extension of a model of T

nat

by IN;+;� satis�es T

nat

and sat-

is�es T

r

+�

because IN;+;� satis�es T

+�

. Moreover, for each model M of

T

IN;+;�

, its associated Herbrand modelM

h

satis�es T

+�

, and hence M

h

is

IN;+;�. We �nd that for every proposition F based on L

nat

, IN;+;� j= F

i� T

IN;+;�

j= F

r

. This implies that T

IN;+;�

allows to decide every propo-

sition F on IN;+;�: run a complete FOL theorem at the same time on

F

r

and :F

r

by coroutining, until one of both formulas is proven. Since

IN;+;� j= F or IN;+;� j= :F and since FOL is semi-decidable, eventually

the theorem prover will stop with a proof for either F

r

or :F

r

. This is in

contradiction with Church's undecidability theorem [Chu36]

8

.

2

The merit of this corollary is that it shows very precisely what goes wrong with

FOL to represent the natural numbers. The fact that even simple inductively de-

�ned concepts cannot be expressed correctly in FOL, implies that many common

8

The proof of this theorem holds only when T

nat

is a recursive theory: i.e. when the axioms

of T

nat

can be enumerated by an algorithm. Only for such theories, a complete FOL theorem

prover can be build. However, the theorem holds even in the more general case of an arbitrary

non-recursive theory. The proof must then be given based on Ultra�lters [Den92]

4.11 Summary 121

concepts in mathematics and in informatics cannot be correctly represented in

FOL. Is the LP formalism an accurate language to describe inductive de�nitions?

One could expect this since this intuitive notion of constructive de�nition seems

very related to this concept of inductive de�nition. Of course the answer to the

question cannot be given without a precise de�nition of what is an inductive de�-

nition. The notion of inductive de�nition is the subject of an area in mathematics

[Acz77]. In [Acz77], an inductive de�nition � is de�ned as a set of rules of the

form:

X ! x

where X is a (possibly in�nite) set of premises and x is the conclusion. With an

inductive de�nition �, an operator can be associated, which maps a set A into the

set of conclusions x for which there exist a rule X ! x in � with premises in A. A

set X is closed under � i� �(A) � A. The inductively de�ned set by � is the least

closed set of �. [Fef70] has proposed an extension of FOL by inductive de�nitions,

using a set of second order axioms. The resulting formal system can be shown to

be stronger than �rst order logic but weaker than second order logic.

There is an obvious correspondence between an inductive de�nition and a def-

inite program, between rules of an inductive de�nition and ground instances of

the clauses of a de�nite program, between the inductive de�nition as an operator

and the T

P

operator associated to a de�nite program, and between the inductively

de�ned set by an inductive de�nition and the least Herbrand model of the de�nite

program. Hence, a de�nite program can be interpreted as an inductive de�nition

in the mathematical sense. The normal and general logic program formalism is

both extending and extended by these mathematical inductive de�nitions: LP is

extended since in general, the rules in mathematical inductive de�nitions are al-

lowed to contain an in�nite number of premises; LP extends the mathematical

inductive de�nitions because LP allows negative premises to occur in the rules. A

deep investigation of the concept of inductive de�nition in the presence of negative

premises might ultimately result in a precise de�nition of what is a constructive

de�nition and may lead to a better understanding and better motivation of the

semantics of logic programs. This subject falls beyond the scope of this thesis and

is a subject for future research.

4.11 Summary

We summarize the content of the chapter. On the technical level, we have in-

vestigated the di�erent notions of justi�cation found in completion, stable and

well-founded semantics. The framework is for complete and incomplete logic pro-

grams, and is based on general 3-valued interpretations. This work considerably

extends the work of [Fag90], which investigates only the stable semantics for com-

plete logic programs, using 2-valued Herbrand interpretations. Further on, we have

122 A Semantics for Abductive Logic Programs

shown that any set of FOL axioms can be transformed to an incomplete logic pro-

gram. This implies that a simple abductive procedure developed for incomplete

programs without FOL axioms needs no extension to deal with FOL axioms, and

that such a procedure can be used as a model generator for �rst order logic.

More on the conceptual level, the framework shows that only in the well-

founded semantics and its extension, the justi�cation semantics, a true positive

fact does not depend on itself. We therefore have proposed to view logic programs

as sets of constructive de�nitions. This imposes the view on u as locally inconsis-

tent. The result is a logic which is essentially two-valued: theories with 3-valued

models are considered as containing bugs and a predicate and its negation are

still seen as complementary. We have argued how incomplete knowledge, both on

the predicates and on the problem domain entities, can be represented in incom-

plete logic programs under justi�cation semantics. Last but not least, this work

integrates �rst order logic within logic programming.

Chapter 5

An abductive procedure for

normal incomplete

programs

5.1 Introduction

Negation as failure and abduction have been recognized as important forms of non-

monotonic reasoning [Kow90], [CM85], [Poo88]. They have been shown useful for

fault diagnosis [CM85], natural language understanding [CM85], knowledge assim-

ilation [KM90a] and default reasoning [EK89], [Poo88]. Here we present a technical

contribution to the area. A general procedure for logic programs is proposed which

integrates both negation as failure and abduction. This procedure resulted from

an attempt to integrate the techniques of chapter 3 in a useful abductive proce-

dure for temporal reasoning. Temporal reasoning is an excellent domain for testing

non-monotonic reasoning techniques because of the frame problem: "the problem

of representing the tendency of facts to endure over time" [HM87]. Hanks and Mc-

Dermott used the famous Yale turkey shooting problem (YTS) to show that well-

known non-monotonic reasoning systems as McCarthy's circumscription [McC80],

Reiter's default logic [Rei80] and McDermott's non-monotonic logic [McD82] failed

to represent the frame axiom correctly.

Negation as failure was not considered in this study. Nevertheless, the frame

axiom has a correct representation in situation calculus or event calculus with

negation as failure. It has been shown that the YTS representation in these for-

malisms solves the problem correctly [AB90], [EK89], [Eva89].

Negation as failure alone is not su�cient for representing many temporal rea-

soning problems. A major restriction is its inability of representing incomplete

123

124 An abductive procedure for normal incomplete programs

knowledge. The original event calculus only supports the prediction of a goal state,

starting from a complete description of the initial state and the set of events. In

many problems, either the initial state or the sequence of events are unknown. In

planning, for example, the set of events is the subject of the search, and thus, a pri-

ori unknown. A solution to this problem is to apply incomplete event calculus and

abduction [Esh88], [Sha89]. In planning problems, the predicates which describe

the events, i.e. happens=1; act=2 and < are unde�ned. An abductive solution for

a problem, given the goal state, consists of a set of events and their order.

A sound abductive procedure for normal programs has been de�ned in [KM90a].

This procedure is based on the view that negation by failure is a special form of

abduction, a view �rst presented in [Esh88] (see also section 4.7). Unfortunately, it

turns out that for the purpose of temporal reasoning and planning, this procedure

is not powerful enough. The limitation is that an abducible literal in a goal can

only be abduced when it is ground. To see the problem, consider (a simpli�cation

of) a typical event calculus clause:

p happens(E); act(E; initiate p)

Observe that the variable E occurs only in abducible atoms. Therefore, when

executing the goal p, the atoms happens(E) and act(E; initiate p) will never

become ground and can never be selected for abduction. Thus, the procedure

ounders on these non-ground abductive goals: it terminates without a complete

computation.

In the past, special abductive procedures which do not su�er from this limi-

tation, have been presented for temporal reasoning with abductive event calculus

[Esh88], [Sha89]. Recently, [Mis91b, Mis91a] described an implementation of such

a planner based on a special purpose abductive procedure. However, the procedure

in [Esh88] is for de�nite programs with integrity constraints; no formalisation is

given and soundness and completeness results are lacking. These results are also

lacking for the procedure in [Sha89]. In [Mis91b, Mis91a], the abductive procedure

is formalised and its correctness is proven for a speci�c class of planning prob-

lems, but the procedure is unsound in the general case. Moreover, as the authors

argue, their treatment of non-ground abductive goals for which �nite failure must

be proven, is very ine�cient.

We present an improved treatment of non-ground abductive goals which has

been incorporated in a procedure, called SLDNFA. We prove its sound- and com-

pleteness. Although the inspiration for the design of SLDNFA stems from temporal

reasoning, we formulate it in full generality and it can be applied in any domain

where abduction is useful.

In section 5.2, we present the intuitions behind SLDNFA and de�ne the basic

inference operators. In section 5.3 we formalise SLDNFA and indicate its relation

to SLDNF. In section 5.4, 5.5 and 5.6, we present the proofs of the soundness and

completeness. In section 5.7, variants of SLDNFA are presented, which yield other

5.2 Basic computation steps in SLDNFA 125

completeness results. Finally, we end with a discussion. A short paper with the

main de�nitions and results of this chapter was published as [DD92b].

5.2 Basic computation steps in SLDNFA

The SLDNFA procedure is an abductive procedure for normal abductive programs.

For logic programs without negation as failure, the SLD-procedure can be extended

easily to an abductive procedure [CP86], [FG85] (see also chapter 3). Combining

abduction with negation as failure is less straightforward. SLDNFA is an extension

of the well-known SLDNF procedure [Llo87] for complete logic programs. The

SLDNF procedure can be viewed as the process of proving an initial goal by

constructing a set PG of goals that must succeed and a set NG of goals that must

fail. SLDNF tries to reduce goals in PG to the empty goal

2

and tries to build

a �nitely failed tree for the goals in NG. When a ground negative literal :A is

selected in a goal in PG, A is added to NG and vice versa, when a ground

negative literal :A is selected in a goal in NG, A is added to PG. In the sequel,

we call a goal from PG a positive goal and a goal from NG a negative goal. Keep

in mind that these names refer to the mode of execution for the goal, not to the

sign of the literals in the goal. For SLDNFA, this computation scheme must be

extended for the case that an abducible atom is selected in a positive or negative

goal. Let us investigate the problems that may rise.

The case where an abducible atom A is selected in a positive goal, can be

solved by skolemising the atom and adding the resulting atom to �. Skolemising

A means that for each variable X appearing in A, a new constant sk is created

which does not belong to the language L of the program and which is assigned to

X. It is this solution for dealing with non-ground abducible atoms which has been

applied in [Esh88], [Sha89] and [Mis91a].

The de�nitions below formalise this properly. Let V be the countably in�nite set

of variables of the �rst order language L and SK an in�nite set of skolem constants

not appearing in L (SK \ L = �). Below we extend the notion of substitution by

allowing skolem constants to appear in the domain of a substitution.

De�nition 5.2.1 (skolemisation) A skolemisation mapping D is a one-to-one

function from V onto SK. The deskolemisation mapping is its inverse D

�1

.

The skolemising substitution � of a term or formula or set of terms or formulas

with free variables X is the substitution fX

i

=D(X

i

) j X

i

2 Xg.

A deskolemising substitution is a substitution consisting a �nite set of pairs

D(X)=X. The inverse of a skolemising substitution � is a deskolemising substitu-

tion and is denoted �

�1

.

De�nition 5.2.2 (abduction) Let Q be a goal L

1

; : : : ; L

m

; : : : ; L

k

, with L

m

an abducible atom. Q

0

is derived from Q by abducing L

m

using the skolemising

126 An abductive procedure for normal incomplete programs

substitution � i� � is a skolemising substitution for L

m

and Q

0

is the goal

�(L

1

; : : : ; L

m�1

; L

m+1

; : : : ; L

k

)

As can easily be imagined, the introduction of skolem constants causes ad-

ditional problems with the uni�cation, both in positive and negative goals. An

example illustrates the problem in positive goals. Consider the de�nite clause:

p(f(g(Z); V)) :-

and the query r(X); p(X) where r=1 is an abducible predicate. Consider the

following partial derivation (selected literals are underlined):

PG = f r(X); p(X)g Abduction

PG = f p(sk)g ; � = fr(sk)g

Solving the positive goal p(sk) is not trivial: classical uni�cation cannot

be applied since the uni�cation of sk and f(g(Z); V) would fail, which is not

what is intended. The solution proposed by Eshghi [Esh88] was to introduce the

equality predicate as an abducible predicate and to add the theory of FEQ as

integrity constraints. When a skolem constant sk is to be uni�ed with a term t,

the equality fact sk = t is skolemised and abduced explicitly and the consistency

of sk = t with other abduced facts and FEQ is checked. When for example there

is a second abduced fact sk = t

0

, then the consistency of t = t

0

wrt FEQ must

be checked. Unfortunately, the explicit treatment of equality under FEQ produces

a lot of overhead. Because of this problem, Shanahan [Sha89] and later Missiaen

[Mis91b, Mis91a] gave up this solution and proposed a seemingly di�erent solution,

namely to extend uni�cation for skolems. In a �rst phase, extended uni�cation

performs uni�cation, treating skolem constants as variables; in a second phase,

it skolemises the terms bound to the original skolem constants. In the example,

the extended uni�cation procedure substitutes sk by f(g(sk

1

); sk

2

) and returns

� = fr(f(g(sk

1

); sk

2

))g.

Interestingly, the duality framework indicates a close relation between both

approaches. Note that Eshghi's problem of keeping a set of ground equality facts

consistent wrt FEQ also occurred in chapter 3 during model generation under FEQ.

This suggests that the techniques developed in chapter 3 for dynamic completion

and normalisation, can be applied to e�ciently implement Eshghi's proposal. Re-

member also that the dynamic completion under FEQ is dual to uni�cation and

that the normalisation is dual to applying a substitution. As a consequence, the

completion can easily be integrated in the uni�cation procedure. The extended

uni�cation procedure produces a kind of substitution which is the union of a vari-

able substitution (the mgu) and a ground complete term rewriting system. The

normalisation of the terms can be integrated in the procedure of applying the

variable substitution. This way the duality framework shows that the proposal of

5.2 Basic computation steps in SLDNFA 127

[Sha89] can be seen as an e�cient implementation of the procedure in [Esh88] and

[Mis91b, Mis91a].

Below we extend uni�cation and resolution in this spirit.

De�nition 5.2.3 An equality set based on L is a �nite set fs

1

= t

1

; : : : ; s

n

= t

n

g

where s

i

; t

i

are terms based on L.

An equality set based on L+ SK is in solved form i� it is the set f

2

g or a set

of atoms of the form x = t where x is a variable X or a skolem constant sk, t is a

term and each such x occurs only once at the left and not at the right. Moreover,

if x is a skolem constant then t is not a variable. An equality set in solved form

not equal to f

2

g is called consistent.

As mentioned before, we extend the notion of substitution to allow skolem

constants to appear in the domain. Application of a substitution on terms and

composition of substitutions are de�ned as in [LMM88, Llo87] and in section 2.1

but by treating skolem constants as variables. With a consistent equality set E in

solved form, a unique substitution � corresponds. This substitution is idempotent:

the variables of dom(�) do not occur in the right-hand terms; as a consequence,

for each term t, �(�(t)) = �(t). In the sequel we will treat the notions of consistent

equality set and substitution as identical, writing for example fX = ag(f(X; a; Y))

and E(f(X; a; Y)) to denote fX=ag(f(X; a; Y)) and �(f(X; a; Y)), respectively.

Vice versa, � will be occasionally used to denote the corresponding equality set

E. Concepts as uni�er, ": : : is more general than : : :" and most general uni�er are

de�ned as in [LMM88], again by treating skolem constants as variables. The empty

substitution is denoted by ".

De�nition 5.2.4 An equality set E

s

is a solved form of an equality set E i� E

s

is in solved form and E

s

is an mgu of E or, if no mgu exists, E

s

is f

2

g.

To unify a set of terms including skolem constants, the uni�cation algorithm of

[MM82] must be slightly extended. The modi�ed algorithm treats skolem constants

as variables.

De�nition 5.2.5 The equality reduction is the process of transforming a set E

of equalities to a set E

s

of equalities in solved form by applying the following set

of rewrite rules (x denotes a variable or a skolem constant):

(1) ff(t

1

; : : : ; t

n

) = f(s

1

; : : : ; s

n

)g [E) ft

1

= s

1

; : : : ; t

n

= s

n

g [E

(2) ff(t

1

; : : : ; t

m

) = g(s

1

; : : : ; s

n

g [E) f

2

g (failure)

where f/m �= g/n

(3) fx = xg [E) E

(4) ft = xg [E) fx = tg [E

where either x is a variable and t is not or

x is a skolem constant and t is neither a variable nor a skolem

128 An abductive procedure for normal incomplete programs

(5) fx = tg [E) f

2

g (failure)

where x�= t and x appears in t (occur check)

(6) fx = tg [E) fx = tg [fx=tg(E)

where x�= t, x appears in E and not in t and

if x is a skolem constant then t is not a variable.

If E reduces to f

2

g, we say that the equality reduction fails, otherwise it succeeds.

In section 5.4.1, we prove that equality reduction returns a solved form of E.

Example Consider the following equality set:

ff(X;h(sk; Z); h(sk; sk)) = f(g(Y); Y; Y)g

It has the following equality reduction:

ff(X;h(sk; Z); h(sk; sk)) = f(g(Y); Y; Y)g rule (1)

fX = g(Y); h(sk; Z) = Y ; h(sk; sk)) = Y g rule (4)

fX = g(Y); Y = h(sk; Z); h(sk; sk)) = Y g rule (6)

fX = g(h(sk; Z)); Y = h(sk; Z); h(sk; sk)) = h(sk; Z)g rule (1)

fX = g(h(sk; Z)); Y = h(sk; Z); sk = sk; sk = Zg rule (3)

fX = g(h(sk; Z)); Y = h(sk; Z); sk = Zg rule (4)

fX = g(h(sk; Z)); Y = h(sk; Z); Z = skg rule (6)

fX = g(h(sk; sk)); Y = h(sk; sk); Z = skg

Using the de�nition of equality reduction, we de�ne the extended uni�ca-

tion, called positive uni�cation. Recall that X , s, t denote vectors of variables

(X

1

; : : : ; X

n

) and of terms (s

1

; : : : ; s

n

); (t

1

; : : : ; t

n

) respectively. An expression s =

t denotes the equality set fs

1

= t

1

; : : : ; s

n

= t

n

g.

De�nition 5.2.6 (positive uni�cation) Given is an equality set E with a con-

sistent solved form E

s

. Let �

sk

be a skolemising substitution for the terms which

are assigned to skolem constants in E

s

. A positive uni�er of E is given by the

substitution �

sk

oE

s

. A positive uni�er of atoms p(t); p(s) is a positive uni�er of

the equality set t = s.

Based on positive uni�cation, we can de�ne positive resolution.

De�nition 5.2.7 (positive resolution) Let Q be a goal L

1

; : : : ; L

m

; : : : ; L

k

,

with L

m

an atom and let C be a normal clause A B

1

; : : : ; B

q

sharing no vari-

ables with Q. Q

0

is derived from Q and C by positive resolution on L

m

and using

a positive uni�er � if the following conditions hold:

� � is a positive uni�er of L

m

and A.

5.2 Basic computation steps in SLDNFA 129

� Q

0

is the goal �(L

1

; : : : ; L

m�1

; B

1

; : : : ; B

q

; L

m+1

; : : : ; L

k

).

So far, the procedures that we introduced, can be found elsewhere in the liter-

ature. The procedures de�ned below for negative goals are new.

The case where an abducible atom A is selected in a negative goal is more

complex than the positive case. We must compute the failure tree obtained by

resolving the goal, in the sequel called a negative abductive goal, with all abduced

atoms in �. The main problem is that the �nal � may not be totally known

when the abductive goal is selected. We illustrate the problem with an example.

Consider the program with abducible predicate r=1:

q r(X);:p(X)

p(X) r(b)

Below, an SLDNFA refutation for the query r(a);:q is given. PG and NG

denote respectively the sets of positive and negative goals. The selected atom at

each step is underlined. Only the modi�ed sets PG;NG and � at each step are

given. Initially NG and � are empty.

PG = f r(a);:qg Abduction

PG = f :qg ; � = fr(a)g Switch to NG

PG = f

2

g ; NG = f qg Negative resolution

NG = f r(X);:p(X)g Selection of abducible atom

If r=1 was a de�ned predicate then at this point we should resolve the selected

goal with each clause of the de�nition of r=1. Instead, we are computing a de�nition

for r=1 in �. Therefore, the atom r(X) must be resolved with all facts already

abduced or to be abduced about r=1. The problem now is that the set fr(a)g

is incomplete: indeed, it is easy to see that the resolution of the goal with r(a)

will ultimately lead to the abduction of r(b). Hence, the failure tree cannot be

computed completely at this point of the computation.

The procedures of [Sha89] and [MBD92], solve this problem by storing all neg-

ative literals for which a failure tree is to be computed and rebuilding their failure

trees each time a new fact is abduced. As indicated by the authors, this may intro-

duce a serious overhead. SLDNFA avoids this by interleaving the computation of

this failure tree with the construction of �. This is implemented by storing for each

negative abductive goal the triplet (Q;A

Q

; D

Q

) where Q is the negative abductive

goal, A

Q

is the abducible atom selected in Q and D

Q

is the set of abduced atoms

which have already been resolved with Q. NAG will denote the set of all such

triplets. We illustrate this strategy on the example. Initially NAG is empty. At

the current point in the computation, the only abduced fact that can be resolved

with the selected goal is r(a). The triplet (" r(X);:p(X)"; "r(X)"; fr(a)g) is

saved in NAG and the resolvent :p(a) is added to NG:

130 An abductive procedure for normal incomplete programs

NG = f :p(a)g ; NAG = f(" r(X);:p(X)"; "r(X)"; fr(a)g)g

Switch to PG

PG = f

2

; p(a)g , NG = fg Positive resolution

PG = f

2

; r(b)g Abduction

PG = f

2

g ; � = fr(a); r(b)g NAG goal selected

Due to the abduction of r(b), another branch starting from the goal in NAG

has to be explored:

NG = f :p(b)g ; NAG = f(" r(X);:p(X)"; "r(X)"; fr(a); r(b)g)g

Switch to PG

PG = f

2

; p(b)g ; NG = fg Positive resolution

PG = f

2

; r(b)g Abduction

PG = f

2

g

At this point, a solution is obtained: all positive goals are reduced to

2

, the

set of negative goals is empty and with respect to �, a complete failure tree has

been constructed for the negative abductive goal in NAG.

The occurrence of skolem constants in negative goals causes additional prob-

lems. The following example illustrates them. Consider the clause:

p(f(g(Z); V)) q(Z; V)

and the execution of the query r(X);:p(f(X; a)), where, again, r=1 is ab-

ducible:

PG = f r(X);:p(f(X; a))g Abduction

PG = f :p(f(sk; a))g ; � = fr(sk)g Switch to NG

PG = f

2

g ; NG = f p(f(sk; a))g Negative resolution

To solve the negative goal p(f(sk; a)), we must unify the terms f(sk; a)) and

f(g(Z); V). Here V and a unify as in normal uni�cation. If we make the default

assumption that sk is di�erent from g(Z) for each Z, then the uni�cation fails and

therefore p(f(sk; a)) fails. However, in general sk may appear in other goals and

may be uni�ed there with other terms at a later stage. Assume that due to some

uni�cation, sk is assigned a term g(t). In that case, we must retract the default

assumption and investigate the new negative goal q(t; a). Otherwise, if all other

goals have been refuted, we can conclude the SLDNFA-refutation as a whole by

returning sk 6= g(Z) as a constraint on the generated solution. As we will show

later on, adding these constraints explicitly is not even necessary.

SLDNFA's negative uni�cation procedure obtains this behaviour as follows.

First the equality reduction is applied on f(sk; a)) = f(g(Z); V), producing fV =

a; sk = g(Z)g. The variable part fV = ag is applied as in normal resolution.

5.2 Basic computation steps in SLDNFA 131

The skolem part fsk = g(Z)g, which contains the negation of the default as-

sumption, is added as a residual atom to the resolvent and the resulting resolvent

 sk = g(Z); q(Z; a) is added to NG. The selection of the entire goal can be

delayed as long as no value is assigned to sk. If such an assignment occurs and

for example the term g(t) is assigned to sk, then the goal g(t) = g(Z); q(Z; a)

reduces to the negative goal q(t; a) which then needs further investigation.

Otherwise, no further refutation is needed.

This extension of uni�cation and resolution for negative goals is formalised in

the following de�nitions.

De�nition 5.2.8 (negative uni�cation) Given is an equality set E with a con-

sistent solved form E

s

. Let � be the part of E

s

with variables at the left and E

r

the

part of E

s

with skolems at the left. We say that E negatively uni�es with substitu-

tion � and residue E

r

. Two atoms p(t); p(s) negatively unify (with substitution �

and residue E

r

) if t = s uni�es (with substitution � and residue E

r

).

De�nition 5.2.9 We say that s = t is irreducible when s is a skolem constant

and t is a non-variable term, di�erent from s.

An irreducible equality atom sk = t in a negative goal can be used as the

default assumption that sk and t are di�erent.

Based on negative uni�cation, we de�ne negative resolution.

De�nition 5.2.10 (negative resolution) Let Q be L

1

; : : : ; L

m

; : : : ; L

k

, with

L

m

an atom and let C be a normal clause A B

1

; : : : ; B

q

sharing no variables

with Q.

Q

0

is derived from Q and C by negative resolution on L

m

if the following holds:

� L

m

and A negatively unify with variable substitution � and residue:

fsk

1

= s

1

; : : : ; sk

l

= s

l

g

� Q

0

is the goal:

�(L

1

; : : : ; L

m�1

; sk

1

= s

1

; : : : ; sk

l

= s

l

; B

1

; : : : ; B

q

; L

m+1

; : : : ; L

k

)

The following property is obvious.

Proposition 5.2.1 If the selected atom L

m

does not contain skolem constants,

then positive and negative resolution collapse to classical resolution.

132 An abductive procedure for normal incomplete programs

5.3 The SLDNFA procedure

Below we assume that a normal logic program P based on a language L with

variables V is given. SK is a set of skolem constants such that SK \L = � and D

is a skolemisation mapping from V to SK.

An SLDNFA-derivation is a sequence of quadruples (PG;NG;NAG;�) of mul-

tisets of goals and sets of abduced atoms, in which each quadruple is obtained from

the previous by applying some SLDNFA-inference operator. Here PG is the multi-

set of positive goals; NG is the multiset of negative goals; � is the set of abduced

atoms.NAG is a multiset of triplets (Q;A

Q

; D

Q

), where Q is a negative abductive

goal, A

Q

is the abducible atom selected in Q and D

Q

is the subset of atoms of �

which have been resolved with A

Q

. Each SLDNFA inference step is initiated by

making a selection from one of these (multi-)sets.

De�nition 5.3.1 (Selection) Given a quadruple (PG;NG;NAG;�), a selection

is either a tuple (Q;L

m

) where Q 2 PG or Q 2 NG and L

m

is a literal in Q, or

a tuple ((Q;A

Q

; D

Q

); B) where (Q;A

Q

; D

Q

) 2 NAG and B 2 � such that B is

negatively uni�able with A

Q

and occurs in � nD

Q

.

Given a quadruple (PG;NG;NAG;�) and a selection in it, one or more prim-

itive SLDNFA-inference operators can be applied on it. Each operator computes

a new tuple (PG

0

;NG

0

;NAG

0

;�

0

) and a substitution �. The operator deletes

the selected goal Q or selected tuple (Q;A

Q

; D

Q

) from the corresponding mul-

tiset, produces a substitution � and zero, one or more new positive goals, neg-

ative goals, triplets with negative abductive goal, selected abducible atom and

set of abduced atoms. These expressions are added to the corresponding (multi)-

sets and the substitution � is applied on all (multi-)sets to obtain the new tuple

(PG

0

;NG

0

;NAG

0

;�

0

).

Abduction, positive and negative resolution are the main primitive inference

operators in SLDNFA. There are two negative resolution operators: one for nega-

tive goals and one for negative abductive goals. Three other operators deal with

negative literals in positive and negative goals. Finally, one operator is applied

when an abducible atom is selected in a negative goal. This operator merely moves

the negative goal from NG to NAG and initialises D

Q

to �. Below we formalise

each operator.

De�nition 5.3.2 (positive resolution operator) The positive resolution op-

erator applies when a de�ned atom A or an equality atom s = t is selected in a

positive goal.

If a de�ned atom is selected, then let Q

0

be derived from Q and a variant of a

program clause of P by positive resolution on A and using the positive uni�er �.

If an equality atom s = t is selected, then let Q

0

be derived from Q and a variant

of the re
exivity atom X = X by positive resolution on s = t and using a

5.3 The SLDNFA procedure 133

positive uni�er �. The positive resolution operator produces the substitution � and

the positive goal Q

0

. Formally:

PG

0

= �(PG n fQg) [fQ

0

g

NG

0

= �(NG), NAG

0

= �(NAG) and �

0

= �(�)

De�nition 5.3.3 (abduction operator) The abduction operator applies

when an abducible atom A is selected in a positive goal Q.

Let Q

0

be derived from Q by abducing A using the skolemising substitution �.

The abduction operator produces the substitution �, the abduced atom �(A) and the

positive goal Q

0

. Formally:

PG

0

= �(PG n fQg) [fQ

0

g

�

0

= �(�) [f�(A)g

NAG

0

= �(NAG);NG

0

= �(NG)

Two goals in PG

i

[NG

i

[NAG

i

do not share variables, only skolem constants

can be shared. Therefore, only the skolem part of a substitution � can have an

e�ect when applying � on other goals or abduced atoms. Since the substitution

� generated by the abduction operator is a variable substitution, application on

other goals has no e�ect.

De�nition 5.3.4 (switch to NG operator) The switch toNG operator applies

when a negative literal :A is selected in a positive goal Q.

Let Q

0

be obtained from Q by deleting :A. The switch to NG operator produces

the empty substitution, the negative goal A and the positive goal Q

0

. Formally:

PG

0

= PG n fQg [fQ

0

g

NG

0

= NG [f Ag

NAG

0

= NAG;�

0

= � and � = "

De�nition 5.3.5 (negative resolution operator) The negative resolution op-

erator applies when a de�ned atom A or an equality atom s = t is selected in a

negative goal Q.

If a de�ned atom is selected, then let S be the set of all resolvents that can be

derived by negative resolution on A from Q and precisely one variant with fresh

variables for each clause of P . If an equality atom s = t is selected, then let S

be the singleton fQ

0

g where Q

0

is derived from Q and a variant of the re
exivity

atom X = X by negative resolution on s = t. The negative resolution operator

produces the empty substitution and the set of negative goals S. Formally:

NG

0

= NG n fQg [S

PG

0

= PG;NAG

0

= NAG;�

0

= � and � = "

134 An abductive procedure for normal incomplete programs

Note that when S is empty, the result of the operation is to delete Q from NG.

A smart selection rule will never select a negative goal which contains an irre-

ducible equality atom sk = t because it will fail anyway if, eventually, the default

assumption sk 6= t is added as a constraint on the solution. One easily veri�es that

applying the negative resolution operator on a selection of a negative goal and

an irreducible equality atom has no e�ect. This is because negative uni�cation of

sk = t and X = X returns the empty substitution and residue fsk = tg. As a

consequence, selecting such a goal and atom may lead to a loop.

De�nition 5.3.6 (move to NAG operator) The move to NAG operator ap-

plies when an abducible atom A is selected in a negative goal Q.

The move to NAG operator produces the empty substitution and the tuple

(Q;A; fg). Formally:

NG

0

= PG n fQg

NAG

0

= NAG [f(Q;A; fg)g

PG

0

= PG, �

0

= � and � = "

De�nition 5.3.7 (switch to PG and failed negation operator) The switch

to PG operator and failed negation operator are both applicable when a tuple

(Q;:A) is selected such that Q 2 NG.

The switch to PG operator produces the empty substitution and the positive

goal A. Formally:

PG

0

= PG [f Ag

NG

0

= NG n fQg

NAG

0

= NG, �

0

= � and � = "

Let Q

0

be obtained from Q by deleting :A. The failed negation operator operator

produces the empty substitution and the negative goals A and Q

0

. Formally:

NG

0

= NG n fQg [fQ

0

; A g

PG

0

= PG;NAG

0

= NAG, �

0

= � and � = "

During execution of SLDNFA, the selection of a negative literal in a negative goal

creates a backtracking point: �rst one operator is applied, after backtracking the

second is applied.

The intuition behind the two operators is the following. SLDNFA tries to fail

the negative goal Q = L

1

; : : : ;:A; : : : ; L

n

, i.e. it tries to prove Q or equivalently

8(:L

1

_ : : :_::A_ : : :_:L

n

). Let Q

0

be the goal obtained by deleting :A from

Q. The following equivalences hold:

Q , 8(:L

1

_ : : :_A _ : : :_ :L

n

)

, A _Q

0

, A _ (:A ^Q

0

)

5.3 The SLDNFA procedure 135

Because A is ground, A can be moved outside the universal quanti�ers of Q. The

second transition follows from the tautology p _ q , p _ (:p ^ q). The switch to

PG operator tries to prove Q by building a successful derivation for A, thus

proving A. The failed negation operator tries to prove Q by �nitely failing A

and Q

0

, thus proving :A ^ Q

0

. An alternative for the failed negation operator

would be to add only Q

0

. The correctness of this simpli�ed operator follows from

the simpler equivalence Q , A _Q

0

. This approach is followed in the procedure

de�ned in [KM90a]. However, this variant appears to be in general less e�cient,

due to the fact that redundant solutions in both branches can be explored: solu-

tions constructed via the weaker failed negation operator may satisfy A and thus

are investigated when applying the switch to PG operator. The failed negation

operator avoids this by implementing a form of complement splitting.

De�nition 5.3.8 (NAG operator) The NAG operator applies when a tuple of

the form ((Q;A

Q

; D

Q

); B) is selected such that Q is a negative abductive goal and

B an abduced fact from � nD

Q

.

Let Q

0

be the resolvent derived from Q and B by negative resolution on A

Q

.

The NAG operator produces the empty substitution, the negative goal Q

0

and the

tuple (Q;A

Q

; D

Q

[fBg). Formally:

NG

0

= NG [fQ

0

g

NAG

0

= NAG n f(Q;A

Q

; D

Q

)g [f(Q;A

Q

; D

Q

[fBg)g

PG

0

= PG, �

0

= � and � = "

De�nition 5.3.9 (Safe selection) A selection is safe when it is not a tuple

(Q;:A) with A a non-ground atom. Skolem constants may appear in A.

De�nition 5.3.10 Let P be a normal program based on a language L with vari-

ables V . Let SK be a set of skolem constants such that SK \ L = � and let D be

a skolemisation mapping from V to SK.

An SLDNFA derivation for a query Q

0

consists of �nite or in�nite sequences:

� fQ

0

g = PG

0

;PG

1

; : : : of multisets of goals,

� fg = NG

0

;NG

1

; : : : of multisets of goals,

� fg = NAG

0

;NAG

1

; : : : of multisets of triplets (Q;A

Q

; D

Q

), where Q is a

goal, A

Q

is an abducible atom in Q and D

Q

is a set of ground atoms, nega-

tively uni�able with A

Q

,

� fg = �

0

;�

1

; : : : of sets of ground abducible facts, and

� �

1

; �

2

; : : : of skolem substitutions.

Moreover, for each i, there is a safe selection in (PG

i

;NG

i

;NAG

i

;�

i

), and

(PG

i+1

;NG

i+1

;NAG

i+1

;�

i+1

) and the substitution �

i+1

are obtained by applying

one SLDNFA-inference operator on the selection.

136 An abductive procedure for normal incomplete programs

The set of skolem constants occurring in � is denoted by Sk(�) .

We require the selection in an SLDNFA-derivation to be safe: a negative literal

may only be selected when L

m

is ground. Observe that because the selection is

safe, two goals in PG

i

[NG

i

[NAG

i

do not share variables, only skolem constants

can be shared.

De�nition 5.3.11 An SLDNFA-derivation is �nitely failed if it is �nite, say of

length n, and one of the following situations occurs at n:

� a de�ned atom A is selected in a positive goal Q 2 PG

n

such that no positive

resolution is possible on A.

�

2

2 NG

n

.

De�nition 5.3.12 An SLDNFA refutation K for a goal Q is a �nite SLDNFA

derivation (say of length n) such that PG

n

contains no other goals than

2

, each

goal Q in NG

n

comprises an irreducible equality atom and for each (Q;A

Q

; D

Q

)

in NAG

n

: D

Q

contains each B 2 �

n

which negatively uni�es with A

Q

.

The answer substitution is �

a

= �

n

o : : : o�

1

j

var(Q)

. The solution generated by

K is (�

n

; �

a

).

Example SLDNFA is applied to a small fault diagnosis problem on a lamp. A

faulty lamp problem is caused by a broken lamp or by a power failure of

a circuit without backup. The circuit c1 is equipped with a battery b1 as

backup. The battery can be empty. Formalised:

lamp(l1) :-

battery(c1; b1) :-

faulty lamp :- lamp(X); broken(X)

faulty lamp :-powerfailure(X);:backup(X)

backup(X) :- battery(X;Y);:empty(Y)

The predicates broken=1, powerfailure=1 and empty=1 are unde�ned. An

SLDNFA derivation for the goal faulty lamp is:

PG = f faulty lampg Positive resolution

PG = f powerfailure(X);:backup(X)g Abduction

PG = f :backup(sk)g; � = fpowerfailure(sk)g Switch to NG

PG = f

2

g; NG = f backup(sk)g, Negative resolution

NG = f battery(sk; Y);:empty(Y)g, Negative resolution

NG = f sk = c1;:empty(b1)g

The derivation can terminate here, generating � = fpowerfailure(sk)g and

NG = f sk = c1;:empty(b1)g, representing the solution that there is a

5.3 The SLDNFA procedure 137

power failure on a circuit sk which is not c1. Note that the solution with

c1 and an empty battery b1 is not derived and cannot be derived by any

SLDNFA derivation. We return to this problem in section 5.7.

An example of a failed derivation is obtained for the following query:

 :broken(l1); faulty lamp

The failed derivation goes as follows:

PG = f :broken(l1); faulty lampg Switch to NG

PG = f faulty lampg; NG = f broken(l1)g Move to NAG

PG = f faulty lampg; NG = fg;

NAG = f(" broken(l1)"; "broken(l1)"; �)g

Positive resolution

PG = f lamp(X); broken(X)g Positive Resolution

PG = f broken(l1)g Abduction

PG = f

2

g; � = fbroken(l1)g,

NAG = f(" broken(l1)"; "broken(l1)"; �)g

NAGoperation

NG = f

2

g

At this point the derivation fails and computation backtracks and selects the

second clause of faulty lamp.

A refutation generates not only abduced atoms but also constraints in NG

n

of

the form

 L

1

; : : : ; sk = t; : : : ; L

k

. These constraints are valid under the default assumption

that sk 6= t. Clearly this assumption is satis�ed in the theory FEQ(L+ Sk(�

n

)).

Therefore FEQ(L+Sk(�

n

)) j= L

1

; : : : ; sk = t; : : : ; L

k

. Thus, we do not need to

add these constraints explicitly to the solution after all, as announced earlier.

Another issue is the relation to SLDNF. Although the de�nition of SLDNFA

refutation is structured rather di�erently than the de�nition of SLDNF refutation

[Llo87], for complete logic programs, the de�nitions of SLDNFA and SLDNF are

equivalent: for every SLDNFA refutation, it is possible to construct an SLDNF

refutation with the same goals, resolution steps and substitutions. Vice versa, for

every SLDNF refutation an equivalent SLDNFA refutation can be constructed.

Proposition 5.3.1 For each SLDNF refutation for a goal Q and complete pro-

gram P , there exists an SLDNFA refutation generating the same answer substitu-

tion. Vice versa, for each SLDNFA refutation, there exists an SLDNF refutation

generating the same answer substitution.

138 An abductive procedure for normal incomplete programs

Proof We only sketch the proof.

Assume that there exists an SLDNFA refutation, say of length n, for a query

Q

0

. Consider the set G = fQ

k

i

j i � 0g consisting of Q

0

and all ground

atomic goals A created by the switch to PG, switch to NG and failed

negation operations upon selection of a tuple (Q;:A). With each positive

goal in G, a sequence of positive goals can be associated, each of which is

obtained from the previous by positive resolution or by the elimination of a

negative literal at a switch to NG operation. Due to the fact that, without

skolem constants, positive resolution collapses to classical resolution, this

sequence of goals forms an SLDNF derivation.

With each negative goal in G, similarly a SLDNF failure-tree of goals can be

associated. The descendants of a node in which a positive literal has been

selected, are the resolvents obtained by applying the negative resolution

operator. For a node in which a negative literal :A was selected, there are

two possibilities. Either the positive goal A was added in the SLDNFA

refutation by the switch to PG operator (and an SLDNF derivation exists

for this goal). In that case, the node has no descendants; or, the failing

negation operator was applied on the goal and A was added as a negative

goal (and an SLDNF-failure tree exists for it). In that case, the goal has as

descendant the remainder of the negative goal.

Since an SLDNFA-refutation is �nite, each SLDNF derivation sequence and

each failure tree is �nite. Each SLDNF derivation depends on the set of

failure trees of negative goals introduced by switch to NG operations. Vice

versa, an SLDNF failure tree depends on the SLDNF derivations of the

ground atomic positive goals produced by switch to PG operations and

on the failure trees for ground atomic negative goals introduced by failing

negation operations. Since the SLDNFA refutation is �nite, the SLDNF

derivations and failure trees can be correctly attributed a �nite rank. Thus,

we obtain an SLDNF refutation with the rank of the derivation sequence of

Q

0

.

