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Auditory-inspired speech envelope extraction methods for improved
EEG-based auditory attention detection in a cocktail party scenario

Wouter Biesmans†, Neetha Das†?, Tom Francart?, Alexander Bertrand†

Abstract—This paper considers the auditory attention detec-
tion (AAD) paradigm, where the goal is to determine which of two
simultaneous speakers a person is attending to. The paradigm
relies on recordings of the listener’s brain activity, e.g., from
electroencephalography (EEG). To perform AAD, decoded EEG
signals are typically correlated with the temporal envelopes of the
speech signals of the separate speakers. In this paper, we study
how the inclusion of various degrees of auditory modelling in this
speech envelope extraction process affects the AAD performance,
where the best performance is found for an auditory-inspired
linear filter bank followed by power law compression. These two
modelling stages are computationally cheap, which is important
for implementation in wearable devices, such as future neuro-
steered auditory prostheses. We also introduce a more natural
way to combine recordings (over trials and subjects) to train
the decoder, which reduces the dependence of the algorithm on
regularization parameters. Finally, we investigate the simultane-
ous design of the EEG decoder and the audio subband envelope
recombination weights vector using either a norm-constrained
least squares or a canonical correlation analysis, but conclude
that this increases computational complexity without improving
AAD performance.

Index Terms—Neuro-steered auditory prostheses, cocktail
party, auditory attention, EEG processing, speech envelope,
auditory models.

I. INTRODUCTION

The human auditory system has the remarkable ability to
attend to one speaker and ignore the others in a so-called
cocktail party scenario with multiple simultaneous speakers.
Since the effect was first described in 1953 [2], it has been
a topic of ongoing research in the fields of neuroscience and
audiology. It was demonstrated in [3] that speech spectrograms
that were reconstructed from cortical responses to a multi-
speaker stimulus reveal spectral and temporal features of the
attended speaker, as if the unattended speakers weren’t there.
This is very interesting from a neuroscientific point of view as
it provides a new research tool that can help to understand and
map the human auditory processing. Furthermore, it allows to
detect to which speaker a subject is attending in a cocktail
party scenario [4]–[6]. This auditory attention detection (AAD)
paradigm might lead to a breakthrough for auditory prostheses
(APs) such as hearing aids and cochlear implants. As it
stands, current state-of-the-art APs employ beamforming, fixed
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or adaptive, to enhance a signal from one direction and
suppress the rest. However, the system does not know to which
signal the listener intends to attend. Therefore, the integration
with an AAD system to steer the beamforming algorithm
to the attended speaker would be of great benefit. AAD
has successfully been applied to electrocorticography [4],
magnetoencephalography (MEG) [6] and EEG [5], [7], [8].
When aiming for application of AAD in portable, mainstream
devices such as a AP however, EEG is the only practical
non-invasive modality. Although wearable EEG devices are
currently still quite bulky, significant progress has been made
towards unobtrusive wearable EEG solutions [9]–[14].

Different multi-channel approaches have been proven to be
successful at performing AAD. In [8], robust features that are
relevant for classification are extracted from the neural mea-
surements, and then used to train a classifier. In [15], attention
is tracked with a high temporal resolution using a state-space
modelling approach. Another approach, which is currently
more popular for AAD, relies on stimulus reconstruction in
which a spatio-temporal linear decoder is first trained, and
then used to reconstruct the envelope of the attended speaker’s
speech signal from the multi-channel neural measurements.
The decoder can be trained using either a least-squares (LS)
estimation error objective function [5], [7], or by maximiz-
ing a cross-correlation ratio using a generalized eigenvector
decomposition [6]. Once such a decoder has been trained,
it can be applied to other neural recordings, after which the
reconstructed speech envelope can be compared to the actual
speech envelopes through Pearson’s correlation coefficient. A
final classification then marks the speaker corresponding to
the envelope with highest correlation as the attended speaker.

In this paper, we follow the LS approach proposed in [5]
which is a popular method for AAD, mainly because of its
simplicity and computational efficiency, while at the same time
being very effective, as shown in several studies [7], [16]–[18].
However, we introduce a more natural way of combining the
data for training the decoder, in which we solve a single LS
problem over the entire data set, rather than averaging over
a multitude of per-trial LS solutions. This different training
methodology not only results in better AAD performance, but
also reduces the sensitivity with respect to a regularization
parameter, up to a point where the latter can be fully eliminated
if sufficient training data is available.

A second goal of this paper is to investigate whether
it is possible to improve AAD performance by including
knowledge of the auditory periphery into the speech envelope
extraction step. When a sound arrives at the ear, it is first
filtered by the middle ear, followed by complex non-linear
processing in the inner ear where the sound wave is converted
into a series of spikes in the auditory nerve. Thereafter this



spike train is processed by the brainstem, midbrain, auditory
cortex and higher cortical areas. The reconstructed envelope
used in the current study is probably derived from neural ac-
tivity originating from the auditory cortex. While we currently
only have limited knowledge of cortical processing of speech,
there are good models available of the processing that takes
place in the auditory periphery (outer and inner ear). As the
spike trains in the auditory nerve serve as the input to the
auditory cortex, it makes sense to include a model of the
auditory periphery in the AAD processing chain.

Bearing in mind that the computational power in auditory
prostheses is limited, we aim to optimize the computational
complexity versus AAD performance trade-off, by including
speech envelope extraction methods that model the auditory
periphery with gradually increasing precision. We start from
the standard envelope extraction method used in [5], and grad-
ually include pragmatic and computationally cheap auditory-
inspired signal operations, such as amplitude compression
and subband processing with an auditory filter bank, and
assess their individual effect on the AAD performance. Finally,
envelope extraction methods based on three well-established
and computationally complex auditory models are examined.

