
Global Analysis of Constraint Logic Programs

M. GARCIA DE LA BANDA and M. HERMENEGILDO

Universidad Polit�ecnica de Madrid

and

M. BRUYNOOGHE, V. DUMORTIER, G. JANSSENS, and W. SIMOENS

Katholieke Universiteit Leuven

This article presents and illustrates a practical approach to the data
ow analysis of constraint logic

programming languages using abstract interpretation. It is �rst argued that, from the framework

point of view, it su�ces to propose relatively simple extensions of traditional analysis methods

which have already been proved useful and practical and for which e�cient �xpoint algorithms

exist. This is shown by proposing a simple extension of Bruynooghe's traditional framework which

allows it to analyze constraint logic programs. Then, and using this generalized framework, two

abstract domains and their required abstract functions are presented: the �rst abstract domain

approximates de�niteness information and the second one freeness. Finally, an approach for com-

bining those domains is proposed. The two domains and their combination have been implemented

and used in the analysis of CLP(<) and Prolog-III applications. Results from this implementation

showing its performance and accuracy are also presented.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;

D.1.m [Programming Techniques]: Miscellaneous|constraint logic programming; D.3.2 [Pro-

gramming Languages]: Language Classi�cations|nonprocedural languages; D.3.4 [Program-

ming Languages]: Processors|compilers; F.3.1 [Logics and Meaning of Programs]: Spec-

ifying, Verifying and Reasoning about Programs

General Terms: Languages

Additional Key Words and Phrases: Abstract interpretation, constraint logic programming, global

program analysis, program analysis

1. INTRODUCTION

The constraint logic programming (CLP) paradigm [Ja�ar and Lassez 1987] is a

relatively recent proposal which has emerged as the natural combination of the

constraint solving and logic programming paradigms. This combination enhances

This research has been funded in part by the CEC through ESPRIT project 5246 PRINCE, by

the Belgium National Fund for Scienti�c Research, by CICYT project TIC91-0106-CE, and by

HCM project CHRX-CT94-0624 (ABILE).

Authors' addresses: M. Garc��a de la Banda and M. Hermenegildo, Universidad Polit�ecnica de

Madrid, Facultad de Inform�atica, 28660-Boadilla del Monte, Madrid, Spain; email: fmaria;

hermeg@�.upm.es; M. Bruynooghe, V. Dumortier, G. Janssens, and W. Simoens, Katholieke Uni-

versiteit Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Heverlee, Belgium;

email: fmaurice; veroniek; gerda; wimsg@cs.kuleuven.ac.be.

Permission to make digital/hard copy of all or part of this material without fee is granted

provided that the copies are not made or distributed for pro�t or commercial advantage, the

ACM copyright/server notice, the title of the publication, and its date appear, and notice is given

that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy

otherwise, to republish, to post on servers, or to redistribute to lists requires prior speci�c

permission and/or a fee.

c

 1996 ACM 0164-0925/96/0900-0564 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996, Pages 564{614

Global Analysis of Constraint Logic Programs � 565

the
exibility and expressiveness of conventional logic languages. In this context,

traditional logic programming (LP) can be seen as an instance of CLP in which

constraints are equations over terms and in which the constraint solving is done by

the well-known uni�cation algorithm.

One of the main advantages of CLP languages is that they allow the program-

mer to specify the problem in a short, simple, and declarative way by means of

high-level constraints, leaving the details of how these constraints are to be solved

to the underlying constraint solver. When the execution of the program requires

the full capabilities of the solver, the resulting e�ciency is often quite good, in the

sense that it would only be achievable in another language after an extensive and

tedious programming e�ort. However, in the cases in which a simpler solver would

su�ce, the expressive power is paid in terms of e�ciency. As it has recently been

shown, e�ciency can be recovered by performing several compile-time optimiza-

tions, mainly aimed at automatically specializing the program in order to reduce as

much as possible the use of the general solver [Dumortier 1994; Garc��a de la Banda

1994; Ja�ar and Maher 1994; Ja�ar et al. 1992; J�rgensen et al. 1991; Marriott and

Stuckey 1993; Marriott et al. 1994]. The signi�cant speedups promised by these

optimizations, and the fact that they need quite accurate compile-time information

regarding the characteristics of the program, have motivated a growing interest in

data
ow analysis of CLP languages and, in particular, in the application of abstract

interpretation [Cousot and Cousot 1977].

Much work has been done using the abstract interpretation technique in the

context of LP (e.g., Mellish [1986], Debray [1989], Bruynooghe [1991], Marriott

and S�ndergaard [1989], and Debray [1992b]). A number of systems have been

built, some of which have shown the potential usefulness and practicality of this

technique [Bueno et al. 1994; Debray 1992b; Le Charlier and Van Hentenryck 1994;

Muthukumar and Hermenegildo 1992; Van Roy and Despain 1992; Warren et al.

1988]. Thus, it is natural to expect that this technique should also be useful in

the context of CLP. A few general frameworks have already been de�ned for this

purpose [Bruynooghe and Janssens 1992; Codognet and Fil�e 1992; Giacobazzi et al.

1993; Marriott and S�ndergaard 1990]. However, one common characteristic of

these frameworks is that they are either not implementation oriented or depart from

the approaches that have been so far quite successful in the analysis of traditional

logic programming (LP) languages.

This article shows how some of the LP-based techniques already developed and

implemented can relatively easily be extended to the analysis of CLP programs.

This point is illustrated by proposing a simple but quite powerful extension of

Bruynooghe's traditional framework in order to make it applicable to the analysis

of CLP programs. We also extend the framework to deal with passive constraints.

Finally, we give correctness conditions for the resulting framework. The generalized

description represents a fully speci�ed algorithm for analysis of CLP programs.

Then, and using this generalized framework, two abstract domains and their re-

quired abstract functions are described. The abstract domain Cons

D

determines

whether program variables are de�nite, i.e., constrained to a unique value. The ab-

stract domain Cons

F

m

determines whether program variables are free, i.e., whether

they can still take any possible value (at least according to their type, e.g., a vari-

able that is constrained to be numerical but still ranges over the complete domain of

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

566 � M. Garc��a de la Banda et al.

numbers is considered as free). Finally, an approach for combining those domains

is proposed. The idea is to use the de�niteness information provided by Cons

D

to obtain a more compact and e�cient freeness abstraction while maintaining the

precision of the original freeness abstraction. This combination leads to a full mode

inference system which is, to the authors' knowledge, the �rst full mode system

proposed for CLP.

The two abstract domains and their combination have been implemented within

the abstract interpretation system PLAI [Muthukumar and Hermenegildo 1990;

1992]. This system is based on the framework of Bruynooghe [1991], optimized

with the specialized domain-independent �xpoint de�ned in Muthukumar and Her-

menegildo [1992] and generalized to support analysis of practical CLP languages,

following the guidelines presented in this article. Results from this implementation

showing its performance and accuracy are also presented.

Parts of the work in this article have already been presented previously. The

generalization of abstract interpretation of LP toward CLP has been discussed in

Garc��a de la Banda and Hermenegildo [1993] and Bruynooghe and Boulanger [1994].

A description of the de�niteness analysis can be found in Garc��a de la Banda and

Hermenegildo [1993] and Garc��a de la Banda [1994]. The freeness analysis and

its optimizations have been described in Dumortier et al. [1993], Dumortier and

Janssens [1994], and Dumortier [1994]. Dumortier and Janssens [1994] also explain

how de�niteness information can be exploited in order to improve the freeness

abstraction.

2. BACKGROUND AND NOTATION

In this section we present some basic concepts of constraint logic programming and

abstract interpretation, as well as the notation which will be used throughout the

article. In doing this, we will follow mainly Ja�ar and Lassez [1987], Ja�ar and

Maher [1994], and Cousot and Cousot [1977].

2.1 Constraint Domains and Programs

First we introduce some notational conventions. Uppercase letters generally denote

collections of objects, while lowercase letters generally denote individual objects.

u; v ;w ; x ; y ; z will denote variables; t will denote a term; p; q will denote predicate

symbols; f will denote a function symbol; a; h will denote atoms; c will denote

a constraint; � will denote the empty constraint; b; g will denote an atom or a

constraint; � will denote a rule; P ;Q will denote programs; and B ;G will denote

goals, i.e., sequences of atoms and constraints. These symbols may be subscripted.

~x denotes a sequence of distinct variables and, by abuse of notation, also the cor-

responding set of variables. vars(o) denotes the set of variables occurring in the

syntactic object o. Finally, 9

�~x

� denotes the existential closure of the formula �

except for the variables ~x , and

~

9� denotes the full existential closure of the formula

�.

As an example of a simple CLP program, consider the following, adapted from

Ja�ar and Maher [1994]: sumto(x ; y) expresses that y is the sum of the �rst x

natural numbers.

sumto(0; 0):

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 567

sumto(x ; y) :- 1 � x ; x � y ; x

0

= x � 1; y

0

= y � x ; sumto(x

0

; y

0

):

This simple program can be used to compute y from x (e.g., sumto(3; y) returns

y = 6 and then terminates), compute the x from y (e.g., sumto(x ; 15) returns

x = 5 and then terminates), test whether a given x and y satisfy the relationship

(e.g., sumto(5; 15) succeeds and terminates and sumto(3; 15) fails), or to answer

more complex queries like ?- y � 3; sumto(x ; y) which gives rise to three answers

(x = 0; y = 0), (x = 1; y = 1), and (x = 2; y = 3) and then terminates. A

direct translation of the above program into Prolog would require transforming

each arithmetic equality into the is/2 Prolog builtin:

sumto(x ; y) :- 1 � x ; x � y ; x

0

is x � 1; y is y

0

+ x ; sumto(x

0

; y

0

):

However, since the Prolog arithmetic builtins is=2 and � =2 require their second

and both arguments, respectively, to be bound to a numerical value at run-time,

the Prolog program would only execute queries in which both input arguments are

constrained to a unique numerical value, such as ?- sumto(2; 3) and ?- sumto(2; 5).

Carefully rewriting the second rule as

sumto(x ; y) :- 1 � x ; x

0

is x � 1; sumto(x

0

; y

0

); y is y

0

+ x ; x � y :

will also allow executing queries in which the second input argument is an uncon-

strained variable, such as ?- sumto(3; y). While less general than the CLP program,

this Prolog program will execute quite fast, because it is performing only simple

arithmetic operations. Note also that rewriting the second rule as

sumto(x ; y) :- sumto(x

0

; y

0

); x is x

0

+ 1; y is y

0

+ x ; 1 � x ; x � y .

the query ?- sumto(3; y) will produce the answer y = 6 but then go into an in�-

nite loop. The same happens, after producing the three answers, for the query ?-

sumto(x ; y); y � 3. In summary, although the functionality of the simple and ele-

gant CLP program can only be obtained in Prolog by a more complex case-by-case

program, the resulting Prolog program would probably execute faster than its CLP

counterpart.

The example illustrates the expressiveness of CLP programming but also the

challenge for the implementors. Ideally, it would be desirable for CLP systems to

be strict generalizations of LP systems, not only from a functional point of view,

but also from a performance point of view, i.e., in our example the general CLP

program should o�er a performance comparable with that of Prolog for queries such

as ?- sumto(3; y). To achieve this, some form of program analysis and creation of

code dedicated to queries in this class looks unavoidable. Furthermore, one would

also like the program to perform as well as possible even when actual constraint

solving is being performed by the program. As mentioned in the introduction, it has

been shown that such optimizations often require information from global analysis.

In the example, we have a constraint domain that is based on the constants 0,

1, the function +, and the predicates =; <;� (3 is syntactic sugar for 1 + 1 + 1;

x

0

= x � 1 is syntactic sugar for x = x

0

+ 1). In general, constants, functions,

and predicates make up the signature � underlying the constraint domain. The

so-called �-structure D consists of a domain, e.g., the domain of the real numbers,

and an interpretation of constants, functions, and predicates over this domain,

e.g., the standard arithmetic of the reals. A primitive constraint such as 1 � x

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

568 � M. Garc��a de la Banda et al.

is built from a predicate in � and terms built from constants and functions in �

and from variables. Using logical connectives and quanti�ers, primitive constraints

can be combined into expressions of a language L, called constraints. The pair

(D;L) de�nes the constraint domain. The interested reader should consult Ja�ar

and Maher [1994] for a more formal and more detailed account, as well as for the

assumptions that are usually made about (D;L).

As in the example above, a CLP program is a collection of rules of the form

h :- B , where h (the head) is an atom built from a predicate (not in �), and B (the

body) is a sequence b

1

; : : : ; b

n

of atoms (not in �) and constraints. A goal G is also

any sequence of atoms and constraints.

In Ja�ar and Maher [1994] four relevant operations on constraints are mentioned,

the �rst one being almost obligatory in any implementation of a CLP language:

(1) Consistency or satis�ability of a constraint c: D j=

~

9c.

(2) Implication or entailment of a constraint c

1

by another constraint c

0

: D j=

c

0

! c

1

.

(3) Projection of a constraint c onto variables ~x : D j= 9

�~x

c.

(4) Detection that, given a constraint c, there is only one value that a variable x

can take that is consistent with c: D j= c(x

1

; ~y) ^ c(x

2

; ~y) ! x

1

= x

2

. We say

that x is de�nite in c and denote by def (c) the set of de�nite variables in c.

2.2 CLP Operational Semantics

In Ja�ar and Maher [1994], the interested reader can �nd a very general operational

semantics which takes passive constraints into account, separates the generation of

new constraints from the consistency check of the constraints accumulated in the

constraint store, and is not tailored to any particular computation rule.

The work reported here concerns the analysis of programs under the widely used

left-to-right computation rule (as in Prolog). In the �rst part of this article, we

focus on programs without passive (i.e., delayed) constraints. The treatment of

passive constraints is deferred to Section 5.3. Another assumption is that the

considered systems are quick-checking [Ja�ar and Maher 1994], i.e., the addition

of new constraints is immediately followed by a consistency check of the constraint

store.

Under these simpli�cations, the state of the computation can be described by a

pair hG ; ci, where G is the sequence of constraints and atoms yet to be executed,

and c is the constraint store containing the constraints accumulated so far. The

operational behavior of a program can be described by a set of sequences of states

(SLD sequences), each sequence starting with hG ; truei where G is the query.

Such SLD sequences are manipulated by transitions whose behavior | given the

left-to-right computation rule | is determined by the leftmost element in the goal

of the last state in the sequence. Formally, an incomplete SLD sequence ending in a

consistent state can be extended by the following transitions which are formulated

as rewrite rules (S represents an SLD sequence, and :: is used to concatenate SLD

sequences):

|S :: hc

0

;G ; ci

c

! S :: hc

0

;G ; ci :: hG ; c

0

^ ci if consistent(c

0

^ c) or

c

! S :: hc

0

;G ; ci :: hG ; falsei if inconsistent(c

0

^ c)

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 569

|S :: ha;G ; ci rewrites to a set of sequences, one for each rule of the program

de�ning the predicate symbol of a. Let � : h:-b

1

; : : : ; b

n

be such a (properly

renamed) rule, then

r

! S :: ha;G ; ci

�

:: hb

1

; : : : ; b

n

;G ; a = h ^ ci if consistent(a = h ^ c)

1

or

r

! S :: ha;G ; ci

�

:: hb

1

; : : : ; b

n

;G ; falsei if inconsistent(a = h ^ c)

Note that an SLD sequence is very similar to a partial SLD derivation in Lloyd

[1987]. In particular, an SLD sequence represents a complete derivation if its last

state

|contains a goal whose leftmost atom has a predicate symbol for which the program

has no rules (a failed SLD derivation);

|has false in its constraint store (also a failed SLD derivation, but this case is

distinguished from the previous one because some analyses can be interested in

the question of at which points an inconsistent store can be introduced; such

analyses will use abstractions that can distinguish an inconsistent store from

consistent ones);

|contains an empty goal (a successful SLD derivation); the constraint store then

provides the answer.

2

Ignoring the search rule (see Le Charlier et al. [1994] for a framework taking the

search rule into account), the operational semantics is given by the �xpoint of the

operator which applies the above transitions on incomplete SLD sequences, starting

from the initial sequence hG ; truei. (Alternatively, the set of all complete sequences

can be collected in an SLD tree as in Lloyd [1987]). The �xpoint of the operator

| a set of complete SLD sequences | represents the operational semantics as it

describes in su�cient detail the behavior of the program for the analyses considered

in this article. If desired, sequences could be instrumented with more detail (e.g.,

Mulkers et al. [1994]).

2.3 Abstract Interpretation

The most familiar framework for abstract interpretation is de�ned in terms of Galois

connections and Galois insertions [Cousot and Cousot 1977; 1992a].

De�nition 2.3.1 (Galois Connection). AGalois connection is a quadruple (Dom

C

,

�, Dom

A

,
) where:

(1) (Dom

C

;�

C

) and (Dom

A

;�

A

) are posets called concrete and abstract domains

respectively;

(2) � : Dom

C

! Dom

A

and
 : Dom

A

! Dom

C

are functions called abstraction

and concretization functions respectively, satisfying that for every d

A

2 Dom

A

and d

C

2 Dom

C

, �(d

C

) �

A

d

A

i� d

C

�

C

(d

A

).

De�nition 2.3.2 (Galois Insertion). A Galois insertion is a Galois connection

satisfying �(
(d

A

)) = d

A

.

1

The label � on :: identi�es the renamed rule used in solving a. The expression a = h is an

abbreviation for the conjunction of the corresponding primitive equations.

2

The answer can be conditional in case one allows passive constraints, as then the store may be

inconsistent.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

570 � M. Garc��a de la Banda et al.

The Galois connection corresponds to a perfect situation where each concrete

property has a unique best abstract approximation. Thus, only one of f�;
g needs

to be speci�ed, since if one exists the other is determined by the properties of the

de�nition. In addition a Galois insertion has no super
uous elements in the abstract

domain. The following speci�es the notion of approximation (in terms of
) which

is then extended from the primitive domains to function domains:

De�nition 2.3.3 (Approximation). Let (Dom

C

; �;Dom

A

;
) be a Galois inser-

tion, and let �

C

: Dom

C

! Dom

C

and �

A

: Dom

A

! Dom

A

be monotonic func-

tions. We say that d

A

2 Dom

A

-approximates d

C

2 Dom

C

, denoted d

A

/

d

C

, if

d

C

�

C

(d

A

). We say that �

A

-approximates �

C

, denoted �

A

/

�

C

, if for every

d

A

2 Dom

A

; d

C

2 Dom

C

such that d

A

/

d

C

then �

A

(d

A

) /

�

C

(d

C

).

As illustrated in Section 2.2, the information of interest about a program | in

our case the operational semantics | can often be expressed as the least �xpoint

of a function. Formally one writes [[P]] = lfp(�

C

) where �

C

: Dom

C

! Dom

C

is a monotonic operator on the concrete domain Dom

C

and where [[P]] expresses

the meaning of the program. Such a formalization provides the foundation for an

abstract interpretation of the program. By introducing an appropriate Galois inser-

tion (Dom

C

; �;Dom

A

;
) and de�ning a monotonic function �

A

: Dom

A

! Dom

A

,

which approximates �

C

and whose �xpoint can be computed or approximated by a

�nite computation, one can obtain information about the least �xpoint of �

C

. This

is expressed by the following result [Cousot and Cousot 1992a]:

Theorem 2.3.4. Let (Dom

C

; �;Dom

A

;
) be a Galois insertion, and let �

C

:

Dom

C

! Dom

C

and �

A

: Dom

A

! Dom

A

be monotonic functions such that �

A

/

�

C

. Then lfp(�

A

) /

lfp(�

C

).

The construction of �

A

often takes a systematic approach which involves replac-

ing the basic operations in the concrete semantics operator �

C

by the corresponding

abstract operations in �

A

(e.g., Cousot and Cousot [1992a] and Nielson [1988]).

Given that the basic abstract operations approximate their concrete counterparts,

it is generally straightforward to prove that �

A

approximates �

C

.

3. TOWARD A CLP ANALYSIS FRAMEWORK

There has been considerable interest in developing new abstract interpretation

frameworks for CLP languages. To these authors' knowledge, at least four frame-

works have been proposed previously or simultaneously with our work.

3

Marriott

and Sondergaard [1990] present a general and elegant semantics-based framework.

It is based on a de�nition-independent metalanguage which can express the se-

mantics of a wide variety of programming languages, including CLP languages.