Let �

i

1

; : : : ; �

i

l

be the sequence of substitutions for the SLDNF refutation

for Q

0

. It is a subsequence of �

1

; : : : ; �

n

. Two di�erent SLDNF derivations

or failure trees do not share variables, so that the substitutions used in one

derivation do not a�ect other derivations or failure trees. Therefore, the

answer substitution �

i

l

o : : : o�

i

1

j

var(Q

0

)

of the SLDNF refutation is identical

to the answer substitution �

n

o : : : o�

1

j

var(Q

0

)

for the SLDNFA refutation.

Second, assume that some SLDNF refutation of rank k for Q

0

exists. By

reverse engineering on the �rst part of this proof, it is easily veri�ed that an

SLDNFA refutation can be constructed from the SLDNF refutations and

failure trees. 2

In the next sections we will prove the soundness and completeness of SLDNFA

5.4 Primitive inference operators 139

wrt 3-valued completion semantics. 3-valued completion is a better choice than

2-valued completion semantics: it gives better results for problematic programs

containing clauses like p :-:p. It is also a fair choice: completion semantics or direct

justi�cation semantics is the weakest semantics of the three families of semantics

considered in chapter 4 for which SLDNFA is sound. Here the weakest semantics

means the semantics with most models and fewest implied formulas.

The soundness result expresses that for a computed answer (�; �) for a query

 L

1

; : : : ; L

k

in a program P , the completion comp

3

(P +�) of the complete logic

program P + � is consistent and implies 8(�(L

1

^ : : : ^ L

k

)). Note that by the-

orem 4.3.3, this implies the soundness of the procedure wrt (partial) justi�cation

semantics. As a completeness result, we will prove that (under certain conditions

expressed below), SLDNFA generates all minimal and most general solutions.

Both the soundness and completeness result depend on properties proven in

the next section for the primitive inference operators.

5.4 Primitive inference operators

In the sequel, we assume that the abductive normal program P and initial goal Q

0

are based on the (user-de�ned) language L and that there exists a skolemisation

mapping D from the variables V of L to the set SK of skolem constants (SK\L =

�). To deal with the skolem constants which occur in the computed goals, we take

as underlying language L+ SK, unless stated explicitly. We denote this language

by L

sk

. For example, when we write P j= F , we mean <L

sk

; P> j= F .

The notation comp

3

(L; P) denotes the theory consisting of FEQ(L) and the if-

and-only-if de�nitions of the predicates of P, expressed via the 3-valued equivalence

operator , . Observe that the underlying language and the language for which

FEQ is added are in general not the same: in general the underlying language will

be L

sk

, while FEQ will be constructed for the sub-language L. In fact, an ordinary

constant c and a skolem constant sk are logically distinguished precisely by the

fact that the constraints of FEQ hold for c and not for sk. If FEQ was de�ned for

the complete language L

sk

, then skolem substitutions sk = t were always false.

One might wonder what is the e�ect of adding an in�nite number of new

constants to the language on the meaning of a FOL theory T . After all, extending L

with SK has a serious impact on the Herbrand universe. The answer is, sometimes

surprisingly, that this has no e�ect. Indeed, if any model of <L; T> is extended

by giving each constant of SK a random domain element as interpretation, then a

model of <L

sk

; T> is obtained. Vice versa, by restricting each model of <L

sk

; T>

to L, a model of <L; T> is obtained

1

.

For the proofs of the properties, skolem constants will often be dealt with by

replacing them by the original variables. The intuition behind the following lemma

1

This property is obviously due to the fact that FOL model theory allows general

interpretations.

140 An abductive procedure for normal incomplete programs

is that if a formula can be proven for some skolem constant, which can represent

an arbitrary element of the domain, the formula holds for every element of the

domain.

Lemma 5.4.1 (Deskolemisation lemma) Let T be a FOL theory and F a

closed formula containing skolem constants (which do not occur in T). We as-

sume that no variable and its corresponding constant both occur in F .

<L

sk

; T> j= F i� <L; T> j= 8(D

�1

(F))

Proof That <L; T> j= 8(D

�1

(F)) implies <L

sk

; T> j= F is trivial (from the

substitution axiom).

Vice versa, assume that <L

sk

; T> j= F , and there exists a model M of

<L; T> and a variable assignment V such that H

M

(V (D

�1

(F))) 6= t. As

argued higher, any extension ofM to L

sk

is still a model of T . In particular

consider an extension M

V

which assigns to each skolem constant sk in F ,

the value V (D

�1

(sk)). By its construction, H

M

V

(F) 6= t. This contradicts

the fact that <L

sk

; T> j= F . 2

The proof techniques that will be used in most proofs are essentially the ones

used in [Cla78]: proofs by rewriting formulas by classical equivalence preserving

laws such as applying commutativity, distributivity of ^ and _ over each other

and over 9 and 8. One aspect that requires some closer attention is that the

proofs are for 3-valued logic. This poses only few problems: all classical rewrite

rules are , -equivalence preserving, i.e. they are based on , tautologies (e.g.

F ^ (G _ H) , (F ^ G) _ (F ^ H)). These tautologies can easily be proved in

a model theoretic way (showing that left and right hand of the equivalence has

the same truth value in any 3-valued interpretation). One problem that we do

have to circumvent is related to the implication connective . Often, we would

like to reason as follows: from F , (G _H), infer F G. This is a problematic

conclusion: consider a model M in which H

M

(F) = u = H

M

(G _H) = H

M

(G),

then we haveH

M

(F G) = u < H

M

(F , (G_H)). Or, even when F , (G_H)

is entailed by a theory, F G is in general not entailed. We avoid the problem

by replacing by a 3-valued version of the implication connective, ((and its

symmetric version)). The truth function of an interpretation M is de�ned on (

as follows:

H

M

(F (G) = t i� H

M

(F) � H

M

(G)

H

M

(F (G) = f i� H

M

(F) < H

M

(G)

One easily veri�es that one may correctly infer F (G from F , (G _H). Note

that the truth function for(is the same as for the connective :- de�ned in section

2.3. Below we prefer the connectives (and) instead of :- and -:, mainly for

aesthetic reasons.

5.4 Primitive inference operators 141

Rewrite rules of special importance are those which mimic the application

and the composition of substitutions: for conjunctions we have the tautologies

s = t ^ F [s] , s = t ^ F [t] and (9X : (X = t ^ F [X])) , F [t]. The latter

allows to eliminate variables occurring in the domain of a substitution. Similarly,

for disjunctions we have :(s = t) _ F [s] , :(s = t) _ F [t] and (8X : (X =

t!F [X])) , F [t].

5.4.1 Soundness of Uni�cation

Proposition 5.4.1 (soundness of equality reduction) The equality reduc-

tion applied to a set of equations E will return a solved form E

s

of E. Moreover,

FEQ(L) j= 8(E , E

s

).

Proof The proof of the theorem is analogous to the proof of the correctness of

the original algorithm of Martelli and Montanari [MM82, LMM88].

To prove that equality reduction terminates, a well-founded partial order

2

is de�ned on the set of equation sets such that if E can be rewritten to E

0

by any rewrite rule of de�nition 5.2.5 then E > E

0

.

As in [MM82],X is called a solved variable in an equality set E i�X = t 2 E

and X appears neither in t nor in E n fX = tg. We call sk a solved skolem

constant i� sk = t 2 E, t is not a variable and sk appears neither in t nor

in E n fsk = tg. With an equality set E, we associate a norm kEk which is

the tuple (N

1

; N

2

; N

3

; N

4

) with:

N

1

= number of unsolved variables and skolem constants in E

N

2

= number of functors at the left of an equation in E

N

3

= number of occurrences of skolem constants at the left of an

equation in E

N

4

= number of variable occurrences in E

Now we de�ne for any pair of equality sets E

1

; E

2

: E

1

< E

2

, kE

1

k < kE

2

k

where "<" on quadruples is the lexicographic extension of the standard or-

der on natural numbers. Or E < E

0

i� (N

1

; N

2

; N

3

; N

4

) < (N

0

1

; N

0

2

; N

0

3

; N

0

4

)

i� for some 1 � i � 4 : N

1

= N

0

1

; : : : ; N

i�1

= N

0

i�1

; N

i

< N

0

i

. This de�nes

a well-founded order on the quadruples and therefore on the equality sets.

One easily veri�es that for any equality set E, if E can be rewritten to

E

0

with any rewrite rule of de�nition 5.2.5, then E

0

< E. This proves the

termination of the algorithm.

That equality reduction returns a solved form is trivial, since only for a

solved form, none of the rewrite rules applies. We prove that (a) equality

2

A well-foundedpartial order is a strict partial order in which there exists no in�nite decreasing

sequence x

0

> x

1

> : : : > x

n

> : : :.

142 An abductive procedure for normal incomplete programs

reduction fails i� E has no uni�ers and (b) it returns an mgu of the input

equality sets i� E has a uni�er. The proof is based on the straightforward

observation that each rewrite rule preserves all uni�ers of the equality sets.

As a consequence, all equality sets derived during the uni�cation process

have the same uni�ers.

((a) !) Assume that equality reduction fails on E and that E

0

is the last

equality set in the reduction sequence before f

2

g is obtained. One easily

checks that whatever the rewrite rule is used for rewriting E

0

to f

2

g, the

selected equation in E

0

has no uni�ers. Hence, since E

0

and E have the same

uni�ers, E has no uni�er.

((a)) Assume that equality reduction does not fail on E and that E can

be reduced to a solved form E

s

. E and E

s

have the same uni�ers. Clearly,

E

s

, interpreted as a substitution, is a uni�er of itself and therefore of E.

((b)!) is trivial, since an mgu is a uni�er. We prove ((b)). Assume that

E has a uni�er �. By (a) !, it follows that equality reduction does not fail

but produces a solved form E

s

. We prove that E

s

is more general than � by

showing that � = �oE

s

. If x is a skolem or variable which does not belong to

dom(E

s

), then E

s

(x) = x and �(E

s

(x)) = �(x). Let x = t be an equality of

E

s

. We have that E

s

(x) = t and �(x) = �(t), hence �(E

s

(x)) = �(t) = �(x).

Summarising, we �nd that for each skolem or variable x, �(E

s

(x)) = �(t).

Hence, � = �oE

s

.

The proof of the logical equivalence of E and E

s

in [Cla78] applies almost

without change to the proof of the extended algorithm. One simply observes

that each rewrite rule maintains the equivalence wrt , . Because "=" has

a two-valued interpretation, equivalence wrt , coincides with equivalence

wrt , (and the connectives and ! connectives appearing in FEQ

coincide with (and)). 2

Proposition 5.4.2 Let E be an equality set.

(a) FEQ(L)+ 9(E) is consistent i� there exists a consistent solved form E

s

of

E.

(b) If E has consistent solved form E

s

and M is a model of FEQ(L) + 9(E)

then if V is a variable assignment such that M j= V (E), then M j= V (E

s

).

Proof (a) Assume that FEQ(L) + 9(E) is consistent. By Proposition 5.4.1, ap-

plying equality reduction on E yields a solved form E

s

of E. Since E

s

and

E are equivalent, E

s

must be consistent.

Conversely, assume that E

s

is a consistent solved form of E. We have called

an equality set in solved form consistent if it is not of the form f

2

g. Due

to the equivalence of E

s

and E, it su�ces to prove that FEQ(L) + 9(E

s

) is

consistent. Let E

0

s

be the result of deskolemising E

s

. E

0

s

is in solved form.

5.4 Primitive inference operators 143

Since skolemisation preserves satis�ability, FEQ(L)+ 9(E

s

) is consistent i�

FEQ(L) + 9(E

0

s

) is consistent.

We construct a model of FEQ(L)+ 9(E

0

s

). Consider the Herbrand interpre-

tation M = ft = tkt 2 HU (L)g. M is clearly a model of FEQ(L). Take

some variable assignment V of variables of range(E

0

s

). Extend it by assign-

ing V (t

i

) to each X

i

for which X

i

= t

i

2 E

0

s

. Obviously M j= V (E

0

s

). That

implies M j= 9(E

0

s

); i.e. FEQ(L) + 9(E

0

s

) is consistent.

(b) If M is a model of FEQ(L) + 9(E) and V is a variable assignment

such that M j= V (E), then by the equivalence of E and E

s

and the fact

the equality reduction does not introduce new variables, M j= V (E

s

). If

new variables would appear in E

s

then V (E

s

) would not be ground, and V

should be extended to express M j= V (E

s

).

2

5.4.2 Soundness of SLDNFA inference operators

In this section we prove for each SLDNFA inference operator a soundness and

a completeness result. Each operator can be seen as performing a classical FOL

theorem proving step. An SLDNFA inference operator deletes a selected goal Q

or selected tuple (Q;A

Q

; D

Q

) from the corresponding multiset and produces a

substitution � and a set S = fF

1

; : : : ; F

n

g with zero, one or more new positive

goals, negative goals, tuples with negative abductive goals and abduced atoms.

The soundness result for the operator is described by a formula of the following

form:

8(�(M(Q))(M(F

1

) ^ : : :^M(F

n

))

HereM(Q);M(F

1

); : : : ;M(F

n

) are FOL formulas which are de�ned in the de�ni-

tion below. Below, for a query Q = L

1

; : : : ; L

n

, the expression &(Q) denotes the

open formula L

1

^ : : :^ L

n

and _(Q) denotes the open formula :L

1

_ : : :_ :L

n

.

De�nition 5.4.1 The meaning M(Q) of a positive goal Q is the open formula

&(Q). The meaningM(Q) of a negative goal or a negative abductive goal Q is the

closed formula 8(_(Q)), or simply Q

3

. The meaningM(A) of an abduced atom A

is A itself.

Example Consider the program P with the following de�nition for a predicate

r=2:

r(a; b) :-

r(g(X); g(X)) :- q(Z)

3

Recall that a normal query or goal Q stands for the FOL formula 8(:L

1

_ : : : _:L

n

).

144 An abductive procedure for normal incomplete programs

and the positive goal r(sk; V); q(f(sk; V)) in which r(sk; V) is selected.

When the �rst clause of r=2 is selected, the positive resolution operator

produces the uni�er fsk=a; V=bg and the positive goal q(f(a; b)). When

the second clause is selected, the operator produces the substitution

fX=sk

2

gofsk=g(X); V=g(X)g

and the positive goal q(Z); q(f(g(sk

2

); g(sk

2

))). These two operations can

be interpreted as classical theorem proving operations, proving the following

implications of comp

3

(P):

r(a; b)^ q(f(a; b))(q(f(a; b))

8Z : r(g(sk

2

); g(sk

2

))^q(f(g(sk

2

); g(sk

2

)))

(q(Z) ^ q(f(g(sk

2

); g(sk

2

)))

The completeness result is more complex. On a given selection, sometimes only

one, sometimes more than one inference operation can be applied. For example,

given a selection of a de�ned atom in a positive goal, the positive resolution opera-

tor can be applied for each program clause uni�able with the selected atom. Given

a selection of a negative literal in a negative goal, the switch to PG and the failed

negation operators can be applied. On all other selections, only one operation is

possible. If di�erent operations are possible, backtracking is necessary.

Assume that for a selected goal Q or tuple (Q;A

Q

; D

Q

), a number of inference

operations can be applied, generating substitutions �

1

; : : : ; �

k

and sets S

1

; : : : ; S

k

of produced expressions. The completeness result for each selection is described

by an equivalence of the form:

8(M(Q) , G

1

_ : : :_G

k

)

Each G

i

is essentially the conjunction of the substitution �

i

and the meanings

of the expressions in S

i

in which all newly introduced variables are existentially

quanti�ed in front of G

i

. However, what makes the result somewhat tedious to

express is that skolemisation must be cancelled. G

i

is of the form:

G

i

= 9X

i

: �

0

i

^ �

�1

i

(M(F

1

) ^ : : :^M(F

n

)

Here �

0

i

and �

i

are determined as follows. For all operators except the positive

resolution and abduction operator, �

0

= � = � = ". For the abduction operator,

� = � and �

0

= ". The positive resolution operator produces a positive uni�er

� = �o�

0

, where �

0

is the result of the equality reduction and � is the skolemising

substitution.

Example In the previous example, the following equivalence is implicitly proven

by SLDNFA:

5.4 Primitive inference operators 145

8V : r(sk; V) ^ q(f(sk; V)) ,

sk = a ^ V = b ^ q(f(a; b))_

9X;Z : sk = g(X) ^ V = g(X) ^ q(Z) ^ q(f(g(X); g(X)))

Here, we have �

1

= �

0

1

= fsk=a; V=bg and �

1

= " and �

2

= �

2

o�

0

2

=

fX=sk

2

gofsk=g(X); V=g(X)g.

Proposition 5.4.3 (positive resolution) Let Q

0

be a positive resolvent of Q

and a variant of a program clause of P , using a positive uni�er �. It holds that:

comp

3

(L; P) j= 8(�(&(Q))(&(Q

0

))

Let fQ

1

; : : : ; Q

g

g be the set of positive resolvents of Q and a program clause,

using the positive uni�ers �

1

; : : : ; �

g

. Let G

i

be the formula 9X

i

: �

0

i

^�

�1

i

(&(Q

i

)).

Here �

i

= �

i

o�

0

i

, with �

0

i

the result of the equality reduction, �

i

the skolemising

substitution and X

i

= var(�

0

i

^ �

�1

i

(&(Q

i

))) n var(Q). It holds that:

comp

3

(L; P) j= 8(&(Q) , (G

1

_ : : :_G

g

))

Proof We prove the second item of the property. Let L

m

be the selected atom

p(t). Take the suitable renaming of the de�nition of p=k in comp

3

(L; P),

corresponding to the renamings of the clauses in the de�nition of p=k used

for positive resolution:

p(X) , (9Y

1

: X = s

1

^B

1

1

^ : : : ; B

1

q

1

)_ : : :_(9Y

g

: X = s

g

^B

g

1

^ : : : ; B

g

q

g

)

First, substitute X by t in this de�nition and replace L

m

in &(Q) by the

right hand of the de�nition.

Distribute the conjunction of &(Q) over the disjunction in the de�nition

of p=k. Move the existential quanti�ers of the de�nition of p=k outside

the conjunction of &(Q). This is possible because these existentially quan-

ti�ed variables do not occur in the rest of the formula. After applying

commutativity, we obtain a disjunction of formulas of the form 9Y : t =

s ^ L

1

^ : : :^ L

m�1

^B

1

^ : : :^B

q

^ L

m+1

^ : : :^ L

k

.

There is a one to one mapping between the resolvents Q

1

; : : : ; Q

g

and the

disjuncts which contain a positively uni�able equality set t = s

i

. Because

of Proposition 5.4.1, we may remove all disjuncts for which the equality

reduction fails and replace in the other t = s

i

by the corresponding solved

form �

0

. Finally apply �

0

on the rest of the formula. We obtain exactly the

desired formula.

The �rst item of the property can be proven in an analogous way, or can be

derived directly from the second item: consider skolem constants as universal

variables (Lemma 5.4.1); drop all but the disjunct corresponding to the

146 An abductive procedure for normal incomplete programs

resolvent under consideration. This turns the , equivalence into an (

implication. Move the existential quanti�ers in the remaining disjunct to

universal quanti�ers in the front. Apply variable elimination on variables at

the left in the substitution. This eliminates all equalities of the substitution.

Finally skolemise all variables which correspond to skolem constants in Q

and the resolvent. We obtain 8(�(&(Q))(&(Q

0

)).

2

Proposition 5.4.4 (abduction) Let Q be a positive goal in which an abducible

atom A is selected. Let Q

0

be obtained by abducing A using the skolemising substi-

tution �.

The following formula is a tautology: 8(�(&(Q))(�(A) ^&(Q

0

)).

Let Q

00

be the formula obtained by deleting A in Q. The following formula is a

tautology: 8(&(Q) , A ^ &(Q

00

)).

Proof The proof is trivial. 2

For negative resolution, two results are proven, one when applied to de�ned

predicates, one when applied to abducible predicates.

Example Consider again the de�nition for r=2:

r(a; b) :-

r(g(X); g(X)) :- q(Z)

and the negative goal r(sk; V); q(f(sk; V)). The negative resolution oper-

ator generates the negative goal sk = a; q(f(sk; b)) and the negative goal

 sk = g(X); q(Z); q(f(sk; g(X))). We have the following equivalence:

8V : :r(sk; V) _ :q(f(sk; V)) , (:sk = a _ :q(f(sk; b)))^

(8X;Z ::sk = g(X) _:q(Z)_

:q(f(sk; g(X))))

Proposition 5.4.5 (negative resolution) Let Q

1

; : : : ; Q

g

be the negative resol-

vents of Q and the clauses of P on L

m

.

comp

3

(L; P) j= Q , Q

1

^ : : :^Q

g

Let Q

0

be the negative resolvent of Q with a ground fact A (which does not

necessarily belong to P) : FEQ(L) j= A ^Q , A ^Q ^Q

0

Proof We start with the �rst item. Assume L

m

is p(t) and p=k has de�nition:

8X : p(X) , (9Y

1

: X = s

1

^B

1

1

^ : : :^B

1

q

1

) _ : : :_

(9Y

g

: X = s

g

^B

g

1

^ : : :^B

g

q

g

)

This formula is equivalent with:

5.4 Primitive inference operators 147

8X : :p(X) , (8Y

1

: _(X = s

1

; B

1

1

; : : : ; B

1

q

1

)) ^ : : :^

(8Y

g

: _(X = s

g

; B

g

1

; : : : ; B

g

q

g

))

We start with Q and rewrite it by applying equivalence preserving rules.

Remember that Q stands for 8(:L

1

: : ::L

m

: : ::L

k

). First, substitute

X by t everywhere in the negated de�nition and replace :L

m

in Q by the

right hand of the negated de�nition. Distribute the universal quanti�ers and

the disjunction of Q over the conjunction of the negated de�nition of p=k.

Move the universal quanti�ers of the de�nition of p=k outside the disjunction

of Q. This is possible because these universal variables are fresh. We obtain

a conjunction of formulas of the form :

 L

1

; : : : ; L

m�1

; t = s; B

1

; : : : ; B

q

; L

m+1

; : : : ; L

k

)

What remains to be done is to simplify this formula, according to the way

negative uni�cation works. By Proposition 5.4.1, we may replace t = s by its

equality reduction. If the uni�cation of t = s fails, t = s is inconsistent and

the conjunct is true and may be eliminated from the conjunction. Otherwise

the negative uni�cation of t = s results in a residue E

r

and a variable

substitution �. The application of � on the negative resolvent is simulated

by applying variable elimination on each universally quanti�ed variable in

the domain of �.

To prove the second item, it su�ces to show that:

FEQ(L) j= A ^Q) Q

0

p(s)^ L

1

; : : : ; p(t); : : : ; L

k

) p(s)^ L

1

; : : : ; t = s; p(t); : : : ; L

k

(by subsumption)

) p(s)^ L

1

; : : : ; �; E

r

; p(t); : : : ; L

k

(by equality reduction)

) p(s)^ L

1

; : : : ; �; E

r

; p(s); : : : ; L

k

(by applying � and E

r

)

) p(s) ^Q

0

(by elimination of � and p(s))

) Q

0

2

Proposition 5.4.6 (switching to NG and PG) Let Q be a positive or negative

goal in which a ground negative literal :A is selected and Q

0

is obtained from Q

by deleting :A. The following formula's are tautologies.

8(&(Q) , &(Q

0

) ^ :A) (Switch to NG)

Q , A _ (:A ^Q

0

) (Switch to PG and Failed negation)

Q(A (Switch to PG)

Q((:A ^Q

0

) (Failed negation)

148 An abductive procedure for normal incomplete programs

Proof The �rst item is trivial. The second item is only slightly less trivial. Since

the literal A is ground, ::A can be moved outside the universal quanti�er.

That :A may be added to the second disjunct is an application of the

tautology p _ q , p _ (:p ^ q). The third and fourth items are directly

implied by the second. 2

5.5 Soundness of SLDNFA

We will prove the following soundness result for the SLDNFA procedure with

respect to completion semantics. Below, P + � denotes the complete program

consisting of the incomplete program P and (possibly empty) de�nitions for the

unde�ned predicates given by �.

Theorem 5.5.1 (soundness) Let (�; �) be the result of an SLDNFA refutation

for a goal Q

0

:

<L+ Sk(�); comp

3

(L+ Sk(�); P +�)> j= 8(�(&(Q

0

)))

Moreover, <L+ Sk(�); comp

3

(L+ Sk(�); P +�)> is consistent.

The consistency of comp

3

(L+ Sk(�); P +�) follows easily from the fact that

a logic program is always consistent and even always has a Herbrand model under

each of the three justi�cation semantics. Observe that the consistency would not

be guaranteed under two-valued completion semantics. The following program in

which r

1

and r

2

are abducible predicates illustrates the problem.

Example P = fp :-:p; r

1

q :- r

1

q :- r

2

g

SLDNFA generates two solutions for the goal q, namely fr

1

g and fr

2

g.

One easily observes that due to the �rst rule, comp(P +fr

1

g) is inconsistent

wrt two-valued semantics. However, the interpretation fp

u

; r

t

1

; q

t

g is a model

of comp

3

(P +fr

1

g) and of comp

3

(P). Under the constructive de�nition view

(see chapter 4), the de�nition of p is locally inconsistent. P is not overall

consistent.

The proof of the soundness result is in the spirit of Clark's soundness theo-

rem for SLDNF [Cla78], but is seriously complicated by the skolem constants, by

positive and negative abduction. The main idea behind the proof is that during

the construction of an SLDNFA-derivation K of length n, a proof tree is con-

structed. Initially, the root and only node of the proof tree is labelled byM(Q

0

),

the meaning of the query. The selection of a goal Q corresponds to the selection

of a leaf of the proof tree with labelM(Q). An operation which produces a sub-

stitution � and a set fF

1

; : : : ; F

k

g of expressions, applies � on all existing nodes

and extends the proof tree at the node labelledM(Q) with descendants labelled

5.5 Soundness of SLDNFA 149

M(F

1

); : : : ;M(F

k

). This way, we obtain a tree with root �

n

o : : : o�

1

(M(Q

0

)) and

leaves corresponding to the elements of PG

n

;NG

n

and �

n

. The case for the nega-

tive abductive operator is slightly di�erent. Note that this operator deletes a tuple

(Q;A

Q

; D

Q

) from NAG and adds a negative goal Q

0

and a tuple with the same

negative abductive goal Q. The proof tree contains a node labelled Q. Instead of

adding Q

0

and Q as descendants to this node, only Q

0

is added.

In addition, the tree contains for each node some status word, which is a string

of the set fpg; ng; nag; abd; compg.The status of a node labelled byM(Q) indicates

to what (multi)set Q belongs:

� pg: Q 2 PG

n

� ng: Q 2 NG

n

� nag: (Q;A

Q

; D

Q

) 2 NAG

n

� abd: Q 2 �

n

� comp: Q is a goal to which some inference step has already been applied.

We give an inductive de�nition of the proof tree.

De�nition 5.5.1 Let K be a �nite SLDNFA derivation of length n for a goal Q

0

.

If n = 0, we de�ne the proof tree P

K

associated to K as the tree with a single

node, labelled with the open formula &(Q

0

) and status pg.

Assume n > 0. Let K

0

be the SLDNFA derivation consisting of the �rst n � 1

steps of K. An operation is applied on a selection (Q;L

m

) or ((Q;A

Q

; D

Q

); B)

and produces a substitution � and a set S of expressions. The proof tree P

K

of K

is constructed from P

K

0

as follows:

� let the selection be of the form (Q;L

m

) with Q 2 PG

n�1

or Q 2 NG

n�1

. Let

N 2 P

K

0

be the corresponding leaf labelledM(Q). P

K

is obtained from P

K

0

by applying � on all labels of P

K

0

and appending to N for each F 2 S one

new descendant N

0

, labelled with M(F) and the status of F . The status of

N is changed to comp.

� let the selection be ((Q;A

Q

; D

Q

); B). The NAG operator produces a negative

resolvent Q

0

and the tuple (Q;A

Q

; D

0

Q

). Let N 2 P

K

0

be the node correspond-

ing to (Q;A

Q

; D

Q

) and labelled by Q. P

K

is obtained from P

K

0

by appending

to N a new descendant N

0

labelled with M(Q

0

) and status ng.

Example The proof tree of the �rst SLDNFA refutation in the faulty lamp ex-

ample (section 5.3) for the goal faulty lamp is given in �gure 5.1.

The proof of the soundness goes as follows. For each node N with status

comp, a goal Q was selected at step i of the derivation and N is labelled by

150 An abductive procedure for normal incomplete programs

.

..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
..
.
.
.
..
.
.
.

..
..
...
..
..
..
..
...
..
.
.

.

.
.
.
.

.
.
.
.
.
.

.

.

.
.
.

..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
..
..
...
..
..
..
...
..
..
..
...
..
..
..
...
.

.

..
.
.
.
.
..
.
.
.
.
.
..
.
.
............

........

.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.

.

.
.
.
.

.

.

.

.

.

.

.
.

.

.

.

.
.

..
..
..
..
.
..
..
..
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
..
.
.
..
.
.
..
.
.
..
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

faulty lamp

comp

powerfailure(sk) ^ :backup(sk)

comp

powerfailure(sk)

abd

:backup(sk)

comp

:backup(sk)

comp pg

:battery(sk; Y) _ empty(Y)

comp

:sk = c1 _ empty(b1)

ng

Figure 5.1: Proof tree of faulty lamp

�

n

o : : : �

i

(M(Q)). The descendants of N are labelled by �

n

o : : : o�

i+1

(M(F

j

)) for

each F

j

, produced by the i'th operation. It follows directly from the theorems of

subsection 5.4.2 that each formula in a node with status comp is implied by the

conjunction of the formulas in the descendants.

The proof of the soundness proceeds by showing that for a refutation, all leaves

of the corresponding �nal proof tree hold in comp

3

(L + Sk(�); P +�) and that

nodes with status nag are implied by the conjunction their descendants. By a

simple induction, it is then possible to derive the correctness of the root �

a

(&(Q

0

))

with �

a

the answer substitution of the refutation

4

.

At this point, we can clarify why PG, NG and NAG are designed as multisets

and not as simple sets. If these were sets, then it can occur that a goal added by

4

An alternative proof would be to show that with any SLDNFA derivation, one can associate

an SLDNF refutation in P +� generating the same answer substitution, and then relying on the

soundness of SLDNF. Though at �rst sight this may seem easier, there are de�nitely a number

of tedious snakes under the grass (see for example [MBD92]). Moreover this technique is also

substantially weaker. Using the proof tree, we obtain the additional result that the conjunction

of the leaves of the proof tree (the conjunction consisting of &(�) and all remaining constraints)

imply �(&(Q)) under the completion of the incomplete program P . This is an interesting result

in its own right and it will prove useful later.

5.5 Soundness of SLDNFA 151

some computation step is identical to an existing goal, so they merge. Alternatively,

due to the application of a substitution, two previously di�erent goals may become

identical and merge. The danger of this is that -if no care is taken- this might lead

to a proof tree which contains loops. Indeed, examples can be constructed in which

a negative abductive goal (Q;A

Q

; D

Q

) has an identical ancestor goal. If in the proof

tree, the nodes for these goals are merged then we obtain a proof tree with a loop.

We prove that, given a refutation K, all the leaves of P

K

are implied by the

completion of the program augmented with the abductive solutions and that each

node is implied by its descendants.

Lemma 5.5.1 Let K be an SLDNFA-refutation of length n, generating a solu-

tion (�; �). For every node N of P

K

, with label F and descendants labelled with

F

1

; : : : ; F

m

(m�0), it holds that comp

3

(L+Sk(�); P+�) j= 8(F (F

1

^: : :^F

m

).

The case that m = 0 corresponds to a leaf of the proof tree. In that case, the

empty conjunction corresponds to true, so that the truth of the leaf must be proven.

Proof Depending on the status of the node, the tree is partitioned into the 5

classes of nodes N

comp

, N

abd

, N

pg

, N

ng

and N

nag

. The proof is by a case

analysis on the type of the node.

N 2 N

abd

: An abductive node is always a leaf and is labelled with an ab-

ducible atom contained in �.

N 2 N

pg

: N is labelled withM(

2

), this is the empty conjunction.

N 2 N

ng

: N is labelled with the meaning of a negative goal Q containing

an irreducible equality atom sk = t. The result follows immediately

from FEQ(L+ Sk(K)) j= 8(:sk = t).

N 2 N

nag

: N corresponds to a negative abductive goal (Q;A

Q

; D

Q

). N is

labelled with M(Q) = Q. Assume that the descendants of N are la-

belled with formulasF

1

; : : : ; F

h

. It su�ces to show that comp

3

(L;�) j=

Q(F

1

^ : : :^ F

h

.

We know that D

Q

contains every atom from � uni�able with the

selected atom A

Q

. Let Q

1

; : : : ; Q

g

be the negative resolvents of Q and

an atom of D

Q

. From Proposition 5.4.5, it follows that comp

3

(L;�) j=

Q , Q

1

^ : : : ^ Q

g

. What remains to be proven is that for each Q

i

,

there exists an F

j

such that F

j

, Q

i

.

Take any Q

i

. It is obtained by negative resolution with an abduced fact

B = p(s) of D

Q

. Therefore, there exists at least one descendant N

j

of

N , obtained at some step l by negative resolution of a negative abduc-

tive goal Q

0

with an abduced fact B

0

= p(s

0

) such that �

n

o : : : o�

l

(Q

0

)

is Q and �

n

o : : : o�

l

(B

0

) is B. Let Q

0

i

be the result of this negative

resolution. The label F

j

of N

j

is nothing else than �

n

o : : : o�

l

(Q

0

i

). We

must show that F

j

is equivalent with Q

i

.

152 An abductive procedure for normal incomplete programs

Let p(t

0

) be the selected goal inQ

0

and p(s

0

) be the atomB

0

. Obviously,

�

n

o : : : o�

l

(p(t

0

)) is A

Q

= p(t). Consider the goal G

0

obtained from Q

0

by replacing p(t

0

) by t

0

= s

0

. From the soundness of equality reduction

(Proposition 5.4.1), it follows that FEQ(L) j= G

0

, Q

0

i

. This equiva-

lence is preserved under the application of the substitution �

n

o : : : o�

l

.

Under this substitution, Q

0

i

becomes F

j

and G

0

becomes the goal G

obtained by replacing A

Q

in Q by t = s. Again by the correctness of

equality reduction, it follows that FEQ(L) j= G , Q

i

. We obtain at

last that FEQ(L) j= F

j

, Q

i

.

N 2 N

comp

: With N corresponds a goal Q that was selected at step i

such that N is labelled by �

n

o : : : o�

i

(M(Q))). The descendants of

N are labelled by �

n

o : : : o�

i+1

(M(F

j

)) for each F

j

that was pro-

duced by the i'th operation. To prove is 8(�

n

o : : : o�

i+1

(�

i

(M(Q)) (

M(F

1

)^: : :^M(F

h

))). This is a direct consequence of the propositions

of subsection 5.4.2) and the fact that the application of a substitution

on universally quanti�ed variables and skolem constants preserves a

logical consequence.

2

Proof (of theorem 5.5.1)

Let K be an SLDNFA-refutation for the goal Q

0

, with proof tree P

K

. In

Lemma 5.5.1, we have proven that for each node labelled with a formula F ,

with descendants labelled with F

1

; : : : ; F

m

, it holds that:

comp

3

(L+ Sk(�); P +�) j= 8(F (F

1

^ : : :^ F

m

)

Using a simple induction on the depth of the nodes in the proof tree, one ob-

tains that for each formula F in any node of the tree: comp

3

(L+Sk(�); P+

�) j= 8(F). This holds a fortiori for the formula in the root of the tree, which

is 8(�(&(Q

0

))).

Recall that the underlying language is L

sk

. Since comp

3

(L+Sk(�); P +�)

contains only symbols of L + Sk(�), we may restrict our language to the

latter language and we obtain:

<(L+ Sk(�); comp

3

(L+ Sk(�); P +�)> j= 8(F)

That comp

3

(L+Sk(�); P +�) is consistent, follows from the duality theo-

rem 4.6.1 and theorem 4.4.1 which proves the equivalence between 3-valued

completion semantics and direct justi�cation semantics. 2

5.6 Completeness of SLDNFA 153

5.6 Completeness of SLDNFA

5.6.1 The completeness theorems

To formulate the completeness result, the concept of SLDNFA-tree is needed. First

we de�ne how the computation branches: given some SLDNFA-derivation and a

selection in the last node of the derivation, what SLDNFA operations are possible

on this selection? We then de�ne the concept of an SLDNFA-tree as a closure over

the branching relation.

De�nition 5.6.1 Given is a �nite SLDNFA derivation K of length n � 1 and a

selection (Q;L) or ((Q;A

Q

; D

Q

); B) at step n � 1.

The set S of computable children of K is the set of all tuples (PG

i

n

;NG

i

n

;

NAG

i

n

;�

i

n

; �

i

n

), that can be obtained by applying one of the SLDNFA-operations

on the selected tuple.

In practice, only in two situations more than one child can exist:

� when Q is selected from PG

n�1

and L

m

is a non-abducible atom, then there

are as many children as there are program clauses with a head positively

uni�able with L

m

.

� when Q is selected fromNG

n�1

and L

m

is a negative literal, then the switch

to PG and the failed negation operations can be applied and we obtain two

children.

De�nition 5.6.2 A partial SLDNFA-tree for a query Q is a tree in which each

branch is an SLDNFA derivation. For each non-leaf N , a selection exists such that

the descendants of N are the computable children of the derivation up to N .

An SLDNFA-tree for a query Q is a partial SLDNFA-tree such that each branch

is a failed SLDNFA derivation or an SLDNFA refutation.

Example The SLDNFA-tree for the query faulty lamp in the faulty lamp

example is given in �gure 5.2.

Observe that the SLDNFA-tree is a totally di�erent concept than the proof

tree! The proof tree represents one SLDNFA-derivation in a structured way, while

an SLDNFA-tree represents a set of SLDNFA-derivations. So with every branch

of an SLDNFA-tree, a proof tree corresponds.

As a completeness result, we will prove that (under certain conditions expressed

below), SLDNFA generates all minimal and most general solutions. More precisely:

given any abductive solution �, there exists a solution �' generated by SLDNFA

and a substitution � for the skolem constants of �' such that �(�

0

) � �. This

does not imply that �' contains less elements than �: indeed it is possible that

� maps two or more facts of �' to one fact of �. In the section on extensions of

SLDNFA we come back to this phenomenon.

154 An abductive procedure for normal incomplete programs

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PG = f lamp(X); broken(X)g

PG = f

2

g;� = fbroken(l1)g

PG = f broken(l1)g

.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.

.

.

.

.

.

.

.

.
.
.
.

.
.
.
.
.

.
.
...
..
..
..
..
..
..
..
..
.

.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
..
.
.

.
..
..
..
..
..
..
..
..
...
.
.

.

.

.

.
.

.

.

.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

PG = f faulty lampg

PG = fpowerfailure(X);:backup(X)g

� = fpowerfailure(sk)g;PG = f :backup(sk)g

PG = f

2

g;NG = f battery(sk; Y);:empty(Y)g

NG = f sk = c1;:empty(b1)g;� = fpowerfailure(sk)g

Figure 5.2: SLDNFA-tree of faulty lamp

Theorem 5.6.1 (completeness) Given is a normal abductive program P based

on a language L and a normal query Q which has a �nite SLDNFA-tree W .

(a) if all branches of W are �nitely failed, then <L; comp

3

(L; P)> j= Q

(b) if <L; comp

3

(L; P) + 9(&(Q))> is satis�able, then W contains a successful

branch.

(c) let (�; �) be an abductive solution for Q based on an extension L' of L. There

exists a successful branch in W generating a solution (�

0

; �

0

) and a ground

skolem substitution �

sk

such that �

sk

(�

0

) � �. Moreover �

sk

o�

0

(Q) is more

general than �(Q).

An important observation is that due to item (a), SLDNFA can be used in

a totally di�erent role than for abduction: it can be used soundly for deduction

in incomplete logic programs. Indeed, assume that we want to prove a formula

F wrt an incomplete program P (under completion semantic or, (direct) (par-

tial) justi�cation semantics). Consider the general query :F . By applying the

Lloyd-Topor transformation [LT84] (see algorithm 4.9.1), this general query can

be transformed into normal query Q = L

1

; : : : ; L

n

and a program P

0

. Moreover

by theorem 4.9.1, it holds that P j= F i� P + P

0

j= L

1

; : : : ; L

n

under com-

pletion semantics. If SLDNFA fails on Q, then by theorem 5.6.1(a) we �nd that

5.6 Completeness of SLDNFA 155

comp

3

(P) j= F . By theorem 4.3.3, this implies that F is entailed by P under

(partial) justi�cation semantics. This is again a proof of the remarkable versatility

of abduction. This application of SLDNFA will be illustrated in chapter 6. Note

that SLDNFA is not complete as a theorem prover, due to the problems with

oundering.