Subband envelope methods in general pose an extra ques-
tion: how should we recombine these subband envelopes into
one envelope, i.e., which weights should be given to each
subband? As there is no obvious way to do this, one might
benefit from an algorithm that determines the optimal recombi-
nation. Canonical correlation analysis (CCA) and bimodal LS
provide a framework for obtaining optimal envelope weight
vectors. We apply these algorithms to the best-performing
subband envelope extraction method to see if they result in
any performance increase.

The different methods are assessed using experimental data
with EEG recordings from 16 subjects. We note that these are
all new subjects, and this excludes the 7 subjects from our
pilot study which was published as a conference precursor in
[1], in which a different measurement protocol was used.

The paper is organised as follows: in Section II we start by
reviewing the basic AAD procedure used in this paper, intro-
ducing the training methodology and detailing the evaluation
strategy. In Section III we then discuss the different auditory-
inspired speech envelope extraction methods. As subband
envelopes provide us with an additional challenge, we describe
two extended AAD procedures in Section IV that also take
care of an optimal recombination of several subband envelopes
into one envelope. In Section V, we provide details of the
experiment design and the key processing parameters. In
Section VI, we evaluate the effect of the different envelope
extraction methods on AAD performance. In Section VII, we
discuss the implications of these results for future application
in APs, and we elaborate on remaining open problems. Finally,
we draw conclusions in Section VIII.

II. AUDITORY ATTENTION DETECTION

In this section, we review the basic AAD procedure, cover-
ing the training and detection process in more detail.

A. Problem statement
For the remainder of this paper we assume that for each test

subject we have a set of K measurements, referred to as trials,
available. Each trial consists of a C-channel EEG recording
and the corresponding attended and unattended speech signals,
which were simultaneously presented to the subject during
the recording of the trial. Every trial is assumed to have the
same length, which we will define later. We use M(t, c) to
denote the C-channel EEG recording, where t is the discrete
time or sample index and c the channel index. The temporal
envelopes are obtained by extracting the envelopes from both
speech signals (attended and unattended) and are denoted by
sa(t) and su(t) respectively. We use the index k to indicate
recordings from the k-th trial when appropriate, and a tilde
to refer to an estimated variable rather than the real one (e.g.
s̃a(t)).

AAD can be achieved through an envelope reconstruction
approach: a decoder is designed which reconstructs the at-
tended speech envelope from the multi-channel EEG record-
ings. It has been shown that a linear, spatio-temporal decoder
is capable of adequately reconstructing the attended speech
envelope such that the reconstructed envelope resembles the
attended speech envelope sa(t) more than the unattended
speech envelope su(t) [4]–[6]. This resemblance is quanti-
fied by Pearson’s correlation coefficient and is used for the
final AAD: the speech envelope that correlates best with the
reconstructed envelope is ultimately classified as the attended
speech envelope.

The stimulus reconstruction defining the decoder D ∈
RNl×C can be expressed as follows:

s̃a(t) =

Nl−1∑
n=0

C∑
c=1

D(n, c)M(t+ n, c). (1)

Here n denotes the time lag index, with time lags ranging from
0 to Nl−1 samples. The spatio-temporal nature of the decoder
is expressed through the channel index c and the time lag index
n, and allows the attended envelope at sample time t to be
reconstructed as a weighted sum of all of the C EEG channels
at time t, as well as future sample times t+ n. The time lags
account for the physical delay between the presentation of the
auditory stimulus and the moment it is actually processed by
the brain. It has been found in [5], that time lags up to 250 ms
are most effective at reconstructing the envelope, which was
also verified in our data.

B. Design of the decoder
The decoder D can be determined through optimization of

a well-chosen objective function, for example by minimizing
the expected value (E[.]) of the squared error between the
estimated and the actual attended speech envelope as in [5].
Another sensible approach would be to maximize the Pearson
correlation coefficient between both. Up to an irrelevant scalar,
as we show below, both are in fact equivalent, i.e.:

D̃ = argmin
D

E[|s̃a(t)− sa(t)|2], (2)

∼ argmax
D

E[s̃a(t)sa(t)]√
E[s̃2a(t)]E[s2a(t)]

. (3)



For ease of notation we define vectors mc(t) ∈ RNl ,
containing all Nl time lags of channel c, and m(t) ∈ RNlC ,
containing all time lags of each of the C channels:

mc(t) = [M(t, c) M(t+ 1, c) · · ·M(t+Nl − 1, c)]T (4)

m(t) = [m1(t)
T m2(t)

T · · ·mC(t)
T ]T . (5)

Equation (1) can then be rewritten as

s̃a(t) = dTm(t), (6)

where d ∈ RNlC is the vectorized version of D. This new
notation is used in the remainder of this text.

Substituting equation (6) into equation (2) results in a stan-
dard linear minimum mean squared error (LMMSE) problem.
Its analytical solution is well-known and can be obtained by
setting the derivative with respect to the entries of d equal to
zero, resulting in:

d̃ = R−1rms, (7)

where R = E[m(t)m(t)T ] ∈ RNlC×NlC is the autocorrela-
tion matrix of the EEG recordings, and rms = E[m(t)sa(t)] ∈
RNlC is a vector containing the cross-correlations of the
attended speech envelope and the (time-lagged) EEG channels.

To show the equivalence between (2)-(3), we reformulate (3)
as a maximization of the numerator while replacing the de-
nominator by a norm-constraint. With the notation introduced
above, this leads to the equivalent problem:

d̃ ∼ argmax
d

rTmsd s.t. dTRd = 1, (8)

where the factor
√
E[s2a(t)] in (3) is omitted as it is inde-

pendent of d. This reformulation can then be solved using
Lagrange multipliers, resulting in a scaled version of (7).