However, from a practical point of view, this framework does not provide much

simpli�cation to the developer of the abstract interpretation system, in the sense

that many issues are left open.

In fact, one of the advantages of the most popular methods used in the analysis

of conventional LP systems (for example, Bruynooghe's method [Bruynooghe 1991]

3

The ideas illustrated in this article were �rst presented at the ICLP'91 Workshop on Constraint

Logic Programming.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 571

and the optimizations proposed for it [Muthukumar and Hermenegildo 1992]) is that

they are \generic," in the sense that they specify much of what is needed leaving

only the de�nition of the domain, domain-dependent functions, and assurance of

correctness criteria to be provided by the implementor. It is our intention to develop

a framework for CLP program analysis at this level of speci�cation.

Codognet and Fil�e [1992] also present a quite general framework, for the de-

scription of both CLP languages and their static analyses, and an implementation

approach. Although more concrete, their proposal is still more abstract than the

level pointed out above as our objective. On the other hand they introduce the

quite interesting idea of implementing the abstract functions actually using con-

straint solvers, to which we will return later.

Giacobazzi et al. [1993] formulate a general algebraic framework for constraint

logic programming. They formulate the operational and �xpoint semantics within

this framework and show that abstract interpretation is simply another instance of

the general framework which safely approximates the instance given by the concrete

constraint system. Also, their work is in fairly general terms and does not o�er much

to the application developer.

Finally, Bruynooghe and Janssens [1992] present a specialized framework (which

was developed in parallel with the proposal presented in this article) which is based

on the idea of adding complexity to the framework with the potential bene�t of

decreased complexity in the abstract domain. This is done by incorporating a local

form of \suspension" so that some goals can be reconsidered if later execution in

a di�erent environment can provide further information. This extension is based

on a particular view of the execution of a CLP program in which constraints are

considered as goals which can suspend depending on the state of their arguments

and on the particular constraint system.

The view of constraints as suspended goals could be interesting and worth pursu-

ing. However, this makes it more di�cult to make the framework fully general. We

prefer to take the more traditional notion presented in the CLP scheme (as intro-

duced in the previous sections) in which constraints take the place of substitutions

and in which goals always either succeed or fail, in the former case possibly placing

new constraints.

4

One of the main points of this article is to show that standard abstract interpre-

tation frameworks for logic programs are useful for the analysis of constraint logic

programs, provided the parts that relate to the abstraction of the Herbrand domain

and uni�cation functions are suitably generalized. Indeed, in this traditional view

of CLP the role of goals and their control are basically identical to those in tradi-

tional LP systems, the di�erences being essentially limited to replacing the notions

of Herbrand domain, uni�cation, and substitutions by those of constraint system,

conjunction, and constraints.

4

In fact, actual suspension, as is often used in the solving of nonlinear arithmetic constraints or in

programs with explicit coroutining, can also be modeled in this way. However, we propose treating

actual suspension directly using techniques such as those proposed for analyzing programs with

delay declarations [Hanus 1993; Marriott et al. 1994]. This issue is discussed further in Section

5.3.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

572 � M. Garc��a de la Banda et al.

In particular, we argue that the traditional framework of Bruynooghe and its

extensions can be used for analyzing constraint logic programs by using the notions

of abstract constraint and abstract conjunction and reformulating the safety condi-

tions, but keeping the construction of the AND-OR graph, the implementation and

optimizations of the �xpoint algorithm, the notions of projection and extension,

etc. This has the advantage that the implementations based on this scheme or

derivations thereof can be applied to CLP systems provided the safety conditions

and other related requirements proposed herein are observed.

4. MODIFYING THE CLP OPERATIONAL SEMANTICS

The states appearing in the �xpoint of the concrete operational semantics are of the

form hg ;G ; ci where c is a constraint store over an unbounded number of variables.

A basic insight underlying the framework of Bruynooghe [1991] is that, when opti-

mizing a particular predicate, most optimizations only need information about the

variables in the clauses de�ning such predicate. Therefore, when analyzing g , the

analysis is not interested in the properties of all program variables but only of the

variables of the clause g belongs to. This information is collected by a slightly dif-

ferent operational semantics which is called LSLD (Local SLD) in Bruynooghe and

Boulanger [1994]. In our constraint setting, we can rephrase LSLD as an operator

on LSLD sequences as follows:

|The c-transition on S :: hc

0

;G ; ci is as before.

|The r -transition on S :: ha;G ; ci for consistent(a = h ^ c) becomes:

S :: ha;G ; ci

r

! S :: ha;G ; ci

�

:: hb

1

; : : : ; b

n

; 9

�vars(�)

(a = h ^ c)i, where � : h:-

b

1

; : : : ; b

n

.

The r -transition for inconsistent(a = h ^ c) is unmodi�ed. Because the r -

transition computes a constraint store over the variables of �, it is called the

entry transition in the future.

|In addition, an exit transition is introduced for states where the goal is the empty

left-over of the body of a (uniquely renamed) rule � : h:-b

1

; : : : ; b

n

(denoted 2

�

).

Note that the transition is not only based on the last state in the sequence, but

also on the state prior to the application of the entry transition using � (marked

by

�

::):

S

1

:: ha;G ; ci

�

:: hb

1

; : : : ; b

n

; c

in

i :: S

2

:: h2

�

; c

out

i

exit

!

S

1

:: ha;G ; ci

�

:: hb

1

; : : : ; b

n

; c

in

i :: S

2

:: h2

�

; c

out

i :: hG ; 9

�vars(�

0

)

(c ^ a = h ^

c

out

)i.

�

0

is the rule containing a;G as tail of its body. Note that, due to the renaming,

there is a unique state ha;G ; ci to which an entry transition using � was applied.

Note also that there exists a constraint c

new

such that c

out

= c

in

^ c

new

.

As before, the initial sequence is hG ; truei, with G being the query, and the

operational semantics is given by the �xpoint of the operator applying transi-

tions on incomplete sequences. Though the exit transitions introduce extra states

h2

�

; c

out

i in LSLD sequences, there is a strong equivalence between SLD sequences

and LSLD sequences using the same renamed rules in the same order: for every

state hb

1

; : : : ; b

n

;G ; ci in an SLD sequence with b

1

; : : : ; b

n

the tail of some renamed

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 573

rule �, there is a state hb

1

; : : : ; b

n

; 9

�vars(�)

ci in the corresponding LSLD sequence.

This can be proved by induction. Consequently, the �xpoint of the LSLD operator

carries the same amount of relevant information (i.e., what are the properties of

vars(b

i

) of a state hb

i

; : : : ; ci) as the �xpoint of the original SLD operator.

An SLD sequence can be represented by an AND tree (a proof tree, to be distin-

guished from an SLD tree which is a search tree). The children of the root are the

atoms and constraints of the query. An atom a is paired with the head of the rule

� : h:-b

1

; : : : ; b

n

that is used by the entry transition on a (the sequence contains

ha; : : : ; : : :i

�

:: hb

1

; : : : ; b

n

; c

1

i). The constraint store adorns the tree as shown in

the fragment of Figure 1; c

i

is the constraint store of the state hb

i

; : : : ; b

n

; c

i

i. It

contains the information about the variables of b

i

at the point where b

i

is to be

processed. As described in Bruynooghe [1991], the set of all AND trees, which rep-

resents the operational semantics of the program, can be collected in an AND-OR

tree where nodes are adorned with sets of constraint stores (this gives the collecting

semantics). Using a tabulation technique, repeated computations can be avoided:

there is no point in collecting states which are renamings of each other; therefore,

states are tabled with hb

1

; : : : ; b

n

; c

1

i as key and the corresponding h2

�

; c

out

i as

answer. A sequence ending in a tabled state is extended with an exit operation

which uses the tabled answer, thus avoiding the construction of a renaming of an

already existing subsequence. The LSLD semantics is thus transformed into the

LSLDT semantics [Bruynooghe and Boulanger 1994].

Tabulation allows abstracting the AND-OR tree, representing the concrete col-

lecting semantics, by an AND-OR graph. In practice, however, abstract inter-

pretation systems such as PLAI [Muthukumar and Hermenegildo 1990; 1992] and

GAIA [Englebert et al. 1992; Le Charlier and Van Hentenryck 1994; Le Charlier

et al. 1991] are based on a variant of the above tabulation technique, where the

stored key is not hb

1

; : : : ; b

n

; c

1

i. Instead, with ha;G ; ci as the preceding state,

ha; 9

�vars(a)

ci is stored as key and 9

�vars(a)

(a = h ^ c

out

) as answer for an atom

a if h2

�

; c

out

i has occurred when resolving a with �. If a state ha

0

;G

0

; c

0

i is met

such that ha

0

; 9

�vars(a

0

)

c

0

i is a renaming of ha; 9

�vars(a)

ci, then no entry transi-

tion with a renaming of � is performed. Instead, the sequence is extended with a

state hG

0

; 9

�vars(�

0

0

)

(c

0

^ a

0

= a ^ 9

�vars(a)

(a = h ^ c

out

))i for each tabled answer

9

�vars(a)

(a = h ^ c

out

)) (table lookup transition), where �

0

0

is the rule with a

0

;G

0

as tail of its body, and a

0

= a performs renaming. The advantage of this tabula-

tion variant is to avoid an entry transition. However, some table lookups can be

missed because di�erent states ha; : : : ; ci can give rise to hb

1

; : : : ; b

n

; c

in

i that are

renamings of each other (and extra work will be done: a lookup transition for every

atom b

i

and a c-transition for every constraint b

i

). With so-called seminormalized

programs where calls have the form p(x

1

; : : : ; x

n

) (all x

i

di�erent), the disadvantage

disappears. With the heads also of the form p(x

1

; : : : ; x

n

) (normalized programs),

9

�vars(�)

(a = h ^ c) and 9

�vars(�

0

)

(a = h ^ c

out

), where h:-: : : is used to resolve a,

reduce to simple renaming operations. The price for (semi-)normalization is that

there are more constraints in rule bodies and, more importantly, more variables.

The latter can have a signi�cant e�ect in applications where the size of an element

in the abstract domain can be exponential in the number of rule variables. Also,

for some applications, (semi-)normalization may result in loss of precision.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

574 � M. Garc��a de la Banda et al.

cc c
b

c

c c

c

c
b

1

1

2 i

entry exit

i + 1
i

n
n

n+1
b

h

Fig. 1. Naming conventions for constraints.

Within the proposed LSLD semantics, it is convenient to name constraint stores

di�erently, depending on the point in a rule to which they correspond. The same

conventions will be used for the abstract constraint stores. Consider, for example,

the rule h :- b

1

; � � � ; b

n

. Let c

i

and c

i+1

be the constraint stores to the left and right

of the subgoal b

i

; 1 � i � n in this rule. See Figure 1.

|c

i

and c

i+1

are, respectively, the call constraint and the success constraint for b

i

.

|c

1

and c

n+1

are, respectively, the in constraint and the out constraint of the rule

(also denoted by c

in

and c

out

). Note that c

1

and c

n+1

are also the call constraint

for b

1

and the success constraint for b

n

, respectively.

|c

i

projected over the variables of b

i

is the entry constraint (represented by c

entry

)

of b

i

, and the answer constraint 9

�vars(b

i

)

(b

i

= h

0

^ c

out

) for b

i

is called exit

constraint (represented by c

exit

). Note that these two constraints are de�ned

over the variables in b

i

, instead of over the variables of the rule.

5. EXTENSION OF THE ANALYSIS FRAMEWORK

As mentioned in the previous section, the framework of Bruynooghe [1991] provides

an algorithm for safely abstracting an operational collecting semantics represented

as an AND-OR tree by a �nite AND-OR graph. The extension of the framework

toward CLP is founded on the observation that the LSLD and LSLDT operational

semantics are also valid for CLP. As a consequence, the extension replaces the set

of substitutions adorning the AND-OR tree in the original framework by sets of

constraint stores and replaces uni�cation by conjunction. The algorithm is based

on a number of primitive transitions which have to approximate transitions on

states hG ;C i, where G is a sequence of constraints and atoms, and C is a set of

constraint stores belonging to Cons

C

~x

(denoting the set of all sets of constraint stores

over the variables ~x). The abstract transitions operate on states hG ;AC i with the

abstract constraint AC , a description of a set of constraint stores, belonging to

Cons

A

~x

(denoting the set of all descriptions of sets of constraint stores over ~x). The

extension of the framework also involves a reformulation of the safety conditions of

the primitive transitions in the constraint setting.

In some program points, the set of constraint stores C to be abstracted as AC is

the �xpoint of a sequence C

1

�C

2

�C

3

� : : :. Here, the standard theory of abstract

interpretation comes in with the Galois insertion as the most popular approach for

linking Cons

C

~x

with Cons

A

~x

(see Marriott [1993] for others). The theory provides a

method for safely approximating the �xpoint of the sequence C

1

�C

2

� : : :. Having

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 575

for each AC in the AND-OR graph a Galois insertion between Cons

C

~x

and Cons

A

~x

,

a Galois insertion is induced between the set of all AND-OR trees representing the

collecting semantics and the set of all abstract AND-OR graphs.

5.1 The Abstract Domain

The elements to be abstracted in the collecting semantics are sets of constraint

stores, a constraint store being built from primitive constraints through conjunction

and projection. All constraint stores in the same set are over some set of variables

~x . Thus, the concrete domain is (Cons

C

~x

;�

C

) where �

C

is the subset relation.

The concrete domain is a lattice whose minimal element is ; and whose maximal

element is the set of all possible constraint stores over ~x . Whether false is also

considered as a constraint store depends on the kind of analysis one is interested

in.

The abstract domain Cons

A

~x

consists of descriptions (denoted AC) and is equip-

ped with an order relation �

A

. Descriptions are given a meaning by the con-

cretization function
. For the analyses considered in this article, the meaning of

descriptions are sets closed under equivalence. For example, if x +y = 2^x�y = 0

is in
(AC), then so will x = 1 ^ y = 1.

A special class of descriptions are those where the represented sets are closed

under antientailment: a description representing a constraint also represents all

stronger constraints. Formally, if c 2
(AC) and c

0

! c then c

0

2
(AC).

5

This

class is the CLP counterpart of substitution-closed (downward-closed) descriptions

in abstract interpretation of logic programs [Debray 1992a]. Such domains have the

special property that, if AC is a valid description of the computation at state s

i

in

the collecting semantics, then it is also a valid description (though usually rather

imprecise) of the state s

i+1

. Indeed, the standard semantics can only strengthen the

constraints by adding constraints to the store. The de�niteness domain developed

in Section 6 is such a domain. If a variable is constrained to a unique value by some

constraint then it is certainly so under stronger constraints.

Another special class of descriptions represents sets closed under entailment (up-

ward closed) (at least if unsatis�able constraints are discarded): a description rep-

resenting a constraint (6= false) represents also all weaker constraints, formally: if

c 2
(AC) (c 6= false) and c ! c

0

, then c

0

2
(AC). The freeness domain devel-

oped in Section 7 is such a domain. If a variable can still take all possible values

under some constraint, then it can do so under weaker constraints.

As stated in Section 2.3, the most familiar setting for abstract interpretation is

the Galois insertion. The concretization function
 and the abstraction function �

provide a tight linkage between the concrete and the abstract domain. As a conse-

quence one can specify the safety conditions of the functions used in formulating the

abstract semantics as well in terms of the concretization function as in terms of the

abstraction function. As discussed in Marriott [1993], abstract interpretation has

also been studied in settings with a weaker linkage between abstract and concrete

domain. Here we follow the weaker setting of the original framework of Bruynooghe

[1991] where only a concretization function
 is assumed. However, the formulation

5

Note that each description that is closed under antientailment automatically represents the con-

straint false.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

576 � M. Garc��a de la Banda et al.

is modi�ed in one aspect. To ensure termination for abstract domains allowing for

in�nite ascending chains AC

1

<

A

AC

2

<

A

AC

3

<

A

: : :, the standard notion of a

widening operator [Cousot and Cousot 1977; 1992b] is used.

Let (Cons

C

~x

;�

C

) be the powerset of the set of all constraint stores, ordered by

set inclusion. The minimal requirements on (Cons

A

~x

;�

A

) are:

(1) A preorder �

A

satisfying that 8AC

1

;AC

2

2 Cons

A

~x

if AC

1

�

A

AC

2

then

(AC

1

) �
(AC

2

). The preorder allows to de�ne an equivalence relation:

AC

1

�

A

AC

2

i� AC

1

�

A

AC

2

and AC

2

�

A

AC

1

. The relation �

A

has the

property AC

1

�

A

AC

2

!
(AC

1

) =
(AC

2

).

(2) An upper bound operator upp : Cons

A

~x

� Cons

A

~x

! Cons

A

~x

such that AC

i

�

A

upp(AC

1

;AC

2

) (i = 1; 2).

(3) A maximal element named > such that
(>) = the set of all constraints over

~x and 8AC 2 Cons

A

~x

; AC �

A

>.

(4) A minimal element ? such that
(?) = ; and 8AC 2 Cons

A

~x

; ? �

A

AC .

(5) A widening operator W : Cons

A

~x

� Cons

A

~x

! Cons

A

~x

such that AC

i

�

A

W(AC

1

;AC

2

)(i = 1; 2) and such that there does not exist an in�nite chain

ACa

1

;ACb

1

;ACa

2

;ACb

2

;ACa

3

; : : : such that, for all i, not(ACb

i

�

A

ACa

i

)

and for all i > 1;ACa

i

=W(ACa

i�1

;ACb

i�1

).

Condition (1) allows di�erent descriptions that are not equivalent to represent the

same set of constraints. However this is better avoided, as it can decrease preci-

sion and increase computation time. Condition (2) states that there must be an

upper bound operator, i.e., that it must be possible to approximate two or more

descriptions by a single one. Of course, it is desirable to de�ne upp as precise as

possible. With the abstract domain a complete partial order, the optimal upp is

the least upper bound. Condition (3) implies the existence of a maximal element;

it is a convention to name it >. Condition (3) also states that it must repre-

sent the set of all constraints. This assures that every set of constraints has an

abstraction. Condition (4) imposes a minimal element ? representing the empty

set of constraints. This provides a precise abstraction for states in unreachable

program points. Also, it provides the initial value for computing a �xpoint of a

function over the abstract domain. Finally, condition (5) ensures existence of a

widening operator which can enforce a safe approximation of a �xpoint in a �nite

number of steps (ACa

1

;ACa

2

; : : : are the successive approximations of the �xpoint,

ACb

1

;ACb

2

; : : : the values resulting from the new iterations). Notice that upp can

be used as widening operator in domains without in�nite ascending chains.

5.2 The Abstract Operations

The algorithm computes an AND-OR graph adorned with abstract constraints

(elements of the abstract domain). It also computes Table, an initially empty table,

with elements of the form (ha;AC

entry

i;AC

exit

). In these entries a is an atom,

and AC

entry

(the entry constraint) and AC

exit

(the exit constraint) are abstract

constraints over vars(a). The pair ha;AC

entry

i is the key of the table element,

and AC

exit

is the (current) answer for the call a with abstract entry constraint

AC

entry

. AC

exit

is used by table lookups.

6

The graph is initialized with an AND

6

A similar table is used in the concrete LSLDT semantics, but a key is then associated with a set

of answers.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 577

node having one child for each atom or constraint in the query ?-g

1

; : : : ; g

n

and

an abstract call constraint AC for g

1

. This initialization represents the set of

initial LSLDT sequences hg

1

; : : : ; g

n

; ci where c 2
(AC). The algorithm builds a

complete graph by applying transitions in a controlled way.

Below, we make use of abstract projection, denoted 9

A

�~x

, and abstract conjunction

^

A

. They are intended to approximate projection and conjunction respectively.

More formally:

|The abstract projection 9

A

�~x

is a safe approximation of the concrete projection if

for any constraint c and for any abstract constraint AC such that c 2
(AC) it

holds that 9

�~x

c 2
(9

A

�~x

AC).

|The abstract conjunction ^

A

is a safe approximation of the concrete conjunction

if for any two constraints c

1

; c

2

and for any two abstract constraints AC

1

;AC

2

such that c

1

2
(AC

1

) and c

2

2
(AC

2

) it holds that c

1

^ c

2

2
(AC

1

^

A

AC

2

).