SLDNFA, like SLDNF, can only be complete under severe restrictions. The

condition of having a �nite computation tree is quite restrictive. It is needed be-

cause the proof relies on an equivalence between the goal and the leafs of the

SLDNFA-tree. This equivalence can only be proven for �nite trees. This proof

technique is in the same spirit as Clark's proof of the completeness of SLDNF

for hierarchical programs. Similarly as for SLDNF, completeness results for in�-

nite SLDNFA-trees could probably be obtained by imposing conditions such as

allowedness and strictness on the abductive programs (see [CL89]). This is subject

to future research.

The proof of the completeness theorems is also in the spirit of Clark's com-

pleteness proof for SLDNF. We show that with a �nite SLDNFA-tree, a formula

can be associated which expresses the equivalence between the goal and a dis-

junction of formulas each of which corresponds to one successful refutation in the

SLDNFA-tree. Following [CTT91], we call this formula the explanation formula

and the disjuncts corresponding to the SLDNFA refutations the state formulas. In

the following subsection, the explanation formula is introduced and its correctness

is proven. After that, the explanation formula is used to prove the completeness.

5.6.2 The explanation formula

BelowM

sk

(F) denotes D

�1

(M(F)), the deskolemisation of the meaning of F . For

a set S of expressions, we de�ne M

sk

(S) as the conjunction of the deskolemised

meanings of its elements. For a substitution �, we de�neM

sk

(�) as the conjunction

of the equalities obtained by deskolemising all equalities in � and removing all

atoms of the form X = X. Such an atom is the result of deskolemising an equality

X = D(X).

De�nition 5.6.3 Let P be a normal abductive program, Q

0

a query, K a �nite

SLDNFA derivation of length n, �

a

the answer substitution �

n

o : : : o�

1

j

var(Q

0

)

The state formula corresponding to K is the open formula:

9Y : E ^ F

abd

^F

pg

^ F

ng

where E is M

sk

(�

a

), the deskolemised answer substitution; F

abd

is M

sk

(�), the

deskolemisation of �; F

pg

is M

sk

(PG

n

), the conjunction of the deskolemised

meanings of the positive goals; F

ng

is M

sk

(NG

n

[NAG

n

), the conjunction of

the deskolemised meanings of negative and negative abductive goals. Y is var(E ^

F

abd

^F

pg

^ F

ng

) n var(Q

0

). The state formula is denoted by state(K).

156 An abductive procedure for normal incomplete programs

De�nition 5.6.4 Given a �nite partial SLDNFA-tree W for a goal Q

0

, its expla-

nation formula is:

8(&(Q

0

) , state(K1) _ : : :_ state(K

g

))

where fK

1

; : : : ;K

g

g is the set of all branches of W which are not failed. The

formula is denoted by expl(W).

Example Consider the SLDNFA-tree of �gure 5.2. The corresponding explana-

tion formula is:

faulty lamp , broken(l1)_

(9X : powerfailure(X) ^ (:X = c1 _ ::empty(b1)))

Observe that the explanation formula does not contain skolems. Therefore, L is

taken as the underlying language. With respect to the completeness, we will �rst

show that for every �nite partial SLDNFA-tree, comp

3

(L; P) j= expl(W). This

theorem is based on the following lemma.

Lemma 5.6.1 For any SLDNFA-derivation K of length n, let there be a selec-

tion in the last node of K and fK

1

; : : : ;K

g

g the set of extensions of K with a

computable child of K. Then the following equivalence holds:

comp

3

(L; P) j= 8(state(K) , state(K

1

) _ : : :_ state(K

g

))

Proof The proof of the lemma is a straightforward extension of the completeness

results proven in subsection 5.4.2.K is extended to K

1

; : : : ;K

g

by perform-

ing all possible operations on a selection (Q;L

m

) or ((Q;A

Q

; D

Q

); B). Let

S

1

; : : : ; S

g

be the produced sets of expressions by each operation, �

1

; : : : ; �

g

the produced substitutions. As in subsection 5.4.2, each �

i

can be written

as �

i

o�

0

i

with �

i

the skolemising part of �

i

. By the theorems of subsection

5.4.2, it holds that:

comp

3

(L; P) j= 8(M(Q) , G

1

_ : : :_G

g

)

G

i

corresponds to S

i

= fF

1

; : : : ; F

h

g as follows:

G

i

= 9X

i

: �

0

i

^ �

�1

i

(M(F

1

) ^ : : :^M(F

h

))

where X

i

is the set of variables appearing in �

0

i

^�

�1

i

(M(F

1

)^ : : :^M(F

h

))

but not inM(Q). By lemma 5.4.1, the following equivalence holds:

8(M

sk

(Q) , D

�1

(G

1

) _ : : :_ D

�1

(G

g

))

and D

�1

(G

i

) is equivalent with:

9X

i

:M

sk

(�

i

) ^M

sk

(F

1

) ^ : : :^M

sk

(F

h

)

5.6 Completeness of SLDNFA 157

The proof goes as follows. state(K) is of the form 9Y : E^F

abd

^F

pg

^F

ng

and containsM

sk

(Q). Substituting D

�1

(G

1

) _ : : :_ D

�1

(G

g

) forM

sk

(Q)

preserves the equivalence. The next step is to simplify the resulting formula

to obtain state(K

1

) _ : : : _ state(K

g

)). This is easy when the abduction

operator, switch to NG, negative resolution operator, move to NAG or the

NAG operator is applied. In that case, only one computable child K

1

exists

and moreover, �

0

1

= " and X

1

= �. We immediately obtain state(K

1

).

In case that a negative literal is selected in a negative goal, two children K

1

and K

2

are obtained by applying the switch to PG and the failed negation

operator. �

0

1

; �

0

2

; �

1

; �

2

and X

1

; X

2

are empty. It su�ces to distribute the

conjunction and existential quanti�ers of state(K) over the disjunction of

D

�1

(G

1

) _ D

�1

(G

2

) to obtain state(K

1

) _ state(K

2

).

Finally, consider the case that Q 2 PG

n

and L

m

is a de�ned atom. K has

as many extensions K

1

; : : : ;K

g

as there are positive resolvents Q

1

; : : : ; Q

g

.

The �rst step of the proof is again to substitute D

�1

(G

1

)_ : : :_D

�1

(G

g

) for

M

sk

(Q) in F

pg

and to distribute the conjunction and existential quanti�ers

of state(K) over this disjunction. We obtain a disjunction in which each

disjunct is of the form: 9Y : E^F

abd

^F

0

pg

^F

ng

^9X

i

:M

sk

(�

i

)^M

sk

(Q

i

).

Here F

0

pg

denotes the conjunction obtained by eliminatingM

sk

(Q) from

F

pg

. Since all variables of X

i

are fresh, their existential quanti�ers can

be moved outside the conjunction, joining the quanti�ers of Y . We obtain

9Y ;X

i

: E ^M

sk

(�

i

) ^ F

abd

^F

0

pg

^M

sk

(Q

i

) ^ F

ng

.

The next step is to applyM

sk

(�

i

) on E ^F

abd

^F

0

pg

^ F

ng

. SinceM

sk

(�

i

)

does not contain variables of the domain of E, this transforms E ^M

sk

(�

i

)

toM

sk

(�

i

)oE. Also, F

abd

^ F

0

pg

^M

sk

(Q

i

) ^ F

ng

is transformed in F

i

abd

^

F

i

pg

^ F

i

ng

.

The remainder of the transformation is to simplifyM

sk

(�

i

)oE to the an-

swer substitution of K

i

. Let �

a

be the answer substitution of K, it holds

that E =M

sk

(�

a

). �

i

a

is �

i

o�

a

j

var(Q)

. One easily veri�es thatM

sk

and the

composition operator o commute. ThereforeM

sk

(�

i

o�

a

) isM

sk

(�

i

)oE. The

restriction of M

sk

(�

i

)oE to var(Q) is obtained by applying variable elim-

ination on all existentially quanti�ed variables which occur in the domain

of the resulting substitution. We obtain state(K

i

).

2

In the following theorem, the lemma is extended through an inductive argu-

ment.

Theorem 5.6.2 For any �nitely failed derivation K, state(K) is inconsistent.

For any �nite SLDNFA-tree W , comp

3

(L; P) j= expl(W)

158 An abductive procedure for normal incomplete programs

Proof For the �rst item, observe that a derivation of length N is �nitely failed

i� NG

n

contains the empty goal

2

or if some positive goal has a positive

literal L

m

which is not uni�able with the head of any program clause. In

the �rst case the inconsistency is trivial. In the second case: since the set

of children of the derivation is empty, it follows from Lemma 5.6.1 that

state(K) ,

2

.

The second item follows by induction on the depth of the SLDNFA-tree,

using Lemma 5.6.1.

2

5.6.3 Completeness proof

Proof (of theorem 5.6.1)

(a) When W is �nitely failed, expl(W) is of the form 8(&(Q) , false) or

equivalently Q. By theorem 5.6.2, comp

3

(L; P) j= Q.

(b) follows directly from (a).

(c) We assume that new variables introduced by � do not occur in the

SLDNFA-tree. Also we assume that L

0

\ SK = �. These conditions can

always made to hold, by renaming some variables or constants. By assump-

tion <L

0

; comp

3

(L

0

; P +�)> j= 8(�(&(Q))). Observe that FEQ(L

0

) con-

tains disequality constraints for all constants in L

0

. This implies that the

extra constants in L' do not behave as skolem constants, e.g. they cannot

occur at the left in an mgu.

Intuitively, the proof goes as follows. Take a modelM of comp

3

(L

0

; P +�).

Since comp

3

(L; P) is comprised in comp

3

(L

0

; P + �), by theorem 5.6.2,

the explanation formula is satis�ed in M . Therefore for an instance of the

variables of Q which satis�es &(Q), there must exists a state(K

i

) which

is also satis�ed under this variable assignment. state(K

i

) is of the form

9Y : E ^ F

abd

^ F

ng

, so the variable assignment can be extended to the

variables Y , such that E ^ F

abd

^ F

ng

holds. In particular F

abd

is satis�ed.

Since F

abd

is satis�ed, its conjuncts must correspond to abduced atoms of �.

On the other hand, F

abd

is the deskolemisation of some generated solution

�'. Its variables correspond to skolem constants in �'. So we get a relation

between terms in �' and in �. From this relation, the desired substitution

can be obtained. Below, a precise formulation of this reasoning is given.

We construct the model M as follows. Take the Herbrand interpretation

of a language L

0

+ fc

1

; : : : ; c

n

g, where c

1

; : : : ; c

n

are new constants not ap-

pearing in L

0

and n is the number of variables in �(Q). Extend this to an

incomplete Herbrand interpretation by interpreting "=" by ft = t

t

j t 2

HU (L

0

+fc

1

; : : : ; c

n

g)g. By theorem 4.4.1 and theorem 4.3.4, this incomplete

interpretation can be extended to a model M of comp

3

(L

0

; P +�).

5.6 Completeness of SLDNFA 159

In M , the formula 8(�(&(Q))) holds. Take the special variable assignment

V which associates to each distinct variable X

i

of �(Q) the new constant c

i

.

It holds that M j= V (�(&(Q))). This is equivalent to M j= V (9Z

1

; : : : ; Z

n

:

(� ^ &(Q))) where Z

1

; : : : ; Z

n

are the variables of the domain of �. Thus,

there exists an extension V

0

of V such that M j= V

0

(� ^&(Q)).

M satis�es expl(W). SinceM j= V

0

(&(Q)), it must hold thatM j= V

0

(state(K

1

)_

: : :_state(K

n

))

5

. Therefore, there exists an i such thatM j= V

0

(state(K

i

)).

state(K

i

) is a formula of the form 9Y : �

0

desk

^ F

abd

^ F

ng

, where F

abd

is

the deskolemisation of the generated �' and �

0

desk

is the deskolemisation of

the generated answer substitution �'. Again V

0

can be extended to V

00

such

that M j= V

00

(�

0

desk

^ F

abd

^ F

ng

).

Since M j= V

00

(�) and M j= V

00

(�

0

desk

), we have for each term t

Q

occur-

ring in Q, that M j= V

00

(t

Q

= �(t

Q

)) and M j= V

00

(t

Q

= �

0

desk

(t

Q

)). By

transitivity of "=", M j= V

00

(�(t

Q

) = �

0

desk

(t

Q

)).

Also M j= V

00

(F

abd

). F

abd

is a conjunction of abducible atoms A

1

^ : : : ^

A

m

. Let each A

j

be of the form p

j

(t

j

) and let p

j

be de�ned by: 8X :

p

j

(X) , X = s

j

1

_ : : :_X = s

j

n

j

in comp

3

(L

0

; P +�). Keep in mind that

if p

j

= p

i

, then these de�nitions are identical. From the fact that M is a

model of this de�nition and that M j= V

00

(A

j

), apparently for each j, there

must exist a i

j

such that M j= V

00

(t

j

= s

j

i

j

).

Now summarizing, we have derived that under M and V

00

the following

conjunction C is satis�ed : �(t

Q

1

) = �

0

desk

(t

Q

1

)^ : : :^�(t

Q

l

) = �

0

desk

(t

Q

l

)^ t

1

=

s

1

i

1

^ : : : ^ t

m

= s

m

i

m

, where t

Q

1

; : : : ; t

Q

l

are all the terms of Q. Therefore,

9(C) is satis�able with respect to FEQ(L'). Now we can apply the reduc-

tion theorem (Proposition 5.4.1) which says that equality reduction yields

a consistent solved form � of C. � is an mgu of C and is based on L

0

.

By Proposition 5.4.1, FEQ(L

0

) j= 8(C , �). As a result, M j= V

00

(�)

6

.

This fact allows us to rename � as follows. Let fX

1

= t

1

; : : : ; X

l

= t

l

g be the

equalities of � such that X

i

2 var(�(Q)). It holds that M j= V

00

(X

i

= t

i

).

Since V

00

(X

i

) = V (X

i

) = c

i

is a constant which does not occur in L

0

, t

i

must be a variable Y

i

and Y

i

cannot be another variable of �(Q) since V

00

assigns distinct constants c

i

to distinct variables of �(Q). We de�ne �' as

fY

1

= X

1

; : : : ; Y

l

= X

l

go�. It is clear that �' is still an mgu of C. Moreover,

dom(�

0

)\var(�(Q)) = � and hence �

0

(�(Q))��(Q).

We have that �

0

(t

j

)��

0

(s

j

i

j

). Therefore �

0

(A

j

)��

0

(p

j

(s

j

i

j

)) 2 �

0

(�). Each

atom p

j

(s

j

i

j

) in � is ground and is based on L'. Therefore �

0

(�)�� and

5

Observe that here we use the fact that the set of free variables of state(K

1

))_ : : :_state(K

n

)

is a subset of var(&(Q)). Otherwise, there would be need to extend V

0

to the additional variables.

6

Again, we implicitly use the fact the variables of � are a subset of the variables of C. This

follows from the fact that equality reduction does not introduce new variables. Otherwise, there

could be need to extend V

00

to these additional variables.

160 An abductive procedure for normal incomplete programs

we �nd that �

0

(F

abd

) � �. Since all facts in � are ground, var(F

abd

) �

domain(�

0

) and �' is ground on all variables in F

abd

. Now de�ne �

sk

=

fD(X) = t j X = t 2 �

0

and X 2 var(F

abd

)g (with D the skolemisation

mapping). By construction, �

sk

(�

0

)��(F

abd

) � �.

We have also that for each term t

Q

in Q : �

0

(�

0

desk

(t

Q

))��

0

(�(t

Q

)). Hence,

�

0

(�

0

desk

(Q))��

0

(�(Q))��(Q). By the way �

sk

is constructed out of �

0

it

follows straightforwardly that �

0

o�

sk

(�

0

(Q))��

0

(�

0

desk

(Q)). The following

equalities hold: �

0

o�

sk

(�

0

(Q))��

0

(�

0

desk

(Q))��(Q). Thus �

sk

(�

0

(Q)) is more

general than �(Q). This concludes the proof of item (c). 2

5.7 Extensions of the abductive procedure.

The current SLDNFA procedure can be extended in di�erent ways in order to

obtain even more solutions. As a result, the computation trees become larger,

the computation is less e�cient but additional interesting solutions are obtained.

Below an example shows the relevance of the �rst extension.

Consider the following simpli�ed planning program. An action E initialises

a condition p if some initial condition r(E) holds when the action takes place.

The same type of action initialises q if a second initial condition s(E) holds. The

problem is to �nd a situation in which both p and q hold. The query is p; q.

The predicates action=1, r=1 and s=1 are abducible.

P = fp action(E); r(E) q action(E); s(E)g

Intuitively, there are two intersting solutions: faction(sk); r(sk); s(sk)g and

faction(sk

1

); r(sk

1

); action(sk

2

); s(sk

2

)g.

SLDNFA only generates the second solution while the �rst is de�nitely more

interesting from the perspective of planning, since it contains less actions. Observe

that the substitution fsk

1

/sk,sk

2

/skg maps the two action facts on the same fact

in the �rst solution. Below we extend SLDNFA such that it dynamically tries to

merge abduced facts. As a result the �rst solution will also be generated.

The extended SLDNFA has the more interesting completeness property that

for any abductive solution �, there exists a generated solution �' and a skolem

substitution �

sk

which maps �' into �, but no facts of �' are merged. The cost

for this is that the extended procedure crosses a much larger computation tree.

Our formulation of the extended algorithm allows a compromise between the im-

proved completeness and the larger computation tree. It provides the opportunity

to specify exactly for what abducible predicates the improved completeness should

be obtained. The other abducible predicates are dealt with like in SLDNFA. The

special abducible predicates will be called strongly abducible.

Below we assume the existence of an incomplete logic program P with two

di�erent types of unde�ned predicates: abducible predicates A and strongly ab-

ducible predicates SA and SA \A = �. The SLDNFA

o

procedure is an extension

5.7 Extensions of the abductive procedure. 161

of the SLDNFA procedure obtained as follows: the move to NAG operator and the

NAG operator are executed for both abducible and strongly abducible atoms. The

abduction operator is only applied when abducible atoms are selected in positive

goals. Two new operators are introduced for the case that a strongly abducible

atom A is selected in a positive goal Q. These operators are the following (we

assume the existence of PG, NG, NAG and �):

De�nition 5.7.1 Let Q

0

be derived from Q and some abduced fact from � by

positive resolution on A and using a positive uni�er �. The matching operator

produces the substitution � and the positive goal Q

0

. Formally:

PG

0

= �(PG n fQg [fQ

0

g)

NG

0

= �(NG);NAG

0

= �(NAG);�

0

= �(�)

Assume that A is of the form p(t). Let Q

0

be derived from Q by abducing A

using the skolemising substitution �. The strong abduction operator produces the

substitution �, the abduced atom �(A), the positive goal Q

0

and a set of negative

goals �(t) = s for each p(s) 2 �. Formally:

PG

0

= PG n fQg [fQ

0

g

NG

0

= NG [f �(t) = s j p(s) 2 �g

�

0

= � [f�(A)g

NAG

0

= NAG

The negative equality goals �(t) = s guarantee that A and the other abduced

axioms can never unify.

SLDNFA

o

di�ers from SLDNFA in its treatment of strongly abducible atoms,

by allowing that either resolution with existing abduced facts is performed, or that

a new abduced fact is introduced which is di�erent from the previous ones.

The de�nitions of refutation, proof tree, computable children, SLDNFA

o

-tree,

state and explanation formula remain unaltered. The computable children for a

given selection are the same as for pure SLDNFA, except when a positive goal and

a strongly abducible atom A is selected. In that case, for each uni�able strongly

abduced atom B there is a new child, obtained by positive resolution with B.

Theorem 5.7.1 The SLDNFA

o

procedure is sound. It satis�es the same com-

pleteness result that was proven for the SLDNFA procedure in theorem 5.6.1. In

addition to the assertion (c), the skolem substitution �

sk

maps distinct strongly

abduced facts of the generated solution �' to distinct facts in �.

Proof We must �t in the two new operators into the proof of soundness and

completeness of SLDNFA. This involves proving successively the correctness

of the two operators, of the proof tree , of the explanation formula and �nally

of the extended completeness result.

162 An abductive procedure for normal incomplete programs

Let Q be a positive goal in which a strongly abducible atom L

m

= p(t) is

selected. Given a set of abduced atoms fA

1

; : : : ; A

g

g, by positively resolving

Q and A

i

= p(s

i

), one computes positive resolvents Q

i

and positive uni�ers

�

i

= �

i

o�

0

i

, where �

0

i

is the solved form of L

m

= A

i

and �

i

is the skolemising

substitution. For the completeness, the following equivalence is important:

FEQ(L) j= 8(&(Q) , (�

0

1

^&(Q

0

1

) ^ �

0

1

(A

1

)) _ : : :_

(�

0

g

^&(Q

0

g

) ^ �

0

1

(A

g

))_

(&(Q

0

g+1

) ^ L

m

^ :t = s

1

^ : : :^ :t = s

g

))

Here Q

0

i

= �

�1

i

(Q

i

) (�

�1

i

is the deskolemising inverse of �

i

). Q

g+1

is the

result of abducing L

m

using a skolemising substitution �

g+1

= �

g+1

. Q

0

g+1

is its deskolemisation, i.e. it is the goal obtained by deleting L

m

from Q.

The equivalence is easy to obtain. Consider the following tautology :

t = s

1

_ : : :_ t = s

g

_ (:t = s

1

^ : : :^ :t = s

g

)

By adding this tautology to &(Q) (as an additional conjunct), then moving

its disjunction outside the conjunction and applying equality reduction, we

obtain the stated equivalence.

From this equivalence the following implications can easily be derived. They

are important for the soundness of the matching operator and strong ab-

duction operator:

FEQ(L) j= 8(�

i

(&(Q))(&(Q

i

) ^ �

i

(A

i

)) (1 � i � g)

FEQ(L) j= 8(�

g+1

(&(Q))(�

g+1

(L

m

) ^&(Q

g+1

)^

:t

0

= s

1

^ : : :^ :t

0

= s

g

For the correctness of the proof tree, it su�ces to show that the two new

operators preserve the correctness, which immediately follows from the im-

plications above. From the correctness of the proof tree, the soundness of

the procedure follows directly.

Important for the proof of the completeness is the following observation on

the proof tree. Take an SLDNFA

o

refutation K which generates �' and �'

and let p(t); p(s) be two distinct strongly abduced atoms in �'. One easily

veri�es that if t and s are positively uni�able, then t = s belongs to the

proof tree. Indeed, assume that p(t

o

); p(s

o

) are abduced resp. at step i and

j (assume i < j) such that �

n

o : : : o�

i

(p(t

o

)) = p(t) and �

n

o : : : o�

j

(p(s

o

)) =

p(s). At time j, the constraint �

j�1

o : : : o�

i

(t

o

) = s

o

was added to NG

j

.

In the proof tree, a node is associated to this goal and it is labelled with

 t = s, where t and s are ground. This node has as descendants only other

negative goals which contain only equality atoms. Due to the correctness

5.7 Extensions of the abductive procedure. 163

of the proof tree, we �nd that if E

1

; : : : ; E

k

are the leaves of the proof

tree under the node, then FEQ(L) j= :t = s (E

1

^ : : : ^ E

k

. Due to

the deskolemisation Lemma 5.4.1, it follows that FEQ(L) j= 8(D

�1

(:t =

s (E

1

^ : : : ^ E

k

)). This turns out to be essential for the proof of the

completeness.

The computable children for an SLDNFA

o

derivation with a leaf in which

a positive goal and a strongly abducible atom are selected, are the ex-

tensions K

1

; : : : ;K

g

obtained by applying the matching operator for each

existing uni�able abduced atom and K

g+1

obtained by applying the strong

abduction operator. To prove the correctness of the explanation formula it

su�ces to show comp

3

(L; P) j= 8(state(K) , state(K

1

)_ : : :_ state(K

g

)_

state(K

g+1

). This follows easily from the equivalence formula introduced

above, using the same techniques as in Lemma 5.6.1.

Finally, consider the completeness theorem. Assume (�;�) is a consistent

abductive solution. We take the same type of modelM of comp

3

(L

0

; P +�)

as in item (c) of theorem 5.6.1. Proceeding as in the proof of (c), we �nd a

branch K

i

of W and a variable assignment V

00

such that M j= V

00

(Q ^ � ^

�

0

desk

^F

abd

^F

ng

). From this we can derive the existence of a substitution

�' which maps F

abd

into �, and M j= V

00

(�

0

). The derived �

sk

maps �'

into �. We must prove that �

sk

maps distinct strongly abducible facts from

�' to distinct facts of �.

Take any pair of distinct strongly abduced facts p(t); p(s) in �'. Above

we observed that there exist leaves E

1

; : : : ; E

k

of the proof tree such that

FEQ(L) j= 8(D

�1

(:t = s (E

1

^ : : :^ E

l

)). Let t

0

; s

0

be the deskolemisa-

tions of t; s respectively. Observe that F

ng

contains the deskolemisations of

E

1

; : : : ; E

l

. Moreover, since M j= V

00

(F

ng

), M j= V

00

(D

�1

(E

i

)). Therefore,

M j= V

00

(:t

0

= s

0

). Here we use the fact that all variables in t' and s' occur

in the domain of V

00

. That is because var(ft

0

; s

0

g) � var(F

abd

).

Since M j= V

00

(�

0

), it holds that M j= V

00

(:�

0

(t

0

) = �

0

(s

0

)) and the terms

cannot be identical. 2

With respect to the implementation, the addition of all disequality constraints

by the strong abduction operator, implies a serious overhead. What happens if

they are not added? In that case, a solution may be generated in which the same

abduced fact is abduced more than once. However, this necessarily implies that the

same solution is generated also in another branch (namely the branch in which

this abduced fact is generated only once). So, the completeness result for this

procedure remains the same, but more redundant solutions may be created.

For other applications of abduction such as diagnosis, the above obtained com-

pleteness result may still be insu�cient. An example is found in the faulty lamp

problem (section 5.3). Consider the SLDNFA-tree presented in �gure 5.2. Observe

164 An abductive procedure for normal incomplete programs

that SLDNFA does not generate the solution fpowerfailure(c1), empty(b1)g,

representing the situation of an empty battery. This does not contradict with

the completeness result (c) for SLDNFA. Indeed, the skolem substitution fsk =

c1g maps the generated solution fpowerfailure(sk)g into the empty battery so-

lution. Note that under this skolem substitution, the remaining constraint

sk = c1;:empty(b1) still holds, but for a di�erent reason: empty(b1) holds, thus

:empty(b1) �nitely fails. The application of the skolem substitution does not pre-

serve the fact on which the generated solution depends (namely sk 6= c1).

SLDNFA can easily be extended in order to �nd these solutions. The idea is

the following: a constraint containing an atom sk = t is satis�ed when sk 6= t is

satis�ed or when sk equals t and the remainder of the constraint �nitely fails. The

SLDNFA

+

procedure is an extension of the SLDNFA procedure by adding two

new operators which apply when an irreducible atom sk = t in a negative goal Q

is selected. Note that when SLDNFA's negative resolution operator is applied on

such a selection, then nothing happens since the equality reduction of an irreducible

equality atom sk = t is sk = t itself.

De�nition 5.7.2 The assert disequality operator produces the empty substitution

and the negative goal sk = t. Formally:

NG

0

= NG n fQg [f sk = tg

PG

0

= PG;NAG

0

= NAG;�

0

= � and � is "

The assert equality operator does the contrary: it uni�es sk and t and tries

to fail the remaining goal. Let Q

0

be the goal obtained by deleting sk = t from

Q and � the positive uni�er of sk = t. The assert equality operator produces the

substitution � and the negative goal �(Q

0

). Formally:

NG

0

= �(NG) n fQg [f�(Q

0

)g

PG

0

= �(PG);NAG

0

= �(NAG);�

0

= �(�)

Observe that it makes no sense to apply the new operators on an atomic negative

goal sk = t. The result of the assert disequality operation is sk = t, the

result of the assert equality operation is failure.

De�nition 5.7.3 An SLDNFA

+

refutation K for a goal Q is a �nite SLDNFA

+

derivation (say of length n) which satis�es the same conditions as an SLDNFA

refutation. In addition, we require that all constraints in NG

n

are atomic irre-

ducible equality goals.

Example In the faulty lamp example, there is an SLDNFA

+

derivation for the

goal faulty lamp which generates the solution with the empty battery:

PG = f faulty lampg Positive resolution

PG = f powerfailure(X);:backup(X)g Abduction

5.7 Extensions of the abductive procedure. 165

PG = f :backup(sk)g; � = fpowerfailure(sk)g

Switch to NG

PG = f

2

g; NG = f battery(sk; Y);:empty(Y)g

Negative Resolution

NG = f sk = c1;:empty(b1)g Assert equality

NG = f :empty(b1)g Switch to PG

PG = f empty(b1)g; NG = fg Abduction

PG = f

2

g; � = fpowerfailure(c1); empty(b1)g

The de�nitions of proof tree, computable children, SLDNFA

+

-tree, state and

explanation formula are as for SLDNFA. A derivation K in which an irreducible

equality atom is selected, has two computable children, obtained by applying the

two new operators. It is easy to see that the SLDNFA

+

-tree is larger than the

corresponding SLDNFA-tree. In fact, examples exist in which SLDNFA

+

loops

and SLDNFA does not.

Theorem 5.7.2 SLDNFA

+

is sound. It satis�es the same completeness result that

was proven for the SLDNFA procedure. In addition to the assertion of item (c) of

theorem 5.6.1, if sk = t belongs to NG

n

then �

sk

(sk) and �

sk

(t) do not unify.

Proof As for SLDNFA

+

, we must �t in the two new operations into the proof

of soundness and completeness of SLDNFA. The �rst step is to derive a

correctness result for the assert equality and assert disequality operators.

Let Q be a negative goal in which an irreducible equality atom sk = t is

selected. Let � be the skolemising substitution for t and Q

0

be obtained

by deleting sk = t from Q and then applying fsk = �(t)g. We prove the

following equivalence:

FEQ(L) j= Q , 8Z : (:sk = t) _ 9Z : (sk = t ^ �

�1

(Q

0

))

where Z are the variables of t.

The proof goes as follows. The formula below is a tautology:

Q , (Q ^ 8Z : :sk = t) _ (Q ^ 9Z : sk = t)

In the �rst disjunct, Q is subsumed by 8Z : :sk = t. Because of this and

because the existential variables Z in the second disjunct do not occur freely

in Q, the formula below is still a tautology:

Q , 8Z : :sk = t _ 9Z : (sk = t ^Q)

Let Q be of the form L

1

; : : : ; sk = t; : : : ; L

k

with free variables Y [Z .

Inside Q, rename Z to Z' and then substitute sk by t. We get as second

166 An abductive procedure for normal incomplete programs

disjunct sk = t^8Y ; Z

0

: L

0

1

; : : : ; t = t

0

; : : : ; L

0

n

, where L

0

i

; t

0

are the renamed

versions of L

i

; t. Observe that since t and t

0

are renamed copies, applying

equality reduction on t

0

= t yields Z

0

= Z. It holds that FEQ(L) j= 8(t =

t

0

, Z

0

= Z). Replacing t = t

0

by Z

0

= Z and then applying variable

elimination on Z

0

yields the desired equivalence.

From this equivalence the following two implications can be derived (using

variable elimination and the deskolemisation lemma):

FEQ(L) j= Q(8Z : :sk = t

FEQ(L) j= �(Q)(Q

0

The correctness of the proof tree follows easily from these implications. The

soundness of SLDNFA

+

is a direct consequence. The proof of the correctness

of the explanation formula is simple using the equivalence.

Finally, consider the completeness theorem. The construction of �' and �

sk

is the same as in the previous completeness results. We must prove that the

disequality constraints sk = t in NG

n

are maintained under �

sk

.

Consider any constraint sk = t in NG

n

. We must show that �

sk

(sk)

and �

sk

(t) do not unify. Recall that F

ng

contains the deskolemisation of the

constraint. Let X be D

�1

(sk), t

0

be D

�1

(t) and let Z be var(t). So F

ng

con-

tains 8Z : X = t

0

. By the construction of �

sk

, it follows that �

sk

(sk)��

0

(X)

and �

sk

(t)��

0

(t

0

). Therefore, it su�ces to show that �

0

(X) and �

0

(t

0

) do

not unify.

Since M j= V

00

(F

ng

), it holds that M j= V

00

(8Z : X = t

0

) and since M j=

V

00

(�

0

), it holds that M j= V

00

(8Z : �

0

(X) = �

0

(t

0

)). Now assume that

�

0

(X) and �

0

(t

0

) have a uni�er �. Since X occurs in F

abd

, �

0

(X) is ground.

Therefore, the domain of � is the set of variables Z. The following identities

holds: �

0

(X)��(�

0

(X))��(�

0

(t

0

)). Because � is ground on all variables of Z ,

we can extend V

00

with assignments Z

l

=

~

M(�(Z

l

)) into V

000

. Obviously it

holds that M j= V

000

(�). Therefore, M j= V

000

(�(�

0

(t

0

)) = �

0

(t

0

)). Because

of this equality and the identities that we just derived, we �nd that M j=

V

000

(�

0

(X) = �

0

(t

0

)). That is in contradiction with M j= V

00

(8Z : :�

0

(X) =

�

0

(t

0

)).

2

Observe that the modi�cations to SLDNFA in SLDNFA

o

and SLDNFA

+

stand

orthogonal to each other. That is, they can be combined to a new procedure

SLDNFA

o

+

. This procedure is sound, and as a completeness result it can be stated

that �

sk

preserves the disequality constraints and the disequality of strongly ab-

duced atoms. We obtain a (still primitive) framework of abductive procedures in

which a number of parameters can be set in order to �t the abductive procedure

to the problem domain under consideration.

5.8 Discussion 167

5.8 Discussion

We have implemented a prototype of the abductive procedure in Prolog. The

prototype was extended to an abductive planner for abductive event calculus by

adding a module with a constraint solver for temporal reasoning. This procedure

uses SLDNFA

o

, with the predicate happens=1 as strongly abducible predicate. In

chapter 7, the power of the system is shown by applying it to planning and general

temporal reasoning problems.

Our experiences with SLDNFA have highlighted the need for an intelligent con-

trol strategy. Our implementation uses the straightforward depth �rst, left to right

control strategy. In many examples, the system enters an in�nite branch of the

search tree. A solution for this is to execute the planner according to an iterative

deepening regime. Loop detection, intelligent control and intelligent backtracking

could be of use to the system.

An interesting feature of SLDNFA (and the planner) is the use of integrity

constraints. Algorithm 4.9.1 allows to transform any set of integrity constraints

to a normal program. The transformation operates by adding for any integrity

constraint IC, the rule false :IC, transforming these rules to a normal program

P

0

using the Lloyd-Topor transformation [LT84] and adding the literal :false to

the query. Any sound abductive procedure will generate only solutions in which

IC holds. For example, assume that one wants to maintain a database on married

couples, represented by a predicate m=2. In this database, the constraint holds

that the predicate m=2 is symmetric:

m(X;Y) m(Y;X)

This integrity constraint is transformed to :

false m(Y;X);:m(X;Y)

We want to "update" the database with the fact that John (j) just married with

Mary (m). So m=2 is abducible and the update is formulated by:

 m(j;m);:false

Its SLDNFA execution is as follows:

PG = f m(j;m);:falseg Abduction

PG = f :falseg, � = fm(j;m)g Switch to NG

PG = f

2

g, NG = f falseg Negative resolution

NG = f m(Y;X);:m(X;Y)g Switch to NAG and

NAG operation

NG = f :m(m; j)g, NAG = f(" m(Y;X);:m(X;Y)"; "m(Y;X)";

fm(j;m)g)g Switch to PG

168 An abductive procedure for normal incomplete programs

PG = f

2

; m(m; j)g, NG = fg Abduction

PG = f

2

g, � = fm(j;m);m(m; j)g NAG operation

NG = f :m(j;m)g, NAG = f(" m(Y;X);:m(X;Y)"; "m(Y;X)";

fm(j;m);m(m; j)g)g Switch to PG

PG = f

2

; m(j;m)g, NG = fg Abduction

PG = f

2

g

The generated "update" is fm(j;m);m(m; j)g. A few observations about this refu-

tation are in order. First, it shows that even for simple integrity constraints, it is

essential that the abductive procedure can deal with non-ground abducible atoms

in negative goals. Second, SLDNFA operates as an integrity recovery method: not

only the integrity constraints are checked but additional assertions are made in

order to restore the integrity. Third, looking at the execution, it turns out that

SLDNFA veri�es the original integrity constraint in a bottom up way: an instance

of the body of the rule is found and this �res the abduction of the head of the

rule. A subject for future research is to compare with special purpose procedures

(such as the one in [SK88]).

In [CTT91], an abductive procedure is presented which, for a given hierarchical

normal abductive program P and query Q, derives an explanation formula E

equivalent with Q under the (2-valued) completion of P :

comp(P) j= (Q , E)

This is done by repeatedly substituting atoms of de�ned predicates by the equiv-

alent part in their if-and-only-if de�nition, until no de�ned atoms are left over.

Thus, the explanation formula is built of abducible predicates and equality only.

It characterises all abductive solutions in the sense that for any set � of abducible

atoms, � is an abductive solution i� it satis�es E.

SLDNFA can be considered as a procedure for rewriting goals using the de�ni-

tion of the de�ned predicates. An advantage of the procedure in [CTT91] is that

it also applies for non-ground negative literals. On the other hand, observe that in

the case of a recursive predicate, repeated naive rewriting of a de�ned atom by its

de�nition necessarily goes into a loop. SLDNFA can avoid this (in many cases) by

checking the consistency of generated equality and disequality atoms (this is done

implicitly in the resolution steps) and eliminating an inconsistent branch. Even

when provisions for equality would be built into the procedure in [CTT91], there

would still be the problem that if the computation tree contains an in�nite branch,

then the explanation formula cannot be computed. SLDNFA on the other hand

investigates the tree branch per branch and, using an iterative deepening regime,

will ultimately �nd all solutions in �nite branches.

Another related procedure has been presented in [GL90b]. This belief revision

procedure tries to construct an SLDNF-refutation for a given goal by adding facts

to the program (as in SLDNFA) to succeed positive goals and by deleting clauses

5.8 Discussion 169

of the program to fail negative goals. We believe that there is a big conceptual gap

between this procedure and SLDNFA. They are in general not applicable in the

same context. Whether in a given context the procedure in [GL90b] or SLDNFA

is applicable depends totally on the reliability of the general domain knowledge

which is formulated in the clauses of the program. When reliable, as in planning,

no clauses should be retracted.

A remaining restriction of SLDNFA is its inability to deal with non-ground

negative atoms (the problem of
oundering negation). Here is an intriguing re-

lationship with the view of negation by failure as abduction ([Esh88], [KM90a]).

In this view, the problem with non-ground negative atoms is a subproblem of

the problem with non-ground abducible literals. In [KM90a], the authors indicate

that the methods which they are developing for non-ground abducible literals will

also solve the problem with
oundering negation. Strong indications exist that the

techniques incorporated in SLDNFA can solve the problem of
oundering negation

for positive goals but not for negative goals

7

.

SLDNFA is not only sound wrt the 3-valued completion semantics (and direct

justi�cation semantics) but also wrt the more �ne-grained semantics of partial

justi�cation and justi�cation semantics under FEQ. This follows directly from

theorem 4.3.3. As mentioned in section 5.5, SLDNFA is not sound wrt 2-valued

completion semantics. Indeed, SLDNFA may generate solutions which are not con-

sistent with comp(P). A trivial example is the incomplete program with normal

clause p :-:p and unde�ned predicate r. The goal r is solved by � = frg, but

comp(P+�) is inconsistent. The same example also shows that SLDNFA is in gen-

eral not sound wrt the generalised stable semantics [KM90b]: the set frg cannot

be completed to a generalised stable model of P . The example shows that to build

a sound abductive procedure for 2-valued completion semantics or generalised sta-

ble semantics, consistency checking is necessary. A sound abductive procedure has

been developed for generalised stable semantics [SI92]. The procedure is an ex-

tension of the abductive procedure of [KM90a] with special consistency checking

techniques for dealing with predicates like p which are possibly looping over nega-

tion. In the above example, the procedure would fail because p cannot be given

a consistent truth value. Since SLDNFA does not bother about predicates like p,

the procedure of [SI92] must traverse a larger search space than SLDNFA. In gen-

eral, this extra computation may be costly. Although we do not believe that the

e�ciency of a procedure should be taken as an argument in favour of a semantics,

it is nevertheless extremely convenient that wrt to 3-valued completion semantics

or (direct) (partial) justi�cation semantics, this extra consistency checking is un-

necessary. Note also that for overall consistent logic programs, SLDNFA is sound

wrt generalised stable model semantics.

7

These "strong indications" are that the proof of the correctness of the switch to NG operator

in proposition 5.4.6 does not depend on the fact that the negative literal is ground. The proof

of the correctness of the switch to PG operator (same proposition) de�nitely depends on the

groundness of the negative literal.

170 An abductive procedure for normal incomplete programs

By setting a number of parameters (i.e. strongly abducible predicates, special

treatment of disequality constraints) SLDNFA

o

+

can be tuned to the application

under consideration. One common element of the procedures in the framework is

that they try to minimize �. This is not always desirable. One example is the

intentional update problem for databases. Given is a database D containing a set

of facts of base predicates, a logic program P de�ning a set of view predicates and a

formulaF which represents an intentional update: we want to modify the database

D in such a way that D + P j= F . The abductive view on this problem presented

in [KM90a] is that the base predicates in D are abducible and that we search

an abductive solution D

0

such that P + D

0

j= F . SLDNFA is not directly suited

for this. The problem is that the desired solutions are not the minimal databases

satisfying F , but the databases D

0

which are as close as possible to D: the set

D

0

n D [D n D

0

should be minimal. As a completeness result for an abductive

database update problem, we expect that for any database D

00

which is a solution

for the intentional database update, there exists a generated database D

0

which

is closer to D; i.e. D

0

nD � D

00

nD and D nD

0

� D nD

00

. Or, every positive or

negative fact in D which does not occur in D

0

, neither occurs in D

00

.

