
ARENBERG DOCTORAL SCHOOL
Faculty of Engineering Science

Public Key Cryptography on
Hardware Platforms:
Design and Analysis of Elliptic Curve and
Lattice-based Cryptoprocessors

Sujoy Sinha Roy

Dissertation presented in partial
fulfillment of the requirements for

the degree of Doctor of Engineering
Science (PhD): Electrical Engineering

May 2017

Supervisor:
Prof. dr. ir. I. Verbauwhede
Co-supervisor:
Dr. ir. F. Vercauteren

Public Key Cryptography on Hardware Platforms:

Design and Analysis of Elliptic Curve and Lattice-based Cryptoprocessors

Sujoy Sinha Roy

Examination committee:
Prof. dr. ir. H. Hens, chair
Prof. dr. ir. P. Verbaeten, deputy chair
Prof. dr. ir. I. Verbauwhede, supervisor
Dr. ir. F. Vercauteren, co-supervisor
Prof. dr. ir. W. Dehaene
Prof. dr. ir. B. Preneel
Prof. dr. D. Mukhopadhyay
(Indian Institute of Technology Kharagpur)

Prof. dr. T. Güneysu
(University of Bremen & DFKI)

Dissertation presented in partial
fulfillment of the requirements for
the degree of Doctor of Engineering
Science (PhD): Electrical
Engineering

May 2017

© 2017 KU Leuven – Faculty of Engineering Science
Uitgegeven in eigen beheer, Sujoy Sinha Roy , Kasteelpark Arenberg 10, bus 2452, B-3001 Leuven (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag worden vermenigvuldigd en/of openbaar gemaakt worden
door middel van druk, fotokopie, microfilm, elektronisch of op welke andere wijze ook zonder voorafgaande
schriftelijke toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm,
electronic or any other means without written permission from the publisher.

Acknowledgements

Swami Vivekananda said, "Take up one idea. Make that one idea your life–think
of it, dream of it, live on that idea. Let the brain, muscles, nerves, every part
of your body, be full of that idea, and just leave every other idea alone. This is
the way to success."

It is not as easy as it seems. In my case, I was lucky enough since prof. Ingrid
helped me realize my ideas into reality. I owe this memorable journey to my
promotor prof. Ingrid Verbauwhede. Thank you for offering me a PhD position
at COSIC and also granting the freedom and flexibility to conduct research.
I cannot possibly imagine these five years as a PhD researcher without your
guidance and support.

Dr. Frederik Vercauteren, I feel short of words when it comes to you. You
played a versatile role in this journey of mine, sometimes a teacher, sometimes
a mentor, sometimes a co-author, sometimes a friend indeed, and the list
continues. I can’t thank you enough carefully reviewing my manuscripts and
providing me with corrections needed. I am really having a tough time putting
your contribution in words, still I tried my level best. I not only found a mentor
in you but also a friend to cherish for a lifetime.

I would like to thank my Master thesis supervisor Prof. Debdeep Mukhopadhyay
for helping me cultivate my desire to work in the field of cryptography and
explore the vast field bit by bit.

I would like to thank my assessors prof. Bart Preneel and prof. Wim Dehaene,
and the additional members of the jury prof. Debdeep Mukhopadhyay and prof.
Tim Güneysu for their precious time and effort. I would thank prof. Hugo Hens
and prof. Pierre Verbaeten for chairing the jury.

I feel lucky to be a part of COSIC and have the opportunity to write papers
together with my gifted colleagues Ruan de Clercq, Frederik Vercauteren, Kimmo
Järvinen, Oscar Reparaz, Jo Vliegen, Angshuman Karmakar, Zhe Liu, Donald

i

ii ACKNOWLEDGEMENTS

Chen, Nele Mentens, Junfeng Fan.

Pela, thank you for always helping me out and guiding me in every possible
way you could.

Friends, who also happen to be my fellow researchers eased this journey of
mine and made it memorable with their brilliant ideas, funny jokes and friendly
advice. The company of my fellow researchers always made me forget that I
was miles away from home.

Whatever I am today, I owe every bit to my father and mother. They were the
light when I felt surrounded by darkness. I cant thank you because no words
could ever express what I feel for you. All I have is a small token of thanks for
the omnipresent who surrounded me with people who have always brought the
best out of me, even when I did not know about my own abilities.

Last but not the least, I would have never got such an opportunity if the
European commission wouldn’t have shown the encouragement by awarding me
the Erasmus scholarship.

A special thanks to my wife Madhu for tolerating my occasional frustrations
and encouraging me and thus keeping my heart, mind and soul in working
condition at all times.

Abstract

The vast network of connected devices, ranging from tiny Radio Frequency
Identification (RFID) tags to powerful desktop computers, generates massive
amounts of information. Public-key cryptography (PKC) plays a crucial role in
securing this network. In this thesis we focus on the efficient implementation of
PKC to address the security challenges of the future.

Aiming to secure resource-constrained connected devices, we design a lightweight
elliptic-curve coprocessor for a 283-bit Koblitz curve, which offers 140-bit
security. We optimize the scalar conversion which is an important part of point
multiplication, and we introduce lightweight countermeasures against timing
and power side-channel attacks. The coprocessor consumes only 4.3 KGE.

In the second part of the thesis, we investigate implementation aspects of post-
quantum PKC and homomorphic encryption schemes whose security is based on
the hardness of the ring-LWE problem. These cryptographic schemes perform
arithmetic operations in a polynomial ring and require sampling from a discrete
Gaussian distribution. To design a discrete Gaussian sampler that satisfies
a negligible statistical distance to the accurate distribution, we analyze the
Knuth-Yao random walk, and propose an algorithm that is fast and lightweight.
For efficient polynomial multiplication, we apply the number theoretic transform.
From these primitives we design a compact coprocessor that takes only 20/9µs
to compute encryption/decryption on a Xilinx Virtex VI FPGA.

Homomorphic function evaluation is very slow in software due to its arithmetic
involving very large polynomials with large coefficients. We design an FPGA-
based accelerator for the homomorphic encryption scheme YASHE. We observe
that though the computation intensive arithmetic can be accelerated, the
overhead of external memory access becomes a bottleneck. Then we propose
a more practical scheme that uses a special module to assist homomorphic
function evaluation in less time. With this module we can evaluate encrypted
search roughly 20 times faster than the implementation without this module.

iii

Beknopte samenvatting

Het enorme netwerk van geïnterconnecteerde apparaten, gaande van kleine
Radio frequentie identificatie tags (RFID) tot krachtige desktopcomputers,
genereert een enorme hoeveelheid aan informatie. Asymmetrische cryptografie
(PKC) speelt een cruciale rol bij de beveiliging van dit netwerk. In deze thesis
focussen we op het efficiënt implementeren van PKC om aan de toekomstige
beveiligingsuitdagingen het hoofd te bieden.

Het doel is het beveiligen van in middelen beperkte geconnecteerde apparaten.
Hiertoe ontwikkelen we een compacte elliptische curve coprocessor voor een
283 bit Koblitz curve die een veiligheidsniveau van 140 bits biedt. We
optimaliseren de scalaire transformatie, een belangrijk onderdeel van de punt
vermenigvuldiging en introduceren een lichtgewicht tegenmaatregel tegen tijds
en nevenkanaals aanvallen. De coprocessor verbruikt enkel 4.3 KGE.