With the concrete and abstract domains linked by a Galois connection or in-

sertion, the safety condition can also be formulated in terms of the abstraction

function:

|The abstract projection 9

A

�~x

is a safe approximation of the concrete projection

if for any set of constraints C and for any abstract constraint AC such that

�(C) �

A

AC it holds that �(9

�~x

C) �

A

9

A

�~x

AC .

|The abstract conjunction ^

A

is a safe approximation of the concrete conjunction

if for any two sets of constraints C

1

;C

2

and for any two abstract constraints

AC

1

;AC

2

such that �(C

1

) �

A

AC

1

, �(C

2

) �

A

AC

2

it holds that �(C

1

^C

2

) �

A

AC

1

^

A

AC

2

where C

1

^C

2

is the collecting conjunction, i.e., C

1

^C

2

= fc

1

^c

2

j

c

1

2 C

1

; c

2

2 C

2

g.

Let a be a leaf atom of the AND-OR graph, and let AC be its abstract call

constraint. Also, let �

1

; : : : ; �

m

be the rules of the program P de�ning the predicate

of a with the j th rule �

j

of the form h

j

:-b

j1

; : : : ; b

jn

j

. Basic transitions on the AND-

OR graph are:

|abstract entry(a;AC): This abstract transition has to approximate all entry

transitions over LSLDT sequences S :: ha; ci with c 2
(AC). As explained in

Section 4, for each rule �

j

, the entry transition extends the sequence S :: ha; ci

with the state hb

j1

; : : : ; b

jn

j

; c

j

in

i, where c

j

in

= 9

�vars(�

j

)

(a = h

j

^c) (and creates

an entry in Table with key ha; c

entry

i, where c

entry

= 9

�vars(a)

c). Therefore, in

this transition the leaf node a becomes an OR node, with the nodes h

j

as children.

A node h

j

becomes an AND node with the atoms/constraints b

j1

; : : : ; b

jn

j

as

children. The abstract call constraints AC

j

in

of b

j1

, for all j , are computed.

Finally, the transition computes AC

entry

, an intermediate abstract constraint

over vars(a) approximating c

entry

. The pair ha;AC

entry

i will be a key in Table.

This gives the following safety conditions:

|for AC

entry

: c 2
(AC) ! c

entry

2
(AC

entry

).

|for AC

j

in

: c 2
(AC) ! c

j

in

2
(AC

j

in

).

|extension from table(a;AC ; a

tab

;AC

tab

): This abstract transition has to ap-

proximate all table lookup transitions on LSLDT sequences of the form S

1

::

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

578 � M. Garc��a de la Banda et al.

ha;G ; ci for which there is an element in Table with key ha

tab

; c

tab

entry

i such that

ha

tab

; c

tab

entry

i� = ha; c

entry

i for some renaming �. For each stored answer c

tab

exit

,

LSLDT extends such a sequence with hG ; c ^ c

tab

exit

�i. The abstract transition

has to compute the abstract success constraint AC

0

of a. With (ha

tab

;AC

tab

entry

i,

AC

tab

exit

) the table entry such that ha

tab

;AC

tab

entry

i� = ha;AC

entry

i for some re-

naming �, the safety condition is:

|c 2
(AC), c

tab

exit

2
(AC

tab

exit

), (c

tab

exit

� ! c

entry

) ! c ^ c

tab

exit

� 2
(AC

0

).

|abstract exit(a;AC ; fh

1

; : : : ; h

m

g; fAC

1

out

; : : : ;AC

m

out

g): Let AC

j

out

be the ab-

stract out constraint of the rule �

j

. This abstract transition has to approxi-

mate all exit transitions over LSLDT sequences of the form S

1

:: ha;G ; ci

�

j

::

hb

j1

; : : : ; b

jn

j

; c

j

in

i :: S

2

:: h2

�

j

; c

j

out

i where c 2
(AC), c

j

out

2
(AC

j

out

) and

c

j

out

! 9

�vars(�

j

)

(c^a = h

j

). Such an exit transition computes c

exit

= 9

�vars(a)

(a

= h

j

^ c

j

out

) to be stored in Table as an answer for the key ha; c

entry

i and extends

the sequence with the state hG ; c^c

exit

i. The abstract transition has to compute

AC

exit

, the abstract constraint over vars(a) to be stored as answer in Table for

the element with key ha;AC

entry

i, and the abstract success constraint AC

0

of a.

The safety conditions are:

|for AC

exit

: c 2
(AC), c

j

out

2
(AC

j

out

), (c

j

out

! 9

�vars(�

j

)

(a = h

j

^ c)) !

9

�vars(a)

(a = h

j

^ c

j

out

) 2
(AC

exit

).

|for AC

0

: c 2
(AC), c

exit

2
(AC

exit

), (c

exit

! c

entry

) ! c ^ c

exit

2
(AC

0

).

Alternatively, the condition for AC

0

can be formulated without relying on

AC

exit

:

c 2
(AC), c

j

out

2
(AC

j

out

), (c

j

out

! 9

�vars(�

j

)

(a = h

j

^ c)) ! 9

�vars(�

0

)

(c ^

a = h

j

^ c

j

out

) 2
(AC

0

).

A straightforward de�nition in terms of abstract projection, abstract conjunction,

and constraint abstraction for the abstractions mentioned above, which satis�es the

safety requirements, is:

|AC

entry

= 9

A

�vars(a)

AC ,

|AC

j

in

= 9

A

�vars(�

j

)

(AC

entry

^

A

�(a = h

j

)),

|AC

exit

= upp(AC

1

exit

; : : : ;AC

m

exit

), where AC

j

exit

= 9

A

�vars(a)

(AC

j

out

^

A

�(a =

h

j

)),

|AC

0

= AC ^

A

AC

exit

, and in extension from table AC

0

= AC ^

A

AC

tab

� where

� is a renaming such that a

tab

� = a. This computation is often called extension.

However, other de�nitions are feasible. As we will see later, di�erent de�nitions

can yield more accurate results, depending on the characteristics of the particular

abstract domain considered.

Now we can describe the call to success(g ;AC) procedure which controls a suc-

cession of transitions of which abstract entry and abstract exit are the most impor-

tant ones. Assuming, without loss of generality, that a query consists of a single

atom or constraint g with abstract call constraint AC , the abstract operational

semantics (the AND-OR graph) is computed by call to success(g ;AC).

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 579

If g is a constraint, then an AC

0

satisfying c 2
(AC) ! c ^ g 2
(AC

0

) has to

be computed. De�ning AC

0

as AC ^

A

�(g) satis�es this condition. However, other

de�nitions (e.g., not relying on � and ^

A

) are feasible.

If g is an atom, the procedure is as follows:

(1) Compute AC

entry

.

(2) If Table has an entry (hg

tab

;AC

tab

entry

i;AC

tab

exit

) such that g

tab

is a renaming

of g and AC

tab

entry

�

A

AC

entry

7

(table lookup), then AC

0

is computed by

extension from table(g ; AC ; g

tab

; AC

tab

exit

).

(3) Else if there is an ancestor node g

anc

with associated entry (hg

anc

;AC

anc

entry

i,

AC

anc

exit

) in Table such that g is a renaming of g

anc

and for which similar(AC

anc

entry

,

AC

entry

) holds (table lookup), then

|IfAC

entry

�

A

AC

anc

entry

thenAC

0

= extension from table(g ; AC ; g

anc

; AC

anc

exit

).

|Else backtrack to g

anc

and restart with call to success(g

anc

;AC

anc

) but with

AC

anc

entry

=W(AC

anc

entry

; AC

entry

).

(The original computation of call to succes(g

anc

, AC

anc

) becomes obsolete.)

(4) Else

|Create an entry

8

(hg ;AC

entry

i;?) in Table.

|Apply abstract entry(g ;AC) obtaining the set of abstract in constraints

AC

1

in

; : : : ;AC

m

in

, one for each rule h

j

 B

j

(1 � j � m).

|The states hB

j

;AC

j

in

i are analyzed, applying, from left to right, call to success

on the subgoals of the B

j

. Eventually one obtains the abstract out constraints

AC

1

out

; : : : ;AC

m

out

.

|Apply abstract exit(g ;AC ; fh

1

; : : : ; h

m

g; fAC

1

out

; : : : ;AC

m

out

g). The interme-

diate result AC

exit

is used to update the entry (hg ;AC

entry

i;AC

tab

exit

) of Table

as follows.

If AC

exit

�

A

AC

tab

exit

then no update

Else if AC

tab

exit

has already been used in a table lookup (this implies that g is

a recursive predicate) then

|The new value is W(AC

tab

exit

;AC

exit

).

|Redo all computations whose outcome depends directly or indirectly on

the value AC

tab

exit

which was used in the table lookups (again part of the

computations becomes obsolete). These are the \iterations" mentioned

below. A crude way is to backtrack and to restart call to success(g ;AC).

Else the new value is upp(AC

tab

exit

;AC

exit

).

The test similar(AC

anc

entry

;AC

entry

) must be such that no in�nite chain of similar

ancestors hg ;AC

entry

i; hg

anc

;AC

anc

entry

i; hg

anc

2

;AC

anc

2

entry

i; : : : is created. A straight-

forward method is to put an arbitrary bound on the length of such chains. A more

intelligent way would be to judge whether the di�erences among AC

entry

, AC

anc

entry

,

and W(AC

entry

;AC

anc

entry

) are signi�cant with regard to the properties of interest

(i.e., whether specialization for the di�erent calls is worthwhile).

7

Here and in the sequel we implicitly assume proper renaming of formulas.

8

It can sometimes be preferable to enlarge AC

entry

, for example because it contains uninteresting

details or because there are already too many di�erent entry patterns for g . If the enlarged

hg ;AC

enl

entry

i can be solved by table lookup, then AC

0

is computed as in step (2).

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

580 � M. Garc��a de la Banda et al.

The relevant information about the analysis (the atoms with their abstract entry

and exit constraint) are all collected in Table. Abstract interpretation systems

such as PLAI [Muthukumar and Hermenegildo 1990; 1992], GAIA [Englebert et al.

1992; Le Charlier et al. 1991] and AMAI [Janssens et al. 1995] do not construct the

AND-OR graph explicitly. The systems use a more compact dependency structure

which is su�cient to control the order of the transitions to be performed on the

implicit AND-OR graph. Major di�erence among the systems is in the way they

organize to \redo all computations dependent on an invalid table lookup": the way

they attempt to minimize the number of transitions to be redone and how they

attempt to make the best use of what has already been computed. Our PLAI

implementation of the �xpoint algorithm [Hermenegildo et al. 1995; Muthukumar

and Hermenegildo 1989; 1990; 1992] is performed as follows. The program is pre-

processed in order to determine recursive predicates and recursive rules. This allows

analyzing nonrecursive predicates in one pass without checking whether there is an

ancestor node. For the recursive predicates, nonrecursive rules are analyzed �rst

and once, and the result is taken as a �rst approximation of the answer. Then,

the analysis for the recursive rules starts. The number of iterations performed in

this computation is reduced by keeping track of the dependencies among nodes in

the abstract AND-OR graph and the state of the information being computed. In

some cases the �xpoint algorithm is able to �nish in a single iteration.

5.3 Passive Constraints

The extended analysis framework proposed in the previous sections does not con-

sider passive constraints. Integrating passive constraints in the concrete operational

semantics can be done by using a more general representation of a state as a tu-

ple hG ; c; si (s being a conjunction of constraints whose consistency has not been

checked), modifying the conjunction operation so that it adds the constraints to s

instead of to c, and including an infer(c; s) = (c

0

; s

0

) step after each conjunction

operation. This step moves active constraints from s to c and is immediately fol-

lowed by a test for consistency [Ja�ar and Maher 1994], at least if the considered

CLP system is quick-checking.

9

When considering the modi�cations needed at the abstract level, the fundamen-

tal question is what kind of information is required from the analysis and at what

level of accuracy. Assume that gathering information regarding which constraints

are passive and when they become active is not required from the analysis and that

we prefer to lose accuracy rather than complicate the abstract operations. Then,

the simplest method is to abstract both active and passive constraints by a single

abstract component, without distinguishing between the information regarding pas-

sive constraints and that provided by the active constraints. This abstraction has

to be safe with respect to all possible (future) activations of the passive constraint,

and therefore it is possible to lose accuracy. However, this method signi�cantly

9

Special care is needed to perform safe analyses of systems that are not quick-checking. The

problem that the analysis recognizes a state as a failure while the actual computation would

proceed several steps, visiting several states that are not described by the output of the analysis,

can be avoided by transforming the analyzed program so that it fails at run-time at the same

point. Assuming absence of side e�ects, this is a transformation that cannot modify the observable

behavior of the program and that always reduces run-time.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 581

simpli�es the abstract operations and allows such analysis to be integrated in the

framework described above. We adopted this simple approach in the implementa-

tion of the analyzers presented in the following sections.

If the information provided by the analysis is aimed at detecting program points

at which all constraints are de�nitely active, then we have to abstract in some way

the infer function. In order to do this, the abstract domain should be able to

approximate the information used by infer to decide if a constraint is de�nitely

active. Then, for each constraint c analyzed, the abstract infer function must

decide if under the current abstract constraint store, c is de�nitely active, and if

it is not the case, it must abstract the fact that a passive constraint may appear

(possibly without identifying which particular constraint it is) and the properties

needed for such passive constraint to be de�nitely woken. Note that, if the domain

is closed under antientailment, as is the case for de�niteness analysis, then the

approximation remains safe when a constraint is active before being recognized as

such, so there is no need to deal with possible wake-ups of passive constraints. This

option is closely related to the work in Hanus [1993] which presents an abstract

domain for detecting CLP(<) programs for which all passive nonlinear constraints

eventually become linear at run-time. Otherwise, as for the freeness analysis, we

must take possible wake-ups into account.

Finally, if the information is aimed at accurately modeling the delay and wake-up

behavior, and we want to be able to determine which are the passive constraints,

when they become passive, and when they are woken, we should split up the ab-

straction in two parts: an active part representing the active constraints and a

passive part representing the passive constraints. In this case, the abstract pro-

jection function has to preserve enough information to ensure the correct wake-up

behavior. A possible technique is to project only the abstract active constraints

and to keep the passive part. Then an abstract constraint is no longer restricted to

a �nite number of variables (the variables of the rule, goal, or query) as it is in the

original abstract interpretation framework. As a consequence, termination is not

guaranteed, and some new kind of widening should be introduced. This is related

to the work of Marriott et al. [1994], which gives a simple denotational semantics

and a generic global data-
ow analysis algorithm which is based on the semantics

sketched above, for languages in which the computation generally proceeds left to

right but in which some calls are dynamically delayed until their arguments are

su�ciently instantiated, a very similar case to that of the passive constraints. An

alternative technique which is able to project both active and passive components

while maintaining accuracy has been recently described in Garc��a de la Banda et al.

[1995].

6. INFERENCE OF DEFINITENESS INFORMATION

In this section we present the abstract domain Cons

D

, which approximates de�-

niteness information in CLP programs, and the corresponding abstract functions

as required for the extended framework developed above. The abstraction is based

on a high-level description of de�niteness dependencies which are easy to obtain

for each particular type of constraint in an actual system. We have attempted to

give intuitively comprehensible de�nitions of the di�erent operations, rather than

algorithmic versions. The algorithms can be found in Garc��a de la Banda [1994],

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

582 � M. Garc��a de la Banda et al.

where proofs of correctness for such algorithms are also provided.

6.1 Abstract Domain and Abstraction Function

Let }(S) denote the powerset of a set S , and let }

;

(S) denote }(S) n f;g. Also,

let Var denote a denumerable set of variables and Pvar � Var a distinguished

(denumerable) set of variables which may occur in programs. An abstract constraint

AC

D

= (D ;R) of the abstract domain Cons

D

is an element of }(Pvar)�}(Pvar �

}

;

(}

;

(Pvar))) which is in simpli�ed form. A variable x in D represents a variable

that is known to be de�nite, which can be represented by the propositional formula

x true. An element (x ; fS

1

; : : : ;S

n

g) 2 R with S

i

= fx

i1

; : : : ; x

im

i

g represents

known dependencies between variables. These dependencies can be expressed by the

propositional formula x conj (S

1

)_: : :_conj (S

n

) where conj (S

i

) = x

i1

^: : :^x

im

i

(this is equivalent with (x conj (S

1

)) ^ : : : ^ (x conj (S

n

))), where a formula

x conj (S

i

) expresses that x is de�nite if x

i1

up to x

im

i

are. An element (D ;R) is

in simpli�ed form if it encodes at most one formula x : : : for each variable x and

has an explicit representation of all implied nonredundant formulas of the form x

conj (S). A formula x conj (S) is considered redundant if it is a tautology (i.e.,

x 2 S) or if it is implied by another formula x conj (S

0

) (i.e., S

0

�S). Putting

formulas in simpli�ed form gives a more compact representation and reduces the

cost of key operations, such as testing for equivalence and performing abstract

projection. A simpli�ed form can be obtained by applying the following rewrite

rules:

(1) (D ; f(x ;SS

1

)g [f(x ;SS

2

)g [R)) (D ; f(x ;SS

1

[SS

2

)g [R).

(2) (D ; f(x ; fS

1

g [fS

2

g [SS)g [R)) (D ; f(x ; fS

1

g [SS)g [R) if S

1

� S

2

.

(3) (D ; f(x ;SS)g [R)) (D ;R) if x 2 D .

(4) (D ; f(x ; ffyg [Sg [SS)g [R)) (D ; f(x ; fSg [SS)g [R) if y 2 D .

(5) (D ; f(x ; f;g [SS)g [R)) (fxg [D ;R).

(6) (D ; f(x ; ffyg [S

1

g [SS

1

)g [f(y ; fS

2

g [SS

2

)g [R)) (D ; f(x ; fS

1

[S

2

g [

ffyg [S

1

g [SS

1

)g [f(y ; fS

2

g [SS

2

)g [R) if x 62 S

2

and 6 9S 2 SS

1

such that

S � (S

1

[S

2

).

Rule (1) merges several de�nite dependencies approximated for the same variable.

Knowing that the de�niteness of x can be derived from the de�niteness of a set S

2

of variables is useless once the de�niteness of x is known to be derived from a

subset S

1

of S

2

. Rule (2) eliminates those useless S

2

sets. Approximating that the

de�niteness of x can be derived from the de�niteness of any other set of variables

is useless once x is in D . Rule (3) performs such simpli�cation. If a variable y in a

set S 2 SS of (x ;SS) is in D , y can be removed from S without losing information.

Rule (4) removes those variables. The element (x ; f;g [SS) is obtained once x is

known to be de�nite. Rule (5) eliminates (x ; f;g [SS) from R and adds x to D .

If the de�niteness of y can be inferred from that of the variables in S

2

, and the

de�niteness of x can in turn be inferred from that of fyg[S

1

, we can conclude that

the de�niteness of x can also be inferred from that of S

2

[S

1

. This propagation

of de�niteness dependencies is performed by rule (6). Note that the condition

\6 9S 2 SS

1

such that S � (S

1

[S

2

)" avoids in�nite applications of rule (6) (if

S = S

1

[S

2

) or in�nite alternate applications of rules (6) and (2) (if S � S

1

[S

2

).

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 583

Let simplify(D ;R) denote the abstract constraint obtained by applying the rewrite

rules to (D ;R) until no rule can be applied. We can now formally de�ne Cons

D

as

f?g[f(D ;R) 2 }(Pvar) � }(Pvar � }

;

(}

;

(Pvar))) j simplify(D ;R) = (D ;R)g.

10

For convenience, in the rest of the section we will denote by minD(SS) the set of

sets obtained by applying rule (2) to a particular SS of (x ;SS) 2 R.

De�nition 6.1.1 (Abstraction of a Constraint: �

d

). Let c be a constraint. Then

�

d

(c) = ? if :consistent(c); otherwise �

d

(c) = (D ;R) where

(1) D = def (c)

11

(2) R = f(x ;SS) j x 2 vars(c);SS = minD(gr dep(c; x));SS 6= ;;SS 6= f;gg

(3) gr dep(c; x) = f~y � vars(c) n fxg j for all sequences of values ~v s :t :

consistent(c ^ ~y = ~v); holds that x 2 def (c ^ ~y = ~v)g.

Note that ; 2 gr dep(c; x) for any x 2 def (c) and for any x such that no de�nite

dependency can be found. In such cases minD(gr dep(c; x)) = f;g.

