
The Abductive Event Calculus

as a General Framework

for Temporal Databases

Kristof Van Belleghem Marc Denecker Danny De Schreye

Department of Computer Science, K.U.Leuven,

Celestijnenlaan 200A, B-3001 Heverlee, Belgium.

e-mail : fkristof, marcd, dannydg@cs.kuleuven.ac.be

Abstract. In earlier work, we have shown that the formalism of ab-

ductive logic programs with FOL integrity constraints provides, under a

completion semantics, the same declarative expressivity for representing

incomplete information as full �rst order logic. We have shown how the

combination of this formalism with a variant of the Event Calculus of

Kowalski and Sergot results in a correct and very expressive framework

for temporal reasoning and representation. In this paper we demonstrate

how this Abductive Event Calculus formalism provides a general frame-

work for the representation and use of temporal databases. On the declar-

ative level, it is particularly convenient for the representation of incom-

plete knowledge. Complementary, on the procedural level, we are able to

provide a number of simple algorithms using abduction and deduction

to test the consistency of the base, answer queries, update the database,

handle complex formulas and resolve inconsistency. Furthermore, the use

of the database for general temporal problem solving is possible using the

known Event Calculus and Logic Programming methods. In particular

we show how planning is possible in this kind of temporal database.

1 Introduction

The Event Calculus (see [14]) is a well-known formalism for temporal repre-

sentation and reasoning. The basic concepts of the formalism are events and

properties: events initiate and terminate periods of time during which proper-

ties hold.

The Event Calculus has been modi�ed in several ways, for example in [20],

[9], [17] and [13], mainly to simplify the ontology and to eliminate problems

occurring because of bidirectional persistence of properties (forward as well as

backward in time). In the context of the Event Calculus, [8], [19] and [17] have

introduced abduction to solve planning problems and [7] showed how abduction

can be used to solve general temporal postdiction problems in the presence of

incomplete information.

Though abduction is clearly a useful computational paradigm, it was not

recognized earlier that the formalism of abductive logic programs with �rst or-

der logic constraints provides the same declarative expressivity for representing

incomplete information as full �rst order logic (FOL). This was shown in [5],

where it was exploited to provide an implementation of the A language of [10]

in the Situation Calculus formulated as an abductive logic program.

In this paper we demonstrate how a temporal database with incomplete

information can be formalized in the Abductive Event Calculus and how a suit-

able abductive procedure like SLDNFA ([6]), which satis�es su�ciently strong

sound- and completeness results, can be used to implement the functionality of

the database and to use the data for problem solving.

Kowalski ([13]) has argued earlier that the Event Calculus in Logic Program-

ming can be used to formalize the evolution of a database system. The work pre-

sented in our paper addresses di�erent issues than Kowalski's work, in particular

the representation of incomplete information in Abductive Logic Programming

and the use of an abductive procedure for implementing the functionality of the

database.

The paper is organised as follows. In the next section, we brie
y introduce

the Event Calculus. Section 3 describes the abductive extension to Logic Pro-

gramming, its semantics and the abductive procedure. In section 4 we specify

the considered type of temporal database and in section 5 we show how it can

be represented and used with the Abductive Event Calculus.

2 The Event Calculus

In the Event Calculus, information is represented in Horn clauses augmented

with negation as failure. The following axioms de�ne a simpli�ed version of the

Event Calculus, which we use as a basis for our framework:

holds at(P; T) happens(E); E << T; initiates(E;P);

not clipped(E;P; T):

clipped(E;P; T) happens(C); in(C;E; T);

terminates(C;P):

in(C;E; T) E << C;C << T:

happens(E) holds if the event E occurs. Only one event is allowed to occur at

any one time point, which makes it possible to represent events by their time

of occurrence. In other words, we consider events to be special time points. The

relation << de�ned on events and other time points is a strict linear order:

our theory contains axioms ensuring irre
exivity, antisymmetry, transitivity and

linearity, but they are left implicit.

In general, the actions associated with an event determine which properties

are initiated or terminated by it. This is formulated in domain dependent axioms,

for example

initiates(E; has(x; b)) act(E; give(y; b; x)):

terminates(E; has(y; b)) act(E; give(y; b; x)):

3 Abduction

The �rst order logic theory represented by an Event Calculus program is usually

de�ned as the one corresponding to its Clark completion semantics ([3]). The

well-known SLDNF procedure can then be used to make deductive inferences.

However, Clark completion semantics requires complete knowledge about the

problem domain: incomplete data can not be represented. Furthermore, if we

want to provide a wider functionality than the answering of queries (for example,

use of the database for planning), deduction alone will not su�ce.