In het tweede deel van de thesis onderzoeken we de verschillende aspecten van het
implementeren van “post-quantum” PKC en homomorfische encryptie algoritmes
wiens veiligheid gebaseerd is op de moeilijkheid van het oplossen van het ring-
LWE probleem. Deze cryptografische algoritmes voeren rekenkundige operaties
uit in een polynomische ring en vereisen het monsteren van discrete gaussische
distributies. Om een discrete gaussische bemonsteraar te ontwerpen die een te
verwaarloosbare statistische afstand heeft tot de perfecte distributie analyseren
we de Knuth-Yao willekeurige wandeling. We stellen een algoritme voor dat
zowel snel en compact is. Om een efficiënte polynomische vermenigvuldiging
te bekomen passen we de getal theoretische transformatie toe. We vertrekken
vanuit deze technieken voor het ontwerpen van een compacte coprocessor die
slechts 20/9µs nodig heeft voor het uitvoeren van een en-/ decryptie op een
Xilinx Virtex VI FPGA.

Het evalueren van homomorfische functies verloopt zeer traag in software door
de rekenkundige technieken nodig voor het werken met polynomen met zeer
grote coëfficiënten. We ontwerpen een FPGA gebaseerde versneller voor het

v

vi BEKNOPTE SAMENVATTING

homomorfische encryptie algoritme YASHE. We bemerken dat de rekenkundige
operaties versneld kunnen worden, maar dat het raadplegen van extern geheugen
een bottleneck wordt. Vervolgens stellen we een praktischer algoritme voor dat
gebruikt maakt van een speciale module dat ons in staat stelt de homomorfische
encryptie sneller te evalueren. Met deze module kunnen we de geëncrypteerde
opzoeking met een factor 20 versnellen in vergelijking met een geëncrypteerde
opzoeking zonder de speciale module.

Abbreviations

AES Advanced Encryption Standard
ALU Arithmetic and Logic Unit
ALU Arithmetic Logic Unit
ASIC Application Specific Integrated Circuit
BLISS Bimodal Lattice Signature Scheme
BRAM Block RAM
CDT Cumulative Distribution Table
CRT Chinese remainder theorem
CVP Closest Vector Problem
DDG Discrete Distribution Generating
DES Data Encryption Standard
DH Diffie-Hellman
DLP Discrete Logarithm Problem
DPA Differential Power Analysis
DRAM Distributed RAM
DRU Division and Rounding Unit
DSP Digital Signal Processor
ECC Elliptic Curve Cryptography
ECDLP Elliptic Curve Discrete Logarithm Problem
ECDSA Elliptic Curve Digital Signature Algorithm
FF Flip Flop
FFT Fast Fourier Transform
FHE Fully Homomorphic Encryption

vii

viii ABBREVIATIONS

FPGA Field Programmable Gate Array
FV Fan-Vercauteren
IoT Internet of Things
LPR Lindner-Peikert-Regev
LUT Lookup Table
LWE Learning-With-Errors
MAC Multiply and Accumulate
MPC Multiparty Computation
NTT Number Theoretic Transform
PALU Polynomial Arithmetic and Logic Unit
PIR Private Information Retrieval
PKC Public Key Cryptography
RFID Radio Frequency Identification
ring-LWE Ring-Learning-With-Errors
SHE Somewhat Homomorphic Encryption
SIMD Single Instruction Multiple Data
SPA Simple Power Analysis
SVP Shortest Vector Problem
YASHE Yet Another Somewhat Homomorphic Encryption

Contents

Abstract iii

Abbreviations vii

List of Symbols ix

Contents ix

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Summary of the thesis . 3

2 Background 7

2.1 Introduction to public-key cryptography 7

2.1.1 The elliptic-curve discrete logarithm problem 9

2.1.2 Lattice problems . 10

2.2 Elliptic-curve cryptography over F2m 13

2.2.1 Koblitz curves . 14

2.3 Primitives for arithmetic in F2m 16

ix

x CONTENTS

2.3.1 Reduction . 16

2.3.2 Multiplication . 17

2.3.3 Squaring . 18

2.3.4 Inversion . 18

2.4 Ring-LWE-based cryptography 18

2.4.1 The LPR public-key encryption scheme 19

2.4.2 Ring-LWE-based homomorphic encryption schemes . . . 20

2.5 Primitives for ring-LWE-based cryptography 22

2.5.1 Discrete Gaussian sampler 22

2.5.2 Polynomial arithmetic 25

2.5.3 Division and rounding 27

2.6 Summary . 28

3 Coprocessor for Koblitz curves 29

3.1 Introduction . 29

3.2 Koblitz curve scalar conversion 31

3.2.1 Scalar reduction . 31

3.2.2 Computation of τ -adic representation 34

3.3 Point multiplication . 37

3.4 Architecture . 39

3.5 Results and comparisons . 43

3.6 Summary . 47

4 Discrete Gaussian sampling 49

4.1 Introduction . 49

4.2 The Knuth-Yao algorithm . 50

4.3 DDG tree on the fly . 51

4.3.1 Parameter sets for the discrete Gaussian sampler 51

CONTENTS xi

4.3.2 Construction of the DDG tree during sampling 52

4.3.3 Storing the probability matrix efficiently 55

4.3.4 Fast sampling using a lookup table 57

4.4 The sampler architecture . 59

4.4.1 The bit-scanning unit 59

4.4.2 Row-number and column-length counters 61

4.4.3 The distance counter . 61

4.4.4 The lookup table for fast sampling 61

4.5 Timing and simple power analysis 62

4.5.1 Strategies to mitigate the side-channel leakage 64

4.5.2 Efficient implementation of the random shuffling 65

4.6 Experimental results . 67

4.7 Summary . 69

5 Ring-LWE public key encryption processor 71

5.1 Introduction . 71

5.2 Polynomial multiplication . 73

5.3 Optimization of the NTT computation 74

5.3.1 Optimizing the fixed computation cost 75

5.3.2 Optimizing the forward NTT computation cost 75

5.3.3 Optimizing the memory access scheme 75

5.4 The NTT processor organization 77

5.5 Pipelining the NTT processor 80

5.6 The ring-LWE encryption scheme 82

5.6.1 Hardware architecture 83

5.7 Experimental results . 85

5.8 Summary . 88

xii CONTENTS

6 Modular architecture for somewhat homomorphic function evaluation 89

6.1 Introduction . 89

6.2 System setup . 90

6.3 High-level optimizations . 91

6.4 Architecture . 93

6.4.1 Architecture for polynomial arithmetic 93

6.4.2 Architecture for lifting back and forth in Rq ↔ RQ . . . 99

6.5 Results . 107

6.6 Summary . 110

7 Recryption-box assisted homomorphic function evaluation 113

7.1 Introduction . 113

7.2 Instantiations of the recryption-box 115

7.3 Encrypted search . 117

7.4 Implementation . 121

7.4.1 Parameter set used in the implementation 121

7.4.2 Algorithmic optimizations for efficient architecture . . . 121

7.4.3 Architecture . 122

7.4.4 Inverse CRT . 124

7.4.5 The memory . 125

7.4.6 The discrete Gaussian sampler 125

7.4.7 The ethernet communication unit 125

7.5 Results . 126

7.6 Summary . 128

8 Conclusions and future work 131

8.1 Conclusions . 131

8.2 Future works . 132

CONTENTS xiii

A High speed scalar conversion for Koblitz curves 135

A.1 Improved double digit τNAF generation 139

A.2 Hardware architecture . 141

A.3 Implementation results . 142

B Implementation of operations used by algorithm 6 143

Bibliography 147

Curriculum Vitae 163

List of publications 165

List of Figures

1.1 Structure of the thesis . 4

2.1 Basic concept of public-key encryption 7

2.2 Homomorphic encryption in cloud computing 8

2.3 Geometric representation of point addition and doubling using
the chord-and-tangent rule . 9

2.4 Computation flow in point multiplication on Koblitz curves . . 15

2.5 Block level LPR.Encrypt and LPR.Decrypt 19

3.1 Hardware architecture of the ECC coprocessor 40

4.1 Probability matrix and corresponding DDG-tree 50

4.2 DDG Tree Construction . 53

4.3 Storing Probability Matrix . 55

4.4 Hardware Architecture for Knuth-Yao Sampler 59

4.5 Hardware Architecture for two stage Lookup 62

4.6 Two instantaneous power consumption measurements correspond-
ing to two different sampling operations. Horizontal axis is time,
vertical axis is electromagnetic field intensity. The different
timing for the two different sampling operations is evident. . . 63

