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Abstract

Reconstruction of acoustic tissue properties for
ultrasound tissue characterization

Ultrasound imaging is an indispensable tool in medical diagnostics and offers
several advantages over other imaging techniques. During last decades, ultra-
sound technology has achieved significant progress leading to improved image
quality. However, conventional ultrasound envelope-detected images remain
qualitative in nature and lack quantitative information on the tissue state and
pathology. Therefore, there has been an increased interest in developing tech-
niques that would enhance the diagnostic capabilities of ultrasound imaging.
This field of study is referred to as ultrasound tissue characterization and aims
to improve ultrasonic diagnostic capabilities by quantitatively measuring phys-
ical properties that can be linked to the tissue state.

Current state-of-the-art methods for ultrasound tissue characterization focus
on one particular parameter, and attempt to estimate it directly from the
backscattered RF signals. Other acoustic effects are being corrected for by
means of additional measurements, or simply neglected. The significant num-
ber of underlying assumptions in this case makes application of the existing
techniques difficult in clinical practice. Moreover, poor understanding of the
interaction mechanisms of ultrasound with tissue remains the main challenge
in ultrasound tissue characterization.

The aim of this thesis was to develop and validate a fundamentally different
approach for reconstruction of the local acoustic properties, wherein the for-
ward scattering problem is iteratively solved through computer simulations in
order to match the synthetically generated ultrasound data to the experimen-
tally observed ones. The advantage of such approach is that numerical mod-
elling of the forward ultrasound wave propagation enables to study various
ultrasound-tissue interactions as well as their combined effect in a controlled
manner.

The developed approach was used for the reconstruction of an ultrasound at-
tenuation coefficient and was extensively validated at increasing level of com-
plexity of the considered problem. This work demonstrates the applicability
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of the proposed model-based approach in the field of ultrasound tissue charac-
terization and its ability to provide accurate attenuation estimates in various
settings. Furthermore, a simulation tool was developed, that enables modelling
of the forward ultrasound wave propagation and the spectral characteristics of
the backscattered signals.

Reconstructie van akoestische weefseleigenschap-
pen voor echografische weefsel karakterisering

Echografie is onmisbaar in de medische diagnostiek en heeft een aantal voorde-
len over andere beeldvormingstechnieken. In de laatste decennia heeft echogra-
fie een significante technologische vooruitgang gekend, wat leidde tot een ver-
betering van de beeldkwaliteit. Nochtans, conventionele echografische envelop-
gedetecteerde echobeelden hebben slechts een kwalitatief karakter en ontbreken
kwantitatieve informatie over de weefselstatus en pathologie. Daarom is er een
toegenomen interesse voor de ontwikkeling van technieken dat het diagnostisch
vermogen van echografie verbetert. Dit vakgebied wordt echografische weef-
sel karakterisering genoemd en heeft als doel het echografische diagnostisch
vermogen te verbeteren door middel van het kwantitatief meten van fysische
eigenschappen geassocieerd met de weefselstatus.

In de huidige stand van de techniek op het gebied van weefsel karakterise-
ring wordt er gefocust op een bepaalde parameter dat rechtstreeks wordt afge-
leid van verstrooide radio-frequentie signalen. Bijkomstige akoestische effecten
worden gecorrigeerd met behulp van additionele metingen. Een andere moge-
lijkheid is deze effecten buiten beschouwing te laten. Hierbij zijn er een groot
aantal onderliggende assumpties dat de toepassing van de bestaande technieken
in de klinische praktijk moeilijk maakt. Bovendien zijn de interactiemechanis-
men tussen de geluidsgolven en het weefsel nog onvoldoende gekend, wat een
grote uitdaging blijft in echografische weefsel karakterisering.

Dit proefschrift had als doel het ontwikkeling en valideren van een fundamenteel
verschillende benadering voor de reconstructie van lokale akoestische eigen-
schappen, waarbij het probleem van voorwaartse verstrooiing iteratief wordt
verholpen door middel van computer simulaties dat synthetisch gegenereerde
echografiedata koppelt aan experimenteel verkregen data. Het voordeel van
deze benadering is dat de numerieke modellering van de voorwaartse geluids-
golf propagatie het mogelijk maakt de verscheidene interacties tussen de ge-
luidsgolven en het weefsel te bestuderen, alsook het gecombineerde effect van
beide op een gecontroleerde manier.

De ontwikkelde methodiek werd gebruikt voor de reconstructie van een geluids-
golf absorptie coefficient en werd uitvoerig gevalideerd tegen een stijgend niveau
van complexiteit van het beschouwde probleem. Dit proefschrift toont aan dat



deze modelgebaseerde methode toepasbaar is in het gebied van echografische
weefsel karakterisering en dat het mogelijk is om accurate absorptie schattingen
te verkrijgen in verschillende settingen. Overigens werd een simulatieapplicatie
ontwikkeld dat het mogelijk maakt om de voorwaartse geluidsgolf propagatie en
de spectrale karakteristieken van de verstrooide signalen te modelleren.
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Chapter 1

Introduction

1.1 Ultrasound imaging

The first practical application of ultrasound dates back to 1914 when the first
working sonar system was designed and built for underwater navigation and
ranging. The potential of ultrasound in medicine was realized in early 1940’s
when several groups of investigators around the world started exploring the
diagnostic capabilities of ultrasound. However, because of a number of fac-
tors limiting the application of ultrasound imaging in practice, it was not until
the 1970’s that it became an accepted diagnostic modality. After the gray-
scale ultrasonography was introduced followed by the development of real-time
scanning systems, ultrasound has rapidly became a routine imaging modal-
ity. Unlike other imaging modalities, ultrasound does not produce ionizing
radiation, it is compact, portable, relatively inexpensive and allows real-time
imaging. Due to these unique characteristics, ultrasound has evolved into an
indispensable tool in medical diagnostics and remains an active and rapidly-
advancing area of research.

Nowadays, applications of medical ultrasound include but are not limited to
diagnostics of the heart, blood vessels, abdominal organs, breast, eyes, thyroid,
muscles and skin; prenatal diagnosis; functional measurements of the blood
flow (color Doppler) and tissue stiffness (elastography). Moreover, ultrasound
is often used as a guiding tool for interventional procedures and as a therapeutic
tool (for heating and ablation).

Current research focuses on reduction in size of the ultrasound machines and
transducer design, harmonic and multidimensional imaging, improvements in
image acquisition rate and quality, advances in contrast imaging and ultrasonic
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1.1. Ultrasound imaging

drug delivery, development of high frequency devices for imaging and tissue ab-
lation, and, finally, on developing means to extract new diagnostic information
that will be further discussed in this thesis.

1.1.1 Physical principles

Ultrasound is the name given to a sound wave of frequency exceeding the
human auditory band (20 Hz - 20 kHz). In clinical ultrasound, frequencies in
the range of 2 to 20 MHz and above are typically used. Ultrasound waves are
generated and detected by piezoelectric crystals embedded within a transducer
that vibrate in response to an applied electric current and conversely, are able
to convert the mechanical motion into an electrical voltage. Propagation of the
vibrational energy through a medium causes a local displacement of medium
particles. In a liquid medium, ultrasound propagates as a longitudinal wave,
i.e. along the direction of particle movement, and consists of successive zones of
compression (high pressure region) and rarefaction (low pressure region) (Fig.
1.1).

As a wave process, ultrasound is characterized by its wavelength(λ), propa-
gation speed (c) and frequency (f), which are related through the following
expression:

λ =
c

f
. (1.1)

The speed at which ultrasound wave travels depends on the physical properties
of the medium, such as density and elasticity. Since the difference in the prop-
agation speed among soft tissues is rather small, the wavelength, and hence
the resolution of an ultrasound system, are mainly determined by the trans-
mit frequency. The nominal frequency of the transducer is determined by the
thickness of piezoelectric crystals, and only a limited band of frequencies can
be generated and detected, which is referred to as bandwidth. Higher frequen-
cies allow distinction between smaller features. However, the maximum usable
frequency is limited by other properties of the medium that will be discussed
below.

During its propagation, an ultrasound wave will encounter different types of
tissue. The point at which the tissue type changes is where there is a change
in acoustic impedance, defined as the product of the medium density and the
speed of sound:

Z = ρc. (1.2)

6



1. Introduction

Figure 1.1: Schematic view of particle displacement during longitudinal wave
propagation, where the movement of the particles is along the direction of wave
propagation.

When the interface between two media with different acoustic impedances is
met, part of the ultrasound wave is reflected back to the source, while the
remainder travels on through the body, i.e. is transmitted (Fig. 1.2). When the
propagation speed is different in the two media, the transmitted wave travels
under an altered angle, i.e. is refracted. These phenomena are governed by the
Snell’s law:

sinθi
c1

=
sinθr
c1

=
sinθt
c2

, (1.3)

where θi, θr and θt are the angles of incidence, reflection and transmission,
respectively.

The fraction of the reflected energy as well as the propagation direction of the
refracted wave depends on the mismatch in acoustic impedances of the media
and the direction of the incident wave. The greater the mismatch in acoustic
impedance, the more energy is reflected at the interface. The reflected signals
are referred to as specular reflections.

Another type of reflections occurs when the ultrasound wave encounters (ir-
regular) interfaces smaller than the incident wavelength. These interfaces are
local density and compressibility inhomogeneities inside the medium that are
referred to as scatterers, and the above phenomenon is referred to as scatter
reflections (or simply scattering). Scatterers retransmit the energy in different
directions depending on the shape of the scatterer and its size relative to the
ultrasound wavelength. Scatterers retransmitting energy uniformly in all di-
rections are referred to as point scatterers. The portion of the scattered energy
that is directed back to the source is referred to as backscatter. Constructive
and destructive interference between scatterers forms the so-called ultrasound
speckle - a granular pattern seen in ultrasound images.
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1.1. Ultrasound imaging

Figure 1.2: Illustration of the reflection and refraction at the interface between
two media with different impedances.

(a) (b)

Figure 1.3: Example of an attenuated waveform and its Fourier spectrum (a)
and a diffration profile of an unfocused and focused transducers (b).

Due to the above described phenomena, the energy of an ultrasound wave
will be reduced during its propagation. However, an even greater fraction of
ultrasound energy will be lost due to its conversion into heat. This effect is
referred to as absorption and is caused by tissue viscosity. A collective term
that describes the loss of ultrasonic energy is referred to as attenuation. This
effect is frequency-dependent and causes a down-shift in the central frequency
of the ultrasound wave. A good approximation for the frequency dependence
of attenuation for most soft tissues is given by a power-law model:

α = α0|f |n, (1.4)

where the power n in soft tissue is typically between 0 and 2. Attenuation limits
the penetration of ultrasonic waves and hence, the maximum depth at which
tissues can be imaged. Because attenuation increases with frequency, ultrasonic
waves of high frequencies have a shorter depth of penetration. Therefore, there
is an inherent trade-off between the spatial resolution (which improves with
increasing frequency) and penetration in ultrasonic imaging.

8



1. Introduction

Figure 1.4: Normalized transmit beam profiles of an unfocused (left) and focused
(right) single-element transducer. Focusing is achieved through the spherical
curvature of the transducer element.

When absorption is present in tissue, the propagation velocity varies with fre-
quency. This effect is known as dispersion. In media with strong absorption,
the dispersion significantly alters the shape of the waveform and intensifies
with propagation depth. However, in soft tissue, the effect of dispersion is
rather small, and hence, a constant propagation speed is often assumed over
the considered frequency range [1]. The shape of the waveform is also affected
by nonlinear distortion. This effect arises due to the dependence of the sound
velocity on tissue density: as the compression regions of the waveform travel
faster than refraction regions, part of the waveform becomes steeper as the
wave propagates. In the frequency domain nonlinear propagation results in the
generation of higher harmonics. The amount of nonlinear distortion that occurs
depends on the nature of the propagating medium. This effect is cumulative
and is significant for high-amplitude waves but for waves with small amplitude
a linear approximation is often made.

Until now, propagation of a single ultrasonic wave was discussed. However, the
energy generated by an ultrasonic transducer does not originate from a single
point but from a collection of many points (sources) along the surface of the
piezoelectric element. Each point source generates a spherical wave front that
spreads from the transducer surface. Together, these waves form an ultrasonic
beam and the effect describing the spreading of the beam and interference of its
individual components is referred to as diffraction. Ultrasound beam spreading
also contributes to the overall acoustic energy loss during beam propagation.
The diffraction is strongly dependent on the shape of the source and its size

9



1.1. Ultrasound imaging

Figure 1.5: Example of an RF signal recorded in water from an object with a
homogeneous distribution of scatters. The exponential amplitude decay seen in
the figure is due to attenuation. Strong reflections on the “water-object” and
“object-water” interfaces are due to the impedance mismatch between these two
media.

relative to the ultrasound wavelength. For the purpose of obtaining higher lat-
eral resolution, narrow ultrasound beams are preferable, and therefore, focused
transducers are typically used in ultrasound imaging (Fig. 1.4). Focusing can
be achieved geometrically through use of acoustic lenses or curved piezoelec-
tric elements. For transducers composed of several piezoelectric elements (as
will be discussed later) focusing can be done digitally by properly timing the
elements during the transmit and receive events. During focusing, the acoustic
energy is concentrated inside of a small area around the focal zone which yields
increased intensity at the point of focus (Fig. 1.3b).

1.1.2 Pulse-echo principle

The name “pulse-echo” refers to a mode of signal acquisition, in which reflected
ultrasound signals (echoes) are detected by the same transducer that was used
for signal transmission. Ultrasound imaging instruments typically transmit
short bursts of energy, commonly termed pulses. Short pulses are necessary
to achieve good resolution in axial (beam) direction. After transmission, the
piezoelectric-electric element of the transducer starts “listening” to the return-
ing echoes. Upon receiving the reflected signals, transducer elements undergo
a mechanical deformation which is converted to electrical signals that are dig-
itized and stored for further analysis. The reflected ultrasound signals arrive
at the transducer some time after the original signal was transmitted. This
delay is equal to the time it takes an ultrasound signal to reach the scatterer
or organ boundary and to return to the transducer site. Therefore, when the
speed of propagation (c) is nearly constant, the depth of a scatterer/reflector
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1. Introduction

(d) can easily be calculated as:

d =
ct

2
, (1.5)

where t is the time delay between the echo and signal transmission. The echoes
detected by the transducer form the so-called radio-frequency (RF) signal (since
the frequencies involved correspond to the frequencies of radio waves) (Fig.
1.5). By sequentially transmitting an receiving signals in different directions
and combining the obtained RF lines, an ultrasound image can be created that
displays internal body structures.

1.1.3 Data acquisition

Ultrasound data acquisition can be performed in different ways. The three gen-
eral acquisition modes are the A- (Amplitude), M- (Motion) and B- (Bright-
ness) modes (Fig. 1.6). While A-mode simply displays the raw RF signal
over time (Fig. 1.6a), in M-mode, the RF signal is recorded successively over
time in order to reconstruct a 2-D image that is used for analysis of moving
organs. In this case, amplitudes of RF signals are encoded to grey scales and
are displayed as pixels intensities (Fig. 1.6b). The B-mode imaging is most
commonly used in clinical practice and consists of a combination of A-mode
measurements performed along different directions. These directions typically
form a sector in a plane of the body, and hence, B-mode images depict cross
sections of the examined tissue structures. Just as during M-mode acquisition,
the amplitude of the signals is converted to grey value, and the resulting image
represents a 2-D grey-scale of the reflected intensity displayed as brightness
(Fig. 1.6c).

2-D images can be produced by mechanically moving a single-element trans-
ducer across a scan plane. However, in modern ultrasound imaging, transducers
are used that consist of multiple elements which can be excited independently
allowing electronic scanning (Fig. 1.7). Most common in medical imaging are
the linear-array and the phased-array transducers that consist of a 1-D array
of crystals. Linear array transducers move the ultrasonic beam by sequentially
firing subgroups of elements, and the resulting scan lines are parallel to each
other. Alternatively, the aperture of a linear array can be curved to create a
scan of a trapezoidal shape. Linear array transducers have a relatively broad
aperture and are typically used for applications where the acoustic window
is large, i.e. abdominal, vascular and obstetrics examinations. Phased array
transducers have a smaller footprint enabling imaging within a small acoustic
window (e.g.cardiology). By manipulating the timing of excitation of individual
elements captured by the individual elements before summing, both electronic
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1.1. Ultrasound imaging

(a) A-mode (b) M-mode (c) B-mode

Figure 1.6: Example images of (a) A-mode, (b) M-mode and (c) B-mode. Re-
produced with permission from [2].

Figure 1.7: Schematic illustration of ultrasonic transducers: single-element
(left) and 1-D array transducer (right) and their geometrical description.

focusing and steering of the beam can be achieved. Similarly, the transducer
can be focused on receive by applying time delays on the reflected signals. By
adjusting the delays of the received signals over time, dynamic receive focusing
can be achieved, which significantly improves the lateral resolution. Phased
array transducers produce a sector image. The number of lines in the sector
and the line density can be adjusted depending on the application. However,
since the scan lines diverge with depth, the scan line density is not uniform
throughout the field of view.

1.1.4 Image formation

Reconstruction of a B-mode image from an acquired set of RF signals consists
of several processing steps. First, the signals are amplified to compensate for
tissue attenuation using the so-called time-gain compensation. Due to attenua-
tion, echoes returning from deeper tissue regions are weaker than those arising
close to the aperture. The attenuation is compensated for by increasing the
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1. Introduction

Figure 1.8: Illustration of the processing steps for the formation of a sector
B-mode image.

amplification gain with increasing depth of the returning echoes. In this way, a
balanced in brightness image is produced. As a next step, the signals undergo
filtering to reduce noise outside frequencies of interest. Further, the envelope
of RF signals is detected to remove high frequency information, which is typ-
ically done by means of a Hilbert transformation. The resulting signals are
log-compressed to fit the dynamic range used for display. Finally, for sectorial
acquisitions, scan-conversion is performed to transform the data from the polar
space to Cartesian coordinates, which is done by means of interpolation (Fig.
1.8). The time required for an acquisition of one image, i.e. frame, is so small
(∼30 ms) that ultrasound imaging can be performed in real time. The tempo-
ral resolution can be further improved by decreasing the imaging depth or line
density or by employing advanced acquisition techniques, which are constantly
being developed.

1.2 Ultrasound tissue characterization

Conventional ultrasound B-mode imaging is extensively used in clinical prac-
tice in various applications. Ultrasound gray-scale images allow analysis of
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1.2. Ultrasound tissue characterization

Speed of sound
Attenuation
coefficient

Backscatter
coefficient

Nonlinear
parameter

Liver [3–6] [6–14] [11, 13] [3, 15]
Kidney [16,17] [15]
Breast [18,19] [18, 20,21] [20, 22,23]
Myocardium [24–26] [27–30] [29,31]
Aorta [32] [32] [33]
Eye [34,35] [36]
Lymph nodes [37]
Spleen [15]
Prostate [38]

Table 1.1: A list of acoustic parameters describing ultrasound-tissue interac-
tions that showed potential for UTC.

tissue function and morphology, but appear to be strongly dependent on the
machine settings and are qualitative in nature. Therefore, there has been a
growing interest in techniques that would provide quantitative information on
the characteristics of the examined structures. This field of study is referred
to as ultrasound tissue characterization (UTC) and aims to improve ultrasonic
diagnostic capabilities by quantitatively measuring physical properties that can
be linked to the tissue state. The central hypothesis of UTC is that tissue af-
fected by a disease or medical treatment undergoes micro-structural changes
that impact the way the ultrasound waves interact with the tissue and thus
the reflected echo signals. UTC has traditionally used ultrasound modelling
and signal analysis to derive physical parameters that can characterize and
differentiate between healthy and diseased tissues. However, some descrip-
tive parameters can only be extracted from RF signals before they undergo
the process of the envelope detection. The following discussion will focus on
the fundamental acoustic parameters describing ultrasound-tissue interactions
that showed potential for UTC. A list of such parameters and their area of
application are summarized in Table 1.1.

1.2.1 Inverse scattering methods

UTC is, in fact, an inverse scattering problem. Indeed, based on the scat-
tered data from the tissue, UTC attempts to derive the tissue characteristics.
Inverse methods employ an analytical model, which is used to derive the re-
quired parameters from the available data. However, due to the complexity of
ultrasound-tissue interactions, a number of simplifying assumptions regarding
the tissue structure and experimental settings have to be made. Conventional
UTC methods typically focus on one particular parameter and consist of three
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main steps: first, experimental data is corrected for any system-dependent ef-
fects (i.e. diffraction, mechanical and electrical properties of the transducer);
next, an attempt is made to isolate the ultrasound-tissue interactions that are
described by the parameter of interest, and finally, the reconstruction of this
parameter is perfomed on the basis of the assumed model [39]. The main chal-
lenge of such approach consists in the need to correct for the system-related
effects that are inherently spatially-variant.

1.2.2 Ultrasound spectrum analysis

The majority of UTC methods employ frequency-domain analysis of RF echo
signals by computing their power spectral density. The procedure begins with
the selection of the region of interest (ROI) on a reconstructed B-mode image
(Fig. 1.9), that is further subdivided into a set of segments. The number of
such segments depends on the application, while their size is determined by
the number of adjacent scan lines on one side and the number of time windows
along each scan line on the other. Time windows are gated using a partic-
ular window function (e.g. rectangular, Hann, Hamming window, etc.) and
typically overlap. The RF echo spectrum in every window is then calculated
uisng the fast Fourier transform algorithm (FFT), and the average power spec-
tral density of a segment is computed as the mean of the squared spectral
amlitudes from all windows within this segment [40].

Frequency-domain algorithms typically use a reference phantom method to cor-
rect for the system dependencies [41]. Namely, both the sample and a reference
medium with known acoustic properties are scanned using the same transducer
and system settings. The sample power spectral density at every depth inside
the selected region of interest (ROI) is then divided by the power spectrum
of the reference phantom estimated at the same depth, and the frequency de-
pendence of the normalized power spectrum is further used to estimate the
parameter of interest. Although this method presents a relatively straight-
forward procedure to correct for the system-related effects, its use in clinical
practice is limited due to a number of constraints. First of all, it presents
an additional measurement which has to be repeated every time the system
settings (e.g. focal settings) are changed. Furthermore, this method relies on
the assumption that the speed of sound in the sample and in the reference
phantom are constant and identical, which is not always the case. Violation
of this assumption results in a mismatch between the focal patterns in the
sample and reference measurements which leads to inaccurate parameter esti-
mates [42]. Moreover, these algorithms do not account for the interactions of
an ultrasound beam with proximal tissue layers that may influence the spectral
characteristics.
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Figure 1.9: Schematic illustration of the procedure for power spectral density
estimation which is utilized by the spectral domain UTC methods.