These restrictions can be overcome in the following way: on the representa-

tional level, our theories are to be interpreted according to Console's completion

semantics ([4]) for abductive logic programs, augmented with general �rst order

logic constraints. This semantics allows for the occurrence of unde�ned predi-

cates. Thus, incomplete knowledge can be represented.

On the level of problem solving, we will use abduction as well as deduction.

This, of course, requires an abductive proof procedure: given a set of logic formu-

las F (facts and rules about the problem domain) and a number of conclusions

G, an abductive procedure attempts to �nd a set of additional facts � such that

{ F +� is consistent.

{ F +� j= G.

{ � is minimal: no subset of � exists that satis�es the �rst two conditions.

The minimality condition is not always added. The facts allowed in� are usually

constrained to obtain useful results (for example to avoid the solution� = fGg).

In general, abduction can be used to deal with incomplete knowledge and

to solve diagnosis and planning problems, by constraining the facts in � in

the appropriate way. In general the predicates allowed in � are those we have

incomplete knowledge about, in other words the unde�ned predicates. In the

sequel we refer to these as abducible or abductive. For example, in planning

problems we have incomplete knowledge about the actions occurring in the plan

and the time relations between them, so actions and << will be abducible. We

try to �nd the sequence of actions necessary to prove the goal, which is the

desired end state. In a similar way postdiction (diagnosis) and indeterminism

can be modeled, as demonstrated in [7]. We return to the topic of planning

later, in the context of a temporal database.

3.1 The SLDNFA proof procedure

There have been several attempts to build an abductive proof procedure and to

use it in the context of temporal reasoning. Examples can be found in [8], [19],

[17] and [11].

In our proposal we use the SLDNFA procedure described in [6] and [7]. This

procedure, an extension of the SLDNF resolution of Logic Programming ([12],

[3]) that can deal with abductive predicates, can handle deduction as well as

abduction and allows for a correct treatment of non-ground abducible atoms,

which is necessary in our applications. Its soundness and completeness with

respect to Console completion semantics are proven in [6].

The implementation of SLDNFA we are using has a number of features mak-

ing it more �t for planning in the Event Calculus and for general temporal

reasoning. A necessary feature is of course the possibility to indicate which pred-

icates are abducible, depending on the intended kind of problem solving and the

available knowledge about the problem domain.

Another feature is the possibility to use constraints \false A

1

; : : :A

n

".

These constraints are handled by adding A

1

; : : :A

n

to a list of goals for which

�nite failure needs to be proven, thus ensuring :false.

Speci�cally related to the Event Calculus is the fact that iterative deepen-

ing is added, which allows us to �nd the shortest solution (the one including

the smallest number of events) �rst. It is also possible to indicate a maximum

number of events to limit the search. Finally, a special constraint module is im-

plemented that makes sure the << relation on events constitutes a linear order

(actually, a partial order will be returned if all of its possible linearizations are

valid solutions).

4 Speci�cation of the considered type of temporal

database

4.1 Topology of time

When representing time, we have a choice of several topologies, for example

point-based or interval-based time, and numerical or non-numerical time. We

allow both time points and intervals in our database, considering intervals as

periods of time started and ended by a time point. Currently SLDNFA does

not support numerical constraints, so we will not use a numerical time line. The

addition of these numerical constraints is one of our further research issues.

4.2 Contents of the database

The data we aim to represent in the database are formulas representing the truth

value of properties during intervals and at time points, and the change of truth

values at certain time points. Further, formulas representing the order on time

points and the relations between intervals will be used. We choose the following

set of basic formulas, with P an atom:

- holds at(P; T) : P is true at time point T .

- holds(P; int(t

1

; t

2

)) : P is true throughout the interval int(t

1

; t

2

). This interval

does not need to be \maximal": P may remain true after

t

2

or can be true already before t

1

.

- notholds(P; int(t

1

; t

2

)) : P is false throughout the interval int(t

1

; t

2

).

- on(P; T) : P 's value changes from false to true at time point T .

- off(P; T) : P changes from true to false at T .

The possible relations between time points and intervals are represented by the

following formulas. (In the case of intervals, we distinguish thirteen possible

relations, based on those de�ned in [2], though some names may di�er.)

- T

1

= T

2

: T

1

and T

2

are the same time point.

- T

1

<< T

2

: T

1

is chronologically before T

2

.

- equal(i

1

; i

2

) : i

1

and i

2

are the same interval.

- meets(i

1

; i

2

) : the endpoint of i

1

is the starting point of i

2

.

- overlaps(i

1

; i

2

) : i

1

starts before i

2

, and ends during i

2

.

- starts(i

1

; i

2

) : i

1

is an initiating subinterval of i

2

.

- ends(i

1

; i

2

) : i

1

is a terminating subinterval of i

2

.

- during(i

1

; i

2

) : i

1

is a subinterval of i

2

that is initiating nor terminating.