4.7 Sampler with shuffling . 66

xv

xvi LIST OF FIGURES

5.1 Hardware Architecture for NTT 78

5.2 Pipelined Hardware Architecture for NTT 81

5.3 Ring-LWE Cryptoprocessor . 83

6.1 Architecture for the Vertical Cores 97

6.2 Architecture for computing sum of products 100

6.3 Timing diagram for pipeline processing of two consecutive sum-
of-products (sp) by the first MAC-group. 102

6.4 Architecture for reduction modulo Q 103

6.5 The Division and Rounding Unit (DRU) 104

6.6 Unified architecture for Liftq→Q and LiftQ→q. 106

7.1 Architecture of The Recryption-box 123

List of Tables

1.1 NIST recommended approximate key length for bit-security [12] 3

3.1 Comparison to other lightweight coprocessors for ECC. The top
part consists of relevant implementations from the literature. We
also provide estimates for other parameter sets in order to ease
comparisons to existing works. 46

4.1 Parameter sets to achieve statistical distance less than 2−90 . . 52

4.2 Area of the bit-scan unit for different widths and depths 60

4.3 Performance of the discrete Gaussian sampler on xc5vlx30 . . . 67

5.1 Performance and Comparison 86

6.1 Area results on Xilinx Virtex-6 XC6VLX240T-1FF1156 FPGA 107

6.2 Latencies of the building blocks without DDR access overhead 107

6.3 Latencies and timings at 100/200 MHz computation/DDR clock 109

7.1 Area of the recryption-box on Xilinx Virtex-6 XC6VLX240T-
1FF1156 . 127

7.2 Latencies and timings at 125MHz 128

A.1 Signed remainders during reduction of scalar 137

A.2 NAF Generation for µ = −1 . 140

xvii

xviii LIST OF TABLES

A.3 Performance results on Xilinx Virtex 4 FPGA 142

B.1 The program ROM includes instructions for the following operations144

B.2 Initialization of point addition and point subtraction 145

Chapter 1

Introduction

Since the advent of the internet, our world has become more and more connected
every day. The International Telecommunications Union reports [132] that the
number of internet users has increased from 400 million in 2000 to 3.2 billion
in 2015. This growth rate is expected to be faster in the future as a result of
internet penetration in the developing nations. The Internet of Things (IoT)
is a network of connected devices ranging from powerful personal computers
and smart phones to low-cost passive RFID tags. These devices are capable
of computing together and exchanging information with or without human
intervention and are present in many areas of our life such as smart homes,
smart grids, intelligent transportation, smart cities. By 2020 there will be 21
billion IoT devices [1]. These connected devices could upload their data or even
outsource costly computational tasks to a cloud server. A cloud server is a very
powerful device with huge storage and computation capability. Indeed cloud
computing and IoT are tightly coupled.

In this connected world, our daily life applications such as email, social networks,
e-commerce, online banking and several others generate and process massive
amounts of information every day [151]. Snowden’s revelation [134] in 2013
has brought security and privacy issues into the spotlight of media coverage.
Google, Facebook and other leading internet companies are facing increasing
pressures from government spying agencies to reveal information about the
users. Now users are more concerned about security and privacy than before.
Therefore it is of vital importance to protect digital information by incorporating
confidentiality, integrity, and data availability.

Cryptography is the science of protecting digital information. In a broader
sense, our present day cryptography schemes can be split into two branches: the

1

2 INTRODUCTION

symmetric-key cryptography schemes and the public-key cryptography schemes.
In a symmetric-key cryptography application, the two communicating parties
use a common key to protect their information. The existing symmetric-key
cryptography schemes are computationally very fast. However their security is
based on the assumption that the two parties agree on a common key secretly
before initiating the communication. Public-key cryptography is free from this
assumption as there is no need for a common key. This feature makes public-key
cryptography schemes very attractive despite their slower performance. In
practice, most cryptographic protocols use both symmetric-key cryptography
and public-key cryptography in tandem: a public-key cryptography scheme is
used to agree on a common key and then a symmetric-key cryptography scheme
is used to secure a large amount of digital information. In this research we
concentrate only on public-key cryptography.

The most widely used public-key cryptography schemes are the RSA
cryptosystem [117] and the elliptic-curve cryptosystem (ECC) [69]. Security of
the RSA and elliptic-curve cryptosystems is based on the hardness of the integer
factorization problem and elliptic-curve discrete logarithm problem (ECDLP)
respectively. Although the RSA cryptosystem is conceptually a simple scheme,
the main disadvantages are its large key size and slow private key operations. In
comparison, ECC requires much smaller key size as the ECDLP problem is much
harder to break than the integer factorization problem [12]. Nevertheless ECC
requires expensive computation. To improve the efficiency of ECC, numerous
proposals have been published in the literature in the past three decades. Such
proposals [54] include choice of finite field, choice of elliptic-curve, optimizations
in the finite field arithmetic, design of efficient algorithms, and finally tailoring
the algorithms for applications and platforms. Designing ECC for lightweight
IoT applications with low resources has been an extremely active research field
in recent years [11, 13, 18, 55, 73, 74, 100, 144, 145]. These proposals focus
predominantly on 163-bit elliptic-curves which provide medium security level of
about 80 bits. However recent advances in the cryptanalysis have brought the
80-bit security level too close to call insecure for applications that require long
term security. For e.g., recently FPGA-based hardware accelerators have been
used to solve a 117.35-bit ECDLP on an elliptic-curve over F2127 [17]. Moreover
the National Institute of Standards and Technology (NIST) has recommended
phasing out usage of 160-bit elliptic-curve cryptography by the end of the year
2010 [93]. In the first part of this thesis we address this problem by designing a
lightweight ECC coprocessor using a high security 283-bit Koblitz curve.

Public-key cryptography is an ever evolving branch of cryptography. With our
present day computers, RSA and ECC schemes are considered secure when the
key size is sufficiently large and countermeasures against side channel and fault
attacks are enabled. However this situation changes in the domain of quantum

SUMMARY OF THE THESIS 3

Table 1.1: NIST recommended approximate key length for bit-security [12]

Algorithm 80-bit 112-bit 140-bit.
RSA 1024 2048 3072
ECC 160 224 256

computing. In 1994, Shor [126] designed a quantum algorithm that renders
the above schemes insecure. Though there is no known powerful quantum
computer today, several public and private organizations are trying to build
quantum computers due to its potential applications. In 2014 a BBC News
article [14] reports that the NSA is building a code cracking quantum computer.
Post-quantum cryptography is a branch of cryptography that focuses on the
design and analysis of schemes that are secure against quantum computing
attacks. Beside the scientific community, several standardization bodies and
commercial organizations are considering post-quantum cryptography. In 2016
NIST recommended a gradual shift towards post-quantum cryptography [95] and
called for a standardization process for post-quantum public-key cryptography
schemes. Recently Google has integrated a post-quantum cryptography scheme
called Frodo [19] in 1% of all Chrome browsers for experimentation.