1.3 Objectives and outline of this thesis

The aim of this thesis was to develop and validate a fundamentally different
approach for reconstruction of the local acoustic properties, wherein the for-
ward scattering problem is iteratively solved through computer simulations in
order to match the synthetically generated ultrasound data to the experimen-
tally observed ones. The advantage of such approach is that numerical mod-
elling of the forward ultrasound wave propagation enables to study various
ultrasound-tissue interactions as well as their combined effect in a controlled
manner. Moreover, diffraction effects do not need to be corrected for as they
are intrinsically incorporated into the propagation model.

The proposed methodology can be divided in three main steps: 1) simulation,
i.e. modelling of the forward ultrasound wave propagation assuming a set of
acoustic properties of the medium and estimation of the spectral characteristics
of the backscattered signal; 2) comparison of the spectral characteristics of the
simulated and experimentally observed signals using a pre-defined similarity
measure; and 3) optimization applied in order to retrieve tissue parameters
corresponding to the highest similarity between the modelled and experimen-
tally measured outputs. The proposed method can be modified or improved at
all levels to better suit a particular task and can be potentially used in a variety
of applications. In this manuscript, we focus on the effects of attenuation and
employ the above approach to estimate the attenuation coefficient (Eq. 1.4) of
soft tissue and tissue-mimicking materials.

For completeness, simulation of the forward ultrasound propagation should in-
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clude all ultrasound propagation phenomena described in section 1. However,
modelling the combined effect of all above mentioned phenomena is very com-
plex as all effects impact each other. Besides, it would make it very difficult
to validate the resulting model in an experimental setting. Therefore, the fea-
sibility of the proposed approach was first tested in a simplified case. The
complexity of the model was then gradually increased.

More specifically, the objectives of this thesis were:

� Investigate the feasibility of the proposed approach in the simplified case
of plane wave propagation.

� Increase the complexity of the propagation model (i.e. include the system-
dependent effects) and validate the novel approach on synthetic and ex-
perimental data.

� Adapt the propagation model to a clinical setting (i.e. array transducer,
heterogeneous media) and perform the complete validation on synthetic
and experimental data acquired in-vitro and in-vivo.

The manuscript is structured as follows. Chapter 2 investigates the feasibil-
ity of the proposed approach in a simplified case of 1-D, linear plane wave
propagation. An overview of the existing methods for the attenuation estima-
tion is provided and their limitations are discussed. The proposed approach is
validated on synthetically generated data and experimental data recorded in
tissue-mimicking phantoms and its performance is compared against the two
reference methods commonly used in the literature. Given the promising re-
sults of the feasibility study, chapter 3 presents an extension of the underlying
model to a case of 3-D wave propagation in a heterogeneous medium. The
aim of this extension is to include diffraction effects that are modelled using
the angular spectrum approach. The theoretical background for the improved
model and its numerical implementation are discussed in detail, followed by
the validation of the improved methodology for the attenuation estimation on
synthetic and experimental phantom data presented in chapter 4. As a step
towards in-vivo application, chapter 5 describes an extension of the model to
a case of a linear array transducer as clinically used. The complete validation
of the refined model including in-silico, in-vitro and in-vivo validation is the
subject of chapter 6. In the latter case, the attenuation coefficient is estimated
in the liver in healthy volunteers. Finally, in chapter 7 the most important
conclusions of this work are summarized and some speculations are made re-
garding the future perspectives of this work and the potential of the developed
approach in clinical practice.
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Chapter 2

Attenuation estimation by
repeatedly solving the
forward scattering
problem

Part of this work was published in: N. Ilyina et al., “Iterative reconstruction of the
ultrasound attenuation coefficient from backscattered signal”, IEEE Ultras. Symp. Proc.,
pp. 2406-2409, 2014.

The complete study was resubmitted to a peer-reviewed journal.
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2.1. Introduction

Abstract

Estimation of the ultrasound attenuation in tissue is important in medical ul-
trasound not only for correct time-gain compensation but also for tissue char-
acterization. In this chapter, the feasibility of a new method for attenuation
estimation is evaluated. The proposed method estimates the attenuation by
repeatedly solving the forward wave propagation problem and matching the
simulated signals to the measured ones. This approach allows to avoid common
assumptions made by other methodologies and potentially allows to account
and correct for other acoustic effects that may bias the attenuation estimate.
The performance of the method was validated on simulated data and on data
recorded in tissue mimicking phantoms with known attenuation properties, and
was compared to the spectral-shift and spectral-difference methods. Simulation
results showed the different methods to have good accuracy when noise-free sig-
nals were considered (the average relative error of the attenuation estimation
did not exceed 15 %). However, the accuracy of the conventional methods
decreased rapidly in the presence of measurement noise and varying scatterer
concentration, while the relative error of the proposed method remained below
15 %. Furthermore, the proposed method outperformed conventional attenua-
tion estimators in the experimental phantom study, where its average error was
8 %, while the average error of the spectral-shift and spectral-difference meth-
ods was 26 % and 32 %, respectively. In summary, these findings demonstrate
the feasibility of the proposed approach and motivate us to refine the method
for solving more general problems.

2.1 Introduction

Ultrasound has been widely used in clinical practice as a diagnostic tool due to
a number of advantages, such as portability, relative inexpensiveness, absence
of ionizing radiation, and the possibility of real-time imaging. A critical step
in ultrasound image reconstruction is attenuation correction which is typically
performed by means of time-gain compensation (TGC). Automatic TGC is
widely used and consists in increasing the gain of the reflected signals with
increasing depth according to a predefined attenuation profile. However, this
method does not account for shadowing and enhancement artefacts that may be
induced by variations in local attenuation of the scanned region. Such artefacts
can only be eliminated by proper attenuation correction [43, 44]. Therefore, a
methodology that yields a reliable estimation of the local acoustic attenuation
would be very helpful to improve TGC.

Moreover, quantitative assessment of the ultrasound attenuation coefficient and
its frequency dependency can be used for tissue characterization. In liver di-
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2. Attenuation estimation by repeatedly solving the forward scattering problem

agnosis, for instance, the attenuation coefficient significantly increases in both
fatty and fibrotic liver [7,12]. In breast tissue, the attenuation coefficient is low
for fatty tissue and medullary carcinoma and high for fibrotic tissue and ductal
carcinoma [20,21]. Several studies showed that attenuation increases in regions
of myocardial infarction [27,30]. As an alternative for ultrasound attenuation,
other acoustic parameters (such as the local backscatter coefficient, effective
scatterer size, acoustic concentration or nonlinear parameter) could be used for
the UTC purposes. However, for a reliable estimation of these parameters a
correct TGC is required [45–47].

To accomplish this, a variety of techniques for attenuation estimation from
reflected ultrasound signals has been developed over the last four decades.
Most techniques solve the so-called “inverse scattering problem” by estimating
the acoustic parameters directly from the recorded backscatter signals in either
time or frequency domain. In the time-domain, an attenuation estimate can
be obtained by analysing the noise-to-signal ratio of the echo envelope peaks
[48]. A method based on the entropy difference between two adjacent envelope
segments of the narrowband reflected signal was proposed by Jang [49]. Knipp
& Zagzebski [50] developed a video-signal analysis technique for estimating
the attenuation from B-mode images. Although time-domain methods are
computationally fast and easy to implement, compensation for the diffraction
effects is very difficult in time-domain.

In the frequency-domain, two main approaches for the attenuation estimation
exist: the spectral-shift approach, which estimates the center frequency down-
shift of the power spectrum as a function of depth, and the spectral-difference
approach, which measures the power spectrum amplitude decay with propaga-
tion depth. In the implementation of the spectral-shift algorithm, a Gaussian
shape of the transmitted pulse and of the reflected echo is assumed, and the
attenuation coefficient is estimated from the slope of the decay of the center
frequency with depth [51]. A method for estimating the center frequency down-
shift using the short-time Fourier analysis has been described by Fink [52].
Baldeweck [53] used a parametric spectral analysis based on autoregressive
modelling to estimate the center frequency along the propagation depth. Kim
& Varghese [54] obtained the spectral shift from the position of the maximum
of the cross-correlation function between successive power spectra. The cen-
ter frequency downshift was also determined in the time-domain by measuring
the density of zero-crossings of radio-frequency (RF) signals for the case of a
linear [55] and nonlinear [7] frequency dependence of the attenuation coeffi-
cient.

A spectral difference approach, in which the attenuation coefficient was esti-
mated as a function of frequency by measuring the decay of the power spectrum
components with depths, was described by Parker [56, 57]. Kuc [58–60] pro-
posed a log-spectral difference approach, where the attenuation coefficient was
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estimated by analysing the ratio of the power spectra at two different depths
(distal and proximal). Insana [61] improved this method by including the ef-
fects of the transducer diffraction pattern. Later, Yao [41] proposed a reference
phantom method for the attenuation and backscatter coefficient estimation
where a reference phantom was used to correct for the system and transducer
dependencies. More recently a hybrid method was proposed that combines both
the spectral shift and spectral difference techniques [62]. This method uses a
reference phantom method to minimize the diffraction effects, whereupon the
attenuation coefficient is estimated using the spectral cross-correlation algo-
rithm mentioned above [54].

Despite the large variety in methodologies, application of the existing tech-
niques is difficult in clinical practice. This is primarily due to a violation of
their underlying assumptions. For spectral-shift methods, the violation con-
cerns a non-Gaussian shape of the transmitted pulse, a nonlinear frequency
dependent attenuation and the presence of diffraction effects due to the beam
focusing [52,57,60,63], while spectral-difference methods experience difficulties
in media with non-uniform scattering properties [61, 62]. Although the hybrid
method overcomes some limitations by combining both techniques, handling
of the in-vivo data remains a problem due to the spectral amplitude varia-
tion caused by the random distribution of tissue scatterers and the presence
of noise [55]. Finally, when the attenuation is estimated directly from the
backscattered signal, other than diffraction acoustic effects may influence the
attenuation estimate and have to be corrected for or neglected under certain
assumptions.

Considering the shortcomings of the existing methods, the ultimate goal of our
research is to quantitatively describe the influence of a combination of acoustic
effects on the propagation of the acoustic wave, and to attempt to estimate
several effects simultaneously from the recorded backscattered data. For this
purpose, we propose an alternative approach where a computer model is used
to solve the forward scattering problem. The input acoustic parameters of the
model can be iteratively changed in order to have the model generate a syn-
thetic signal that matches the experimentally observed signal. The acoustic
parameters that result in the best match between the simulated and measured
signals are considered to be the true parameters of the investigated medium.
The complete model of the forward propagation should ideally include the ef-
fects of diffraction, attenuation, nonlinear distortion, dispersion, reflection and
refraction. However, although each individual effect may be described by a
relatively simple model, analysis of the combined effect of all above-mentioned
phenomena is very complex. In this chapter, we present a feasibility study
of the above approach in a substantially simplified setting. In particular, we
focus on the attenuation estimation considering all other medium parameters
to be known. Moreover, we assume linear plane wave propagation in a homo-
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geneous dispersion-free medium avoiding the effects of diffraction, dispersion,
nonlinear distortion, reflection and refraction (effectively reducing the problem
to 1-D).

The present chapter is an extension of preliminary results that were described
in [64]. The present version of the algorithm for attenuation estimation was
improved; its performance was more thoroughly validated on both simulated
and experimental data, and the results were compared with estimates obtained
using the two traditional frequency-domain attenuation estimation methods:
the spectral-shift method proposed by Fink [52] and the spectral-difference
method proposed by Kuc [60].

The chapter is organized as follows: in section 2.2 the proposed method is
described in detail; section 2.3 presents the simulation and experimental results
and the comparison with traditional methods for attenuation estimation. The
obtained results are discussed in section 2.4. Finally, the conclusion of this
study is formulated in section 2.5.

2.2 Materials and methods

The proposed approach consists of three main steps. First, the forward wave
propagation is modelled using the plane wave approximation assuming a set
of acoustic properties of the medium, and the spectrum of the backscattered
signal is estimated. Then, the spectra of the simulated and experimentally
observed signals are compared using a pre-defined similarity measure. Finally,
the first two steps are repeated for a series of values of a varying input atten-
uation coefficient, and the attenuation coefficient corresponding to the highest
similarity between the spectra is determined.

2.2.1 Acoustic model

Considering a simplified model of plane wave propagation in an isotropic and
homogeneous medium and using the Born approximation of weak scattering,
the power spectral density, P(f, z), of the signal received at the ultrasound
transducer from a thin slice of a scattering medium at a depth z, can be ex-
pressed as [44,65]:

P(f, z) = V 2(f)A2(f, 2z)B2(f, z), (2.1)

where V (f) embodies the combined effect of the electrical excitation and the
electromechanical coupling of the transducer that can be experimentally de-
termined through a pulse-echo reflector measurement, A(f, z) = e−αfz is the
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attenuation operator that is defined assuming propagation in a dispersion-free
medium and a linear frequency dependence of the attenuation, and B(f, z)
stands for the frequency-dependent backscatter characteristics at depth z. The
power spectral density can be calculated as a squared amplitude of the signal’s
Fourier spectrum, i.e. P(f, z) = |S(f, z)|2, so we can write:

|S(f, z)| = |V (f)A(f, 2z)B(f, z)|, (2.2)

Further, the scattering characteristics can be considered constant with depth,
and the scattering operator can be expressed as [44,54]:

B(f, z) = B0(z)f l, (2.3)

where we have chosen l = 2 [44] for Rayleigh scattering and B0(z) = B0 is
assumed to be constant along the homogeneous medium.

2.2.2 Spectral comparison

The comparison of the spectrum of the backscattered signal obtained in the
simulation to the spectrum of the experimentally observed backscattered signals
was performed using a sliding window approach. The first window was used for
calibration by equalizing the energies of the simulated and measured spectra.
In this way, the amplitude coefficient B0 in 2.3 can be eliminated. Similarity
between the simulated and measured spectra in every subsequent window was
analysed by calculating the least squares difference:

D(z, α) =
∑
f

(|Smeas(f, z)| − |Ssim(f, z)|)2
, (2.4)

where |Smeas(f, z)| is the amplitude of a measured spectrum in the window
at depth z and |Ssim(f, z)| is the amplitude of the simulated spectrum at the
same position.

2.2.3 Optimization

In order to approximate the experimentally observed signals within reasonable
accuracy, the above simulation procedure was repeated for different input values
of the attenuation coefficient. The attenuation coefficient in the model was
discretely changed in a chosen interval, and the coefficient corresponding to
the highest similarity between the simulated and the measured signals in each
analysis window was determined by means of an exhaustive search.
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The global attenuation coefficient of the sample was finally estimated as the
average of the coefficients determined for all windows:

ᾱ =

L∑
i=1

arg min
α
D(zi, α)

L
, (2.5)

where zi is the distance to the ith window and L is the number of all windows
excluding the first one.

The performance of the proposed method was first evaluated on simulated
signals that were also used to determine the optimal spectral window sizes for
the proposed and reference methods. Subsequently experimental data was used
for testing and validation.

2.2.4 Data generation

Synthetic Data: Simulated signals were obtained by modelling the forward
plane wave propagation and backscatter of the input pulse in media with a-
priori known acoustic characteristics. Scattering was modelled as a reflection
from a distribution of scatterers in the far-field of a flat unfocused single-element
transducer that were placed on the propagation axis. For this purpose, a num-
ber of 1-D random distributions of point scatterers were generated at a prede-
fined density (150 scatterers per mm). The reflection from a single scatterer
was calculated by attenuating the input pulse on its forward propagation to
the scatterer location and on its backward propagation to the position of the
source using the attenuation transfer function in Eq. 2.2 in the frequency do-
main. Herein, the frequency dependence of the scattering process was omitted.
Finally, the signals from all scatterers were summed in the time-domain to
obtain a single RF line:

RF (t) =

Nsc∑
i=1

[
F−1

{
V (f)A(f, 2zi)e

−j2πf∆ti
}]

, (2.6)

where Nsc is the total number of scatterers in the distribution, F−1{x} repre-
sents the inverse Fourier transform of x and zi is the depths of the ith scatterer
in the distribution. The exponential term describes the delay of each scattered
signal, where ∆ti = 2zi/c− tp/2 and tp is the duration of the input pulse.

For this study, homogeneous tissue-like media with a speed of sound of 1500
m/s, mass density of 1100 kg/m3, and three different attenuation coefficients:
α = 0.3, 0.5 and 0.7 dB/cm/MHz, were considered. The input pulse had a
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Gaussian shaped spectrum, V (f), with a 2.25 MHz center frequency and a 50
% fractional bandwidth. 50 RF signals of 40 mm length (˜60 wavelengths)
were generated for different realizations of the positions of the scattering sites
to allow for averaging as typically recommended for attenuation estimation.
Additionally, the performance of the current method and of the two tradi-
tional spectral-shift and spectral-difference methods [52, 60] was tested for a
decreasing number of RF lines. Hereto, a different number of signals was con-
sidered: 1, 5, 7, 10, 30 and 50 RF lines. Furthermore, the influence of the
measurement noise was examined by adding white Gaussian noise (with signal
to noise ratio (SNR) of 12 and 6 dB) to the simulated signals and by repeating
the attenuation estimation for this set of noisy signals. Moreover, the per-
formance of the considered methods was tested in media with weakly varying
scattering concentrations, as often seen in practice. For this purpose, 10 RF
signals were generated for media composed of three adjacent layers of 20, 10
and 10 mm with scattering concentrations of 150, 165 and 180 scatterers per
mm, respectively (test 1) and 150, 180 and 195 scatterers per mm, respectively
(test 2). Subsequently, white Gaussian noise (6 dB SNR) was added to these
signals.

Experimental Data: The performance of the proposed method was also tested
on experimental data. For this purpose, tissue mimicking phantoms with differ-
ent attenuation characteristics were prepared. Three types of phantoms were
built as described in [66–68] by mixing gelatin-, agarose- and PVA-based gels
with different concentrations of graphite powder in order to modify the at-
tenuation characteristics of the materials and to achieve sufficient scattering.
Six homogeneous cylindrical phantoms (40-50 mm in length; 35 mm in diame-
ter) were used in this study: three gelatin-based phantoms, named “Phantom
A”, “Phantom B” and “Phantom C”; one agarose-based, termed “Phantom
D”, and two PVA-based phantoms, labelled “Phantom E” and “Phantom F”.
The different phantom families were made by mixing dry powder of gelatin,
13.5% (AppliChem, Darmstadt, Germany), agar, 3.85% (Merck, Darmstadt,
Germany) and PVA, 10% (Sigma-Aldrich Chemie, Steinheim, Germany), re-
spectively, with deionized water. Graphite powder in concentration of 50-70
g/L (Acros Organics, Geel, Belgium) was used to alter the scattering and at-
tenuation properties.

The acoustic parameters of the phantoms were first measured using a tradi-
tional through-transmission substitution method, and their values are listed in
Table 2.1. The through-transmission substitution method consists in a com-
parison of signal amplitudes in a medium with known parameters (i.e. distilled
water) with those obtained during the actual propagation through the sam-
ple [69, 70]. As such, a reference measurement was first made in a tank filled
with distilled water using two transducers. Next, a phantom was placed in the
water in-between the two transducers. All measurements were performed at
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room temperature (22 °C).

Fig. 2.1a shows a schematic diagram of the through transmission setup used for
these measurements. Flat unfocused single-element 0.5” transducers with 65%
fractional bandwidth and 10 MHz center frequency (V311-SU, Panametrics
NDT, Inc., Waltham, MA) were used. Successive sinusoidal bursts, produced
by a waveform generator (AWG NI PXI 5412, National Instruments Corpora-
tion, Austin, TX) and PC-controlled by LabVIEW, were sent in the form of a
discrete frequency sweep (from 0.5 till 20 MHz with 250 kHz step), such that,
at each frequency, the waveform consisted of 120 cycles. This signal was ampli-
fied (150A100B Amplifier Research, Souderton, PA) and sent to the emitting
transducer. 64 transmitted signals, recorded at the receiving transducer, were
digitized by means of a data acquisition card (DAQ PXI NI 5122, 14 bit, 100
MHz sampling rate, National Instruments Corporation, Austin, TX), and the
averaged signal was stored on the PC.

The speed of sound of the phantom was determined using a cross-correlation
calculation involving the first echoes of the signals received with and without
the phantom placed in-between the transducers. For the reference medium a
speed of sound of 1483 m/s was used for these calculations (sound speed in
distilled water at 22 °C). The determined speed of sound for each phantom was
constant with frequency and its value was used as an input in the simulations.
The attenuation coefficient of the phantom was calculated from the ratio of the
fundamental pressure amplitudes between the reference signal and the sample
signals assuming an exponential law. The determined attenuation coefficients
for each phantom showed a linear dependence on frequency. Its values were
considered as ground-truth and were used for the verification of the attenuation
estimates obtained from the backscattered signals.

Ph. A Ph. B Ph. C Ph. D Ph. E Ph. F
Density, kg/m 3 1305 1086 1000 1100 1276 1198
Speed of sound, m/s 1518 1546 1552 1520 1587 1596
Attenuation coeffi-
cient, dB/cm/MHz

0.74 0.61 0.63 0.84 0.39 0.63

Table 2.1: Acoustic properties of the tissue mimicking phantoms.