C. Training

In practice, the true autocorrelation matrix R and cross-
correlation vector rms are of course unknown, but can be
estimated from the measurements through their sample esti-
mates, denoted as R̃ and r̃ms. This effectively transforms the
LMMSE problem from (2) into a LS problem.

As the dimension of the decoder is large and conditions
between trials might vary slightly, over-fitting to the specific
data used for training is a real concern. To overcome this, a
cross validation approach should be taken where decoders are
only applied to EEG recordings that were not used to construct
the decoder. In this paper, we use a subject-specific leave-one-
out cross validation. This means that the data from all K − 1
other trials from the same subject are used in the design of
the decoder to decode trial k. To emphasize this, we use the
subscript −k to denote the decoder d̃−k for the k-th trial.

To combine data from multiple trials in the design of the
decoder, it is common practice to construct a preliminary set
of decoders d̃k = R̃−1k r̃ms,k for k = 1 . . .K, using only the
data from a single trial [5], [7], [16], [17]. Then preliminary
decoders from all trials but trial k can be averaged to obtain
a decoder d̃−k that is used to decode trial k:

d̃−k =
1

K − 1

K∑
i=1
i 6=k

d̃i, k = 1 . . .K, (9)

where i is used as another trial index. If a subject-independent
decoder is to be trained, further averaging can be done across
subjects to find a so-called ’grand-average’ decoder [5], [7].

Although, mathematically speaking, this is a rather arbitrary
way of combining the data from multiple trials or subjects, this
method has been proven to be successful in several papers [5],
[7], [16], [17]. However, typically single trials are rather short
(e.g. 60 seconds) compared to the large dimension of R̃k. This
contributes to R̃k being ill-conditioned or even (in extreme
cases) rank-deficient, which is a problem when evaluating
equation (7). The obtained decoders are very sensitive to per-
turbations on the training data, such that all trials may generate
very different solutions. In this case, a simple averaging of the
different decoders may prove ineffective.

To avoid rank-deficiency and improve conditioning, regu-
larization is then typically applied to Rk:

d̃k = (R̃k + λzkQ)−1r̃ms,k, (10)

where λ is a relative regularization parameter, which is multi-
plied by zk, the mean eigenvalue of R̃k. This mean eigenvalue
zk can easily be calculated as the average of the diagonal
elements of R̃k. Q is the regularization matrix, typically
chosen to be the identity matrix (corresponding to a ridge
regression), penalizing the L2 norm of d. In the case of AAD,
Q is sometimes also chosen to be:

Q =



1 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 1


. (11)

This choice for Q penalizes the norm of the discrete
derivative of d with respect to its entry index. This can be
preferred if the spatio-temporal decoder is expected to be
smooth in the temporal dimension.

Using such regularization schemes, AAD performance can
be boosted to an acceptable level. However, disadvantages
of regularization are that it adds bias, and that it requires a
regularization parameter λ that needs to be tuned in order to
find a good balance between sufficient generalization (to avoid
over-fitting) and too much generalization (to avoid loosing pre-
dictive power). In the Appendix, we show that the performance
is rather sensitive to the choice of this regularization parameter,
when the decoder is indeed computed as an average of per-trial
decoders.

In this paper, we use a more natural way to combine the
recordings, by minimizing the following sum of LS objective
functions:

d̃−k = argmin
d−k

1

K − 1

K∑
i=1
i 6=k

E[|s̃a,i(t)− sa,i(t)|2], (12)

s̃a,i(t) = dT−kmi(t). (13)

This objective function can be maximized by plugging the
average autocorrelation and cross-correlation vector from all
but the k-th trial (respectively denoted by R̃−k and r̃ms,−k)



into equation (7). Note that averaging sample autocorrela-
tion and covariance matrices is equivalent to concatenating
the recordings in time and training a single decoder based
on this longer, concatenated recording. Again, if a subject-
independent decoder is to be designed, the summation in
equation (12) can be extended to sum over all subjects.
However, in the sequel, we only consider subject-dependent
decoders.

As more samples are available for the estimation of R̃−k
compared to R̃k, it is naturally better conditioned, in our case1

removing the need for a regularization scheme. In addition,
we show in the Appendix that, even if the optimal value of
the regularization parameter is selected in (9)-(10) through a
parameter sweep, the second option still yields significantly
better results. Therefore, in the remainder of this paper, we
always train a single LS decoder on the full training data set
as in (12) rather than averaging single-trial decoders as in (9)-
(10).

D. Detection details

Once the decoder d̃−k has been trained based on the data
from all trials except trial k, it can be used to reconstruct
the attended speech envelope from the EEG recording of trial
k, as in equation (1). Pearson correlation coefficients can
then be calculated between this reconstructed speech envelope
s̃a(t) and both real speech envelopes sa(t) and su(t). We
refer to these coefficients as the reconstruction accuracies, and
denote them by ra and ru respectively. The speech envelope
corresponding to the highest reconstruction accuracy is then
naturally classified as the attended speech, e.g. if ra > ru,
this results in a correct classification. This process is repeated
for each trial. Note that the discriminative power of these
correlation coefficients strongly depends on the trial length,
which can be chosen post hoc (after the experiment).

III. ENVELOPE EXTRACTION METHODS

The main focus of this paper is to evaluate whether it
is possible to improve the AAD performance, by gradually
including more knowledge of the auditory periphery in the
envelope extraction process. In this section we describe the
different methods for extracting such a speech envelope s(t)
from the speech signal x(t). The AAD performance using
these envelope extraction methods is evaluated in section VI.
We start by describing some basic envelope extraction methods
lacking any auditory motivation, and gradually increase the
complexity of auditory modelling. Finally, some methods
based on more accurate (but more complex) models of the
auditory periphery are discussed. Concluding this section,
we briefly motivate the choice of some filtering parameters
relevant to the envelope extraction.