Example 6.1.2. Note that the symbol \." stands for concatenation of PrologIII

lists and that \< y >" is a list with one element.

�

d

(x = 3) = (fxg; ;)

�

d

(x = f (y ; z)) = (;; f(x ; ffy ; zgg); (y ; ffxgg); (z ; ffxgg)g)

�

d

(x = 3y + 2z) = (;; f(x ; ffy ; zgg); (y ; ffx ; zgg); (z ; ffx ; ygg)g)

�

d

(x > y) = (;; ;)

�

d

(x 6= y) = (;; ;)

�

d

(x = y � z) = (;; f(x ; ffy ; zgg)g)

�

d

(x =< y > :z) = (;; f(x ; ffy ; zgg); (y ; ffxgg); (z ; ffxgg)g)

�

d

(x =< y > : < w > :z) = (;; f(x ; ffy ;w ; zgg); (y ; ffxgg);

(w ; ffxgg); (z ; ffxgg)g)

�

d

(x =< y > :w :z) = (;; f(x ; ffy ;w ; zgg); (y ; ffxgg);

(w ; ffx ; zgg); (z ; ffx ;wgg)g)

De�nition 6.1.3 (Order Relation). Let (D

1

;R

1

); (D

2

;R

2

) 2 Cons

D

. Then

(D

1

;R

1

) �

D

(D

2

;R

2

) i�:

(1) D

2

� D

1

(2) 8(x ;SS

2

) 2 R

2

: x 2 D

1

or (9(x ;SS

1

) 2 R

1

such that 8S

2

2 SS

2

: 9S

1

2

SS

1

; S

1

� S

2

).

Intuitively, this means that for every formula represented by (D

2

;R

2

), there is a

formula in (D

1

;R

1

) which is at least as strong.

De�nition 6.1.4 (Equivalence). Let (D

1

;R

1

); (D

2

;R

2

) 2 Cons

D

. Then (D

1

;R

1

)

�

D

(D

2

;R

2

) i�:

(1) D

1

= D

2

(2) R

1

= R

2

.

10

For reasons of readability most of the following de�nitions and operations do not explicitly deal

with ?. Their extensions are trivial.

11

As mentioned in Section 2.1, def (c) denotes the set of de�nite variables in c.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

584 � M. Garc��a de la Banda et al.

De�nition 6.1.5 (Least Upper Bound). Let (D

1

;R

1

); (D

2

;R

2

) 2 Cons

D

. Then

upp

D

((D

1

;R

1

); (D

2

;R

2

)) = (D ;R) where

(1) D = D

1

\ D

2

(2) R = f(x ;SS) 2 R

i

j x 2 D

j

; i ; j 2 f1; 2g; i 6= jg [f(x ;minD(SS

0

))j SS

0

=

fS

1

[S

2

j (x ;SS

1

) 2 R

1

;S

1

2 SS

1

, (x ;SS

2

) 2 R

2

;S

2

2 SS

2

gg.

The de�nition can easily be extended to compute the least upper bound of m (m

> 2) abstractions. In the following we will assume that the function upp applies to

a set of abstract constraints.

De�nition 6.1.6 (Abstraction of a Set of Constraints: �

D

). Let C 2 Cons

C

.

Then �

D

(C) = ? if C = ;; otherwise �

D

(C) = upp(f�

d

(c) j c 2 Cg).

De�nition 6.1.7 (Maximal and Minimal Elements). The maximal element is >

= (;; ;). The minimal element is ?, denoting the empty set of constraints.

The concretization function

D

can be de�ned based upon �

D

as described in

Cousot and Cousot [1992a]:

D

(AC) =

S

fC 2 Cons

C

j �

D

(C) �

D

ACg. Then

(Cons

C

;�;Cons

D

;�

D

) is a Galois insertion [Garc��a de la Banda and Hermenegildo

1993].

6.2 Abstract Projection and Abstract Conjunction Functions

De�nition 6.2.1 (Abstract Projection). Let (D

1

;R

1

) 2 Cons

D

and ~x be a set of

variables. Then 9

D

�~x

(D

1

;R

1

) = (D ;R) where

(1) D = D

1

\ ~x

(2) R = f(x ;SS) j (x ;SS

1

) 2 R

1

; x 2 ~x ;SS = fS 2 SS

1

j S � ~xg;SS 6= ;g.

The propositional formula represented by (D ;R) is the projection of the formula

represented by (D

1

;R

1

). Intuitively, D is the subset of variables in ~x which are

known to be de�nite in D

1

, and R contains the de�niteness dependencies (if any)

approximated by R

1

for the possibly nonde�nite variables in ~x . Since only the

variables in ~x are taken into account, any element (y ;SS

1

) 2 R

1

approximating the

dependencies for a variable which is not in ~x (i.e., y 62 ~x) is eliminated. Furthermore,

the dependency sets in SS

1

of the elements (x ;SS

1

) 2 R

1

; x 2 ~x which are not

subsets of ~x are also eliminated, as groundness of all variables in a dependency set

is required to ground x , yielding SS . Note that if as a result SS becomes empty,

there is no information for the de�niteness dependencies of x w.r.t. the variables in

~x , and no (x ;SS) will appear in R.

De�nition 6.2.2 (Abstract Conjunction). Let (D

1

;R

1

); (D

2

;R

2

) 2 Cons

D

. Then

(D

1

;R

1

) ^

D

(D

2

;R

2

) = simplify(D

1

[D

2

;R

1

[R

2

).

A more implementation oriented de�nition of the abstract conjunction function

would state that we should �rst apply rule (1), then rules (3), (4), and (5) (thus

propagating de�niteness), and �nally rule (6) (propagating de�nite dependencies).

Note that we may also need to apply rule (2) immediately after the application of

rules (1), (4), or (6). The order in which those steps are performed has been chosen

to increase e�ciency, but they can be performed in any order a�ecting neither

correctness nor accuracy. For a more implementation oriented de�nition of this

operation, see Garc��a de la Banda [1994].

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 585

Example 6.2.3. Consider the abstract constraints:

(D

1

;R

1

) (;; f(x ; ffyg; fzgg); (y ; ffzgg)g)

(D

2

;R

2

) (fzg; f(y ; ffwgg); (w ; ffygg)g)

Then (D

1

;R

1

) ^

D

(D

2

;R

2

) yields the abstract constraint (D ;R) as follows:

simplify(fzg; f(x ; ffyg; fzgg); (y ; ffzgg); (y ; ffwgg); (w ; ffygg)g)!

1

simplify(fzg; f(x ; ffyg; fzgg); (y ; ffzg; fwgg); (w ; ffygg)g)!

4

simplify(fzg; f(x ; ffyg; ;g); (y ; ffzg; fwgg); (w ; ffygg)g)!

4

simplify(fzg; f(x ; ffyg; ;g); (y ; f;; fwgg); (w ; ffygg)g)!

5

simplify(fx ; zg; f(y ; f;; fwgg); (w ; ffygg)g)!

5

simplify(fx ; y ; zg; f(w ; ffygg)g)!

4

simplify(fx ; y ; zg; f(w ; f;g)g)!

5

simplify(fx ; y ; z ;wg; ;) = (fx ; y ; z ;wg; ;)

where !

n

represents the application of the nth rule. Thus (D

1

;R

1

) ^

D

(D

2

;R

2

) =

(fx ; y ; z ;wg; ;)

Consider now the abstract constraints:

(D

1

;R

1

) (;; f(x ; ffyg; fz ;wgg); (y ; ffz ;wgg)g)

(D

2

;R

2

) (;; f(y ; ffzgg); (z ; ffygg)g) .

Then (D

1

;R

1

) ^

D

(D

2

;R

2

) yields the abstract constraint (D ;R) as follows:

simplify(;; f(x ; ffyg; fz ;wgg); (y ; ffz ;wgg); f(y ; ffzgg); (z ; ffygg)g)!

1

simplify(;; f(x ; ffyg; fz ;wgg); (y ; ffz ;wg; fzgg); (z ; ffygg)g)!

2

simplify(;; f(x ; ffyg; fz ;wgg); (y ; ffzgg); (z ; ffygg)g)!

6

simplify(;; f(x ; ffyg; fzg; fz ;wgg); (y ; ffzgg); (z ; ffygg)g)!

2

simplify(;; f(x ; ffyg; fzgg); (y ; ffzgg); (z ; ffygg)g) =

(;; f(x ; ffyg; fzgg); (y ; ffzgg); (z ; ffygg)g)

Thus (D

1

;R

1

) ^

D

(D

2

;R

2

) = (;; f(x ; ffyg; fzgg); (y ; ffzgg); (z ; ffygg)g).

Let us now present how the abstractions required by the framework are computed.

Let g be a constraint or an atom and AC be its abstract call constraint. If g is a

constraint, then AC

0

is de�ned as AC ^

D

�

d

(g). If g is an atom, let �

1

; : : : ; �

m

be

the rules of the program P de�ning the predicate of g , �

j

be h

j

:-b

j1

; : : : ; b

jn

j

, and let

AC

1

out

; : : : ;AC

m

out

be the abstract out constraints of rules �

1

; : : : ; �

m

respectively.

Then, the abstract entry, in, exit, and success constraints are de�ned as follows:

|AC

entry

= 9

D

�vars(g)

AC ,

|AC

j

in

= 9

D

�vars(�

j

)

(AC

entry

^

D

�

d

(g = h

j

)),

|AC

exit

= upp

D

(AC

1

exit

; : : : ;AC

m

exit

), whereAC

j

exit

= 9

D

�vars(g)

(AC

j

out

^

D

AC

entry

^

D

�

d

(g = h

j

)),

|AC

0

= AC ^

D

AC

exit

, and in extension from table AC

0

= AC ^

D

AC

tab

�

a=a

tab

.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

586 � M. Garc��a de la Banda et al.

It is clear that all de�nitions satisfy the safety requirements imposed by the

framework. However, two important issues must be pointed out. The �rst issue

is related to one of the three properties of the abstract operations identi�ed in

Jacobs and Langen [1992]: additivity. This property requires that precision should

not be lost when commuting the least upper bound with an abstract operation.

Additive upper bounds are not common, and upp

D

is not an exception. As a result,

it is possible to obtain a more accurate AC

0

by computing AC

0

as upp(AC ^

D

AC

1

exit

; : : : ;AC ^

D

AC

m

exit

). However, the price is m applications of ^

D

instead of

one. As for this analysis abstract conjunction is an expensive computation, this

approach is not taken.

The second issue is related to the de�nition of AC

exit

and, in particular, to the

appearance of AC

entry

in the de�nition of each AC

j

exit

.

12

This redundant constraint

is added in order to avoid a loss of precision caused by the interaction among

approximating a property that is closed under antientailment (downward-closed),

nonnormalization, a loss of precision in the abstract projection function, and the

tabulation method. Let us illustrate the problem with a simple example.

Example 6.2.4. Assume we have a program P with only one rule �

1

: p(z): (i.e.,

a fact). The computation of call to success(p(f (x ; y));AC), where AC = (fxg; ;),

will proceed as follows:

(1) abstract entry(p(f (x ; y));AC). Following the de�nitions above, we will obtain

AC

entry

= (fxg; ;) and AC

1

in

= (;; ;).

(2) Since the body of �

1

is empty, AC

1

out

= AC

1

in

= (;; ;).

(3) abstract exit(p(f (x ; y));AC ; fp(z)g; fAC

1

out

g). If we compute AC

1

exit

as

9

D

�vars(a)

(AC

j

out

^

D

�

d

(f (x ; y) = p(z))), we will obtain AC

1

exit

= (;; ;). Then,

AC

exit

= (;; ;) and AC

0

= (fxg; ;). On the other hand, if we include AC

entry

in the de�nition of AC

1

exit

(as proposed in the above de�nitions), we obtain

AC

exit

= AC

1

exit

= (fxg; ;), thus avoiding a loss of precision.

Although accuracy is always recovered when computing AC

0

, the di�erence can

have an adverse e�ect on memory (tabulation) and time consumption (computing

AC

0

). Also, for some applications it is convenient that AC

exit

provides accurate

information about the success state (for example, the output mode of the predicate).

Finally, the loss of accuracy in AC

exit

could imply a greater number of �xpoint

iterations, since they depend on the value of AC

exit

. Regarding the extra cost

introduced by our de�nition, note that since AC

entry

^

A

�

d

(g = h

j

) is already

computed during the abstract entry operation, the alternative computation does

not introduce a signi�cant overhead.

As a last remark, we use upp

D

as a widening operator, since Cons

D

(when

considered over a �nite set of variables) does not have in�nite ascending chains.

There are at least two other domains which are closely related to ours. One is

the domain proposed by Hanus [1995] and originally used for detecting situations

in which the residuation rule

13

can be guaranteed to never be activated in a given

12

Recall that AC

j

exit

can be de�ned in a simpler way, such as 9

D

�vars(g)

(AC

j

out

^

D

�

d

(g = h

j

)),

while still satisfying the safety conditions.

13

Residuation is an operational mechanism for the integration of functions into logic programming.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 587

program (this is similar in some ways to a \nonsuspension" analysis, as the resid-

uation rule delays the evaluation of functions during the uni�cation process until

the arguments are su�ciently instantiated). The nonresiduation requirements im-

ply groundness requirements for the arguments of certain functions, and a domain

similar to the one de�ned in this section is used for inferring such groundness.

The second related domain is the domain of positive Boolean functions which are

closed under intersection. This domain was de�ned early on by Dart [1988] under

the name of dependency formulae and applied to the inference of groundness in

deductive databases. Our domain can be seen as a compact representation of this

domain (including a formulation of e�cient operations for it). The main di�erence is

that, for e�ciency reasons, we require the abstraction to be in a particular simpli�ed

form. Recently, the di�erent possible subsets of the Boolean functions which can be

used for tracking dependencies in program analysis and their representations have

been studied and greatly clari�ed [Armstrong et al. 1994]. Our domain corresponds

essentially to the Def domain in this taxonomy. The work developed in Armstrong

et al. [1994] also illustrates that the representation that we have proposed is closely

related to the CDF representation which is shown therein to o�er an advantageous

cost-performance tradeo�.

7. INFERENCE OF FREENESS INFORMATION

The de�niteness analysis infers whether variables are de�nite, i.e., constrained to a

unique value. The analysis takes into account de�nite dependencies among variables

in order to perform accurate de�niteness propagation. The freeness analysis derives

whether variables are free, i.e., whether they can range over the whole domain

speci�ed by their type: e.g., a variable that is constrained to be numerical but still

ranges over the complete domain of numbers is considered as free. It keeps track of

possible dependencies between variables to take care of nonfreeness propagation: in

order to obtain de�nite freeness information we must trace all possible dependencies.

These dependencies are established via the constraints in the program either directly

or through entailment. The derived information is useful for example to perform

constraint reordering (see Dumortier [1994]).

The most closely related work to our freeness analysis is the LSign abstraction of

Marriott and Stuckey [1993] that describes sets of linear equations and inequalities.

In Marriott and Stuckey [1994], this domain is further elaborated and extended to-

ward the treatment of nonlinear constraints and uni�cation constraints. The major

advantage of the abstraction compared with ours is its enhanced precision, espe-

cially for inequalities but also for equations (it keeps track of the constraint symbol

and the sign of the coe�cients, which are discarded in our analysis). However,

the main de�ciencies are that (1) no implementation is reported, such that the

e�ciency (especially with respect to the increased precision) cannot be judged and

(2) some aspects that are relevant in order to obtain a complete analyzer are not

(su�ciently) elaborated (such as procedure-exit, the upper bound operation, the

order relation, and the interaction between the uni�cation and the numerical part).

Recently, Ramachandran and Van Hentenryck [1995] described some improvements.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

588 � M. Garc��a de la Banda et al.

7.1 Abstract Domain and Abstraction Function

Let c denote a constraint. A set of variables fx

1

; : : : ; x

n

g � vars(c) is constrained by

c i� there exists a set of values fv

1

; : : : ; v

n

g, with each v

i

in the domain of x

i

, such

that c^x

1

= v

1

^ : : :^x

n

= v

n

is inconsistent while for any fi

1

; : : : ; i

m

g � f1; : : : ;ng

it holds that c ^ x

i

1

= v

i

1

^ : : : ^ x

i

m

= v

i

m

is consistent.

Example 7.1.1. Let c be x = f (y

1

; : : : ; y

n

) (n � 0). The sets constrained by

c are fxg, fx ; y

1

g; : : : ; fx ; y

n

g (e.g., for fx ; y

1

g, c ^ x = f (1; : : : ;n) ^ y

1

=

3 is inconsistent while any subpart of the conjunction is consistent). Let c be

a

1

x

1

+ : : : + a

n

x

n

= b (n � 1) where the a

i

and b are numbers (a

i

6= 0). Then

c constrains the set fx

1

; : : : ; x

n

g. Let c be x > y . Then c constrains fx ; yg.

Let c be x = y � z . Then c constrains fx ; yg, fx ; zg, and fx ; y ; zg (for fx ; zg,

c ^ x = 1 ^ z = 0 is inconsistent while c ^ x = 1 and c ^ z = 0 are consistent;

for fx ; y ; zg, c ^ x = 2 ^ y = 1 ^ z = 1 is inconsistent while any subpart of the

conjunction is consistent). Let c be x =< y > :w :z . The sets constrained by c are

fx ; yg; fx ;wg, and fx ; zg.

A variable x is free in c i� fxg is not constrained by c, so freeness can be

derived by safely approximating all possible constrained sets. A constrained set

fx

1

; : : : ; x

n

g with n > 1 indicates a possible dependency between those variables in

the sense that constraining all variables, but for example x

i

, can constrain x

i

(can

cause nonfreeness of x

i

). Such constrained sets are the key concept used to perform

nonfreeness propagation. The formal development in Dumortier [1994] (which is

too long to include) shows that constrained sets that can be obtained as union

of others (e.g., the set fx ; y ; zg in the last example), and unions of constrained

sets, are redundant with respect to nonfreeness propagation (the subdependencies

impose stronger restrictions). These nonminimal sets can therefore be omitted in

the abstraction.

14

De�nition 7.1.2 (Minimal Set). Let SS 2}(}

;

(Pvar)). Then S 2SS is minimal

in SS i� @S

1

; : : : ;S

m

2 SS n fSg (m � 2) such that S = S

1

[: : : [S

m

.

De�nition 7.1.3 (minF). Let SS 2}(}

;

(Pvar)). Then minF(SS) = fS 2SS j

S is a minimal set in SSg.

De�nition 7.1.4 (Abstraction of a Constraint: �

f

). Let c be a constraint. Then

�

f

(c) = ? if :consistent(c); otherwise �

f

(c) = minF(ffx

1

; : : : ; x

n

g � vars(c) j

fx

1

; : : : ; x

n

g is constrained by cg).

The abstract domain Cons

F

m

can now be formally de�ned as f?g[fAC 2

}(}

;

(Pvar)) j minF(AC) = ACg.

15

14

The nonminimal freeness abstraction of a constraint c as developed in Dumortier et al. [1993]

exhaustively enumerates not only minimal constrained sets in c but also all possible unions of

these. These unions are needed at abstract conjunction (see De�nition 7.2.2). Adding the unions

at once instead of computing them at abstract conjunction contributes to the precision of the

analysis. However, it also limits its practical use, as the size of the abstractions is in the worst

case exponential with respect to the number of variables.

15

For reasons of readability most of the following de�nitions and operations do not explicitly deal

with ?. Their extensions are trivial.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 589

While it is rather straightforward to derive the abstraction of primitive con-

straints, it is more involved for a conjunction of primitive constraints. Let us

consider some examples.

Example 7.1.5. Let c be y = f (g(x)) ^ z = x . Constrained sets are fyg and

fy ; xg (from the �rst primitive constraint) and fz ; xg (from the second primitive

constraint), but also fy ; zg from the entailed primitive constraint y = f (g(z)). Let

c be x + y = 3 ^ y � z = 2. Constrained sets are fx ; yg and fy ; zg but also fx ; zg,

as there is an entailed primitive constraint x + z = 1.

This suggests that it is su�cient to consider the constrained sets for all entailed

primitive constraints. However, this does not su�ce for conjunctions composed of

constraints of di�erent constraint domains, as shown by the following example.