The backscattered signals were recorded in pulse-echo mode. The schematic
diagram of the experimental setup used for these measurements is shown in Fig.
2.1b. A single transducer operated as emitter as well as receiver. Depending
on the availability at the time of the experiment, three different types of trans-
ducers were used for the backscatter measurements. All transducers were flat
unfocused single-element, 0.5” (13 mm) transducers: a V306-SU with a 2.25
MHz center frequency and 60% bandwidth, an A306-SU with 2.25 MHz center
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frequency and 50% bandwidth and a V309-SU with 5 MHz center frequency
and 65% bandwidth (Panametrics NDT, Inc., Waltham, MA). A phantom was
placed in the water tank in the far-field of the emitting/receiving transducer
in order to avoid near-field diffraction effects and to approximately satisfy the
plane-wave assumption. The far-field distance for the transducers was calcu-
lated as:

zfar−field =
a2

4λ
, (2.7)

where a is the transducer diameter (in this case 13 mm) and λ is the wavelength.
Thus, using a speed of sound in distilled water at room temperature (1483 m/s),
the far-field distance for the 2.25 MHz transducer was d = zfar−field = 70 mm
and d = 140 mm for the 5 MHz transducer.

A negative impulse was generated on a Pulser/Receiver (5058PR, Panametrics
Canada NDT, Quebec) and sent to the emitting/receiving transducer. At a
fixed transducer-phantom distance, 16 received signals were averaged, digitized
on a data acquisition card and stored on the PC for further analysis. For each
phantom, 10 signals were acquired, slightly moving the transducer in the plane
parallel to the surface of the phantom with steps of 2 mm. The movement was
done by linear motion stages (Velmex Bislides, Velmex Inc., Bloomfield, NY)
controlled by a stepper motor drive (NI MID-7604) connected to a motion con-
troller (NI PXI 7334, National Instruments Corporation, Austin, TX).

Since the waveform of the actually transmitted pulse is required for the sim-
ulations used in our approach, reflections of the emitted pulses from a metal
needle were measured. Hereto, a 0.04 mm needle was placed at the same dis-
tance from the transducer as the phantoms. The recorded pulses were used as
input for the simulations. It should be noted that the needle acts as a point
scatterer and the spectrum of the recorded reflections contains the frequency
dependence of f2. Hence, when a needle reflection is used as an input pulse in
Eq. 2.1, the frequency dependence of B(f, z) can be further omitted as it has
then intrinsically been accounted for.

2.2.5 RF data processing

In both the synthetic and real experiments, the observed RF signals were com-
pared with the simulated ones using a sliding window analysis. A size of the
sliding window of 20 mm (˜30 wavelengths) and a 75% window overlap were
chosen as the optimal parameters for robust attenuation estimation. In every
window, the average of 10 Fourier spectra, acquired at different positions from
the central axis in the same plane, was used for comparison with the simu-
lated spectrum. Because the attenuation coefficient of soft tissue in general,
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2. Attenuation estimation by repeatedly solving the forward scattering problem

Figure 2.1: A schematic diagram of the experimental setup for (a) through-
transmission insert-substitution experiment and for (b) the pulse-echo setup,
where d is the distance between the sample and transducer (7 cm for 2.25 MHz
transducer and 14 cm for 5 MHz transducer).

as well as the value for the tissue-mimicking phantoms under consideration,
is not expected to exceed 2 dB/cm/MHz [71], the input attenuation coeffi-
cient in the simulation was discretely changed in the interval between 0 and
2 dB/cm/MHz with a step of 0.01 dB/cm/MHz. The distance between the
spectra of the windowed signals was calculated for every input value using Eq.
2.3. A -20 dB frequency range of all spectra was selected for the comparison
in order to operate above the noise floor (Fig. 2.2) [63,72].

The results of the proposed method were compared to the estimates obtained
using two state-of-the-art methods for attenuation assessment: a spectral-shift
method based on the short-time Fourier analysis developed by Fink [52] and a
spectral-difference method proposed by Kuc [60].

The spectral-shift method computes the spectrum of the signal using short-time
Fourier analysis at each position of the sliding window. The center frequency
downshift is obtained by computing the spectral moments of the 0th, 1st and
2nd order. The spectral-difference method estimates the attenuation coefficient
from the log-spectral difference of two windows at the proximal and distal sur-
faces of the medium [73]. The size of the spectral window for each method was
chosen as the one corresponding to the lowest error of this method in the sim-
ulation study. The optimal spectral window size for the spectral-shift method
was 18 mm (27 wavelengths) with 50% overlap, while the optimal window size
for the spectral-difference method appeared to be 8 mm (12 wavelengths). The
proximal segment was positioned in the beginning of the backscattered signal
(0 mm) and the distal segment at the end of the signal (at 30 mm or 45 wave-
lengths). Again -20 dB bandwidth of the signal spectra was selected in order
to operate above the noise level.
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2.3. Results

Figure 2.2: The fit of the simulated spectral curve to the spectrum of the win-
dowed measured signal.

2.3 Results

The results of the attenuation estimation on the first set of synthetic data using
all three methods are presented in Fig. 2.3. The average error of the attenua-
tion estimation with all three methods did not exceed 15 %. The best accuracy
was achieved with the spectral-difference method. In Fig. 2.4, the influence of
measurement noise on the performance of all three methods is presented as well
as the effect of using a different number of RF lines for spectral averaging. Two
aspects can be appreciated: 1) while the average estimates only slightly improve
when the number of RF lines increases, the standard deviation of the estimates
decreases substantially for all three methods when increasing the number of
RF lines, 2) in the presence of noise, the spectral-shift method was unable to
provide realistic estimates (the error exceeded 100 %). In contrast, the error of
the proposed and spectral-difference methods did not change markedly in the
presence of noise; both methods showed stable performance when 10 or more
RF lines were used for spectral averaging. The spectral-difference method once
again showed the best accuracy. Fig. 2.5 presents the results of the attenuation
estimation in 2 media with depth-dependent scatterer concentrations. It can
be noticed, that the accuracy of the spectral-difference method decreased with
increasing degree of heterogeneity, while the performance of the proposed and
spectral-shift methods was not influenced by the weak variations in scatterer
density. However, the spectral-shift method once again failed to provide ac-
curate attenuation estimates in the presence of measurement noise, while the
performance of the proposed method remained stable.

For the experimental data, the estimates of the attenuation coefficients com-
puted from the backscattered signals with all three methods were compared
with the “ground-truth” attenuation coefficients that were measured using the
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2. Attenuation estimation by repeatedly solving the forward scattering problem

Figure 2.3: Comparison of the performance of the proposed method with the
spectral-shift method (SSM) and the spectral-difference method (SDM) on syn-
thetic data: estimated attenuation coefficients (a) and average relative error of
the obtained attenuation estimates (b).

insert-substitution method as mentioned above (Table 2.2). The results are
presented in Fig. 2.6. The average error of the attenuation estimation with
the proposed method was 8%, while the average error of the spectral-shift and
spectral-difference methods amount to 26% and 32%, respectively.

Ph.
A a

Ph.
B a

Ph.
B b

Ph.
C b

Ph.
D a

Ph.
D c

Ph.
E a

Ph.
E b

Ph.
F b

“Ground
truth”

0.71 0.61 0.61 0.63 0.84 0.84 0.39 0.39 0.63

SSM [52] 1.12 0.18 0.50 0.57 0.79 1.14 0.41 0.48 0.66
SDM [60] 1.00 0.42 0.24 0.36 0.63 0.99 0.39 0.30 0.35
Proposed
Method

0.85 0.67 0.52 0.66 0.82 0.88 0.38 0.38 0.59

Table 2.2: Comparison of the estimated attenuation coefficients (dB/cm/MHz)
of the tissue-mimicking phantoms obtained with the three methods (spectral-
shift method, spectral-difference methods and currently proposed method) to the
“ground truth” values of the attenuation coefficients measured using the insert-
substitution method. The small letters “a”, “b” and “c” refer to the results
obtained with the three different transducers used in the experiments: V306
(2.25 MHz), V309 (5 MHz) and A306 (2.25 MHz) respectively.
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Figure 2.4: Analysis of the performance of the spectral-shift method (SSM), the
spectral-difference method (SDM) and the proposed method depending on the
number of the recorded RF lines and presence of noise in the signal (SNR = 6
and 12 dB).

2.4 Discussion

As can be seen from the simulation study, the most accurate attenuation esti-
mates were obtained with the spectral-difference method in the absence of noise.
When white Gaussian noise (12 and 6 dB SNR) was applied to the signals,
the accuracy of the spectral-shift method substantially decreased. The results
clearly showed that the spectral-shift method in its current implementation is
unable to produce reliable results in the presence of noise. On the contrary,
the proposed and spectral-difference methods have a much lower sensitivity to
noise and did not show a substantial change in performance. Furthermore,
spectral attenuation estimation methods are known to perform better when
a high number of RF lines is available for obtaining a stable spectral esti-
mate. Typically, spectral methods use at least 25 RF signals to obtain a stable
power spectrum even when a homogeneous medium is considered [63, 72, 74].
Indeed, the results of the simulation study showed that even though an in-
crease in the number of RF lines did not lead to a substantial improvement in
the accuracy of the conventional methods, their standard deviation decreased
considerably. The proposed method showed a competitive performance when
the number of RF lines available in the simulation study was equal or higher
than 10. As expected, the error of the spectral-difference method increased
in media with depth-dependent scatterer concentrations. However, these weak
variations did not influence the performance of the proposed and spectral-shift
methods. Overall, the results of the simulation study are in a good agreement

32



2. Attenuation estimation by repeatedly solving the forward scattering problem

Figure 2.5: Analysis of the performance of the spectral-shift method (SSM),
the spectral-difference method (SDM) and the proposed method in media with
depth-dependent scatterer concentrations and in the presence of measurement
noise. Test 1: 3 layers of 20, 10 and 10 mm with 150, 165 and 180 scatterers
per mm, respectively. Test 2: 3 layers of 20, 10 and 10 mm with 150, 180 and
195 scatterers per mm, respectively.

with the previous studies that also reported on 1) the poor performance of the
spectral-shift method in noisy media due to the distortion of the spectral shape
and the associated problems with the center frequency estimation [62], and 2)
difficulties of the spectral-difference method in media with non-uniform scatter-
ing properties [41,62,74]. On the contrary, the proposed method does not rely
on the assumption of the Gaussian shape of the signal spectrum and appears
less sensitive to scattering variations due to the averaging of the attenuation
estimates obtained in successive overlapping gated windows.

In the experimental phantom study, the error on the attenuation estimation
of the conventional methods was found to be substantially higher than that of
the proposed method. There are several possible reasons for this. First of all,
the decrease in accuracy of the spectral-shift method could be explained by
the presence of noise in the measurements that already showed to be critical
in the simulation study. Further, in the conducted experimental study, only
10 RF lines were available, while the conventional spectral-shift and spectral-
difference methods were previously validated using 32 and 25 RF signals, re-
spectively [52, 61]. Again based on the simulation study, one can expect rel-
atively high standard deviations for the attenuation estimates in this case.
However, increasing the number of RF lines implies increasing the lateral size
of the ROI which is not always practical in a clinical setting [63, 74]. Fur-
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2.4. Discussion

Figure 2.6: Comparison of the performance of the proposed method with the
spectral-shift method (SSM) and the log-spectral-difference method (SDM) on
experimental phantom data. The small letters “a”,“b” and “c” refer to the
three different transducers used in the experiments: V306, V309 and A306,
respectively.

thermore, distributions of scatterers in the tissue-mimicking phantoms made
for this study were perhaps not perfectly uniform, which, as discussed above,
would affect the performance of the spectral-difference method. On the con-
trary, the proposed method showed a stable performance with an error not
exceeding 20% for all phantoms.

High errors of the attenuation estimates obtained with the spectral-shift and
spectral-difference methods have been previously reported. Kim & Vargh-
ese [62] used 10 echo lines and a ROI of 120 mm by 100 mm in their sim-
ulation study, wherein homogeneous numerical phantoms were considered, and
obtained a 30% error with the spectral-difference method. Hasan et al. [74] used
25 echo lines but considered a substantially smaller ROI of 4.7 mm by 7.8 mm
inside of a tissue-mimicking phantom. The authors obtained very high errors
with the spectral-difference method when selecting the ROI close to the trans-
ducer surface (38% and 26%) and showed that the spectral-shift method fails to
estimate the attenuation coefficient when a ROI was selected at a depth of 30-
50 mm from the transducer with the error above 50%. It should be also noted,
that the reference methods considered in this study were implemented in their
original version. A number of improvements to these methods has been dis-
cussed in the literature. However, the suggested advancements (e. g. spectral
frequency smoothing [54]) are strongly dependent on the parameters defining
them, the analysis of which was outside of the scope of this study.
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2. Attenuation estimation by repeatedly solving the forward scattering problem

In the present study, reference attenuation coefficients were available in both
simulation and experimental studies, and the accuracy of the proposed method
was assessed by calculating the relative error of the obtained estimates. How-
ever, in clinical practice, reference attenuation values are not always known,
and a reliability measure may be required to assess the accuracy of the obtained
estimates. In principle, the sum of squared differences between the simulated
spectrum that corresponds to the estimated attenuation coefficient and the
measured spectrum could be used as a measure of a goodness of fit. This as-
pect will be further investigated in future studies. Furthermore, even though
in the present study a linear frequency dependence of the attenuation was con-
sidered, a general power law exponent αfm can easily be accounted for in the
model by including an additional parameter in the optimization process.

Overall, in this study, the goal was to demonstrate the feasibility of the pro-
posed method for attenuation estimation in the simplified setting of plane wave
propagation in a homogeneous medium with known scattering properties. The
currently proposed approach clearly showed a good performance on both simu-
lated and phantom data. The method also holds the advantage to be relatively
insensitive to measurement noise and weak scattering variations.

As previously mentioned, the acoustic effects that may influence the atten-
uation estimation do not need to be corrected for post factum, as they can
be included in the forward simulation model where they are intrinsically ac-
counted for. In the future, the proposed method will be refined by including
the diffraction effects in order to avoid the plane wave approximation. While
currently a simplifying assumption of point scatterers was employed, a more
accurate scattering model will be required for the estimation of attenuation
in-vivo. Future work will also involve extension of the attenuation estimation
to heterogeneous media with varying acoustic properties.

2.5 Conclusion

A new method for the estimation of the ultrasonic attenuation characteristic
of a tissue mimicking medium from reflected signals was proposed. Hereto,
computer simulations were used to solve the forward scattering problem for
a varying input attenuation coefficient. The synthetically generated backscat-
tered signals were then matched to the experimentally observed ones, and the
attenuation coefficient was determined from the best fit between the signals.
The performance of the proposed method was validated on synthetic and exper-
imental data. The new method showed a performance comparable to conven-
tional methods on the synthetic data, and the average error of the attenuation
estimation did not exceed 15%. In the experimental study on tissue-mimicking
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phantoms, the error of the newly proposed method did not exceed 20% and was
substantially lower than those achievable by the conventional methods.

This chapter presents the results of the initial validation of the proposed method-
ology in a simplified case of linear plane wave propagation. In future studies,
this methodology will be extended for the case of three-dimensional wave prop-
agation by inclusion of diffraction effects, and will be further applied to esti-
mate several additional acoustic parameters simultaneously (e.g. nonlinearity,
dispersion, scattering, etc.).
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Chapter 3

Three-dimensional
simulation of ultrasonic
wave propagation using
angular spectrum
approach
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3.1. Acoustic pressure field in a homogeneous medium

Abstract

Given the limitations of the proposed method discussed in the previous chapter,
this chapter focuses on the improvement of the underlying model and its numer-
ical implementation. We begin considering linear acoustic wave propagation in
a homogeneous medium and recall the elements of the linear acoustic theory
that form the basis for the improved model. We describe in detail the procedure
for numerical modelling of acoustic wave propagation which is based on the an-
gular spectrum approach (ASA). Application of the ASA is demonstrated using
the example of a focused single-element transducer having a spherically-curved
aperture, as will be used during the validation of the improved model. The
pressure fields computed using ASA are compared to those obtained with Field
II. Further, linear waves are considered in media with weak heterogeneities and
a modified form of the linear equation is employed. Finally, applying linear
systems theory to a consideration of an ultrasonic transducer, an expression
for the spectrum of the backscattered signal detected by the transducer is ob-
tained, which will be used in a model-based attenuation estimation algorithm
described in the next chapter.

3.1 Acoustic pressure field in a homogeneous
medium

When considering acoustic wave propagation in soft tissue, the propagation
medium is typically treated as a fluid. Furthermore, the propagation medium
is assumed to be homogeneous, isotropic and non-viscous. Moreover, small
signal amplitudes are assumed allowing to neglect second order effects. An
ideal fluid (i.e. uniform at rest) is characterized by elasticity (compressibility
κ) and inertia (mass density ρ). Due to the property of elasticity, the fluid
tends to return to its original state when there is a changing pressure working
upon it, while due to inertia, the fluid tends to resist the compression. These
basic properties allow acoustic wave propagation in fluid media. A vibratory
motion applied to the fluid will generate a pressure wave, which, we assume,
spreads spherically in all directions. The wave equation in this case is given
by [75]:

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= 0, (3.1)

in which t stand for the time, c = 1/√κρ is the speed of wave propagation, ρ
and κ are the equilibrium characteristics of the medium and r = (x, y, z) is the
measurement point.
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3. Simulation of ultrasonic wave propagation

Within the linear first order approximation, the pressure field and the velocity
potential field are related by [75]:

p(r, t) = ρ
∂φ(r, t)

∂t
. (3.2)

So that Eq. 3.1 can be rewritten in terms of the velocity potential field:

∇2φ(r, t)− 1

c2
∂2φ(r, t)

∂t2
= 0, (3.3)

Hereinafter, we will focus on the velocity potential field, from which the pressure
can easily be derived using the above expression. Furthermore, throughout this
chapter, acoustic wave propagation will be described using a frequency-domain
representation, in which the following definition of the Fourier transform pair
is used:

p(t) =
1

2π

∞∫
−∞

P (ω)ejωtdω

P (ω) =

∞∫
−∞

p(t)e−jωtdt,

(3.4)

in which ω = 2πf and f are the angular and the ordinary frequencies, respec-
tively.

Using the temporal Fourier transform of Eq. 3.3 we obtain the well-known
Helmholtz equation:

(
∇2 + k2

)
Φ(r : ω) = 0, (3.5)

where k = ω
c is the harmonic wavenumber and Φ(r : ω) is the Fourier transform

of φ(r, t).

In the presence of harmonic sources in the volume of interest V , Eq. 3.5 receives
an additional term describing the harmonic source distribution in space [75] (ch.
7, p. 320):

(
∇2 + k2

)
Φ(r : ω) = −F (r : ω). (3.6)

A solution to this equation can be found using the Green’s function G(r|r0)
which describes the velocity potential field when the external source function
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is a Dirac impulse δ(r − r0) in the point r0 and is a solution of the following
differential equation:

(
∇2 + k2

)
G(r|r0 : ω) = −δ(r − r0), (3.7)

The free medium Green’s function for an outgoing wave is given by [75]:

G(r|r0 : ω) =
e−jk|r−r0|

4π|r − r0|
. (3.8)

Multiplying Eq. 3.6 with G(r|r0 : ω) and Eq. 3.7 with Φ(r0 : ω), interchanging
r and r0 using the reciprocity properties of G(r|r0 : ω) and δ(r − r0) and
subtracting one equation from the other yields:

G(r|r0 : ω)∇2
0Φ(r0 : ω)−Φ(r0 : ω)∇2

0G(r|r0 : ω) =

= Φ(r0 : ω)δ(r − r0)−F (r0 : ω)G(r|r0 : ω).
(3.9)

Integrating the above expression over the volume of interest V we obtain the
velocity potential field within this volume:

Φ(r : ω) =

∫
V

F (r0 : ω)G(r|r0 : ω)dr0+

+

∫
V

[
G(r|r0 : ω)∇2

0Φ(r0 : ω)− Φ(r0 : ω)∇2
0G(r|r0 : ω)

]
dr0.

(3.10)

Further, making use of the Green’s theorem, the second integral in the above
expression can be rewritten as a surface integral over the surface S enclosing
the volume:

Φ(r : ω) =

∫
V

F (r0 : ω)G(r|r0 : ω)dr0+

+

∫
S

[
G(r|r0 : ω)

∂Φ(r0 : ω)

∂n
−Φ(r0 : ω)

∂G(r|r0 : ω)

∂n

]
dr0,

(3.11)

∂
∂n denotes a partial derivative in the outward normal direction in the point
r0 on the surface S. While the first integral in the above expression accounts
for the source contributions within the volume V , the second one describes the
pressure waves entering the volume.

Now, if we consider an ultrasound transducer positioned in a plane T in front of
a homogeneous medium which is free of external sources, the transducer activity
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can be regarded as a flux across the boundaries of the volume of interest.
Furthermore, we define the volume of interest V to be an infinitely extending
area bounded by the source plane T and a half-sphere of infinite radius with
its center in the origin. In this case, the volume of interest does not contain
any external sources and the first integral in Eq. 3.11 equals zero. To further
simplify the above expression, we select the Green’s function that satisfies the
Neumann boundary conditions and has a zero-valued derivative, and assuming
a perfectly baffled transducer, use its solution for a plane surface given by [75]
(ch. 7, p. 366):

Ǵ(r|r0 : ω) = 2G(r|r0 : ω) =
e−jk|r−r0|

2π|r − r0|
, (3.12)

∂Ǵ(r|r0 : ω)

∂n
= 0. (3.13)

Substituting the selected Green’s function in the second integral in Eq. 3.11 and
noticing that the normal outward velocity on the transducer surface Vn = ∂Φ

∂t ,
Eq. 3.11 reduces to the Rayleigh integral over the transducer surface T :

Φ(r : ω) =

∫
T

Vn(rT : ω)
e−jk|r−rT |

2π|r − rT |
drT , (3.14)

which relates the normal velocity profile generated by the transducer Vn(rT : ω)
to the resulting velocity potential field and can be rewritten in terms of the
pressure field:

P (r : ω) = jωρ

∫
T

Vn(rT : ω)
e−jk|r−rT |

2π|r − rT |
drT . (3.15)

The above equation is referred to as the Rayleigh integral. So far, we were
considering wave propagation in lossless media. However, for media whose
attenuation obeyes a power law frequency dependence, it can be introduced
using a complex-valued wavenumber that is defined as [76]:

k̃ =
ω

c(ω)
− jα(ω), (3.16)

where c(ω) is the phase speed and α(ω) = α0(ω/2π)n is the frequency-dependent
attenuation coefficient. It should be noted that the power n in soft tissue is
typically between 0 and 2. Furthermore, we assume that the dispersion effects
are negligible over the considered frequency range, and thus the speed of sound
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is presumed to be constant. This assumption simplifies the above complex-
valued wavenumber expression to the following form:

k̃ =
ω

c
− jα(ω) = k − jα(ω). (3.17)

Consequently, the incident pressure field in a medium with power-law attenua-
tion effects can be described using a modified Green’s function that is obtained
by substituting the above expression for the wavenumber in Eq. 3.8 and can
be written as:

G̃(r|rT : ω) = Ǵ(r|rT : ω)e−α(ω)|r−rT |. (3.18)

Finally, assuming the separability of the time and space variables of the vibra-
tion of the transducer surface, the normal velocity profile can be represented
as a product of the transducer’s spatial distribution function and the Fourier
transform of the temporal component of the normal velocity, i.e. Vn(rT : ω) =
aTx(rT : ω)Vn0(ω). Defining the transmit impulse response function relat-
ing the harmonic normal velocity across the transducer surface to a resulting
harmonic velocity potential field in any point in space as:

hTx(r : ω) =

∫
T

aTx(rT : ω)G̃(rT |r : ω)drT , (3.19)

the expression for the incident harmonic pressure can be rewritten as:

P (r : ω) = jωρVn0
(ω)

∫
T

aTx(rT : ω)G̃(rT |r : ω)drT =

= jωρVn0
(ω)hTx(r : ω).