Despite this, SLDNFA can be used for database updating but using a meta-

approach, an idea already used in [Bry90]

8

. The idea is to describe the new

database in function of the old one and a set of insert=1 and retract=1 facts.

We sketch the approach. Below, a database consists of a set Db of ground facts

of base predicates and an incomplete program P de�ning a set of view predicates

in terms of the base predicates. We assume -without loss of generality- that the

database does not contain integrity constraints

9

. An intentional database update

is a FOL formula F which is to be implied by P +�(Db) under some semantics,

where �(Db) is the database obtained by retracting some of the existing facts of

Db and inserting some new ones. We build a meta-program P

m

in the following

way:

� The intentional update F is transformed using algorithm4.9.1 to a normal

query F

0

and a logic program P

F

.

� For each atom A 2 Db, P

m

contains db(A) :- .

� For each normal clause A :-B 2 P+P

F

, P

m

contains the fact clause(A;B) :- .

Below we assume that the last argument of the body of any normal clause

is always the atom true.

� The following vanilla meta-program describes the predicates new=1 and

old=1:

8

[Bry90] proposes a meta-theory which, executed by a model generator, generates an inten-

tional update.

9

If there are integrity constraints, then they should �rst be compiled into a de�nition for false

and the literal :false should be added to the intentional update.

5.9 Summary 171

old(F) :- base(F); db(F)

old(F) :- clause(F;B); old(B)

old(true) :-

old((F;B)) :- old(F); old(B)

old(:F) :-:old(F)

new(F) :- base(F); db(F);:retract(F)

new(F) :- base(F); insert(F)

new(true) :-

new(F) :- clause(F;B); new(B)

new((F;B)) :-new(F); new(B)

new(:F) :-:new(F)

We obtain an incomplete program with de�nitions for base=1; clause=2; db=1; old=1

and new=1, and unde�ned predicates insert=1 and retract=1. Note that the de�-

nitions for old=1 and new=1 are almost literal copies of the standard vanilla meta

interpreter. When SLDNFA (or one of its variants) solves the goal new(F

0

), it

returns a set � of insert=1 and retract=1 facts such that P

m

+ � j= F (under

3-valued completion semantics, (direct) (partial) justi�cation semantics). By using

SLDNFA

o

under an iterative deepening approach allowing more and more insert

and retract facts to be abduced, one will ultimately �nd a minimal solution (un-

der the assumption that SLDNFA does not
ounder). It was observed in [Bry90]

that the meta-approach has several interesting features such as the statement of

dynamic integrity constraints as in

8X;X

1

; Y : old(salary(X;Y)) ^ new(salary(X

1

; Y)) X

1

� X

and intentional updates referring to both old an new state, such as:

8X : old(professor(X)) ^ old(teach(X; lp))) new(qualified for tenure(X))

A deeper exploration of this intriguing issue is beyond the scope of this work.

Whether SLDNFA (or a partial evaluation of it) is su�ciently e�cient remains an

open question to us and is subject to future research.

5.9 Summary

SLDNFA is an abductive procedure extending SLDNF for normal incomplete pro-

grams. Its most distinguished property is that it does not
ounder on non-ground

abducible atoms, as is the case with procedures such as [KM90a] and [SI92]. This

property is essential for application in many, perhaps most problem domains: the

examples in this chapter illustrated that even for very simple temporal reasoning

problems in incomplete event calculus, for simple diagnosis problems and for simple

172 An abductive procedure for normal incomplete programs

database problems, the
oundering problem pops up. Other procedures developed

speci�cally for dealing with the
oundering problem are either not formalised and

proven correct as in [Esh88], [Sha89], or only correct for a subclass of the normal

logic program formalism as in [Mis91b, Mis91a]. Moreover, compared with these

procedures, SLDNFA incorporates an improved behaviour for negative abductive

goals.

The soundness of SLDNFA wrt 3-valued completion semantics and (direct)

(partial) justi�cation semantics has been proven: for a generated solution �, it

holds that both P +� is consistent and entails the query. This implies the sound-

ness of SLDNFA wrt the constructive de�nition view (chapter 4).

Another contribution of this work is the formulation of new general complete-

ness criteria for abductive procedures. It was proven that the completeness crite-

rion to be satis�ed by an abductive procedure is in general problem dependent:

examples in sections 5.7 and 5.8 illustrate this for planning, diagnosis and database

updating. To cope with this problem, extensions of SLDNFA were developed. This

results in a (still simple) family of abductive procedures, SLDNFA

o

+

, in which a

number of parameters can be set to tune the procedure to the application under

consideration.

We have proven that for the given completeness criteria, speci�c instances of

the SLDNFA

o

+

family satisfy them wrt 3-valued completion semantics and (direct)

(partial) justi�cation semantics, under the condition that a �nite SLDNFA-tree

is generated. This is a strong condition, hiding for example the
oundering on

non-ground negative atoms and looping, but we expect that, as for SLDNF, less

restrictive conditions can be found (e.g. allowedness and strictness) under which

SLDNFA satis�es the completeness criteria.

In chapter 1, we argued that one advantage of a declarative logic is that di�er-

ent procedures can be de�ned on it and can operate on the same logic speci�cation.

So far the incomplete logic program formalism has been associated uniquely with

abduction as procedural paradigm (this explains the terminology abductive logic

program). In section 5.6.1, we took a start to decouple the incomplete logic pro-

gram formalism and abduction, by showing that SLDNFA can be used for sound

deduction in the formalism. This, together with the declarative view on (incom-

plete) logic programs such as the constructive de�nition view is a step towards

turning the formalism into a full-
edged declarative logic.

Chapter 6

A translation of A to

incomplete situation

calculus.

6.1 Introduction

Recently, [GL92] introduced a new temporal language A which allows to repre-

sent a number of well-known benchmark problems involving incomplete temporal

knowledge. They proposed a sound but incomplete transformation to extended

logic programs, programs with both negation as failure and classical or explicit

negation [GL90a]. We present a transformation from A domain descriptions to in-

complete programs with FOL axioms (section 6.3). The proposed transformation

maps an A domain description to an incomplete situation calculus and is proven

to be sound and complete. The chapter can be seen as a -successful- case study in

the representation o� incomplete knowledge.

A secondary goal is to illustrate how an abductive procedure can be useful for

automated reasoning with incomplete programs and integrity constraints. That

an abductive procedure can be used for explanation of some observation is well-

known from [Pei55], [Sha89]. It is less known that an abductive procedure can also

be used for deduction and for proving consistency of a theory. In section 4.6, we

argued that an abductive procedure can be used to prove consistency of a theory. In

section 5.6 we argued that an abductive procedure can be used for deduction in an

incomplete logic program. In section 6.4, we illustrate this by applying SLDNFA to

solve distinct computational tasks involving complete and incomplete knowledge.

Independent from the work presented here, another approach has been devel-

oped for translating A domain descriptions to a logic program formalism. This

173

174 A translation of A to incomplete situation calculus.

work, described in [Dun93], maps A to a special purpose logic, based on the logic

program formalism but with a new semantics, adapted to this speci�c application.

The semantics is a variant of the completion semantics. It is shown that in this

logic a partial deduction procedure can be used to generate abductive solutions

consisting of goals on the initial situation. Our work di�ers at four important

points from [Dun93]: we map A to a general purpose logic, i.e. standard abductive

logic programming, thus showing that a special purpose treatment is unnecessary;

our transformation is simpler than in [Dun93] and [GL92]; we use a general pur-

pose abductive procedure instead of a partial deduction procedure; we show how

this procedure can be useful to implement other computational paradigms such

as deduction and satis�ability proving. There are other di�erences: while [Dun93]

applies (a predicate extension of) A in the context of database updating, we spend

more attention to the issue of temporal reasoning itself, for example by analysing

the relationship between backward persistence and forward persistence axioms in

our approach and in [GL92], and by showing how A could be extended for inde-

terminate actions.

The chapter is structured as follows. In section 6.2, we recall the language A

and its semantics. In section 6.3, the transformation from A to situation calculus

programs is presented and the soundness and completeness is proved. In section

6.4, the use of abduction for explanation and deduction is illustrated. Section 6.5

gives a comparison between our transformation and the transformation in [GL92].

Section 6.6 compares our work with [Dun93] and 6.7 discusses other related work.

A short paper on this subject will be published as [DD93b].

6.2 The temporal language A

The language A [GL92] allows to describe relationships between
uents (= time

dependent properties of the world) and actions. A is a propositional language:

both
uents and actions are represented by propositional symbols. Two types of

expressions occur. A v-proposition describes the value of a
uent after a (possibly

empty) sequence of actions. Its syntax is as follows:

f after a

1

; : : : ; a

n

Here a

1

; : : : ; a

n

is a sequence of action symbols and f is a
uent expression: a

positive or negative literal containing a
uent. The expression means that f is

true after executing the sequence of actions a

1

; : : : ; a

n

. When the sequence of

actions is empty (n=0), the v-proposition describes the initial situation. Instead

of f after , one usually writes:

Initially f

An e-proposition describes the e�ect of actions on the
uents. It has the form:

6.2 The temporal language A 175

a causes f if p

1

; : : : ; p

n

where f; p

1

; : : : ; p

n

are
uent expressions and a is an action symbol. The expression

means that if p

1

; : : : ; p

n

are true, then the e�ect of a on the current situation is

that f becomes true. p

1

; : : : ; p

n

are called preconditions. When n=0, one writes:

a causes f .

A domain description is a set of v- and e-propositions.

Example We recall the Yale Turkey Shooting problem (YTS) as formulated in

[GL92]. The
uents are loaded, alive; the action names are shoot, wait and

load. The domain description D

0

contains the following propositions:

Initially alive

Initially :loaded

load causes loaded

shoot causes :alive if loaded

shoot causes :loaded

Example The Murder Mystery domain D

1

is a variant of YTS, obtained by

substituting

:alive after shoot;wait

for Initially :loaded in D

0

. This is a prototypical postdiction problem: we

want to obtain the conclusion that initially the gun is loaded.

The semantics for A is de�ned as follows. A state is a set of
uent names and

describes a possible state of the world. Given a
uent symbol f and a state �,

f holds in � if f 2 �, otherwise :f holds in �. A transition function � maps

pairs (a; �) of action symbols a and states � into the set of states. � describes

how a situation changes under application of an action a. A structure M is a

pair (�

0

;�), where �

0

represents the initial state and � the transition function.

M

a

1

;:::;a

m

denotes the state �(a

m

;�(a

m�1

; : : : ;�(a

1

; �

0

) : : :)). A v-proposition

f after a

1

; : : : ; a

m

holds in a structure (�

0

;�) i� f holds in M

a

1

;:::;a

m

.

De�nition 6.2.1 A structure M = (�

0

;�) is a model of a domain expression D

if and only if the following rules are satis�ed:

� Each v-proposition f after a

1

; : : : ; a

m

holds in M .

176 A translation of A to incomplete situation calculus.

� For any state �,
uent symbol f and action a, if there exists an e-proposition

a causes f if p

1

; : : : ; p

n

such that p

1

; : : : ; p

n

hold in �, then f holds in

�(a; �). If there is an e-proposition a causes :f if p

1

; : : : ; p

n

such that p

1

; : : : ; p

n

hold in �, then :f holds in �(a; �). Otherwise, f holds in �(a; �) i� f holds

in �.

A domain description is called consistent if it has a model. We introduce a

new notion, e-consistency. A domain description is e-consistent if the set of e-

propositions of D is consistent. There is a simple necessary and su�cient condition

for a domain description to be e-consistent.

Lemma 6.2.1 A domain description D is e-consistent i� for each pair of rules

a causes f if p

1

; : : : ; p

n

and a causes :f if p

n+1

; : : : ; p

m

in D, there exists an i and j such that p

i

is the complement of p

j

.

This condition is satis�ed when the complementary literals are found in the bod-

ies of the two rules but also when they appear in the body of one rule, as in

shoot causes alive if loaded;:loaded. Such a rule has an inconsistent body. It

can never be applied and can never cause an inconsistency.

In [Dun93], an action a for which there exists a pair of rules

a causes f if p

1

; : : : ; p

n

and a causes :f if p

0

1

; : : : ; p

0

m

such that no complement of a literal in the �rst is contained in the second is called

self-contradicted. [Dun93] contains a similar proposition as lemma 6.2.1.

Proof Assume that for some pair of rules:

a causes f if p

1

; : : : ; p

n

and a causes :f if p

n+1

; : : : ; p

m

no complementary literals occur in fp

1

; : : : ; p

m

g. This set contains positive

and negative literals. De�ne the state � consisting of only the positive literals

in the body of the two rules. Then obviously each p

i

holds in �. �(a; �) is

not consistently de�ned because both f and :f should hold in �(a; �).

Vice versa, one easily veri�es that when the syntactical condition in the

lemma is satis�ed, the de�nition of a model of a domain description gives a

consistent description of a transition function �. 2

De�nition 6.2.2 (Non-inertial) We say that a
uent f is non-inertial under

an action a in a state � i� there exists an e-proposition

a causes f if p

1

; : : : ; p

n

or a causes :f if p

1

; : : : ; p

n

such that p

1

; : : : ; p

n

hold in �. Otherwise, it is inertial under action a.

6.3 Translation to Incomplete Logic Programs 177

[GL92] observes that the e-propositions of a domain D completely determine

the transition function �. Below proposition 6.2.1 gives a precise and deterministic

characterisation of �, under the condition that D is e-consistent.

Proposition 6.2.1 Let D be e-consistent. For any state �, action a and positive

uent symbol f : f 2 �(a; �) i�

� f holds in � and f is inertial under a in state �, or

� there exists an e-proposition a causes f if p

1

; : : : ; p

n

such that p

1

; : : : ; p

n

hold in �.

The proof is straightforward.

Note that if the condition of e-consistency is not satis�ed, then the description

of � in the proposition does not correspond to the description of � in de�nition

6.2.1. Indeed, for f , a and � such that for e-propositions

a causes f if p

1

; : : : ; p

n

and a causes :f if p

0

1

; : : : ; p

0

m

the
uents p

1

; : : : ; p

n

; p

0

1

; : : : ; p

0

m

hold in �, the second item of de�nition 6.2.1

requires that both f 2 �(a; �) and f =2 �(a; �). This is a contradiction. On the

other hand, proposition 6.2.1 requires that f 2 �(a; �) since the �rst item applies.

Because the transformation proposed in next section implements the formulation

of proposition 6.2.1 rather than that of de�nition 6.2.1, it will be complete only

for e-consistent domains.

A v-proposition Q is entailed by a domain description D i� Q holds in each

model of D. A domain description is called complete if it has a unique model.

The YTS domain and Murder Mystery domain are examples of complete domain

descriptions. Since they share their e-propositions, their models have an identical

transition function � which maps tuples (wait; �) on �, (load; �) on �[floadedg,

and maps (shoot; �) on �nfalive; loadedg if loaded 2 �, otherwise on �. The model

M

0

of D

0

has initial situation faliveg. The model M

1

of D

1

has initial situation

falive; loadedg. An incomplete domain description is obtained by dropping the

v-proposition Initially alive from the Murder Mystery domain. One additional

model is the structure with transition function � but with initial situation fg.

A provides only restricted expressivity: the language is only propositional, no

relationships between
uents can be de�ned, no indeterminate events are allowed.

Nevertheless, A allows to formalise several interesting domains. This and its clear

semantics makes the language interesting for experiments as in [GL92], [Dun93]

and in this chapter.

6.3 Translation to Incomplete Logic Programs

In this section we present a general translation from an A domain description D to

an incomplete logic program with integrity constraints. The transformation pro-

178 A translation of A to incomplete situation calculus.

duces programs in situation calculus style. Traditionally, two options are available

to represent a
uent f in a logic formalism: by a predicate f(s) or by Holds(f; s)

where s is a state argument. Then :f is translated to :f(s) or :Holds(f; s).

The two approaches are equivalent but the meta-approach has the advantage that

the frame axiom can be stated for all
uents at once, whereas in the �rst ap-

proach one frame axiom per
uent predicate is needed. As in [GL92], we use

Holds=2. The �rst order language L

D

contains the predicate symbols Holds=2,

Noninertial=3 and Initially=1. Each
uent and action symbol occurs in L

D

as

a constant. In addition, there is a constant s

0

to denote the initial state and a

functor Result=2: Result(a; s) denotes the state obtained by applying action a on

state s. In the sequel, we will use Result[a

1

; : : : ; a

n

; s] as a shorthand notation for

Result(a

n

; Result(a

n�1

; : : :Result(a

1

; s) : : :)). For n = 0, this denotes s.

A allows uncertainty on the initial state. Correspondingly, the incomplete pro-

gram comprises one unde�ned predicate, Initially=1. The translation maps a do-

main description D to a theory �D consisting of an incomplete logic program P

D

and a set of FOL axioms IC

D

. P

D

is de�ned as follows:

� Initialisation:

Holds(F; s

0

) :- Initially(F) (6:1)

� Law of Inertia:

Holds(F;Result(A; S)) :-Holds(F; S);:Noninertial(F;A; S) (6:2)

� For each e-proposition a causes f if p

1

; : : : ; p

m

;:p

0

1

; : : : ;:p

0

n

with f , p

i

and

p

0

j

positive literals:

Holds(f;Result(a; S)) :-Holds(p

1

; S); : : : ;Holds(p

m

; S);

:Holds(p

0

1

; S); : : : ;:Holds(p

0

n

; S) (6.3)

As in [GL92], we introduce the convention that when f is a negative literal

:f

0

,Holds(f; t) is used as a textual denotation for :Holds(f

0

; t). This hand-

some convention allows us to say that a causes f if p

1

; : : : ; p

n

is translated

to the clause:

Holds(f;Result(a; S)) :-Holds(p

1

; S); : : : ;Holds(p

n

; S)

without considering the sign of the literals p

i

. Be aware that a program

should never contain literals of the form Holds(:f; S), and that when these

literals are found in this chapter, they always stand for :Holds(f; S).

� For each e-proposition a causes f if p

1

; : : : ; p

n

with f a positive or negative

uent literal:

Noninertial(jf j; a; S) :-Holds(p

1

; S); : : : ;Holds(p

n

; S) (6:4)

For a
uent symbol f , jf j and j:f j both denote the term f .

6.3 Translation to Incomplete Logic Programs 179

The set of FOL axioms IC

D

is de�ned as follows:

� For each v-proposition f after a

1

; : : : ; a

n

(n � 0):

Holds(f;Result[a

1

; : : : ; a

n

; s

0

]) (6:5)

with the same syntactic convention on Holds=2 as above.

Example The domain description D

0

for the YTS problem is transformed to:

Holds(F; s

0

) :- Initially(F)

Holds(F;Result(A; S)) :-Holds(F; S);:Noninertial(F;A; S)

Holds(loaded;Result(load; S)) :-

Noninertial(loaded; load; S) :-

Noninertial(loaded; shoot; S) :-

Noninertial(alive; shoot; S) :-Holds(loaded; S)

Holds(alive; s

0

)

:Holds(loaded; s

0

)

The clause Noninertial(loaded; load; S) :- may be dropped from this program

without e�ect on the semantics of Holds/2. In general, all Noninertial=3 rules

for initiating e�ects of actions may be dropped, without e�ect on the semantics of

Holds/2.

�D

0

strongly resembles the YTS solution in [AB90]. They propose a Prolog

program analogous to the one obtained from �D

0

by substituting the program

clause:

Holds(alive; s

0

) :-

for the program clauses:

Holds(F; s

0

) :- Initially(F)

Noninertial(loaded; load; S) :-

and the two FOL axioms of �D

0

. Note that the resulting program entails the two

FOL axioms. [AB90] proves that the resulting program is acyclic. The same holds

for �D

0

, and in fact for all transformed domain descriptions:

Proposition 6.3.1 The translation �D of any domain description D is acyclic.

Proof A slight modi�cation of the level mapping proposed in [AB90] for the

YTS program applies for all domain descriptions. For all ground terms t,

let jtj

Result

denote the number of occurrences of the functor Result=2 in t.

We de�ne j:j for all ground terms t; a and s as follows:

180 A translation of A to incomplete situation calculus.

jInitially(t)j = 0

jHolds(t; s)j = 2� jsj

Result

+ 1

jNoninertial(t; a; s)j = 2� jsj

Result

+ 2

One easily veri�es that j:j is a level mapping. 2

A transformation such as � can be considered correct if the set of entailed

formulas are equivalent. In [GL92] a translation � is de�ned to be sound i� for

each domain D and v-proposition Q, if �D j= �Q then D entails Q. � is de�ned

to be complete if the reverse holds: if D entails Q then �D j= �Q.

We will prove the soundness and completeness of � wrt 3-valued completion

semantics. However, � is sound and complete wrt any of the following semantics:

2-valued and 3-valued (direct) (partial) justi�cation semantics with FEQ, 2-valued

and 3-valued (partial) justi�cation semantics with FEQ and SDCA, 2-valued and

3-valued completion semantics [CTT91], generalised stable semantics [KM90b] and

the generalised well-founded semantics [PAA91b]. This follows from the fact that

P

D

is acyclic, each clause has the property that all variables of the body occur

in the head, and each formula of IC

D

contains no variables. For such theories,

proposition C.2 in appendix C proves that the sets of entailed ground literals wrt

to any of the above semantics are identical.

The translation �D of a domain description contains two de�ned predicates,

Holds=2 and Noninertial=3. The completed de�nition of Holds=2 is of the form:

8F; T : Holds(F; T)$ E

1

_E

2

_ : : :_E

m

(6.6)

with:

E

1

= T = s

0

^ Initially(F)

E

2

= 9A; S :T = Result(A; S)^

Holds(F; S) ^ :Noninertial(F;A; S)

E

i

(i > 2) = 9S :F = f ^ T = Result(a; S)^

Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

such that precisely for each e-proposition a causes f if p

1

; : : : ; p

n

with f a positive

literal, there exists one disjunct E

i

(i > 2) in the completed de�nition. If we map S

on state �, the Result functor on � and Holds(F; S) to F 2 � then the completed

de�nition of Holds=2 is similar to proposition 6.2.1.

The completed de�nition of Noninertial=3 is of the form:

8A;F; S : Noninertial(F;A; S)$ E

1

_ : : :_E

m

(6.7)

with:

E

i

= A = a ^ F = jf j ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

such that precisely for each e-proposition a causes f if p

1

; : : : ; p

n

(f positive or

negative), there exists one corresponding disjunct in the completed de�nition. This

formula is the counterpart of de�nition 6.2.2: the formulation is almost identical

apart from the fact that Holds(p

i

; S) should be replaced by "p

i

holds in S".

6.3 Translation to Incomplete Logic Programs 181

De�nition 6.3.1 Let M be any interpretation of L

D

, x a domain element of M .

state

M

(x) = ff j f is a positive
uent symbol and M j= Holds(f; x)g

Note that state

M

(x) denotes a state as in section 6.2, and a transition function

� can be applied on it. Note also that f 2 state

M

(x) is equivalent with M j=

Holds(f; x).

Theorem 6.3.1 (soundness) Let D be a domain description. For any v-proposi-

tion Q, if �D j= �Q then D entails Q.

Proof Nothing is to be proved when D is inconsistent. So, assume D is consis-

tent. It su�ces to show that for each modelM

a

= (�; �

0

) of D and for each

v-proposition Q, there exists a modelM of �D such that Q holds in (�; �

0

)

i�M j= �Q. If then �Q holds in all models of �D, then also in these models

corresponding to models of D. Hence, Q holds in all models of D.

We construct a Herbrand model M . HU (L

D

) denotes the Herbrand uni-

verse. The basic idea is simple: we de�ne M such that for each state term

s = Result[a

1

; : : : ; a

n

; s

0

], state

M

(s) = M

a

1

;:::;a

n

and such that the atom

Noninertial(a; f; s) is true whenever f is non-inertial under a in the state

state

M

(s). Things are slightly complicated due to the fact the �D is not

a sorted program and ill-sorted atoms may occur in the model. For that

reason, we extend D to D

0

by allowing each term t 2 HU (L

D

) as a
uent

symbol and as an action symbol. Note that non-original
uents t

f

(symbols

of HU (L

D

) which are not
uent symbols in D) and non-original actions t

a

do not occur in the e-propositions. This implies that a non-original
uent

t

f

of D

0

always remains as in the initial state; a non-original action t

a

has

no e�ect on a state (like the action wait in the YTS D

0

). (�; �

0

) can easily

be extended to a model (�

0

; �

0

0

) of D

0

. De�ne �

0

0

= �

0

. Let �

0

be any state

of D

0

, consisting of original
uents � and new
uents �

n

. Extend � to �

0

in the following way:

�

0

(t

a

; �

0

) = �

0

for t

a

a non-original action

�

0

(t

a

; �

0

) = �(t

a

; �) [�

n

for t

a

an original action

One easily veri�es that (�

0

; �

0

0

) is a model of D

0

. Moreover, for any v-

proposition Q based on the original language of D, Q holds in (�

0

; �

0

0

) i� Q

holds in (�; �

0

).

Next we associate to (�

0

; �

0

0

) a Herbrand model M of �D = �D

0

. With any

term t

s

2 HU (L

D

) we associate a speci�c state of D

0

. Below we call a term

t

s

an empty-state term if t

s

6= s

0

and t

s

6= Result(t

1

; t

2

) for some t

1

; t

2

. For

any term t

s

2 HU (L

D

), state

M

(t

s

) is constructed as follows:

182 A translation of A to incomplete situation calculus.

t

s

= s

0

) state

M

(t

s

) = �

0

t

s

is an empty-state term) state

M

(t

s

) = �

t

s

= Result[t

1

; : : : ; t

n

; s

0

]) state

M

(t

s

) = �

0

[t

1

; : : : ; t

n

; �

0

]

t

s

= Result[t

1

; : : : ; t

n

; t

0

], t

0

an empty-state term

) state

M

(t

s

) = �

0

[t

1

; : : : ; t

n

; �]

M is de�ned as follows:

fHolds(t

f

; t

s

) j t

f

2 state

M

(t

s

)g[

fNoninertial(t

f

; t

a

; t

s

) j t

f

is non-inertial under t

a

in state

M

(t

s

)g[

fInitially(t

f

) j t

f

2 �

0

g

Clearly for any v-proposition Q using original symbols of D, it holds that

Q holds in (�; �

0

) i� M j= �Q. A direct consequence is that M is a model

of IC

D

. It remains to prove that M is a model of comp

3

(P

D

).

Before continuing with this proof, we want to stress that the complexity of

the construction above is in no way an indication that the proposed transfor-

mation � is on itself unnecessarily complex or lacks elegance. The increased

technicality is only due to the fact that �D can be considered as an un-

typed meta-program. It is well-known (see e.g. [HL89], [MD92]) that such

programs give rise to technical problems with respect to Herbrand seman-

tics. Alternatives would have been to de�ne �D as a typed logic program

(as in [Dun93]), or to make its clauses range restricted, using additional

range predicates. Both solutions would have reduced the complexity of the

proof, but increased the complexity of � itself. This motivates our choice.

That the completed de�nition of Noninertial=3 is satis�ed follows straight-

forwardly: since the expression "p

i

holds in state

M

(t

s

)" is equivalent with

M j= Holds(p

i

; t

s

), the completed de�nition of Noninertial=3 is a direct

representation of de�nition 6.2.2.

Finally, we check the completed de�nition of Holds=2. Essentially what

must be done is to check all its ground instances Holds(t

f

; t

s

) , : : :. This

requires a simple case-analysis depending on the type of t

s

. We consider

three cases. Take t

s

= s

0

. The completed de�nition collapses to:

Holds(t

f

; s

0

) , Initially(t

f

)

which is clearly satis�ed in M .

Take t

s

an empty-state term. The completed de�nition collapses to:

Holds(t

f

; t

s

) , false

which is also satis�ed in M .

Finally, take t

s

= Result(t

a

; t). The completed de�nition collapses to:

6.3 Translation to Incomplete Logic Programs 183

Holds(t

f

; Result(t

a

; t))$ E

1

_ : : :E

n

with:

E

1

= Holds(t

f

; t) ^ :Noninertial(t

f

; t

a

; t)

E

i

(i > 1) = Holds(p

1

; t) ^ : : :^Holds(p

n

; t)

such that precisely for each e-proposition

t

a

causes t

f

if p

1

; : : : ; p

n

in D there exists one corresponding disjunct E

i

(i > 1) in the formula.

Substituting:

"t

f

2 state

M

(Result(t

a

; t))"

for:

Holds(t

f

; Result(t

a

; t))

and substituting:

"p

i

holds in state

M

(t)"

for:

Holds(p

i

; t)

preserves the truth value of the expression wrt to M . Now observe that by

the de�nition of M , we have

t

f

2 state

M

(Result(t

a

; t)) i� t

f

2 �

0

(t

a

; state

M

(t))

Hence substituting:

t

f

2 �

0

(t

a

; state

M

(t))

for:

t

f

2 state

M

(Result(t

a

; t))

at the left in the equivalence, preserves again the truth value of the ex-

pression. Clearly, we obtain an equivalence as in proposition 6.2.1. This

equivalence is satis�ed because �

0

is the transition function of a model of

D

0

and D

0

is e-consistent.

2

Theorem 6.3.2 (completeness) Let D be e-consistent. For each v-proposition

Q, if D entails Q then �D j= �Q.

Proof Since D is e-consistent, there exists a unique transition function � which

satis�es the e-propositions of D. As for the soundness, it su�ces to prove

that for each modelM of �D, there exists a modelM

a

= (�

0

;�) of D such

that for each v-proposition Q, M j= �Q i� Q holds in M

a

. Notice that this

184 A translation of A to incomplete situation calculus.

immediately implies that all v-propositions of D hold in M

a

since M is a

model of �Q for each v-proposition Q of D.

M maps each term Result[a

1

; : : : ; a

n

; s

0

]) to a domain element, denoted

~

M (Result[a

1

; : : : ; a

n

; s

0

]).M

a

is de�ned in the following way: � is given; �

0

is de�ned as state

M

(

~

M (s

0

)).

We should prove that for each sequence of actions a

1

; : : : ; a

n

:

M

a

1

;:::;a

n

a

= state

M

(

~

M (Result[a

1

; : : : ; a

n

; s

0

]))

The proof is by induction on n. For n = 0, this is trivial. So assume that

the theorem holds for n� 1, n > 0. We have the following identity:

M

a

1

;:::;a

n

a

= �(a

n

;M

a

1

;:::;a

n�1

a

)

= �(a

n

; state

M

(

~

M (Result[a

1

; : : : ; a

n�1

; s

0

])))

The second identity follows from the induction hypothesis. Let x be the

domain element

~

M (Result[a

1

; : : : ; a

n�1

; s

0

]). It su�ces to show that:

�(a

n

; state

M

(

~

M (Result[a

1

; : : : ; a

n�1

; s

0

]))) =

state

M

((

~

M (Result[a

1

; : : : ; a

n

; s

0

]))

or equivalently:

�(a

n

; state

M

(x)) = state

M

(

~

M (Result(a

n

; x)))

By proposition 6.2.1, we �nd that f 2 �(a

n

; state

M

(x)) i�

� f holds in state

M

(x) and f is inertial under a

n

in state

M

(x), or

� there exists an e-proposition a

n

causes f if p

1

; : : : ; p

m

such that the

uents p

1

; : : : ; p

m

hold in state

M

(x).

Because M is a model of Noninertial=3, the �rst disjunct corresponds to

M j= Holds(f; x) ^ :Noninertial(f; a

n

; x)

The second disjunct corresponds to the fact that

M j= Holds(p

1

; x) ^ : : :^Holds(p

m

; x)

for some e-proposition a

n

causes f if p

1

; : : : ; p

m

. Because M is a model of

the completed de�nition of Holds=2, we obtain that

f 2 �(a

n

; state

M

(x)) i� M j= Holds(f;Result(a

n

; x))

or equivalently

f 2 state

M

(

~

M (Result(a

n

; x)))

This gives the desired identity.

2

6.3 Translation to Incomplete Logic Programs 185

The following example shows that the condition of e-consistency is necessary:

� is not complete in general.

Example Consider the following domain description D

2

, which uses the
uent

alive and the action shoot.

shoot causes alive

shoot causes :alive

Obviously, D

2

is inconsistent: no transition function � can exist which satis-

�es the two e-propositions. Therefore, each v-proposition is entailed by D

2

.

�D

2

is given by:

Holds(F; s

0

) :- Initially(F)

Holds(F;Result(A; S)) :-Holds(F; S);:Noninertial(F;A; S)

Holds(alive;Result(shoot; S)) :-

Noninertial(alive; shoot; S) :-

This program is consistent. Below, Result[shoot; : : : ; shoot; s

0

] is denoted by

shoot

n

. A Herbrand model of �D

2

is given by the set:

fHolds(alive; shoot

n

); Noninertial(alive; shoot; shoot

n

) j n > 0g

In this model, the e-proposition shoot causes alive overrules the contra-

dicting rule shoot causes :alive. � is not complete since D

2

entails all v-

propositions, while �D

2

does not.

When D is inconsistent but e-consistent, then �D is inconsistent too. When D

is not e-consistent, then � is incomplete i� �D is consistent. Even in such a case,

it is often possible to restore the equivalence between D and �D by extending � as

follows. For each e-proposition a causes f if p

1

; : : : ; p

n

with f a positive literal,

we add the rule:

Initiates(a; f; S) :-Holds(p

1

; S); : : : ;Holds(p

n

; S)

For each e-proposition a causes :f if p

1

; : : : ; p

n

with f a positive literal, we add

the rule:

Terminates(a; f; S) :-Holds(p

1

; S); : : : ;Holds(p

n

; S)

In addition, we add the integrity constraint:

8A;F; S : :Initiates(A;F; S) _ :Terminates(A;F; S)

Example In �D

2

we have two additional rules:

Initiates(shoot; alive; S) :-

Terminates(shoot; alive; S) :-

It is trivial that the resulting program violates the integrity constraint.

186 A translation of A to incomplete situation calculus.

In some interesting situations, this solution does not work. Consider the following

example:

Example The domain D

3

is about
ipping a (light) switch. There is one action:

switch and two
uents, on and off .

switch causes on if off

switch causes off if on

switch causes :on if on

switch causes :off if off

Initially on

Initially :off

D

3

is not consistent, because �(switch; fon; offg) is not de�ned consistently.

However, starting from the initial situation in which on is true and off is

false and applying switch consecutively
ips the state of on and off in such a

way that on and off are never true in the same state. Hence, from the initial

state, the problematic state fon; offg can never be reached. For this reason,

�D

3

is consistent, even with Terminating=3 and Initiating=3. Applying the

model construction of theorem 3.4.1, we obtain:

Initially(on)

Holds(on; switch

n

) for each even n

Holds(off; switch

n

) for each odd n

Noninertial(on; switch; switch

n

) for each n

Noninertial(off; switch; switch

n

) for each n

Initiates(switch; on; switch

n

) for each odd n

Terminates(switch; on; switch

n

) for each even n

Initiates(switch; off; switch

n

) for each even n

Terminates(switch; off; switch

n

) for each odd n

For this example, the semantics ofD

3

and �D

3

di�er. Which semantics is to be

preferred? This is a matter of taste, but intuitively we �nd the domain description

D

3

a sensible theory, and the model a sensible model of the theory. By considering

D

3

inconsistent, the semantics of A is to our taste too severe

1

.

A �nal example illustrates why v-propositions are added as integrity constraints

and not as program clauses.

Example Take the domain D

4

:

a causes :f

f after a

1

Notice that the inconsistency of D

3

can easily be repaired by dropping the
uent off and

replacing it everywhere by :on. It is unclear to us whether such a solution exists in general when

the semantics of D and �D di�er.

6.4 Reasoning on incomplete logic programs 187

Obviously this domain is inconsistent. �D

4

is also inconsistent: indeed the

completed de�nition of Holds=2 subsumes

Holds(f;Result(a; s

0

)) , false

That contradicts with the integrity constraint Holds(f;Result(a; s

0

)).

On the other hand, adding Holds(f;Result(a; s

0

)) as a rule has the e�ect of

adding the disjunct F = f ^ T = Result(a; s

0

) to the completed de�nition

of Holds. The resulting theory is consistent and has the model:

fHolds(f;Result(a; s

0

)); Noninertial(f; a; t

s

)jt

s

2 HU (L

D

4

)g

6.4 Reasoning on incomplete logic programs

Traditionally, incomplete programs have been associated with abduction as proce-

dural paradigm. We argued before that an abductive procedure can also be used

for deduction and for proving consistency of a theory. In section 4.6, it was shown

how an abductive procedure can be used to prove consistency of a theory. In sec-

tion 5.6 we argued that an abductive procedure can be used for deduction in an

incomplete logic program. Here we illustrate this with SLDNFA.

In a �rst step the FOL axioms IC

D

must be transformed to an incomplete pro-

gram. The transformation 4.9.1 of IC

D

is trivial. A ground atomHolds(f;Result[

a

1

; : : : ; a

n

; s

0

]) is transformed to:

false :-:Holds(f;Result[a

1

; : : : ; a

n

; s

0

])

A ground negative literal :Holds(f;Result[a

1

; : : : ; a

n

; s

0

]) is transformed to:

false :-Holds(f; [a

1

; ; : : : ; a

n

; s

0

])

Applying this technique on the FOL axioms of the Murder Mystery domain

D

1

, we obtain an incomplete program P

0

, in which the following rules:

false :-:Holds(alive; s

0

)

false :-Holds(alive; [shoot;wait; s

0

])

are substituted for the FOL axioms of �D

1

.

An abductive procedure generates explanations for a given observation on the

problem domain. Here we can take :false as an observation. SLDNFA solves the

query :false and returns the solution:

�

1

= fInitially(loaded); Initially(alive)g

Not only this gives an explanation for :false, but proves also that �D

1

is consis-

tent (theorem 4.6.1).

188 A translation of A to incomplete situation calculus.

An abductive procedure can also be used for deduction. For example, we want

to prove that �D

0

j= Initially(loaded) or equivalently that the theory �D +

:Initially(loaded) is inconsistent. To prove that, we add the extra rule :

false :- Initially(loaded)

Now SLDNFA fails �nitely on the query :false. From the �rst completeness

result of SLDNFA, it follows that �D

0

+:Initially(loaded) is inconsistent. Notice

that a completeness result for abduction is used here as a soundness result for

deduction.

An abductive procedure allows reasoning under uncertainty. By dropping Initially alive

from the Murder Mystery domainD

1

, an incomplete domain description D

0

1

is ob-

tained. Using �D

0

1

, SLDNFA answers the goal :false by returning the answer

�

2

= fg. The original solution �

1

is still a solution but is not generated. This

does not con
ict with the completeness result of SLDNFA because �

2

� �

1

.

That we have uncertainty in this domain description becomes obvious when we

want to know whether Initially alive is possible according to D

0

1

. This is done by

posing the query :false; Initially(alive). SLDNFA proves that Initially alive

is possible by returning �

1

.

Deduction under uncertainty is possible. Observe that D

0

1

entails:

Initially :alive _ Initially loaded

SLDNFA can prove this. This is done by transforming the negation of the disjunc-

tion to:

false :- Initially(loaded)

false :-:Initially((alive)

After adding these rules to �D

1

, SLDNFA fails �nitely on :false. This

proves the disjunction.

The above experiments show in the �rst place that though incomplete/ ab-

ductive logic programs are traditionally associated with abduction as procedural

paradigm, other procedural paradigms such as deduction and consistency proving

are of interest. This illustrates our argument that an abductive program is better

called an incomplete program. In the second place, the experiments show that a

suitable abductive procedure can be used to emulate these paradigms.

6.5 The Gelfond & Lifschitz approach

We recall the transformation proposed in [GL92], from A domain descriptions

to extended programs. For any domain description D, �

GL

D is de�ned as the

extended logic program containing the following extended clauses:

� Four inertia rules:

6.5 The Gelfond & Lifschitz approach 189

Holds(F;Result(A; S)) Holds(F; S); not Noninertial(F;A; S) (1

0

)

:Holds(F;Result(A; S)) :Holds(F; S); not Noninertial(F;A; S)(2

0

)

Holds(F; S) Holds(F;Result(A; S)); not Noninertial(F;A; S) (3

0

)

:Holds(F; S) :Holds(F;Result(A; S)); not Noninertial(F;A; S)(4

0

)

� Each v-proposition f after a

1

; : : : ; a

n

, is transformed into:

Holds(f;Result[a

1

; : : : ; a

n

; s

0

]) (5

0

)

Recall that Holds(:f; : : :) denotes :Holds(f; : : :).

� Each e-proposition a causes f if p

1

; : : : ; p

n

is translated into 2n+2 rules.

Below, Holds(f; S) denotes the complement of Holds(f; S) with respect to

:.