Amongst several candidates for post-quantum public-key cryptography, lattice-
based cryptography appears to be the most promising because of its
computational efficiency, strong security assurance, and support for a wide
range of applications. Lattice-based cryptography has become a hot research
topic in this decade since the introduction of the Learning-With-Errors (LWE)
problem in 2009 [113] and its more efficient ring variant, the ring-LWE problem in
2010 [85]. Till 2012 almost all of the literature addressed the theoretical aspects
of LWE and ring-LWE-based cryptography and very little was known about
the implementation feasibilities and performance aspects. This motivated us to
investigate implementation aspects of ring-LWE-based public-key cryptography
in this research.

1.1 Summary of the thesis

In a broader sense the thesis investigates implementation aspects of next
generation public-key cryptography on hardware platforms. The organization of
the thesis is illustrated in Fig 1.1. In Chapter 3 the thesis takes account of the
present day security challenges and studies efficient methods for implementing
high security elliptic-curve cryptography on resource-constrained IoT platforms.

4 INTRODUCTION

Koblitz curve based PKC

Chapter 3

ringLWE based PKC

ringLWE based homomorphic encryption

Chapter 4, 5, 6 and 7

Present day PKC Next generation PKC

Figure 1.1: Structure of the thesis

The remaining part of the thesis investigates implementation feasibility of next
generation ring-LWE-based post-quantum cryptography on terminal devices
and cloud servers. We describe the contributions of each chapter below.

� Chapter 2 We give a brief introduction to the mathematical background
of the elliptic-curve discrete logarithm problem and the ring-LWE problem.
Then we describe the public-key cryptosystems that we consider for
implementation in this research.

� Chapter 3 In this chapter we focus on an efficient implementation of
a Koblitz curve point multiplier targeting a high security level. Koblitz
curves are a class of computationally efficient elliptic-curves that offer fast
point multiplications if the scalars are given as specific τ -adic expansions.
This needs conversion from integer scalars to equivalent τ -adic expansions.
We propose the first lightweight variant of the conversion algorithm
and introduce the first lightweight implementation of Koblitz curves
that includes the scalar conversion. We also include countermeasures
against side-channel attacks making the coprocessor the first lightweight

SUMMARY OF THE THESIS 5

coprocessor for Koblitz curves that includes a set of countermeasures
against timing attacks, SPA, DPA and safe-error fault attacks.
This chapter’s contents are derived from two publications.
Accelerating scalar conversion for Koblitz curve cryptoprocessors on
hardware platforms [118] by Sujoy Sinha Roy, Junfeng Fan, and Ingrid
Verbauwhede, published in IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 2015.
Lightweight Coprocessor for Koblitz Curves: 283-Bit ECC Including Scalar
Conversion with only 4300 Gates [119] by Sujoy Sinha Roy, Kimmo
Järvinen, and Ingrid Verbauwhede, published in Cryptographic Hardware
and Embedded Systems (CHES 2015).

� Chapter 4 The focus of this chapter is to design a high-precision and
computationally efficient discrete Gaussian sampler for lattice-based
post-quantum cryptography. Discrete Gaussian sampling is an integral
part of many lattice-based cryptosystems such as public-key encryption
schemes, digital signature schemes and homomorphic encryption schemes.
We choose the Knuth-Yao sampling algorithm and propose a novel
implementation of the algorithm based on an efficient traversal of the
discrete distribution generating (DDG) tree. We investigate various
optimization techniques to achieve minimum area and computation time.
Next we study timing and power attacks on the Knuth-Yao sampler
and propose a random shuffling countermeasure to protect the Gaussian
distributed samples against such attacks.
This chapter’s contents are derived from two major publications.
High precision discrete Gaussian sampling on FPGAs [123] by Sujoy Sinha
Roy, Frederik Vercauteren, and Ingrid Verbauwhede, published in Selected
Areas in Cryptography (SAC 2013).
Compact and Side Channel Secure Discrete Gaussian Sampling [121]
by Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid
Verbauwhede, published in IACR Cryptology ePrint Archive 2014.

� Chapter 5 In this chapter we design an efficient and compact ring-
LWE-based public-key encryption processor. The encryption processor is
composed of two main components: a polynomial arithmetic unit and a
discrete Gaussian sampler. For the discrete Gaussian sampling, we use
the Knuth-Yao sampler from Chapter 4. For polynomial multiplication,
we apply the Number Theoretic Transform (NTT). We propose three
optimizations for the NTT to speed up computation and reduce resource
requirement. Finally, at the system level, we also propose an optimization
of the ring-LWE encryption that reduces the number of NTT operations.

6 INTRODUCTION

We use these computational optimizations along with several architectural
optimizations to design an instruction-set ring-LWE public-key encryption
processor on FPGA platforms.
This chapter’s content is derived from the publication
Compact Ring-LWE Cryptoprocessor [122] by Sujoy Sinha Roy, Frederik
Vercauteren, Nele Mentens, Donald Donglong Chen, and Ingrid Ver-
bauwhede, published in Cryptographic Hardware and Embedded Systems
(CHES 2014).

� Chapter 6 This chapter of the thesis focuses on the implementation
of hardware accelerators for ring-LWE-based homomorphic function
evaluation. We design a modular hardware architecture for all building
blocks required to instantiate the somewhat homomorphic encryption
(SHE) scheme YASHE. We investigate efficient arithmetic to parallelize
the costly polynomial arithmetic.
The content of this chapter is derived from the publication
Modular Hardware Architecture for Somewhat Homomorphic Function
Evaluation [120] by Sujoy Sinha Roy, Kimmo Järvinen, Frederik
Vercauteren, and Ingrid Verbauwhede, published in Cryptographic
Hardware and Embedded Systems (CHES 2015).

� Chapter 7 We observe that even with a very powerful hardware
accelerator, we are unable to transform homomorphic encryption into
a practical solution for private cloud computing. So, we interpolate
between fully homomorphic encryption (FHE) and multiparty computation
(MPC), and propose a more practical scheme to perform homomorphic
evaluations of arbitrary depth with the assistance of a special module
called recryption box. To demonstrate the practicality of the proposal, we
design the recryption box on a Xilinx Virtex 6 FPGA board and evaluate
the performance of an encrypted search operation.
The content of this chapter is derived from the publication
Hardware Assisted Fully Homomorphic Function Evaluation and Encrypted
Search by Sujoy Sinha Roy, Frederik Vercauteren, Jo Vliegen, and Ingrid
Verbauwhede, accepted in IEEE Transactions on Computers.

� Chapter 8 This chapter concludes the thesis and formulates future works.

Chapter 2

Background

2.1 Introduction to public-key cryptography

In this chapter we review the concept of public-key cryptography (PKC) and
then describe two PKC schemes namely, elliptic-curve cryptography and lattice-
based cryptography. PKC was introduced by Diffie and Hellman in 1976 [35]. In
a PKC scheme, a user, say Bob, has a pair of keys: a widely disseminated public-
key and a secret private-key. To send messages to Bob, Alice and other users
use Bob’s public-key. Only Bob can recover the messages from the ciphertexts
by using his private-key. The basic concept of the public-key encryption is
shown in Fig. 2.1.