- before(i

1

; i

2

) : i

1

lies entirely before i

2

.

- after(i

1

; i

2

) : inverse of before.

- metby(i

1

; i

2

) : inverse of meets.

- overlapped(i

1

; i

2

) : inverse of overlaps.

- startby(i

1

; i

2

) : inverse of starts.

- endby(i

1

; i

2

) : inverse of ends.

- contains(i

1

; i

2

) : inverse of during.

We can build more complex expressions by combining these basic formulas

with logical connectives and quanti�ers : if P and Q are valid expressions, then

:P , P&Q, P _Q, P � Q (exclusive or), P) Q, and P , Q are valid as well,

and if P (x) is an expression, then so are 8x : P (x) and 9x : P (x).

4.3 Use of the database

The formulas de�ned above determine the possible contents of our temporal

database. The functionality we require of such database is the following:

{ testing whether a database D is consistent.

{ answering normal Logic Programming queries as well as more complex ones.

Since our data may be incomplete, we distinguish two types of query:

1. \Is Q necessarily true in the database D ?" (does D j= Q hold?)

2. \Is Q possible in the database D ?" (is Q + D consistent ?).

{ updating the database, with a consistency check of the new data.

{ in the case of inconsistency, proposing solutions to restore consistency.

{ �nally, and maybe most importantly, extending the expressivity to make it

possible to use the database for problem solving, in particular planning.

5 A general solution using the Abductive Event Calculus

5.1 Representation of data

We consider our data as a theory that consists of two parts. The �rst part is

a logic program de�ning all basic formulas in terms of primitive Event Calcu-

lus predicates. The second part contains the real data in the base. These are

considered integrity constraints on the possible states (models) of the database.

The basic formulas are de�ned by the following rules:

holds at(P; T) happens(E); E << T; initiates(E;P);

not clipped(E;P; T):

holds(P; int(T

1

; T

2

)) interval(T

1

; T

2

); holds from(P; T

1

);

not clipped(T

1

; P; T

2

):

notholds(P; int(T

1

; T

2

)) interval(T

1

; T

2

); notholds from(P; T

1

);

not started(T

1

; P; T

2

):

holds from(P;E) initiates(E;P):

holds from(P;E) holds at(P;E); not terminates(E;P):

notholds from(P;E) terminates(E;P):

notholds from(P;E) not holds at(P;E); not initiates(E;P):

started(E;P; T) happens(C); in(C;E; T); initiates(C;P):

clipped(E;P; T) happens(C); in(C;E; T); terminates(C;P):

on(P;E) initiates(E;P); not holds at(P;E):

off(P;E) holds at(P;E); terminates(E;P):

in(C;E; T) E << C;C << T:

It follows from our de�nitions that the interval int(t

1

; t

2

) actually denotes the

interval]t

1

; t

2

], containing its endpoint but not its starting point. This choice is

made because working with closed intervals can lead to inconsistencies (one time

point can belong to two intervals with di�erent values for the same property),

while open intervals lead to time points where properties are unde�ned. A choice

between the two types of halfopen intervals is easy: the de�nition of the Event

Calculus naturally leads to the form]t

1

; t

2

].

The chronological relations between intervals are expressed in terms of re-

lations between their starting points and end points. This allows us to use the

linear time constraint module of SLDNFA for reasoning on them.

equal(int(T

1

; T

2

); int(T

1

; T

2

)) interval(T

1

; T

2

):

meets(int(T

1

; T

2

); int(T

2

; T

3

)) interval(T

1

; T

2

); interval(T

2

; T

3

):

overlaps(int(T

1

; T

2

); int(T

3

; T

4

)) interval(T

1

; T

2

); interval(T

3

; T

4

);

T

1

<< T

3

; T

3

<< T

2

; T

2

<< T

4

:

starts(int(T

1

; T

2

); int(T

1

; T

3

)) interval(T

1

; T

2

); interval(T

1

; T

3

);

T

2

<< T

3

:

ends(int(T

1

; T

2

); int(T

3

; T

2

)) interval(T

1

; T

2

); interval(T

3

; T

2

);

T

3

<< T

1

:

during(int(T

1

; T

2

); int(T

3

; T

4

)) interval(T

1

; T

2

); interval(T

3

; T

4

);

T

3

<< T

1

; T

2

<< T

4

:

before(int(T

1

; T

2

); int(T

3

; T

4

)) interval(T

1

; T

2

); interval(T

3

; T

4

);

T

2

<< T

3

:

after(int(T

1

; T

2

); int(T

3

; T

4

)) interval(T

1

; T

2

); interval(T

3

; T

4

);

T

4

<< T

1

:

overlapped(int(T

1

; T

2

); int(T

3

; T

4

)) interval(T

1

; T

2

); interval(T

3

; T

4

);