(3.20)

3.2 Angular spectrum approach

The Rayleigh integral (Eq. 3.15) can be directly used to compute the pressure
field, but requires dense spatial sampling which results in long computation
times. Alternatively, wave propagation can be modeled by equivalent spatial
impulse response methods(Eq. 3.20) [77]. However, the spatial impulse re-
sponse method intrinsically assumes linear wave propagation in an acoustically
homogeneous medium and would, therefore, limit the applicability of the pro-
posed approach. As third option, the angular spectrum approach (ASA) can
be used which can be extended to include nonlinear effects and to model pres-
sure fields in layered (i.e. inhomogeneous) media [78–81]. This method makes
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3. Simulation of ultrasonic wave propagation

Figure 3.1: Illustration of the principle of the ASA.

use of a two-dimensional Fourier transform that decomposes the pressure field
across the source plane into a spectrum of plane waves travelling in different
directions away from the source. By means of a multiplication with an ap-
propriate transfer function, each plane wave is propagated to a plane parallel
to the source plane wherein they are recombined through the inverse Fourier
transformation (Fig. 3.1).

In order to explain the concept of the ASA, we rewrite the expression for the
incident pressure field (Eq. 3.20) in Cartesian coordinates, as:

P (x, y, z : ω) = jωρVn0
(ω)hTx(x, y, z : ω). (3.21)

where z is the propagation direction.

The impulse response function hT describes the forward propagation of the
incident pressure field, which can be also modelled in the spatial frequency
domain using the (ASA) [82]. Thereby, Eq. 3.21 can be rewritten as:

P (x, y, z : ω) = jωρVn0
(ω)F−1

2D {HTx(kx, ky, z : ω)} , (3.22)

where F−1
2D {H} denotes the inverse spatial 2-D Fourier transform of H, kx and

ky are the spatial frequencies and HTx is the transmit transfer function that
combines the spatial variance of the vibration profile of the transducer surface
and the propagation effects and can be calculated as:
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HTx(kx, ky, z) =

= ATx(kx, ky, : ω)Hvn→φ
Diffr(kx, ky, z : ω)Hp→p

Att (kx, ky, z : ω).
(3.23)

The transmit aperture distribution function ATx(kx, ky : ω) is defined in a plane
at z = 0, depends on the transducer type, geometry and transmit focal settings
and can be determined by taking the 2-D Fourier transform of aTx(x, y, z : ω).
The next two terms on the right side of the above equation model the effects
of diffraction and attenuation, respectively, over a distance z and are given
by [78,80,82]:

Hvn→φ
Diffr(kx, ky, z : ω) =

(
jejzkz

kz

)∗
, (3.24)

Hp→p
Att (kx, ky, z : ω) = e−α( ω

2π )
n
z k
kz , (3.25)

where “∗” stands for the complex conjugate operator, and kz =
√
k2 − (k2

x + k2
y)

can take complex values. The superscript “vn → φ” specifies that the transfer
function accounts for the conversion from the normal velocity to the veloc-
ity potential field, while the superscript “p → p” indicates that the effect is
modelled in terms of the pressure field.

3.2.1 Angular spectrum of a focused single-element trans-
ducer

The above method can be readily applied to compute the pressure field of a
flat source. However, in clinical practice, transducers with curved apertures
are often used to improve focusing. Modelling pressure fields from such sources
requires additional procedures. At first, the transducer aperture is divided into
a set of small nearly-planar sub-elements. The angular spectrum of each of
these segments is calculated separately and is propagated to a preselected in-
termediate plane by means of a corresponding transfer function. Contributions
from all sub-elements are added at the intermediate plane, forming a source
angular spectrum that can be further propagated in a considered medium using
conventional ASA.

As an example, we are considering the pressure field of a single-element focused
transducer having a spherically curved aperture. The method for calculating
the angular spectrum of such transducer was proposed by Vyas & Christensen
in [83]. The procedure consists of dividing the transducer surface into a set of
thin planar rings with a radius Ri and an arc width ∆R that fills the entire
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3. Simulation of ultrasonic wave propagation

Figure 3.2: Representation of a circular focused single-element transducer by a
set of planar rings: top view (left) and cross-sectional view (right).

transducer surface (Fig. 3.2). Each ring is contained within a plane parallel to
a selected intermediate plane in front of the transducer. The angular spectrum
of each ring is calculated separately as [83]:

Ai(kx, ky) =

∫
Si

ai(x, y)e−j2π(kxx+kyy)dxdy, (3.26)

or in spatial frequency polar coordinates:

Ai(ρ, ϕ) =

Ri+
∆R
2∫

Ri−∆R
2

2π∫
0

ai(r, θ)e
−j2πρrcos(θ−ϕ)rdrdθ. (3.27)

Assuming a uniform normal velocity distribution over the transducer surface
and a very small width of the ring (∆R→ 0) we obtain [83]:

Ai(ρ, ϕ) = 2πRi∆RJ0(2πρRi), (3.28)

where J0 is the Bessel function of first kind and zero order.

The angular spectrum of each ring is then propagated to the intermediate plane
by multiplication with a corresponding transfer function:

Hi =
(
ej∆zikz

)∗
, (3.29)

where ∆zi =
√
R2
c −R2

i −
√
R2
c −R2

T is the distance from the ith ring to the
intermediate plane (Fig. 3.2b). The angular spectrum of the source in the
intermediate plane (z = 0) is calculated by adding the contributions from all
rings:
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3.2. Angular spectrum approach

Figure 3.3: Discretization of the intermediate plane in the spatial (left) and
spatial-frequency domain (right).

ATx(kx, ky : ω) =

Nrings∑
i=1

AiHi, (3.30)

and the pressure distribution in any plane parallel to the intermediate plane can
be calculated by substituting the above expression in Eq. 3.22 and 3.23.

3.2.2 Implementation details

Numerical implementation of the above described method begins with the se-
lection of an appropriate spatial grid. The intermediate plane is discretized
into a (2N + 1)× (2N + 1) grid with the same spatial sampling interval in both
directions (Fig. 3.3):

∆x = ∆y =
λ

2ξ
(3.31)

where λ is the wavelength of a particular harmonic and ξ ≥ 1 is a sampling
factor that guarantees respecting the Nyquist theorem.

The number of samples N should be chosen such that the maximal spatial
coordinates xmax = ymax = λN/2ξ, are several times larger than the dimensions
of the transducer aperture. The size of the discretization gridN is kept constant
for every harmonic frequency, while the size of the sampling interval, as can be
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3. Simulation of ultrasonic wave propagation

Figure 3.4: Axial pressure beam profiles computed using the ASA with and
without spatial frequency truncation.

seen from Eq. 3.31, varies with frequency. The corresponding sampling interval
in the spatial-frequency domain for a certain harmonic equals:

∆k =
2π

∆x(2N + 1)
=

2ξk

2N + 1
(3.32)

It should be noted that the real and imaginary part of the transfer function in

Eq. 3.24 oscillates rapidly when Kρ =
√
k2
x + k2

y approaches k, which leads to

severe aliasing. In order to avoid aliasing due to inadequate sampling of the
transfer function in this region, a so-called “spatial frequency truncation” was
applied to the field at every propagation step [78,84,85]. This technique allows
to reduce the aliasing without increasing the size of the computational grid.
Truncation of the spatial frequency pressure distribution implies its multipli-
cation with a two-dimensional radially-symmetric window. The radius of this
window can be determined by considering the transfer function in Eq. 3.24
as a signal of Kρ. In that case, the “instantaneous frequency” fi of this sig-
nal is, by definition, the derivative of its phase, which equals zkz and is given
by [84]:

fi =
1

2π

d

dKρ

(
z
√
k2 −K2

ρ

)
= − zKρ

2π
√
k2 −K2

ρ

. (3.33)

To meet the Nyquist criterion, the sampling frequency has to be at least two
times higher than the frequency of the signal, i.e. 1/∆Kρ ≥ 2fi, so that:

∆Kρ ≤
π
√
k2 −K2

ρ

zKρ
, (3.34)
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from which the radius of the truncation window can be determined as:

Kρ ≤
k√

1 +
(
z∆Kρ
π

)2
, (3.35)

where ∆Kρ = ∆
(√

k2
x + k2

y

)
=
√

2∆k is the same when sampling in azimuthal

and elevation directions. As can be seen from Eq. 3.33 and Eq. 3.35, when the
distance z from the intermediate plane increases, the frequency of oscillation
also increases and the truncation window becomes smaller. Fig. 3.4 presents
the comparison of the axial pressure beam profiles computed with and without
spatial frequency truncation.

3.2.3 Validation of the ASA implementation

The above described method was implemented in MATLAB (The MathWorks
Inc., Natick, MA) and was validated through comparsion with Field II (freely-
available simulation software based on the spatial impulse response method)
[86]. Based on the linear systems theory, this simulation approach computes
the emitted ultrasound field at a given spatial point as function of time using
a convolution of the spatial impulse response with the excitation function. In
pulse echo mode, the received signal is determined by convolving the transducer
excitation function with the spatial impulse responses of the emitting and re-
ceiving apertures and the electromechanical impulse response of the transducer.
Simulations can be performed for a wide range of transducer geometries and
for any focal settings and apodization. However, Field II is limited to linear
simulations in homogeneous media containing point scatterers.

For the comparison, the pressure field was modelled in a homogeneous medium
with a speed of sound of 1540 m/s. A single-element transducer with a diam-
eter of 12.7 mm, center frequency of 5 MHz and a radius of curvature of 75
mm was considered. In Field II, the “xdc-concave” function was used with a
mathematical element size equal to half of the wavelength (0.15 mm). For the
angular spectrum simulation, the surface of the transducer was divided into
42 planar rings of equal width (˜0.15 mm). A Gaussian-modulated sinusoidal
pulse of 1.5 periods, 5 MHz center frequency and 80% relative bandwidth was
generated in Field II and was used as an input for the angular spectrum sim-
ulations. Further, RMS pressure fields were compared between the simulators
up to a depth of 150 mm with a 1 mm step. For both simulators, a sampling
frequency of 100 MHz and a dense measurement grid of 1001 × 1001 samples
with a sampling factor ξ = 2 were used (Eq. 3.31, 3.32). For the ASA sim-
ulations, a 1024-point fast Fourier transform was applied to a time-domain
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3. Simulation of ultrasonic wave propagation

Figure 3.5: Comparison of the simulated transmit beam profiles of a focused
single-element transducer obtained with ASA and Field II: lateral (left) and
axial (right). Upper row presents the beam profiles in a lossless medium, while
the bottom row presents the beam profiles in a medium with attenuation (α =0.5
dB/cm/MHz). Transducer diameter 12.7 mm, focal depth 75 mm, center
frequency 5 MHz, measurement depth 75 mm.

pulse; the pressure field was simulated for non-zero frequency components of
the spectrum and the spatial frequency truncation was applied as described in
the previous subsection to avoid aliasing effects.

Comparison of the lateral and axial RMS beam profiles, wherein the former was
simulated at the focal depth of the transducer, is presented in Fig. 3.5 (upper
row). A very good agreement between the simulators can be observed, except
for small discrepancies in the near-field of the transducer. The comparison of
the (normalized) transmit RMS pressure fields is presented in Fig. 3.6 (upper
row). Overall, the simulated pressure fields look very similar with a maximal
percentage difference of normalized patterns below 6 %. Further, the simulated
pressure fields were compared in the case when the effect of the frequency
dependent attenuation was included in both simulators (Fig. 3.5 and Fig.
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3.3. Acoustic scattering from tissue inhomogeneities

Figure 3.6: Comparison of the simulated transmit pressure fields of a circu-
lar single-element focused transducer obtained with ASA and Field II in loss-
less (upper row) and attenuating (bottom row, α = 0.5 dB/cm/MHz) media.
Transducer diameter 12.7 mm, focal depth 75 mm, center frequency 5 MHz,
measurement range 1-150 mm.

3.6 (lower row)). In Field II, this is done by modifying the impulse response
function as described in [87]. An attenuation coefficient of 0.5 dB/cm/MHz was
set in both simulators. Again, the simulated pressure fields look very similar
except for an slightly increased difference in the near field around 10 %.

3.3 Acoustic scattering from tissue
inhomogeneities

In this section, we will extend the above described theoretical formulations to
consider scattering of acoustic waves in soft tissue. Similar to section 3.1, soft
tissue is modelled as a fluid, however now it contains inhomogeneities with a
density and compressibility differing from the background, i.e. scatterers. We
assume that the size of such scatterers is small compared to the entire scattering
volume and that the differences in the acoustic properties are small, so that
the scattered waves are of small amplitude. In a medium with spatially varying
density ρ(r) and compressibility κ(r), the wave equation for the total pressure
field is given by [1] (ch. 4, p. 90):

∇2p− 1

c2
∂2p

∂t2
= γκ(r)

1

c2
∂2p

∂t2
+∇(γρ(r)∇p), (3.36)
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3. Simulation of ultrasonic wave propagation

where

γκ(r) =
κ(r)− κ0

κ0
,

γρ(r) =
ρ(r)− ρ0

ρ(r)
,

(3.37)

and κ0 and ρ0 are the characteristics of the background medium, c =
√

1/ρ0κ0.
After temporal Fourier transform, Eq. 3.36 becomes:

(∇2 + k2)P (r : ω) = −F (r : ω), (3.38)

which is the inhomogeneous Helmholtz equation, where the term on right side
describes scattering due to fluctuations in compressibility and density:

F (r : ω) = k2γκ(r)p(r : ω)−∇[γρ(r)∇P (r : ω)]. (3.39)

Noticing that in the frequency domain the pressure and velocity potential fields
are related as:

P (r : ω) = jωρΦ(r : ω), (3.40)

and taking the same steps as in section 1.1 (Eq. 3.6-3.10), we obtain an ex-
pression for the pressure field similar to that in Eq. 3.11:

P (r : ω) =

∫
V

F (r0 : ω)G(r|r0 : ω)dr0+

+

∫
S

[
G(r|r0 : ω)

∂P (r0 : ω)

∂n
−P (r0 : ω)

∂G(r|r0 : ω)

∂n

]
dr0,

(3.41)

with S a surface enclosing the scattering volume and ∂
∂n denotes a partial

derivative in the outward normal direction in the point r0 on the surface
S.

Assuming that the background medium is unbounded, i.e. considering the
surface volume to be a sphere of a very large radius, it can be shown that
the surface integral equals the incident pressure wave Pi [1, 71], and noticing
the the total pressure at a given location r is the sum of the incident and
the scattered pressure fields: P = Ps + Pi, the scattered pressure field can be
expressed as:
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3.3. Acoustic scattering from tissue inhomogeneities

Ps(r : ω) =

∫
V

F (r0 :ω)G(r|r0 : ω)dr =

=

∫
V

[
k2γκ(r0)P (r0 : ω) +∇0(γρ(r0)∇P (r0 : ω))

]
G(r|r0 : ω)dr0,

(3.42)

where∇0 is the gradient in r0. The second term in this integral can be rewritten
as: ∫

V

G(r|r0 : ω)∇0

[
γρ∇0P (r0 : ω)

]
dr0 =

=

∫
V

∇0

[
G(r|r0 : ω)γρ∇0P (r0 : ω))

]
dr0−

−
∫
V

γρ∇0P (r0 : ω)∇0G(r|r0 : ω)dr0,

(3.43)

wherein the first volume integral on the right hand side of the above expression
can be converted to a surface integral using the Gauss theorem [1] (ch. 4, p.
93). However, since the volume of interest V was chosen large enough to neglect
the pressure flux across its boundary S, the surface integral vanishes and the
scattered pressure field can be written as:

Ps(r : ω) =

∫
V

(
k2γκ(r0)P (r0 : ω)G(r|r0 : ω)+

+γρ(r0)∇0P (r0 : ω)∇0G(r|r0 : ω)
)
dr0.

(3.44)

The above expression is often referred to as “scattering equation” [71] (ch. 5,
p. 287). It can be noticed, that the scattered pressure field is expressed in
terms of the total pressure field P which is not known, and therefore, some
simplifying assumptions have to be made to evaluate the above integral. First
of all, we assume that the scattering in tissue is weak (Born approximation).
This implies that the incident wave does not significantly decrease in amplitude
during its propagation (P ≈ Pi). Thus, the total pressure in above equation
can be replaced by the incident pressure field. Further, using Eq. 3.40, the
gradient of the incident pressure can be expressed as:

∇Pi(r : ω) = jωρ∇Φi(r : ω) = −jωρVi(r : ω) = −jkρcVi(r : ω), (3.45)
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with Vi(r : ω) - the harmonic particle velocity vector field.

The gradient of the Green’s function can be expressed as:

∇0G(r|r0 : ω) = G(r|r0 : ω)
1 + jk|r − r0|
|r − r0|

es(r0, r), (3.46)

where es(r0, r) is a unit vector pointing from the scattering point r0 to the
receiver point r. When the receiver point is far from the scattering point with
regard to the wave number (|r − r0| � k) Eq. 3.46 is reduced to:

∇0G(r|r0 : ω) = jkG(r|r0 : ω)es(r0, r). (3.47)

Substituting Eq. 3.45 and 3.47 in Eq. 3.44, we obtain:

Ps(r : ω) =k2

∫
V

(
γκ(r0)×

×Pi(r0 : ω) + ρcγρ(r0)Vi(r : ω)es(r0, r)
)
G(r|r0 : ω)dr0.

(3.48)

This equation can be further simplified assuming a planar incoming wave with
a propagation direction eI , thus obtaining:

Pi(r : ω) = Pi(ω)e−jkeIr, (3.49)

∇Pi(r : ω) = −jkPi(r : ω)eI , (3.50)

and Eq. 3.48 reduces to:

Ps(r : ω) = k2

∫
V

γ(r0, r)pi(r0 : ω)G(r|r0 : ω)dr0, (3.51)

where γ(r0, r) = γκ(r0) + γρ(r0)eIes(r0, r) can be seen as an inhomogeneity
coefficient in r0 experienced by the point in r. As in the previous subsection,
the Green’s function can be replaced by its modified form (Eq. 3.18) to account
for attenuation.
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3.4. Detected echo signal

3.4 Detected echo signal

Considering the receiving transducer as a linear temporal-spatial filter the tem-
poral spectrum of the detected electrical signal by the transducer can be ap-
proximated as:

SRx(ω) = wRx(ω)

∫
T

aRx(rT : ω)Ps(rT : ω)drT , (3.52)

where wRx is electromechanical transfer function of the receiving transducer
and aRx - its spatial distribution function and the integration is done over the
transducer surface T .

Substituting Eq. 3.51 in Eq. 3.52, we obtain:

SRx(ω) = wRx(ω)k2

∫
V

Pi(r0 : ω)×

∫
T

γ(r0, rT )aRx(rT : ω)G̃(rT |r0 : ω)drT dr0.

(3.53)

When the transducer radius is small compared to its distance to the scattering
site (r0 � rT ), the receive unit vector es(r0, rT ) is approximately the same
for all points rT on the transducer surface: es(r0, rT ) = es(r0) and therefore:
γ(r0, rT ) = γ(r0).

Similar to Eq. 3.19, we define the receive impulse response function as:

hRx(r0 : ω) =

∫
T

aRx(rT : ω)G̃(rT |r0 : ω)drT , (3.54)

yielding:

SRx(ω) = wRx(ω)k2

∫
V

γ(r0)Pi(r0 : ω)hRx(r0 : ω)dr0. (3.55)

Finally, combining Eq. 3.55 with Eq. 3.20 and assuming a planar incoming
wave, we obtain the expression for the received signal spectrum:

SRx(ω) = jρcVn0(ω)k3

∫
V

γ(r0)hTx(r0 : ω)hRx(r0 : ω)dr0, (3.56)
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where the temporal component of the normal velocity Vn0 on the surface of
the transmitting transducer can also be expressed as a product of the electrical
excitation STx(ω) of the transmitting transducer and its electro-mechanical
transfer function wTx(ω). Defining

STx,Rx(ω) = STx(ω)wTx(ω)wRx(ω), (3.57)

we obtain the final expression for the spectrum of the scattered signal detected
by the transducer:

SRx(ω) = jρcSTx,Rx(ω)k3

∫
V

γ(r0)hTx(r0 : ω)hRx(r0 : ω)dr0. (3.58)

3.5 Power spectrum

The average power spectrum of the echo scattered by the medium containing
a random distribution of scatterers is defined as [88]:

P(ω) = 〈|SRx(ω)|2〉 = ρ2c2|STx,Rx(ω)|2k6×

×
∫
V

∫
V (r0)

〈γ(r0)γ(r0 + ∆r)〉hTx(r0 : ω)h∗Tx(r0 + ∆r : ω)×

×hRx(r0 : ω)h∗Rx(r0 + ∆r : ω)dr0d∆r,

(3.59)

where 〈·〉 represents the ensemble average and “∗” denotes the complex con-
jugate and V (r0) = V − r0. The inhomogeneity coefficient γ(r0) describing
the distribution of scatterers is a random function of position r0, while the
transmit and receive impulse response functions hTx and hRx are determinis-
tic, and therefore were taken outside of the ensemble averaging operation. It
should be noted that the ensemble average 〈γ(r0)γ(r0 + ∆r)〉 differs from zero
only in a small area around r0. Thus, we can go from integrating over the vol-
ume V (r0) to integrating over the entire space. Furthermore, in a first-order
approximation, we can express hTx(r0 + ∆r : ω) ≈ h(r0 : ω)ε(∆r, ω), where
ε(∆r, ω) is a frequency-dependent correction coefficient. Thereby, Eq. 3.59
reduces to:

P(ω) = ρ2c2|STx,Rx(ω)|2k6

∫
V

∞∫
−∞

〈γ(r0)γ(r0 + ∆r)〉×

×ε(∆r, ω)h2
Tx(r0 : ω)h2

Rx(r0 : ω)dr0d∆r.