1We note that the necessity of regularization depends on two factors: the
number of (independent) samples available to the LS problem (amount of
training data), and the number of elements of the decoder (# unknowns). Thus,
to avoid having to use regularization, our approach is to keep the sample rate
and the number of time lags Nl as low as possible, while providing a maximal
number of samples for training.

A. Basic envelope extraction
Basic envelope extraction methods are based on what we

intuitively think of when considering envelopes of signals.
The first method calculates the speech envelope by taking the
absolute value |x(t)| of the broadband signal x(t) and low
pass filtering the result. The process is known as full-wave
rectification and is often used in electronics. We abbreviate
this method as ‘abs’.

As an alternative, one can compute the amplitude of the
complex-valued analytic signal, which is often referred to as
the mathematical envelope of a signal, as it results in the
modulating signal when applied to a modulated sine wave.
The analytic signal of a signal x(t) can be constructed as
x(t)+ jH(x(t)), where H(.) represents the Hilbert transform
operator, which applies a 90 degrees phase shift to the original
signal. We mention this method for completeness, but when
applied to audio signals it results in nearly identical envelopes
as the ‘abs’ method (after subsequent band pass filtering, see
subsection III-E). As it is also computationally more complex,
we omit this method in favour of the first.

In a second method we consider, the speech envelope is
calculated as the long-term power average of the signal. As
the long-term average can be obtained by integration, or
equivalently, low pass filtering, we obtain the envelope by
squaring the original signal and low pass filtering it afterwards.
We refer to this method as ‘square’.

B. Compressed envelopes
The human auditory system is not a linear system. For

example the relation between intensity of the stimulus and the
perceived loudness is less-than-linear. This compression results
in a relative attenuation of higher amplitude signals, making it
possible for the human ear to have a large dynamic range. The
relationship between loudness, which is a perceptual measure
of stimulus intensity, and the actual stimulus intensity has
been studied extensively. Typical simple models used for this
relation use either a power law relation, i.e. |x(t)|β with
exponent2 β = 0.6 [19], or a logarithmic relation [20], i.e.
log(|x(t)| + ε). Here ε is a small, positive number ensuring
that the argument of the logarithm is strictly positive. We refer
to these methods as ‘p-law’ and ‘log’ respectively.

Remark: the power law function is scale-invariant for pos-
itive scaling factors a, i.e. |ax(t)|β = aβ |x(t)|β ,∀a ≥ 0.
This means that normalization of the signal has no influence
on the shape of the resulting envelope, which is desirable.
The logarithmic function has a similar property: scaling of
the argument only results in a DC offset in the envelope:
log(|ax(t)|) = log(|x(t)|) + log(a),∀a > 0. As all envelopes
are high pass filtered at a later stage, we can ignore this DC
offset. Hence, for our application, the logarithmic function can
also be considered scale-invariant.

C. Subband envelopes
In the auditory pathway, speech signals are split into fre-

quency subbands by the basilar membrane in the cochlea

2Note that ‘abs’ and ‘square’ are effectively also power law methods with
exponents chosen as respectively 1 and 2.
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Fig. 1: Frequency response of the gammatone filterbank used to
decompose the audio into frequency subbands.

before the actual envelope extraction process takes place. We
mimic these auditory filters, e.g. by applying a gammatone
filter bank [21], [22] to the audio signal x(t). The filter bank
contains Ns = 15 perceptually uniform gammatone filters,
each with an equivalent rectangular bandwidth equal to 1.5,
and center frequencies ranging from 150 Hz to 4 kHz (as
the stimulus is also band-limited to 4 kHz, see Section V). Its
frequency response is depicted in figure 1. Note that the filters
become wider at higher frequencies, which reflects the fact that
the human auditory system has a poorer spectral resolution in
the higher frequencies. It was found that the actual number
of subbands Ns is not critical for performance, as long as the
filter widths are scaled accordingly and Ns ≥ 5.

The aforementioned envelope extraction methods can then
be applied to each of the Ns subband signals instead of the
broadband signal, resulting in a vector s(t) ∈ RNs of subband
envelopes. Since the basic AAD procedure as described in
section II requires just one envelope however, some recom-
bination of these subband envelopes is necessary. We only
consider weighted linear combinations: s(t) = wT s(t), where
w ∈ RNs is the envelope weight vector. Subband envelopes
could, for example, be recombined with equal weights, or with
weights determined by the respective band importance (BI)
[23]. The latter is used in the calculation of the speech intel-
ligibility index, and we employ the same here to weight the
frequency subbands to increase the influence of the frequency
bands that contribute most to speech intelligibility. We will
compare this with a uniform (all-ones) weight vector w, and
additionally, in section IV, we will also define two methods
to choose a set of envelope weights that are optimal in some
mathematical sense.

Applying the gammatone filterbank before, and using the
previously described envelope extraction methods to each of
the subband signals, introduces a subband version of each. We
mark these respective subband versions by the postfix ‘sub’,
e.g. ‘abs sub’. If the postfix ’sub’ is used in the sequel, we
refer to the case where the subbands are added with equal
weights unless stated otherwise.

D. Auditory models

For even more detailed models of the auditory periphery,
we refer to three well-known auditory models [24]–[26].

The first model, ‘Yang’ [24], is available through the NSL
Matlab Toolbox, and processes the audio in three stages. The
analysis stage models the cochlear filters by applying a wavelet
transform, to decompose the signal into 128 subbands. The
transduction stage is applied to each subband individually
and models the dynamics of the hair cells. Hair cells are
the auditory system’s transducers, transforming the mechanical
vibrations into electrical activity. Finally, the reduction stage
reduces the amount of information by extracting only certain
spectral features, using a lateral inhibitory network. As the
output consists of 128 subband ’envelopes’, we recombine
these, by adding them using uniform weights.