T

3

<< T

1

; T

1

<< T

4

; T

4

<< T

2

:

metby(int(T

1

; T

2

); int(T

3

; T

1

)) interval(T

1

; T

2

); interval(T

3

; T

1

):

startby(int(T

1

; T

2

); int(T

1

; T

3

)) interval(T

1

; T

2

); interval(T

1

; T

3

);

T

3

<< T

2

:

endby(int(T

1

; T

2

); int(T

3

; T

2

)) interval(T

1

; T

2

); interval(T

3

; T

2

);

T

1

<< T

3

:

contains(int(T

1

; T

2

); int(T

3

; T

4

)) interval(T

1

; T

2

); interval(T

3

; T

4

);

T

1

<< T

3

; T

4

<< T

2

:

interval(T

1

; T

2

) happens(T

1

); happens(T

2

);

T

1

<< T

2

:

These rules are interpreted under Console completion semantics ([4]) with

happens/1, initiates/2, terminates/2 and << =2 as the unde�ned predicates. The

de�nitions of other predicates are completed as in Clark completion semantics.

Another important remark is that the \free equality theory", which states

that constants and terms with di�erent names are unequal, holds for all terms

and constants, except for time points. Time points with di�erent names can be

equal and must be treated as skolem constants.

Finally, as indicated earlier, << is a linear order on time points and events.

The rules de�ned so far determine the meaning of our database. The real

data are considered integrity constraints on the possible models of this database.

These can be basic formulas as well as complex expressions. Some examples:

notholds(has(john; book

1

); int(t

1

; t

2

))):

8(T) : holds at(p; T):

meets(int(T

1

; T

2

); int(T

3

; T

4

)) �metby(int(T

1

; T

2

); int(T

3

; T

4

)):

holds at(has(X;O); T); holds at(has(Y;O); T)) X = Y:

The data can be very incomplete, so possibly many di�erent models exist. For

example, consider the database containing only two simple constraints:

holds(has(john; book

1

); int(t

1

; t

2

)):

notholds(has(mary; book

2

); int(t

3

; t

4

)):

We do not know anything about John having his book outside of the interval

int(t

1

; t

2

). He can own it all the time, or only during the mentioned time period,

or during a period that starts at t

1

but continues after t

2

, and so on. Likewise for

Mary's book we have many possible models. Finally we have no information at all

concerning the temporal relation linking int(t

1

; t

2

) and int(t

3

; t

4

). These periods

can overlap, be disjoint, be equal, etc. Many di�erent models may correspond to

di�erent solutions for the unde�ned predicates.

5.2 Basic functionality of the database

Now that we have expressed the meaning of our data, we can determine how

to use them. We �rst describe how the basic functionality of the database is

provided in the special case where only basic formulas are allowed as constraints.

One very important task, useful for consistency testing as well as query an-

swering, is the generation of a logical model for a set of data. To �nd such models,

we use abduction. As indicated earlier, our unde�ned predicates are happens,

<<, initiates and terminates. These predicates are the abductive ones for the

procedure. To �nd a model for a set of data, we collect these data in a goal, and

try to build a proof for this goal using the de�nitions of the basic formulas and

a number of abduced new facts. The resulting set of abduced facts (if it exists)

forms, in a sense, a model for the data: Comp(P + �) j= F , where P is the

program consisting of de�ning rules, � is the set of abduced facts, F is the goal

to be proven (the data), and Comp(P) is the Clark completion of P . Every ab-

duced solution is an assignment of truth values to the unde�ned predicates, and

corresponds to one possible model for the data. If no solution can be abduced,

the data are inconsistent.

Testing the consistency of a database is now straightforward: we check whether

P +F is consistent, where P is the program containing the basic de�nitions and

F are the data in the database, by attempting to abduce a model in which F

holds. The data are consistent if we �nd a model, inconsistent if we �nd failure.

Consider again the database containing the constraints

holds(has(john; book

1

); int(t

1

; t

2

)):

notholds(has(mary; book

2

); int(t

3

; t

4

)):

To check its consistency, we form the goal

 holds(has(john; book

1

); int(t

1

; t

2

)); notholds(has(mary; book

2

); int(t

3

; t

4

)):

and �nd for example the abduced facts

happens(t

1

): happens(t

2

): happens(t

3

): happens(t

4

):

t

1

<< t

2

<< t

3

<< t

4

:

initiates(t

1

; has(john; book

1

)):

which proves consistency of the data.