Example 7.1.6. Let c be x = f (u; v) ^ u�v+t = 3. Besides the constrained sets

of the �rst conjunct (fxg, fx ; ug, and fx ; vg) and of the second conjunct (fu; v ; tg),

there is also a constrained set fx ; tg. Indeed, for example, c ^ x = f (1; 2) ^ t = 1

is inconsistent while any subpart of the conjunction is consistent.

In our implementation, we have not attempted to compute constrained sets of

nonprimitive constraints, but rather use abstract conjunction to obtain their ab-

straction from the abstractions of the composing conjuncts. It is recommended to

�rst put the conjunction in solved form, as the presence of redundant conjuncts

will severely a�ect precision.

16

Even in the absence of redundancy, one can obtain

a more precise result when starting from the solved form, as will be illustrated

below. For the Herbrand domain, the solved form can be obtained by applying the

Martelli-Montanari uni�cation algorithm [Martelli and Montanari 1982]; for gener-

alized linear constraints, a solved form can be obtained by the algorithm of Lassez

and McAloon [1992].

Before discussing abstract conjunction, let us �rst further develop the abstract

domain.

De�nition 7.1.7 (Order Relation). Let AC

1

, AC

2

2Cons

F

m

. Then AC

1

�

F

m

AC

2

i� AC

1

� close(AC

2

) where close(AC) is the closure under union of AC .

De�nition 7.1.8 (Equivalence). Let AC

1

, AC

2

2Cons

F

m

. Then AC

1

�

F

m

AC

2

i� AC

1

= AC

2

.

De�nition 7.1.9 (Least Upper Bound). Let AC

1

, AC

2

2Cons

F

m

. Then

upp

F

m

(AC

1

; AC

2

) = minF(AC

1

[AC

2

).

This de�nition can easily be extended to compute the least upper bound of m

(m > 2) abstractions. In the following we will assume that upp applies to a set of

abstract constraints.

16

This is not done in the actual implementation based on the PLAI system, which is written in

Prolog. In this case the only highly e�cient solved-form algorithm readily available in the system

itself is the one for uni�cation constraints inherited from the Prolog implementation. However,

as pointed out in Codognet and Fil�e [1992], implementing the system in the CLP language to

be analyzed would allow to use all built-in solved-form algorithms. On the other hand it should

also be noted that for the actual benchmarks analyzed in Section 9 not applying the solved-form

algorithm does not a�ect precision.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

590 � M. Garc��a de la Banda et al.

To abstract a set of constraints, ideally }(}(}

;

(Pvar))) should be the abstract

domain. However, this may give rise to impractically large abstractions. Therefore,

the abstraction of a set of constraints is approximated by the least upper bound of

the abstractions of the individual constraints in the set.

De�nition 7.1.10 (Abstraction of a Set of Constraints: �

F

m

). Let C 2 Cons

C

.

Then �

F

m

(C) = ? if C = ;; otherwise �

F

m

(C) = upp(f�

f

(c) j c 2 Cg).

De�nition 7.1.11 (Maximal and Minimal Elements). The maximal element is

minF(}(}

;

(Pvar))) = ffxg j x 2Pvarg. The minimal element is ?.

The concretization function

F

m

can be de�ned based upon �

F

m

as described

in Cousot and Cousot [1992a]:

F

m

(AC) =

S

fC 2 Cons

C

j �

F

m

(C) �

F

m

ACg.

Then (Cons

C

;�;Cons

F

m

;�

F

m

) is a Galois insertion [Dumortier 1994].

7.2 Abstract Projection and Abstract Conjunction Functions

De�nition 7.2.1 (Abstract Projection). Let AC 2Cons

F

m

and ~x be a sequence

of variables. Then 9

F

m

�~x

AC = fS 2AC j S � ~xg:

The abstract conjunction of two abstract constraints AC

1

and AC

2

, denoted

AC

1

^

F

m

AC

2

, must safely approximate the constrained sets of all constraints

c

1

^ c

2

where c

1

and c

2

are abstracted by AC

1

and AC

2

respectively. It is obvious

that constrained sets of c

1

respectively c

2

are also constrained sets of c

1

^ c

2

.

Actually, if c

1

and c

2

do not share variables, these are the only ones. The hard case

is when c

1

and c

2

do share variables. Consider a simple example in the numerical

domain. Let c

1

be x = y ^ u = v and c

2

be y + v = z . Constrained sets of c

1

are fx ; yg and fu; vg; fy ; v ; zg is the only constrained set of c

2

. The conjunction

c

1

^ c

2

entails constraints x + v = z , y + u = z and x + u = z , giving rise to the

constrained sets fx ; v ; zg, fy ; u; zg, and fx ; u; zg. At the concrete level, the key

operation in obtaining entailed constraints is variable elimination. At the abstract

level, the operation is mimicked by taking the union of an element of close(AC

1

)

(which, to abstract c

1

, must contain fx ; yg, fu; vg, and fx ; y ; u; vg) and an ele-

ment of close(AC

2

) (which, to abstract c

2

, must contain fy ; v ; zg) and removing

some elements from the intersection: removing y and v from fx ; y ; u; vg[fy ; v ; zg

yields fx ; u; zg; removing y from fx ; yg[fy ; v ; zg yields fx ; v ; zg; and deleting v

from fu; vg[fy ; v ; zg yields fy ; u; zg. Notice that one should not only remove the

complete intersection, as shown by the following example. Consider fx ; y ; u; vg as

an element of AC

1

which abstracts, for example, c

1

� x + y = u + v and fx ; y ; tg

as an element of AC

2

which abstracts, for example, c

2

� x + y = t but also

c

0

2

� x +2y = t . Now c

1

^ c

2

entails t = u+v with constrained set ft ; u; vg, while

c

1

^ c

0

2

entails y = t � u � v and x = 2u +2v � t with constrained sets ft ; u; v ; yg

and ft ; u; v ; xg. This also illustrates that computing the abstraction of c

1

^ c

2

by abstract conjunction of the abstractions of c

1

and c

2

can be less precise than

directly determining the constrained sets of the conjunction (which can be done by

�rst transforming the conjunction to solved form).

In Dumortier [1994] it is shown how a similar reasoning applies for Herbrand

constraints, PrologIII tuple constraints, and mixed constraints (over more than one

constraint domain) and that abstract conjunction as de�ned below always yields a

safe approximation (the proof is too long to be included here).

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 591

De�nition 7.2.2 (Abstract Conjunction). Let AC

1

;AC

2

2Cons

F

m

. Then AC

1

^

F

m

AC

2

= minF(AC

1

[AC

2

[(close(AC

1

) � close(AC

2

))) where SS

1

� SS

2

=

f(S

1

[S

2

) n D j S

1

2 SS

1

;S

2

2 SS

2

;D � S

1

\ S

2

;D 6= ;g n f;g, and close(AC) is

the closure under union of AC .

17

An equivalent but more e�cient algorithm corresponding to De�nition 7.2.2 is

obtained by closing only the necessary parts of AC

1

and AC

2

(i.e., those parts

containing common variables) and by taking care of not generating nonminimal

sets when combining the two.

Let us now present how the abstract operations required by the framework are

computed. One can take the same approach as in Section 6, de�ning AC

entry

, AC

j

in

,

AC

exit

, and AC

0

in terms of abstract projection 9

F

m

, abstract conjunction ^

F

m

,

and abstraction �

f

. However, this results in a very poor precision. The reason

is that it is disastrous to precision to add a numerical constraint to an abstract

constraint store which already describes that constraint. For example, let c be the

constraint a

1

x

1

+ : : :+a

n

x

n

= a

n+1

and AC an abstract constraint store containing

its abstraction, i.e., fx

1

; : : : ; x

n

g 2 AC . Performing �

f

(c) ^

F

m

AC creates an

abstract constraint store AC

0

which includes the singleton fx

i

g for each of the

variables x

i

; hence, AC

0

indicates that each x

i

is possibly nonfree. This computation

re
ects that AC abstracts an equation c

0

, b

1

x

1

+ : : : + b

n

x

n

= b

n+1

. With an

appropriate choice of values for b

1

; : : : ; b

n

, the constraint c ^ c

0

entails a constraint

dx

i

= e which is abstracted as ffx

i

gg, so it is required that fx

i

g 2 AC

0

. When

abstract entry passes an abstraction of a constraint to the entered procedure, then

abstract exit returns it, and the computation of AC

0

as suggested above destroys

the freeness of all the involved variables.

To overcome this problem, we slightly revise the concrete semantics: a constraint

c is represented as a pair (c

old

; c

new

) such that c = c

old

^ c

new

. The corresponding

rewrite rules are:

|The c-transition (if consistent):

S :: hc;G ; (c

old

; c

new

)i

c

! S :: hc;G ; (c

old

; c

new

)i :: hG ; (c

old

; c

new

^ c)i.

|The r-transition:

S :: ha;G ; (c

old

; c

new

)i

r

! S :: ha;G ; (c

old

; c

new

)i :: hb

1

; : : : ; b

n

; (9

�vars(�)

(a =

h ^ c

old

^ c

new

); true)i

where � : h:-b

1

; : : : ; b

n

.

|The exit transition:

S

1

:: ha;G ; (c

o

; c

n

)i

�

:: hb

1

; : : : ; b

n

; (c

old

; true)i :: S

2

:: h2

�

; (c

old

; c

new

)i

exit

! S

1

::

ha;G ; (c

o

; c

n

)i

�

:: hb

1

; : : : ; b

n

; (c

old

; true)i :: S

2

:: h2

�

; (c

old

; c

new

)i :: hG ; (c

o

; c

n

^

9

�vars(a)

(a = h ^ c

new

))i.

The modi�cation of the exit transition is valid because c

o

^ c

n

^ 9

�vars(a)

(a =

17

AC

1

and AC

2

are abstractions of sets of constraints, that are obtained by joining the abstractions

of the individual constraints in the set (De�nition 7.1.10). Thus, closing AC

1

and AC

2

at abstract

conjunction implies that also constrained sets originating from di�erent (independent) constraints

are combined. This results in a possible loss of precision. The nonminimal freeness abstraction of

Dumortier et al. [1993], however, exhaustively represents all combinations of constrained sets when

abstracting each constraint (instead of computing these combinations at abstract conjunction) and

hence prevents the loss of precision.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

592 � M. Garc��a de la Banda et al.

h ^ c

old

^ c

new

) where c

old

= 9

�vars(�)

(a = h ^ c

o

^ c

n

) is equivalent with

c

o

^ c

n

^ 9

�vars(a)

(a = h ^ c

new

).

Now abstract constraint stores are also represented by a pair (AC

old

;AC

new

).

The idea is that (c

old

; c

new

) 2
((AC

old

;AC

new

)) i� c

new

2
(AC

new

) and c

old

^

c

new

2
(AC

old

[AC

new

). Reformulating the safety conditions of the framework for

these modi�cations is a rather straightforward task and is omitted. The abstract

operations can be de�ned as follows. With g a constraint and (AC

old

;AC

new

) its

abstract call constraint, AC

0

is de�ned as (AC

old

;AC

new

^

F

m

�

f

(g)). With g an

atom, (AC

old

;AC

new

) its abstract call constraint, �

1

; : : : ; �

m

the rules of the pro-

gram P de�ning the predicate of g , and �

j

: h

j

:-b

j1

; : : : ; b

jn

j

, AC

entry

is de�ned as

9

F

m

�vars(g)

(AC

old

[AC

new

), and AC

j

in

is de�ned as (9

F

m

�vars(�

j

)

(AC

entry

^

F

m

�

f

(g =

h

j

)); ;). Finally, with (AC

1

old

;AC

1

new

); : : : ; (AC

m

old

;AC

m

new

) as the abstract out con-

straints of rules �

1

; : : : ; �

m

, AC

exit

is de�ned as upp(AC

1

exit

; : : : ;AC

m

exit

) where

AC

j

exit

= 9

F

m

�vars(g)

(AC

j

new

^

F

m

�

f

(g = h

j

)), andAC

0

is de�ned as (AC

old

;AC

new

^

F

m

AC

exit

) and in extension from table as (AC

old

;AC

new

^

F

m

AC

tab

�

g=g

tab

). Notice

that AC

entry

, AC

exit

, and all entries in Table are not pairs but elements of Cons

F

m

and that AC

j

old

does not contribute to AC

j

exit

. For further details, the reader is

referred to Dumortier [1994].

Making the distinction between new and old information in the analysis of logic

programs has been applied previously by Plaisted [1984] and by Mulkers [1993] and

Mulkers et al. [1990; 1994].

Example 7.2.3 (F

m

Analysis for the sumlist Program). The initial call pattern

of sumlist(A;B) is

�

fAg

	

, which is also the call pattern of the recursive call (the

abstract information written out is the union of the old and new components of the

compound abstract constraints).

sumlist(x, w) :- %

�

fxg

	

fx = []; %

�

fxg

	

w = 0g. %

�

fxg; fwg

	

sumlist(x, w) :- %

�

fxg

	

fx = [y j z]; %

�

fxg; fyg; fzg

	

w = y + w

0

g; %

�

fxg; fyg; fzg; fw ;w

0

g

	

sumlist(z,w'). %

�

fxg; fyg; fzg; fwg; fw

0

g

	

The analysis indicates that, at the end of each rule, x and w are possibly nonfree.

In the second rule, w and w

0

are free before the recursive call and depend on each

other.

8. COMBINING THE TWO DOMAINS

The information inferred by the de�niteness analysis and the freeness analysis of

the previous two sections is enough to obtain a full mode system: the former pro-

vides modes d and a and the latter modes f and a. In a combination along the lines

of Cousot and Cousot [1979] (applied in Codish et al. [1995]), the abstract domains

and the original components of the basic operations remain the same, while dur-

ing analysis interactions between the computed abstractions occur to re�ne them.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 593

F = compl(D ;AC)

AC = extend(D ;F)

AC

(D ;F)

Cons

F

m

Cons

DF

m

Fig. 2. Relation between F

m

and DF

m

abstraction (for a given D).

This results in a precise combined analysis, in particular when the analyses being

composed contain a su�cient degree of \overlapping" information. As our domains

are in a sense complementary, we present another kind of combination. Essentially,

the D part of the de�niteness analysis can be used as additional knowledge for the

freeness abstraction. In this section we brie
y present the improved freeness ab-

straction Cons

DF

m

which is based on the minimal freeness abstraction and which

uses additional knowledge about de�niteness of program variables. In Section 9.1,

we discuss how such an interaction between analyzers can be realized in a practical

abstract interpretation system such as PLAI.

De�nite variables occur in the minimal freeness abstraction as possibly nonfree

variables. The presence of their corresponding singletons implies that the abstract

operations have to take them into account | for example when computing the

closure under union | although they play a very speci�c role in the propagation

of possible nonfreeness. E�ciency of the analysis can be improved by separating

out the de�nite variables. The assumption that the de�nite variables are known is

reasonable, as the de�niteness analysis computes a safe approximation (denoted by

defvars(�

D

(C))).

Given the set of de�nite variables D , �

F

m

(C) can be split into a set of single-

tons containing de�nite variables and a set of sets containing no de�nite variables,

namely compl(D ; �

F

m

(C)) = fS 2�

F

m

(C) j S \D = ;g. The DF

m

abstraction

is based on the observation that the minimal freeness abstraction can be expressed

in terms of compl(D ; �

F

m

(C)) and D (without loss of precision). The abstract

domain Cons

DF

m

is a set of pairs (D ;F) where D �Pvar and F 2}(}

;

(Pvar nD))

such that minF(F) = F , to which ? is added as minimal element.

De�nition 8.1 (Abstraction of a Set of Constraints: �

DF

m

). Let C 2 Cons

C

.

Then �

DF

m

(C) = ? if C = ;; otherwise �

DF

m

(C) = (D ;F) where D could

be given by defvars(�

D

(C)) and F = compl(D ; �

F

m

(C)).

There is a 1-to-1 correspondence between the abstractions in Cons

DF

m

and

Cons

F

m

and vice-versa, for a given D (see Figure 2).

De�nition 8.2 (Extend). Let (D ;F)2Cons

DF

m

. Then extend(D ;F) = F [

ffxg j x 2Dg.

The operations on Cons

DF

m

are based on the corresponding operations on

Cons

D

and Cons

F

m

. For their exact de�nitions we refer to Dumortier and Janssens

[1994] and Dumortier [1994]. Concerning abstract conjunction of two abstract con-

straints (D

1

;F

1

) and (D

2

;F

2

), an e�cient operation is obtained as follows: the D

parts are joined �rst, and then the obtained de�niteness information is propagated

onto the freeness parts F

1

and F

2

, thus reducing them considerably, before these

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

594 � M. Garc��a de la Banda et al.

are joined. Consequently, the DF

m

abstract conjunction is much more e�cient

than if one would perform the D and F

m

abstract conjunctions on the D and F

parts separately, afterward deleting the de�nite variables from the resulting F part.

Again, as for the F

m

analysis, an abstract constraint should be split into an

old component, containing the information passed down from a calling environ-

ment, and a new component, containing the information that is gathered during

local analysis of the rule body. Otherwise, too much precision would be lost at

abstract exit .

Example 8.3 (DF

m

Analysis for the sumlist Program). The initial call pattern

is sumlist(d; f), which is also the call pattern of the recursive call. The de�niteness

information is as in Garc��a de la Banda and Hermenegildo [1993]; we obtain the

same freeness information as in Example 7.2.3, but in a more compact form (old

and new components of the freeness part are put together).

sumlist(x ;w) :- % (fxg; ;)

f x = [], % (fxg; ;)

w = 0 g. % (fx ;wg; ;)

sumlist(x ;w) :- % (fxg; ;)

f x = [y j z], % (fx ; y ; zg; ;)

w = y + w

0

g, % (fx ; y ; zg; ffw ;w

0

gg)

sumlist(z ;w

0

). % (fx ;w ; y ; z ;w

0

g; ;)

9. EXPERIMENTAL RESULTS

In this section we present the results of the experiments that we have performed in

order to evaluate the e�ciency and accuracy of the analyses. We start by describing

the implementation and the benchmarks used. Our attention then �rst focuses on

the issue of e�ciency and, thus, of the feasibility and scalability of the approach.

This is an important issue, since it has been shown that even relatively simple

analyses of LP programs have worst-case exponential behavior [Debray 1995]. On

the other hand, it has also been shown experimentally that average-case behaviors

have much better characteristics for typical analyses [Bueno et al. 1994; Debray

1992b; Le Charlier and Van Hentenryck 1994; Muthukumar and Hermenegildo 1992;

Van Roy and Despain 1992; Warren et al. 1988]. It is obviously interesting to explore

if this practical behavior carries over to our CLP analyses, both when analyzing

CLP programs and when analyzing traditional LP programs (for comparison with

LP analyzers). To study this point, we present a summary of the analysis times

for a set of benchmarks which includes CLP programs (both relatively small and

larger ones) and LP programs. The larger CLP programs are the largest programs

available to us, and they should be instrumental in giving an idea of the scalability

of the results in the new application area.

We then focus on the e�ect of an important technique related to the scalability

issue: the application of widening operations in order to trade precision for e�-

ciency. We investigate the e�ects on the e�ciency and precision of our analyses of

the introduction of widening in the freeness abstraction.

Finally, we perform a more detailed evaluation, focused on a representative set

of CLP programs, in order to gain insight into the potential of the analyses, the

main causes for loss of accuracy, and the advantages and disadvantages of the

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 595

combined analyses. We do not address herein the obviously interesting issue of how

the derived information can be used to optimize CLP programs, which we consider

to be outside the scope of this article. However, and as mentioned previously,

this subject has recently been addressed by several authors, and their results show

that, if information from global analysis such as that obtained by our analyses is

available, it can in fact be used to perform optimizations which result in signi�cant

speedups [Dumortier 1994; Garc��a de la Banda 1994; Ja�ar and Maher 1994; Ja�ar

et al. 1992; J�rgensen et al. 1991; Marriott and Stuckey 1993; Marriott et al. 1994].

9.1 Implementation Issues

The abstract domains described in Sections 6, 7, and 8 have been implemented

within the PLAI abstract interpretation system [Muthukumar and Hermenegildo

1990; 1992] which is an incarnation of the framework presented. The resulting

analyses can deal with CLP(H,N) programs and with some of the PrologIII-speci�c

features, namely tuples and size relations.