The second model, ‘Meddis’ [26], is implemented in the
MATLAB Auditory Periphery (MAP) toolbox. It is more com-
plex than ‘Yang’, both from a modelling perspective as from a
computational point of view. As a result, envelope extraction
cannot be performed in real-time. Therefore the model, in its
current form, might not be directly amenable for wearable
devices. Still it is interesting to see how it performs. It models
the auditory periphery through 9 modules, each tied to a
specific physiological process and its outputs each represent
physically measurable values such as the instantaneous neuron
firing rate at user-defined frequencies.

The third and final model, ‘Zilany’ [25], models the audi-
tory periphery using a phenomenological approach. The main
stages comprise a forward control path, outer and inner hair
cell sections and a synapse model. In its current implementa-
tion however, it is even more computationally demanding than
‘Meddis’.

Both ‘Meddis’ and ‘Zilany’ provide instantaneous firing
rates of the auditory nerves at neurons corresponding to user-
defined frequencies as a possible output. We use these firing
rates at the same 15 center frequencies as were previously
used for the gammatone filter bank as subband ‘envelopes’.
As the output is present in the form of neuronal firing rates,
they are weighted by their respective neuronal densities [27],
[28] before being added together to form a single envelope.

E. Filtering

It has been shown that speech envelope and EEG recordings
correlate best within the δ and θ band frequencies [4]. We
therefore digitally band pass filter both the speech envelopes
and the EEG recordings between 2 and 9 Hz. Because of this,
whenever any low pass filtering or integration occurs as a last
step in the envelope extraction process, it is skipped, as it is
redundant. All filtering is performed using a linear phase filter,
where the same filter is applied to the speech envelopes and
the EEG recordings.

IV. BIMODAL AAD PROCEDURE

With the notion of subband envelopes that was introduced
previously, a new question arises: can AAD performance be
further improved by recombining subband envelopes through



a mathematically optimal weight vector instead of the arbi-
trary or physiologically motivated options that we proposed
before? In this section, we provide two mathematically optimal
methods for simultaneously obtaining both an EEG decoder d
and an envelope weight vector w. In this case data from two
modalities (envelope and EEG domain) are used simultane-
ously, hence the term bimodal.

Optimality should of course first be defined by some ob-
jective function. Two suitable objective functions, similar to
those from the basic AAD processing, are considered. As in
equation (3), we can choose to maximize the Pearson corre-
lation between the estimated attended speech envelope s̃a(t)
and the true attended speech envelope sa(t), which now is a
recombination of multiple attended speech subband envelopes
contained in sa(t). The second option is to minimize the LS
estimation error between the two, similar to equation (2). The
difference now is that in both objective functions the audio
weights vector w is included as an additional optimization
variable. The objective function (3) then becomes:

d̃, w̃ = argmax
d,w

E[(dTm(t))(wT sa(t))]√
E[(dTm(t))2]E[(wT sa(t))2]

. (14)

This objective function also appears in canonical correlation
analysis (CCA) [29], and its solution corresponds to the first
canonical weight vectors. The solution can also be derived
using Lagrange multipliers after reformulating the denomina-
tor of (14) as two norm constraints. The optimal decoder and
envelope weight vector are then found as:

d̃ =GEVec1(RmsR
−1
s RTms, R) (15)

w̃ =GEVec1(RTmsR
−1Rms, Rs), (16)

where GEVec1(A,B) is used to denote the principal gen-
eralized eigenvector of the matrix pencil (A,B), Rs =
E[sa(t)s

T
a (t)] ∈ RNs×Ns is the subband speech envelopes’

covariance matrix, and Rms = E[m(t)sTa (t)] ∈ RC×Ns is a
matrix containing the cross-correlations between each (time-
lagged) EEG channel and each subband envelope.

Based on experiments, it was found that choosing Rs =
INs

, which corresponds to infinite regularization, yields as
good results as any other choice of the regularization pa-
rameter. However, it avoids having to estimate Rs, which is
especially convenient in a practical setting. It is noted that
CCA with one of the covariance matrices set to the identity
matrix is equivalent to Orthonormalized Partial LS (OPLS), a
variant of PLS [30].

The second option, which we refer to as ‘bimodal LS’,
corresponds to the cost function (2) which is now altered to:

d̃, w̃ = argmin
d,w

E[|dTm(t)−wT sa(t)|2], (17)

s.t. ‖
[
d
w

]
‖22 = 1.

The norm constraint on
[
d
w

]
is necessary to avoid the trivial

solution. After writing the two-norm in full, it can be seen that

the solution can be found as:[
d
w

]
= EVecmin(T ) (18)

T =

[
R −Rms

−RTms Rs

]
, (19)

where EVecmin(A) denotes the eigenvector of the matrix A
corresponding to the smallest eigenvalue. Unlike in (2)-(3),
both objective functions now provide us with different solu-
tions. However, it can be shown that if the smallest eigenvalue
of T is small compared to the eigenvalues of both R and Rs,
both solutions are approximately equivalent (proof omitted).

To limit our search space for the best performing envelope
extraction method, we only apply ‘CCA’ and ‘bimodal LS’ to
the best performing subband envelope procedure from section
III, to see if any further performance improvement can be
obtained.

V. EXPERIMENTAL PROCEDURES

To be able to evaluate the performance of the different
envelope extraction methods proposed above, we set up an
AAD experiment, which we describe in this section.

A. Set-up of the experiment

1) Goal: The experiment was designed to mimic a cocktail
party scenario in which the subject listens to two simultaneous
speakers at two distinct spatial locations, and attempts to attend
to only one of them while ignoring the other.