Answering queries can be done in a similar way. If we want to know whether

Q is possible in the database F , we try to abduce a solution that (added to

P) entails F + Q. For example, using the same data as above, the query \Is it

possible that Mary owns book 2 at t

1

" will be solved by attempting to prove

 holds(has(john; book

1

); int(t

1

; t

2

));

notholds(has(mary; book

2

); int(t

3

; t

4

));

holds at(has(mary; book

2

); t

1

)):

which has as a model for example (omitting the happens-facts)

t

new

<< t

1

<< t

2

<< t

3

<< t

4

:

initiates(t

new

; has(mary; book

2

)):

initiates(t

1

; has(john; book

1

)):

terminates(t

3

; has(mary; book

2

)):

The answer to the query is therefore a�rmative.

If the question is whether Q is necessarily true given F , we try to abduce a

model for F + :Q. If we �nd no model (P + F + :Q is inconsistent), we know

that P +F j= Q, which is what we were trying to �nd out. Using the same query

as in the previous example, we would end up trying to prove

 holds(has(john; book

1

); int(t

1

; t

2

));

notholds(has(mary; book

2

); int(t

3

; t

4

));

not holds at(has(mary; book

2

); t

1

)):

which has the solution

t

1

<< t

2

<< t

3

<< t

4

:

initiates(t

1

; has(john; book

1

)):

so we can conclude that Mary does not necessarily have book 2 at t

1

.

Finally, to update the database, we check whether the resulting data would

be consistent, and if so, add the new data item to the base. If inconsistency is

detected, a warning results and the update can only be executed through user

intervention. For example, if we want to add holds at(has(mary; book

2

); t

1

)) to

the database, we try to compute a model for

 holds(has(john; book

1

); int(t

1

; t

2

));

notholds(has(mary; book

2

); int(t

3

; t

4

));

holds at(has(mary; book

2

); t

1

)):

which succeeds as before. The new data item is then added to the base.

This functionality poses no problem for the SLDNFA procedure, except for

the treatment of time constants. SLDNFA considers constants in the data to

be normal constants, where they are intended to be skolems. We can solve this

problem in the following way: we collect all data (F

1

; F

2

; : : :F

N

) in the conjunc-

tion

F

1

&F

2

& : : :&F

N

:

Wewrite that conjunction in the formF (t

1

; : : :t

n

) where the t

i

are our time point

skolem constants. In short, we call this expression F . We can then \deskolemize"

F : we replace all skolem constants by existentially quanti�ed variables, which

results in F

0

:

9T

1

; : : :T

n

: F (T

1

; : : :T

n

):

Skolem's theorem states that for all P and F , with F

0

the deskolemization of F

as de�ned above: P +F is consistent, P+F

0

is consistent. Therefore, replacing

skolem constants by existentially quanti�ed variables does not change the result

of a consistency check or a query.

We now do the following: before calling the SLDNFA procedure, we build a

table in which we link every time constant to a variable. In the data we pass

to the procedure, we replace every constant by its corresponding variable. As

indicated, this does not change the consistency results.

To �nd the solution corresponding to this obtained consistency result, we

combine the answer of the SLDNFA procedure with our table of time constants,

where some of the variables may be uni�ed by now. In that case the time con-

stants corresponding to these variables are equal in this solution. We will discuss

a detailed example later.

The search space can now be limited to solutions with a bounded number of

events in a consistency/inconsistency preserving way: it can be shown that, if

the data are consistent and contain only N di�erent time points, there exists at

least one model for these data containing 2N or less events. In general 2N even is

a substantial overestimation of the needed number of events, and in most cases

we �nd solutions with a number of events equal to or a little greater than N.

5.3 Introduction of complex data and queries

In the previous section we showed how SLDNFA can be used to abduce models

for data consisting of only basic formulas. However, in the case of complex queries

and data a preceding transformation step is required. This transformation step

is based on the Lloyd-Topor transformation described in [16].

The transformation provides a method to transform a program containing

non-Horn clauses and complex goals, an extended program, to a program con-

taining only Horn clauses augmented with negation as failure. The soundness

of the transformation under Clark completion semantics is proven in the arti-

cle, and this soundness result holds for abductive logic programs under Console

completion semantics as well. We recall the essence of the transformation here.

An extended logic program is a program consisting of \general clauses" ([15]).

These are rules of the form

A W:

where A is an atom and W an arbitrary �rst order logic expression. Any vari-

ables in A and free variables in W are considered universally quanti�ed at the

beginning of the clause.