A few details of PLAI are worth mentioning, since they are instrumental in un-

derstanding the results obtained during our evaluation. PLAI in principle assumes

�nite abstract domains and analyzes each predicate for each distinct key (the pair

ha;AC

entry

i). This implies that PLAI performs a quite detailed analysis and can

obtain several annotations for the same predicate (versions). The current imple-

mentation allows the user to choose between obtaining a transformed program in

which the di�erent versions of the predicates appear explicitly and are each an-

notated with their corresponding inferred information or, alternatively, obtaining

essentially the original program where predicates are annotated with the upper

bound of the annotations of the di�erent versions of that predicate. In our experi-

ments the former approach was selected (exceptions are indicated).

It is important to note that the only modi�cation that was needed for extending

PLAI to CLP languages was the elimination of a \uni�ability" test performed be-

fore executing the abstract entry function. This test is performed in the analysis

of traditional LP languages in order to avoid analyzing rules whose head does not

(syntactically) unify with the current subgoal. Naturally, the domain-dependent

abstract functions had to be implemented and incorporated into the system, but

almost all the existing implementation was reused. We argue that this strongly sup-

ports our claim regarding the practical usefulness of the approach that we propose,

especially considering that, as we believe our measurements show, the resulting

system can analyze reasonably sized programs in quite reasonable times.

Finally, the integration of the DF

m

analyzer has been performed as follows.

Since the DF

m

analysis uses de�niteness information provided by the D analysis,

the D and DF

m

analysis are executed in a coroutining fashion. At each point of

the analysis (i.e., at the application of one of the higher-level abstract operations),

the de�niteness operation is called �rst. Afterward, the set of de�nite variables is

extracted from the result of that operation and passed as an extra parameter to the

freeness operation. If the de�niteness operation results in the abstract constraint

?, the freeness operation proceeds with ?. Thus, information is always passed from

the de�niteness to the freeness analysis; information passing in the other direction

is restricted to the passing of ? information: if a freeness operation yields ? where

the preceding de�niteness operation did not give ?, the subsequent de�niteness

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

596 � M. Garc��a de la Banda et al.

analysis continues with ? (thus computation of useless information is avoided).

The e�ect of such combination can be quite subtle. On the one hand, the ef-

�ciency (both in terms of memory and time) of the DF

m

analyzer can be better

than that of simply running both the D and F

m

analyzers. This can be due to

several factors. First, the potential reduction in the size of the DF

m

abstractions

can reduce the memory consumption, which in turn a�ects the analysis times. Sec-

ond, reductions in the size of the abstract constraints can also reduce the cost of

the abstract operations. Finally, the combination has a \loop-merging" e�ect | a

single pass over the program is su�cient for DF

m

instead of the two passes needed

otherwise.

On the other hand, if one of the analyses requires more �xpoint iterations than

the other, this may have a negative e�ect on the e�ciency of the combined execu-

tion. If, for example, the de�niteness analysis reaches the �xpoint �rst, the extra

iterations will imply some unnecessary table lookups, projections, and extensions

for this analyzer. If the freeness analyzer is the one who �rst reaches the �xpoint,

the overhead may be more substantial. This is because part of the de�niteness

abstraction is included in the freeness abstraction, and therefore all abstract oper-

ations may be redone. Such extra iterations could be avoided by �rst performing

the de�niteness analysis by itself and then using the programs annotated by the

de�niteness analysis as input for the freeness analysis. The detailed evaluation for

a subset of CLP programs discusses the interaction in depth.

9.2 Benchmarks

The global set of benchmarks used contains 29 CLP programs and 25 LP programs.

The CLP programs solve typical CLP problems and include small to relatively large

programs (i.e., programs with 1 to 50 predicates and with 2 to 110 rules). Part of

them are taken from the CLP(<) distribution, the PrologIII distribution, and from

the CLP literature [Colmerauer 1990; Van Hentenryck 1989; Van Hentenryck and

Ramachandran 1994]. Others have been obtained from the partners in the PRINCE

ESPRIT project, from P. Van Hentenryck, and from the vendor of Prolog III and

Prolog IV, PrologIA. We have also included a large collection of LP benchmarks,

ranging from relatively simple to quite complex programs, which has been used

previously in the literature to evaluate analyzers for LP programs [Codish et al.

1995; Mulkers et al. 1995]. The number of predicates in these benchmarks ranges

from 1 to 79 and the number of rules from 2 to 187. Since all LP programs are

also CLP programs, the latter set of benchmarks adds another dimension to the

benchmark suite which allows us to expand our study of the scalability issue. A

brief description of all the benchmarks is given in the Appendix. Here we include

Table I and Table II which list properties of the benchmark programs to which the

complexity of the analysis is related. The size of the programs is indicated by means

of the number of user-de�ned predicates (Pr) and the number of rules (Rl). The

recursiveness of the programs is indicated by means of the number of recursive pred-

icates that are not tail-recursive (R), the number of tail-recursive predicates (TR),

and the number of nonrecursive predicates (NR). Programs containing recursive

predicates lead to a more complex analysis than nonrecursive programs, especially

if they are not tail-recursive. The tables also list the maximum and average number

of variables in the program rules (MaxV and AvgV). The number of variables in a

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 597

Table I. Properties of the CLP Benchmarks

Program Pr Rl R TR NR MaxV AvgV

dnf 3 32 2 1 0 7 2.3

vecmat1 8 15 0 7 1 8 2.9

laplace1 2 4 0 2 0 12 6.0

�b 1 3 1 0 0 3 1.0

meal 6 11 0 0 6 6 0.9

listlength 1 2 0 1 0 4 2.0

sumlist 1 2 0 1 0 4 2.0

mining 25 50 4 10 11 18 2.5

power 18 42 0 9 9 19 3.3

rectangle 5 10 2 2 1 9 3.3

vecmat2 8 15 0 7 1 8 3.1

num 17 97 0 0 17 10 2.4

laplace2 2 4 0 2 0 16 10.8

sendmm 4 7 0 3 1 11 2.7

trap 4 5 0 1 3 9 6.4

runkut 4 5 0 1 3 9 6.2

mortgage1 1 2 0 1 0 5 4.0

mortgage3 1 2 0 1 0 5 4.0

mortgage2 1 2 0 1 0 5 4.0

bridge 29 90 0 14 15 13 1.6

color4 8 21 0 3 5 9 2.2

color4F 8 110 0 3 5 9 0.4

cutstock 50 77 3 19 28 21 3.9

magic 7 14 0 6 1 5 2.4

magicC 5 9 1 3 1 8 2.4

periodic 3 5 0 1 2 11 4.0

perm 11 20 0 7 4 6 2.6

triangle 34 47 0 5 29 24 6.3

warehouse 12 38 1 4 7 21 2.4

rule typically a�ects the size of the abstract constraints for the di�erent program

points in the rule, which in turn in
uences the cost of the abstract operations.

9.3 E�ciency Results

In order to get an idea of the feasibility of the analyses proposed in this article Table

III and Table IV list the total analysis times for the CLP and the LP programs

respectively. The �gures include the time for garbage collection and stack shifts

and are averaged over 10 runs. All measurements have been done on a SUN Sparc

2 using SICStus 2.1 with the \fastcode" option. \{" indicates that the analyzer did

not produce a result (because it ran out of memory). The last column in Tables III

and IV gives the ratio of time taken by the combined analysis DF

m

to the sum of

D and F

m

. \Inf" indicates that the combined analysis is de�nitely better, since in

these cases F

m

does not produce a result. The average of Table III does not take

into account laplace1.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

598 � M. Garc��a de la Banda et al.

Table II. Properties of the LP Benchmarks

Program Pr Rl R TR NR MaxV AvgV

akl 10 18 2 4 4 10 3.6

akl old 7 12 0 4 3 10 3.6

ann 53 187 19 13 21 17 2.5

append 1 2 0 1 0 4 2.5

bid 22 53 0 7 15 7 2.2

boyer 28 138 3 1 24 8 2.3

browse 16 32 1 11 4 12 3.7

deriv 15 62 4 3 8 6 3.0

grammar 7 15 0 0 7 6 1.9

icomp 71 170 19 18 36 20 5.0

kalah 41 78 9 10 22 12 3.8

mapcolor 8 12 0 4 4 6 3.1

peephole 16 134 10 3 3 8 2.8

pg 10 18 0 6 4 10 3.6

plan 16 29 0 4 12 6 2.7

qplan 44 148 16 11 17 16 3.1

qsort 3 6 1 1 1 7 3.5

queens 5 9 0 4 1 5 2.4

rdtok 18 55 9 6 3 7 3.3

read 25 91 7 4 14 13 3.9

serialize 6 12 2 2 2 7 3.8

tarjan 37 90 12 14 11 20 4.9

vlok 46 137 0 17 29 12 2.6

vlokgr 46 137 0 17 29 12 2.6

witt 79 163 22 23 34 18 4.5

For most benchmarks the analysis times are acceptable. The averageD and DF

m

analysis times of the LP programs are better than for the CLP benchmarks. This is

to be expected, since constraints in LP programs (uni�cation constraints) are in gen-

eral less complex than typical CLP constraints, leading to smaller constrained sets

and smaller abstractions. Also, there is usually more de�niteness information to be

exploited: LP programs are frequently \generate-and-test," whereas CLP programs

are often of the \constrain-and-generate" type, which implies that de�niteness infor-

mation is only derived toward the end of the program. For most programs (46 out of

54) the F

m

analysis takes longer than the D analysis. This can be partly explained

by the di�erent natures of the abstractions. D propagates de�niteness information

and collects de�nite dependencies between nonde�nite variables. F

m

propagates

possible nonfreeness and collects possible dependencies among all variables. The

freeness analysis inherently has a larger time and space complexity than the de�nite-

ness analysis. But also the abstract query

18

which is analyzed for the benchmark

programs plays an important role (e.g., laplace with laplace1(d) and laplace2(M)

where M is a matrix of free variables, and mortgage with mortgage1(a; a; a; a;f),

mortgage2(a; a; a; f ; a), and mortgage3(f ;d;d;d;d)).

18

More details are in the Appendix.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 599

Table III. Timings of the Analyses for the CLP Programs

Analysis times (seconds) Comparison

Program

D F

m

DF

m

DF

m

=(D + F

m

)

dnf 0.960 5.158 3.492 0.57

vecmat1 0.116 0.438 0.298 0.54

laplace1 0.060 { 0.134 Inf

�b 0.044 0.082 0.092 0.73

meal 0.032 0.074 0.078 0.74

listlength 0.010 0.022 0.020 0.63

sumlist 0.014 0.028 0.020 0.48

mining 1.852 7.990 9.700 0.99

power 2.192 10.558 4.688 0.37

rectangle 6.960 3.172 11.184 1.10

vecmat2 0.324 0.544 0.928 1.07

num 0.976 1.680 2.000 0.75

laplace2 0.776 0.262 1.222 1.18

sendmm 1.378 3.198 4.154 0.91

trap 2.472 0.494 3.718 1.25

runkut 0.052 0.394 0.142 0.32

mortgage1 0.124 0.148 0.358 1.32

mortgage3 0.030 0.148 0.122 0.69

mortgage2 0.125 0.086 0.206 0.98

bridge 3.316 9.470 33.508 2.62

color4 0.226 1.346 0.922 0.59

color4F 0.416 1.798 1.684 0.76

cutstock 1.250 5.552 2.940 0.43

magic 0.172 0.406 0.346 0.60

magicC 0.522 0.290 0.906 1.12

periodic 0.748 0.320 1.430 1.34

perm 0.250 0.760 0.958 0.95

triangle 52.030 216.662 256.734 0.96

warehouse 1.044 0.742 1.834 1.03

Average 2.706 9.708 11.856 0.89

For some benchmarks the execution time of F

m

becomes quite large (triangle

and tarjan) or even in�nite (laplace1). The combined DF

m

analysis seems to o�er

a partial solution. The size of the F

m

abstractions can be reduced (sometimes

substantially) when de�niteness information is available. For laplace1 and tarjan,

DF

m

has very good performance, but triangle does not really seem to bene�t

from the combination. The ratio DF

m

=(D + F

m

) shows that also for the other

programs the DF

m

analysis performs quite well. Due to the previously discussed

interactions with the �xpoint computations DF

m

sometimes introduces overhead,

but this remains acceptable (see the programs with a ratio > 1). The average for

the ratio DF

m

=(D + F

m

) is 0.89 for the CLP programs (not taking into account

laplace1) and 0.37 for the LP programs. The execution times forDF

m

vary between

0.020 and 256.7 seconds.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

600 � M. Garc��a de la Banda et al.

Table IV. Timings of the Analyses for the LP Programs

Analysis times (seconds) Comparison

Program

D F

m

DF

m

DF

m

=(D + F

m

)

akl 0.264 2.850 0.654 0.21

akl old 0.182 2.626 0.454 0.16

ann 6.944 6.936 14.754 1.06

append 0.018 0.108 0.030 0.24

bid 0.348 1.304 0.708 0.43

boyer 3.850 9.822 14.756 1.08

browse 1.004 1.508 1.912 0.76

deriv 1.174 2.938 1.774 0.43

grammar 0.044 0.172 0.122 0.56

icomp 6.914 30.480 33.512 0.90

kalah 1.002 4.374 1.700 0.32

mapcolor 0.554 33.490 31.444 0.92

peephole 2.658 14.382 10.510 0.62

pg 0.192 0.868 0.386 0.36

plan 0.222 1.544 0.560 0.32

qplan 1.262 17.060 3.376 0.18

qsort 0.096 0.312 0.274 0.67

queens 0.066 0.284 0.140 0.40

rdtok 1.740 4.434 4.616 0.75

read 2.162 9.818 4.222 0.35

serialize 0.784 0.966 1.742 1.00

tarjan 1.900 124.340 6.126 0.05

vlok 1.236 34.452 3.886 0.11

vlokgr 0.964 33.826 2.688 0.08

witt 2.354 17.376 4.552 0.23

Average 1.517 14.251 5.796 0.37

9.4 E�ects of Widening

As mentioned before, we have also studied the e�ect of the application of widening

operations in order to trade precision for e�ciency, which is an important technique

related to the scalability issue. For the current set of benchmarks, scalability seems

to be a problem of the freeness abstraction but not of the de�niteness abstraction.

Therefore, we decided to apply widening in the freeness analysis and in the freeness

part of the DF

m

analysis. The idea is to avoid the close operation (used for

example during abstract conjunction) for large freeness abstractions, as in those

cases this operation is too expensive. An abstraction is considered to be too large

if it contains a number of nonsingleton sets above some bound. We experimented

with two di�erent bounds B : 10 (referred to as wid10 in Table V) and 8 (wid8 in

Table V). If an abstraction contains B or more nonsingletons, widening is applied.

A strong form of widening was used: that all variables involved in the abstraction

are given mode \any."

Table V indicates the in
uence of widening on the timings and precision of the

F

m

analysis and freeness part of the DF

m

analysis. As mentioned before, the

column \Wid" indicates whether the analyzer includes widening or not and, if so,

what the bound is on the number of nonsingleton sets in the abstraction (\wid10"

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 601

Table V. Widening Information

Program Wid Free Time F

m

Time DF

m

Mem F

m

Mem DF

m

laplace1 nowid 0 { 0.134 { 4.298

wid10 0 0.890 � 4.298 �

wid8 0 0.610 � 4.298 �

mining nowid 143 7.990 9.700 4.888 4.950

wid8 143 2.500 4.660 4.829 4.892

power nowid 191 10.558 4.688 4.888 4.856

wid8 191 3.610 � 4.829 �

rectangle nowid 18 3.172 11.184 4.794 4.825

wid8 18 2.360 10.250 4.798 4.798

sendmm nowid 66 3.198 4.154 4.888 4.888

wid10 57 0.310 1.670 4.298 4.798

wid8 57 0.290 1.710 4.298 4.798

bridge nowid 204 9.470 33.508 4.888 6.075

wid8 204 5.490 9.380 4.829 4.892

triangle nowid 1664 216.662 256.734 13.263 13.950

wid10 1508 44.250 106.370 6.392 6.329

wid8 1508 6.450 98.710 5.204 6.329

tarjan nowid 439 124.340 6.126 6.138 5.075

wid10 439 89.280 � 6.142 �

wid8 439 32.020 � 6.142 �

vlok nowid 216 34.452 3.886 8.513 5.138

wid10 216 13.370 � 5.142 �

wid8 216 8.320 � 5.142 �

vlokgr nowid 216 33.826 2.688 8.513 5.138

wid10 216 13.400 � 5.142 �

wid8 216 8.440 � 5.142 �

or \wid8"). The column \Free" indicates the number of free-variable annotations

derived by the analysis.

19

It shows when precision is lost due to widening. The

following two columns contain the timings (in seconds) for the F

m

and DF

m

anal-

yses respectively. The last two columns indicate the memory consumption (in

megabytes, giving maximum amount of memory allocated by the UNIX system to

the PLAI process). The table contains only those benchmarks where widening is

actually applied: for wid8, 10 out of the 54 benchmarks e�ectively apply widening

in the case of F

m

, and 5 in the case of DF

m

. For wid10, widening happens only

in, respectively, 6 and 2 benchmarks. \�" indicates that widening is not triggered

for the particular program and analysis (time and memory �gures then correspond

to the nowid �gures). Notice that widening is not triggered in the case of the DF

m

analysis of the LP benchmarks. Applying the widening operation (wid8) allows an-

alyzing the laplace1 benchmark in 0.610 seconds using 4.298MB, where the original

F

m

analysis (without widening) did not produce a result within reasonable time

and memory bounds (indicated by \{" in the table).

19

These �gures are the same for the F

m

and DF

m

analysis, and they are computed selecting

the analysis output option that returns an annotated version of the original program with each

predicate annotated with the upper bound of the analysis results for all the di�erent entry-exit

patterns (the di�erent version) inferred during the analysis.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

602 � M. Garc��a de la Banda et al.

In general, if widening is applied it improves considerably the execution times and

memory consumption. For some programs (sendmm and triangle) the di�erence is

an order of magnitude. The maximum analysis time for F

m

(nowid) is 216.7 sec.

for triangle, and with wid8 it goes down to 6.5 sec., while for DF

m

it goes down

from 256.7 to 98.7 sec. The impact of widening is not the same for F

m

and DF

m

.

In the case of triangle this is due to the D part of the analysis. For the D analysis,

the execution time of triangle (52 sec.) di�ers one order of magnitude with respect

to the other execution times. The D analysis infers large de�nite dependency sets,

since triangle uses the CLP \constrain-and-generate" programming technique. A

widening for the D analysis could lessen this kind of ine�ciencies.

The e�ect on the precision is acceptable, as only in two cases (sendmm and

triangle) precision is lost when considering for each predicate the single upper bound

which is computed from the analysis results for the di�erent entry-exit patterns.

These experiments suggest that widening allows to avoid exponentional time and

memory consumption and to keep the loss of precision very small.

9.5 A More Detailed Evaluation

In addition to the more general study reported above, in order to gain more in-

sight into the behavior of the analyses in typical CLP programs we performed a

more detailed evaluation on a subset of the benchmarks (namely, the �rst 19 CLP

programs of Table I), which we consider a representative selection of typical CLP

programs.