(3.60)
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Further, we assume that the scattering process is weakly stationary over space,
i.e. the average value 〈γ(r0)γ(r0 + ∆r)〉 does not depend on the spatial lo-
cations from which the signal is recorded but only on the distance between
these spatial points ∆r [1,89]. Therefore, we can rewrite the above expression
as:

P(ω) = ρ2c2|STx,Rx(ω)|2k6

∫
V

h2
Tx(r0 : ω)h2

Rx(r0 : ω)×

×
∞∫
−∞

Rγ(∆r)ε(∆r, ω)d∆rdr0,

(3.61)

where Rγ(∆r) = 〈γ(r0)γ(r0 + ∆r)〉 is the autocorrelation functions of the
scattering process, which can be further expanded to its average and fluctuating
components [89].

Rγ(∆r) = |〈γ〉|2 + 〈|γ − 〈γ〉|2〉cγ(∆r), (3.62)

with cγ(∆r) - the correlation coefficient that describes the similarity of the
acoustic properties at 2 locations inside of the scattering volume which are
separated by the distance ∆r [1]. The form of the correlation coefficient is de-
termined by the size, geometry and elastic properties of the inhomogeneities [1].
The first term on the right side of the above expression corresponds to the coher-
ent scattering component, which is negligible under the assumption of random
and isotopic scattering [1, 88, 89]. The second term describes the incoherent
scattering, which will be considered in the following discussion. Assuming in-
dependent scatterers, the variance of the scattering process can be rewritten as:
〈|γ − 〈γ〉|2〉 = γ2

0 n̄Vs, with γ2
0 - the mean-square inhomogeneity coefficient, n̄ -

the average number of scatterers per unit volume, and Vs - the effective scat-
terer volume [1, 89]. Therefore, the average power spectrum of an incoherent
scattered signal can be expressed as:

P(ω) = γ2
0 n̄Vsρ

2c2|STx,Rx(ω)|2k6×

×
∫
V

h2
Tx(r0 : ω)h2

Rx(r0 : ω)

∞∫
−∞

cγ(∆r)ε(∆r, ω)d∆rdr0.
(3.63)

As can be seen from the above expression, the correction coefficient ε(∆r, ω)
defines the frequency-dependence of the scattering process. This frequency
dependence vanishes in the case of point scatterers. However, for the scatterers
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of finite size, the correction coefficient is decreasing with frequency for ka ≤ 1
(with a - the size of the scatterer).

As an example, a homogeneous lossless medium will be considered, where the
correction coefficient can be expressed as ε(∆r, ω) = e−j2k∆r and accounts
solely for the effect of diffraction. It should be noted, that even if the assump-
tion of a lossless medium is neglected, the effect of attenuation would be negligi-
ble at such small scale ∆r. In the special case of Rayleigh scattering (ka� 1),
the factor e−j2k∆r ≈ 1 for small ∆r, and the integral

∫
cγ(∆r)e−j2k∆rd∆r

reduces to
∫
cγ(∆r)d∆r = Vs, yielding:

PRayl(ω) = γ2
0 n̄V

2
s ρ

2c2|STx,Rx(ω)|2k6

∫
V

h2
Tx(r0 : ω)h2

Rx(r0 : ω)dr0. (3.64)

The frequency dependence for scatterers of finite-size can be introduced using
the so-called form-factor. Essentially, the form-factor is an analogue of the
correlation coefficient in the spatial-frequency domain and is defined as the
ratio of the backscatter coefficient of a considered medium to that of a medium
containing point scatterers [89]:

F (ω) =
σ

σRayl
=

P(ω)

PRayl(ω)
. (3.65)

Therefore, Eq. 3.63 can be rewritten as:

P(ω) = γ2
0 n̄Vsρ

2c2|STx,Rx(ω)|2k6F (ω)

∫
V

h2
Tx(r0 : ω)h2

Rx(r0 : ω)dr0. (3.66)

The form factors for three simple scatterer models that are widely used in the
literature are given in [89].

3.5.1 Comparison with Field II

The validity of the derived expression for the power spectrum of the scattered
signal can be demonstrated through comparison with Field II. For this purpose
a set of scattered signals was generated for the same characteristics of the
transducer and the input signal as in section 3.2.3. The dataset consisted of
20 RF lines that were generated from blocks of 40 mm × 40 mm × 40 mm
with random distribution of point scatterers. The signals were gated with a 4
mm long Hanning window at thee different depths: at 40 mm (near-field), at
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3.5. Power spectrum

Figure 3.7: Comparison of power spectra predicted using Eq. 3.64 to those
calculated for the signals generated in Field II assuming a lossless medium.
The signals were gated around 40 mm (left), 75 mm (middle) and 110 mm
(right). Transducer diameter 12.7 mm, focal depth 75 mm, center frequency
3.5 MHz.

75 mm (focus) and at 110 mm (far-field). The power spectrum of each gated
segment was calculated by averaging 20 Fourier transformed windowed signals
of each data set:

PFieldII(ω) =
1

20

20∑
i=1

∣∣∣F {RF (t) |t1≤t≥t2}
∣∣∣2. (3.67)

where RF (t) is the signal generated in Field II and t1 ≤ t ≥ t2 is the gated
time interval corresponding to the above described window. Further, a power
spectrum of the scattered signals gated around the 3 specified depths was sim-
ulated according to Eq. 3.64 using the parameters of the Field II simulations as
an input. Fig. 3.7 presents the comparison of the power spectra of the signals
generated in Field II and those estimated using Eq. 3.64 at 40 mm, 75 mm and
110 mm. An excellent agreement between Field II and the proposed model can
be observed.
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Chapter 4

Diffraction - independent
ultrasound attenuation
estimation. Part I

This work was submitted for a publication in a peer-reviewed journal.
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4.1. Introduction

Abstract

The ultrasound attenuation coefficient has shown potential to provide quan-
titative information on the pathological state of soft tissues. However, its es-
timation in practice is limited by a number of factors. The main difficulty
consists in the need for diffraction correction which is currently done by means
of a reference measurement. In this chapter, we present an alternative at-
tenuation estimation algorithm that accounts for the effects of diffraction and
only requires a single transducer calibration. The proposed method estimates
the attenuation by repeatedly solving the forward wave propagation problem
and by iteratively matching the simulated signals to the measured ones. The
simulation procedure encompasses explicit modelling of the diffraction effects
and allows to avoid several assumptions made by conventional methods. The
performance of the attenuation reconstruction method was validated on both
synthetic and experimental data. In the simulation study, the proposed method
allowed estimating the true attenuation coefficient of the generated authentic
signals regardless of the position of the phantom with respect to the transducer
focus. In the experimental study, the method provided attenuation estimates
close to the “ground-truth” attenuation values both in the focal zone of the
transducer as well as in the far-field with an average relative error of about
10 %. The obtained results demonstrate the ability of the method to provide
diffraction-independent attenuation estimates.

4.1 Introduction

Estimation of the acoustic attenuation is of great interest in ultrasound tis-
sue characterization. The potential of this parameter to provide informa-
tion about the pathological state of tissues has been shown by many au-
thors [6, 12, 14, 21, 90, 91]. Moreover, correct attenuation compensation is very
important in the process of B-mode image formation as well as for the estima-
tion of other acoustic parameters (e.g. backscatter coefficient) [43–45, 92]. A
variety of techniques have been proposed for attenuation estimation from re-
flected ultrasound signals. Most of these techniques solve the so-called “inverse
scattering problem” by estimating the attenuation characteristics directly from
the recorded backscatter signals. This implies that other acoustic effects that
may influence the attenuation estimate have to be corrected for, or otherwise
neglected under certain assumptions. A critical step in determining the at-
tenuation coefficient is diffraction correction. Without diffraction correction,
biased attenuation estimates are obtained in different parts of the ultrasound
beam [54]. In order to minimize the bias in the estimation of the acoustic atten-
uation, researchers have been performing measurements in the focal zone of the
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sound beam where diffraction effects on attenuation estimates are negligible,
or have attempted to determine a correction factor experimentally.

The most common approach for diffraction correction is a reference phan-
tom technique, as proposed by Yao et al. [41, 93], that consists in comparing
backscattered signals from a sample to those of a reference tissue-mimicking
phantom with known acoustic properties. Although this method presents a
relatively straightforward procedure to correct for diffraction effects, its use in
clinical practice is limited due to a number of constraints. First of all, the
reference measurement has to be repeated every time the system settings (e.g.
focal settings) are changed. Furthermore, it is assumed that the expected speed
of sound in tissue is approximately the same as in the reference phantom, and
that it is constant, which is not always the case [94].

In chapter 2, we described an alternative approach for attenuation estimation,
wherein the forward scattering problem was repeatedly solved through com-
puter simulations for a varying input attenuation coefficient in order to match
synthetically generated backscattered signals to experimentally observed ones.
The attenuation coefficient corresponding to the highest similarity between the
simulated and the measured signals was considered to be the true parameter
of the investigated medium. Feasibility of the proposed method was tested
assuming plane wave propagation. In the present chapter, we overcome this
limitation by including diffraction effects into the simulation procedure and
validate the method on both simulated data and on data recorded in tissue-
mimicking phantoms. To demonstrate that the method provides attenuation
estimates independent of diffraction effects, its performance is tested at differ-
ent depths along a focused ultrasound beam. The influence of diffraction effects
is also investigated by comparing the attenuation estimates obtained with and
without diffraction correction.

4.2 Methods

In this section, we will use the expression for the power spectrum of the scat-
tered signal which was derived in the previous chapter. Estimation of the power
spectrum requires modelling of the forward and backward propagation of the
acoustic waveform between the source and the scattering site, which can be
accomplished using the angular spectrum approach. Further, a power spec-
trum of the scattered signal is estimated for a varying attenuation input and
is compared to the power spectra determined for the experimentally observed
signals at different depths.
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4.2.1 Power spectrum of the echo signal

Consider the expression for the power spectrum obtained in the previous chap-
ter under the assumption of Rayleigh scattering:

PRayl(ω) = γ2
0 n̄V

2
s ρ

2c2|STx,Rx(ω)|2k6

∫
V

h2
Tx(r0 : ω)h2

Rx(r0 : ω)dr0. (4.1)

where γ2 is the mean-square inhomogeneity coefficient, n̄ is the average number
of scatterers per unit volume, Vs - is the effective scatterer volume, k = ω/c is
the wavenumber and ρ and c are the density and speed of sound, respectively.
STx,Rx(ω) is defined by Eq. 3.58 and hTx and hRx are the transmit and receive
impulse response functions defined in Eq. 3.19 and Eq. 3.54, and the integral
is taken over the scattering volume V . For simplicity, the subscript “Rayl” is
further omitted. The product of the constants in Eq. 4.1 can be replaced by
the factor C = γ2

0 n̄V
2
s
ρ2
/c4, yielding:

P(ω) = C|STx,Rx(ω)|2ω6

∫
V

h2
Tx(r0 : ω)h2

Rx(r0 : ω)dr0. (4.2)

4.2.2 Numerical implementation

The impulse response functions hTx and hRx in the above equation describe
the forward and backward propagation of the pressure field between the source
and the scattering site and will further be modelled using the angular spec-
trum approach (ASA). The resulting field is usually computed in the spatial-
frequency domain by means of the transfer functions HTx and HRx that can
be obtained through a spatial 2-D Fourier transform of the impulse response
functions [78,80].

Provided that the pressure or normal velocity distribution is defined in the
initial plane (at z = 0), ASA computes pressure fields in successive parallel
planes. Further, we assume that the dimensions of a scattering medium are
significantly larger than transducer aperture, (i.e. no reflections coming from
edges of the scattering medium), and, instead of considering the entire scatter-
ing volume, we examine scattering contributions from thin sub-volumes parallel
to the initial plane (Fig. 4.1). In this way, the power spectrum of the scat-
tered signal, corresponding to a gated region around depth z can be computed
as:
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P(ω, z) = C|STx,Rx(ω)|2ω6

∫
S

[
F−1

2D {HTx(kx, ky, z : ω)}
]2
×

×
[
F−1

2D {HRx(kx, ky, z : ω)}
]2
dxdy,

(4.3)

where the integration to be performed over a plane parallel to the transducer
at depth z. In Eq. 4.3, kx and ky are the spatial frequencies, whereas HTx

and HRx are the transmit and receive transfer functions defined in the spatial-
frequency domain. F−1

2D {H} denotes the inverse spatial 2-D Fourier transform
of H.

For a homogeneous medium, the transmit and receive transfer functions in Eq.
4.3 are defined as:

HTx/Rx(kx, ky, z : ω) = ATx/Rx(kx, ky : ω)Hvn→ϕ
Diffr(kx, ky, z : ω)×

×Hp→p
Att (kx, ky, z : ω).

(4.4)

The first factor on the right side of Eq. 4.4 represents the transducer’s spatial
weighting function that is defined in a plane at z = 0 and which depends
on the transducer type, geometry and focal settings. In the present study,
we consider a focused single-element transducer, both for transmission and
reception. A procedure for calculating the weighting function of this type
of source was described in chapter 3 (Eq. 3.30). Since the focal depth of this
transducer is determined by its curvature and is the same for both transmission
and reception, the transmit and receive weighting functions and are identical
in the present case. The second and third factors on the right side model the
effects of diffraction and attenuation over a distance z, respectively, that were
defined in Eq. 3.24 and Eq. 3.25 of chapter 3, respectively.

When considering multilayered media, the effects of diffraction and attenuation
are computed separately in every layer using the corresponding sub-functions.
In addition, at the interface between subsequent layers (indexed “i” and “i+1”),
the following transmission coefficient is introduced [71]:

T p→pi|i+1 =
2Zi+1cos(θi)

Zicos(θi+1) + Zi+1cos(θi)
, (4.5)

where Z = ρc is the acoustic impedance and θi and θi+1 are the incident angles
of each plane wave in the angular spectrum with the normal to the interface
between the layers above and beneath the interface:

63



4.2. Methods

θi = sin−1


√
k2
x + k2

y

ki

 ,

θi+1 = sin−1


√
k2
x + k2

y

ki+1

 .

(4.6)

It should be noted that the normal velocity to velocity potential conversion
is required only once, in the first propagation layer, while in subsequent lay-
ers diffraction can be modelled in terms of pressure using the following sub-
function:

Hp→p
Diffr(kx, ky, z : ω) =

(
ejkzz

)∗
, (4.7)

where, we recall, kz =
√
k2 − (k2

x + k2
y).

The above formulas allow to compute the power spectrum of a signal scattered
from a region around a certain depth. The input acoustic parameters required
for the simulations such as density, speed of sound and thickness of each layer
are assumed to be known, whereas the attenuation coefficient in the model
can be varied within acceptable bounds to match the experimentally observed
signals as will be described below. If the electrical excitation of the transducer
as well as its transmit and receive transfer functions are known, the temporal
function |STx,Rx| can be simply calculated as their product. In the other case,
|STx,Rx| can be determined experimentally through a reflector measurement as
described in App. B.

4.2.3 Attenuation estimation algorithm

The proposed algorithm for the attenuation estimation consists of three main
steps. First, the power spectrum of the signal received at the transducer site
is calculated using Eq. 4.3 for an initial estimate of the attenuation coefficient
and with known acoustic parameters and transducer characteristics. Next, the
simulated power spectra and power spectra determined for the experimentally
observed signals gated in the region of interest (ROI) are compared using a
pre-defined similarity measure. Finally, the first two steps are repeated for a
series of values of a varying input attenuation coefficient, considering all other
input parameters to be constant, and the attenuation coefficient corresponding
to the highest similarity between the spectra is determined.

The simulated power spectra are compared to the power spectra of the experi-
mentally observed backscattered signals using a sliding window approach. The
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Figure 4.1: Schematic representation of the simulation set-up.

first window is used for calibration, wherein the energies of the simulated and
measured spectra are equalized. In this way, the unknown amplitude coefficient
C in Eq. 4.3 can be eliminated. After the calibration, the similarity between
the simulated and measured power spectra in every window is assessed using
the least squares difference of the spectra centered at depth z. In order to
reduce the amplitude variations of the compared spectra, the spectral distance
is computed for the square root of power spectra:

D(z, α) =
∑
ω

(√
Pmeas(z, ω)−

√
Psim(z, ω;α)

)2

, (4.8)

where Pmeas(z, ω) is the power spectrum of the measured signal gated with
a Hanning window around depth z inside of the ROI and Psim(z, ω;α) is the
estimated power spectrum at the same depth and for an input attenuation
coefficient α.

In order to approximate the experimentally observed signals, the signal power
spectrum is estimated for different input values of the attenuation coefficient
α. The value corresponding to the highest similarity between the simulated
and the measured signals in each analysis window is determined by means of
an exhaustive search in the range between 0 and 2 dB/cm/MHz. The total
attenuation coefficient of the sample is chosen as the one corresponding to the
smallest difference between the spectra along the considered windows:

ᾱ = arg min
α

(
L∑
i=2

D(zi, α)

)
, (4.9)
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where zi is the distance to the ith window and L is the number of win-
dows.

4.3 Experiments

The above described method was validated on both simulated and experimen-
tally acquired radio-frequency (RF) data. At first, the attenuation coefficient
of the numerical and real phantoms was estimated using the above described
method, and the result was compared to the “ground-truth” value. Next, in
order to demonstrate the accuracy of the proposed approach and to analyse
the bias introduced by the diffraction effects, the propagation model used in
the reconstruction procedure was simplified to the case of plane-wave propa-
gation to mimic the situation where diffraction effects are not being corrected
for, as described in App. A, and the reconstruction procedure was repeated.
In both cases, the attenuation estimation was performed for different phantom
positions in front of the transducer, more specifically in the transducer’s near-
and far-field and around its focal zone.

4.3.1 RF data simulation

RF signals backscattered from homogeneous phantoms with different attenu-
ation characteristics were generated using the ultrasound simulation software
Field II [86]. A single-element focused concave transducer with a center fre-
quency of 5 MHz, a diameter of 12.7 mm and focal depth at 75 mm was
modelled using the function “xdc concave”. A Gaussian-modulated sinusoidal
transducer impulse response wt with a relative bandwidth of 80% was consid-
ered together with a 1.5-cycle excitation. A phantom with dimensions of 40
mm × 40 mm × 50 mm consisting of a dense distribution of point scatter-
ers was placed in front of the transducer at three different positions: first, in
the near-field of the transducer (“transducer-phantom” distance d1 = 1 mm),
next, in its focal zone (d2 = 50 mm) and finally in its far-field (d3 = 75 mm).
20 RF lines of the scattered signals were generated for each phantom position
considering different realizations of the positions of the scattering sites. The
speed of sound in the background and phantom media was set to 1540 m/s. At
each phantom position, a set of RF signals was generated with three different
attenuation coefficients: 0.3, 0.5 and 0.7 dB/cm/MHz.

In order to define the function STx,Rx(ω) which is used in Eq. 4.3, a temporal
Fourier transform was calculated of the double convolution of the electrical
excitation St,Tx(t) used in the Field II simulation with the temporal impulse
response of the selected transducer:
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Water distance, zm, mm

Speed of
sound,
m/s

Density,
kg/m3

Attenuation
coefficient,
dB/cm/MHz

position 1 position 2

Ph. A 1551 1080 0.38 53.8 11.7

Ph. B 1550 1129 0.35 57.4 11.7

Ph. C 1542 1087 0.65 46.2 10.5

Ph. D 1546 1000 0.62 46.0 10.5

Ph. E 1545 1051 0.69 44.6 10.4

Ph. F 1554 1088 0.70 56.7 11.7

Ph. G 1552 1099 0.72 57.2 11.7

Ph. H 1581 1265 0.77 59.6 11.8

Ph. I 1568 1322 0.61 60.4 11.8

Table 4.1: Acoustic properties of the tissue-mimicking phantoms (deter-
mined from through-transmission substitution experiments) and the transducer-
phantom distance in the experiments.

STx,Rx(ω) = F {(St,Tx(t)⊗ wt(t))⊗ wt(t)} =

= F {St,Tx(t)} (F {wt(t)})2
.

(4.10)

4.3.2 Experimental data acquisition

The performance of the proposed method was also tested on experimental data
using tissue-mimicking phantoms with different attenuation characteristics. 7
gelatin and 2 PVA phantoms were prepared as described in [66, 68] by mixing
dry gel powders - 13.5% gelatin (AppliChem, Darmstadt, Germany) or 10%
PVA (Sigma-Aldrich Chemie, Steinheim, Germany), - with deionized water.
Graphite powder in a concentration of 30-70 g/L (Acros Organics, Geel, Bel-
gium) was used to alter the scattering and attenuation properties. In this way,
9 homogeneous cylindrical phantoms (50 mm in length; 35 mm in diameter)
were created and labelled with alphabetic letters from “A” to “I”.

The acoustic parameters of the phantoms were first measured using a tradi-
tional through-transmission substitution method at room temperature (22 °C),
as described in [64]. Their values are listed in Table 4.1. The determined
attenuation coefficients for each phantom showed a linear dependence on fre-
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Figure 4.2: Schematic diagram of the experimental setup for pulse-echo mea-
surements.

quency. Their values were considered as “ground-truth” and were used for
the verification of the attenuation estimates that were later obtained from the
backscattered signals. It was also verified that the speed of sound for each
phantom was constant with frequency; its value was used as an input for the
simulations.