The transformation to a normal logic program is performed by replacing

general clauses by others using a set of transformation rules, until only Horn

clauses | possibly with negation in the body | are left. As an example, we

include some of the basic transformation rules:

a) Replace A W

1

;W

2

; : : : ; (8x

1

: : : x

m

:W); : : :W

n

:

by A W

1

;W

2

; : : : ;:(9x

1

: : :x

m

: :W); : : :W

n

:

b) Replace A W

1

;W

2

; : : : ;:(V (W); : : :W

n

:

by A W

1

;W

2

; : : : ;W;:V; : : :W

n

:

c) Replace A W

1

;W

2

; : : : ;:(:W); : : :W

n

:

by A W

1

;W

2

; : : : ;W; : : :W

n

:

d) Replace A W

1

;W

2

; : : : ;:(9x

1

: : :x

m

:W); : : :W

n

:

by A W

1

;W

2

; : : : ;:p(y

1

: : : y

k

); : : :W

n

:

and p(y

1

: : : y

k

) 9x

1

: : :x

m

:W:

where p is a new predicate symbol not occurring in the program, and

y

1

; : : : y

k

the free variables in (9x

1

: : :x

m

:W).

Similar rules exist for each operator and its negation. A complete list can be

found in [16].

The goal of the program can be transformed in the same way:

Replace W:

by answer(x

1

: : : x

n

):

and answer(x

1

: : :x

n

) W:

where x

1

: : :x

n

are the free variables in W .

The resulting rule answer(x

1

: : :x

n

) W: must be transformed further using

the rules described above.

5.4 A detailed example

To illustrate how our system handles complex data and time skolems, we solve

a small example query in detail. We have a database DB containing two data

items, namely

holds(has(john; book

1

); int(t

1

; t

2

)):

holds(has(mary; book

2

); int(t

2

; t

3

)):

We want to know if it is possible that, for arbitrary time points a,b and c,

holds(has(john; book

1

); int(a; b))_ notholds(has(mary; book

2

); int(a; c))

is true. The following query is used:

 poss query(DB;

or(holds(has(john; book

1

); int(a; b)); notholds(has(mary; book

2

); int(a; c)))):

The program collects the data from DB in a list and adds the query to it. All

time constants are replaced by variables, and we obtain the following time table:

t

1

� X

1

a � A

t

2

� X

2

b � B

t

3

� X

3

c � C

The goal we want to prove becomes

[holds(has(john; book

1

); int(X

1

; X

2

)); holds(has(mary; book

2

); int(X

2

; X

3

));

or(holds(has(john; book

1

); int(A;B)); notholds(has(mary; book

2

); int(A;C))]

but the data need to be transformed �rst. In this case only the disjunction is

complex. New rules

q

0

(A;B;C) holds(has(john; book

1

); int(A;B)):

q

0

(A;B;C) notholds(has(mary; book

2

); int(A;C)):

are added to the program, and we try to solve the following query:

 holds(has(john; book

1

); int(X

1

; X

2

));

holds(has(mary; book

2

); int(X

2

; X

3

)); q

0

(A;B;C):

If we ask for a solution with three events, the meta-interpreter replaces time

variables by skolem constants, determines the order on these time constants, and

abduces the necessary initiations and terminations to prove the goal (using the

new rules for q

0

together with the general de�nitions of the database formulas).

The solution contains three events new 1, new 2 and new 3, where X

1

=

A = new 1, X

2

= B = new 2 en X

3

= C = new 3. The abduced order on these

events is new 1 << new 2 << new 3. The initiations are

initiates(new 1; has(john; book

1

)):

initiates(new 2; has(mary; book

2

)):

and terminations are not necessary. The time table now looks like this:

t

1

� new 1 a � new 1

t

2

� new 2 b � new 2

t

3

� new 3 c � new 3

and we can read the following solution

t

1

= a; t

2

= b; t

3

= c;

t

1

<< t

2

<< t

3

;

initiates(t

1

; has(john; book

1

));

initiates(t

2

; has(mary; book

2

)):

which is obviously correct. Of course it is not the only solution, and the program

will �nd many more, for example solutions where g is initiated by t

1

or where

f gets terminated by some event. One reason for the many solutions is the

occurrence of a disjunction in the query.

5.5 Resolving inconsistency

We have extended this program further to help the user resolve inconsistency

in the data. We use abduction to propose solutions for the inconsistency, as

illustrated in the following example.

Supppose we have three formulas P , Q and R as data. The program collects

these data in a list [P;Q;R], which is given | after transformation | as a goal

to the meta-interpreter. If the meta-interpreter returns with a solution, the data

are consistent and there is no problem.

If no solution is found, and the user has chosen the \resolve inconsistency"

option, control returns to the transformation program. This program will undo

all changes it made to the data during transformation, and generates a new

transformation, only this time not for [P;Q;R], but for [reject(P); Q;R].

The meta-interpreter then tries to explain reject(P) instead of P . This is

always possible, because we make reject/1 an abductive predicate. The result is

then that an abduced fact reject(P) is written in the solution, while the program

continues trying to �nd a model for [Q;R]. The constraint P is dropped, which

possibly resolves the inconsistency.