2) Subjects: 16 normal hearing subjects (verified by au-
diometry) between 17 and 30 years old participated in the
experiment, 8 of them were male, 8 were female. All of them
(and/or their legal guardian) signed an informed consent form
approved by the KU Leuven ethical committee.

3) Equipment: During the entire experiment, 64-channel
EEG was recorded using a BioSemi ActiveTwo system. The
electrodes were placed on the head according to international
10-20 standards. The experiment took place in a soundproof,
electromagnetically shielded room, and auditory stimuli were
presented to the subjects using insert phones (Etymotic ER3A)
at 60dBA. As the insert phones’ transducer has a cut-off
frequency of 4 kHz, all audio signals were low pass filtered
at 4 kHz as well.

4) Stimulus structure: As audio material, four Dutch short
stories [31], narrated by different speakers (all male), were
selected. Silences were truncated to 500 ms, and the resulting
audio was divided into two ‘tracks’, one of which was to be
attended by the subject while the other was to be ignored. Each
track consisted of four story ‘parts’, lasting approximately
six minutes each. After presenting one part to the subject
(a ‘presentation’), some multiple choice questions about the
content of the attended story part appeared on a screen. These
questions were intended to keep the subject engaged in the
task and the answers were not used further in this study. After
four story parts, the subject was offered an extended break.



5) Presentation structure: After the break, the same stimuli
were presented, but the subject was asked to attend to the other
track. After a second break, the subject was then asked to
attend to each part of the first track again. This time however,
only the first two minutes of each part was presented, without
questions in between. This was repeated two more times,
such that the first two minutes of each part of the first track
was attended four times in total. These so-called ’repetitions’
were kept at a minimum as they are perceived as boring and
might result in attention loss, and were included for a specific
purpose in a related study. However, it is important to note that
we do not exploit these repetitions to, e.g., improve signal-to-
noise ratio by averaging them. The EEG analysis in this paper
is performed on a single-trial basis, although a subset of the
stimuli appears multiple times in the data set. Summarizing,
the subject first attended eight unique story parts of six minutes
each, before listening to the first two minutes of each part of
the first track for three more times, totalling twelve repetitions.
This brings the grand total at 8 x 6 minutes + 12 x 2 minutes
= 72 minutes of recorded EEG per subject.

6) Presentation mode: In order to design a more general
decoder that works in different conditions, two conditions were
varied evenly in between every presentation: the ear to which
the attended track was presented, and the acoustic processing
of the speech signals. Either ‘dry’ speech was offered, i.e.
each speaker was presented to a different ear, or speech signals
were processed by (dead room) head-related transfer functions,
simulating a more realistic listening scenario in which the
speakers are spatially located 90 degrees to the left and the
right of the subject. In this case the stimuli of both ears contain
both speech signals, albeit with different intensities and delays.
The order of presentation of both condition types was balanced
over the different subjects.

B. Data Processing

The recorded EEG is band pass filtered between 2 and 9
Hz, and down-sampled to 20 Hz. The auditory stimuli that
were presented to the subjects are sampled at 8 kHz (as
their frequency content only ranges up to 4 kHz). For both
the attended and the unattended speech signals, envelopes are
extracted using the different methods detailed in section III.
Afterwards these envelopes are band pass filtered between 2
and 9 Hz, and downsampled to 20 Hz as well.

Trials are then created by chopping the data into pieces
of equal length. Most studies on AAD employ 60 second
trials. For the main analysis of this paper however, i.e. the
comparison of the different envelope extraction methods, we
deliberately choose a shorter trial duration of 30 seconds,
because it makes the differences between methods become
more apparent. Furthermore, it also means that more trials
(144 instead of 72) can be evaluated, resulting in more power
for the statistical tests. Nonetheless, to allow for a comparison
with literature, we also provide some results with 60 second
trials.

For each of the 16 subjects, a decoder D was then trained for
each trial, using the data of every other trial of this subject as
described in subsection II-C. Note that it can be expected that

all decoders for a subject are very similar, because of the leave-
one-trial-out approach. The decoders are applied to the EEG
recordings, resulting in 144 reconstructed speech envelopes
per subject (one for each trial). Pearson correlations with both
attended and unattended speech envelopes are calculated for
each trial, and compared (see subsection II-D for details).
This results in either a correct (1) or wrong (0) detection for
each trial. Thus, for each tested envelope extraction method,
a binary detection result vector q of length 2304 (16 subjects
* 144 trials per subject = 2304 total trials) is obtained.

These can either be used as an input for a statistical test (see
subsection V-C), or averaged to obtain the method’s so-called
‘detection accuracy’, which is used as the main performance
parameter.

C. Permutation test
To evaluate whether a method a performed significantly bet-

ter than method b, permutation tests were used [32]. The test
statistic S was calculated as the sum of the differences between
the binary result vectors of both methods: q(a−b) = qa − qb,
S =

∑
j q(a−b)(j), where j is the vector entry index. Note

that a large positive value of the test statistic S implies that
method a is more accurate than method b, whereas a large
negative value implies the opposite. A value of S that is close
to zero implies that both methods perform similarly. To test for
statistical significance, the test statistic S was then compared
to its estimated cumulative density function (CDF) under the
null hypothesis of no difference between the methods. This
CDF was estimated by repeatedly (n = 100 000) randomly
permuting each of the 16 subjects’ results among the two
methods, and re-evaluating the test statistic.

We hypothesize, based on the preliminary results in our con-
ference precursor3 [1], that ‘p-law sub’ is the best-performing
method and therefore compare its performance pair-wise with
every other method. To account for the multiple comparisons,
an adjustment to the individual rejection criteria is made using
the Holm-Bonferroni method [33].