Holds(f;Result(a; S)) Holds(p

1

; S); : : : ;Holds(p

n

; S) (6

0

)

Noninertial(jf j; a; S) not Holds(p

1

; S); : : : ; not Holds(p

n

; S) (7

0

)

For each i, 1 � i � n:

Holds(p

i

; S) Holds(f; S);Holds(f;Result(a; S)) (8

0

)

Holds(p

i

; S) Holds(f;Result(a; S));

Holds(p

1

; S); : : : ;Holds(p

i�1

; S);

Holds(p

i+1

; S); : : : ;Holds(p

n

; S) (9

0

)

[GL92] gives the intuition behind the translation and gives a soundness theorem

for all domain descriptions D provided D does not contain similar e-propositions,

i.e. e-propositions which only di�er by the preconditions. A comparison of �

GL

D

with �D is of interest. Observe that if the two negations not and : in extended

programs are mapped both on ":" in incomplete programs, we �nd clauses or

formulas in �D corresponding to (1

0

), (5

0

), (6

0

) (if f is a positive literal) and (7

0

),

while (2

0

), (3

0

), (4

0

), (8

0

) and (9

0

) lack in �D.

A striking fact is that �

GL

D contains four inertia rules instead of one in �D. (1

0

)

and (2

0

) are forward persistence rules for respectively positive and negative
uents.

(3

0

) and (4

0

) are backward persistence rules for again positive and negative
uents.

Clearly (2

0

), (3

0

) and (4

0

) are natural rules, which are expected to hold in any

correct formalisation. Therefore, they must be subsumed by �D, otherwise � could

never be sound and complete. As a matter of fact, it is straightforward to prove

that for each of the extended rules in �

GL

D, the corresponding clause is subsumed

by comp

3

(P

D

), where P

D

is the logic program part of �D. For example, notice that

from the classical logic point of view the rules (1

0

) and (4

0

) are equivalent and so

are the rules (2

0

) and (3

0

). This immediately gives that comp

3

(P

D

) subsumes (4

0

).

Clauses corresponding to (2

0

) and (3

0

) can be derived from the completed de�nition

190 A translation of A to incomplete situation calculus.

(6.6) of Holds=2 in P

D

. Substitute Result(A; S) for T . After simpli�cation one

obtains:

8F;A; S : Holds(F;Result(A; S)) , E

1

_ : : :_E

n

where E

1

is of the form:

Holds(F; S) ^ :Noninertial(F;A; S)

and for each e-proposition a causes f if p

1

; : : : ; p

n

with f is a positive literal,

there is an E

i

of the form:

F = f ^A = a ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

Now, it is easy to see that comp

3

(P

D

) satis�es:

8F;A; S : F = f ^A = a ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

) Noninertial(F;A; S)

By dropping :Noninertial(F;A; S) from the �rst disjunct and substituting

Noninertial(F;A; S) for the other disjuncts, we �nd:

8F;A; S : Holds(F;Result(A; S))) Holds(F; S) _Noninertial(F;A; S)

Simple rewriting gives formulas corresponding to (2

0

) and (3

0

).

A shortcoming of �

GL

is its incompleteness. [GL92] gives the following example

D

5

:

a causes f if f

f after a

ClearlyD

5

entails Initially f . However, Initially(f) is not entailed by �

GL

D

5

. On

the other hand, notice that D

5

is e-consistent. Therefore, Initially(f) is implied

by �D

5

and can be proven by SLDNFA.

Another problem of �

GL

shows up when A is extended to allow predicates.

Consider the following rule:

Pick(X;Obj) causes thief(X) if owner(Y;Obj); X 6= Y

which says that X becomes a thief if he picks an object Obj which he does not

own. The translation to incomplete programs does not require any modi�cation.

� produces:

Holds(thief(X); Result(Pick(X;Obj); S)) :-Holds(owner(Y;Obj); S); X 6= Y

Noninertial(thief(X); P ick(X;Obj); S) :-Holds(owner(Y;Obj); S); X 6= Y

For �

GL

, there are problems with the rules of type (8

0

):

6.6 Dung's approach 191

Holds(owner(Y;Obj); S) :Holds(thief(X); S);

Holds(thief(X); Result(Pick(X;Obj); S))

X 6= Y :Holds(thief(X); S);

Holds(thief(X); Result(Pick(X;Obj); S))

These rules say that when X becomes thief by picking something in situation S,

then each Y is owner at situation S and no Y is equal to X. This is a contradiction.

The problem is that Y should not be universally but existentially quanti�ed. The

following formulas are subsumed by �D but are not extended clauses:

8Obj; S;X : 9Y : Holds(owner(Y;Obj); S) :Holds(thief(X); S);

Holds(thief(X); Result(Pick(X;Obj); S))

8Obj; S;X : 9Y : X 6= Y :Holds(thief(X); S);

Holds(thief(X); Result(Pick(X;Obj); S))

The translation � to incomplete programs performs better than the translation

�

GL

to extended programs. �

GL

creates a higher number of rules, is incomplete,

su�ers from problems with similar e-propositions and is not directly extendible to

the predicate case. The incomplete program approach seems more understandable

because only one negation occurs, is sound even with similar e-propositions, is

complete for all reasonable domain descriptions and applies without modi�cation

for the predicate case.

6.6 Dung's approach

In [Dun93] Dung presents another translation from A domains to a logic program

formalism,which is quite similar to ours in a number of aspects. On the syntactical

level, the most important di�erence with our approach is the symmetrical treat-

ment of
uent symbols f and their negation :f . The translation �

Du

D contains

our frame axiom (6.2), and contains for each e-proposition a causes f if p

1

; : : : ; p

n

(f positive or negative) the following rules:

Holds(f;Result(a; S)) :-Holds(p

1

; S); : : : ;Holds(p

n

; S)

Noninertial(f; a; S) :-Holds(p

1

; S); : : : ;Holds(p

n

; S)

Noninertial(f

�

; a; S) :-Holds(p

1

; S); : : : ;Holds(p

n

; S)

Here f

�

denotes the complement of f . Contrary to our approach, here
uent liter-

als like :f appear withinHolds=2. Each v-proposition f after a

1

; : : : ; a

n

is trans-

formed to the denial:

 Holds(f

�

; Result(a

1

; : : : ; a

n

; s

0

))

In addition, for each
uent symbol f the following constraints are added:

192 A translation of A to incomplete situation calculus.

 Holds(f; S);Holds(:f; S)

Holds(:f; s

0

) , :Holds(f; s

0

)

These additional constraints are necessary due to the symmetrical treatment of a

uent f and its negation :f . This redundancy leads to substantially more rules

than in our transformation.

The semantics of �

Du

D is de�ned via a domain dependent variant of the

completion semantics. It contains FEQ and the normal completed de�nition of

Noninertial=3, but a specialised version of the completed de�nition of Holds=2.

�

Du

D does not contain rules with Holds(F; s

0

) in the head. As a consequence the

standard completion would imply that

8F : :Holds(F; s

0

)

[Dun93] avoids this by the following alternative:

8F;A; T : Holds(F;Result(A; S)) $ E

1

_ : : :_E

n

with:

E

1

= Holds(F; S) ^ :Noninertial(F;A; S)

E

i

(i > 1) = F = f ^A = a ^Holds(p

1

; S) ^ : : :^Holds(p

n

; S)

such that precisely for each e-proposition a causes f if p

1

; : : : ; p

n

(f positive or

negative), there exists one disjunct E

i

(i > 1) in the completed de�nition. This

formula says nothing about Holds(F; s

0

), and therefore, we get a similar semantics

as in our approach, but without Initially=1. Dung extends A to the predicate case

and applies a partial deduction procedure in order to generate abductive solutions

for queries on �

Du

D. He gives an application for checking the satis�ability of a

database update with respect to a deductive database with integrity constraints.

A disputable statement in [Dun93] is related to the following example D

6

(a

syntactical simpli�cation of the example in theorem (8) in [Dun93]):

Initially f

a causes :f if g

Dung observes correctly that the Gelfond and Lifschitz transformation �

GL

D

6

has

two answer sets:

Z

1

= fHolds(f; s

0

)g [fNoninertial(f; a; a

n

) j n 2 INg

Z

2

= fHolds(f; a

n

);:Holds(g; a

n

) j n 2 INg

In Z

1

, Holds(f; a

n

) (n > 0) and Holds(g; a

n

) (n � 0) are unknown since neither

the atom nor its negation appears in Z

1

. Z

2

corresponds to a two-valued model,

obtained by having f initially true and g false, a situation which is preserved

when applying a. Then Dung argues that "it is obvious that only the �rst solution

captures the intended semantics of D

6

, for if we don't know anything about g, it

6.7 Discussion 193

is impossible to say anything about the outcome of a". Remarkable now is that Z

2

corresponds to a model of Dung's �

Du

D

6

.

Clearly, Dung views Z

2

as a knowledge state model. As we de�ned in section

2.2, a knowledge state model describes what atoms are known to be true, what

atoms are known to be false and what atoms are unknown. Under this view, indeed,

Z

2

is incorrect, since we do not know that Holds(g; s

0

) is false. However, under

the alternative interpretation of a model as a possible state, there is no problem

with this model: it just represents the possible state that g is initially false and f

remains true after applying a.

In a possible state semantics, the fact of having incomplete knowledge on g in

the initial state, is re
ected by the fact that there are models in which g is initially

true and others in which g is initially false. In a model in which g is initially true,

f is necessarily terminated after applying a. When g is initially false, as in Z

2

, f

remains true. It turns out that the two transformations � and �

Du

behave correct

under this view. Note that D

6

has two models, one with initial situation ffg and

another with initial situation ff; gg. These models correspond to models of �D

6

and, as Dung perhaps has not noticed, with models of �

Du

D

6

. Both models are

erroneous as knowledge state models. For �

GL

D

6

, the second model, corresponding

to the possible state with initial situation ff; gg, is weakened to the answer set Z

1

.

Of the two type of semantics, the possible state view is de�nitely the richest

one. Indeed, consider the following formulas:

:Holds(g; s

0

)) [Holds(f; s

0

)) Holds(f;Result(a; s

0

))]

:Holds(g; s

0

)) [:Holds(f; s

0

)) :Holds(f;Result(a; s

0

))]

Holds(g; s

0

)) :Holds(f;Result(a; s

0

))

Holds(f;Result(a; s

0

)) _Holds(g;Result(a; s

0

))

Surely one will agree that they are intuitively right. As a matter of fact, they

are true in all models of �D

6

and �

Du

D

6

and hence, they are implied by these

theories. SLDNFA can prove each of them in �D

6

(likely Dung's procedure can

do so for �

Du

D

6

). On the other hand, they are not true in the answer set Z

1

, and

hence �

GL

D

6

does not imply them. The problem with the incompleteness of �

GL

is not due to models like Z

2

but due to models like Z

1

.

6.7 Discussion

[Rei92] formalises database evolution using situation calculus theories in First Or-

der Logic. The completion of a program �D shows a strong relationship with these

theories. [Rei92] replaces Result=2 by do=2. Instead of using the meta predicate

Holds=2, each
uent predicate is added one additional argument; i.e. an atom

194 A translation of A to incomplete situation calculus.

Holds(p(x); t) is contracted to the atom p(x; t). As a consequence the law of iner-

tia has to be stated for each
uent.

The formalism in [Rei92] can deal with additional features such as necessary

preconditions for actions, with queries quanti�ed over all times, with de�ned pred-

icates and with indeterminate actions. An example of a formula which occurs in

his approach is:

8St; C;A; S : Poss(A; S)! (enrolled(St; C; do(A; S)) ,

A = register(St; C)_

enrolled(St; C; S) ^A 6= drop(A;C))

The rule says that when action A may be executed in situation S (Poss(A; S)),

then student St is enrolled in course C at time do(A; S) i� A is an action of

registering St in C or, St was enrolled at S and A is not an action of dropping

St from the course C. If we forget about Poss(A; S), and introduce Result and

Hold, we �nd:

8St; C;A; S : Holds(enrolled(St; C); Result(A; S)) ,

A = register(St; C)_

Holds(enrolled(St; C); S) ^A 6= drop(St; C)

Similar formulas are subsumed by �D. The �rst disjunct corresponds to a rule

initiating enrolled(St; C) by enregister(St; C). The second disjunct corresponds

to the law of inertia, with :Noninertial(enrolled(St; C); A; S) replaced by its

de�nition: drop(St; C) is the only action which terminates enrolled(St; C)

2

.

In the past, another approach has been explored for temporal reasoning, based

on event calculus [KS86]. [Esh88] and [Sha89] have simpli�ed event calculus and

have extended it with abduction for the purpose of planning. [Sha89] extended

event calculus to deal with necessary preconditions of actions. [Mis91a] imple-

mented a planning system based on this formalism. Other work has been done

to extend event calculus with continuous actions [Sha90] and time granularity

[Eva90], [MMCR92]. Recently [DMB92] applied abductive event calculus to solve

a number of benchmark problems in temporal reasoning, such as the Murder Mys-

tery, the Stolen Car problem, the Walking Turkey Shooting problem and the Rus-

sian Turkey Shooting problem. The latter problem contains an indeterminate ac-

tion. Situation and event calculus seem two non-equivalent ways of representing

time and action. A domain descriptions cannot (easily) be translated to event

calculus, because A assumes a situation calculus philosophy. A deep analysis of

situation versus event calculus is beyond the scope of the chapter.

It turns out that the technique used in [DMB92] to represent indeterminate

actions can easily be translated to situation calculus. The Russian Turkey Shoot-

ing problem is a variant of the Yale Turkey Shooting problem in which one

2

Here the version of Noninertial=3 is needed which contains only rules for terminating e�ects

of actions.

6.8 Summary 195

additional action spinning of spinning the gun's chamber occurs. The e�ect is

that the gun is possibly unloaded. Below we allow e-propositions of the form

a possibly causes f if p

1

; : : : ; p

n

. The problem is formalised as follows:

Initially alive

Initially loaded

load causes loaded

shoot causes :alive if loaded

shoot causes :loaded

spinning possibly causes :loaded

The semantics of A can easily be adapted. While in A, a successor state is

completely determined by the action and the previous state, this is not the case

with indeterminate actions. Therefore, in the extended version the transition func-

tion should be replaced by a transition relation. In the corresponding incomplete

program, the indeterminism is captured by introducing an unde�ned Good luck=2

predicate:

Noninertial(loaded; spinning; S) :-Good luck(spinning; S)

The above clause has the e�ect that the rule of inertia is disabled for loaded i�

good luck occurs at the spinning action in state S. In general, for each clause

a possibly causes f if p

1

; : : : ; p

n

the following rule must be introduced:

Noninertial(jf j; a; S) :-Holds(p

1

; S); : : : ;Holds(p

n

; S); Good luck(a; S)

For a positive f , in addition the following rule is added:

Holds(f;Result(a; S)) :-Holds(p

1

; S); : : : ;Holds(p

m

; S); Good luck(a; S)

6.8 Summary

We presented a sound and complete transformation � from A domains to incom-

plete logic programs with FOL axioms. We have illustrated the use of SLDNFA

for abductive and deductive reasoning under uncertainty and satis�ability proving.

The transformation of Gelfond and Lifschitz is more complex, is not complete, is

only sound for domains without e-similar actions and cannot be extended to the

predicate case (at least not without imposing other syntactic constraints). More-

over, no reasoning procedure is currently described for the resulting programs.

Dung's approach is in many aspects similar to ours and provides a reasoning pro-

cedure, but is still more complex than ours, has the disadvantage of relying on a

196 A translation of A to incomplete situation calculus.

special purpose logic and does not show the application of the reasoning procedure

for other forms of reasoning than abduction.

We have investigated also a number of typical temporal reasoning issues. Al-

though in �D only forward persistence axioms are contained, the completion of

�D subsumes backward persistence axioms. We have also shown how to extend A

with indeterminate actions.

From a more general perspective, this work can be viewed as a -successful-

experiment in the declarative representation of and diverse forms of automated

reasoning on incomplete knowledge using incomplete logic programming and an

abductive procedure.

Chapter 7

Temporal reasoning in

Incomplete Event Calculus

7.1 Introduction

Event Calculus was developed by Kowalski and Sergot in [KS86] to cope with

representational and computational problems of situation calculus in the context

of declarative database updates. An event calculus represents a temporal domain

by describing events and how they a�ect the state of the world. Originally, event

calculus was based on the complete logic programming formalism. In [Esh88],

Eshghi showed that abduction in event calculus could be used to solve planning

problems. This approach was further explored by Shanahan [Sha89] and Missiaen

[MBD92]. In a planning problem, a set of events must be found which transforms a

given initial state into a �nal goal state. By de�ning the predicates which describe

the events, their associated actions and their order as abducible, an abductive

procedure solves a query representing the goal state by returning a description of

a set of events which constitutes a plan.

The above studies have motivated much of the work presented in this thesis.

The development of SLDNFA (chapter 5) was partially motivated by the problems

of existing procedures in the context of planning with abductive event calculus.

The success of abductive logic programs for representing planning problems was

one of the motivations for our investigation of the declarative properties of abduc-

tive/incomplete logic programming, the result of which is presented in chapter 4.

So far, most work in event calculus focussed mainly on the procedural seman-

tics. E.g. [KS86] explains the concepts of event calculus using procedural concepts

such as default reasoning and negation as failure; [Esh88], [Sha89], [Mis91a] intro-

duce abduction without investigating the declarative semantics of abductive event

calculus. In this chapter we show that incomplete event calculus is an elegant and

197

198 Temporal reasoning in Incomplete Event Calculus

general declarative paradigm for representing temporal domains. An event calculus

has one or more models which represent the possible states of the intended tem-

poral domain. We can investigate the declarative reading of event calculus under

completion semantics by reading the completed de�nitions or under justi�cation

semantics, by reading an event calculus as a set of constructive de�nitions.

This declarative view allows to address a number of important issues. One issue

is the representation of incomplete knowledge. Remarkably, although the use of

an abductive procedure in event calculus is well-known and although abduction

is clearly a procedural paradigm for reasoning on incomplete knowledge, so far

the role of abductive/incomplete logic programming as a declarative formalism

for representing incomplete knowledge has not been recognised. We show how

incomplete event calculus gracefully allows to represent diverse forms of incomplete

knowledge:

- on the initial state,

- on the order of a known set of events,

- on the events and their order

- on the e�ect of (indeterminate) events

Such incomplete knowledge can be represented in the same way as in chapter 6: in

a given problem domain, the primitive relations on which incomplete knowledge

exist, are identi�ed and are represented by unde�ned predicates. Partial knowledge

about them is represented by integrity constraints. The technique is elegant and

generally applicable. In none of the examples, the clauses representing the inertia

laws need to be changed.

A second important issue is the nature of time. In [KS86] it is argued that one

of the advantages of (complete) event calculus over situation calculus is that in a

complete event calculus, an incompletely known time precedence relation << on

the events can correctly be represented by a partial order. Analogously, in previous

approaches in planning, the underlying theory of time is the theory of partial order.

We show that these approaches are too weak and may lead to bad answers. We

argue that a correct complete or incomplete event calculus should entail that << is

a linear or total order. For a complete event calculus, time points should be linearly

ordered. For an incomplete event calculus with unde�ned <<, the condition can be

enforced by adding the theory of linear time as a set of integrity constraints. That

the time precedence relation in complete event calculus should always be a linear

order implies that it cannot represent incomplete knowledge on <<. However, this

does not restrict the expressive power of event calculus: when one has incomplete

knowledge on <<, one can make << unde�ned, and add partial knowledge on it as

a set of integrity constraints.

In a planning problem, the set of events and their order is the subject of the

search and hence a fortiori we have incomplete knowledge on <<. In principle,

SLDNFA (and any other sound abductive procedure which can deal with non-

ground abducible atoms) is able to solve planning problems. However, the presence

7.2 A theory on time, state, action and change 199

of the theory of linear order causes important e�ciency problems. Not only the

manipulation of this theory is computationally expensive, also SLDNFA will only

generate linear plans, i.e. linearly ordered sets of events. In general, partial plans,

which leave open the order of independent events whose order is irrelevant for the

�nal state, are preferable over linear plans. The number of plans computed by a

linear planner compared to a partial planner, is exponential with the number of

independent pairs of events. In section 7.3, we extend SLDNFA with a constraint

solver which checks the satis�ability of the abduced time precedence facts against

the theory of linear order and we prove the soundness and a completeness result.

The resulting procedure o�ers not only a correct and more e�cient treatment

of time, it also generates correct partial plans. In section 7.6, we demonstrate

SLDNFA-LO for some planning examples.

The system is not only useful in the context of planning but can be used for

temporal reasoning in general. To illustrate this, we present solutions for a number

of well-known temporal reasoning problems. These problems are considered as im-

portant benchmarks for temporal reasoning formalisms [San91]. On the declarative

level, many of these problems involve the representation of incomplete knowledge

either on the initial state or on the events, their order or their e�ects. On the

procedural level, they involve complex reasoning such as prediction, ambiguous

prediction, postdiction and ambiguous postdiction. We show how SLDNFA-LO is

useful to perform deduction, abduction and satis�ability proving on these theories.

The chapter is structured as follows. In section 7.2 a simpli�ed version of event

calculus is introduced. Examples illustrate the representation of incomplete knowl-

edge. We investigate the role of time as a linear order. In section 7.3, SLDNFA

is extended with a constraint module for the theory of linear order. In section

7.4, several important issues are considered: the notions of event versus action,

necessary pre-conditions for events and context dependent e�ects of events, inde-

terminate events, the rami�cation problem in event calculus, actions with duration,

concurrent actions. In section 7.5, we point to some declarative singularities in the

completion and justi�cation semantics of event calculus. In section 7.7 a discussion

of future extensions and related work is given.

This chapter is a serious extension of [DMB92].

7.2 A theory on time, state, action and change

In this section we will introduce a basic version of event calculus. This version is

analogous to the one used in [Sha90] and [Mis91b, Mis91a] but attaches a di�erent

interpretation to the predicates. In contrast to other approaches, the ontological

primitive in the version below is the time point instead of the event. This choice

is motivated by our intention to investigate the laws of time.

An event calculus consist of a possibly incomplete logic program and a set

of integrity constraints. It describes time, time dependent properties, events and

200 Temporal reasoning in Incomplete Event Calculus

change caused by the events. The constants of the language have domain depen-

dent objects as intended interpretation, like john, block A, or they denote time

points, like t 1, etc.. Functors may denote functions on the problem domain, e.g.

father of(john), but also the time dependent relations of the problem domain,

e.g. the term on(block A; block B represents the relation between two blocks in

the problem domain. In the sequel, the latter functors will be called
uents. One

subset of predicates represents the time independent properties of the problem

domain. In addition there are a number of generic, domain independent predicates

which are introduced to describe how events a�ect the world. They are listed below

together with their intended interpretation.

� T ime(T): T is a time point. T ime=1 is a type predicate, representing the

time points.

� T

1

<<T

2

: time point T

1

precedes time point T

2

.

� Act(T;A): on time T , an event A occurs. Events have no duration.

� Holds at(P; T): the
uent P holds at time T .

� Clipped(E;P; T): the
uent P becomes false in the half open interval [E; T [.

� Initiates(T; P): at time T there is an event with an initiating e�ect on the

uent P .

� Terminates(T; P): at time T there is an event with a terminating e�ect on

the
uent P .

A few remarks are in order. First, predicates like Holds at=2, Clipped=3,

Initiates=2, Terminates=2 have
uents as argument and hence can be consid-

ered as simple "meta-predicates". Keep in mind however that their arguments

should be simple
uent terms and not composed formulas.

Second, we should be careful about the meaning of an event having an initiating

or terminating e�ect on some
uent P . By default, this means that P is true after

an initiating event and false after a terminating event. This does not exclude that

P was true before the initiating event or false before the terminating event. For

example to shoot on a turkey has a terminating e�ect on the live of the turkey,

disregarding whether the turkey was alive or dead before.

Third and most important is a comment on the nature of time in event calculus.

Is time a �nite or countable discrete set of time points, or is it isomorphic with

the rational or real numbers? The event calculus has models with discrete �nite

time and other models with rational or real time. Although people tend to view

time as a continuous and dense set, isomorphic with the real numbers, common-

sense reasoning often does not rely on the laws of a continuous time and is correct

also in a discrete �nite time. A discrete �nite time can be interpreted as a set of

7.2 A theory on time, state, action and change 201

relevant time points, on which events occur or on which observations are made. In

section 7.7 we discuss how to obtain an instance of event calculus in which time

is isomorphic with the real numbers.

In our version of event calculus, the law of inertia, sometimes called the per-

sistence axiom or the frame axiom, is formulated as follows:

Holds at(P; T) :-T ime(E); E<<T; Initiates(E;P);

:Clipped(E;P; T)

Clipped(E;P; T) :-T ime(C); T erminates(C;P); In(C;E; T)

In(C;C; T) :-

In(C;E; T) :-E<<C;C<<T

These laws state that a
uent P is true at some time T if there is a strictly

earlier time E on which there is an initiating event for P and such that P is

not clipped: there is no terminating event in the interval [E; T [. In(C;E; T) has

intended interpretation that C occurs in [E; T [. One easily veri�es that the state

of the world on the moment that an event occurs is not a�ected by the event:

initiating and terminating e�ects on time T do not a�ect Holds at(P; T). This

avoids problems in case an event has a terminating e�ect on its preconditions.

The initiating and terminating e�ects of actions are described by the de�nitions

of the predicates Initiates=2 and Terminates=2. These will in general consist of

rules of the form:

Initiates(E; p) :-Act(E; a);Holds at(p

1

; E); : : : ;Holds at(p

k

; E);

:Holds at(p

k+1

; E); : : : ;:Holds at(p

l

; E)

Terminates(E; p) :-Act(E; a);Holds at(p

1

; E); : : : ;Holds at(p

k

; E);

:Holds at(p

k+1

; E); : : : ;:Holds at(p

l

; E)

These clauses de�ne that an action a, occurring at a time E on which the
uents

p

1

; : : : ; p

k

hold and the
uents p

k+1

; : : : ; p

l

do not hold, has the e�ect of initiating

or terminating the
uent p.

A general way to represent an initial situation is by introducing a time point

start and a predicate Initially=1. The de�nition of Initiates=2 should contain the

following rule:

Initiates(start; P) :- Initially(P)

In addition, the program should imply the following formulas:

T ime(start)

T ime(E) ! start = E _ start<<E

In a complete event calculus these formulas should be entailed by the program.

When T ime=1 and/or << are unde�ned, they may be added as a set of explicit

integrity constraints.

202 Temporal reasoning in Incomplete Event Calculus

So far we obtained de�nitions for the predicates Holds at=2, Clipped=3, In=3,

Initiates=2 and Terminates=2. In addition, the other predicates T ime=1, <<,

Initially=1 andAct=2 may have problem speci�c de�nitions, depending on whether

we have complete information on them or not. An example in which we have com-

plete information on all of them is the Yale Turkey Shooting problem. Recall the

problem speci�cation from chapter 6: a turkey is alive initially; there are succes-

sively events of loading a gun, waiting and shooting. In event calculus the problem

is represented as follows:

Domain independent clauses:

Holds at(P; T) :-T ime(E); E<<T; Initiates(E;P);

:Clipped(E;P; T)

Clipped(E;P; T) :-T ime(C); T erminates(C;P); In(C;E; T)

In(C;C; T) :-

In(C;E; T) :-E<<C;C<<T

Initiates(start; P) :- Initially(P)

Domain dependent clauses:

Initiates(T; loaded) :-Act(T; loading)

Terminates(T; loaded) :-Act(T; shooting)

Terminates(T; alive) :-Act(T; shooting);Holds at(loaded; T)

In addition, for each of the following problem speci�c atoms, one atomic

clause is added:

Initially(Alive)

T ime(start); T ime(e

1

); T ime(e

2

); T ime(e

3

); T ime(t

end

)

Act(e

1

; loading); Act(e

2

; waiting); Act(e

3

; shooting)

10 atomic clauses for (or a de�nition of << as) the transitive closure

of the following time precedence facts are needed:

start<<e

1

<<e

2

<<e

3

<<t

end

The result is a complete logic program. The semantics of the program is given by

the justi�cation semantics. However, remember from chapter 4 that direct justi�-

cation semantics and 3-valued completion semantics gives always a safe approxi-

mation of justi�cation semantics and that the completed de�nitions of predicates

hold under justi�cation semantics. In most examples which occur below, the com-

pletion semantics will be su�ciently precise, and SLDNF or SLDNFA will be able

to prove relevant properties. We refer to section 7.5 for a discussion when the

completion semantics is not su�ciently precise.

Under 3-valued completion semantics, the program correctly implies that the

turkey is dead at t

end

. Moreover, SLDNF can prove this: SLDNF succeeds on the

goal :Holds at(alive; t

end

).

Many classical temporal reasoning problems involve reasoning on incomplete

knowledge. As in chapters 4 and 6, we advocate the use of incomplete logic pro-

gramming to represent such domains. The technique is based on the following sim-

ple principle: given a speci�cation, we identify the primitive predicates on which

7.2 A theory on time, state, action and change 203

there is incomplete information or for which a complete de�nition cannot be given.

These predicates appear unde�ned in the resulting theory. Partial knowledge on

them is represented via integrity constraints.

A well-known example given also in chapter 6, is the Murder Mystery [Bak89]:

initially the turkey is alive; there is a shooting and a waiting event; then the turkey

is dead. In this problem there is full knowledge on the events and their order but

there is incomplete information on the initial situation. Hence, Initially=1 is the

only unde�ned predicate. The domain independent information and the general

domain knowledge is as in the YTS solution. For each of the following problem

speci�c atoms, one atomic clause is added:

T ime(start); T ime(e

1

); T ime(e

2

); T ime(t

end

)

Act(e

1

; shooting); Act(e

2

; waiting)

In addition, 6 atomic clauses for (or a de�nition of << as) the transitive

closure of the following time precedence facts are needed:

start<<e

1

<<e

2

<<t

end

Two integrity constraints:

Initially(alive), :Holds at(alive; t

end

)

This is a correct representation of the problem. Initially(loaded) is implied by the

completion. SLDNFA can prove this. After transforming the integrity constraints

to:

false :Initially(alive)

false Holds at(alive; t

end

)

SLDNFA �nitely fails on the goal :Initially(loaded);:false.

In planning problems, the goal is to �nd a set of events which transform a given

initial state to a given goal state. From the pure declarative point of view, a theory

describing the planning domain describes the e�ects of actions and represents

initial and goal state, but there is incomplete knowledge on the events and their

order. Hence, in such a theory the predicates T ime=1; Act=2 and << should appear

unde�ned. However, there is a snake under the grass. Intuitively, it is clear that

in any possible "world", time is a linear (or total) order. To have incomplete

knowledge about the order of two time points t

1

; t

2

means that there are possible

worlds in which they are identical, other in which t

1

occurs before t

2

and yet other

in which t

2

occurs before t

1

. Hence, a correct event calculus should logically imply

the theory of linear order. One way to enforce this when << is unde�ned is to add

the theory of linear time as a set of integrity constraints:

X<<Y ! T ime(X) ^ T ime(Y) << is well-typed

X<<Y ^ Y <<Z ! X<<Z transitivity

 X<<Y; Y <<X asymmetry, irre
exivity

T ime(X) ^ T ime(Y)! X<<Y _X = Y _ Y <<X linearity

204 Temporal reasoning in Incomplete Event Calculus

Our solution di�ers from existing proposals. [Esh88] adds the theory of partial

order. [Mis91a] does not add this theory explicitly but incorporates in his abductive

procedure a constraint solver for the theory of partial order. The issue of the

linearity of time appears also in the context of complete event calculus. In [KS86],

it is argued that one of the advantages of (complete) event calculus over situation

calculus is that the time precedence of events can be a partial order representing

an incompletely known order of events. However, a complete event calculus which

de�nes << as a partial order has only models in which the axiom of linearity is

violated. This problem on the level of the declarative semantics causes problems on

the procedural level when unordered events are dependent, i.e. when they a�ect

each others preconditions. An example shows the problem: initially the light is

o�; at two di�erent times e

1

, e

2

, a light switch is
ipped; the order of e

1

, e

2

is

unknown. We should be able to infer that the light is o� at the �nal state. The

logic is speci�ed as follows:

Domain dependent clauses:

Initiates(E; on) :-Act(E; flip switch);:Holds at(on;E)

Terminates(E; on) :-Act(E; flip switch);Holds at(on;E)

Problem speci�c information: for each atom below an atomic clause is added:

T ime(start); T ime(e

1

); T ime(e

2

); T ime(t

end

)

Act(e

1

; flip switch); Act(e

2

; flip switch)

start<<e

1

; start<<e

2

; e

1

<<t

end

; e

2

<<t

end

This is a complete event calculus, which de�nes a partial order on time. Note that

Initially=1 has an empty de�nition, which implies that the light is o� initially.

This program entails that the light is on at t

end

. SLDNF answers yes on the

goal Holds at(on; t

end

). This can be seen as follows. Consider the following

instance of the law of inertia:

Holds at(on; t

end

) :-T ime(E); E<<t

end

; Initiates(E; on);

:Clipped(E; on; t

end

)

It has two instances with true body for E = e

1

and E = e

2

. We sketch the proof

for Initiates(e

1

; on) and :Clipped(e

1

; on; t

end

) in the �rst instance. At start, the

light is o�. The only event which satis�es E<<e

1

is start itself. Since start does

not initiate on, on is provably not initiated between start and e

1

. Hence on is

false when e

1

occurs. So, e

1

provably initiates on. To prove :Clipped(e

1

; on; t

end

)

, observe that the only event E which satis�es In(E; e

1

; t

end

) is e

1

itself. e

1

does

not terminate on. Hence, Clipped(e

1

; on; t

end

) is provably false.

The fault in the proof is clearly the assumption that e

2

neither satis�es e

2

<<e

1

in the proof of Initiates(e

1

; on) nor In(e

2

; e

1

; t

end

) in the proof of :Clipped(e

1

; on;

t

end

). The problem is not due to SLDNF: the program implies :e

2

<<e

1

^ e

1

6=

e

2

^ :e

1

<<e

2

which violates of the law of linearity. From this formula, the two

assumptions can correctly be proven. In general, any complete logic program which

7.3 Extending SLDNFA for linear order 205

represents << by a non-linear partial order implies at least one counter-intuitive

formula: if e

1

, e

2

are unrelated distinct time points, then :e

1

<<e

2

^ e

1

6= e

2

^

:e

2

<<e

1

is entailed. This is a violation of the law of linearity.

The problem appears also in the context of incomplete event calculus. Assume

that in the light switch problem the de�nition of << is dropped and the << atoms

are added as integrity constraints. If the axiom of linear order is not added explic-

itly, there exists a model of the program in which Holds at(on; t

end

) is true and e

1

and e

2

are unordered. SLDNFA solves the goal Holds at(on; t

end

);:false by

returning an answer in which e

1

and e

2

are unrelated in time. This type of prob-

lem is similar to the problems reported in [Mis91a] on the planning approaches in

[Esh88], [Sha89], [Mis91a].

By adding the theory of linear order, SLDNFA and any other sound abduc-

tive procedure which can deal with non-ground abducible atoms is -in principle-

able to solve planning problems. Unfortunately, the theory of linear order causes

intolerable e�ciency problems. Not only the manipulation of this theory is com-

putationally expensive, also SLDNFA will only generate linear plans, i.e. linearly

ordered sets of events. In general, it would be desirable to get partial plans which

satisfy the correctness criterion given in [Mis91a]: the goal state must be provable

from each linearisation of the plan. Such a partial plan leaves open the order of

independent events whose order is irrelevant for the �nal state. Compared to a

partial planner, the number of plans computed by a linear planner is exponential

in the number of independent pairs of events.

We propose a correct and more e�cient solution for this problem. In the next

section, we extend SLDNFA with a constraint solver for <<. The resulting pro-

cedure is sound wrt the completion of the program together with the theory of

linear order. The idea to use a constraint solver was borrowed from [MBD92] who

implemented a constraint solver for the theory of partial order. Our module checks

the satis�ability of the abduced << atoms against the theory of linear order. The

generated results are correct according to the criterion mentioned earlier: all lin-

earisations of the partial order imply the query. The procedure is -to the best of

our knowledge- the only current procedure that returns correct partial plans.

7.3 Extending SLDNFA for linear order

Below we assume the existence of an incomplete logic program P based on a lan-

guage L. The unde�ned predicates of L belong to one of the following disjunct

classes: abducible predicates, strongly abducible predicates and linear order pred-

icates. A linear order predicate is a binary predicate. We require that for each

linear order p=2 there is a unary type predicate U

p

=1 in L(two di�erent linear

orders may have the same type predicate). U

p

=1 may be de�ned or unde�ned.

In Event Calculus, the linear order << has type predicate T ime=1. However, the

procedure is not bound to temporal reasoning and can be used in any application

206 Temporal reasoning in Incomplete Event Calculus

in which one or more linear orders occurs.

De�nition 7.3.1 We de�ne the theory LinOrd as the set of FOL axioms with

for each linear order predicate p=2:

p(X;Y)! U

p

(X) ^ U

p

(Y)

p(X;Y); p(Y; Z)! p(X;Z)

 p(X;Y); p(Y;X)

U

p

(X) ^ U

p

(Y)! p(X;Y) _X = Y _ p(Y;X)

The �rst axiom imposes a well-typedness condition on p=2. Then follow the axioms

of transitivity and asymmetry (which subsumes irre
exivity), �nally the axiom of

linearity. This theory should not be added explicitly to the logic program when

executing the program, but is implicit at the declarative level. Soundness and

completeness results rely on LinOrd.

Below we assume that the predicates of L are p

1

=n

1

; : : : ; p

m

=n

m

where the

�rst k predicates p

1

=2; : : : ; p

k

=2 are the linear orders. Given a set � of unde�ned

ground atoms, �

p

i

=n

i

denotes the subset of � consisting of all p

i

=n

i

atoms.

De�nition 7.3.2 Given is a set of ground atoms �

p=2

of a linear order p=2.

T C(�

p=2

) denotes the transitive closure of �

p=2

.

Let � be a set of ground unde�ned atoms. T C(�) denotes the following set:

T C(�

p

1

=2

) [: : :[T C(�

p

k

=2

) [�

p

k+1

=n

k+1

[: : :[�

p

m

=n

m

� is LO-consistent i� T C(�) contains no pair p(t

1

; t

2

); p(t

2

; t

1

), for some linear

order p=2.

We extend SLDNFA to SLDNFA-LO. When a ground atom p(t

1

; t

2

) of a linear

order is selected in a positive goal, the normal abduction operator of de�nition

5.3.3 is applied but in addition a new positive goal U

p

(t

1

);U

p

(t

2

) is added. The

situation when a linear order atom is selected in a negative goal is more complex.

The extension is based on the following equivalence:

8(p(t

1

; t

2

); Q

0

) , :(U

p

(t

1

) ^ U

p

(t

2

))_

U

p

(t

1

) ^ U

p

(t

2

) ^ p(t

2

; t

1

)_

U

p

(t

1

) ^ U

p

(t

2

) ^ t

1

= t

2

_

U

p

(t

1

) ^ U

p

(t

2

) ^ p(t

1

; t

2

) ^ 8(Q

0

)

With each of the four disjuncts, one operator corresponds. The �rst operator as-

sumes that t

1

or t

2

is not in U

p

and adds a negative goal U

p

(t

1

);U

p

(t

2

). The

second assumes that p(t

2

; t

1

) is true, the third that t

1

and t

2

are equal, the fourth

that p(t

1

; t

2

) is true but that the remainder of the goal Q

0

fails.

De�nition 7.3.3 A selection is safe if it is not (Q;:A) with A a non-ground

atom and it is not (Q;A) with A a non-ground atom of a linear order.

7.3 Extending SLDNFA for linear order 207

De�nition 7.3.4 The positive linear order operator (PLO-operator) applies when

a linear order atom p(t

1

; t

2

) is selected in a positive goal Q. Let Q

0

be obtained by

deleting p(t

1

; t

2

) in Q.

The positive linear order operator produces the empty substitution, the abduced

atom p(t

1

; t

2

) and the positive goals Q

0

and U

p

(t

1

);U

p

(t

2

). Formally:

�

0

= � [fp(t

1

; t

2

)g

PG

0

= PG n fQg [fQ

0

; U

p

(t

1

);U

p

(t

2

)g

NG

0

= NG;NAG

0

= NAG and � is "

The remaining operators apply when a linear order atom p(t

1

; t

2

) is selected in

a negative goal Q. Let Q

0

be the goal obtained by deleting p(t

1

; t

2

) from Q.

The �rst negative linear order operator (1st NLO-operator) produces the empty

substitution and the negative goal U

p

(t

1

);U

p

(t

2

). Formally:

NG

0

= NG n fQg [f U

p

(t

1

);U

p

(t

2

)g

PG

0

= PG;NAG

0

= NAG, �

0

= � and � is "

The second negative linear order operator (2nd NLO-operator) produces the

empty substitution, the abduced atom p(t

2

; t

1

) and a positive goal U

p

(t

1

);U

p

(t

2

).