The security of a PKC scheme is based on the assumption that it is
computationally in-feasible to compute the private-key from the public-key. Such
security assumption is assured by computationally hard mathematical problems
such as the integer factorization problem, the discrete logarithm problem, the

Figure 2.1: Basic concept of public-key encryption

7

8 BACKGROUND

elliptic-curve discrete logarithm problem, and several hard problems defined
over lattices etc. In this research we implement a set of PKC schemes based on
the elliptic-curve discrete logarithm problem and lattice problems.

Homomorphic encryption allows computations to be performed on encrypted
data. Due to the homomorphism, equivalent computations are automatically
performed on the plaintext data. Thus with homomorphic operations, users
can upload their encrypted data to a powerful cloud service and still perform
computations in the cloud on the encrypted data. A homomorphic encryption
scheme is an augmented encryption scheme with two additional functions
HE.Add() and HE.Mult() to add or multiply on ciphertexts, that result in a
ciphertext encrypting the sum or respectively the product of the underlying
plaintexts. Fig. 2.2 shows the application of homomorphic encryption in cloud
computing.

Figure 2.2: Homomorphic encryption in cloud computing

The chapter is organized as follows: in the remaining part of this section we
define the elliptic-curve discrete logarithm problem and the well-known lattice
problems. In Sect. 2.2 we introduce binary extension fields and Koblitz curves.
The next section briefly describes the field primitives and a public-key encryption
scheme that uses elliptic-curve cryptography. Cryptography schemes based on
lattice problems are described in Sect. 2.4. The section also briefly describes the
building blocks for implementing the lattice-based schemes. The final section
gives a summary.

INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 9

2.1.1 The elliptic-curve discrete logarithm problem

In 1986 Koblitz [69] and Miller [89] independently proposed cryptography using
elliptic-curves, and since then elliptic-curve cryptography (ECC) has become
very popular for designing fast public-key schemes on various platforms.

Definition 2.1.1. (Elliptic-curves [54]). An elliptic-curve E over a field K is
defined by a so-called Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (2.1)

where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0, where ∆ is the discriminant, defined as
follows:

∆ = −d2
2d8 − 8d3

4 − 27d2
6 + 9d2d4d6

d2 = a2
1 + 4a2

d4 = 2a4 + a1a3

d6 = a2
3 + 4a6

d8 = a1a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a2

4 .

Figure 2.3: Geometric representation of point addition and doubling using the
chord-and-tangent rule

Let P (x, y) represents a point on E with coordinates (x, y). All points on the
curve and a special point ∞ known as the point at infinity, form a group under
the elliptic-curve addition rule in K. Let us denote the group by E(K). Let two

10 BACKGROUND

points on E be P1(x1, y1) and P2(x2, y2). Their sum is the point P3(x3, y3) on
the curve. The addition rule uses the chord-and-tangent method for adding two
points on the curve (Fig. 2.3). The method computes additions, subtractions,
multiplications, and inversions in K (see Sect. 2.2).

By using the point addition and doubling operations, the well-known double-
and-add method computes a scalar multiple k of P (x, y) which is again a
point Q = k · P on E. This computation is called scalar multiplication or
point multiplication. Alg. 1 shows the double-and-add approach for point
multiplication.

Algorithm 1: Double-and-add method for point multiplication [54]
Input: Scalar k =

∑l−1
i=0

ki2i and a point P on E
Output: Point Q = k · P on E

1 begin
2 Q←∞;
3 for i = l− 1 downto 0 do
4 Q← 2Q ;
5 if ki = 1 then
6 Q← Q+ P ;
7 end
8 end
9 end

Here P is called the base point and Q is called the scalar multiple of the base
point.

Definition 2.1.2. (The elliptic-curve discrete logarithm problem (ECDLP)).
For a given base point P on the curve E and a scalar multiple Q = k · P , find
the scalar k.

The ECDLP is considered to be a hard problem when the order of the base
point has a large prime factor p. Advanced algorithms for solving ECDLP, such
as Pollard’s rho algorithm [102] has an expected time complexity O(√p). A
survey of the attack algorithms is provided by Galbraith and Gaudry [45]. The
ECDLP has been used to construct key exchange schemes, public-key encryption
schemes, and digital signature schemes [54].

2.1.2 Lattice problems

In this section we review hard problems defined over lattices. Such problems
are a class of optimization problems and their conjectured intractability is the
foundation of lattice-based public-key cryptography schemes.

INTRODUCTION TO PUBLIC-KEY CRYPTOGRAPHY 11

Definition 2.1.3. (Lattice [58]). Let V be a set of n linearly independent
vectors v0, . . . , vn−1 ∈ Rm. The lattice L is the set of linear combinations of
the vectors with coefficients in Z.

L = {a0 · v0 + . . .+ an−1 · vn−1} where a0, . . . an−1 ∈ Z . (2.2)

The set V is a basis of L, n is its rank and m is its dimension. The lattice
is called a full-rank lattice if n = m. Indeed a basis for L is any set of n
independent vectors that generates L, and there are infinitely many basis for
m ≥ 2. Any two such basis are related by an integer matrix with determinant
equal to ±1..

Definition 2.1.4. (Span [58]). The span of the basis of a lattice L with basis
V is the collection of all linear combinations α0 · v0 + . . .+ αn−1 · vn−1, where
α0, . . . , αn−1 ∈ R.

One parameter for L is the length of a shortest nonzero vector. The length of
a vector v in L is defined by its Euclidean norm ‖ v ‖. The length of shortest
vector is denoted by λ1, which is the smallest radius r such that the lattice
points inside a ball of radius r span a space of dimension 1.

Definition 2.1.5. (Successive minima [112]). Let Λ be a lattice of rank n.
For i ∈ {1, . . . , n}, we define the ith successive minimum as

λi(Λ) = inf{r | dim(span(Λ ∩B(0, r))) ≥ i} ,

where B(0, r) = {x ∈ Rm | ‖ x ‖≤ r} is the closed ball of radius r around 0.

Definition 2.1.6. (The shortest vector problem (SVP [112])). Find a nonzero
vector v in a lattice L such that ‖ v ‖= λ1(L).

Ajtai [3] showed that the SVP with Euclidean norm is NP-hard for randomized
reductions. The SVPα is an α-approximation version of the SVP where one has
to find a vector vα in L such that ‖ vα ‖≤ αλ1(L). There is an absolute constant
ε > 0 so that the SVPα is also NP-hard with α < 1 + 2−nε for randomized
reductions [3].

Definition 2.1.7. (The closest vector problem (CVP) [58]). Given a vector
w ∈ Rm that is not in L, find a vector v ∈ L that is closest to w, i.e., find a
vector v ∈ L that minimizes the Euclidean norm ‖ w − v ‖.

Similar to the SVPα, the CVPα is an α-approximation version of the CVP where
one has to find a vector vα such that ‖ w − vα ‖≤ α ‖ w − v ‖. The CVPα is a

12 BACKGROUND

generalization of the SVPα and given an oracle for the CVPα one can solve the
SVPα by making queries. The CVP is known to be NP-hard [88].

The SVP or CVP or their approximation versions are easy to solve if a basis
comprised of orthogonal or nearly orthogonal and short vectors is known. Lattice
reduction algorithms are a class of algorithms that aim to output such good basis
from any given basis for a lattice. The LLL algorithm outputs an LLL-reduced
basis in polynomial time but the with approximation factor Cn, where C is a
small constant. Thus the LLL algorithm is very effective when the dimension n
of the lattice is small. Algorithms that achieve close approximation (e.g. the
AKS algorithm [4], the BKZ algorithm [125] etc.) run in exponential time. The
inability of the lattice reduction algorithms to find a good basis in polynomial
time is used as the foundation for the lattice-based cryptography schemes.