The backscattered signals were recorded in pulse-echo mode using a single
transducer operating as emitter as well as receiver. A schematic diagram of
the experimental setup used for these measurements is shown in Fig. 4.2. A
focused single element transducer was used: V306 (Panametrics NDT, Inc.,
Waltham, MA) with 0.5” (13 mm) diameter, 2.25 MHz center frequency, 60%
bandwidth and a radius of curvature of 0.88” (75 mm). First, a phantom was
placed in the water tank approximately around the focal zone of the operating
transducer (position “1” at distance d1 in Fig. 4.2) and then in its far-field
(position “2” at distance d2).

A negative impulse was generated on a Pulser/Receiver (5058PR, Panametrics
Canada NDT, Quebec) and sent to the emitting/receiving transducer. At each
fixed transducer-phantom distance, 16 received signals were averaged, digitized
on a data acquisition card and stored on a PC for further analysis. For each
phantom and position, 20 independent RF lines were acquired, slightly moving
the transducer in the plane parallel to the surface of the phantom in steps of
1 mm. The movement was realized by a linear motion stage (Velmex Bislides,
Velmex Inc., Bloomfield, NY) controlled by a stepper motor drive (NI MID-
7604) connected to a motion controller (NI PXI 7334, National Instruments
Corporation, Austin, TX). The synchronisation, data acquisition and motion
control were automated using the graphical programming software LabView
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Figure 4.3: Schematic diagram of the data processing approach for the estima-
tion of the spectrum of the measured data.

(National Instruments Corporation, Austin, TX).

In the present setup, the source and the scattering volume were separated by
a layer of distilled water, which was taken into account when computing the
transfer functions in Eq. 4.3. All measurements were performed at 22 °C
and the following values for the density, speed of sound and attenuation of
distilled water were taken from literature as input for the simulations: ρw =
1000kg/m3, cw = 1483m/s, αw = 0.0022dB/cm·MHz.

Finally, the required input spectrum STx,Rx(ω) for the simulations in the recon-
struction procedure was determined from the plate reflections measurements
as described in App. B.

4.3.3 Data processing

In every simulated and experimental data set, the recorded RF echo lines were
gated with a rectangular window to select the proper section of the signal
corresponding to the scattering from the phantom. Each gated signal was
further portioned into overlapping windows of 4 mm (˜13 wavelengths for the
speed of sound of 1540 m/s and 5 MHz frequency) with 50% overlap (Fig.
4.3). The ROI in every phantom that was used for the attenuation estimation
consisted of 20 RF echo lines with 20 overlapping windows each, and had a
size of 19 and 42 mm in lateral and axial directions, respectively (˜62 and 136
wavelengths). In each window, the signal was gated using a Hanning window
and a Fourier transform of the gated signal was evaluated. The Fourier spectra
of the windows corresponding to the same depth from different RF lines in the
ROI were averaged to obtain a power spectrum estimate.

Further, the received spectra were estimated at every window position for a
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varying attenuation coefficient as input to Eq. 4.3. The attenuation of the
phantoms used in this study was modelled assuming a linear dependence on
frequency (n = 1 in Eq. 3.25). Because the attenuation coefficient of soft tissue
as well as of the currently studied tissue-mimicking phantoms is not expected to
exceed 2 dB/cm/MHz [71], the input attenuation coefficient in the simulation
was discretely changed in the interval between 0 and 2 dB/cm/MHz with a step
of 0.05 dB/cm/MHz. The resulting estimated spectra were compared to the
simulated or real experimental spectra obtained at the corresponding depth
using the above outlined sliding window approach after a calibration in the
first window. An example of the spectral comparison for both simulated and
experimental data can be seen in Fig. 4.4. A -20 dB frequency range of all
spectra was selected for the comparison in order to operate above the noise
level. The distance between the spectra of the windowed signals at every depth
and for every attenuation input was calculated using Eq. 4.8, and, finally,
the global attenuation coefficient of the phantom was determined using Eq.
4.9.

In this way, the attenuation coefficient of each phantom was estimated using
data sets recorded at different “transducer-phantom” distances, namely in the
near-field, focal zone and far-field for the simulation study and in the focal
zone and far-field for the experimental study. As mentioned before, the re-
construction was performed considering two conditions. First, the attenuation
estimates were obtained under the assumption of the joint action of diffraction
and attenuation, and afterwards under the assumption of plane-wave propaga-
tion neglecting the diffraction effects.

Some additional analysis were performed to verify the accuracy and the vari-
ance of the local attenuation estimates and to check the feasibility of increasing
the spatial resolution of the proposed method by decreasing the number of win-
dows used during the spectral comparison. For this purpose, local attenuation
estimates were determined in every window as:

α(zi) = arg min
α
D(zi, α). (4.11)

4.4 Results

The total attenuation estimates obtained in the simulation study are presented
in Table 4.2 and visualized in Fig. 4.5a. When the effects of diffraction were in-
corporated in the model, the method allowed to retrieve the exact attenuation
coefficient of the generated signals regardless of the position of the phantom
with respect to the transducer focus. As expected, when the effects of diffrac-
tion are not accounted for, the attenuation coefficient is underestimated in
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Figure 4.4: Example of the spectral fit between the measured and simulated
Fourier spectra in the simulation study (on the left) and in the experimental
phantom study (on the right).

the near-field of the transducer, where the amplitude of the ultrasound beam
experiences increase due to the focusing of the beam, and is overestimated
in the far-field region, where its amplitude decreases due to diffraction. Fig.
4.5b presents the average of local estimates obtained for every data set. It
can be seen that the average local estimates do not significantly deviate from
the total attenuation estimates in Fig. 4.5a. When the diffraction was taken
into account, the standard deviation of the local estimates did not exceed 0.05
dB/cm/MHz. In Fig. 4.6a, the local attenuation estimates are shown as a
function of depth of the estimation window. It can be seen that the estimates
start converging to a certain value after the first 15- 20 mm inside of the ROI.
Finally, Fig. 4.6b presents the distance measure of Eq. 4.8 computed in the
focal zone of the transducer, which appears to have a clear minimum for all
three data sets.

Estimated attenuation coefficient, dB/cm/MHz (relative error, %)

With diffraction correction Without diffraction correction

“Ground
truth”

Near-field Focal zone Far-field Near-field Focal zone Far-field

0.3 0.30 (0) 0.30 (0) 0.30 (0) 0.20 (33) 0.40 (33) 0.45 (50)

0.5 0.50 (0) 0.50 (0) 0.50 (0) 0.35 (30) 0.60 (20) 0.65 (30)

0.7 0.70 (0) 0.70 (0) 0.70 (0) 0.60 (14) 0.85 (21) 0.85 (21)

Table 4.2: Attenuation estimates obtained in the simulation study, with and
without diffraction correction at different positions along the transducer beam.
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(a)

(b)

Figure 4.5: Total (a) and averaged local (a) attenuation estimation results in
the simulation study based on three data sets with attenuation coefficients equal
to 0.3, 0.5 and 0.7 dB/cm/MHz. “ND” denotes the estimates obtained without
diffraction correction (plane-wave propagation model).
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(a) (b)

Figure 4.6: (a) Local attenuation estimates obtained at different depths for three
data sets with attenuation coefficients equal to 0.3, 0.5 and 0.7 dB/cm/MHz
generated in the near-field, focal zone and far-field of the transducer. (b) Dis-
tance measure (Eq. 4.8) versus the input attenuation coefficient values of the
exhaustive search for the three data sets computed at the focal zone of the trans-
ducer.

The results of the experimental phantom study are presented in Table 4.3 and
visualized in Fig. 4.7a. The proposed method provided close to the “ground-
truth” attenuation estimates both in the focal zone of the transducer as well
as in the far-field with average relative errors of 9.2% and 10.0%, respectively.
As expected, upon neglecting diffraction effects, the attenuation estimate in
the focal zone were acceptable (average relative error of 7.2%). However, the
attenuation estimates in the far-field were considerably overestimated (aver-
age relative error of 41.3%). Although the average error of the attenuation
estimates obtained in the focal zone with the diffraction correction is slightly
higher than the error obtained when the diffraction effects were not accounted
for, these results are not statistically different. On the contrary, the average
estimates obtained in the far-field of the transducer under the plane wave ap-
proximation are statistically different from those obtained with the diffraction
correction (p-value < 0.001). Fig. 4.7b presents the averaged local attenuation
estimates for the same data sets. Again, it can be seen that these values do
not significantly differ from the total attenuation estimates. However, for some
data sets high values of the standard deviation can be noticed. In Fig. 4.8,
the local attenuation estimates are shown with depth inside the ROI obtained
in the focal zone (a) and in the far-field (b) of the transducer. Again, the
estimates seem to converge to a particular value at a depth of 15 - 20 mm.
However, it can be noticed that the far-field estimates possess a higher vari-
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ance. Finally, Fig. 4.8c presents the distance measure of Eq. 4.8 computed
for all 9 considered phantoms in the zone. The distance shows a clear global
minimum for all data sets.

Estimated attenuation coefficient, dB/cm/MHz (rel. error, %)

With diffraction correction Without diffraction correction

“Ground
truth”

Focal zone Far-field Focal zone Far-field

Ph. A 0.38 0.35 (7.9) 0.30 (21.0) 0.40 (5.3) 0.55 (44.7)

Ph. B 0.35 0.35 (0.0) 0.30 (14.3) 0.45 (28.6) 0.60 (71.4)

Ph. C 0.65 0.70 (7.7) 0.70 (7.7) 0.65 (0.0) 0.95 (46.2)

Ph. D 0.62 0.65 (4.8) 0.70 (12.9) 0.65 (4.8) 0.90 (45.2)

Ph. E 0.69 0.70 (1.5) 0.70 (1.5) 0.70 (1.5) 1.05 (52.2)

Ph. F 0.70 0.65 (7.2) 0.70 (0.0) 0.70 (0.0) 0.95 (35.7)

Ph. G 0.72 0.65 (9.7) 0.80 (11.0) 0.70 (2.8) 1.10 (52.8)

Ph. H 0.77 0.70 (9.0) 0.80 (3.9) 0.80 (3.9) 0.90 (16.9)

Ph. I 0.61 0.40 (34.4) 0.50 (18.0) 0.50 (18.0) 0.65 (6.6)

average error: 9.2 10.0 7.2 41.3

Table 4.3: Total attenuation estimates along the propagation path obtained
in the experimental phantom study, with and without diffraction correction at
different positions along the transducer beam.

4.5 Discussion and conclusion

In the present study, we improved the previously proposed model-based at-
tenuation estimation algorithm, described in chapter 2, which in its original
implementation was limited to a case of plane wave propagation. In the cur-
rent adaptation of the method, diffraction effects are explicitly accounted for,
and the attenuation coefficient is reconstructed by comparing the spectra of the
recorded scattered signals from the tissue with theoretically predicted spectra
computed using a numerical model of ultrasound wave propagation that prop-
erly mimics the experimental setting and the finite transducer characteristics.
In this way, acoustical effects such as diffraction which may bias the attenuation
estimates do not need to be corrected for as they are intrinsically incorporated
into the propagation model. Moreover, in the future, the numerical model
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(a)

(b)

Figure 4.7: Total (a) and averaged local (b) attenuation estimation results in the
experimental phantom study based on eleven TM phantoms (labeled A to I) with
“ground-truth” attenuation coefficient values determined using an insertion-
substitution method. “ND” denotes the estimates obtained without diffraction
correction (plane-wave propagation model).
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can be gradually improved to provide more realistic attenuation estimates in
specific set-ups and conditions, for instance by including nonlinearity.

As a first step, the propagation model was extended to 3-D through the inclu-
sion of diffraction effects. The ultrasonic wave propagation was modelled using
the angular spectrum approach due to its ability to easily account for layered
media. During the spectrum estimation, a point scattering model was adopted
as it is considered to be the most suitable model for describing the scatter-
ing effect from graphite particles (which are frequently used in validation and
calibration experiments to produce scattering in phantoms). The scattering
model can be easily modified to describe other common scatterer types using
the form-factors given in [1, 89]. However, it should be noted that only one
type of scatterers can be considered at a time, which can be a limiting factor
in some applications.

Further, the frequency dependence of the attenuation, which was presently
assumed to be linear based on experimental observations, can easily be adjusted
in the model. Moreover, the current assumption of linear wave propagation
could also potentially be surpassed by adapting the wave equation and including
nonlinear effects into the angular spectrum simulation procedure [80]. It is
important to note that in the present study, all acoustic parameters required
for the model, apart from the attenuation of the sample, were supposed to be
known. In clinical practice, where the acoustic properties of the tissue cannot
be simply measured using the insert-substitution method, tables with average
values for characteristics such as speed of sound and density of soft tissues can
be found in the literature [71].

Finally, even though the present study was limited to the consideration of a
single-element transducer, any other transducer type can be incorporated into
the propagation model by modifying the transducer’s weighting function. As
such, an extension to a phased array transducer will be the topic of future
work. While the proposed method still requires an additional measurement
to determine the spectrum of an input pulse, this measurement has to be per-
formed only once, unless the ultrasound probe or its excitation is changed, and,
in contrast with reference phantom techniques, does not have to be repeated
every time the focal settings are updated.

Two other possible improvements concern the size of the estimation data block
and the optimization process. In this study, the entire ROI was used during
the attenuation estimation process, whose dimensions were ∼ 20 mm × 40 mm.
However, as can be seen from Fig. 4.6a and Fig. 4.8a and Fig. 4.8b, the size
of the ROI could be possibly decreased by a factor of 2. These figures clearly
illustrate the accumulative nature of the attenuation, i.e. the fact the effect
becomes more apparent with depth, and the aforementioned offset of 15 - 20
mm is therefore, required for the method to produce realistic results. Increased
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4. Diffraction - independent attenuation estimation

variances of the attenuation estimates obtained in the far-field of the transducer
in the experimental study compared to those in the focal zone, can be probably
explained by the decreasing SNR at larger depths. Concerning the optimization
process, the apparent global minima of the cost-functions in both simulation
and experimental studies suggest that the exhaustive search procedure could
be likely replaced by a more efficient gradient descent method.

Overall, in its current version, the proposed method provided accurate atten-
uation estimation results on both synthetic and experimental phantom data,
largely independent of the diffraction effects. Furthermore, the proposed ap-
proach has the potential to be applied in more complex cases by means of
a comprehensive improvement of the underlying model. This feature will be
investigated and reported on in the future.
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4.5. Discussion and conclusion

(a) (b)

(c)

Figure 4.8: Local attenuation estimates obtained at different depths in the ex-
perimental phantom study based on eleven TM phantoms (labeled A to I) in
the focal zone (a) and far-field (b) of the transducer. (c) The distance mea-
sure (Eq. 4.8) versus the input attenuation coefficient values of the exhaustive
search computed in the experimental phantom study at the focal zone of the
transducer.
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Chapter 5

Extension of the angular
spectrum method to model
the pressure field of a
cylindrically curved array
transducer

This work was published in: N. Ilyina, J. Hermans, K. Van Den Abeele, J. D’hooge et
al., “Extension of the angular spectrum method to model the pressure field of a cylindrically
curved array transducer”, J. Acoust. Soc. Am., vol. 141, no. 3, pp. EL262-EL266, 2017.
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5.1. Introduction

Abstract

An extension to the angular spectrum approach for modelling pressure fields of
a cylindrically-curved array transducer is described in this chapter. The pro-
posed technique is based on representing the curved transducer surface as a set
of planar elements whose contributions are combined at a selected intermediate
plane from which the field is further propagated using the conventional angu-
lar spectrum approach. The accuracy of the proposed technique is validated
through comparison with Field II simulations.

5.1 Introduction

The angular spectrum approach (ASA) has been widely used to model pressure
fields generated by ultrasonic transducers [78, 80, 82–84]. This method makes
use of a two-dimensional Fourier transform to propagate the pressure field in-
between parallel planes and is known to be highly computationally efficient
and easy in implementation. For wave propagation in a homogeneous media,
the ASA has been shown to be equivalent to other simulation methods such as
directly solving the Rayleigh-Sommerfeld integral or ones based on the spatial
impulse response method [77, 86, 95]. While the Rayleigh-Sommerfeld inte-
gral method is relatively time-consuming, the spatial impulse response method
intrinsically assumes linear wave propagation in an acoustically homogeneous
medium. In contrast, the ASA can be extended to include nonlinear effects and
to model pressure fields in layered (i.e. inhomogeneous) media [78,80].

In order for the ASA to be applied, knowledge of the field distribution on the
source plane is required. Although this problem is straightforward for planar
transducer geometries, it is not for curved transducers as used in many medical
applications to improve focusing. In this chapter, we propose an extension of
the angular spectrum method to a case of a cylindrically curved array trans-
ducer as commonly used in medical ultrasound imaging. This technique pro-
vides easy means for analysis and interpretation of acoustic fields radiated from
such transducers and is inspired by the method that was recently proposed for
a spherically curved transducer [83].

The procedure described in Ref. [83] consists of dividing the transducer surface
into a set of planar concentric rings, each contained within a plane parallel to
a selected intermediate plane in front of the transducer. The angular spectrum
of each ring is calculated separately and propagated to this intermediate plane,
where the contributions of all rings are added. Subsequently, the intermediate
plane is used as the source plane for sound field estimation using the con-
ventional ASA. The purpose of this chapter was therefore to demonstrate the
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5. Extension of the angular spectrum method

Figure 5.1: Representation of a cylindrically-curved linear array transducer by
a set of planar rectangles: 3-D view (a) and cross-sectional view (b).

application of a similar strategy as the one proposed by Vyas & Christensen
in order to compute the spectrum of a cylindrically curved array transducer.
First, the calculation procedure is described, followed by the comparison of the
numerical results to those obtained with Field II [86].

5.2 Method

Herein, a cylindrically curved ultrasonic array was considered with Nel elements
(Nel is assumed to be even) of height H and width W , with a zero kerf and
a radius of curvature R. The intermediate plane was defined as tangential to
the transducer’s aperture and perpendicular to the x− z plane (Fig. 5.1 (a)).
Next, all transducer elements were subdivided along the elevation direction
into (2Ny + 1) small sub-elements that can be regarded as planar rectangles of
height ∆y = H/(2Ny+1). It should be noted that given dense sampling and mod-
erate curvature of the transducer aperture, the sub-elements can be considered
parallel to the x− z plane. This assumption greatly simplifies the calculations,
since the angular spectrum of each sub-element can be calculated in the same
coordinate space.

The angular spectrum of such sub-element centered at (xm, yn), where m =
−Nel/2, ...,Nel/2 and n = −Ny, ..., Ny, is given by:

Am,n(kx, ky) =

xm+W
2∫

xm−W2

xm+ ∆y
2∫

yn−∆y
2

e−j(kxx+kyy)dxdy, (5.1)
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where kx and ky are the spatial frequencies.

Substituting x̃ = (x−xm)/W and ỹ = (y−yn)/∆y we obtain:

Am,n(kx, ky) =

1
2∫

− 1
2

1
2∫

− 1
2

W∆ye−j(kxWx̃+ky∆yỹ)e−j(kxxm+kyyn)dx̃dỹ =

= e−j(kxxm+kyyn)
4sin

(
kx

W
2

)
sin
(
ky

∆y
2

)
kxky

.

(5.2)

As seen in Fig. 5.1b, the travel distance zn from each sub-element to the
intermediate plane depends on the sub-element’s elevational coordinate. Prop-
agation of each sub-element’s angular spectrum to the intermediate plane is
modelled using the following transfer function [82]:

Hel,n =
(
e−jkzzn

)∗
, (5.3)

where kz =
√
k2 − (k2

x + k2
y) and k = ω/c is the wave number for the angular

frequency ω and speed of sound c and ’∗’ indicates the complex conjugate.
As can be seen from Fig. 5.1b, the travel distance is given by: zn = R(1 −
cosθn). The above transfer function accounts for a phase difference due to the
difference in horizontal propagation distance for an element with the elevational
coordinate yn with respect to the central element.

Azimuthal focusing is accounted for by introducing a phase factor determined
by the azimuthal coordinate of the sub-element:

Haz,m = e−jωtm , (5.4)

where tm is the transmit time delay of the mth transducer element, which for
a one-dimensional array is given by:

tm =
dF −

√
(xm − xF )

2
+ z2

F

c
, (5.5)

with dF the distance from the center of the aperture to the focal point and xF
and zF - the azimuthal and axial coordinates of the focal point.

Finally, the angular spectrum of the entire transducer aperture on the interme-
diate plane can be calculated by adding the contributions of all sub-elements
(Nel in the azimuthal and 2Ny + 1 in the elevational directions):
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5. Extension of the angular spectrum method

A(kx, ky : ω) =

(2Ny+1)∑
n=1

Nel∑
m=1

An,mHel,nHaz,m. (5.6)

Substituting Eq. 5.2, 5.3 and 5.4 into Eq. 5.6, we get:

A(kx, ky : ω) =
4sin

(
kx

W
2

)
sin
(
ky

∆y
2

)
kxky

×

×
Ny∑

n=−Ny

[
e−jkyyn

(
e−jkzzn

)∗] Nel∑
m=1

[
e−jkxxme−jωtm

]
.

(5.7)

The first summation on the right-hand side can be rewritten as follows:

Ny∑
n=−Ny

[
e−jkyyn

(
e−jkzzn

)∗]
= 1 +

Ny∑
n=1

[
2cos(kyn∆y)

(
e−jkzzn

)∗]
. (5.8)

The pressure field distribution in any plane that is parallel to the intermedi-
ate plane at distance z can be determined by multiplying the source angular
spectrum in Eq. 5.7 with the following transfer function [82]:

H(kx, ky, z : ω) =

(
jejzkz

kz

)∗
, (5.9)

and taking the 2-D inverse Fourier transform of the resulting spatial-frequency
distribution.

5.3 Numerical simulation

In order to validate the above expressions, a phased array transducer with
a cylindrically curved aperture was modelled using both the above approach
and with Field II (based on the spatial impulse response method) [86]. The
transducer aperture consisted of 64 (Nel) elements of 12 mm × 0.22 mm (cor-
responding to H and W ), and a kerf of zero between the transducer elements
was assumed. The radius of the elevation curvature (R) was set to 70 mm
and the electronic focus was set at [xF , yF , zf ] = [0, 0, 70 mm]. For the ASA
modelling, the number of aperture sub-elements along the elevation direction
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5.4. Results

Figure 5.2: Comparison of the simulated transmit beam profiles of a focused
linear array transducer obtained with ASA and Field II: lateral (left), eleva-
tional (middle) and axial (right). Transducer element size: 0.22 mm ×4 12
mm, number of elements 64, center frequency 3.5 MHz, elevational focus 70
mm, azimuthal focus 70 mm, measurement depth of transverse plots 70 mm.