Formally:

NG

0

= NG n fQg

�

0

= � [fp(t

2

; t

1

)

PG

0

= PG [f U

p

(t

1

);U

p

(t

2

)g

NAG

0

= NAG and � is "

The third negative linear order operator (3rd NLO-operator) applies when t

1

=

t

2

has positive uni�er �. In that case, it produces the substitution � and the positive

goal U

p

(�(t

1

)). Formally:

NG

0

= �(NG n fQg)

PG

0

= �(PG [f U

p

(t

1

)g)

NAG

0

= �(NAG) and �

0

= �(�)

The fourth negative linear order operator (4th NLO-operator) produces the

negative goal Q

0

, the positive goal U

p

(t

1

);U

p

(t

2

) and the abduced atom p(t

1

; t

2

).

Formally:

NG

0

= NG n fQg [fQ

0

g)

�

0

= � [fp(t

1

; t

2

)g

PG

0

= PG [f U

p

(t

1

);U

p

(t

2

)g

NAG

0

= NAG and � is ".

De�nition 7.3.5 An SLDNFA-LO(

o

+

) derivation is de�ned as an SLDNFA(

o

+

)

derivation, but using the additional set of operators. There is one additional con-

dition: operators may be applied only on LO-consistent states. Hence, each �

i

except the last is LO-consistent.

208 Temporal reasoning in Incomplete Event Calculus

An SLDNFA-LO(

o

+

) derivation is failed when an SLDNFA(

o

+

) derivation would

be failed and in addition, when the last �

n

is LO-inconsistent.

The de�nition of SLDNFA-LO(

o

+

) refutation remains identical to existing def-

initions, except that we require �

n

to be LO-consistent.

It should be stressed that in many cases the above procedure can be seriously

simpli�ed. For example, assume programs and queries are range restricted, i.e.

for each p(t

1

; t

2

) atom in the body of a clause and in a query, there are atoms

U

p

(t

1

);U

p

(t

2

) in the body or in the query. In this case, the �rst NLO-operator

needs not to be applied, since it will necessarily lead to failure. Also the addition

of the positive goal U

p

(t

1

);U

p

(t

2

) in all other operators is unnecessary. When

moreover U

p

is strongly abducible, then the operators can be further simpli�ed. For

two abduced atoms U

p

(t

1

);U

p

(t

2

) with distinct t

1

, t

2

, there is always a negative

goal t

1

= t

2

. As a consequence when an atom p(t

1

; t

2

) is selected and t

1

�= t

2

then there is a negative goal t

1

= t

2

and the third operator will necessarily lead

to failure. When t

1

�t

2

, then the second and fourth operators lead to failure.

Another cause of ine�ciency is the repeated test on the LO-consistency of �.

� can become LO-inconsistent due to two di�erent actions: the abduction of a

fact p(t

1

; t

2

) when p(t

2

; t

1

) already belongs to T C(�), and a positive uni�cation

yielding a substitution � such that for some p(t

1

; t

2

) 2 T C(�), �(t

1

) = �(t

2

). As

a consequence, the test on LO-consistency needs only to be applied when a linear

order atom is added to � or when skolem constants are uni�ed. Moreover when

U

p

is strongly abducible, then for each atom p(t

1

; t

2

) 2 �, there is a negative goal

 t

1

= t

2

. Hence, when t

1

and t

2

are uni�ed, then failure will occur due to the

negative goal. As a consequence, the LO-consistency test needs only to be applied

when an atom p(t

1

; t

2

) is abduced.

Here we consider such optimisations as an implementation issue and do not

spend further attention to it. We illustrate the use of SLDNFA-LO with some

examples.

Example A �rst example illustrates how SLDNFA-LO avoids bad derivations as

in the light switch problem. To avoid lengthy derivations and goals, consider

the simpli�ed version:

T ime(e

1

) :-

T ime(e

2

) :-

light o� :- e

1

<<e

2

light o� :- e

2

<<e

1

Other procedures would succeed with the empty solution for the goal :

light o�. In essence, these procedures assume here that the light is on if

neither e

1

<<e

2

nor e

2

<<e

1

. SLDNFA-LO on the other hand fails on the goal

because it realises that if not e

1

<<e

2

, then necessarily e

2

<<e

1

(since by FEQ,

7.3 Extending SLDNFA for linear order 209

e

1

6= e

2

). The SLDNFA-LO tree is given in �gure 7.1. In the �gure, the " "

operator in positive goals is replaced by "+", and in negative goals by "�".

LO-inconsistent

e

1

<<e

2

! �

�Time(e

2

); T ime(e

1

)

...

�

2

e

2

<<e

1

! �

failure

+Time(e

1

); T ime(e

2

)

+Time(e

2

); T ime(e

1

)

...

�

2

failure

...

�

2

failure

�e

2

<<e

1

�Time(e

1

); T ime(e

2

)

e

2

<<e

1

! �

�e

2

<<e

1

+Time(e

1

); T ime(e

2

)

�e

1

<<e

2

�e

2

<<e

1

�light off

+:light off

e

1

<<e

2

! �

�

2

+Time(e

1

); T ime(e

2

)

�e

2

<<e

1

failure

.
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..
..
..
..
..
...
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. ..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
.
..
..
.
..
..
.
..
..
.
..
..
.
..
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.

(1st NLO-op)

(switch to negation)

(negative resolution)

(1st NLO-op)

(4th NLO-op)

(2nd NLO-op) (4th NLO-op)

(2 neg. resolut.)

(2 neg. resolut.)

(2nd NLO-op)

Figure 7.1: Failed SLDNFA-LO-tree for :light off

Example A second example illustrates how SLDNFA-LO can generate correct

partial plans. Assume a planning problem with four
uents p; q; r; s and three

types of actions. The �rst action initiates p, the second initiates q if s holds

and the third initiates r and terminates s. Initially s is true, and in the goal

state p; q and r are true. Clearly, a solution is given by abducing one event

of each type with the constraint that the event of the second type should

210 Temporal reasoning in Incomplete Event Calculus

precede the event of the third type. Without sacri�cing the essence of the

problem, we again simplify the program:

Holds(P) :- Init(E;P)

Clip(P;E) :-T ime(C); C<<E; Term(C;P)

Init(e

0

; p) :-

Init(e

1

; q) :-:Clip(s; e

1

)

Init(e

2

; r) :-

Term(e

2

; s) :-

T ime(e

0

) :-

T ime(e

1

) :-

T ime(e

2

) :-

We present two derivations. They share the derivation in �gure 7.2.

�e

0

<<e

1

; Term(e

0

; s) �e

1

<<e

1

; Term(e

1

; s) �e

2

<<e

1

; Term(e

2

; s)

+Init(E; p);Holds(q);Holds(r)

+Holds(p);Holds(q);Holds(r)

+Holds(q);Holds(r)

+Holds(q); Init(E

0

; r)

+Holds(q)

+Init(E

00

; q)

+:Clip(s; e

1

)

�Clip(s; e

1

)

�Time(C); C<<e

1

; Term(C; s)

(positive resolution)

(positive resolution)E=e

0

(positive resolution)

(positive resolution)E

0

=e

2

(positive resolution)

(positive resolution)E

00

=e

1

(switch to negation)

(negative resolution)

(negative resolution)

Figure 7.2: SLDNFA-LO-derivation for holds(p); holds(q); holds(r)

7.3 Extending SLDNFA for linear order 211

Note that in the negative goals e

i

<<e

1

; T erm(e

i

; s), only e

2

possibly ter-

minates s. Depending on whether we select �rst the Term(e

i

; s) atom or

e

i

<<e

1

, we obtain more or less instantiated plans. The derivation in �gure

7.3 selects Term(e

i

; s) atoms �rst and produces a partial plan � = fe

1

<<e

2

g.

�e

0

<<e

1

; Term(e

0

; s) �e

1

<<e

1

; Term(e

1

; s) �e

2

<<e

1

; Term(e

2

; s)

�e

1

<<e

1

; Term(e

1

; s) �e

2

<<e

1

; Term(e

2

; s)

�e

2

<<e

1

; Term(e

2

; s)

�e

2

<<e

1

e

1

<<e

2

! �

+Time(e

1

); T ime(e

2

)

success

(negative resolution)

(negative resolution)

(negative resolution)

(2nd NLO-op)

(2 positive resolutions)

+

2

Figure 7.3: SLDNFA-LO-derivation for holds(p); holds(q); holds(r)

The derivation in �gure 7.4 selects e

i

<<e

1

atoms �rst and produces a more

instantiated plan � = fe

1

<<e

0

; e

1

<<e

2

g. Another derivation exist which gen-

erates the alternative plan � = fe

0

<<e

1

; e

1

<<e

2

g. This shows that di�erent

SLDNFA-LO refutations for the same query can lead to more or less instan-

tiation of the plan. As a consequence, the degree of non-linearity of the plan

depends on the computation rule.

Example Another example illustrates that SLDNF-LO is not always able to �nd

solutions with least instantiated plans, not even with intelligent control. Con-

sider the following example:

r :- p

r :- q

p :- e

0

<<e

1

q :- e

1

<<e

0

T ime(e

0

) :-

T ime(e

1

) :-

212 Temporal reasoning in Incomplete Event Calculus

�e

0

<<e

1

; Term(e

0

; s) �e

1

<<e

1

; Term(e

1

; s) �e

2

<<e

1

; Term(e

2

; s)

e

1

<<e

0

! �

+Time(e

0

); T ime(e

1

)

�e

2

<<e

1

; Term(e

2

; s)�e

1

<<e

1

; Term(e

1

; s)

�e

1

<<e

1

; Term(e

1

; s) �e

2

<<e

1

; Term(e

2

; s)

+Time(e

1

)

�e

2

<<e

1

; Term(e

2

; s)

e

1

<<e

2

! �

+Time(e

2

); T ime(e

1

)

success

�e

2

<<e

1

; Term(e

2

; s)

(2nd NLO-op)

(3rd NLO-op: � = �)

(positive resolution)

(2 positive resolutions)

(2nd NLO-op)

(2 positive resolutions)

Figure 7.4: SLDNFA-LO-derivation for holds(p); holds(q); holds(r)

p holds when time e

0

precedes e

1

. q holds when time e

1

precedes e

0

. r holds

when p or q holds. Clearly r holds whatever is the order of e

0

and e

1

. Hence

the empty solution � is a correct partial plan. However, SLDNFA-LO gen-

erates two solutions fe

0

<<e

1

g and fe

1

<<e

0

g under any computation rule.

Figure 7.5 gives an example of a derivation.

The de�nitions of proof tree, computable children, SLDNFA-tree, state and ex-

planation formula remain unaltered. The computable children for a given selection

are the same as for pure SLDNFA, except when a negative goal and an atom of a

linear order is selected. In that case, there are four computable children.

Below, we will split up a set � in the set �

LO

of linear order atoms and the

rest �

r

. LO-comp(�) is de�ned as LinOrd+ comp

3

(L+ Sk(�); P +�

r

) + �

LO

.

Theorem 7.3.1 The SLDNFA-LO(

o

+

) procedure is sound in the following sense.

Let (�; �) be the result of an SLDNFA-LO(

o

+

) refutation for a goal Q

0

. We have:

<L+ Sk(�);LO-comp(�)> j= 8(�(&(Q

0

)))

7.3 Extending SLDNFA for linear order 213

e

0

<<e

1

! �

+Time(e

0

); T ime(e

1

)

success

+

2

+r

+p

+e

0

<<e

1

(2 positive resolutions)

(PLO-op)

(positive resolution)

(positive resolution)

Figure 7.5: SLDNFA-LO-derivation for holds(p); holds(q); holds(r)

Moreover, � is well-typed: for any linear order atom p(t

1

; t

2

) 2 �:

LO-comp(�) j= U

p

(t

1

) ^ U

p

(t

2

)

SLDNFA-LO(

o

+

) is complete in the sense similar to theorems 5.6.1, 5.7.1 or

5.7.2 depending on the type of procedure that is applied. The only di�erence is that

LinOrd must be added to comp

3

(P).

Proof We must �t in the �ve new operators in the proof of soundness and

completeness of SLDNFA. This involves proving successively the correctness

of the operators, of the proof tree, of the soundness, of the explanation

formula and �nally of the completeness results.

Let Q be a positive goal in which an linear order atom L

m

= p(t

1

; t

2

) is

selected and Q

0

is obtained by deleting L

m

from Q. For the soundness and

completeness, the following formula is important:

LinOrd j= 8(&(Q) , U

p

(t

1

) ^ U

p

(t

2

) ^ p(t

1

; t

2

) ^&(Q

0

))

It follows trivially from the formula:

p(t

1

; t

2

) , p(t

1

; t

2

) ^ U

p

(t

1

) ^U

p

(t

2

)

which is directly implied by LinOrd:

Let Q be a negative goal in which a linear order atom L

m

= p(t

1

; t

2

) is

selected and Q

0

is obtained by deleting L

m

from Q. For the completeness,

the following formula is important:

214 Temporal reasoning in Incomplete Event Calculus

LinOrd j= 8(_(Q)) , :(U

p

(t

1

) ^ U

p

(t

2

))_

U

p

(t

1

) ^ U

p

(t

2

) ^ p(t

2

; t

1

)_

U

p

(t

1

) ^ U

p

(t

2

) ^ t

1

= t

2

_

U

p

(t

1

) ^ U

p

(t

2

) ^ p(t

1

; t

2

) ^ 8(_(Q

0

))

This formula follows from:

:p(t

1

; t

2

) , :(U

p

(t

1

) ^ U

p

(t

2

))_

U

p

(t

1

) ^ U

p

(t

2

) ^ p(t

2

; t

1

)_

U

p

(t

1

) ^ U

p

(t

2

) ^ t

1

= t

2

which follows easily from LinOrd.

From the equivalence the following implications can be derived. They are

important for the soundness of the four negative linear order operators:

LinOrd j= 8(_(Q))(:(U

p

(t

1

) ^ U

p

(t

2

))

LinOrd j= 8(_(Q))(p(t

2

; t

1

) ^ U

p

(t

1

) ^ U

p

(t

2

)

LinOrd j= 8(_(Q))(t

1

= t

2

^ U

p

(t

1

) ^ U

p

(t

2

)

LinOrd j= 8(_(Q))(p(t

1

; t

2

) ^ 8(_(Q

0

))

From these implications the correctness of the proof tree under LO-comp(�)

can be proven without problems. There is one point worth noticing: the

theory LO-comp(�) does not contain the completed de�nition of the linear

order predicates. One can easily check that theorem 5.5.1 relies on the com-

pletion of an abductive predicate only to prove that the NAG goals hold.

Since NAG does not contain goals with a selected linear order atom, the

completed de�nition of linear order predicates needs not to be added. The

completed de�nition of �

LO

should never be added: when �

LO

is only a

partial order, the completion of �

LO

is inconsistent with LinOrd.

From the correctness of the proof tree, the soundness result:

<L+ Sk(�);LO-comp(�)> j= 8(�(&(Q

0

)))

follows directly. It is easily veri�ed that � is well-typed: for each abduced

atom p(t

1

; t

n

), the atoms U

p

(t

1

) and U

p

(t

2

) occur in positive goals.

The correctness of the explanation formula wrt LinOrd+comp

3

(P) and the

completeness results can be proven in a totally analogous way as in theorems

5.6.2, 5.6.1, 5.7.1 or 5.7.2. A small point to make is that when an SLDNFA-

LO derivation K in the SLDNFA-LO tree fails due to an LO-inconsistency,

then obviously the corresponding state formula of K is equivalent with false

under LinOrd. 2

7.3 Extending SLDNFA for linear order 215

When using SLDNFA-LO for planning, typically the predicate T ime=1 and

<< are unde�ned. In such a case, if SLDNFA-LO generates a solution �, then

linearisations of �

<<

wrt to the set �

Time

can be computed. Below we prove that

such linearisations are correct solutions for the planning problem.

De�nition 7.3.6 Assume that the type predicate U

p

of each linear order p=2 is

unde�ned. Let � be a set of ground unde�ned atoms.

A linearisation �

0

of � is a set:

�

0

p

1

=2

[: : :[�

0

p

k

=2

[�

p

k+1

=n

k+1

[: : :[�

p

m

=n

m

where for 1 � i � k: �

p

i

=2

� �

0

p

i

=2

and �

0

p

i

=2

is a linear order on ft j U

p

i

(t) 2

�

U

p

i

g.

Proposition 7.3.1 Assume that each type predicate of a linear order predicate is

unde�ned in P . Assume that SLDNFA-LO generates a solution (�; �) for a query

Q. Let �

0

be any linearisation of �. It holds that:

<L+ Sk(�); comp

3

(L+ Sk(�); P +�

0

)> j= 8(�(&(Q

0

)))

Proof De�ne T

1

= comp

3

(L + Sk(�); P + �

0

) and T

2

= LO-comp(�). It

su�ces to prove that T

1

entails T

2

. T

2

is of the form:

LinOrd+ comp

3

(L+ Sk(�); P +�

r

) + �

LO

T

1

includes comp

3

(L + Sk(�); P + �

r

) and T

1

entails �

LO

. Because �'

de�nes linear orders on the types of the linear orders, T

1

entails LinOrd.

2

A remaining question is whether for a generated solution �, LO-comp(�) is

consistent. This is not the case in general. Consider the following program P with

linear order p=2 and associated type predicate U=1:

U (t

1

) :-U(X);:p(X; t

1

);:p(t

1

; X);:X = t

1

U (t

2

) :-

The query U(t

2

) succeeds with empty �. LO-comp(�) is not consistent. In-

deed, it is easy to see that U(t

1

) is true i� there exists some element x of U ,

di�erent from t

1

such that x and t

1

are not related by p=2. So, when U(t

1

) is

true, then the axiom of linearity is not satis�ed. Assume that U(t

1

) is not true.

In that case, for all elements x of U , p(x; t

1

) and p(t

1

; x) are false (otherwise the

typing axiom is violated). Then U(t

1

) has the strong direct direct justi�cation

fU(t

2

);:p(t

2

; t

1

);:p(t

1

; t

2

);:t

2

= t

1

g. This is a contradiction.

In practice, such ill-de�ned programs do not occur. Below we give a large class

of programs which do not su�er from the inconsistency problem. The theorem is

based on the following lemma.

216 Temporal reasoning in Incomplete Event Calculus

Lemma 7.3.1 Let M be a 3-valued Herbrand interpretation, which is 2-valued on

the linear orders. Assume that M is LO-consistent. Assume that for each linear

order atom p(t

1

; t

2

) 2 M , it holds that M j= U

p

(t

1

) ^ U

p

(t

1

). There exists an

extension M

0

of M with identical interpretation of the non-linear order predicates,

which is at least a weak model of LinOrd.

Proof The proof is based on the mathematical property that any partial order

on a set of objects can be extended to a linear order on this set. Since

M is LO-consistent and well-typed, M de�nes partial orders on the sets

ft j H

M

(U

p

i

(t)) � ug. Hence, it is possible to extend M to M

0

by extending

all partial orders to linear orders on these sets. Obviously the resulting

extension is at least a weak model of LinOrd. It may be weak due to

instances of the well-typedness axiom.When U

p

(t

1

) is unknown and p(t

1

; t

2

)

is true, then p(t

1

; t

2

)! U

p

(t

1

) ^ U

p

(t

1

) is unknown. 2

Theorem 7.3.2 Given is an incomplete program such that for each linear order

p=2 and associated type predicate U

p

=1 one of the following conditions is satis�ed:

� U

p

is unde�ned, or

� the de�nition of U

p

does not depend on the linear order predicates.

Then for any generated solution �, <L+ Sk(�);LO-comp(�)> is consistent.

Proof Let (�; �) be a solution generated by SLDNFA-LO. Split up � in �

LO

and �

r

as before. In 5 successive stages, we gradually extend incomplete

Herbrand interpretations to a model of LO-comp(�). These extension are

often based on theorem 4.3.4 which guarantees that any incomplete inter-

pretation for unde�ned predicates can be extended to a directly justi�ed

model of a set of de�nitions or equivalently to a model of the completions

of these de�nitions.

� In the �rst stage, we select an incomplete Herbrand interpretation

M

1

for the abducible and strongly abducible predicates, such that

comp

3

(�

r

) is satis�ed. By theorem 4.3.4, such an incomplete inter-

pretation always exists.

� In the second stage, we extendM

1

to an incomplete Herbrand interpre-

tationM

2

for all de�ned predicates in P which do not depend on linear

order predicates. M

2

is selected such that it satis�es comp

3

(P

0

). Here

P

0

is the subset of P with all de�nitions of predicates which do not

depend on linear order predicates. By theorem 4.3.4, such an extension

of M

1

can always be found.

� In the third stage, M

2

is extended to M

3

for each linear order p=2 such

that M

3

(p=2) = �

p=2

. Obviously this is always possible.

7.4 Representing temporal domains 217

� In the fourth stage, the interpretation of the linear orders in M

3

is

extended to obtain an incomplete interpretation M

4

which satis�es

LinOrd. We show thatM

3

satis�es the conditions of lemma7.3.1. �

p=n

is LO-consistent. For each p(t

1

; t

2

) 2 �, it holds that LO-comp(�) j=

U

p

(t

1

) ^ U

p

(t

2

) (theorem 7.3.1). When U

p

is unde�ned, then clearly

U

p

(t

1

);U

p

(t

2

) 2 �

r

, and hence M

3

j= U

p

(t

1

);U

p

(t

2

). When U

p

is de-

�ned, then since this predicate does not depend on the linear orders and

since M

3

satis�es the completed de�nitions of U

p

and all the predicates

on which U

p

depends, M

3

j= U

p

(t

1

)^U

p

(t

2

). From the lemma it follows

that M

3

can be extended to at least a weak model of LinOrd+�

LO

.

� In the �nal stage, M

4

is extended to M for the remaining predicates:

the de�ned predicates which depend on linear orders. M is selected

such that it satis�es comp

3

(P

00

), where P

00

= P n P

0

.

We obtain an interpretation of L+ Sk(�) which satis�es the following the-

ories:

comp

3

(�

r

), comp

3

(P

0

), �

LO

, LinOrd, comp

3

(P

00

)

The union of these theories is precisely LO-comp(�). 2

7.4 Representing temporal domains

For many applications, the version of event calculus introduced in section 7.2 is

too simplistic. A number of extensions has been proposed in the literature. Below

we discuss some of these extensions, and new ones.

7.4.1 Incomplete knowledge: other examples

Another example with incomplete knowledge is the stolen car problem [Bak89]:

initially, I leave my car in the garage; two days later, the car is gone, stolen; cars

are only stolen during the night; when was it stolen?. Since initial situation and

events are known, it su�ces to have << as unde�ned predicate. The domain is

represented by the following rules:

Terminates(E; i have car) Act(E; steal)

Initiates(E; night) Act(E; enter night);:Holds at(night; E)

Terminates(E; night) Act(E; enter day);Holds at(night; E)

Initially(i have car)

In addition, there are integrity constraints:

T ime(start); T ime(e

1

); T ime(e

2

); T ime(e

3

); T ime(e

4

); T ime(t

end

);

Act(e

1

; enter night); Act(e

2

; enter day); Act(e

3

; enter night);

Act(e

4

; enter day);

218 Temporal reasoning in Incomplete Event Calculus

start<<e

1

; e

1

<<e

2

; e

2

<<e

3

; e

3

<<e

4

; e

4

<<t

end

Act(E; enter night)! E = e

1

_E = e

3

Act(E; enter day)! E = e

2

_E = e

4

Act(E; steal)! Holds(night; E)

This event calculus has models in which a steal event occurs during the �rst night,

and another in which the steal event occurs during the second night. Note that it

is necessary to close the enter night and enter day events by the constraints:

Act(E; enter night)! E = e

1

_E = e

3

Act(E; enter day)! E = e

2

_E = e

4

In this case, we know that there are only two nights, so this partial knowledge must

be expressed by integrity constraints about Act=2. Without these constraints, there

would be models in which more than two nights occurred and in some of these

models, the car would be stolen during other nights.

SLDNFA-LO solves the query :Holds at(i have car; t

end

);:false by ab-

ducing a steal event which occurs either between e

1

and e

2

or between e

3

and

e

4

. Without the constraints on enter night and enter day, SLDNFA generates

erroneous solutions in which the car is stolen during some third night.

Temporal reasoning problems are often classi�ed according to the direction in

time in which reasoning is necessary. In a prediction problem, the goal is to derive

the �nal state or to prove some property about the �nal state. To prove that

the turkey is dead at t

end

in the Yale Turkey Shooting problem is a prototypical

prediction problem. An ambiguous prediction problem is one in which there is

more than one possible �nal state. In subsection 7.4.4, an example is given. In a

postdiction problem, the goal is to derive properties about the initial state and/or

about earlier events, given information about some �nal state. An example is the

Murder Mystery. An ambiguous postdiction problem occurs when di�erent initial

states or sets of events lead to the observed �nal state. The stolen car problem is an

example. Observe that in incomplete event calculus, a general purpose reasoning

procedure like SLDNFA-LO can be used both for (ambiguous) prediction and

postdiction.

The terminology (ambiguous) prediction and postdiction does not really char-

acterise a temporal domain in a declarative way. Rather it characterises a type

of temporal problem to be solved. For example, on an event calculus representing

a planning domain, there may be both ambiguous postdiction problems and am-

biguous prediction problems to be solved. The search for a plan which produces

some �nal state is an ambiguous postdiction problem. To prove that in some plan-

ning domain, some state cannot occur is an ambiguous prediction problem. As

a consequence, the terminology is not suited to classify temporal domains on a

declarative basis.

7.4 Representing temporal domains 219

7.4.2 Events versus Actions

Whereas the event calculus introduced in section 7.2 is based on time, in [KS86] and

in all other versions, event calculus is based on the notion of event. An event can

be seen as a speci�c occurrence of some action. Vice versa, actions can be viewed

as event types. In the YTS example in section 7.2, events have no explicit repre-

sentation: loading, waiting and shooting denote event types, not events. Events

are implicitly represented in the three facts Act(e

1

; loading), Act(e

2

; waiting) and

Act(e

3

; shooting).

Events can easily be introduced in our variant of event calculus. For example,

the YTS problem can easily be re-implemented on the basis of events. The language

is extended with constants ev

1

, ev

2

and ev

3

, and a predicate Event Type=2. The

incomplete logic program is modi�ed by deleting the de�nitions of Initiates=2,

Terminates=2 and Act=2 and adding the following de�nitions:

Initiates(T; loaded) :-Act(T;E); Event Type(E; loading)

Terminates(T; alive) :-Act(T;E); Event Type(E; shooting);

Holds at(loaded; T)

Terminates(T; loaded) :-Act(T;E); Event Type(E; shooting)

Act(e

1

; ev

1

) :-

Act(e

2

; ev

2

) :-

Act(e

3

; ev

3

) :-

Event Type(ev

1

; loading) :-

Event Type(ev

2

; waiting) :-

Event Type(ev

3

; shooting) :-

There are several arguments why the explicit representation of events is in

general preferable. One argument, expressed by [KS86], [Kow92], [KS92] is that in

general, complex objects such as events, which are involved in a large number of

relations, are best represented explicitly, and their relations are best represented

by binary predicates. For example, a promotion event of a person in a �rm has

attributes: the person who promotes, the new rank, the old rank, the time of the

promotion, the person who orders the promotion, the motivation for the promo-

tion (hard working, capable, longtime employed), etc.. One way to represent such

a complex action is by introducing a functor with arguments for each of the at-

tributes. However, such a representation is less adequate when there are unknown

attributes or when some attributes are not functional. Moreover, a �xed arity

representation cannot cope gracefully with the range of descriptions that can be

expected for an event. A solution to this problem is by making explicit the notion

of event and describing it by binary predicates, or a syntactic variant of binary

relations: by using attributes in an object oriented style as in [KS92].

A second argument is that the explicit representation of events allows to express

situations in which more than one event of the same type occur at the same

moment. Two atomic rules Act(e

3

; shooting) :- still represent only one shooting

220 Temporal reasoning in Incomplete Event Calculus

event. On the other hand, in an event based representation, we can represent this

by:

Act(e

3

; ev

31

) :-

Act(e

3

; ev

32

) :-

Event Type(ev

31

; shooting)

Event Type(ev

32

; shooting)

The extra expressivity may be important in situations when the e�ect of two

distinct events is not equivalent with the e�ect of the two isolated events. For

example, substitute an elephant for the turkey in the YTS problem. Assume that

there must be at least two shooting events at the same time to kill the elephant.

This can be expressed by:

Terminates(T;alive) :-Act(T;Ev

1

); Act(T;Ev

2

);:Ev

1

= Ev

2

;

Event Type(Ev

1

; shooting); Event Type(Ev

2

; shooting)

It should be stressed however that both arguments are not speci�c for the

notion of event but hold in general for all complex concepts. Or, the issue of repre-

senting events versus actions stands orthogonal on the representation of temporal

domains.

When events are explicitly represented, it can be interesting to use a modi�ed

representation of the frame axiom which was presented in [Sha90]:

Holds at(P; T) :- Happens(E); T ime of(T

E

; E); T

E

<<T;

Initiates(E;P);:Clipped(T

E

; P; T)

Clipped(T

1

; P; T

2

) :-Happens(C); T ime of(T

C

; C); In(T

C

; T

1

; T

2

);

T erminates(C;P)

Happens=1 is a type predicate representing events. T ime of=2 is nothing than a

renaming of Act=2. The intended interpretation of Initiates=2 and Terminates=2

is slightly di�erent from the original version: the �rst argument is an event with an

initiating or terminating e�ect. An event is bound to a speci�c time and a speci�c

action. Therefore, we have the following integrity constraints:

Happens(E)! 9T : T ime of(T;E)

Happens(E); T ime of(T

1

; E); T ime of(T

2

; E)! T

1

= T

2

Event Type(E;A1); Event Type(E;A2)! A1 = A2

These constraints are either entailed by the program or can be explicitly added to

the program.

A further optimisation is to drop time completely, and to express << directly

on the events. Three possible time relations are possible between two distinct

events e

1

; e

2

: either e

1

<<e

2

, e

1

and e

2

concur or e

2

<<e

1

. By forbidding simultane-

ous events, the resulting variant of event calculus is the one proposed in [Sha89],

[Mis91a], [DMB92]. This version is syntactically equivalent with the version in

section 7.2: it is obtained by substituting Happens=1 for T ime=1.

7.4 Representing temporal domains 221

7.4.3 Pre-conditions and context dependent e�ects of ac-

tions

In general, the e�ect of an event will depend on the state or the context in which

it occurs. A strong form of dependence occurs when the event relies on some

necessary preconditions. E.g. a robot can only pick up some object if the robot is

free, if the object is not �xed to the ground, etc.. [Sha89] and [Mis91a] proposed

a general way to formulate necessary pre-conditions. They introduced a predicate

Succeeds=1 which takes events as argument. The intended interpretation is that

the event succeeds, i.e. that its necessary preconditions are satis�ed. The law of

inertia is modi�ed as follows:

Holds at(P; T) :- Happens(E); Succeeds(E); T ime of(T

E

; E); T

E

<<T;

Initiates(E;P);:Clipped(T

E

; P; T)

Clipped(T

1

; P; T

2

) :-Happens(C); Succeeds(E); T ime of(T

C

; C);

In(T

C

; T

1

; T

2

); T erminates(C;P)

Succeeds=1 is de�ned by domain dependent rules. For example, we wish to express

that a loading event succeeds always and that a shooting event succeeds only when

the gun is loaded. The solution is:

Succeeds(E) :-Event Type(E; shooting);Holds at(loaded;E)

Succeeds(E) :-Event Type(E; loading)

Instead of adding Succeeds=1 atoms to the inertia axiom, an alternative solution

which was not proposed so far, is to add an integrity constraint:

Happens(E)! Succeeds(E)

A weaker form of dependence occurs when the e�ect of an event depends on

what is true or not true at the moment of the event. Such an e�ect is called a

context dependent e�ect. A simple example of a context dependent e�ect is given

in the YTS example: the terminating e�ect of shooting on alive depends on loaded.

Another example of a context dependent e�ect is in a block world: when the robot

picks some block, then the underlying block becomes free:

Initiates(T; free(B)) :-Act(T; pick(B1));Holds at(on(B1; B); T)

7.4.4 Indeterminate events

Incomplete event calculus allows to represent indeterminate actions. A classical ex-

ample appears in the Russian Turkey Shooting problem [San91]: initially a turkey

is alive, a gun is unloaded; there is a loading event, followed by an event of spin-

ning the gun's chamber, and �nally a shooting event. The e�ect of the spinning

event is indeterminate: the event possibly unloads the gun. As in section 6.7, the

problem can be solved by introducing an unde�ned good luck=1 predicate. The

e�ect of spinning can be expressed as follows:

222 Temporal reasoning in Incomplete Event Calculus

Terminates(T; loaded) :-Act(T; spinning); good luck(T)

A complete theory for the Russian Turkey Shooting problem is obtained from the

YTS program by adding this clause and substituting the atomic clause

Act(e

2

; spinning) :-

for the clause

Act(e

2

; waiting) :-

The resulting program has di�erent models. In one model, good luck(e

2

) is true

and the turkey is alive at t

end

. In another model, good luck(e

2

) is false and the

turkey is dead at t

end

. The RTS problem is considered as a typical ambiguous

prediction problem: the �nal state is not uniquely determined by the problem

description.

Note that the program has only good luck=1 as unde�ned predicate. No unde-

�ned linear order predicates appear in it and hence, SLDNFA can be applied here.

SLDNFA solves the goal Holds at(alive; t

end

) by returning � = fgood luck(e

2

)g.

It solves :Holds at(alive; t

end

) by returning the empty solution, represent-

ing the situation in which the turkey has no good luck at e

2

. Together with this

�, a negative abductive constraint good luck(e

2

) is computed. SLDNFA can

also be used for deduction. For example, the theory entails :good luck(e

2

)

:Holds at(alive; t

end

). The negation of this implication is given by good luck(e

2

)^

:Holds at(alive; t

end

). SLDNFA proves the inconsistency of this formula by failing

on the query: good luck(e

2

);:Holds at(alive; t

end

).

7.4.5 The rami�cation problem

An important part of the frame problem is the rami�cation problem [San91]. It

is the problem of representing the e�ect of actions on logically related properties.

When events a�ect some set of properties, this may have implicit rami�cations or

e�ects on the logically related properties.

The rami�cation problem in event calculus has been investigated in some depth

by [Mis91a] and [Kow92]. Our investigation below extends their study in several

aspects. A study of the rami�cation problem is interesting since it reveals a number

of fundamental concepts in temporal reasoning.

[Mis91a] and [Kow92] argue that in the context of logic programming, the

rami�cation problem often pops up in the presence of derived properties: properties

which have a de�nition in terms of other properties. They showed that, contrary

to situation calculus, event calculus can deal very easily with derived properties.

We illustrate this by a simple extension of the YTS problem, in which the derived

property dead is de�ned as follows:

Holds at(dead; T) :-:Holds at(alive; T)

7.4 Representing temporal domains 223

This clause is added to the YTS program in section 7.2. In all models of the

resulting theory (wrt completion semantics), dead is true at t

end

. Prolog succeeds

on the goal Holds at(dead; t

end

). Things become interesting when we add a

new action ressurection, whose e�ect is described as follows:

Initiates(E; alive) :-Act(E; ressurection)

If we add atomic clauses for each of the following atoms T ime(e

4

), e

3

<<e

4

, (+tran-

sitive closure), e

4

<<t

end

and Act(e

4

; ressurection), then the goal

 Holds at(alive; t

end

)

succeeds and the goal

 Holds at(dead; t

end

)

�nitely fails. Holds at(dead;E) is only provably true for E = e

4

, just after the

shooting. For all other time points it is provably false.

It is of interest to compare this solution with situation calculus. It is well-known

that situation calculus fails to give the right answer in situations analogous with

the resurrection example. The situation calculus solution for the YTS problem was

given in section 6.2. It should be extended with the following normal clauses:

Holds(alive;Result(ressurection; S) :-

Noninertial(alive; ressurection; S) :-

Holds(dead; S) :-:Holds(alive; S)

The resulting program entails the following formulas:

Holds(dead;Result[loading;waiting; shooting; S

0

])

Holds(dead;Result[loading;waiting; shooting; resurrection; S

0

])

The �rst implication is intuitively correct and easy to prove. The second Holds=2

atom is erroneous. It can be derived via the following instance of the inertia law

of situation calculus:

Holds(dead;Result[loading;waiting; shooting; ressurection; S

0

]) :-

Holds(dead;Result[loading;waiting; shooting; S

0

]);

:Noninertial(dead;ressurection;

Result[loading;waiting; shooting; S

0

])

Both literals of the body are true. Note that Noninertial(dead;X; Y) is provably

false for each X and Y .

Compare the above instance with the instance of the inertia axiom of event

calculus:

Holds(dead; t

end

) :-T ime(E); E<<t

end

; Initiates(E; dead);

:Clipped(E; dead; t

end

)

224 Temporal reasoning in Incomplete Event Calculus

The body cannot be true because Initiates(E; dead) is provably false for all E.

[Kow92] shows that the problem with situation calculus can easily be solved when

it is possible to distinguish between primitive
uents and derived
uents. In that

case, a new predicate primitive=1 can be introduced which is true for all primitive

uents. The law of inertia is modi�ed as follows:

Holds(F;Result(A; S)) :-Holds(F; S); primitive(S);:Noninertial(F;A; S)

The requirement of being able to distinguish between primitive and derived
uents

is also imposed in the context of event calculus by [Mis91a]. As we will show below,

this requirement can be relaxed.

Observe that the presence of derived properties forces us to revise the intended

meaning of the predicates Initiates=2 and Terminates=2. In section 7.2, it was

argued that for example Initiates(E;P) holds i� the event E has an initiating

e�ect on P . This is not true when derived properties are added. For example, the

shooting event e

3

initiates dead, but Initiates(e

3

; dead) is provably false. Here, we

should distinguish between primitive initiating and derived initiating (or terminat-

ing) e�ects. Initiates=2 represents only the primitive initiating e�ects of events

(such as Initiates(e

1

; loaded)). It does not represent the derived initiating e�ects

such as the e�ect of e

3

on dead.

The rami�cation problem shows up not only with derived properties but also in

more subtle form. An illustration is known in the literature as the Walking Turkey

Shooting problem [Bak91]. The problem is a small extension of the YTS problem

in which initially the turkey is not only alive but also walking. The problem is to

adapt the YTS representation such that it can be derived that at t

end

the turkey

is dead and not walking.

Clearly we should try to represent the general law that a walking turkey is

necessarily alive. The problem now is that there are di�erent ways to do this. In a

�rst attempt, we may choose, in analogy with dead in the example above, for the

rule:

Holds at(alive; E) :-Holds at(walking;E)

Unfortunately, this is not a correct solution. Prolog answers yes on both queries

below:

 Holds at(walking; t

end

)

 Holds at(alive; t

end

)

The problem is caused by the fact that initially the turkey is walking and no event

ever terminates this
uent. Hence, at t

end

the turkey is still walking and from this,

the new rule allows to derive that the turkey is still alive.

A second attempt is to weaken " :- " to " " in the above rule and to add the

integrity constraint:

Holds at(alive; E) Holds at(walking;E)

7.4 Representing temporal domains 225

Also this solution fails. The resulting program is inconsistent, since it implies that

the turkey is not alive at t

end

, but since nothing terminates walking, walking is

still true at t

end

. After transforming the integrity constraint to:

false :-Holds at(walking;E);:Holds at(alive; E)

Prolog can prove false.

The problem with both solutions is that they fail in terminating walking when

shooting occurs. The third solution o�ers a direct solution: since alive is a neces-

sary precondition for being able to walk, any event which terminates alive termi-

nates walking. This can be represented by:

Terminates(walking;E) Terminates(alive; E)

Also, any event which initiates walking has precondition alive. This is repre-

sented by adding Holds at(alive; E) to the body of clauses for Succeeds(E) or

Initiates(E;walking).

The resulting program allows to derive the correct answers. Note that the

constraint formulaHolds at(alive; E) Holds at(walking;E) is implied by each

of the three proposals. Despite that, only the third proposal is a solution.

Although the YTS problem with derived
uent dead and the WTS problem

de�nitely show some potential of event calculus to solve the rami�cation problem,

the solutions advanced here -especially the one for the WTS problem- are not

based on general principles yet. Clearly, an ad hoc solution in which a user is

forced to make a blind search for a correct representation of a given constraint (as

we seemed to do for the WTS problem) is not very satisfactory. The success of

event calculus as a general solution for the rami�cation problem and for temporal

reasoning, will depend on whether a general methodology for representing di�erent

types of relations between
uents and events can be developed. As we show below,

such a methodology might bring to the surface a number of fundamental issues in

temporal reasoning.

Let us analyse the three above proposals for the WTS problem. The �rst pro-

posal was based on the following analogy with dead in the YTS example:

not alive implies dead

walking implies alive

Looking closer however, it turns out that this analogy is only super�cial. There is

a subtle but important distinction between how not alive implies dead and how

walking implies alive. This becomes obvious when judging the correctness of the

following natural language sentences:

to be dead means to be not alive

to be alive means to be walking

226 Temporal reasoning in Incomplete Event Calculus

The �rst sentence is correct: dead can be seen as a new name to denote the state

of not being alive. The second sentence is clearly not correct.

There is also a di�erence between how walking implies alive and how termi-

nating alive implies terminating walking. Evaluate the following sentences:

to terminate alive causes to terminate walking

to be walking causes to be alive

While the �rst sentence is correct, the second sentence is de�nitely not true.