In further attempts every combination of formulas and rejected formulas is

checked until a solution is found. In short then, for any fact P the program can

either explain P , or abduce reject(P) and ignore P . Looking at the abduced

reject(P) facts, the user sees which constraints have been dropped to restore

consistency. Of course more than one solution can exist, and the user can choose

the best one, whatever \best" means to him.

As an example, a database containing

holds(has(john; book

1

); int(t

1

; t

2

))):

holds(has(mary; book

1

); int(t

1

; t

2

)):

holds at(has(X;O); T); holds at(has(Y;O); T)) X = Y:

is inconsistent, and consistency can be restored by deleting any of the three

constraints. One of the proposed solutions would be

reject(holds(has(john; book

1

); int(t

1

; t

2

)))):

happens(t

1

): happens(t

2

): t

1

<< t

2

:

initiates(t

1

; has(mary; book

1

)):

This method is of course quite ine�cient, since data are selected for rejection

in a random way, without looking for the causes of the inconsistency. There exist,

however, solutions to this problem. As mentioned earlier, the meta-interpreter

maintains a list of constraints (negative goals) to be satis�ed. If we keep track of

the data items corresponding to a constraint, and determine which fact violates

which constraint, we can use this information in a more intelligent method to

resolve inconsistency. We will return to this issue brie
y in the discussion.

5.6 Planning

If we want to use a database for planning, we of course need to introduce the

concept of action. This is a well-known concept in the Event Calculus and we can

use it without any modi�cation. To use the database for planning, we de�ne all

possible actions and their e�ects. Then we make the actions abducible (instead of

simply the initiation and termination of properties). Initiations and terminations

now follow from the occurring actions. In this way, properties can not arbitrarily

change their value as they could in the original model. Every change is now

caused by an action.

A system for planning using the Abductive Event Calculus has been devel-

oped earlier. This system, based on abducible actions, can almost automatically

be combined with our database system. We can then use our database for plan-

ning without a problem. Furthermore, the use of actions to explain every initi-

ation and termination can be extended to non-planning problems. The actions

then de�ne every possible way in which properties can change. As a result, our

models not only contain information about which properties changed value, but

also about why this happened.

As an example, assume we want to build a very simple plan: John owns a

certain book, and we want Mary to have it. The only possible action is giving

the book to someone. We add the speci�cation of this action's preconditions and

e�ects to our basic de�nitions:

false act(E; give(Y;B;X)); not holds at(has(Y;B); E):

initiates(E; has(X;B)) act(E; give(Y;B;X)):

terminates(E; has(Y;B)) act(E; give(Y;B;X)):

We also introduce a special event start which occurs before all other events to

take care of the �rst initiations. After this special event, only actions can change

the world.

happens(start):

false happens(T); T << start:

initiates(start; P) initially(P):

and we make happens, <<, initially and act abducible.

The database DB would contain the formulas

holds at(has(john; book

1

); t

1

):

holds at(has(X;B); T); holds at(has(Y;B); T)) X = Y:

and we would try to solve the query

 poss query(DB; [t

1

<< t

2

; holds at(has(mary; book

1

); t

2

)]:

This gives for example the model

happens(start): happens(t

1

): happens(t

2

): happens(t

3

):

start << t

1

<< t

3

<< t

2

:

initially(has(john; book

1

)):

act(t

3

; give(john; book

1

;mary)):

which explicitly contains the plan.

As a �nal remark we can indicate that the original idea with abducible ini-

tiations and terminations is just a special case of the proposal using actions, in

which every action corresponds to one initiation or termination.

6 Discussion

We have demonstrated how the Abductive Event Calculus provides a general

framework for the representation and use of temporal databases. Both time

points and intervals can be used. The representation of incomplete knowledge is

perfectly possible.

Abduction provides a straightforward way to generate models for a set of

data. This allows us to check consistency and to answer queries. Complex data

can be handled using a preceding transformation step, and deskolemization al-

lows us to represent time points that may be equal to each other.

Using an abductive predicate reject/1 we introduced a simple method to help

us resolve inconsistency by rejecting certain data. Finally, we have shown how

the database can be used for planning by introducing actions and making them

abducible.

In general, the proposed solutions are not very e�cient. We mainly provide a

theoretical framework for representing incomplete temporal databases, and give

a number of simple algorithms to illustrate how this database can be used. These

algorithms may be the basis of research on more e�cient implementations.

One of our own further research goals, apart from the introduction of nu-

merical time constraints, is the improvement of the e�ciency of our procedures.

On one hand, we hope to obtain this greater e�ciency by incorporating CLP

techniques and tabulation.

On the other hand, we already �nd interesting ideas in the literature. For

example, in [22] we �nd an algorithm for resolving inconsistency in a network of

interval relations, based on the work in [1]. There, for each pair of intervals a list

of possible relations between these intervals is maintained. If ever no possible

relations are left between any two intervals, the data are inconsistent. Weigel

and Bleisinger have modi�ed and extended this procedure to e�ciently derive

solutions for the inconsistency.