9.5.1 A Closer Look at the E�ciency Results: Measurements. Our aim is (1)

to study the time and memory consumption of each of the analyzers (only taking

into account the kernel of the analysis, i.e., the execution of the �xpoint algorithm,

and not the pre- and postprocessing phase) and (2) to evaluate the e�ectiveness of

the combined analysis with respect to the individual D and F

m

analyses. For this

purpose the following �gures have been collected:

|Regarding the �xpoint computation: the number of entry-exit patterns for all

predicates (EE) and for the recursive predicates only (EEr), and the number of

�xpoint iterations (FIX). They are presented in Table VI. These numbers largely

determine the complexity of the analyses and will be used to explain the time

and memory �gures of the combined analysis, when compared to those of the

individual D and F

m

analyses. Table VI also lists the number of syntactically

di�erent calls modulo renaming (DCls), which is a lower bound on the number of

entry-exit patterns that will be computed by the analyzer under the assumption

that the program does not have dead code.

|Regarding time consumption: the total analysis times (including the time for

garbage collection and stack shifts) averaged over 10 runs. They are given in

Table III, the last column provides the execution time comparison.

|Regarding memory consumption:

(1) the maximal amount of memory allocated by the UNIX system to the PLAI

process. It falls between 4.293808MB and 4.918808MB (except for the F

m

analysis of laplace1 which runs out of memory). Note that the sum of the

memory allocated by the D and the F

m

analyzers is always larger than the

memory allocated by DF

m

;

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 603

Table VI. Number of Fixpoint Iterations and Entry-Exit Patterns

D F

m

DF

m

Program DCls

EE EEr FIX EE EEr FIX EE EEr FIX

dnf 14 14 14 14 26 26 26 26 26 26

vecmat1 9 9 8 8 11 10 13 11 10 10

laplace1 4 4 4 4 - - - 4 4 4

�b 3 3 3 3 3 3 3 3 3 3

meal 6 6 0 0 6 0 0 6 0 0

listlength 1 1 1 1 1 1 1 1 1 1

sumlist 1 1 1 1 1 1 1 1 1 1

mining 32 36 25 39 32 20 28 36 25 39

power 24 28 19 27 24 15 18 28 19 27

rectangle 8 11 10 21 9 8 14 11 10 22

vecmat2 10 12 11 16 13 12 15 16 15 22

num 17 20 0 0 17 0 0 20 0 0

laplace2 3 3 3 4 3 3 4 3 3 4

sendmm 6 6 5 7 6 5 6 6 5 7

trap 5 11 4 5 5 2 3 11 4 5

runkut 6 6 1 1 6 1 2 6 1 2

mortgage1 2 2 2 2 3 3 3 3 3 3

mortgage3 2 2 2 2 3 3 3 3 3 3

mortgage2 2 2 2 2 2 2 2 2 2 2

(2) the total amount of global stack space (Glob) and program space (Prog)

20

used during the actual analysis. This is given in Table VII. The last column

in Table VII compares the sum of the global stack and program space used by

the DF

m

analysis with the maximum of the sum of global stack and program

space used in the D and the F

m

analyses, i.e., the memory consumption

21

comparison �gure.

In order to aid in the interpretation of the results we divide the programs into

two classes:

(1) Programs that, for the given entry patterns, constrain many variables from the

start to de�nite values and related dependencies (dnf, vecmat1, laplace1, �b,

meal, listlength, and sumlist).

(2) Programs that do not allow inferring much de�niteness information or where

it is inferred only toward the end of the program (mining, power, rectangle,

vecmat2, num, laplace2, sendmm, trap, runkut, mortgage1, mortgage3, and

mortgage2). They create and handle large sets of possible dependencies.

In each class the benchmarks are ordered starting with the highest estimate for the

size of the AND-OR graph.

22

20

The global stack stores the compound terms. Program space refers to the amount of memory

allocated for compiled and interpreted rules, symbol tables, the record database, and the like.

21

In what follows, we refer to the global stack and program space consumption simply as memory

consumption.

22

We use the formula (Rl=Pr) � AvgV � (NR + FIX � (TR + 3 � R)) with FIX of DF

m

given in

Table VI and the rest in Tables I and II.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

604 � M. Garc��a de la Banda et al.

Table VII. Global Stack Space and Program Space Used During Analysis (in megabytes)

D F

m

DF

m

Comparison

Program

Glob Prog Glob Prog Glob Prog DF

m

=max (D;F

m

)

dnf 0.303 0.065 1.737 0.133 1.081 0.149 0.66

vecmat1 0.049 0.008 0.194 0.011 0.110 0.013 0.60

laplace1 0.033 0.004 { { 0.060 0.006 Inf

�b 0.022 0.003 0.045 0.003 0.040 0.004 0.92

meal 0.018 0.004 0.041 0.004 0.038 0.005 0.96

listlength 0.014 0.001 0.019 0.001 0.017 0.001 0.90

sumlist 0.014 0.001 0.021 0.001 0.017 0.001 0.82

mining 0.805 0.054 1.312 0.055 2.121 0.083 1.61

power 1.062 0.063 2.151 0.052 1.825 0.090 0.87

rectangle 3.054 0.019 0.856 0.016 4.127 0.028 1.35

vecmat2 0.147 0.012 0.216 0.014 0.401 0.022 1.84

num 0.216 0.064 0.532 0.061 0.541 0.084 1.05

laplace2 0.444 0.008 0.105 0.006 0.535 0.011 1.21

sendmm 0.484 0.012 0.792 0.010 1.250 0.017 1.58

trap 1.280 0.017 0.198 0.007 1.629 0.024 1.27

runkut 0.026 0.005 0.145 0.007 0.061 0.008 0.45

mortgage1 0.076 0.002 0.092 0.004 0.217 0.004 2.30

mortgage3 0.020 0.002 0.092 0.004 0.064 0.004 0.71

mortgage2 0.076 0.002 0.063 0.003 0.135 0.003 1.77

Evaluation. For the �rst class of programs, the time and memory �gures corre-

spond quite well with the complexity estimate used for ordering them. The number

and the size of the dependencies is small and hence has not much in
uence on the

�gures. For the second class of programs, however, the complexity estimate is no

longer adequate to predict the time and memory consumption. In this case, the

number and the size of the dependencies can have a more important impact. Note

that for the F

m

analysis, the programs with large time and memory �gures (power ,

mining , sendmm, and rectangle) have relatively many variables in their rules (i.e.,

large MaxV and AvgV numbers in Tables I and II). This trend can also be observed

for the D analysis (rectangle, trap, power , mining , and sendmm). This trend is also

con�rmed by the actual output of the analysis and by the correlation between anal-

ysis time and global stack consumption, since the latter is dominated by the size of

the abstract constraints built during the analysis.

TheDF

m

analysis yields quite satisfactory results for the considered benchmarks,

both concerning time and memory consumption. The execution times vary between

0.020 and 11.184 seconds. For most benchmarks (14 out of 19), the execution time

comparison �gure of Table III is smaller than 1. Also, for 10 of the 19 benchmarks

the memory consumption comparison �gure of Table VII is smaller than 1, and

only for one benchmark it is larger than 2. This provides evidence that combining

the D and F

m

analyzers indeed results in a practical full mode analysis system. We

now perform a more detailed evaluation of these �gures, based upon the classes of

programs and their complexity in terms of entry-exit patterns and �xpoint iterations

(Table VI).

As mentioned before, the �rst class of programs yields many de�nite variables

right at the beginning of the execution. For these programs, the de�niteness infor-

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 605

mation is e�ectively used in the freeness part. This is re
ected both in the timings

(upper part of Table III) and the memory consumption (upper part of Table VII).

In some cases (dnf , vecmat1), the D analyzer has to iterate along with the F

m

analyzer when combining the two, i.e., the FIX and EE numbers of the DF

m

an-

alyzer correspond to the ones of the F

m

analyzer and are larger than those of the

D analyzer (Table VI). But even then, this overhead is more than compensated

by the bene�t of exploiting de�niteness information, so there is still a considerable

improvement of DF

m

with respect to D + F

m

.

For the second class of programs, the combination does not always pay o�.

Clearly, it depends on whether or not the gain obtained by exploiting de�nite-

ness information in the freeness part outweighs the overhead caused by extra �x-

point iterations (FIX) and entry-exit patterns (EE) in DF

m

compared to D and/or

F

m

. Four situations can be distinguished concerning the FIX and EE numbers of

the DF

m

analysis with respect to those of D and F

m

. First of all, for the mining ,

power , num, rectangle, trap, and sendmm programs, the EE and FIX �gures for the

F

m

analyzer are smaller than the ones for the D analyzer. Thus, when combining

the two analyses, the DF

m

analysis has to perform at least as many iterations as the

D analysis. However, it now not only computes the de�nite part, but it also takes

into account the (reduced) freeness part. In the case of mining , power , sendmm,

and num, this overhead is outweighed by the gain obtained from exploiting de�-

niteness information (the execution time comparison �gures are smaller than 1, and

the memory consumption comparison �gures fall between 0.87 and 1.61), whereas

for rectangle and trap, the freeness part cannot bene�t much from the de�niteness

information (note that in those cases the time and memory consumption for the

D analysis is large | both by itself and compared with the F

m

analysis | which

indicates that mostly de�nite dependencies are derived rather than de�nite vari-

ables). Second, for the runkut , mortgage1, and mortgage3 benchmarks, the EE

and FIX numbers of the DF

m

analysis correspond to those of the F

m

analysis and

are larger than the D ones. In the case of runkut and mortgage3, the time and

memory �gures show that the freeness part can bene�t quite well from the de�nite

information. Also, the D time and memory consumption is small compared to that

of F

m

, so the extra iterations of D (when forced to execute along with F

m

) are not

outweighing the gain. For mortgage1 however, the situation is just the opposite:

the execution time comparison �gure is larger than 1, and the memory consumption

comparison �gure is larger than 2. Third, the laplace2 and mortgage2 benchmarks

have the same EE and FIX numbers for all analyses. Although there are no extra

iterations, there is almost no de�niteness information to be exploited. The combi-

nation may cause a slight overhead due to the extra operations dealing with the (in

this case useless) communication between the two analyses (cf. time for laplace2).

Finally, for the vecmat2 benchmark, the DF

m

analysis performs more iterations

and has more entry-exit patterns than either one of the D and F

m

analyses. This

results in a slight overhead in memory consumption and analysis time.

9.5.2 Accuracy Results: Measurements. The accuracy of the analyzers is deter-

mined by comparing the outcome of concrete executions of the benchmarks with

the results obtained by the analyses. More precisely, the correct (concrete) modes

of the variables at each program point are compared with the modes derived by

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

606 � M. Garc��a de la Banda et al.

Table VIII. Accuracy of the Analyzers (only w.r.t. variable modes)

Program Annot ImpD ImpF PrecD PrecF PrecD+F Imp. cause

dnf 3772 0 33 100.0 99.1 99.1 (1)

vecmat1 125 0 6 100.0 95.2 95.2 (2)

laplace1 112 0 0 100.0 100.0 100.0

�b 12 0 0 100.0 100.0 100.0

meal 56 0 0 100.0 100.0 100.0

listlength 12 0 0 100.0 100.0 100.0

sumlist 12 0 0 100.0 100.0 100.0

mining 1064 105 80 90.1 92.5 82.6 (1)

power 1256 126 73 89.9 94.2 84.1 (1,2)

rectangle 343 0 4 100.0 98.8 98.8 (1)

vecmat2 208 0 13 100.0 93.7 93.7 (1,2)

num 1402 13 0 99.1 100.0 99.1

laplace2 124 0 60 100.0 51.6 51.6 (1)

sendmm 141 0 0 100.0 100.0 100.0

trap 135 73 8 46.0 94.0 40.0 (2)

runkut 119 0 14 100.0 88.2 88.2 (2)

mortgage1 54 0 8 100.0 85.0 85.0 (2)

mortgage3 36 3 2 91.6 94.4 86.0 (2)

mortgage2 36 0 0 100.0 100.0 100.0

Average 95.6 94.0 89.6

the analyzers. If specialized versions of a predicate arise during concrete execution,

these are considered separately. The predicate versions produced by the analyzers

are mapped onto the concrete versions (usually, there is a one-to-one correspon-

dence between the concrete and abstract predicate versions; in some cases however,

several abstract versions map onto one concrete version or vice-versa). The �gures

for the DF

m

analysis are presented in Table VIII (a similar study could be made for

the individual D and F

m

analyses which may infer a di�erent number of predicate

versions; herein we approximate these �gures by considering the D part and the

F

m

part of the combined DF

m

analysis separately). Column \Annot" gives the

total number of variable annotations (summed up over the predicate versions and

the program points). \ImpD" and \ImpF" give the number of imprecise variable

annotations (derivation of mode a instead of d, respectively mode a instead of f).

The columns \PrecD" and \PrecF" give the percentages of variable modes that

are correctly inferred by the D part of the analysis and the F

m

part respectively.

\PrecD+F" is the percentage of correct variable modes derived by the combined

DF

m

analysis.

23

The average precision is shown at the bottom of the table. The

last column indicates the cause of imprecision.

23

This number is lower than or equal to the corresponding PrecD and PrecF number, as it takes

into account both imprecision due to deriving mode a instead of d and that due to deriving mode

a instead of f , whereas in the D part only imprecision of the type \mode a instead of d" is taken

into account (as mode a is the most precise abstraction for free variables in the D analysis), and

since in the F

m

part only imprecision of the type \mode a instead of f" is taken into account (as

mode a is the most precise abstraction for de�nite variables in the F

m

analysis).

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 607

Besides the accuracy of mode annotations, one can additionally consider the

accuracy of the dependency information.

24

In the case of possible dependencies,

the same precision is obtained with the F

m

and DF

m

analyzers. Even if correct

modes are inferred at a particular program point, the inferred possible dependencies

may not occur in the concrete case or may be too strong compared to the concrete

dependencies, thus possibly leading to imprecise mode annotations at subsequent

program points. Imprecise dependency information not a�ecting the precision of

the mode information (not visible in Table VIII) is derived when analyzing the

sendmm program (about 40% of the dependencies are too strong) and, to a lesser

extent, also in the power and runkut benchmarks.

Evaluation. The average precision for the D part is 95.6%, 94% for the F

m

part,

and 89.6% for the combined DF

m

analyzer. For the D part and the combined

DF

m

analysis, the worst case occurs for the trap benchmark (respectively 46% and

40%). For the F

m

part, the worst results are for the laplace2 benchmark (51.6%).

There are three sources of inaccuracy: (1) the lack of information about term

structures, (2) the treatment of nonlinear constraints, and (3) the abstraction of

primitive constraints instead of the abstraction of conjunctions of primitive con-

straints. The �rst is mainly related to inaccuracy of modes. The third mainly

a�ects the accuracy of the dependency information. The second in
uences both.

Regarding the lack of information about term structure, when selecting a com-

ponent of a partially instantiated term having mode a, the de�niteness analysis

cannot discover the de�niteness of a de�nite subterm. Similarly, the freeness anal-

ysis cannot recognize free variables within the term. Consider a program scheme

of the form

build structure(Data); constrain(Data); instantiate(Data)

where one �rst builds a data structure, then imposes constraints on that structure,

and �nally instantiates it. Such a scheme is used quite frequently within CLP (e.g.,

mining , power , rectangle, sendmm,...). It gives rise to a loss of precision when se-

lecting components of the structure within constrain=1 and instantiate=1. Impreci-

sion due to the absence of structure information occurs in case of the dnf , rectangle,

laplace2, and mining benchmarks and is causing part of the imprecision in power

and vecmat2. Although adding structure information [Janssens and Bruynooghe

1992; Le Charlier and Van Hentenryck 1994; Mulkers et al. 1995] could clearly im-

prove precision, it also complicates the analysis in the sense that, when changing

the abstract representation for the uni�cation part, the interaction between the uni-

�cation and numerical part has to be revised. The second source of imprecision is

the abstraction of nonlinear constraints. This is the cause of inaccuracy in runkut ,

trap, mortgage1, mortgage3, vecmat1 and partly in power and vecmat2. Finally,

in the sendmm benchmark, imprecise possible dependency information is derived

due to abstracting primitive constraints and joining their abstraction via abstract

conjunction, instead of abstracting a conjunction of primitive constraints at once.

In theory, loss of precision (at least for the freeness part) is also possible due to the

imprecise abstraction of disequations and inequalities. However, it did not occur

24

We only consider the possible dependency information. A similar study could be made for the

de�nite dependencies.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

608 � M. Garc��a de la Banda et al.

in the benchmarks considered. Also, minimization could lead to loss of precision,

by combining via union dependencies that are unrelated (i.e., which result from

di�erent OR branches in the computation). Note that this is not as bad as apply-

ing transitivity on dependency relations, as is done for some LP mode analyses,

but it may nevertheless lead to imprecise results. Again, no such imprecision was

found for the benchmarks. It might be argued that, in practical programs, di�erent

predicate rules usually establish the same or comparable dependencies among the

variables of a call to the predicate.

9.6 Conclusion

The detailed experimental evaluation provides good insight regarding the potential

e�ciency and accuracy of the analyzers, the main causes for loss of accuracy, and

the advantages and disadvantages of the combined analyzer. It shows that the

combination of the D and F

m

analyzers results in a practical full mode analysis

system. Moreover, our experiments indicate that the analyses scale up quite well

for larger programs. Problems | if any | have not so much to do with the size

of the program but with the number of variables in a clause and can be overcome

with the use of a widening operator. Our results provide evidence of the feasibility

of abstract interpretation as a powerful tool for the analysis of CLP programs.

10. CONCLUSIONS AND DISCUSSION

The generalization of analysis frameworks for logic programs (based on abstract

interpretation) has been presented as a practical approach to the data
ow analysis

of constraint logic programming languages. In particular, we have proposed an

extension of Bruynooghe's traditional framework which allows it to analyze con-

straint logic programs. Using this generalized framework, two analyses have been

proposed for approximating de�niteness and freeness information respectively, as

well as a combined analysis inferring both properties. We have also reported on the

implementations of the framework and the domains and on the study of these im-

plementations. Finally, we have shown that simple widening operators are adequate

for controlling the analysis time of large or complex programs. The experimental

results support our claim that with the approach proposed it is possible to obtain

practical, accurate, and e�cient analyses, while reusing much of the framework

technology developed for traditional logic programming.

We believe that, given the adaptability of traditional frameworks to CLP anal-

ysis, future work might concentrate on accurately approximating the new proper-

ties needed for e�ectively applying the di�erent optimizations relevant to the CLP

paradigm. Encouraging examples in this direction are Garc��a de la Banda et al.

[1993], Marriott and Stuckey [1994], and Macdonald et al. [1993]. The di�culties

in this task come from many sources. First, it requires a good abstraction of (possi-

bly many) constraint solver algorithms which are typically more complex than the

well-known uni�cation. This in turn implies abstracting enough information for

simulating the way in which the solver propagates the property of interest. This

information seems to be closely related to the abstraction of the entailment rela-

tion. The problem is then to determine which constraints from all those entailed are

relevant to the property being abstracted. It is interesting to note how correctness

problems encountered by early analyzers for LP in the context of variable \aliasing"

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 609

can be reinterpreted in this context. After analyzing the goals X = Y , Y = Z ,

and Z = a, X can be inferred (incorrectly) to be a free variable or (inaccurately)

to be >. This problem can now be seen as related to not taking into account the

entailed relation X = Z which is relevant to the propagation of nonfreeness and

groundness information.

Second, most CLP languages are de�ned over several constraint systems, and

in most cases the theoretical separation among the objects (functors, constraint

predicates, domain variables, etc.) of each constraint system is not maintained.

Therefore, one must take into account the e�ects that the conjunction of a particu-

lar constraint can produce with respect to any of the other constraint systems in the

language. The abstract domains proposed in this article handle this directly. How-

ever, it may be preferable to be able to specify the abstraction for each constraint

domain separately and then deal with the interactions. This suggests organizing

the domains and analyses as a hierarchy where there is a top-level domain appli-

cable to all constraint systems and some lower-level domains which are constraint

system speci�c. The top-level domain would be used for performing the transfer of

information among the lower-level domains that is necessary in order to preserve

correctness and achieve reasonable e�ciency. Alternatively, rather than having a

top-level domain, transfer functions among all domains can be speci�ed. A nega-

tive aspect of the separation of domains and of the explicit interaction among them

is that the same information could be represented several times. Also, for some

abstractions, it could be di�cult to de�ne interaction rules such that there is no

loss of precision.

Finally, and from a practical point of view, one must consider the vehicle to be

used for implementing the abstract operations. As mentioned before, Codognet and

Fil�e [1992] propose the direct use of CLP solvers in specifying the abstract solving

algorithms. The use of the constraint-solving capabilities of the implementation

language is a very elegant solution and has the advantage that the abstract algo-

rithm can be speci�ed in a declarative way. On the other hand, one favorable aspect

of formulating analyses so that they can be executed using only equalities over the

Herbrand domain is generality: it will be quite simple to implement them on a

large number of CLP systems (and traditional logic programming systems!), given

that in general all CLP systems include the Herbrand domain and a uni�cation

algorithm.