What this analysis shows is that we should learn to di�erentiate between di�er-

ent forms of implication. Some "implications" are de�nitions of new concepts (e.g.

dead). Other "implications" represent causal laws (e.g. the WTS). There exists

also pure implications. An example is the formula:

Holds(alive; S) Holds(walking; S)

Clearly, this rule neither represents a causal law nor a de�nition for the concept

of alive but nevertheless makes a correct statement.

Di�erent types of implications should be represented in di�erent ways. Pure

implications such as the one in the previous paragraph should not be added to

the program as an " :- " rule, but may be added as a FOL implication. The use

of " :- " to represent (constructive) de�nitions was advocated before in chapter 4,

and returns here for dead. The interpretation of " :- " to represent causal laws is

new. Intuitively, it seems that a causal law relates causes to an e�ect in a similar

way how a clause in a constructive de�nition relates more primitive concepts in

the body to the de�ned concept in the head. An essential property of causality

is that phenomena do not cause themselves. This corresponds to requirement for

a constructive de�nition that a concept should not be de�ned in terms of itself.

This issue seems worth to be explored further in the future. It would explain why

logic programs such as event or situation calculus have sometimes such a natural

reading (compared with, for example, the completed de�nitions or the type of

formulas used in [Rei92]).

Below we illustrate the above concepts in a more complex example: in a game

playing family, somebody is sad if one of her ancestors is sad or otherwise, if she

has just lost a game; a person is not sad if she just won a game and each of her

ancestors is not sad. In this example, there is clearly a causal relationship between

the sadness of an ancestor and of her descendants. With respect to the initiating

and terminating e�ects of winning and loosing a game, we can make a distinction

between primitive and derived e�ects. Loosing a game has a primitive initiating

e�ect on sad for the person who is loosing and a derived initiating e�ect on sad

for her descendants. Winning a game has a primitive terminating e�ect on sad for

the person who is winning and a derived terminating e�ect for her descendants.

The logic of this problem is represented as follows:

7.4 Representing temporal domains 227

Holds at(sad(X); T) :-Ancestor(Y;X);Holds at(sad(Y); T)

Initiates(E; sad(X)) :-Act(E; loose game(X))

Terminates(E; sad(X)) :-Act(E;win game(X))

Each of these sentences represent causal laws. Note that in this example, no distinc-

tion between primitive and derived
uents can be drawn. A problem speci�cation

is given by adding an atomic clause for each atom of the following list:

T ime(e

1

); Act(e

1

; loose game(daisy));

T ime(e

2

); Act(e

2

; loose game(george)); e

1

<<e

2

T ime(e

3

); Act(e

3

; win game(sue)); e

1

<<e

3

; e

2

<<e

3

;

T ime(e

4

); Act(e

4

; win game(daisy)); e

1

<<e

4

; e

2

<<e

4

; e

3

<<e

4

T ime(t

end

); e

1

<<t

end

; e

2

<<t

end

; e

3

<<t

end

; e

4

<<t

end

and atomic clauses for each ancestor relation represented in the graph in �gure

7.6.

.

.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

...
..
.
..
..
.
..
..
.
..
..

.
.
.

.

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.

.

..
.
.
.
.
..
.
.
.
..
.
.
.
...
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
..
.
.
..
.
.
.
..

.
.
.
.
.
.

.

.
.
.
.
.
.

.

.
.
.
.
....
..
..
...
..
..
...
..

..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
.
..
.
..
.
.
..
.
.
..
.
.
..
.
.
..

...
..
...
...
..
...
....
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.

.
.

daisy

george john

an peter sue

Figure 7.6: Ancestor graph

Prolog succeeds on all following queries:

 Holds at(sad(sue); e

3

)

 Holds at(sad(sue); e

4

)

 :Holds at(sad(sue); t

end

)

 Holds at(sad(peter); t

end

)

Notice that the event e

3

with primitive terminating e�ect on sad(sue) has

no e�ect on sue's sadness. This is due to the fact that Holds at(sad(sue); e

4

) is

derivable via the rule for sadness and the fact that daisy is still sad. This can

be explained as follows: the true cause for sue's sadness is that daisy is sad. The

primitive terminating e�ect does not remove this cause, and hence sue remains

sad. This is the wanted behaviour.

A variant of the problem is when a familymember is always glad after winning

a game but becomes sad when she looses a game or when an ancestor becomes sad.

228 Temporal reasoning in Incomplete Event Calculus

Now, the e�ect of an ancestor loosing a game is a primitive e�ect on the temper

of his descendants. The logic of this problem is represented as follows:

Initiates(E; sad(X)) :-Act(E; loose game(X))

Initiates(E; sad(X)) :-Ancestor(Y;X); Initiates(E; sad(Y))

Terminates(E; sad(X)) :-Act(E;win game(X))

In this formulation of the problem, a person becomes glad when she wins a game,

and remains glad until she or one of her ancestors looses a game. Taking the same

problem speci�cation as above, now the goal:

 Holds at(sad(sue); e

4

)

fails. Despite the fact that daisy is still sad, sue is glad at e

4

.

The subtle di�erences between the two variants become more apparent when

judging the correctness of the following sentences in both speci�cations:

an ancestor to be sad causes a descendant to be sad

an ancestor to become sad causes a descendant to become sad

In the �rst variant of the game playing family, the �rst sentence is represented,

while in the second variant, the second is correct. The example illustrates that

to represent some temporal domain, one needs to identify the causal relationships

and de�nitions. These relationships must be represented by " :- " clauses.

It seems justi�ed to conclude that event calculus has potential to represent

derived properties and rami�cation. However, the representational problems are

subtle. In the future, more experiments of the kind presented in this section are

necessary and should be generalised to come to a general methodology for dealing

with logically related properties in complex worlds. In this section we have indi-

cated some possibly important concepts in such a methodology: di�erent types of

implications such as de�nitions, causal laws and pure implications; di�erent types

of e�ects of actions such as primitive and derived e�ect.

7.4.6 Reasoning on time intervals and events with duration

Event calculus is based on a point based representation of time. In [All83], Allen

promotes the use of an interval representation of time. He argues that the notion

of a time point should be replaced completely by the notion of a time interval.

He introduces a calculus with thirteen possible relations between two di�erent

intervals I

1

, I

2

. These relations include relations such as: an interval I

1

is before

I

2

, I

1

meets I

2

, I

1

overlaps with I

2

, etc..

It is clear that reasoning on intervals is important. In many applications, there

will arise questions like: does
uent P remain true or false during some speci�ed

time interval, does the value of some
uent change during some interval, what

is the maximal time interval in which a
uent is true or false? No matter what

7.4 Representing temporal domains 229

are Allen's feelings against time points, interval reasoning can easily be integrated

with the point based representation of time of the event calculus

1

. The classical

view on an interval as a pair of points can be de�ned without problem in event

calculus, Allen's thirteen relations can be de�ned in terms of the three relations

between time points (t

1

<<t

2

; t

1

= t

2

; t

2

<<t

1

). New predicates Holds during=2

and Not Holds during=2 can be de�ned easily. Below follow variants of solutions

which have already appeared elsewhere, e.g. in [KS92]:

Holds during(P;]T

1

; T

2

]) :-T ime(E); E �� T

1

; Initiates(E;P);

:Clipped(E;P; T

2

)

E �� E :-

E �� T :-E<<T

Not Holds during(P;]T

1

; T

2

]) :-:Holds(P; T

1

);:Initiated during(P; [T

1

; T

2

[)

Not Holds during(P;]T

1

; T

2

]) :-T ime(E); E<<T

1

; T erminates(E;P);

:Initiated during(P; [T

1

; T

2

[)

Initiated during(P; [T

1

; T

2

[) :-T ime(E); In(T

1

; E; T

2

); Initiates(E;P)

A related problem is that of events with duration. In [KS86], it is argued that

event calculus (based on events instead of time) is neutral with respect to the

question whether events have duration or not. In our version this is not the case,

because the notion of time is explicit and an event is associated to a unique time

point. However, there is a simple and general way to introduce events with duration

in terms of events without duration: split up each event in a starting and an ending

event and introduce a
uent associated with the process of executing the event. For

example, an event of closing a door can be split up in two events start close door,

end close door and a
uent closing door. These events are related by the following

rules:

Initiates(E; closing door) :-Act(E; start close door)

Terminates(E; closing door) :-Act(E; end close door)

Succeeds(E) :-Act(E; end close door);Holds at(closing door;E)

7.4.7 Concurrent Events

It is well-known from [KS86] that in contrast to situation calculus, event calculus

allows to represent concurrent actions. Representing concurrent actions poses no

special problems: it is in principle allowed that one time point is associated via

Act=2 with distinct events. However, especially in the context of an unde�ned <<

predicate, the issue of concurrent events must be considered with care, because un-

expected and undesired solutions may be easily constructed. The problem whether

two events can occur concurrently and what is their e�ect has no general solution

1

The original event calculus [KS86] was based both on events and time intervals. The interest

of interval reasoning was one of the authors' motivations for developing event calculus. In the

later version, introduced by [Sha90], the notion of an interval was dropped again.

230 Temporal reasoning in Incomplete Event Calculus

and domain dependent integrity constraints are needed to control concurrency.

For example, it is clear that in a multiple robot problem, one robot can only be

involved in one event at a given time. Distinct robots can perform concurrent ac-

tions, as long as they do not obstruct each other, e.g. two robots cannot pick up

the same object at the same time.

An example illustrates the type of problems that can occur with concurrent

events. Recall the light switch problem of section 7.2. A variant based on events

is speci�ed as follows:

Domain dependent clauses:

Initiates(E; on) :-Act(E;Ev); Event Type(Ev; flip switch);:Holds at(on;E)

Terminates(E; on) :-Act(E;Ev); Event Type(Ev; flip switch);

Holds at(on;E)

Problem speci�c information:

Event Type(ev

1

; flip switch) :-

Event Type(ev

2

; flip switch) :-

Integrity constraints:

T ime(start); T ime(t

end

)

There are two events ev

1

; ev

2

of
ipping a switch at unknown times. The predicates

T ime=1, << and Act=2 are unde�ned. As before, the light at t

end

should be o�.

Consider the following goal:

 T ime(E1); Act(E1; ev

1

); T ime(E2); Act(E2; ev

2

);

Holds at(on; t

end

); E1<<t

end

; E2<<t

end

It queries whether it is possible that there exist time points E1, E2 on which

ev

1

; ev

2

occur, such that the light is on at t

end

. The answer should be negative but

SLDNFA-LO returns the solution:

� = fT ime(sk); Act(sk; ev

1

); Act(sk; ev

2

); start<<sk<<t

end

g

The two distinct
ip switch events occur at the same time.

The problem is not caused by an error of SLDNFA-LO but is due to the fact

that the problem domain is under speci�ed by the program. The current program

expresses that two concurrent flip switch events do not a�ect each others e�ects.

Here this is not the case. In general we should express that an odd number of

concurrent switch events changes the state of the light and an even number of

concurrent events has no e�ect. A concise representation of these laws can be

made in an extension of logic with sets and cardinality.

7.5 Declarative singularities

So far, the programs were interpreted under 3-valued completion semantics. From

chapter 4, it follows that 3-valued completion semantics gives a safe approxima-

tion of a program under justi�cation semantics: the completion is entailed by the

7.5 Declarative singularities 231

justi�cation semantics. In this section we have a closer look at possible semantical

problems which occur under completion and justi�cation semantics.

In a �rst example, there is a
uent p which is initially false and a context

dependent nonsense action a which initiates p if p is already true:

Initially(X) :-

2

Initiates(E; p) :-Act(E; a);Holds at(p;E)

This example abstracts realistic problems in which pairs or sequences of actions

may occur which have a zero overall e�ect. For example, a robot can pick up some

object and put it back on the same location. This pair of events has no net e�ect.

Predicates T ime=1; Act=2 are abducible, << is a linear order with type predi-

cate T ime=1. As one might expect, SLDNFA-LO goes into an in�nite loop when

trying to solve the goal Holds(p; t

end

). The following set of a events are gener-

ated:

start<< : : :<<e

�n

<< : : :<<e

�1

<<t

end

This in�nite loop is not purely a problem of SLDNFA-LO but hides a singularity

at the declarative level. From the declarative point of view, one would expect that

since a cannot initiate p properly, :Holds(p; t

end

) should be logically implied by

the theory. This is not the case wrt to completion semantics: there exist a model of

the completion in which Holds(p; t

end

) is true, and which extends the in�nite set

constructed in the limit by SLDNFA-LO. Indeed, the following 2-valued Herbrand

interpretation is a model:

fT ime(start); T ime(t

end

)g[

fT ime(e

i

); Act(e

i

; a) j �1 < i < 0g[

fstart<<e

i

j � 1 < i < 0g[

fe

j

<<e

i

j �1 < j < i < 0g[

fe

i

<<t

end

j � 1 < i < 0g[

fHolds at(p; t

end

)g[

fHolds at(p; e

i

) j �1 < i < 0g[

fInitiates(e

i

; p) j � 1 < i < 0g

For example, a Holds at(p; e

i

) atom has the following direct justi�cation:

fT ime(e

i�1

); e

i�1

<<e

i

; Initiates(e

i�1

; p);:Clipped(e

i�1

; p; e

i

)g

An atom Initiates(e

i

; p) has a direct justi�cation:

fAct(e

i

; a);Holds at(p; e

i

)g

From the procedural point of view, the existence of this model of the comple-

tion has the important consequence that no proof procedure which is sound wrt

completion semantics, can ever succeed on the goal :Holds at(p; t end).

232 Temporal reasoning in Incomplete Event Calculus

It is easy to see that the above interpretation is not a justi�ed model: the atom

Holds at(p; t

end

) has only justi�cations with positive loops. For this example, it

can be shown that :Holds at(p; t

end

) is implied under justi�cation semantics.

However, also for justi�cation semantics, problematic situations can arise. A de-

sirable property of an event calculus would be that it is overall consistent (see

chapter 4). Unfortunately, it is easy to �nd examples with three-valued justi�ed

models. Consider the light switch problem. The unique
uent is on, the action is

flip switch:

Initiates(E; on) :-Act(E; flip switch);:Holds at(on;E)

Terminates(E; on) :-Act(E; flip switch);Holds at(on;E)

Note that two successive flip switch events have no net e�ect. Hence, as in the

previous example, there exists a model in which a looping problem occurs. The dif-

ference is that whereas in the previous example, positive looping occurs, here loop-

ing over negation occurs, due to the fact that Initiates=2 depends on :Holds=2.

The following 3-valued Herbrand interpretation is a justi�ed model:

fT ime(start)

t

; T ime(t

end

)

t

g[

fT ime(e

i

)

t

; Act(e

i

; flip switch)

t

j �1 < i < 0g[

f(start<<e

i

)

t

j � 1 < i < 0g[

f(e

j

<<e

i

)

t

j �1 < j < i < 0g[

f(e

i

<<t

end

)

t

j � 1 < i < 0g[

fHolds at(on; t

end

)

u

g[

fHolds at(on; e

i

)

u

j �1 < i < 0g[

fInitiates(e

i

; on)

u

j � 1 < i < 0g[

fTerminates(e

i

; on)

u

j � 1 < i < 0g

Figure 7.7 gives a weak justi�cation for Holds at(on; e

i

). A few remarks are in

order. A descendant node which points with two arrows to its ancestor represents a

set of descendants. E.g. the node labelled with In(x; e

i�1

; e

i

) (x 6= e

i�1

) represents

the set of descendants fIn(x; e

i�1

; e

i

) j 8x 2 HU : x 6= e

i�1

g. Note also that in

the �gure, the justi�cations for In=3 literals have not been written out.

The justi�cation is clearly looping over negation since there are branches with

Holds at(on; e

i

), :Holds at(on; e

i�1

),Holds at(on; e

i�2

), etc.. From this justi�ca-

tion, weak justi�cations for the facts :Holds at(on; e

i

), Initiates(e

i

; on), :Initiates(e

i

; on),

Terminates(e

i

; on), etc.. can easily be derived (and are implicit in the �gure).

The problem with this model is due to its in�nite sequence of actions, each of

which depends on the previous in the sequence. How to avoid such sequences is a

subject for future research.

7.6 Planning with Incomplete Event Calculus 233

Holds at(on; e

i

)

:clipped(e

i�1

; on; e

i

)T ime(e

i�1

) e

i�1

<<e

i

Initiates(e

i�1

; on)

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
.
.
..
.
..
.
..
.
.
..
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.
.
.

.

.

Holds at(on; e

i�2

)

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
....
....
.....
....

.

..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
..
.
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..
.
..
.
..
.
..
.
..
..
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.

.

.
.
.
.

.

.
.
.
.
.

.

.

.

. .
.
.
.

.

.

.
.
.
.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.

..
.

.

.

.

.

.

.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
...
...
....
...
....
...

.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
..
.
.
..
.
..
.
..
.
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
...........
.........

.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
.
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.
.
.
.
.
..
.
.
.
.
..
.
.
.
.
..................... ...
..
..
...
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
..
...
..
...
..
..
...
..
..
...
..
..
...
.

.

.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.

.

.

.

.

.
.
.

.

.

.
.

.

.

.

.

.

.

.

...
..
..
..
..
..
.
..
..
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
..
.
..
.
..
.
.
..
.
..
.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.
.
.
.

.

.

.
.
.

.

.

.
.
.

.

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

..

.

.

.
.
.

.

.

.
.
.
.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

.

. .
.

.

.

.
.
.

.

.

.

.
.

.

.

.

.
.
.

.

.

.

.

.

.
.
.
.
.

.
.
.
.
.
.

.
.
.
.
.

..

.

.

.

.

.

.

.
.
.
.
.

.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
....
....
....
....
.

.

..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.
..
.
..
.
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.
..
.
..
.
.
..
.
..
.
.
..
.

.

.

.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
qq
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q

q
q
q

q
q

q
q

q
q
q

q
q

q
q

q
q
q

q
q

q
q

q
q
q

q
q

q
q

q
q
q

q
q

q
q

q
q
q

q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q

q
q
q

q
q

q
q

q
q
q

q
q
qq
q
qq
q
q
qq
q
q
qq
q
qq
q
q
qq
q
qq
q
q
qq
q
qq
q
q
qq
q
q
qq
q
qq
q
q
qq
q
qq
q
q
qq
q
qq

q
q
q

q
q
q

q
q
q

q
q
q

q
q

q
q
q

q
q
q

q
q
q

q
q
q

q
q
q

q
q

q
q
q

q
q
q

q
q
q

q
q
q

q
q
q

q
q

q
q
q

q
q
q

q

q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q

qq
qq
qq
qq
qqq
qq
qq
qq
qq
qq
qq
qq
qq
qqq
qq
qq
qq
qq
qq
qq
qq
qqq
qq
qq
qq
qq
qq
q

q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q
q

q
q
q
q
q

q
q
q
q

q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
qq
q
q
q
q
q
qq
q
q

qqq
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
qq
q
q
q
qq
q
q
qq
q
q
q
qq
q
q
qq
q

q
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qqq
qq
qqq
qq
qqq
qqq
qq
qq

q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q
q

qq
qqq
qqq
qqq
qqq
qqqq
qqq
qqq
qqq
qqq
qqq
qqqq
qqq
qqq
qqq
qqq
qqqq
qqq
q

q
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q
qq
q
qq
q
qq
q
q

q
q
q
q
q
q

q
q
q
q
q
q
q

q
q
q
q
q
q
q
q

q
q
q
q
q
q
q

q
q
q
q
q
q
q

q
q
q
q
q
q
q
q

q
q
q
q
q
q
q

q
q
q
q
q
qq
q

q

q
q

q
q

q

q
q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q

q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q

q
q
q

q
q
q

q
q

q
q
q

q

qqqqqqqqqq
qqqqqqqqqq

qqqqqqqqq
qqqqqqqqqq

qqqqqqqqqq
qqqqqqqq
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q
q
q
q
q
q
q
qq
q
q
q
q
q
q
qq
q

qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
qq
q

q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q
q

q
q

q
qq
q

q

q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q

q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q

q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q

q
q

q
q

q
q

q
q

q
q

q
q

q
q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q
q

q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q

q
q

q
q

q

q
q

q

q
q

q

q
q

q

q
qq
q
q

q
q
q
q

q
q
q

q
q
q
q

q
q
q

q
q
q
q

q
q
q

q
q
q
q

q
q
q
q

q
q
q

q
q
q
q

q
q
q

q
q
q
q

q
q
q

q
q
q
q

q
q
q

:In(x; e

i�1

; e

i

) :Terminates(e

i�1

; on)Act(e

i�1

; f lip switch)

(x 6= e

i�1

)

clipped(e

j

; on; e

i�1

)

:Holds at(on; e

i�1

)

:x<<e

i�1

(j < i� 1)

T ime(e

i�2

) In(e

i�2

; e j; e

i�1

)

(x 6= e j; j < i� 1)

Terminates(e

i�2

; on)

Act(e

i�2

; f lip switch)

Figure 7.7: Justi�cation for Holds at(on; e

i

)

7.6 Planning with Incomplete Event Calculus

Planning problems can be represented in Event Calculus with unde�ned predicates

T ime=1, Act=2 and "<<" [Esh88], [Sha89]. [Mis91b, Mis91a, MBD92] describes

an implementation of such a planner and gives applications to a multiple robots

block world problem, a multiple robots assembly problem and a room �nishing

problem. Below, a simple bread baking example is given and is gradually extended

to illustrate solutions to several well-known di�culties in planning. SLDNFA-LO

is used as a planning system. "<<" is treated as a linear order with type predicate

T ime=1. Since we want minimal plans, the latter predicate is strongly abducible.

Act=2 is abducible. In order to avoid problems with undesired concurrency, the

234 Temporal reasoning in Incomplete Event Calculus

following constraint is added:

Act(E;Act1); Act(E;Act2)! Act1 = Act2

The initial problem is to bake a bread from
our, yeast and water using the

actions of kneading and baking. Kneading makes a dough of bread, baking turns a

dough into bread. The problem can be represented by the following program and

query:

Initiates(E;X) :-Act(E; baking);Holds at(dough(X); E)

Terminates(E; dough(X)) :-Act(E; baking)

Initiates(E; dough(bread(E))) :-Act(E; kneading(bread(E)));

Holds at(flour;E);Holds at(water;E);

Holds at(yeast; E)

Succeeds(E) :-Act(E; baking)

Succeeds(E) :-Act(E; kneading(X))

Initially(flour) :-

Initially(water) :-

Initially(yeast) :-

The planner solves the query

 Holds at(bread(X); t

end

)

by returning the solution:

fT ime(e1); Act(e1; baking); T ime(e2); Act(e2; kneading(bread(e2)));

e2 < e1; e1 < t

end

g

The baking event is a simple example of a context dependent initiating event:

baking produces a bread only if a dough was present. The planner reduces the

initial goal to

 Holds at(dough(bread(X)); e1)

This goal is solved successfully by abducing the kneading event. In general, plan-

ning with context dependent initiating events may produce large trees of events,

in which each event initiates properties necessary for its parent in the tree.

A more complex type of event is the context dependent terminating event: an

event that terminates a property if some precondition holds. The complexity stems

from the fact that these events switch positive to negative execution and vice versa:

to maintain a desirable property (occurring in a positive goal) which risks to be

terminated by a context dependent event, one can try to fail the precondition of

the terminating event. Vice versa, an undesirable property (occurring in a negative

goal) may be removed by abducing a terminating event and solving its precondi-

tions in a positive goal. To illustrate this, we extend the example as follows: we

want the bread to be fresh; a dough is initially fresh; this property is terminated

by baking if the oven is not warmed up in advance. Initially the oven is cold, the

warming up event terminates this property. The representation is:

7.6 Planning with Incomplete Event Calculus 235

Initiates(E; fresh(X)) :- Initiates(E; dough(X))

terminates(E; fresh(X)) :-Act(E; baking);

Holds at(dough(X); E);Holds at(oven cold; E)

Terminates(E; cold oven) :-Act(E;warming up)

Succeeds(E) :-Act(E;warming up)

Initially(cold oven) :-

To maintain the freshness of the bread in the goal

 Holds at(bread(X); t

end

);Holds at(fresh(bread(X)); t

end

)

the solver tries to fail the precondition Holds at(oven cold; e1). This leads to a

negative goal :Clipped(start; cold oven; e1), which is switched to a positive goal

 Clipped(start; cold oven; e1) and, via the rule for termination, to the abduction

of a warming up event: T ime(e3), Act(e3; warming up); e3 < e1. In general, due

to context terminating events, positive and negative goals can alternate in any

depth, and the abduction of events can occur in a positive goal at any depth.

Observe also that, in the previous plan, the order of the kneading and the

warming up events were not �xed. Another example showing this feature of the

planner is in the extension for baking cake:

initiates(E; dough(cake(E))) :-

Act(E; kneading(cake(E)));Holds at(flour;E);

Holds at(eggs;E);Holds at(sugar;E)

Initially(eggs) :-

Initially(sugar) :-

 Holds at(bread(X); t

end

);Holds at(cake(Y); t

end

)

Three plans are generated by the system: one plan in which �rst the bread is

kneaded and baked and then the cake, a second in which the order is reversed and

a third in which the same baking event bakes both bread and cake. The latter

plan leaves the order of the two independent kneading events undetermined. The

kneading events become dependent if we add the additional requirement that a

kneading event should happen with a clean kneading machine and kneading makes

the machine dirty. The representation is:

Succeeds(E) :-Act(E; kneading(X));Holds at(clean;E)

Terminates(E; clean) :-Act(E; kneading(X))

Initially(clean) :-

Observe that now the situation contains a problem similar to the light switching

problem. In other approaches [Esh88], [Sha89]), [Mis91a], the third solution is still

considered as correct, since by negation as failure they assume no time relation

236 Temporal reasoning in Incomplete Event Calculus

between the kneading events. Our planner behaves correctly and terminates with

failure.

The planning system provides other advanced features. Event calculus allows

to represent derived properties in terms of primitive properties; integrity con-

straints can be added to the program; indeterminate actions can be represented.

An interesting extension of classical planning is to drop the requirement that the

initial situation must be known. For example, when we add the following clauses,

the planner will generate not only the plan but also the necessary ingredients

(Ingredient is abductive):

Initially(X) :- Ingredient(X)

false :- Ingredient(X);:Base ingredient(X)

Base ingredient(flour) :-

Base ingredient(water) :-

Base ingredient(yeast) :-

: : :

Our experiences with the planner have highlighted the need for an intelligent

control strategy. We are currently implementing techniques from logic program-

ming such as iterative deepening and intelligent control. Other techniques such

as loop detection and intelligent backtracking could be helpful. In the abductive

planner described in [Mis91a], several of these advanced control features have been

implemented. In addition, the system o�ers the opportunity to implement domain

dependent heuristics for avoiding in�nite loops and unnecessary backtracking.

7.7 Discussion

Other features have been added to event calculus. [Eva90] extends event calculus

with event granularity. He distinguishes between di�erent levels of events. A high

level event may be composed from other more primitive events. A simple example

is the event of constructing a car, which is composed of events of constructing the

engine, the bodywork and an assembly event. Each of these events may on turn

be composed from more primitive events. A potential advantage of this di�erent

granularities occurs when it is possible to make abstraction of the �ne grained

actions involved in some process. In addition, [Eva90] introduces time granularity:

time is also split up in di�erent levels. In more coarse grained levels, time is

more "discrete": e.g. on a high time level, the event of constructing a car may

be instantaneous, while on more �ne-grained levels, this event has a duration.

The idea of time granularity was further re�ned in [Ma��92]. A problem with these

approaches is that it is unclear how the advantage of granularity could be exploited

procedurally. The authors do not spend attention to procedural aspects such as

in which situation a procedure can make safely abstraction of deeper levels of

7.7 Discussion 237

granularity and when not. It is unclear to us whether these ideas have su�cient

maturity to incorporate them in a working procedure like SLDNFA.

[KS92] used event calculus for emulating an object oriented database. One

of the main problems with integrating object orientation in logic is the problem

of dealing with change. [KS92] solves this problem elegantly in event calculus,

by applying the technique proposed already in [KS86]: a historical database is

maintained in which all updates are explicitly represented as events. In addition

it is shown how di�erent object oriented operations such as state change, creation

and deletion of objects, dynamic change of class membership can be implemented.

So far, we speci�ed time as a linear order. Though this su�ces for many appli-

cations, it is a correct but rather coarse grained view. In many applications, time

should be viewed as isomorphic with the real numbers, with operations like <<,

+, �, � and =. From the declarative point of view, numerical time is obtained by

substituting the theory of real numbers for the theory of linear order. Note that

<< in the real numbers is a linear order, such that it is correct to view numerical

time as an instance of linear order time. Models with numerical time satisfy the

theory of linear time.

With numerical time, a broad class of new problems can be represented. A

classical "process control" example illustrate this. An initially empty tun must be

�lled with a volume v of some liquid. A tab allows to �ll the tun at a �xed
ow

rate r. The type of solution that is expected here is of the form:

� = fAct(0; open tab); Act(v=r; close tab)g

On the procedural level, the constraint solver for linear order must be replaced by

a constraint solver for the real numbers. Many interesting problems could already

be solved using a constraint solver based on the simplex algorithm.

A problem with applications of the above type and in many applications in

which numerical time is important is that they involve continuous change. We

considered so far only instantaneous change. Shanahan proposes an extension of

event calculus to model continuous change [Sha90]. He introduces a predicate

Trajectory(N; T

1

; V; T

2

) with the following intended interpretation:

there is a continuous change of type N which started at time T

1

and

is continuing at least until time T

2

and the value at time T

2

is V .

Here N denotes a type of the continuous change, comparable to the notion of

action as an event type. In this example Trajectory=4 is de�ned by:

Trajectory(filling; T

1

; V; T

2

) :- Holds at(volume(V

1

); T

1

);

V = V

1

+ r � (T

2

� T

1

)

The extended inertia axiom for trajectories is the following:

Holds at(P; T) :-T ime(E); E<<T; Initiates(E;Q);

:Clipped(E;Q; T); T rajectory(Q;E; P; T)

238 Temporal reasoning in Incomplete Event Calculus

There are events which start a trajectory and other events which terminate a

trajectory. Here:

Initiates(E; filling) :-Act(E; open tab)

Terminates(E; filling) :-Act(E; close tab)

Additional axioms are needed when a continuous change autoterminates: i.e. when

a continuous change causes its own termination. This happens for example when

the tab over
ows.

Shanahan's solution requires complete knowledge on the continuous change:

the value at a given time is expressed via a numerical function. However, in many

practical situations, one has incomplete knowledge about the continuous change.

For example, the
ow rate of a tab may be unknown or variable. Despite this

incomplete knowledge, common sense reasoning infers that if a tab is opened and

not closed then eventually there will be an over
ow. We are currently investigating

how Shanahan's approach can be generalised with incomplete knowledge.

7.8 Summary

At the declarative level, we have investigated event calculus as a declarative formal-

ism for representing temporal knowledge. Special attention was spend on the laws

of time. We have argued that the theory of linear order is of fundamental impor-

tance in event calculus. The theory should either be subsumed by the program, or

should be added as a theory of integrity constraints. A number of classical bench-

marks in temporal reasoning were solved correctly and elegantly. The grace of event

calculus as a declarative formalism for temporal knowledge de�nitely equals, per-

haps even surpasses that of situation calculus. Compared with situation calculus,

event calculus seems to provide more elegant solutions for dealing with rami�ca-

tion, concurrency, events with duration, numerical time with applications in e.g.

process control, continuous change, granularity, etc.. An interesting phenomenon

observed in section 7.4.5 was the relationship between " :- " and causality. This

relationship should be investigated further. It could possibly become one of the

foundations of a future methodology for representing general temporal knowledge

in event calculus. At a higher level, the experiments in this chapter can be seen as a

second successful application of incomplete logic programming for the declarative

representation of incomplete knowledge.

At the procedural level, our main contribution was to extend SLDNFA to

SLDNFA-LO with a constraint solver for the theory of linear order. Recall that

the problem of solving planning problems was one of the main motivations for de-

veloping SLDNFA. Interestingly, the resulting procedure generates partial plans:

depending on the computation rule, the order of events is left unspeci�ed when

7.8 Summary 239

the actions do not interfere. We showed how SLDNFA-LO can be applied for plan-

ning and for general temporal reasoning such as prediction, ambiguous prediction,

postdiction and ambiguous postdiction.

240 Temporal reasoning in Incomplete Event Calculus

Chapter 8

Conclusion

In our view on problem solving in a declarative language, a fundamental distinc-

tion should be drawn between the declarative representation of knowledge and the

reasoning on the knowledge. The declarative part of problem solving is the descrip-

tion of the knowledge on the problem domain in a purely descriptive logic theory,

without explicitly or implicitly coding the problem to be solved or the algorithm to

be used for solving it. The correctness of the theory can in principle be evaluated

on the basis of its model semantics: there must be some isomorphism between the

possible states of the problem domain according to the users knowledge and the

models of the problem description. This kind of analysis was done for example in

chapter 7 in the context of event calculus, where we used model theoretic argu-

ments to show that the theory of linear order is fundamental in event calculus.

In practice, investigation of the models of a theory is often an impossible task.

Therefore, one must resort to more informal ways of evaluating the correctness

of the theory, by considering the declarative reading of the logic theory. This is a

translation of the logic expressions using the user's intended interpretation to a

natural language description of the problem domain. An essential property of a

semantics of a logic is therefore that it provides a natural declarative reading.

The reasoning on the knowledge is the computational part of problem solving.

On the problem domain, some speci�c problem must be solved. Di�erent types

of problems must be solved by di�erent types of procedures. A problem can be

classi�ed under di�erent computational paradigms. Some important classes are

listed below:

� deduction: determine whether a formula is true in the problem domain

� abduction: �nd an explanation for some observation

� model generation: �nd a possible state of the problem which satis�es a set

of constraints

241

242 Conclusion

� consistency proving: determine whether a certain observation is possible in

the problem domain

� deductive database updating: given some database, update it with some new

information

� model updating: given some model of a speci�cation and some new con-

straint, �nd an update of the model such that the original constraints and

the additional constraint are satis�ed.

� etc...

In the thesis, we have made contributions on the declarative and the com-

putational level. On the declarative level, we have studied the semantics of logic

programs as sets of constructive de�nitions. We have argued that well-founded se-

mantics and its extension, justi�cation semantics, provided the most pure formal-

isation of the constructive de�nition view. We showed that the notion of construc-

tive de�nition can be seen as an extension of the well-known concept of inductive

de�nition. This gives logic programs a natural declarative reading.

Along the line of this study, a number of other important issues were considered.

The current dominant view on model semantics in logic programming is that a

model represents a knowledge state: a model describes what atoms are known

true, what atoms are known false and what atoms are unknown. In contrast, we

take a classical view on a model and see it as an abstraction of a possible state of

the problem domain. This is exactly the role of a model in classical First Order

Logic. A possible state semantics imposes a view on some fundamental issues in

semantics, such as negation and incomplete knowledge. The negation operator is

used to represent complementary concepts. Incomplete knowledge is represented

by incomplete theories which have essentially di�erent models. Having incomplete

knowledge on the entities of the problem domain, is formalised by having models

in which the domain is not the Herbrand universe. This was our motivation to

reintroduce non-Herbrand interpretations in logic programming. Two applications

in the temporal domain have shown how incomplete knowledge can be represented

in incomplete logic programming.

In a possible state semantics, it makes no sense to interpret the third truth

value by unknown. When a fact is unknown, this is re
ected by having models

in which the fact is true and others in which the fact is false. We proposed to

interpret u as locally inconsistent. This interpretation is in accordance with the

constructive de�nition view: we showed that in justi�cation semantics (but also in

stationary and well-founded semantics), u is only assigned to facts which cannot be

interpreted consistently under the constructive de�nition view. This interpretation

of u enables graceful degradation of the theory in the presence of inconsistent

de�nitions. The abrupt collapse of two-valued semantics in classical FOL in case

243

of inconsistency, has been considered by many as a serious problem of classical

logic. The introduction of local inconsistency copes elegantly with this problem.

Last but not least, our e�orts for giving logic programs a FOL kind of semantics

have allowed to integrate FOL into logic programming.

On the computational level, we developed new procedures for general model

generation in �rst order logic with equality and for abduction in incomplete logic

programs. Relationships between di�erent computational paradigms were shown:

between abduction and model generation, deduction, satis�ability proving and

database updating.

We summarise the more technical contributions of our work, which were pre-

sented in chapters 3 to 7. In chapter 3, we have developed a model generator

NMGE for FOL with equality. The procedure is an extension of the well-known

model generator Satchmo with special techniques for dealing e�ciently with equal-

ity. The intuition behind our approach is simple: sets of equality facts generated

during model generation, are contracted to a compact representation which repre-

sents not only the set but also all its (possibly in�nite) logic consequences under

the underlying equality theory. The contraction is performed by transforming the

set of equality facts in a complete term rewriting system and normalising the gen-

erated non-equality facts wrt to this term rewriting system. To obtain the desired

generality, it was necessary to extend existing concepts of Term Rewriting.

We have illustrated the potential of the procedure for executing declarative

speci�cations in FOL. A remarkable duality was found between the procedural

semantics of abduction in incomplete de�nite logic programs and NMGE model

generation in the only-if part of the programs.

Chapter 4 develops the semantical foundation of incomplete logic programming

as a declarative formalism for representing incomplete knowledge. Here we defend

the interpretation of logic programs as sets of constructive de�nitions. We in-

vestigated how current most popular semantics support this de�nition view. The

leitmotif in this study was the notion of justi�cation: the mathematical object

which describes how the truth value of some fact in a model is justi�ed by other

facts. We argued that well-founded semantics and its extension to non-Herbrand

interpretations, justi�cation semantics are the only semantics in the study in which

the justi�cation for a positive fact does not contain the fact, i.e. the truth of a pos-

itive fact is not build on itself. This makes these semantics the best formalisation

of the constructive de�nition view.

This work presents the 3-valued completion semantics as a safe approximation

of the meaning of a theory in any other semantics in the framework. This means

that models wrt any of the semantics are models wrt 3-valued completion seman-

tics. A logic consequence of a program wrt 3-valued completion semantics is a logic

consequence wrt to any semantics. In practice, a deductive and abductive proce-

dure which is sound wrt completion semantics is sound wrt any other semantics

244 Conclusion

in the framework.

In chapter 5, we developed SLDNFA, an abductive procedure for the incomplete

logic program formalism. SLDNFA is the �rst procedure which does not
ounder

on non-ground abductive atoms. We showed that for di�erent application �elds,

di�erent abductive procedures may be necessary, satisfying di�erent completeness

results. To cope with this problem, suitable extensions of SLDNFA were developed.

This resulted in a (still simple) family of abductive procedures, SLDNFA

o

+

, in

which a number of parameters can be set to tune the procedure to the application

under consideration.

Though SLDNFA was developed for abduction, the procedure turns out to be

useful also for other computational paradigms. We showed how to use it soundly

for deduction, satis�ability proving and database updating. So far the incomplete

logic program formalism was associated uniquely with abduction as procedural

paradigm. The possibility of reasoning with other computational paradigms, to-

gether with the declarative view on (incomplete) logic programs as (incomplete)

constructive de�nitions turns the formalism into a full-
edged declarative logic.

In the two last chapters 6 and 7, we presented two di�erent experiments in

the declarative representation of (incomplete) knowledge and the use of SLDNFA

for several forms of reasoning. Both experiments are in the context of temporal

domains. In the �rst, we successfully translated A domain descriptions with in-

complete knowledge on the initial situation to incomplete situation calculus with

unde�ned predicate Initially=1. The main goal of this experiment was to compare

incomplete logic programming with extended logic programming, another exten-

sion of logic programming which has been advocated for representing incomplete

knowledge. Our transformation proved to be superior to Gelfond and Lifschitz's

transformation to extended logic programming.

The second experiment in temporal reasoning was on (incomplete) event cal-

culus. Whereas so far event calculus was mostly described in a procedural way,

we investigated it as a declarative formalism. The grace of event calculus as a

declarative formalism for temporal knowledge de�nitely equals that of situation

calculus. Event calculus provides elegant solutions for dealing with rami�cation,

concurrency, events with duration, numerical time with applications in e.g. pro-

cess control, continuous change, granularity, etc.. An important contribution is the

investigation of time as a linear order, and, at the procedural level, the extension

of SLDNFA with a constraint solver for the theory of linear order. The resulting

procedure is -to the best of our knowledge- the only procedure which generates

correct partial plans. The procedure cannot only be used for planning but also for

abduction, deduction and satis�ability proving in the context of general temporal

reasoning.

Bibliography

[AB90] K.R. Apt and M. Bezem. Acyclic programs. In Proc. of the Interna-

tional Conference on Logic Programming, pages 579{597. MIT press,

1990.

[ABW88] K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of Declarative

Knowledge. In J. Minker, editor, Foundations of Deductive Databases

and Logic Programming. Morgan Kaufmann, 1988.

[Acz77] P. Aczel. An Introduction to Inductive De�nitions. In J. Barwise, ed-

itor, Handbook of Mathematical Logic, pages 739{782. North-Holland

Publishing Company, 1977.

[AE82] K. R. Apt and M.H. Van Emden. Contributions to the Theory of

Declarative Knowledge. Journal of the ACM, 29(3):841{862, 1982.

[All83] J.F. Allen. Maintaining Knowledge About Temporal Intervals. Com-

munications of the ACM, 26(11):832{843, 1983.