Construction of cryptographic schemes based on the hardness of lattice problems
started with Ajtai’s [2] seminal work where he showed average case to worst
case reduction. This is of particular interest because the well-known number-
theoretic problems such as the integer factorization or the ECDLP do not
possess this feature. In 2005 Regev [111] introduced a new problem known
as the learning with errors problem (LWE). Since its introduction, the LWE
problem has become very popular for construction of a variety of schemes
such as public-key encryption, key exchange, digital signature schemes and
even homomorphic encryption schemes. The LWE problem is parametrized by
the rank n of the lattice, an integer modulus q and an error distribution X
over Z. A secret vector s of rank n is chosen uniformly in Znq . Then samples
are produced by selecting uniform random vectors ai and error terms ei from
the error distribution X and by computing bi = 〈ai, s〉 + ei ∈ Zq. The LWE
distribution As,X over Znq × Zq is defined as the set of tuples (ai, bi). The
decision and search versions of the LWE problem are defined below.

Definition 2.1.8. (The decision LWE problem [111]). Distinguish with non-
negligible advantage between a polynomial number of samples drawn from the
LWE distribution As,X and the same number of samples drawn uniformly from
Znq × Zq.

Definition 2.1.9. (The search LWE problem [111]). Find the secret s given
a polynomial number of samples from the LWE distribution As,X .

Its hardness can be reduced to the hardness of the above mentioned lattice
problems. In practice cryptosystems based on the LWE problem are slow as
they require computations on large matrices with coefficients from Zq. There is
a more practical variant of the LWE problem that is defined over polynomial
rings and is called the ring-LWE problem.

ELLIPTIC-CURVE CRYPTOGRAPHY OVER F2M 13

The ring-LWE problem is a ring-based version of the LWE problem and
was introduced by Lyubashevsky, Peikert and Regev in [85]. To achieve
computational efficiency and to reduce the key size, ring-LWE uses special
structured ideal lattices. Such lattices correspond to ideals in rings R = Z[x]/〈f〉,
where f is an irreducible polynomial of degree n. Let s be a secret uniformly
random polynomial in Rq = R/qR. The ring-LWE distribution on Rq × Rq
consists of polynomial tuples (ai(x), bi(x)), where the coefficients of ai are chosen
uniformly from Zq and bi(x) is computed as a polynomial ai(x)·s(x)+ei(x) ∈ Rq.
Here ei are error polynomials with coefficients sampled from an n-dimensional
error distribution X . The error distribution is typically a discrete Gaussian
distribution. In some cases, e.g., for 2k-power cyclotomics, this error distribution
can be taken as the product of n independent discrete Gaussians, but in general
X is more complex. One can construct s by sampling the coefficients from X
instead of sampling uniformly without any security implications [85].

Definition 2.1.10. (The decision ring-LWE problem [85]). Distinguish with
non-negligible advantage between a polynomial number of samples (ai(x), bi(x))
drawn from the ring-LWE distribution and the same number of samples
generated by choosing the coefficients uniformly.

Definition 2.1.11. (The search ring-LWE problem [85]). Find the secret
polynomial s(x) given a polynomial number of samples drawn from the ring-
LWE distribution.

In cases where f is a cyclotomic polynomial, the difficulty [85] of the search
ring-LWE problem is roughly equivalent to finding a short vector in an ideal
lattice composed of polynomials from R. Note that in the case of the LWE
problem, the hardness was related to solving the NP-hard SVPα over general
lattices. Though no proof exists to show equivalence between the SVPα for
general lattices and ideal lattices, the two cases are presumed to be equally
difficult. The computational efficiency using the ring-LWE problem is obtained
at the cost of the above security assumption. Cryptographic schemes based on
the ring-LWE problem are fast thanks to simple polynomial arithmetic [52].

2.2 Elliptic-curve cryptography over F2m

In cryptography, elliptic-curves defined over finite fields are used. The most
commonly used finite fields for ECC are prime fields and binary extension fields
F2m . For hardware implementations, elliptic-curves over F2m are preferred since
they can be implemented easily on hardware and because they achieve faster
speed than prime fields. In this research we restrict ourselves to elliptic-curves
over F2m .

14 BACKGROUND

Definition 2.2.1. (Elliptic-curves over binary fields). The curve equation is

E : y2 + xy = x3 + ax2 + b , (2.3)

where the curve constants a and b are in F2m .

For elliptic-curves defined over binary fields, the point addition and doubling
rules are defined below.

Point addition For P1(x1, y1) 6= P2(x2, y2), the equation for P3(x3, y3) is as
follows.

x3 = λ2 + λ+ x1 + x2 + a and y3 = λ(x1 + x3) + x3 + y1 . (2.4)

Point doubling For P1(x1, y1) = P2(x2, y2), the equation for P3(x3, y3) is as
follows.

x3 = λ2 + λ+ a and y3 = x2
1 + λx3 + x3 . (2.5)

2.2.1 Koblitz curves

Koblitz curves introduced by Koblitz in [70] are a special class of elliptic-curves
defined by the following equation:

y2 + xy = x3 + ax2 + 1 , a ∈ {0, 1} , (2.6)

with points with coordinates x, y ∈ F2m . Koblitz curves offer efficient point
multiplications because they allow trading computationally expensive point
doublings to cheap Frobenius endomorphisms. Many standards use Koblitz
curves including NIST FIPS 186-4 [94] which describes the (Elliptic-Curve)
Digital Signature Standard (ECDSA) and defines five Koblitz curves NIST
K-163, K-233, K-283, K-409, and K-571 over the finite fields F2163 , F2233 , F2283 ,
F2409 , and F2571 , respectively.

The Frobenius endomorphism for a point P ∈ E is given by φ(P) = (x2, y2).
For Koblitz curves, it holds that φ(P) ∈ E for all P ∈ E. Koblitz showed that
φ2(P)−µφ(P) + 2P =∞ for all P ∈ E, where µ = (−1)1−a [70]. Consequently,
the Frobenius endomorphism can be seen as a multiplication by the complex
number τ = (µ+

√
−7)/2 [70].

Let the ring of polynomials in τ with integer coefficients be denoted by Z[τ]. For
any element u = ul−1τ

l−1 + . . .+ u0 ∈ Z[τ] with ui ∈ {0, 1}, we can multiply
any base point P by u as follows.

[ul−1τ
l−1 + . . .+ u0]P = [ul−1]τ l−1P + . . .+ [u0]P .

ELLIPTIC-CURVE CRYPTOGRAPHY OVER F2M 15

The point multiplication performs only point additions and Frobenius operations.
Since the Frobenius operation is cheap, point multiplication by u ∈ Z[τ] is faster
than a point multiplication by an integer scalar of the same length. However,
the ECDLP is defined for integer scalars only. Solinas showed that using the
relation −τ2 + µτ = 2, it is possible to map an integer scalar into an element
in Z[τ] with binary coefficients [129]. Such a representation is called a τ -adic
expansion. Representing an integer scalar k as a τ -adic expansion t =

∑`−1
i=0 tiτ

i

allows computing point multiplications with a Frobenius-and-add algorithm,
which is similar to the double-and-add algorithm except that point doublings
are replaced by Frobenius endomorphisms.