Their solutions show some similarity to our approach, but work only on in-

terval relations instead of general data. This allows for more e�cient algorithms,

especially if an incremental consistency checker is used.

Another approach to the representation of temporal databases can be found

in [18]. A database is considered a collection of maximal intervals throughout

which certain properties hold. For each property a list of such intervals is main-

tained. Incomplete knowledge can be represented by skolemizing the end points

of an interval, and constraints on these end points can be expressed. The frame-

work shows some similarity to ours, though no explicit events are used and only

maximal intervals are represented. The system can be mapped to ours, however,

and some of its proposed algorithms may be useful to us.

A possible extension for temporal databases is the introduction of a notion

of belief. The representation of belief in a theory of time was addressed in [2].

One proposal to incorporate this notion in a temporal database is described in

[21]. To incorporate a similar extension in our system, further research will be

necessary.

The most important aspect of our framework is probably that it allows for

the data in the base to be in the same language as the applications working with

them. This is clearly illustrated by the straightforward extension for planning.

Thus we hope to show that the Abductive Event Calculus is not only useful in

several distinct temporal reasoning domains, but also provides a link between

them.

Acknowledgements

Kristof Van Belleghem is partly supported by ESPRIT BR project Compulog II

and partly by the Belgian IWONL. Marc Denecker is supported by Dienst Onder-

zoekscoordinatie, K.U.Leuven. Danny De Schreye is a senior research associate

of the Belgian NFWO. We thank anonymous referees for valuable comments.

References

1. J. F. Allen. Maintaining Knowledge About Temporal Intervals. CACM,

26(11):832{843, 1983.

2. J. F. Allen. Towards a General Theory of Action and Time. Arti�cal Intelligence,

23(11):123, 1984.

3. K. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

databases, pages 293{322. Plenum Press, 1978.

4. L. Console, D. Theseider Dupre, and P. Torasso. On the relationship between

abduction and deduction. Journal of Logic and Computation, 1(5):661{690, 1991.

5. M. Denecker. Knowledge Representation and Reasoning in Incomplete Logic Pro-

gramming. PhD thesis, Department of Computer Science, K.U.Leuven, 1993.

6. M. Denecker and D. De Schreye. SLDNFA; an abductive procedure for normal

abductive programs. In K. Apt, editor, Proceedings of the International Joint

Conference and Symposium on Logic Programming, Washington, 1992.

7. M. Denecker, L. Missiaen, and M. Bruynooghe. Temporal reasoning with abduc-

tive event calculus. In Proceedings of ECAI 92, Vienna, 1992.

8. K. Eshghi. Abductive planning with event calculus. In R. Kowalski and K. Bowen,

editors, Proceedings of the 5th ICLP, 1988.

9. C. Evans. The Macro-Event Calculus: Representing Temporal Granularity. In

Proceedings of PRICAI, Tokyo, 1990.

10. M. Gelfond and V. Lifschitz. Describing Action and Change by Logic Programs.

In Proc. of the 9th Int. Joint Conf. and Symp. on Logic Programming, 1992.

11. A. Kakas and P. Mancarella. Constructive abduction in logic programming. Tech-

nical report, Dipartimento di Informatica, University of Pisa, 1993.

12. R. A. Kowalski. Logic for problem solving. Elsevier Science Publisher, 1976.

13. R. A. Kowalski. Database updates in the event calculus. Journal of Logic Pro-

gramming, 1992, 1992.

14. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New Generation

Computing, 4(4):319{340, 1986.

15. J. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1987.

16. J. Lloyd and R. Topor. Making prolog more expressive. Journal of logic program-

ming, 1(3):225{240, 1984.

17. L. Missiaen. Localized abductive planning with the event calculus. PhD thesis,

Department of Computer Science, K.U.Leuven, 1991.

18. A. Porto and C. Ribeiro. Temporal inference with a point-based interval algebra.

In Proceedings of ECAI 92, Vienna, pages 374{378, 1992.

19. M. Shanahan. Prediction is deduction but explanation is abduction. In Proceedings

of IJCAI 89, page 1055, 1989.

20. M. Shanahan. Representing continuous change in the event calculus. In Proceed-

ings of the 9th ECAI, page 598, 1990.

21. S. Sripada. A metalogical programming approach to reasoning about time in

knowledge bases. In Proceedings of IJCAI 93, 1993.

22. A. Weigel and R. Bleisinger. Support for resolving Contradictions in Time Interval

Networks. In Proceedings of ECAI 92, Vienna, pages 379{383, 1992.

This article was processed using the L

a

T

E

X macro package with LLNCS style