VI. RESULTS

In the sequel, we assume a uniform subband weighting
when referring to ’subband’ methods, unless explicitly stated
otherwise (a comparison with other weighting methods is
reported further on). Figure 2 shows the subject-specific
(circles) and mean (bars) AAD accuracy for the different
envelope extraction methods. The exact (experiment-wide)
values, along with the p-values resulting from a comparison
with the ‘p-law sub’ method as discussed in subsection V-C
are also shown in table I. An asterisk ‘*’ in the last column
indicates statistical significance at α = 0.05 significance
level. Even after a Holm-Bonferroni correction, ‘p-law sub’
performs significantly better than all other methods, although
‘log sub’ and ‘abs sub’, two other simple subband methods,
come close in performance. Another interesting result is that in
our current paradigm, the complex models (‘Yang’,‘Meddis’,
and ‘Zilany’) yielded no improvement over the more basic
envelope extraction methods.

3It should be noted that [1] was based on a different set of measurements,
independent of the measurements used in this manuscript
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Fig. 2: Mean (bars) and individual subject (circles) detection accura-
cies for each of the different envelope extraction methods for a trial
length of 30s. The dotted black line at 57% indicates the subject-
specific detection accuracy which is only 5% likely to be surpassed
by chance, based on a binomial distribution (success rate = 0.5,
number of trials = 144).

Detection Holm
Method accuracy (%) p-value p-value

abs 77.7 <0.001 <0.001*
abs sub 80.1 0.008 0.023*
square 75.3 <0.001 <0.001*

square sub 74.5 <0.001 <0.001*
log 75.2 <0.001 <0.001*

log sub 79.9 0.034 0.034*
p-law 78.4 <0.001 0.002*

p-law sub 81.5 // //
Yang 77.8 0.006 0.023*

Meddis 78.6 0.001 0.004*
Zilany 78.9 0.011 0.023*

TABLE I: Results for the different envelope extraction methods

As we noted before, ‘abs’, ‘p-law’ and ‘square’ are all
power law variants with different values of the exponent β.
Instead of limiting the analysis to just these a priori chosen
instances, we also varied β between 0.1 and 2 for both a
broadband and subband approach. Figure 3 depicts the result,
showing the evolution of the average AAD accuracy as a
function of the power law exponent β. From this figure it
can be seen that indeed a choice for β of lower than 1
seems appropriate. The optimum in the figure is rather broad
and achieved for the subband approach with values for β
between 0.2 and 0.8. Another important observation here is
that for most values of β, except for sub-optimally high
instances (like β=2 in the square law), the subband method
clearly outperforms the broadband method. This was also the
case when using a logarithmic compression (see table I). It
can therefore be concluded that dividing the speech signal
in its subband components before extracting envelopes is an
important factor for improving AAD performance.

The bimodal AAD procedures were applied using all basic
envelope extraction methods. To provide an example, figure 4
shows the weights that were given to each subband envelope
(p-law subbands) for each of the 16 subjects using ‘CCA’
(left), and the corresponding subband signal power fractions,
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Fig. 3: Performance of the broadband and subband powerlaw enve-
lope extraction method for different values of the exponent β.

Envelope X Y p-value X(sign)Y
CCA 0.412 <

abs uniform band importance 0.140 >
weights bimodal LS 0.418 <

CCA 0.135 <
square uniform band importance 0.004 >*

weights bimodal LS 0.142 <
CCA 0.324 <

log uniform band importance 0.128 >
weights bimodal LS 0.068 >

CCA 0.316 >
p-law uniform band importance 0.056 >

weights bimodal LS 0.166 >

TABLE II: Results for the different subband weighting methods

obtained by multiplying the weights and the power fraction of
the respective subband (right). The figure shows that weights
are consistent across subjects and that the subband envelopes
corresponding to the lowest frequencies contribute most to the
eventual envelope.

Of both bimodal procedures, ‘CCA’ yielded a detection
accuracy equal to 81.2 %, compared to 79.3% for ‘bimodal
LS’ when applied to p-law subbands. However, this difference
in performance was found not to be statistically significant
(p-value 0.191). The same holds for 2 of the 3 other basic
envelope methods, where ‘CCA’ only yields significantly
better performance compared to ‘bimodal LS’ when applied to
log envelopes (p-values: abs 0.375, log 0.018*, square 0.250).
The performance of the ‘CCA’ approach was however found
to be significantly better when applied to the p-law envelopes
as compared to the log envelopes (p-value 0.034).

The performance of all the considered subband weighting
methods (CCA, bimodal LS and band importance weighting)
were also compared to a uniform (all-ones) weighting. The
results are shown in table II, where an asterisk ‘*’ in the
last column indicates statistical significance at α = 0.05
significance level. Uniform weighting was found to be either
not significantly different or significantly better than the non-
uniform methods.

Finally, we present performance of the best-performing
envelope method (’p-law sub’) for different trial lengths.
Detection accuracy on trials of 60 seconds was equal to
87.5 %. This is comparable to results mentioned in literature
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Fig. 5: Evolution of AAD accuracy as a function of trial length for
the different subband envelope extraction methods.

[5], [7], especially when considering that our experiment
and subsequently our decoders were more general, spanning
multiple presentation modes (switching attended ear as well
as switching acoustic conditions for each subject). For a
more general picture, figure 5 shows the evolution of the
AAD accuracy for the different subband envelope extraction
methods (with broadband methods omitted for clarity of the
figure) as a function of the trial length (20, 30, 40 and 60
seconds were evaluated).