Length reduction during integer to τ-adic conversion. If a τ -adic
representation is computed directly from the integer scalar k, then the length l
of the τ -adic representation is approximately two times the bit-length of k. This
expansion in length is a problem since it doubles the number of point additions.
Solinas showed [129] that if the integer scalar is expressed as k = λ(τm− 1) + ρ,
then the point multiplication k · P (x, y) turns into ρ · P (x, y) as for Koblitz
curves (τm−1)P (x, y) =∞. The good thing is that now a τ -adic representation
of ρ has length roughly equal to m [129]. The computation of ρ from k is called
the scalar reduction operation.

There are several methods for performing scalar reductions. The lazy reduction
method proposed by Brumley and Järvinen [23] uses divisions by τ .

Theorem 1. (Division by τ). Any element α = (d0 + d1τ) ∈ Z[τ] is divisible
by τ if and only if d0 is even. The result of the division when stored in (d0, d1),
becomes

(d0, d1)← (µd0/2 + d1,−d0/2) .

Since the division by τ can be performed by simple shift and addition operations,
the scalar reduction method of Brumley and Järvinen is suitable for lightweight
hardware implementations. In Chap. 3 we use this scalar reduction method for
our hardware implementation. The steps to perform point multiplication on
Koblitz curves are shown in Fig. 2.4.

Figure 2.4: Computation flow in point multiplication on Koblitz curves

16 BACKGROUND

ECIES. As an example of ECC-based schemes, we describe the Elliptic-Curve
Integrated Encryption Scheme (ECIES). The scheme was invented by Abdalla,
Bellare and Rogaway [1] for the purpose of public-key encryption. Besides an
elliptic-curve point multiplier, the ECIES scheme uses a key derivation function
(KDF), a symmetric-key encryption/decryption algorithm ENC/DEC, and a
message authentication code (MAC). The ECIES scheme is described as follows.

1. ECIES.KeyGen(E): For a public base point P on E, choose a random
private-key k and compute the public-key Q = k · P .

2. ECIES.Encrypt(Q,m): Randomly generate an integer r and compute the
point multiplications R1 = r · P and R2 = r · Q. Generate (k1, k2) ←
KDF(xR2 , R1) where xR2 is the x-coordinate of R2. Compute the ciphertext
c← ENC(k1,m) and compute the tag t← MAC(k2, c). Output R1, c and t.

3. ECIES.Decrypt(k,R1, c, t): Compute R3 = k · R1 and then use the x-
coordinate of R3 i.e., xR3 as the shared secret. Note that R3 = k ·R1 =
kr · P = r · Q = R2. Hence xR3 = xR2 . Now follow the same steps as
described in ECIES.Encrypt and compute (k1, k2) as the keys for the DEC
and the MAC. Now it is trivial to recover m from c using DEC(k1, c) and
then validate the recovered message.

From the above scheme we see that the elliptic-curve point multiplication plays
a central role in the ECIES scheme. In this research, we restrict ourselves to the
implementation of the elliptic-curve point multiplication primitive.

2.3 Primitives for arithmetic in F2m

Let f(x) = xm + f̄(x) be the irreducible binary polynomial of degree m for the
binary extension field F2m . There are two popular ways to represent the field
elements: the polynomial basis and the normal basis representations. In this
research we use the polynomial basis representation. In this representation an
element a ∈ F2m is represented as a polynomial a(θ) =

∑m−1
i=0 aiθ

i where the
coefficients ai are from F2 and θ is a root of f(x) . Addition or subtraction of
two elements is coefficient-wise addition or subtraction in F2. In the following
we review the field reduction, multiplication, squaring and inversion operations.

2.3.1 Reduction

In the polynomial basis representation when two field elements are multiplied, the
result, say c(θ), is a polynomial of degree at most 2m−2. Since f(x) = xm+f̄(x),

PRIMITIVES FOR ARITHMETIC IN F2M 17

we have θm = f̄(θ) in F2m . Note that f̄(θ) has a degree at most m − 1, and
hence θm gets reduced to f̄(θ). A naive approach to reduce c(θ) is to reduce
the coefficients of θi sequentially for all i ∈ [m, 2m− 2]. This method is slow
due to its sequential nature. A speedup is possible by reducing more than one
coefficients in every iteration.

We can do a lot better if f(x) is sparse. NIST has recommended F2m fields
with irreducible polynomials having three or five nonzero coefficients [92]. For
such sparse irreducible polynomials, each coefficient of the reduced result can
be expressed as a boolean expression of a few input coefficients. Hence the
output coefficients can be computed directly by evaluating the small boolean
expressions. In this research we use the NIST recommended K-283 curve over
F2283 with f(x) = x283 + x12 + x7 + x5 + 1. The steps using this irreducible
polynomial are shown in Alg. 2.43 in [54].

2.3.2 Multiplication

The field multiplication in the polynomial basis representation is the
multiplication of two polynomials, followed by a reduction by f(x). For two
elements a and b ∈ F2m the result is

∑m−1
i=0 b(θ)aiθi mod f(x). There are

several ways to compute the polynomial multiplication efficiently. A detailed
description of these methods can be found in [54].

The naive method is the classical shift-and-add method for polynomial
multiplication. This method has a quadratic time complexity. The time
requirement can be reduced by a factor by processing the operands in a word-
serial way. An efficient way to perform word-serial processing is known as the
comb method [54].

For fast computation, the Karatsuba method is the most efficient one thanks to
its O(mlg2 3) time complexity. The Karatsuba method splits each input operand
into two polynomials of length dm/2e. For e.g., a is split into two half-size
polynomials ah and al such that a = ahθ

dm/2e + al. After this splitting, the
multiplication is performed as
a · b = ah · bhθ2dm/2e +

[
(ah + al) · (bh + bl) + ah · bh + al · bl

]
θdm/2e + al · bl .

In a similar fashion, each of the small multiplications can also be split into
three smaller multiplications. This gives a recursive algorithm for computing
multiplication. The Karatsuba method achieves good performance for bit-
parallel implementation on hardware platforms [109]. However the recursive
structure of the algorithm and additional storage requirement for the partial
products are costly for lightweight implementations. In this research we use the
word-serial comb method [54] to perform field multiplication.

18 BACKGROUND

2.3.3 Squaring

A squaring in F2m can be computed much faster than a multiplication. In
the polynomial basis representation the square of a =

∑m−1
i=0 aiθ

i is a2 =∑m−1
i=0 aiθ

2i. The squaring operation spreads out the input coefficients by
inserting zeros between each input coefficients. On hardware platforms, the
spreading out of the input bits can be implemented free of cost. The only cost
is due to the modular reduction by f(x). Still this cost is small as we use a
sparse f(x).

2.3.4 Inversion

The inverse of an element a ∈ F2m is the unique element, denoted as a−1 ∈ F2m ,
such that a · a−1 ≡ 1 mod f(x). Inversion is considered to be the costliest
field operation. The most commonly used methods are based on the Extended
Euclidean Algorithm (EEA) or the Fermat’s Little Theorem (FLT) [54].

The EEA computes the greatest common divisor (GCD) of two polynomials a
and b by finding two polynomials g and h such that a · g + b · h = d where
d = GCD(a, b). This property of the EEA is used to compute the inverse of an
element. Since f(x) is irreducible in F2m , the GCD of a and f is always one.
Hence the EEA computes g and h such that a · g + f · h = 1, and with this we
get a · g ≡ 1 mod f(x). Naturally a−1 = g in F2m .