APPENDIX

BENCHMARK PROGRAMS

The CLP benchmark programs solve typical CLP programs. A representative sub-

set of the CLP programs are used in our detailed experiments. The programs solve

typical CLP problems. Most of them are taken from the CLP(<) distribution,

the PrologIII distribution, or the PRINCE project benchmarks. For this subset,

we specify the abstract query. This query is given in the simpli�ed \mode" for-

mat available to the user. Modes d, f, and a mean that the argument is de�nite,

free, or any term respectively. This speci�cation is translated into the appropriate

representation for each domain.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

610 � M. Garc��a de la Banda et al.

|dnf: converts a propositional formula into disjunctive normal form; entry pattern

dnf (d; f).

|�b: �b(N ;F) expresses that F is the N th Fibonacci number; entry pattern

�b(d; f).

|laplace: solves the Dirichlet problem for Laplace's equation in two dimen-

sions using Leibman's �ve-point �nite-di�erence approximation; entry patterns

laplace1(d) and laplace2(M) where M is a matrix of free variables.

|listlength: speci�es the relation between a list and its length; entry pattern

listlength(d; f).

|meal: computes a balanced meal; entry pattern lightMeal(f ; f ; f).

|mining: optimizes the revenue of an open mine; entry pattern mining(f ; f).

|mortgage: well-knownmortgage program; entry patternsmortgage1(a; a; a; a;f),

mortgage2(a; a; a; f ; a), and mortgage3(f ;d;d;d;d).

|num: transforms numbers into a sequence of letters and phonemes; entry

pattern nombre(d; f ; f).

|power: minimizes the production cost of power stations; entry pattern pow(f).

|rectangle: �lls a rectangle with squares; entry pattern �llRectangle(f ; a).

|runkut: �rst-order ordinary di�erential equation solving, using the Runge-

Kutta method; entry pattern solve(d;d; f).

|sendmm: send +more = money puzzle; entry pattern solution(f ; f ; f).

|sumlist: speci�es the relation between a list of numbers and the sum of its

elements; entry pattern sumlist(d; f).

|trap: �rst-order ordinary di�erential equation solving, using the trapezoidal

method; entry pattern solve([d;d];d; [d; f]).

|vecmat: performs vector and matrix operations (vector addition vecadd , multi-

plication of a matrix and a vectormatvecmul , and matrix multiplicationmatmul);

entry patterns vecmat1 which gives rise to matvecmul(d;d; f), vecadd(f ;d;d),

and matmul(d;d; f), and vecmat2 which gives rise to matvecmul(f ;d;d),

vecadd(f ;d; a), and matmul(d; f ;d).

The other CLP benchmarks are obtained from P. Van Hentenryck (bridge, cutstock ,

warehouse), from Van Hentenryck [1989, (magic (p. 155), perm (p. 152))] and Van

Hentenryck and Ramachandran [1994, (periodic (p. 350))], from PrologIA (color4,

color4F , triangle), and from Colmerauer [1990] (magicC).

Most of the LP benchmarks are used in Mulkers et al. [1994], from which we

borrow the following brief description of the programs. akl (called init vars in

Mulkers et al. [1994]) initializes two abstract substitutions to have the same set of

variables; akl old is a slightly modi�ed version of akl ; ann is a simpli�ed version of

&-Prolog's parallelizing annotator [Hermenegildo and Greene 1990]; bid computes

an opening bid for a bridge hand; boyer is a Boyer-Moore theorem prover from the

Gabriel benchmarks (as translated by E. Tick); browse is a program for pattern

matching also taken from the Gabriel benchmarks (as translated by T. Dobry and

H. Touati); deriv performs symbolic di�erentiation of an equation; grammar is

a program that generates and recognizes a small set of English; icomp is a code

generator for the WAM, written by Demoen; kalah is the Kalah playing program

from Sterling and Shapiro [1994] which uses alpha-beta pruning; mapcolor is a

map-coloring program for a map representation of six countries; peephole is the

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 611

optimizer of SB-Prolog, written by Debray; rdtok is O'Keefe's public domain Prolog

tokenizer; read is Warren and O'Keefe's public domain Prolog parser; serialize is a

program manipulating lists of numbers; tarjan is a program for computing strongly

connected components written by Gallagher; vlokgr is a consistency checker for a

lectures-administration database, written by Janssens; vlok is the same program

but using an open-ended list for the list of lectures to be checked. The remaining

benchmarks are the following: append is the well-known append program; pg is

a program written by W. Older to solve a speci�c mathematical problem; plan is

a simple planner in the blocks world; qsort implements the quicksort algorithm;

queens is a generate-and-test program to solve the n-queens problem; qplan is part

of CHAT, a natural language query interpreter; witt is a conceptual clustering

system (written by Manuel Carro).

ACKNOWLEDGMENTS

The authors would like to thank Francisco Bueno for his help in improving the im-

plementation of the analysis framework and German Puebla for modifying the sys-

tem in order to output the inferred information for all the analyzed versions. Thanks

are due to Pascal Van Hentenryck, PrologIA, and the other PRINCE project part-

ners for providing the benchmark programs. The authors are also grateful to the

anonymous referees for their suggestions which have improved both the contents

and the presentation of the article.

REFERENCES

Armstrong, T., Marriott, K., Schachte, P., and S�ndergaard, H. 1994. Boolean functions

for dependency analysis: Algebraic properties and e�cient representation. In Proceedings of

the Static Analysis Symposium, B. Le Charlier, Ed. Lecture Notes in Computer Science, vol.

864. Springer-Verlag, Namur, Belgium, 266{280.

Bruynooghe, M. 1991. A practical framework for the abstract interpretation of logic programs.

J. Logic Program. 10, 2 (Feb.), 91{124.

Bruynooghe, M. and Boulanger, D. 1994. Abstract interpretation for (constraint) logic pro-

gramming. In Constraint Programming, B. Mayoh, E. Tyugu, and J. Penjam, Eds. Nato ASI

Series, vol. F/131. Springer-Verlag, Berlin, 228{258.

Bruynooghe, M. and Janssens, G. 1992. Propagation: A new operation in a framework for

abstract interpretation of logic programs. In Proceedings of the 3rd International Workshop on

Metaprogramming in Logic, A. Pettorossi, Ed. Lecture Notes in Computer Science, vol. 649.

Springer-Verlag, Uppsala, Sweden, 294{307.

Bueno, F., de la Banda, M. G., and Hermenegildo, M. 1994. E�ectiveness of global analysis

in strict independence-based automatic program parallelization. In Proceedings of the 1994

International Symposium on Logic Programming. MIT Press, Cambridge, Mass., 320{336.

Codish, M., Mulkers, A., Bruynooghe, M., Garc

�

�a de la Banda, M., and Hermenegildo,

M. 1995. Improving abstract interpretations by combining domains. ACM Trans. Program.

Lang. Syst. 17, 1 (Jan.), 28{44.

Codognet, P. and Fil

�

e, G. 1992. Computations, abstractions and constraints in logic programs.

In Proceedings of the 4th International Conference on Computer Languages, J. Cordy, Ed.

IEEE Computer Society Press, Los Alamitos, Calif., 155{164.

Colmerauer, A. 1990. An introduction to PROLOGIII. Commun. ACM 30, 7 (July), 69{96.

Cousot, P. and Cousot, R. 1977. Abstract interpretation: A uni�ed lattice model for static

analysis of programs by construction or approximation of �xpoints. In Proceedings of the 4th

ACM Symposium on Principles of Programming Languages. ACM, New York, 238{252.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

612 � M. Garc��a de la Banda et al.

Cousot, P. and Cousot, R. 1979. Systematic design of program analysis frameworks. In Pro-

ceedings of the 6th ACM Symposium on Principles of Programming Languages. ACM, New

York, 269{282.

Cousot, P. and Cousot, R. 1992a. Abstract interpretation and application to logic programs.

J. Logic Program. 13, 2 { 3 (July), 103{179.

Cousot, P. and Cousot, R. 1992b. Comparing the galois connection with widening/narrowing

approaches to abstract interpretation. In Proceedings of the 4th International Symposium on

Programming Language Implementation and Logic Programming, M. Bruynooghe and M. Wirs-

ing, Eds. Lecture Notes in Computer Science, vol. 631. Springer-Verlag, Leuven, Belgium, 269{

295.

Dart, P. 1988. Dependency analysis and query interfaces for deductive databases. Ph.D. thesis,

Univ. of Melbourne, Australia.

Debray, S. K. 1989. Static inference of modes and data dependencies in logic programs. ACM

Trans. Program. Lang. Syst. 11, 3, 418{450.

Debray, S. K. 1992a. E�cient data
ow analysis of logic programs. J. ACM 39, 4 (Oct.), 949{984.

Debray, S. K., Ed. 1992b. Special issue: Abstract interpretation. J. Logic Program. 13, 2 { 3

(July).

Debray, S. K. 1995. On the complexity of data
ow analysis of logic programs. ACM Trans.

Program. Lang. Syst. 17, 2 (Mar.), 331{365.

Dumortier, V. 1994. Freeness and related analyses of constraint logic programs using abstract

interpretation. Ph.D. thesis, Dept. of Computer Science, Katholieke Univ. Leuven, Leuven,

Belgium.

Dumortier, V. and Janssens, G. 1994. Towards a practical full mode inference system for

CLP(H,N). In Proceedings of the 11th International Conference on Logic Programming, P. Van

Hentenryck, Ed. MIT Press, Cambridge, Mass., 569{583.

Dumortier, V., Janssens, G., Bruynooghe, M., and Codish, M. 1993. Freeness analysis in

the presence of numerical constraints. In Proceedings of the 10th International Conference on

Logic Programming, D. S. Warren, Ed. MIT Press, Cambridge, Mass., 100{115.

Englebert, V., Le Charlier, B., Roland, D., and Van Hentenryck, P. 1992. Generic ab-

stract interpretation algorithms for Prolog: Two optimization techniques and their experimen-

tal evaluation. In Proceedings of the 4th International Symposium on Programming Language

Implementation and Logic Programming (PLILP 92), M. Bruynooghe and M. Wirsing, Eds.

Lecture Notes in Computer Science, vol. 631. Springer-Verlag, Leuven, Belgium, 311{325. Also

in Software Practice and Experience, 23(4):419{460, 1993.

Garc

�

�a de la Banda, M. 1994. Independence, global analysis, and parallelism in dynamically

scheduled constraint logic programming. Ph.D. thesis, Univ. Polit�ecnica de Madrid, Spain.

Garc

�

�a de la Banda, M. and Hermenegildo, M. 1993. A practical approach to the global anal-

ysis of CLP programs. In Proceedings of the 1993 International Logic Programming Symposium,

D. Miller, Ed. MIT Press, Cambridge, Mass., 437{455.

Garc

�

�a de la Banda, M., Hermenegildo, M., and Marriott, K. 1993. Independence in con-

straint logic programs. In Proceedings of the 1993 International Logic Programming Symposium,

D. Miller, Ed. MIT Press, Cambridge, Mass., 130{146.

Garc

�

�a de la Banda, M., Marriott, K., and Stuckey, P. 1995. E�cient analysis of logic pro-

grams with dynamic scheduling. In Logic Programming, Proceedings of the 1995 International

Symposium (ILPS'95), J. LLoyd, Ed. MIT Press, Cambridge, Mass., 417{431.

Giacobazzi, R., Debray, S., and Levi, G. 1993. Generalized semantics and abstract interpreta-

tion for constraint logic programs. Draft, Univ. of Pisa. Apr. Preliminary version in Proceedings

of the International Conference on Fifth Generation Computer Systems 1992.

Hanus, M. 1993. Analysis of nonlinear constraints in CLP(R). In Proceedings of the 10th Inter-

national Conference on Logic Programming, D. S. Warren, Ed. MIT Press, Cambridge, Mass.,

83{99.

Hanus, M. 1995. Analysis of residuation in logic programs. J. Logic Program. 24, 3 (Sept.),

161{199.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

Global Analysis of Constraint Logic Programs � 613

Hermenegildo, M. and Greene, K. J. 1990. &-Prolog and its performance: Exploiting indepen-

dent And-parallellism. In Proceedings of the 7th International Conference on Logic Program-

ming, D. H. D. Warren and P. Szeredi, Eds. MIT Press, Cambridge, Mass., 253{268.

Hermenegildo, M., Marriott, K., Puebla, G., and Stuckey, P. 1995. Incremental analysis

of logic programs. In Proceedings of the 12th International Conference on Logic Programming,

L. Sterling, Ed. MIT Press, Cambridge, Mass., 797{811.

Jacobs, D. and Langen, A. 1992. Static analysis of logic programs for independent And-

parallelism. J. Logic Program. 13, 2 { 3 (July), 291{314.

Jaffar, J. and Lassez, J.-L. 1987. Constraint logic programming. In Proceedings of the 14th

ACM Symposium on the Principles of Programming Languages. ACM, New York, 111{119.

Jaffar, J. and Maher, M. 1994. Constraint logic programming: A survey. J. Logic Program. 19

{ 20, 503{581.

Jaffar, J., Michaylov, S., Stuckey, P., and Yap, R. 1992. An abstract machine for CLP(R).

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and Im-

plementation. ACM, New York, 128{139.

Janssens, G. and Bruynooghe, M. 1992. Deriving descriptions of possible values of program

variables by means of abstract interpretation. J. Logic Program. 13, 2 { 3 (July), 205{258.

Janssens, G., Bruynooghe, M., and Dumortier, V. 1995. A blueprint for an abstract machine

for abstract interpretation of (constraint) logic programs. In Logic Programming, Proceedings

of the 1995 International Symposium (ILPS'95), J. LLoyd, Ed. MIT Press, Cambridge, Mass.,

336{350.

J�rgensen, N.,Marriott, K., and Michaylov, S. 1991. Some global compile-time optimizations

for CLP(R). In Proceedings of the 1991 International Symposium on Logic Programming,

V. Saraswat and K. Ueda, Eds. MIT Press, Cambridge, Mass., 420{434.

Lassez, J.-L. and McAloon, K. 1992. A canonical form for generalised linear constraints. J.

Symb. Comput. 13, 1 (Jan.), 1{24.

Le Charlier, B. and Van Hentenryck, P. 1994. Experimental evaluation of a generic abstract

interpretation algorithm for Prolog. ACM Trans. Program. Lang. Syst. 16, 1 (Jan.), 35{101.

Le Charlier, B., Musumbu, K., and Van Hentenryck, P. 1991. A generic abstract interpre-

tation algorithm and its complexity analysis (extended abstract). In Proceedings of the 8th

International Conference on Logic Programming, K. Furukawa, Ed. MIT Press, Cambridge,

Mass., 64{78.

Le Charlier, B., Rossi, S., and Van Hentenryck, P. 1994. An abstract interpretation frame-

work for almost full prolog. In Proceedings of the 1994 International Logic Programming Sym-

posium, M. Bruynooghe, Ed. MIT Press, Cambridge, Mass.

Lloyd, J. W. 1987. Foundations of Logic Programming , 2nd ed. Symbolic Computation |

Arti�cial Intelligence. Springer-Verlag, Berlin.

Macdonald, A. D., Stuckey, P. J., and Yap, R. H. C. 1993. Redundancy of variables in

CLP(R). In Proceedings of the 1993 International Logic Programming Symposium, D. Miller,

Ed. MIT Press, Cambridge, Mass., 75{93.

Marriott, K. 1993. Frameworks for abstract interpretation. Acta Inf. 30, 103{129.

Marriott, K. and S�ndergaard, H. 1989. Semantics-based data
ow analysis of logic programs.

In Information Processing 89, G. Ritter, Ed. Elsevier Science Publishers B.V., North-Holland,

Amsterdam, 601{606.

Marriott, K. and S�ndergaard, H. 1990. Analysis of constraint logic programs. In Proceedings

of the 1990 North American Conference on Logic Programming, S. Debray and M. Hermene-

gildo, Eds. MIT Press, Cambridge, Mass., 531{547.

Marriott, K. and Stuckey, P. 1993. The 3 R's of optimizing constraint logic programs: Re-

�nement, removal and reordering. In Proceedings of the 20th ACM Symposium on Principles

of Programming Languages. ACM, New York, 334{344.

Marriott, K. and Stuckey, P. 1994. Approximating interaction between linear arithmetic

constraints. In Proceedings of the 1994 International Symposium on Logic Programming,

M. Bruynooghe, Ed. MIT Press, Cambridge, Mass., 571{585.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

614 � M. Garc��a de la Banda et al.

Marriott, K., Garc

�

�a de la Banda, M., and Hermenegildo, M. 1994. Analyzing logic pro-

grams with dynamic scheduling. In Proceedings of the 20th Annual ACM Conference on Prin-

ciples of Programming Languages. ACM, New York, 240{253.

Marriott, K., S�ndergaard, H., Stuckey, P., and Yap, R. 1994. Optimizing compilation for

CLP(R). In Proceedings of the 17th Annual Computer Science Conference.

Martelli, A. and Montanari, U. 1982. An e�cient uni�cation algorithm. ACM Trans. Program.

Lang. Syst. 4, 3, 258{282.

Mellish, C. 1986. Abstract interpretation of Prolog programs. In Proceedings of the 3rd Interna-

tional Conference on Logic Programming, E. Shapiro, Ed. Lecture Notes in Computer Science,

vol. 225. Springer-Verlag, Berlin, 463{475.

Mulkers, A. 1993. Live Data Structures in Logic Programs, Derivation by Means of Abstract

Interpretation. Lecture Notes in Computer Science, vol. 675. Springer-Verlag, Berlin.

Mulkers, A., Simoens, W., Janssens, G., and Bruynooghe, M. 1994. On the practicality of

abstract equation systems. Tech. Rep. CW198, Dept. of Computer Science, Katholieke Univ.

Leuven, Leuven, Belgium. Nov.

Mulkers, A., Simoens, W., Janssens, G., and Bruynooghe, M. 1995. On the practicality

of abstract equation systems. In Proceedings of the 12th International Conference on Logic

Programming, L. Sterling, Ed. MIT Press, Cambridge, Mass., 781{795.

Mulkers, A.,Winsborough, W., and Bruynooghe, M. 1990. Analysis of shared data structures

for compile-time garbage collection in logic programs. In Proceedings of the 7th International

Conference on Logic Programming, D. H. D. Warren and P. Szeredi, Eds. MIT Press, Cam-

bridge, Mass., 747{762.

Mulkers, A., Winsborough, W., and Bruynooghe, M. 1994. Live-structure data
ow analysis

for Prolog. ACM Trans. Program. Lang. Syst. 16, 2 (Mar.), 205{258.

Muthukumar, K. and Hermenegildo, M. 1989. Determination of variable dependence informa-

tion at compile-time through abstract interpretation. In Proceedings of the 1989 North Ameri-

can Conference on Logic Programming, E. Lusk and R. Overbeek, Eds. MIT Press, Cambridge,

Mass., 166{189.

Muthukumar, K. and Hermenegildo, M. 1990. Deriving a �xpoint computation algorithm for

top-down abstract interpretation of logic programs. Tech. Rep. ACT-DC-153-90, Microelec-

tronics and Computer Technology Corporation (MCC), Austin, Tex. Apr.

Muthukumar, K. and Hermenegildo, M. 1992. Compile-time derivation of variable dependency

using abstract interpretation. J. Logic Program. 13, 2 { 3 (July), 315{347.

Nielson, F. 1988. Strictness analysis and denotational abstract interpretation. Inf. Comput. 76, 1,

29{92.

Plaisted, D. A. 1984. The occur-check problem in Prolog. New Gen. Comput. 2, 4, 309{322.

Also in Proceedings of the 1984 International Symposium on Logic Programming.

Ramachandran, V. and Van Hentenryck, P. 1995. LSign reordered. In International Static

Analysis Symposium (SAS'95). Lecture Notes in Computer Science, vol. 983. Springer-Verlag,

Berlin, 330{347.

Sterling, L. and Shapiro, E. 1994. The Art of Prolog: Advanced Programming Techniques, 2nd

ed. Logic Programming Series. MIT Press, Cambridge, Mass.

Van Hentenryck, P. 1989. Constraint Satisfaction in Logic Programming. MIT Press, Cam-

bridge, Mass.

Van Hentenryck, P. and Ramachandran, V. 1994. Backtracking without trailing in

CLP(R

Lin

). In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation. ACM, New York, 349{360.

Van Roy, P. and Despain, A. M. 1992. High-performance logic programming with the Aquarius

Prolog compiler. IEEE Comput. 25, 1 (Jan.), 54{68.

Warren, R., Hermenegildo, M., and Debray, S. 1988. On the practicality of global
ow analysis

of logic programs. In Proceedings of the 5th International Conference and Symposium on Logic

Programming, R. Kowalski and K.A.Bowen, Eds. MIT Press, Cambridge, Mass., 684{699.

Received January 1995; revised October 1995 and February 1996; accepted April 1996

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 5, September 1996.