(2Ny + 1) was set to 55 (∆y = ∆x = λ/2 = 0.22 mm). In Field II, the func-
tion “xdc focused array” was used to model the transducer, and the transducer
aperture was subdivided into 55 sub-elements in elevational and 1 in azimuthal
direction (corresponding to the same sub-element size as used fo the ASA: 0.22
mm × 0.22 mm).

The pressure field propagation was modelled in a homogeneous medium with
a speed of sound of 1540 m/s. A Gaussian-modulated sinusoidal pulse of 1.5
periods, 3.5 MHz center frequency and 80% relative bandwidth was generated
in Field II and was used as the input for the angular spectrum simulations.
For both simulators, a sampling frequency of 100 MHz was used. For the ASA
simulations, a 1024-point fast Fourier transform was applied to a time-domain
pulse; the pressure field was simulated for non-zero positive frequency compo-
nents (70 in this case) of the spectrum. Propagation of the pressure field using
the ASA was modelled in the spatial-frequency domain and a spatial frequency
truncation was applied to avoid aliasing effects as described in chapter 3.

5.4 Results

Figure 5.2 compares the azimuthal and elevational transmit beam profiles at
the focal depth and the axial RMS pressure profiles obtained with both simu-
lators showing very good agreement between both simulation approaches. The
comparison of the (normalized) transmit RMS pressure fields is presented in
Fig. 5.4. Overall, the simulated pressure fields look very similar with a maximal
percentage difference of normalized patterns below 6 %. Figure 5.4 compares
the normalized transmit pressure fields in the case when the beam was steered
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5. Extension of the angular spectrum method

Figure 5.3: Comparison of the simulated transmit pressure fields of a focused
linear array transducer obtained with ASA and Field II: in the azimuthal plane
(upper row) and elevational plane (lower row). Transducer element size: 0.22
mm × 12 mm, number of elements 64, center frequency 3.5 MHz, elevational
focus 70 mm, azimuthal focus 70 mm, measurement range 1-150 mm.

in the azimuthal plane (the steering angle was set to 20°). The percentage
difference of the normalized elevational patterns in this case remained below
6%. The difference of the azimuthal patterns slightly increase, but remained
below 10%. This increased difference of the azimuthal patterns is probably
associated with the difficulties in selecting the optimal size of the spatial grid
for ASA in the case of a steered beam, which gradually moves away from the
its origin with depth.

All simulations were performed on a computer with an Intel Core i7 2.7 GHz
processor and 8 GB physical memory. The estimates of the computation time
for both simulation methods are summarized in the Table 5.1.

5.5 Conclusion

The recently proposed method for modelling spherically curved transducer
apertures with ASA was reformulated for the case of cylindrically curved arrays.
The method divides the transducer aperture into a set of planar rectangular
sub-elements, the angular spectrum of which is calculated separately and prop-
agated to a preselected intermediate plane in which the contributions of all sub-
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5.5. Conclusion

ASA

Field II (broad-
band)

broadband, i.e.
70 frequency
points

center frequency
only

Lateral beam profiles 0.95 s 11.7 s 0.22 s

Axial beam profile 0.09 s 1948 s 25.6 s

Field distribution in
a plane parallel to the
transducer (70 mm)

545 s 59 s 2.0 s

Table 5.1: Computation time required for the simulations in Field II and ASA.

elements are combined. The accuracy of the derived expressions was validated
through comparison with Field II simulations. As expected, Field II showed
faster performance during the computation of pulsed acoustic excitation, while
the ASA was more efficient during field computations in a plane parallel to the
transducer surface. It should be noted, that these time estimates are purely
indicative since the implementation of the proposed ASA approach was done
in a MATLAB environment (The MathWorks Inc., Natick, MA, USA) while
Field II executes its core calculations in C. Obviously, the proposed method
can thus be further optimized using compiled computer languages and effective
parallel programming using a multi-core computer or a graphical processing
unit. Overall, this study demonstrates that the proposed technique provides
an easy means for modelling pressure fields of commonly used transducers for
clinical practice that can be extended to consider inhomogeneous media and
embedded nonlinear effects.
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5. Extension of the angular spectrum method

Figure 5.4: Comparison of the simulated transmit pressure fields of a focused
linear array transducer obtained with ASA and Field II for the case of a steered
beam (steering angle equal to 20°. The upper row presents the pressure field in
azimuthal plane, the lower row - in elevation plane.
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Chapter 6

Diffraction-independent
ultrasound attenuation
estimation. Part II

This work will be submitted for publication in a peer-reviewed journal
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6.1. Introduction

Abstract

Quantification of the ultrasound attenuation coefficient has shown potential
to provide information on the pathological state of the tissue. However, the
main difficulty in the estimation of the attenuation coefficient consists in the
need for diffraction correction, that is currently done by means of a reference
measurement. Previously, we proposed an alternative attenuation reconstruc-
tion technique wherein the attenuation coefficient was estimated by iteratively
solving the forward wave propagation problem and matching the simulated
signals to measured ones. The simulation procedure involved modelling of the
diffraction effects and allowed to avoid several assumptions made by conven-
tional methods. The proposed method showed promising results when applied
to data recorded using a single-element transducer. In the present study, this
methodology was extended to a clinically more relevant scenario using a phased
array transducer. The proposed approach was validated on simulated data in
Field II and data recorded in a tissue mimicking phantom with varying focal
position. For the simulated data, the relative error of the attenuation estimates
did not exceed 7%, while the relative error for the phantom data remained be-
low 10 %.

6.1 Introduction

The potential of measuring the ultrasound attenuation coefficient for tissue
characterization has been extensively discussed in literature. Various appli-
cations have been considered, including diagnosis of the liver [6–14], kidney
[16,17], breast [18,20,21] and myocardium [27–30]. A number of approaches for
estimating the attenuation coefficient from backscatter data has been proposed
during the last three decades. Typically, these techniques assume that the tis-
sue along the propagation path is homogeneous. However, human anatomy and
therefore, the ultrasound beam path inside the body, are inherently heteroge-
neous. Other common assumptions include a linear frequency dependence of
attenuation and a Gaussian pulse spectrum. To consider more general cases,
we have previously proposed an alternative, model-based approach for attenu-
ation reconstruction. In this technique, the attenuation coefficient is estimated
by iteratively solving the forward wave propagation problem and matching the
simulated signals to the measured ones. The simulation procedure includes
modelling of the diffraction effects as well as propagation in layered media
and allows to avoid several assumptions made by conventional methods. For
instance, different frequency dependencies of both attenuation and scattering
can be incorporated into the model and a transmit pulse of an arbitrary shape
can be considered. Moreover, no reference medium is required to reduce the
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system-dependent effects, such as diffraction.

The proposed method showed promising results when applied to data recorded
using a single-element transducer. This chapter presents an extension of the
proposed methodology to a case of an array transducer as clinically used. The
performance of the method is evaluated using data generated in Field II [86] and
experimentally acquired phantom and in-vivo liver data. The chapter is organ-
ised as follows: section 6.2 briefly describes the previously proposed methodol-
ogy and its current extension. Section 6.3 presents the simulation and exper-
imental results that illustrate the performance of the proposed new method.
Finally, Section 6.4 summarizes the contributions of this chapter.

6.2 Methods and Materials

6.2.1 Theoretical model

As demonstrated in chapter 3, the backscatter power spectrum for a weakly
stationary, isotropic medium with a random distribution of scatterers can be
expressed as:

P(ω) = γ2
0 n̄Vsρ

2c2|STx,Rx(ω)|2ω6F (ω)

∫
V

h2
Tx(r0 : ω)h2

Rx(r0 : ω)dr0. (6.1)

where γ2 is the mean-square inhomogeneity coefficient, n̄ is the average number
of scatterers per unit volume, Vs - is the effective scatterer volume, k = ω/c is the
wavenumber and ρ and c are the density and speed of sound, respectively, and
the form-factor F (ω) describes the frequency-dependence of the scattering pro-
cess depending on the scatterer size, geometry and elastic properties. STx,Rx(ω)
is defined by Eq. 3.57 and hTx and hRx are the transmit and receive impulse
response functions defined in Eq. 3.19 and Eq. 3.54, and the first integral is
taken over the scattering volume V . cγ and ε are the correlation coefficient and
the correction factor of the scattering process, respectively. The product of the
constants in Eq. 6.1 can be replaced by the factor C = γ2

0 n̄V
2
s
ρ2
/c4.

In previous chapters, we used the expression describing scattering from point
targets (Eq. 3.64). Such model seems reasonable when considering the scat-
tering effect in phantoms containing distributions of graphite particles, as de-
scribed in chapter 4. However, soft tissues consist of scatterers of finite size.
When characterizing scattering in soft tissues, a Gaussian scattering model is
often used, which assumes scattering to arise from continuously varying fluctu-
ations in acoustic properties of the medium, whose spatial autocorrelation func-
tion follows a Gaussian form [1,89,96,97]. The Gaussian scatterer is spherical
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and has a uniform particle radius that is related to the impedance distribution
of the scatterer [98]. This model has been widely used to describe scattering
from variuos tissue types as it provides a better approximation of tissue sttruc-
ture than a simple linear model (i.e. Rayleigh) [36–38,96,98]. The form-factor
for the Gaussian scatterer model is given by:

FGauss(ω) =
σGauss
σRayl

=
PGauss(ω)

PRayl(ω)
' e−0.827k2a2

eff , (6.2)

where aeff is the effective scatterer radius.

Further, as described in chapter 4, propagation of the ultrasound wave de-
scribed by the impulse response functions hTx and hRx can be modelled in
the spatial-frequency domain using the angular spectrum approach. Assuming
that the dimensions of the scattering medium are significantly larger than the
transducer aperture (i.e. no reflections coming from edges of the scattering
medium) and examining scattering contributions from thin sub-volumes paral-
lel to the transducer surface (Fig. 4.1), we can compute the backscatter power
spectrum corresponding to a gated region around depth z as:

P(ω, z) = C|STx,Rx(ω)|2ω6F (k)

∫
S

[
F−1

2D {HTx(kx, ky, z : ω)}
]2
×

×
[
F−1

2D {HRx(kx, ky, z : ω)}
]2
dxdy,

(6.3)

where the integration is performed over a plane parallel to the transducer at
depth z in the middle of a thin tissue layer and F−1

2D {H} denotes the inverse
spatial 2-D Fourier transform of H. The transfer functions HTx and HRx de-
scribe the forward and backward propagation of an ultrasound wave over a
distance between the transducer and the considered tissue layer. For a ho-
mogeneous medium, the transmit and receive transfer functions are given by
4.4:

HTx/Rx(kx, ky, z : ω) = ATx/Rx(kx, ky : ω)Hvn→ϕ
Diffr(kx, ky, z : ω)×

×Hp→p
Att (kx, ky, z : ω),

(6.4)

where HDiffr and HAtt describe the effects of diffraction and attenuation and
are given by Eq. 3.24 and Eq. 3.25, respectively, while ATx/Rx is the trans-
ducer’s spatial function that is determined by the transducer type, geometry
and focal settings. In this chapter, we are considering an elevation focused
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array transducer, whose spatial transfer function can be calculated using the
expression derived in chapter 5 (Eq. 5.7).

When considering multilayered media, the effects of diffraction and attenuation
are computed separately in every layer and the transmission coefficient T p→pi|i+1 at

the interface between subsequent layers “i” and “i+1” is introduced as described
in chapter 4 (Eq. 4.5).

Eq. 6.3 allows to compute the power spectrum of a signal scattered from
a region around a certain depth assuming the input acoustic parameters re-
quired for the simulations such as density, speed of sound and thickness of
each layer to be known. The attenuation coefficient in the model can be varied
within acceptable bounds to match the experimentally observed signals as will
be described below. If the electrical excitation of the transducer as well as
its transmit and receive transfer functions are known, the temporal function
STx,Rx can be simply calculated as their product. In the other case, STx,Rx can
be determined experimentally through a reflector measurement as described in
App. B.

6.2.2 Attenuation estimation algorithm

The comparison of the simulated and experimentally observed backscattered
signals was performed using a sliding window approach, as described in chap-
ter 4. The first window was used to equalize the energies of the simulated and
measured spectra, i.e. eliminate the unknown amplitude coefficient C in Eq.
6.3. After this calibration, the similarity between the simulated and measured
power spectra in all windows along the ROI was assessed using the least squares
difference. The value corresponding to the highest similarity between the sim-
ulated and the measured signals in each analysis window was determined by
means of an exhaustive search in the range between 0 and 2 dB/cm/MHz. The
global attenuation coefficient of the sample was estimated as:

ᾱ = arg min
α

[
L∑
i=2

[∑
ω

(√
Pmeas(ω, zi)−

√
Psim(ω, zi;α)

)2 ]]
, (6.5)

where Pmeas(ω, z) is the power spectrum of the measured signal gated around
depth z inside of the ROI and Psim(ω, z;α) is the simulated power spectrum
at the same depth for an input attenuation coefficient α, zi is the distance to
the ith window and L is the number of the considered windows.

The above described method was validated on both simulated and experimen-
tally acquired radio-frequency (RF) data. In the simulation and experimen-
tal phantom study, the obtained attenuation estimates were compared to the
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Type 1-D phased array

Number of elements 64
Elements width 0.22 mm
Elements height 12 mm

Kerf 0 mm
Elevation focus 70 mm

Center frequency 3.5 MHz

Table 6.1: Characteristics of the array transducer used in simulations and ex-
perimental studies.

“ground-truth” values. The performance of the proposed method was analysed
using data recorded using different focal settings. Afterwards, attenuation es-
timates were obtained for in-vivo liver data of healthy volunteers.

6.2.3 Synthetic RF data generation

Synthetic RF signals backscattered from homogeneous media with different at-
tenuation characteristics were generated using the ultrasound simulation soft-
ware Field II [86]. An array transducer with characteristics as indicated in
Table 6.1 was modelled using the function “xdc focused array”. A Gaussian-
modulated sinusoidal transducer impulse response wt with a relative bandwidth
of 80% was considered together with a 1.5-cycle excitation. A phantom with
dimensions of 40 mm × 40 mm × 90 mm consisting of a dense distribution
of point scatterers was assumed to be in direct contact with the transducer.
50 RF lines of the scattered signals were generated considering different real-
izations of the positions of the scattering sites, assuming acquisition at a zero
degree angle. The speed of sound in the background and phantom media was
set to 1540 m/s. The transmit focus was set at 30, 50 and 70 mm from the
transducer along the propagation axis. For each focal position, a set of RF
signals was generated with three different attenuation coefficients: 0.3, 0.5 and
0.7 dB/cm/MHz. The required input spectrum STx,Rx(ω) for the simulation
was computed according to Eq. 4.10.

6.2.4 Experimental RF data acquisition

The performance of the proposed method was further tested on experimen-
tal data acquired from a homogeneous region of a CIRS phantom (model 055,
Computerized Imaging Reference Systems Inc., Norfolk, VA) and from a homo-
geneous home-made phantom that was built by mixing gelatin solution (13.5 %,
AppliChem, Darmstadt, Germany) with graphite powder (in a concentration of
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50 g/L, Acros Organics, Geel, Belgium), as described in subsection 4.3.2. The
speed of sound and the attenuation coefficient of the CIRS phantom at 22°C,
as provided by the manufacturer, were 1540 m/s and 0.5 dB/cm/MHz, respec-
tively. The phantom has a cubic shape with the dimensions of 144 mm × 138
mm × 150 mm. The acoustic properties of the home-made phantom were mea-
sured using an insert-substitution technique, as described in subsection 2.2.4.
The measured speed of sound and attenuation coefficient of the phantom were
1540 m/s and 0.55 dB/cm/MHz, respectively. The phantom had a cylindrical
shape with both the height and the diameter equal to 60 mm.

Pulse-echo acquisitions were performed on a high channel density programmable
ultrasound platform, HD-PULSE [99]. A phased array probe was used as trans-
mitter and receiver, whose characteristics are summarized in Table 6.1. The
transducer was excited with a 1-cycle bipolar pulse with 80% relative band-
width. The signals recorded at the transducer (i.e. RF channel data) were
digitized on data acquisition card (NI 5752, 12 bit, 2 V peak to peak dynamic
range, National Instruments Corporation, Austin, TX) at 50 MHz. The trans-
mit focus was successively set at 30 and 50 mm when scanning the home-made
phantom and at 30, 50 and 70 mm during the scan of the CIRS phantom. For
every phantom and focal position, 50 independent RF signals were acquired un-
der a zero degree beam angle, slightly moving the transducer above the surface
of the phantom. During each acquisition, the transducer was kept in direct
contact with the phantom. The speed of sound for the beamformer was set
at 1540 m/s, and the receive focal settings were identical to those during the
transmit event.

Further, data were acquired from normal human livers of 8 healthy volunteers.
The experimental protocol for this study was approved by the Medical Ethics
Committee of UZ Leuven (dossier S59755). All measurements were made in a
supine subject position; the right liver lobe was scanned with the transducer
plane along the intercostal spaces. For each subject, the sonographer first
positioned the probe using B-mode imaging and then 50 RF frames were suc-
cessively acquired, keeping the transducer fixed. Due to subject’s breathing,
statistically independent signals were recorded in each data set. The transmit
focus and the range were set to 60 mm and 150 mm, respectively.

Finally, the required input spectrum STx,Rx(ω) for the simulations in the recon-
struction procedure was determined from the plate reflections measurements
as described in App. B.

6.2.5 RF data processing

The procedure for processing of the acquired RF signals was similar to that
described in section 4.3.3 except for some numerical differences. First, in every
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simulated and experimental data set, the recorded RF echo lines were gated
with a 42 mm long rectangular window. The gated region was selected approx-
imately in the middle of the recorded signals. Each gated signal was further
partitioned into overlapping windows of 4 mm with 50% overlap (Fig. 4.3).
In this way, the ROI for the attenuation estimation consisted of 50 RF echo
lines with 21 overlapping windows (L = 21 in Eq 6.5). In each window, the
signal was gated using a Hanning window and a Fourier transform of the gated
signal Smeas(k, zi) was evaluated. The backscatter power in every window was
then calculated by averaging the squared magnitude of the computed for this
window Fourier spectra from different RF lines in the ROI:

Pmeas(ω, zi) =
1

N

N∑
n=1

|Smeasn(k, zi)|2, (6.6)

where N is a number of the recorded RF signals from the sample and zi is the
depth of the considered window.

Further, the backscattered power spectrum was estimated at every window po-
sition for a varying input attenuation coefficient using Eq. 6.3 and assuming
a linear frequency dependence of the attenuation. Because the attenuation
coefficient of soft tissue as well as of the currently studied tissue-mimicking
phantoms is not expected to exceed 2 dB/cm/MHz [71], the input attenuation
coefficient in the simulation was discretely changed in the interval between 0
and 2 dB/cm/MHz with a step of 0.05 dB/cm/MHz. For synthetic and ex-
perimental data, the Rayleigh scatterer model was assumed, while for in-vivo
tissue data a Gaussian model was used. The value of the effective scatterer
radius aeff for the model was taken from a reference study [92] and was set
equal to 120 µm. Further, the presence of intervening tissue layers, such as
skin, fat and muscle, as well as of the conductor ultrasound gel, was accounted
for in the model. The effects of diffraction and attenuation were modelled sep-
arately in every layer using corresponding transfer functions (Eq. 3.24, 3.25)
and the transmission coefficient at the interfaces between subsequent layers was
computed (Eq. 4.5). The acoustic parameters of the layers were taken from
literature and are summarized in table 6.2 [92,100]. The simulated power spec-
tra were compared to those estimated from the generated and experimentally
acquired data using the above outlined sliding window approach, wherein the
first window was used for calibration. A -20 dB frequency range of all spec-
tra was selected for the comparison in order to operate above the noise level.
The least-squares distance between the power spectra of the windowed signals
was calculated at every depth and for every attenuation input, and the global
attenuation coefficient of the sample was determined using Eq. 6.5.
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Layer
Layer
thickness,
mm

Density,
kg/m3

Sound
speed,
m/s

Attenuation
coefficient,
dB/cm/MHz

gel 1.0 993 1524 0.005
skin 2.0 1120 1613 1.57
fat 4.0 950 1478 0.48
muscle 11.0 1050 1547 1.09
liver - 1060 1540 -

Table 6.2: Characteristics the gel and tissue layers used in simulations. Acous-
tic properties of tissue layers at 37°C were taken from [100], while the average
tissue layers thicknesses were taken equal to those reported in [92] for healthy
subjects. The acoustic properties of conductor gel were taken equal to those of
water reported in [100] at 37°C. The speed of sound in liver was set equal to
that of the beamformer.

6.3 Results

The results of the simulation study are summarized in Fig. 6.1. The attenu-
ation estimates are presented for the three data sets with the “ground-truth”
attenuation coefficient of 0.3, 0.5 and 0.7 dB/cm/MHz. The attenuation esti-
mates were obtained from the data recorded with different focal settings. In
all cases, the proposed method was able to reconstruct the exact attenuation
coefficient of the data set. Fig. 6.1 compares the total attenuation estimates
with the averaged local ones(obtained using Eq. 4.11). Very good agreement
between the estimates and moderate variances of the local estimates can be
observed. Fig. 6.3 presents the results of the attenuation estimates obtained
in tissue-mimicking phantoms. Exact estimates were obtained for the CIRS
phantom when the focus was set at 30 and 50 mm. The relative error of the
attenuation estimate obtained when the focus was set at 70 mm was 10%. The
estimates obtained for the home-made phantom were in a good agreement with
the value of 0.55 dB/cm/MHz measured with the insert-substitution technique.
The relative error of both estimates (corresponding to the focal depth of 30 and
50 mm) was 9%. The averaged local attenuation estimates appeared less accu-
rate with an average error of 20%. Finally, Fig. 6.3 summarizes the results of
the attenuation estimation on in-vivo liver data obtained in healthy volunteers.
Under the assumption of a homogeneous medium, the measured attenuation
coefficient was in the range of 0.40 - 0.75 dB/cm/MHz with a mean value of
0.57 ± 0.13 dB/cm/MHz. When intervening tissue layers were considered in
the propagation model, the measured attenuation coefficient was in the range
of 0.35 - 0.70 dB/cm/MHz with a mean value of 0.48 ± 0.13 dB/cm/MHz.
These results are statistically different (p-value≈0.005). The averaged local
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(a) (b)

Figure 6.1: Total (a) and averaged local (a) attenuation estimates obtained in
the simulation study based on three data sets with attenuation coefficients equal
acquired when the transmit focus was set at 30, 50 and 70 mm.

estimates are in a good agreement with the total estimates, however possess a
large variance.