[AN78] H. Andreka and I. Nemeti. The Generalized Completeness of Horn

Predicate Logic as a Programming Language. Acta Cybernetica, 4:3{

10, 1978.

[Bak89] A.B. Baker. A simple solution to the Yale shooting problem. In

Proc. of the International Conference on Knowledge Representation

and Reasoning, pages 11{20, 1989.

[Bak91] A.B. Baker. Nonmonotonic Reasoning in the Framework of the Situ-

ation Calculus. Arti�cal Intelligence, 49:5{23, 1991.

[BLMM92] A. Brogi, E. Lamma, P. Mancarella, and P. Mello. Normal Logic

Programs as Open Positive Programs. In K.R. Apt, editor, Proc. of

the International Joint Conference and Symposium on Logic Program-

ming, 1992.

245

246 BIBLIOGRAPHY

[Bon92] P.A. Bonatti. Autoepistemic Logics as a Unifying Framework for the

Semantics of Logic Programs. In K.R. Apt, editor, Proc. of the In-

ternational Joint Conference and Symposium on Logic Programming,

1992.

[Bry90] F. Bry. Intensional Updates: Abduction via Deduction. In Proc. of

the International Conference on Logic Programming, pages 561{575,

1990.

[CEP92] P.T. Cox, E.Knill, and T. Pietrzykowski. Abduction in Logic Pro-

gramming with Equality. In Proc. of International Conference on

Fifth Generation Computer Systems, pages 539{545, 1992.

[Chu36] A. Church. A note on the entscheidungsproblem. JSL, 1:40{41, 1936.

[CL89] L. Cavedon and J.W. Lloyd. A completeness theorem for sldnf reso-

lution. Journal of Logic Programming, 7:177{191, 1989.

[Cla78] K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors,

Logic and Databases, pages 293{322. Plenum Press, 1978.

[CM85] E. Charniak and D. McDermott. Introduction to Arti�cal Intelligence.

Addison-Wesley, 1985.

[CP86] P.T. Cox and T. Pietrzykowski. Causes for events: their computa-

tion and application. In Proc. of the 8th International Conference on

Automated Deduction, 1986.

[CTT91] L. Console, D. Theseider Dupre, and P. Torasso. On the relationship

between abduction and deduction. Journal of Logic and Computation,

1(5):661{690, 1991.

[DD92a] M. Denecker and D. De Schreye. On the duality of abduction and

model generation. In Proc. of the International Conference on Fifth

Generation Computer Systems, 1992.

[DD92b] M. Denecker and D. De Schreye. SLDNFA; an abductive procedure

for normal abductive programs. In K.R. Apt, editor, Proc. of the In-

ternational Joint Conference and Symposium on Logic Programming,

1992.

[DD93a] M. Denecker and D. De Schreye. Justi�cation semantics: a unifying

framework for the semantics of logic programs. In Proc. of the Logic

Programming and Nonmonotonic Reasoning Workshop, 1993.

[DD93b] M. Denecker and D. De Schreye. Representing incomplete knowledge

in abductive logic programming. In Proc. of the International Sym-

posium on Logic Programming, 1993.

BIBLIOGRAPHY 247

[DD94] M. Denecker and D. De Schreye. On the Duality of Abduction and

Model Generation in a Framework for Model Generation with Equal-

ity. Journal of Theoretical Computer Science; tentatively scheduled

for Volume 122, 1994.

[Dec89] H. Decker. The range form of deductive databases and queries, or:

how to avoid
oundering. In J. Rettie and K. Leidmair, editors, Proc.

5th

�

OGAI. Springer Verlag, 1989.

[Den92] J. Denef. Mathematical logic. course notes 2nd licence Mathematics,

K.U.Leuven, 1992.

[Der87] N. Dershowitz. Completion and its applications. In Proc. of the

CREAS, 1987.

[Dix92] J. Dix. Classifying Semantics of Disjunctive Logic Programs. In K.R.

Apt, editor, Proc. of the International Joint Conference and Sympo-

sium on Logic Programming, 1992.

[DJ89] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Handbook

of Theoretical Computer Science, vol.B, chapter 15. North-Holland,

1989.

[DMB92] M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reasoning

with abductive event calculus. In Proc. of the European Conference

on Arti�cial Intelligence, 1992.

[Dun91] P.M. Dung. Negations as hypotheses: an abductive foundation for

Logic Programming. In Proc. of the International Conference on Logic

Programming, 1991.

[Dun92] P.M. Dung. Acyclic disjunctive logic programs with abductive proce-

dure as proof procedure. In Proc. of the International Conference on

Fifth Generation Computer Systems, pages 555{561, 1992.

[Dun93] P.M. Dung. Representing Actions in Logic Programming and its Ap-

plications in Database Updates. In Proc. of the International Confer-

ence on Logic Programming, 1993.

[EK89] K. Eshghi and R.A. Kowalski. Abduction compared with negation as

failure. In Proc. of the International Conference on Logic Program-

ming. MIT-press, 1989.

[Esh88] K. Eshghi. Abductive planning with event calculus. In R.A. Kowalski

and K.A. Bowen, editors, Proc. of the International Conference on

Logic Programming, 1988.

248 BIBLIOGRAPHY

[Eva89] C. Evans. Negation as failure as an approach to the Hanks and Mc-

Dermott problem. In Proc. of the second International Symposium on

Arti�cial Intelligence, 1989.

[Eva90] C. Evans. The Macro-Event Calculus: Representing Temporal Gran-

ularity. In Proc. of PRICAI, Tokyo, 1990.

[Fag90] F. Fages. A New Fixpoint Semantis for General Logic Programs Com-

pared with the Well-Founded and the Stable Model Semantics. In

D.H.D.Warren and P. Szeredi, editors, Proc. of the International Con-

ference on Logic Programming, page 443. MIT press, 1990.

[Fef70] S. Feferman. Formal theories for trans�nite iterations of generalised

inductive de�nitions and some subsystems of analysis. In A. Kino,

J. Myhill, and R.E. Vesley, editors, Intuitionism and Proof theory,

pages 303{326. North Holland, 1970.

[FG85] J.J. Finger and M.R. Genesereth. Residue: a deductive approach to

design synthesis. Technical Report STAN-CS-85-1035, Department of

Computere Science, Stanford University, 1985.

[FHKF92] M. Fujita, R. Hasegawa, M. Koshimura, and H. Fujita. Model Gen-

eration Theorem Provers on a Parallel Inference Machine. In Proc.

of the International Conference on Fifth Generation Computer Sys-

tems, pages 357{375. ICOT, Institute for New Generation Computer

Technology, 1992.

[Fit85] M. Fitting. A Kripke-Kleene Semantics for Logic Programs. Journal

of Logic Programming, 2(4):295{312, 1985.

[Fre67] G. Frege. Begri�sschrift, a Formula Language Modelled upon that of

Arithmetic, for Pure Thought. In J. van Heijenoort, editor, From Frege

to G�odel: A source Book in Mathematical Logic, 1879-1931, chapter 6,

pages 1{82. Harvard University Press, 1967.

[GL88] M. Gelfond and V. Lifschitz. The stable model semantics for logic

programming. In Proc. of the International Joint Conference and

Symposium on Logic Programming, pages 1070{1080. IEEE, 1988.

[GL90a] M. Gelfond and V. Lifschitz. Logic Programs with Classical Negation.

In D.H.D. Warren and P. Szeredi, editors, Proc. of the 7th Interna-

tional Conference on Logic Programming 90, page 579. MIT press,

1990.

[GL90b] A. Guessoum and J.W. Lloyd. Updating knowledge bases ii. Techni-

cal Report TR-90-13, Department of Computer Science, University of

Bristol, 1990.

BIBLIOGRAPHY 249

[GL92] M. Gelfond and V. Lifschitz. Describing Action and Change by Logic

Programs. In Proc. of the 9th Int. Joint Conf. and Symp. on Logic

Programming, 1992.

[HL89] P. M. Hill and J. W. Lloyd. Analysis of meta-programs. In H. D.

Abramson and M. H. Rogers, editors, Proceedings of Meta88, pages

23{51. MIT Press, 1989.

[HM87] S. Hanks and D. McDermott. Nonmonotonic logic and temporal pro-

jection. Arti�cial Intelligence, 33:379{412, 1987.

[Hue80] G. Huet. Con
uent Reductions: Abstract Properties and Applications

to Term Rewriting Systems. Journal of the Association for Computing

Machinery, 27(4):797{821, 1980.

[K. 31] K. G�odel. Ueber formal unentscheidbare S�atze der Principia Mathe-

matica und verwandter Systeme. Monatsh. Math. Phys., 37:349{360,

1931.

[KB70] D.E. Knuth and P.B. Bendix. Simple word problems in universal

algebras. In J. Leech, editor, Computational Problems in Abstract

Algebra, pages 263{297. Pergamon Press, 1970.

[Kle52] S.C. Kleene. Introduction to Metamathematics, volume 1 ofBibliotheca

Mathematica. Van Nostrand & Wolters-Noordho�/North-Holland,

Princeton, NJ & Groningen/Amsterdam, 1952.

[KM90a] A.C. Kakas and P. Mancarella. Database updates through abduction.

In Proc. of the 16th Very large Database Conference, pages 650{661,

1990.

[KM90b] A.C. Kakas and P. Mancarella. Generalised stable models: a seman-

tics for abduction. In Proc. of the European Conference on Arti�cial

Intelligence, 1990.

[KM90c] A.C. Kakas and P. Mancarella. Stable Theories for Logic Programs.

In Proc. of the International Symposium on Logic Programming, pages

85{100. The MIT-press, 1990.

[Kow74] R.A. Kowalski. Predicate logic as a programming language. In Proc.

of IFIP 74, pages 569{574. North-Holland, 1974.

[Kow79] R.A. Kowalski. Algorithm = logic + control. Communications of the

ACM, 22:424{431, 1979.

[Kow90] R.A. Kowalski. Problems and promises of computational logic. In

J.W. Lloyd, editor, Proc. of the 1st Symposium on Computational

Logic, pages 1{36. Springer-Verlag, 1990.

250 BIBLIOGRAPHY

[Kow91] R.A. Kowalski. Logic programming in arti�cial intelligence. In Proc.

of the IJCAI, 1991.

[Kow92] R.A. Kowalski. Database updates in the event calculus. Journal of

Logic Programming, 1992.

[KS86] R.A. Kowalski and M. Sergot. A logic-based calculus of events. New

Generation Computing, 4(4):319{340, 1986.

[KS92] F. Kesim and M. Sergot. On the evolution of objects in a logic pro-

gramming framework. In Proc. of the International Conference on

Fifth Generation Computer Systems, pages 1052{1060, 1992.

[Kun89] K. Kunen. Negation in Logic Programming. Journal of Logic Pro-

gramming, 4:231{245, 1989.

[Llo87] J.W. Lloyd. Foundations of Logic Programming. Springer-Verlag,

1987.

[LMM88] J.-L. Lassez, M.J. Maher, and K. Marriott. Uni�cation revisited. In

J. Minker, editor, Foundations of Deductive Databases and Logic Pro-

gramming, pages 587{625. Morgan Kaufmann, 1988.

[LT84] J.W. Lloyd and R.W. Topor. Making prolog more expressive. Journal

of Logic Programming, 1(3):225{240, 1984.

[Ma��92] E. Ma��m. Abduction and Constraint Logic Programming. In Proc. of

the European Conference on Arti�cial Intelligence. Wiley&sons, 1992.

[MB87] R. Manthey and F. Bry. A hyperresolution-based proof procedure and

its implementation in prolog. In Proc. of the 11th German workshop

on Arti�cial Intelligence, pages 221{230. Geseke, 1987.

[MBD92] L.R. Missiaen, M. Bruynooghe, and M. Denecker. Abductive planning

with event calculus. Internal report, Department of Computer Science,

K.U.Leuven, 1992.

[McC80] J. McCarthy. Circumscription - a form of nonmonotonic reasoning.

Arti�cal Intelligence, 13:89{116, 1980.

[McD82] D. McDermott. A temporal logic for reasoning about processes and

plans. Cognitive Science, 6:101{155, 1982.

[MD92] B. Martens and D. De Schreye. A perfect Herbrand semantics for

untyped vanilla meta-programming. In K.R. Apt, editor, Proceedings

of the Joint International Conference and Symposium on Logic Pro-

gramming, pages 511{525, Washington, November 1992. MIT Press.

BIBLIOGRAPHY 251

[Men72] E. Mendelson. Introduction to Mathematical Logic. D. Van Nostrand

company, 1972.

[Met83] Y. Metivier. About the rewriting systems produced by the knuth-

bendix completion algorithm. Information Processing Letters, 16:31{

34, 1983.

[Mis91a] L.R. Missiaen. Localized abductive planning with the event calculus.

PhD thesis, Department of Computer Science, K.U.Leuven, 1991.

[Mis91b] L.R. Missiaen. Localized abductive planning for robot assembly.

In Proceedings 1991 IEEE Conference on Robotics and Automation,

pages 605{610. IEEE Robotics and Automation Society, 1991991.

[MM82] A. Martelli and U. Montanari. An e�cient uni�cation algorithm.

Transactions on Programming Languages and Systems, 4(2):258{282,

1982.

[MMCR92] A. Montanari, E. Ma��m, E. Ciapessoni, and E. Ratto. Dealing with

Time Granularity in the Event Calculus. In Proc. of the International

Conference on Fifth Generation Computer Systems, pages 702{712,

1992.

[MMR86] A. Martelli, C. Moiso, and C.F. Rossi. An Algorithm for Uni�cation

in Equational Theories. In Proc. of the Symposium on Logic Program-

ming, pages 180{186, 1986.

[MR90] J. Minker and A. Rajasekar. A �xpoint semantics for disjunctive logic

programs;. Journal of Logic Programming, 9:45{74, 1990.

[PAA91a] L.M. Pereira, J.N. Aparicio, and J.J. Alferes. Derivation Procedures

for Extended Stable Models. In J. Mylopoulos and R. Reiter, editors,

Proc. of the IJCAI. Morgan Kaufmann Publishers, Inc., 1991.

[PAA91b] L.M. Pereira, J.N. Aparicio, and J.J. Alferes. Hypothetical Reasoning

with Well Founded Semantics. In B. Mayoh, editor, Proc. of the 3th

Scandinavian Conference on AI. IOS Press, 1991.

[Pei55] C.S. Peirce. Philosophical Writings of Peirce. Dover Publications,

New York, 1955.

[Poo88] D. Poole. A Logical Framework for Default Reasoning. Arti�cial

Intelligence, 36:27{47, 1988.

[Pop73] H. Pople. On the mechanization of abductive logic. In Proc. of the 3d

IJCAI, pages 147{152, 1973.

252 BIBLIOGRAPHY

[Prz88] T.C. Przymusinski. On the semantics of Strati�ed Databases. In

J. Minker, editor, Foundations of Deductive Databases and Logic Pro-

gramming. Morgan Kaufman, 1988.

[Prz89] T.C. Przymusinski. On the declarative and procedural semantics of

logic programs. Journal of Automated Reasoning, 5:167{205, 1989.

[Prz90] T.C. Przymusinski. Extended Stable Semantics for Normal and Dis-

junctive Programs. In D.H.D. Warren and P. Szeredi, editors, Proc.

of the seventh international conference on logic programming, pages

459{477. MIT press, 1990.

[Prz91] T.C. Przymusinski. Well-Founded Completions of Logic Programs.

In Koichi Furukawa, editor, Proc. of the International Conference on

Logic Programming, pages 726{741. MIT press, 1991.

[Ram88] A. Ramsay. Formal Methods in Arti�cal Intelligence. Cambridge Uni-

versity Press, 1988.

[Rei78a] R. Reiter. Deductive Question-Answering on Relational Data Bases.

In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages

149{177. Plenum Press, New York, 1978.

[Rei78b] R. Reiter. On Closed World Data bases. In H. Gallaire and J. Minker,

editors, Logic and Data Bases, pages 55{76. Plenum Press, New York,

1978.

[Rei80] R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{

132, 1980.

[Rei91] H. Reichgelt. Knowledge Representation: an AI Perspecitive. Ablex

Publishing Corporation, 1991.

[Rei92] R. Reiter. Formalizing Database Evolution in the Situation Calculus.

In Proc. of the International Conference on Fifth Generation Com-

puter Systems, pages 600{609, 1992.

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution prin-

ciple. Journal of the ACM, 12(1):23{41, 1965.

[San91] E. Sandewall. Features and Fluents. Technical Report LiTH-IDA-

R-91-29, Institutionen for datavetenskap, Link�oping University, 1991.

Preliminary version of a forthcoming book.

[Sha89] M. Shanahan. Prediction is deduction but explanation is abduction.

In Proc. of the IJCAI89, page 1055, 1989.

BIBLIOGRAPHY 253

[Sha90] M. Shanahan. Representing continuous change in the event calculus.

In Proc. of the European Conference on Arti�cial Intelligence, page

598, 1990.

[Sho67] J. Shoen�eld. Mathematical Logic. Addison-Wesley, Reading, Mass.,

1967.

[SI92] K. Satoh and N. Iwayama. A Query Evaluation method for Abductive

Logic Programming. In K.R. Apt, editor, Proc. of the International

Joint Conference and Symposium on Logic Programming, 1992.

[SK88] F. Sadri and R.A. Kowalksi. A Theorem-Proving Approach to

Database Integrity. In J. Minker, editor, Foundations of Deductive

Database and Logic Programming, pages 313{362. Morgan Kaufman

Publishers, 1988.

[Sny89] W. Snyder. E�cient ground completion: An o(n log n) algorithm for

generating reduced sets of ground rewrite rules equivalent to a set of

ground equations. In Proc. of the 3rd International Conference on

Rewriting Techniques and Applications, 1989.

[THT87] D.S. Touretzky, J.F. Horty, and R.H. Thomason. A Clash of Intuitions:

The Current State of Nonmonotonic Multiple Inheritance Systems. In

Proc. of the IJCAI87, 1987.

[Van89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming.

MIT Press, 1989.

[vEK76] M. van Emden and R.A Kowalski. The semantics of Predicate Logic as

a Programming Language. Journal of the ACM, 4(4):733{742, 1976.

[VRS91] A. Van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded Seman-

tics for General Logic Programs. Journal of the ACM, 38(3):620{650,

1991.

254 BIBLIOGRAPHY

Appendix A

Expressive power of the

Extended Clause formalism.

We prove that for each �rst order logic theory T based on L there exists an

elementary extension theory T

0

, consisting of extended clauses and based on a

language L' which extends L by a �nite set of predicate symbols. Recall from

chapter 2 that this means that each model of <L; T> can be extended to a model

of <L

0

; T

0

> and vice versa, that the restriction of a model of <L

0

; T

0

> to the

symbols of L is a model of T . This implies that T

0

is a conservative extension of

T [Sho67]. This form of equivalence is stronger than the form of equivalence which

has been proven for a theory T and its clausal form T

0

: T is consistent i� T

0

is

consistent.

We use the following terminology. We denote the fact that F

c

is a sub-formula

of F by F

c

� F , and that F

c

is a strict sub-formula of F by F

c

< F . The set of

components of a formula F are de�ned as the set of maximal strict sub-formulas of

F . A conjunction and disjunction have two components; negations, universal and

existential formulas have one component, an atom has no component. For each

sub-formula F

c

in F , there exists a linear chain of formulas F

c

= F

0

< F

1

< : : : <

F

n

= F , where each F

i

is a component of F

i+1

(although our notation does not

make this explicit, we are talking about occurrences of sub-formulas rather than

of sub-formulas directly; this is to avoid problems in the case of a sub-formula

with multiple occurrences). The set fF

1

; : : : ; F

n

g is precisely the set of formulas

F

0

such that F

c

< F

0

� F . The depth of F

c

in F is n. The depth of a formula is

recursively de�ned as the maximumdepth of its components augmented with one.

F

c

occurs in a positive context or occurs positively in F if the number of formulas

G such that F

c

< :G � F is even. Otherwise F

c

occurs in a negative context or

occurs negatively in F .

We assume that in a closed formula F each variable occurs with precisely one

255

256 Expressive power of the Extended Clause formalism.

quanti�er. When this is not the case, renaming is always possible. Further, we

require that each formula contains only the connectors ^;_ and : and moreover,

that each negation in the formula has an atom as component. Each �rst order

logic formula can be transformed to an equivalent formula which satis�es these

conditions, using the �rst part of the transformation in algorithm 4.9.1.

In section 3.2, the notion of extended clause was de�ned. The lemma below

gives another characterisation.

Lemma A.1 A formula F is an extended clause i� it satis�es the following con-

straints:

� the component of a negation is an atom

� the components of a conjunction G � F are atoms or conjunctions;

� the component of an existential formula G � F is either an atom or a

conjunction or an existential formula;

� the components of a disjunction G � F are atoms, negations, conjunctions,

existential formulas or disjunctions;

� a universal formula G � F can have any type of component.

Proof A sketch of the proof is given. An extended clause is a formula of the

form:

8X

1

: : :8X

f

: :A

1

_ : : ::A

g

_E

1

_ : : :_E

h

where E

i

has the general form:

9Y

1

; : : : ; Y

i

: A

1

^ : : :^A

j

Each A

i

denotes an atom and f; g; h; i � 0; j > 0 and g + h > 0.

It is straightforward that an extended clause satis�es the syntactical con-

straints of the lemma. Vice versa, assume that F satis�es the syntactic

constraints of the lemma. A proof by induction on the depth of the formula

F can be given. The idea is as follows: by the induction hypothesis the

components of F are known to be extended clauses. Since F satis�es the

constraints in the lemma, the type of F restricts the type of its components.

A simple case analysis su�ces to show that F must be an extended clause

too. For example, let F be a disjunction G

1

_G

2

. G

1

; G

2

can be any formula

except a universal formula and they are both extended clauses. Hence they

are both of the form :A

1

_ : : :_:A

g

_E

1

_ : : :_E

h

. The disjunction of two

formulas of this form is again of this form (strictly spoken, commutativity

and associativity must be applied here). Hence F is an extended clause. 2

257

Below, an algorithm is given which transforms any theory to an extended

program. The transformation proceeds by iteratively replacing an unwanted sub-

formula of a formula (i.e. a sub-formula of a type which is not allowed by the

lemma) by an atom of a new predicate, and adding a formula which relates this

new predicate and the replaced sub-formula.

Algorithm A.1 Let T be a theory based on L. The transformation algorithm is

de�ned as follows. Initially, set T

0

= T . As long as T

0

contains unwanted formulas,

the following transformation step is executed:

� Select F from T

0

such that F contains a sub-formula G with an unwanted

component F

c

[X].

� Choose a new predicate p=n.

� De�ne F

0

by replacing F

c

in F by p(X).

� If F

c

is a universal formula then F

c

is of the form 8Y : F

0

c

with F

0

c

not a

universal formula; de�ne F

00

= 8X;Y : :p(X) _ F

0

c

Otherwise, de�ne F

00

= 8X : :p(X) _ F

c

� De�ne T

0

:=T nfFg [fF

0

; F

00

g.

Theorem A.1 Let T be any �rst order theory. The transformation algorithm

terminates always. It produces an extended program T

0

based on an extension L'

of L with new predicate symbols. <L

0

; T

0

> is an elementary extension of <L; T>.

Proof To see that the algorithm terminates, just check that each transformation

step decreases the number of unwanted components with one.

That the resulting T

0

is an extended program is trivial since no formula in

T

0

contains an unwanted component.

We should prove (a) that each model of <L; T> can be extended to a

model of <L

0

; T

0

> and (b) that the restriction of a model of <L

0

; T

0

> to

the symbols of L is a model of <L; T>. For the proofs of (a) and (b), we

simplify the situation: we �rst show that if T

0

is obtained by T by one

transformation step then (a) and (b) hold. Then by induction, (a) and (b)

hold for the complete transformation process.

Assume that the transformation step selects F from T

0

. F contains a sub-

formula with an unwanted component F

c

with free variables X. To prove

(a), let M be a model of <L; T>. We extend M to M

0

by extending the

truth function of M

0

in the following way: for each variable assignment V

of the variables X: H

M

0

(V (p(X)) = H

M

(V (F

c

))

By de�nition, M

0

j= 8X : (p(X)$ F

c

). From this equivalence, it is easy to

prove that M

0

j= F

0

^ F

00

. In the case that F

c

is a universal formula, the

proof relies on the equivalence:

258 Expressive power of the Extended Clause formalism.

(8X : (p(X)!8Y : F

0

c

)), (8X;Y : p(X)!F

0

c

)

which holds because X and Y are disjunct.

To prove (b), we use Lemma A.2 which is formulated and proven below:

assume that F contains a sub-formula F

c

[X] in a positive context; let F

0

be obtained by replacing F

c

by F

0

c

, a formula with the same free variables.

Then (8X : (F

0

c

!F

c

))!(F

0

!F) is a tautology.

Since M

0

j= 8X : (p(X

1

; : : : ; X

k

)!F

c

) and M

0

j= F

0

, it follows that M

0

j=

F .

2

The above transformation procedure is far from optimal in the sense that it

often introduces a large number of new predicates. In general a better result will

be obtained if T is �rst pre-processed by distributing existential quanti�ers over

disjunctions and universal quanti�ers over conjunctions.

Lemma A.2 Let F [Y] be a formula containing a sub-formula F

c

[X]. Let F

0

be

the formula obtained by replacing F

c

by F

0

c

. If F

c

occurs in a positive context in F

then 8X : (F

c

!F

0

c

) implies 8Y : (F!F

0

). If F

c

occurs in a negative context then

8X : (F

c

!F

0

c

) implies 8Y : (F

0

!F).

Proof The proof is by induction on the depth of F

c

wrt F . The induction step is

based on the following implications which can easily be proved for example

in a model theoretical way:

8X

1

; : : : ; X

n

: (F!F

0

))

8X

1

; : : : ; X

n�1

: ((8X

n

: F)!(8X

n

: F

0

))

8X

1

; : : : ; X

n�1

: ((9X

n

: F)!(9X

n

: F

0

))

8X

1

; : : : ; X

n

: (F ^G!F

0

^G)

8X

1

; : : : ; X

n

: (F _G!F

0

_G)

8X

1

; : : : ; X

n

: (:F :F

0

)

The case that F

c

occurs at depth 0 in F (i.e. F

c

= F; F

0

c

= F

0

) is trivial.

Assume that the lemma is proved for formulas in which F

c

occurs at depth

d. We prove the lemma for a formula F in which F

c

occurs at depth d+ 1.

F is either of the form 9X : F

1

, 8X : F

1

, F

1

^ F

2

, F

1

_ F

2

or :F

1

.

If F

c

occurs positively (negatively) at depth d + 1 in F and F is not a

negation :F

1

then F

c

occurs positively (negatively) in F

i

(i = 1 or i = 2) at

depth d. By the induction hypothesis it holds that 8Y

1

; : : : ; Y

k

: F

i

!F

0

i

(or

8Y

1

; : : : ; Y

k

: F

i

 F

0

i

if F

c

occurs negatively in F

i

). Here F

0

i

is the formula

259

obtained by substituting F

c

for F

0

c

in F

i

. From the above implications, it

follows directly that 8Y : F ! F

0

.

When F

c

occurs negatively (positively) in :F

1

, then F

c

occurs positively

(negatively) inF

1

. Because of the induction hypothesis, it holds that 8Y

1

; : : : ; Y

k

:

F

1

!F

0

1

(or 8Y

1

; : : : ; Y

k

: F

1

 F

0

1

if F

c

occurs negatively in F

1

). Because of

the implication for the negation, the implication switches. So the lemma

holds.

2

260 Expressive power of the Extended Clause formalism.

Appendix B

Mathematical foundation

for Justi�cations.

(Open) justi�cations are complex objects: trees of facts with possibly in�nite

branching and in�nite depth. In the paper, many proofs rely on two properties

of justi�cations: that a monotonically increasing sequence of open justi�cations

converges to an open justi�cation and that open justi�cations can be concate-

nated on the leaves with other open justi�cations. In this appendix, we provide

a mathematical foundation for open justi�cations and show that these properties

hold. To do so, we abstract an open justi�cation as a tree on some set D, where

D corresponds to the set of all simple facts of some interpretation.

The intuition behind this formalisation is to map a tree on the set of all �nite

paths occurring in the tree and starting at the root. This gives a natural mapping

between the nodes of the tree to the corresponding �nite sequences which leads to

the node.

De�nition B.1 A tree T on a set D, called the domain, is a set of �nite sequences

of elements of D, called paths, such that

� all sequences start with the same element of D, called the root.

� for all �nite sequences of length d, all subsequences starting from the root

occur in T .

A node N at depth d can be de�ned as a �nite sequence of length d+ 1 in T .

A child N

0

of N is an extension of depth d + 1. A leaf is a node which has no

children. The label of a node is the last element of the sequence.

The set of �nite sequences F of elements of D is a set. A tree is a subset of F .

The set of trees is a subset of the set of subsets of F .

261

262 Mathematical foundation for Justi�cations.

There is a natural partial order on trees: T

1

� T

2

means that T

2

extends T

1

.

� can be de�ned in a trivial way:

De�nition B.2 Let T

1

; T

2

be trees. We de�ne T

1

� T

2

i� T

1

� T

2

.

This partial order satis�es the following proposition.

Proposition B.1 For each monotonically increasing sequence of trees (T

i

), there

exists a LUB tree. This tree has the property that it contains all nodes which occur

in one of the trees.

Proof Consider the set

S

(T

i

). That this is the LUB of (T

i

) wrt to � is inherited

directly from well known properties of � and [. It is easy to proof that it

is a tree. 2

Next we de�ne the concatenation of trees. Let l

1

; l

2

be �nite paths, by l

1

+ l

2

,

we denote the sequence which is the concatenation of l

1

and l

2

.

De�nition B.3 Let T be a tree. Let S be a subset of the leaves of T , and h a

mapping from S to a set of trees such that for each N in S, h(N) is a tree with the

label of N as root. The concatenation of T and h is the tree T [fl

1

+ l

2

j l

1

2 S

and l

2

2 h(l

1

)g.

Proposition B.2 The concatenation of trees is a tree.

The proof is easy, and is discarded.

Appendix C

Acyclic incomplete

programs.

In [AB90] the notion of acyclic complete program is de�ned. We recall the basic

concepts. They apply without change to incomplete logic programs.

Given is a complete or incomplete normal logic program P based on L. P is

acyclic i� there exists a level mapping j:j for it. A level mapping j:j is a mapping

from HB [sHB to IN such that for each ground atom: jAj = j:Aj and for each

ground instance A :-L

1

; : : : ; L

n

of a normal clause of P : jAj > jL

i

j for each i.

Note that unde�ned predicates can always be assigned level 0, since they do

not occur in the head of clauses.

A level mapping is extended to a mapping k:k from all literals of L to IN

1

, by:

kLk = maxfj�(L)j j � is a grounding substitution of Lg

A literal L is called bounded if kLk is �nite.

Two properties proven in [AB90] are of interest below: for each clause of the

form A :-L

1

; : : : ; L

n

of P , each literal L and each substitution �:

k�(A)k > k�(L

i

)k if �(A) is bounded

k�(L)k < kLk if L is bounded.

A new concept is that of a level mapping in an interpretation or pre-interpreta-

tion.

De�nition C.1 Let M be a pre-interpretation or (incomplete) interpretation of

L. We de�ne k:k

M

as a mapping from the simple facts of M to IN

1

. For each

simple fact F we de�ne:

kFk

M

= minfkLk j L is a literal and for some variable assignment V :

~

M (V (L)) = Fg

263

264 Acyclic incomplete programs.

Because each subset of IN

1

contains a least element, we have that there ex-

ists a literal L

F

and variable substitution V

F

such that kFk

M

= kL

F

k and

~

M(V

F

(L

F

)) = F .

Lemma C.1 (a) Let J

d

be a direct justi�cation of a bounded simple fact F . For

each F

0

2 J

d

, kFk

M

> kF

0

k

M

.

(b) The depth of a justi�cation of a bounded fact F is bound by kFk

M

+ 1.

Proof First assume that F is a positive fact. It su�ces to prove that for each

direct positive justi�cation (DPJ) J

d

= fF

1

; : : : ; F

n

g, there exists an in-

stance �(A :-L

1

; : : : ; L

n

) of a clause of P and a variable assignment V such

that

~

M (V (�(A)) = F , k�(A)k = kFk

M

and similarly for each 1 � i � n:

~

M (V (�(L

i

)) = F

i

, k�(L

i

)k = kF

i

k

M

.

Since J

d

is aDPJ , there exists a ground domain instance V

0

(A :-L

1

; : : : ; L

n

)

such that

~

M (V

0

(A)) = F and for 1 � i � n:

~

M (V

0

(L

i

)) = F

i

. Take a pair

(L

F

; V

F

) such that kFk

M

= kL

F

k and

~

M (V

F

(L

F

)) = F . Analogously,

for each 1 � i � n select for a pair (L

F

i

; V

F

i

) such that kF

i

k

M

= kL

F

i

k

and

~

M (V

F

i

(L

F

i

)) = F

i

. We may assume that the variables of L

F

, L

F

i

and

A :-L

1

; : : : ; L

n

are disjunct. So, the set V = V

0

[V

F

[V

F

1

[: : :[V

F

n

is a

well-de�ned variable assignment.

Below, for any (domain) literal L, t

L

denotes the (domain) terms appearing

in L. So L = p(t

L

) or L = :p(t

L

). Note that for F , we have

~

M (V (t

A

)) =

t

F

=

~

M (V (t

L

F

)). We have similar equations for F

i

. We �nd that:

M j= V (t

A

= t

L

F

^ t

L

1

= t

L

F

1

^ : : :^ t

L

n

= t

L

F

n

)

Hence, the following closed formula is satis�ed in M :

9(t

A

= t

L

F

^ t

L

1

= t

L

F

1

^ : : :^ t

L

n

= t

L

F

n

)

By theorem 5.4.2, there exists a uni�er � of these terms andM j= V (�). As a

consequence, M j= V (�(t

A

)) = t

F

and for each 1 � i � n,M j= V (�(t

L

i

)) =

t

F

i

. Because "=" is interpreted by the identity relation, we �nd:

~

M (V (�(A))) = F , and hence kFk

M

� k�(A)k

~

M (V (�(L

i

))) = F

i

, and hence kF

i

k

M

� k�(L

i

)k

The equalities and identities below are now straightforward:

k�(A)k = k�(L

F

)k � kL

F

k = kFk

M

� k�(A)k

k�(L

i

)k = k�(L

F

i

)k � kL

F

i

k = kF

i

k

M

� k�(L

i

)k

Hence k�(A)k = kFk

M

and k�(L

i

)k = kF

i

k

M

. Because k�(A)k > k�(L

i

)k

we �nd kFk

M

> kF

i

k

M

.

265

When F is a negative fact, a direct justi�cation J

d

is constructed by selecting

facts from direct positive justi�cations from sF . It follows that for F

0

2 J

d

,

kFk

M

= ksFk

M

> ksF

0

k

M

= kF

0

k

M

.

Finally, it is clear that the length of a branch in a justi�cation of a bounded

fact F is bound by kFk

M

+ 1. 2

A number of interesting properties hold about acyclic logic programs. These

extend propositions in [AB90] for incomplete logic programs and justi�cation se-

mantics.

Proposition C.1 (a) All the following semantics have the same Herbrand mod-

els: 2-valued and 3-valued (direct) (partial) justi�cation semantics, 2-valued and

3-valued completion semantics [CTT91], generalised stable semantics [KM90b],

generalised well-founded semantics [PAA91b].

(b) The sets of implied ground literals of P + FEQ under (direct) (partial)

justi�cation semantics are identical.

(c) P + FEQ + SDCA is overall consistent under justi�cation semantics. Its

semantics coincides with the generalised stable semantics [KM90b] and the gener-

alised well-founded semantics [PAA91b].

Unfortunately, the set of implied ground literals of P + FEQ and P + FEQ +

SDCA may di�er in general and hence Herbrand model based semantics gives other

(more) implications than for example completion semantics. Assume L contains

only a=0 as functor. Take P =

p :-:q(X)

q(a) :-

P is acyclic. In any Herbrand model wrt (DJS) (PJS) (J S), p is false. But in

each model in which more than one domain element occurs, p is true.

Acyclic programs with FEQ but without SDCA are not necessarily overall

consistent. Consider the following complete program P based on a language with

functors s=1 and a:

fp(s(X)) :-:p(X)g

P is acyclic. Take the disjunct union of IN andZ, and interpret a by 0 2 IN and s=1

by the successor function on IN andZ. This pre-interpretation can be extended to

a justi�ed modelM for which H

M

(p(z)) = u for each z 2Z. H

M

(p(n)) is true for

odd n and false for even n.

Proof Take any incomplete interpretation M

0

satisfying FEQ. It can be ex-

tended to a unique justi�ed modelM (theorem 4.3.4). In M , bounded sim-

ple facts have �nite depth justi�cations. By an extension of the argument

in proposition 4.3.3, we �nd that M is two-valued on all bounded facts and

266 Acyclic incomplete programs.

each (directly) (partially) justi�ed modelM

0

extendingM

0

assigns the same

truth value to a bounded fact as M .

The proof of (a) continues as follows. WhenM

0

is a Herbrand incomplete in-

terpretation, then all facts are bounded and hence each (directly) (partially)

justi�ed model coincides with the two-valued justi�ed model extending M

0

.

By the theorems of chapter 4, the remaining semantics coincide also.

To �nish (b), it su�ces to see that each ground literal L is bound. Hence

its truth value in any (directly) (partially) justi�ed model corresponds with

its truth value in a justi�ed model. Hence the set of entailed ground literals

of P + FEQ is the same for all these semantics.

(c) follows from (a) and the equivalence theorems between semantics proven

in chapter 4. 2

For a restricted class of acyclic programs, the sets of entailed ground literals

are identical under all semantics concidered in this thesis.

De�nition C.2 A head-restricted normal clause A :-L

1

; : : : ; L

n

has the property

that a variable appearing in the body appears in the head.

The translation �D of an A domain D in chapter 6 is head-restricted. For this

type of programs we have the following strong property:

Proposition C.2 A theory T with a head-restricted acyclic logic program P and

integrity constraints without variables has the property that the set of entailed

ground atoms is equivalent wrt all the following semantics: (direct) (partial) justi�-

cation semantics with FEQ, (partial) justi�cation semantics with FEQ and SDCA,

2-valued and 3-valued completion semantics [CTT91], generalised stable semantics

[KM90b], the generalised well-founded semantics [PAA91b].

Proof First assume that T has no integrity constraints. By proposition C.1, a

directly justi�ed Herbrand model of an acyclic logic program is a model wrt

to any of the other semantics. Also, each model of any type of semantics

is a directly justi�ed model; this follows from the theorems in chapter 4.

Below we will prove that for a head-restricted acyclic program, for any

directly justi�ed model M , there exists a Herbrand directly justi�ed model

M

h

such that for each ground literal L, H

M

(L) = H

M

h

(L). This su�ces for

the theorem. Indeed, assume that some literal L is true in all models of a

speci�c semantics, then also in all directly justi�ed Herbrand models. Vice

versa, assume that L is satis�ed in all directly justi�ed Herbrand models.

Then for any model M of a speci�c semantics, M is a directly justi�ed

model, hence there exists a corresponding directly justi�ed Herbrand model

M

h

, and hence L is true in M

h

and M .

267

So let M be a directly justi�ed model of P + FEQ. Note that if M satis�es

FEQ, then

~

M de�nes a mapping from HU into the domain of M . We

denote the image of HU under

~

M as D

h

.

~

M is a one-to-one correspondence

from HU to D

h

. We de�ne a Herbrand interpretation M

h

as follows: for

each F 2 HB : H

M

h

(F) = H

M

(F). Clearly, for each ground literal L,

H

M

h

(L) = H

M

(L). It remains to be shown that M

h

is a directly justi�ed

model of P . This is done by showing that for any positive atom A,

~

M is

a value preserving one-to-one correspondence between the direct positive

justi�cations of A and of

~

M (A).

Take any DPJ J

d

of A in M

h

. There is a clause B :-L

1

; : : : ; L

n

and a

grounding substitution � such that �(B) = A and J

d

= f�(L

1

); : : : ; �(L

n

)g.

Consider the variable assignment V = fX=

~

M(�(X)) j X 2 dom(�)g. It is

easy to see that J

0

d

= f

~

M (V (L

1

)); : : : ;

~

M (V (L

n

))g is a DPJ of

~

M (A). Vice

versa let J

d

be any direct positive justi�cation of

~

M (A). There exists a clause

B :-L

1

; : : : ; L

n

and a variable assignment V such that

~

M (V (B)) =

~

M (A)

and J

d

= f

~

M(V (L

1

)); : : : ;

~

M(V (L

n

))g. Note that each variable in V occurs

in B, since P is head-restricted. There exists a substitution � of the variables

of B such that �(B) = A. This can easily be proven using proposition 5.4.2.

� is a grounding substitution of all literals of the body. One easily veri�es

that

~

M(�(L

i

)) =

~

M (V (L

i

)). Hence the DPJ f�(L

1

); : : : ; �(L

n

)g of A in

M

h

has the same value as J

d

.

The case that T has integrity constraints without variables follows easily

from the fact that the associated Herbrand interpretation M

h

of a directly

justi�ed model M of T is not only a directly justi�ed model of P but also

of the integrity constraints of T .

2