VII. DISCUSSION

A. Implications for application in auditory prostheses

Computational efficiency is an important factor that should
be kept in mind when designing an AAD algorithm for
future neuro-steered APs. As can be seen from figure 2 and
table I, a simple auditory model based on a power law in
combination with a gamma tone filterbank yields better results
than more complex auditory models (‘Yang’,‘Meddis’, and
‘Zilany’). This is good news, as this shows that it is possible
to have a good AAD performance without the methods being

computationally taxing on the implementation. Similarly, we
also observe that the same advantage holds for using equal
weights to recombine subband envelopes in comparison to
the more computationally complex ‘CCA’ or ‘bimodal LS’
approach. Indeed, from table II, we see that non-uniform
weighting shows no significant improvement over uniform
weighting, even when the weights are optimized with CCA
or bimodal LS. Therefore, for the sake of computational
complexity, uniform weighting is preferred in real applications.

B. Future steps towards neuro-steered auditory prostheses

In this paper, we have investigated how auditory models
influence AAD performance, showing that the trade-off be-
tween complexity and performance is not crucial and does not
lead to strong dilemmas. However, there are other complexity-
vs-performance trade-offs when considering AAD for neuro-
steered APs that still need to be explored, such as the choice
of number of EEG channels, number of time lags, and trial
length. A long trial length reduces the variance on the cor-
relation estimates and hence improves AAD accuracy (see
figure 5), but also reduces the time resolution in the AAD
decision. The effect of reducing the number of channels has
been investigated in [7]. There is also a need to look into
the effect of the acoustic environment such as reverberation
and background noise, the potential to improve accuracy when
training the subjects, and the effects of closed-loop feedback.
Another important consideration towards the design of neuro-
steered APs is the extraction of speech envelopes from the
speech mixtures recorded with the APs’ local microphones.
Multiplicative non-negative independent component analysis
(M-NICA) [34] has been shown to extract speech envelopes
at a low computational cost to support an AAD-assisted noise
reduction algorithm [35]. Other techniques such as adaptive
beamforming can also be used for unmixing speech signals,
keeping in mind the limitations on computational cost, con-
straints on acceptable latencies etc. Finally, it is noted that the
demixing process that extracts the individual speech envelopes
will never work perfectly and will inevitably result in some
residual noise and cross-talk in the demixed envelopes. In
[18], the effect of noisy envelopes on AAD performance was
investigated, and it was found that, to some extent, decoding
performance is robust to noisy reference signals.

VIII. CONCLUSION

AAD has the potential to take AP technology a step
forward, by allowing to enhance the actual attended speaker,
while adapting to the acoustic scenario and shifting auditory
attention. We have proposed an ’all-at-once’ methodology
for training the decoder, in which we solve a single LS
problem over the entire data set, rather than averaging over a
multitude of per-trial LS solutions as in the existing literature
on AAD. We have shown that this may result in better AAD
performance, while also reducing the sensitivity with respect
to a regularization parameter. The main goal of this paper
was to investigate whether AAD performance could be im-
proved by adding some auditory-inspired modifications to the
envelope extraction process. We have shown that performing



the envelope extraction on subband signals rather than the
broadband audio signal, mimicking the physiology of the
auditory periphery, and adding a non-linear power law ampli-
tude compression significantly improved AAD performance.
Furthermore, we have shown that using complex models of the
auditory periphery did not yield as good results as the simpler
proposed methods. We have shown that using a mathematically
optimal subband envelope weight vector, based on bimodal
LS and CCA optimization methods, did not outperform the
heuristic choice of equal weights for our specific dataset.
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APPENDIX
COMPARISON OF DECODER TRAINING METHODS

In Subsection II-C, two approaches for training the decoders
were discussed. In the first approach, preliminary decoders
were trained on the data of each single trial, and later averaged,
necessitating one of two possible regularization strategies [5],
[7], [16], [17]. The second approach, which minimizes a sum
of LS objective functions, calculates decoders directly, based
on a concatenation of the data from all but one trial.

Figure 6 shows the performance of both these approaches,
denoted as (1) and (2) respectively, on trials with a length of 30
seconds (the same trials as described in Section V). For both
regularization strategies (minimum norm and smoothness reg-
ularization), the performance evolution is shown as a function
of the regularization parameter λ. Note that the regularization
parameter λ is a relative one, scaled by the mean diagonal
entry z of the EEG autocorrelation matrix R (see equation
(10)), ensuring it to be independent of an irrelevant scaling
of the data. The performance for no regularization (λ = 0) is
not explicitly shown in the figure, but is the same as for the
negligible λ = 10−5 in the case of method (2).

The optimal value of λ for the first approach can be read
from the figure to be λ = 0.01, corresponding to an AAD
accuracy of 80.2% when using minimum norm regularization.
As performance decreases significantly for larger and smaller
values of λ, optimal tuning of this regularization parameter λ is
key. This poses a problem, as a λ that is optimal for a specific
dataset is not guaranteed to be optimal for another dataset.
For the second approach however, the figure shows that
any non-negligible regularization decreases its AAD accuracy.
Regularization is therefore to be avoided with this approach,
yielding an AAD accuracy of 81.5%.

Overall, the figure shows that concatenating measurements
(2) rather than averaging decoders from single trials (1) yields
higher AAD accuracy, with the additional benefit of not
needing any regularization to boost performance. Comparing
the AAD binary detection results for the optimal regularization

Regularization parameter λ
10-5 10-4 10-3 10-2 10-1 100

D
et

ec
tio

n 
ac

cu
ra

cy

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

min norm reg (2)
smoothness reg (2)
min norm reg (1)
smoothness reg (1)

Fig. 6: Performance of the two training approaches and two regular-
ization strategies, as detailed in Subsection II-C, for different values
of the regularization parameter λ.

settings for both approaches (as defined above) using a per-
mutation test (see Subsection V-C), yields a p-value equal to
0.022, indicating indeed a statistically significant difference
between the two approaches. From this we conclude that
optimizing the sum of LS errors objective function is to be
preferred over the averaging of single-trial LS solutions.
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