6.4 Discussion

This chapter presents an extension of the previously proposed method for atten-
uation reconstruction towards a clinical application. The proposed approach
is model-based, and therefore, can be modified or improved at all levels to
better suit a particular application. In chapter 4, the proposed method was
validated using a single-element transducer under the assumption of point scat-
terers (Rayleigh model). In this study, two major improvements have been
demonstrated: 1) the extension of the proposed approach to a case of an ar-
ray transducer and 2) the introduction of a more descriptive scattering model
(i.e. Gaussian). While quantitative ultrasound techniques typically use a ref-
erence measurement to minimize the diffraction effects, the proposed approach
accounts for the diffraction effects in the propagation model and requires a
single transducer calibration that does need to be repeated when the system’s
settings are changed.

The improved algorithm was first tested on synthetic phantoms generated in
Field II for different input attenuation coefficients, followed by the experimen-
tal study on two tissue mimicking phantoms. The attenuation estimates for
both synthetic and real phantoms were in a good agreement with the “ground-
truth” and were not influenced by varying focal settings. Next, the proposed
method was used to estimate the attenuation coefficient in human liver in-vivo.
For comparison, an overview of previously reported attenuation estimates in
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(a) (b)

Figure 6.2: Total (a) and averaged local (a) attenuation estimates in the ex-
perimental phantom study based on CIRS 055 and a home-made TM phantoms
with “ground-truth” attenuation coefficients of 0.5 and 0.55 dB/cm/MHz, re-
spectively, obtained at different focal settings.

human liver is presented in Table 6.3. It should be noted that this review
is demonstrative but not exhaustive. The variation among the presented es-
timates may be attributed to the differences in the experimental set-up used
(e.g. ultrasound scanning system, transducer, scanning direction and ROI se-
lection) [14]. The obtained results in the present study were in a good agree-
ment with the previously reported values. Overall, the estimates obtained in
multi-layer simulations are lower than those computed under an assumptions
of a homogeneous medium. These result suggest that the assumption of a
homogeneous tissue results in overestimation of attenuation coefficient values
in-vivo.

Considering the strong correlation of the attenuation coefficient with several
pathologies, such as liver steatosis and cirrhosis, future studies will investigate
the potential of the proposed algorithm for liver diagnosis. Furthermore, future
studies will be directed towards the simultaneous estimation of the attenuation
coefficient and scatterer properties, such as acoustic concentration and scatterer
radius. Of particular interest would be an extension of the proposed approach
to the case of nonlinear wave propagation and nonlinear frequency dependence
of the attenuation.
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Reference Estimated range, dB/cm/MHz

Kuc [101] 0.40-0.48
Maklad [8] 0.48-0.55
Garra [102] 0.20-0.85
Wilson [9] 0.38-0.63
Parker [57] 0.37-0.63

Oosterveld [65] 0.42-0.62
Zagzebski [93] 0.44-0.59

Lu [13] 0.48-0.62
Oosterveld [65] 0.42-0.62

Fujii [5] 0.49-0.69
Sasso [14] 0.47-0.70

Table 6.3: Estimates of the attenuation coefficient in liver reported in previous
in-vivo studies.

6.5 Conclusion

Estimation of the attenuation coefficient is of a great interest in ultrasound tis-
sue characterization. Moreover, accurate measurement of the attenuation from
backscattered signals would be beneficial for a proper time-gain compensation.
However, accurate attenuation estimation in-vivo remains challenging due to
the need for the diffraction compensation and the complexity of the analysis
of a heterogeneous human anatomy. The proposed model-based approach can
potentially overcome these limitations by means of computer simulations. As
such, the current simulation procedure includes modelling of the diffraction
effects as well as propagation in layered media. In this study, the proposed ap-
proach was validated on both simulation and experimental data acquired with
an array transducer. The error of the attenuation estimates obtained for both
synthetic and real tissue-mimicking phantoms did not exceed 10%, while the
estimates obtained in human liver in-vivo were in a good agreement with the
values presented in the literature.
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(a)

(b)

Figure 6.3: Total (a) and averaged local (a) attenuation estimates obtained
in liver of 8 healthy volunteers by means of homogeneous and multi-layered
simulations
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Chapter 7

General conclusions and
future perspectives

7.1 Main contributions

Ultrasound imaging is an indispensable tool in medical diagnostics and offers
several advantages over other imaging techniques. During the last decades,
ultrasound technology achieved significant progress leading to improved image
quality. However, conventional ultrasound envelope-detected images remain
qualitative in nature and lack quantitative information on the tissue state and
pathology. Therefore, there has been an increased interest in developing tech-
niques that would enhance the diagnostic capabilities of ultrasound imaging.
Typically, quantitative ultrasound techniques investigate the spectral proper-
ties of the unprocessed scattered signals recorded by an ultrasound system and
attempt to relate these to tissue structural properties. The main challenge
in the analysis of scattered signals is the complexity of ultrasound-tissue in-
teractions and their interpretation. Moreover, the scattered signals detected
by the system scattered signals are not entirely defined by tissue properties,
but are also influenced by system-dependent factors (such as focusing), that
have to be properly corrected for prior to analysis. Current state-of-the-art
methods for ultrasound tissue characterization focus on one particular type
of ultrasound interaction with tissue and try to estimate the associated pa-
rameters directly from the backscattered signals. The correction for system
dependencies is done by means of a reference measurement assuming constant
propagation speed of ultrasound in tissue. These simplifying assumptions limit
the applicability of the existing techniques in practice. Therefore, there is a
great necessity to develop tools that would allow the controlled analysis of the
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combined effect of various ultrasound-tissue interactions, as well as system-
dependent effects.

Better understanding of the underlying physical mechanisms can be achieved
by modelling ultrasound propagation in tissue, wherein various interactions as
well as their combined effect can be studied in a controlled manner. With the
help of such a model we can attempt to solve the so-called “inverse scattering
problem”, where the acoustic parameters are estimated by comparing experi-
mentally measured backscattered signals with the theoretically modelled ones.
Therefore, in the context of this thesis, an alternative, model-based method-
ology for ultrasound tissue characterization was developed. Application of the
proposed methodology for the reconstruction of tissue attenuation was pre-
sented and thoroughly investigated.

The main contributions of this work can be summarized as follows:

� Investigation of the feasibility of the proposed approach through
its experimental validation and comparison with the conventional meth-
ods. This preliminary study showed the potential of the proposed ap-
proach to provide accurate attenuation estimates in a simplified case of
plane wave propagation. When compared to existing methods, the de-
veloped approach appeared to be less sensitive to measurement noise and
weak scattering variations throughout the medium and substantially out-
performed the reference methods in the experimental study.

� Development of an ultrasound simulation tool enabling modelling
ultrasound wave propagation in a layered medium as well as estimation
of the spectrum of the signal backscattered from the medium. This sim-
ulation tool, based on the angular spectrum approach, allowed extension
of the proposed methodology to a case of 3-D ultrasound wave propaga-
tion. The forward propagation model was in excellent agreement with the
simulation software Field II, when propagation was modelled in a homo-
geneous medium (intrinsic limitation of Field II). Moreover, a theoretical
framework has been presented for the estimation of the spectrum of a
scattered signal detected by the transducer.

� Validation of the extended approach and its ability to produce es-
timates independent of diffraction. This validation was performed
on data generated in Field II and experimentally acquired phantom data,
wherein the proposed approach yielded accurate results for different phan-
tom positions in front of the transducer, i.e. independent of the effects
of diffraction.

� Extension of the angular spectrum approach for a case of a
cylindrically-curved array transducer. The angular spectrum ap-
proach (employed in ultrasound simulations) can be readily applied to
model fields generated by the transducers with planar geometries. How-
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ever, its application to predict fields of transducer with curved apertures
requires additional procedures. Therefore, an algorithm was developed to
compute the angular spectrum of a cylindrically curved array transducer,
as often used in clinics to improve the elevation focusing. The proposed
extension was validated through comparison with Field II and yielded
excellent agreement between the simulators.

� Validation of the proposed approach on linear array data ac-
quired in phantoms and in-vivo. The proposed approach was validated
on synthetic and experimental phantom data, that were acquired using an
array transducer. Furthermore, an improved scattering model was intro-
duced to perform in-vivo validation. Once again, the proposed approach
provided accurate attenuation estimates in phantoms, that were indepen-
dent of the system focal settings. Moreover, the attenuation estimates
obtained in liver in-vivo were in a good agreement with the previously
reported values for healthy subjects.

In conclusion, this work demonstrates the applicability of the proposed model-
based approach in the field of ultrasound tissue characterization and its ability
to provide accurate attenuation estimates in various settings. The conducted
studies demonstrate how by gradually increasing the complexity of the under-
lying model, the proposed method can be adapted for more realistic applica-
tions. Furthermore, the ultrasound simulation tool developed in the scope of
this thesis can be used for other applications than tissue characterization, e.g.
prediction of the pressure fields of ultrasound transducers, while the consid-
ered approach can certainly be extended for the estimation of the parameters
describing other than attenuation acoustic phenomena.

7.2 Future perspectives

The developed algorithm for attenuation estimation has already been tested ex-
tensively at increasing level of complexity of the considered problem. However,
a more thorough in-vivo validation is highly desirable. Namely, it would be
interesting to investigate the ability of the described approach to differentiate
between healthy and diseased liver tissue. For this purpose, the attenuation
estimates could be obtained in patients with liver steatosis or cirrhosis and
compared with the estimates that were already obtained for healthy subjects.
Previous studies showed that these pathologies are associated with increased
tissue attenuation, which also depends on the pathological grade [14]. The ap-
plicability of the proposed approach for early disease diagnosis (i.e. low grade
of the pathology) should also be investigated. Furthermore, characterization
of other soft tissue organs would be of a great interest. The most straightfor-
ward seems the transition to the analysis of solid tissue organs in acoustically
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accessible parts of the body, such as kidney, breast or spleen.

It should be noticed that the accuracy of the proposed method in its current
implementation seems sufficient for the diagnosis of these organs pathologies.
For example in kidney, Turnbull [16] observed increased by 35% attenuation
in patients with renal carcinoma, and an approximately same decrease in the
presence of oncocytoma. In breast, Landini [21] measured an increase in at-
tenuation by a factor of 2 for malignant tumours and an increase by a factor
of 3 in the presence of fibrosis. In liver, an increase of attenuation by ap-
proximately 30% has been observed in patients with liver steatosis [5, 9, 14].
Recalling that the error of total attenuation estimates did not exceed 15% for
the majority of samples in the experimental phantom study, and that the stan-
dard deviation of the estimates obtained in the in-vivo study was about 25%,
we can presume that the proposed method would be capable of detecting these
pathologies. However, when considering more miniature organs (e.g. eye, aorta,
myocardium) a reduction in the size of an estimation block will be required.
Furthermore, consideration of highly heterogeneous and complex organs, such
as myocardium, may be problematic due to violation of the assumptions made
during the derivation of the scattering equation.

In the in-vivo liver study, we could observe an apparent frequency dependence
of the backscatter power spectrum on the effective scatterer radius introduce in
the model (which was expected from the theoretical considerations [89]). There-
fore, we believe that the effective scatterer radius can be estimated simultane-
ously with the attenuation coefficient using the proposed approach in its current
form. Other scattering properties of the tissue such as acoustic concentration
and backscatter coefficient can also be potentially estimated. However, some
modifications of the reconstruction algorithm and specifically, of the similarity
measure, would be required for this purpose. While currently, for simplicity,
a least squares estimation was used in combination with an exhaustive search,
for the simultaneous estimation of several acoustic parameters, an optimization
scheme is preferable. To investigate this point, a small simulation study was
performed that is described in App. C. Finally, tissue pathology is often associ-
ated with increased concentration of fat, which results in more apparent effect
of nonlinearity. Therefore, incorporation of nonlinear effects in the propagation
model and consequent estimation of the nonlinear parameter would certainly
be of a great interest. In the scope of this thesis, linear wave propagation was
considered to avoid the computational burden introduced when modeling of
nonlinear effects. However, the possibility of extending the angular spectrum
approach to model nonlinear wave propagation has been previously discussed
in the literature [79–81] and is therefore conceptually highly feasible.

Speaking of the computation time, it should be noted that the attenuation re-
construction technique, currently implemented in MATLAB (The MathWorks
Inc., Natick, MA), is relatively slow. It takes roughly 1.5 hours to estimate the
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attenuation coefficient of a sample under the conditions described in chapters
4 and 6. Significant reduction in computation time could be achieved by fur-
ther parallelizing the reconstruction algorithm and improving the optimization
method. Moreover, the angular spectrum method is particularly well suited
for computation on a graphic processing unit (GPU) [103]. Reduction in com-
putation time is critical from the point of view of translating the proposed
methodology into commercial systems.

Another important aspect that should be discussed concerns the resolution
of the reconstruction method. The ultimate goal of quantitative ultrasound
methods is to provide the additional quantitative information in a form of
a color-coded parametric image overlaid on the conventional B-mode image.
However, the resolution of quantitative methods is limited by the size of the
spectrum estimation block and the size of the ROI required for obtaining realis-
tic parametric estimates. In the proposed method, a ROI of about 40 mm × 10
mm was used for attenuation reconstruction, wherein the attenuation estimates
obtained in small overlapping blocks of 4 mm × 10 mm were averaged along
the depth of the ROI. In chapter 2, we demonstrated that the reduction of the
lateral ROI size does not significantly hamper the performance of the proposed
method up to a certain limit. However, the reduction of the axial ROI size
remains challenging, since the majority of the acoustic effects are cumulative
in nature and therefore, become more apparent after a certain propagation
path.

Finally, throughout this thesis reference acoustic characteristics of various me-
dia were taken from literature when modelling propagation in heterogeneous
(layered) media. However, some of these parameters could potentially be de-
duced from analysis of the RF signals. Specifically, the thickness of different
tissue layers could be determined from strong reflections in RF signals assum-
ing a certain speed of sound in those tissues or vice versa. The attenuation
coefficient could be estimated in every tissue layer, unless the necessary for
the estimation block size exceeds the layer thickness. However, the scattering
properties cannot be altered throughout the layers, which can be considered a
limitation of the proposed approach.
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Appendix A

Plane - wave propagation

For a plane wave travelling in the z-direction, the particle velocity and pressure
are related by a simple expression:

p(z, ω) = cρv(z, ω), (A.1)

and the normal velocity to pressure conversion reduces to a multiplication with
a constant factor. Moreover, since the plane wave propagates in the direction
z, kz reduces to k, and the transmit and receive transfer functions in Eq. 4.4
of the chapter 4 can be rewritten as:

HTx/Rx(z, ω) = ATx/Rx(ω)Hp→p
Prop(z, ω)Hp→p

Att (z, ω), (A.2)

where the propagation and attenuation sub-functions are defined as:

Hp→p
Prop(z, ω) = ejzk, (A.3)

Hp→p
Att (z, ω) = e

−αωz/2π, (A.4)

and the pressure transmission coefficient at the interface between the layers
takes the following form:

T p→pi|i+1 =
2Zi+1

Zi + Zi+1
. (A.5)

The rest of the procedure for the estimation of the spectrum of the received
signal remains unchanged.
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Appendix B

Reflector - based
transducer calibration

The input spectrum STx,Rx(ω) specified in Eq. 4.3 of the chapter 4 can be
experimentally determined through a single measurement procedure. For this
purpose, reflections of the transmitted signal from a planar reflector, submerged
in water and positioned perpendicularly to the transducer beam axis have to
be recorded. In such a setup, the spectrum of the reflected signal detected by
the transducer can be expressed as:

SRx(z, ω) = jωρSTx,Rx

∫∫
T

hTx,Rx(x, y, z : ω)dxdy, (B.1)

where the integration can equally be performed in the spatial-frequency domain
(using the Parseval equality):

SRx(z, ω) = jωρSTx,Rx

∫∫
HTx,Rx(kx, ky, z : ω)dkxdky, (B.2)

Here, HTx,Rx is the transfer function which models the forward and backward
wave propagation in water between the transducer and the reflector and which
accounts for the effects of diffraction, attenuation, reflection as well as for the
transducer geometry and focusing factors:

HTx,Rx(kx, ky, z : ω) = ATx(kx, ky : ω)Hvn→ϕ
Diffr(kx, ky, 2z : ω)×

×Hp→p
Att (kx, ky, 2z : ω)Rp→pw|r (kx, ky : ω)ARx(kx, ky : ω),

(B.3)

113



In Eq. B.3, Rp→pw|r is the reflection coefficient for the pressure at normal inci-

dence on the interface “water-reflector”, which is given by::

Rp→pw|r = T p→pw|r − 1 =
Zr − Zw
Zr + Zw

. (B.4)

The reflection measurements for the present study were performed in distilled
water at 22 °C using the same electrical excitation as in the phantom exper-
iments. A 10 mm thick acrylic glass (PMMA) plate was used as a reflector.
The water tank used in this experiment had a number of slots for accurate po-
sitioning of the reflecting plate at different depths from the transducer, equally
spaced at 20 mm. In this way, 15 reflections from different depths were recorded
and the signals were primarily used to estimate the speed of sound in water
by fitting the arrival times of the reflections recorded at different depths. The
estimated speed of sound was cw = 1485m/s Other acoustic characteristics
of distilled water and of the PMMA plastic required for the simulations were
taken from the literature: ρw = 1000kg/m3, αw = 0.0022dB/(cm ·MHz), cr =
2750m/s, ρr = 1192kg/m3.

Next, the transfer function in Eq. B.2 was calculated at every measurement
depth. Finally, the amplitude and phase of the input spectrum were determined
using a least squares fitting of the simulated received spectrum to the measured
one in time-domain.

114



Appendix C

Simultaneous estimation of
the speed of sound and
attenuation coefficient

A short simulation study was performed with Field II to study the feasibility
of the simultaneous determination of several acoustic parameters with the pro-
posed method. For this purpose, three simulated data sets described in chapter
6 were used. These data sets were generated in Field II for three different at-
tenuation coefficients (0.3, 0.5 and 0.7 dB/cm/MHz) using an array transducer
model with the characteristics listed in Table 6.1. The speed of sound in the
medium was set to 1540 m/s, the focal position was set at the depth of 50 mm
in front of the transducer. Each data set contained 50 RF lines, and the power
spectra of the signals were determined according to Eq. 6.6.

The procedure for the attenuation coefficient estimation remained the same as
outlined in chapter 6. However, now the input speed of sound in the simulations
was varied together with the input attenuation coefficient, and the exhaustive
search was performed over two variables. As previously, the input attenuation
coefficient was varied in the interval [0 : 0.5 : 2] dB/cm/MHz, while the interval
for the speed of sound variation was defined as [1450:10:1650] m/s. The power
spectrum in the simulations was determined using Eq. 6.1 with F (ω) = 1 under
the assumption of Rayleigh scattering. Both the attenuation coefficient and the
speed of sound were estimated by comparing the simulated power spectra with
those obtained for the generated data sets using the distance measure given
by:
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(a) (b)

Figure C.1: Total and averaged local estimates of the attenuation coefficient (a)
and the speed of sound (b) which were obtained simultaneously in the simulation
study based on three data sets with attenuation coefficients equal to 0.3, 0.5 and
0.7 dB/cm/MHz acquired in the focal zone of the transducer.

D(z, [α, c]) =
∑
ω

(√
Pmeas(z, ω)−

√
Psim(z, ω; [α, c])

)2

, (C.1)

whereupon the total estimates of the acoustic parameters were determined
as:

[ᾱ, c̄] = arg min
α,c

( L∑
i=2

D(zi, [α, c])
)
, (C.2)

where L was equal 39, while the local estimates of both parameters were ob-
tained using a modified expression:

[α(z), c(z)] = arg min
α,c

(
D(z, [α, c]

)
. (C.3)

Fig. C.1 presents the estimated total and averaged local values of the atten-
uation coefficient (a) and sound speed (b). It can be seen, that while the
sound speed estimation failed, the estimates of the attenuation coefficient are
in excellent agreement with the “ground-truth” values. In Fig. C.2 we can
appreciate the uniformity of local attenuation estimates with depth. Finally,
Fig. C.3 presents the 2-D maps of the spectral distance D(z, [α, c]) for varying
attenuation and sound speed values. It can be noticed that the optimization
process was driven by the attenuation coefficient, while the speed of sound did
not have considerable impact on the distance function. Indeed, the considered
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C. Simultaneous estimation of the speed of sound and attenuation coefficient

Figure C.2: Local attenuation results in the simulation study when the speed
of sound was varied. The estimates were obtained at different depths for three
data sets with attenuation coefficients equal to 0.3, 0.5 and 0.7 dB/cm/MHz
generated in focal zone of the transducer.

variations in the speed of sound do not cause apparent changes in the spectral
shape. This conclusion suggests that the accuracy of the attenuation estima-
tion algorithm would not be strongly affected by some small deviations of the
input speed of sound in the simulations from its true value. However, in the
future, it would be interesting to investigate the feasibility of estimating the
attenuation coefficient in a combination with other acoustic parameters, which
we expect to have more effect on the spectral shape (e.g. scatterer size). Since
Field II is limited to a point scatterer model, other simulation tools or proper
test objects would be required for such analysis.
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Figure C.3: Maps of spectral distance values computed in the simulation study
for three data sets with attenuation coefficients equal to 0.3, 0.5 and 0.7
dB/cm/MHz generated in the focal zone of the transducer. The maps were
computed by simultaneously varying the input attenuation coefficient and the
speed of sound values in the simulation.
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