Inversion using the FLT computes a−1 = a2m−2. The computation requires
exponentiation of the input by 2m− 2. Itoh and Tsujii [61] used addition chains
to compute the exponentiation efficiently. The advantage of the FLT-based
method over the EEA is that it requires only multiplications and squarings for
the exponentiation. For hardware implementations, the FLT-based inversion
method is well suited as it can reuse the multiply and square primitives. We
use the FLT-based inversion for our lightweight implementation.

2.4 Ring-LWE-based cryptography

The ring-LWE problem has been used to construct a wide range of schemes such
as public-key encryption, key exchange, digital signature and homomorphic
encryption schemes. In this research we deal with ring-LWE-based public-
key encryption and homomorphic schemes. We review these schemes in the
remaining part of this section.

RING-LWE-BASED CRYPTOGRAPHY 19

2.4.1 The LPR public-key encryption scheme

An elegant public-key encryption scheme was constructed by Lyubashevsky,
Peikert, and Regev in the full version of [85] based on the ring-LWE problem.
The LPR encryption scheme performs simple polynomial arithmetic such as
polynomial multiplications, additions and subtractions, along with sampling
from an error distribution typically a discrete Gaussian distribution χσ with
a small standard deviation σ. It uses a global polynomial a ∈ Rq. The key
generation, encryption and decryption are as follows.

1. LPR.KeyGen(a): Choose two polynomials r1, r2 ∈ Rq from Xσ and compute
p = r1 − a · r2 ∈ Rq. The public-key is (a, p) and the private-key is r2.
The polynomial r1 is simply noise and is no longer required after key
generation.

2. LPR.Encrypt(a, p,m): The message m is first encoded to m̄ ∈ Rq. In the
simplest type of encoding scheme a message bit is encoded as (q−1)/2 if the
message bit is 1 and 0 otherwise. Three noise polynomials e1, e2, e3 ∈ Rq
are sampled from a discrete Gaussian distribution with standard deviation
σ. The ciphertext then consists of two polynomials c1 = a · e1 + e2 and
c2 = p · e1 + e3 + m̄ ∈ Rq.

3. LPR.Decrypt(c1, c2, r2): Compute m′ = c1 · r2 + c2 ∈ Rq and recover the
original message m from m′ using a decoder. In the simplest decoding
scheme the coefficients m′i of m′ are decodes as 1 if they are in the interval
(q/4, 3q/4), and as 0 otherwise.

A block level view of the LPR encryption and decryption is shown in Fig. 2.5.

sampler

r
2

c
1

c
2

e
1

e
2

e
3

encoder

a

p

decoder
m

m
~

m

m’

LPR.Encrypt LPR.Decrypt

Figure 2.5: Block level LPR.Encrypt and LPR.Decrypt

20 BACKGROUND

2.4.2 Ring-LWE-based homomorphic encryption schemes

The beauty of the ring-LWE problem is that it is not restricted to encryption
and signature schemes. It has been used to design efficient homomorphic
encryption schemes. A ring-LWE-based homomorphic encryption scheme uses a
basic ring-LWE encryption scheme and two additional functions Add and Mult
to perform arithmetic operation on encrypted data. However in comparison
to a simple ring-LWE encryption scheme, a homomorphic encryption scheme
requires a much larger parameter set to support a desired multiplicative depth.
In the next part we review two homomorphic encryption schemes namely FV
and YASHE. Both schemes work in the polynomial ring R = Z[x]/〈f(x)〉 with
f(x) = Φd(x), the d-th cyclotomic polynomial of degree n = ϕ(d). A plaintext
is an element in the ring Rt = R/tR for some small modulus t. For binary
operations t is taken as 2.

In the following part of this section we define two functions that are used to
describe the FV and YASHE schemes. The key generation and the encryption
operations in both FV and YASHE require sampling from two probability
distributions defined on R, namely χkey and χerr respectively. The security
is determined by the degree n of f , the size of q, and by the probability
distributions. Following [85] one may sample the key and the error polynomials
from a common distribution χ. Typically χ is a discrete Gaussian distribution
χσ with a small standard deviation σ. However in practice some authors take
the key as a polynomial with coefficients from a narrow set like {−1, 0, 1}.
Definition 2.4.1. (WordDecompw,q(a)). This function is used to decompose
a ring element a ∈ Rq in base w by splicing each coefficient of a. For l =
dlogw(q)e, this function returns ai ∈ R with coefficients in (−w/2, w/2], where
a =

∑l−1
i=0 aiw

i.
Definition 2.4.2. (PowersOfw,q(a)). This function scales an element a ∈ Rq
by the different powers of w. It is defined as PowersOfw,q(a) = (awi)l−1

i=0. The
two functions can be used to perform a polynomial multiplication in Rq as

〈WordDecompw,q(a), PowersOfw,q(b)〉 = a · b mod q .

This expression has the advantage of reducing the noise during homomorphic
multiplications, as the first vector contains small elements (in base w).

The FV homomorphic encryption scheme

The FV scheme was introduced by Fan and Vercauteren [43] in 2012. We briefly
describe the functions used in the FV scheme. For details of the functions,
interested readers are referred to the original paper [43].

RING-LWE-BASED CRYPTOGRAPHY 21

1. FV.ParamsGen(λ): For a given security parameter λ, choose a polynomial
Φd(x), ciphertext modulus q and plaintext modulus t, and distributions
χerr and χkey. Also choose the base w for WordDecompw,q(·). Return
the system parameters (Φd(x), q, t, χerr, χkey, w). Following [43] we use
a uniform signed binary distribution for χkey. Additionally we set the
plaintext modulus t = 2.

2. FV.KeyGen(Φd(x), q, t, χerr, χkey, w): Sample polynomial s from χkey,
sample a← Rq uniformly at random, and sample e← χerr. Compute b =
[−(as+ e)]q. The public-key consists of two polynomials pk = {b, a} and
the secret key is sk = s. The scheme uses another key called relinearisation
key or rlk in the function ReLin. This key is computed as follows: first
sample a ← Rlq uniformly, then sample e ← χlerr, and then compute
rlk = {rlk0, rlk1} = {[PowersOfw,q(s2)− (e + a · s)]q,a} ∈ {Rlq, Rlq}.

3. FV.Encrypt(pk,m): First encode the input message m ∈ Rt into a
polynomial ∆m ∈ Rq with ∆ = bq/tc. Next sample the error polynomials
e1, e2 ← χerr, sample u uniformly from the signed binary distribution,
and, compute the two polynomials c0 = [∆m + bu + e1]q ∈ Rq and
c1 = [au+e2]q ∈ Rq. The ciphertext is the pair of polynomials c = {c0, c1}.

4. FV.Decrypt(sk, c): First compute a polynomial m̃ = [c0 + sc1]q. When
t = 2, recover the plaintext message m by a decoding the coefficients of
m̃. This decoding operation checks if the coefficient is in (q/4, 3q/4) for a
1 bit and a 0 bit otherwise.

5. FV.Add(c1, c2): For two ciphertexts c0 = {c0,0, c0,1} and c1 = {c1,0, c1,1},
return c = {c0,0 + c1,0, c1,0 + c1,1}.

6. FV.Mult(c1, c2, rlk): Compute c̃mult = {c0, c1, c2} where c0 = [b tq · c1,0 ·
c2,0e]q, c1 = [b tq · (c1,0 · c2,1 + c1,1 · c2,0)e]q, and c2 = [b tq · c1,1 · c2,1e]q. Next
call the function ReLin(c̃mult, rlk).

7. FV.ReLin(c̃mult, rlk): Compute a relinearised ciphertext c′ = {[c0 +
〈WordDecompw,q(c2), rlk0〉]q, [c1 + 〈WordDecompw,q(c2), rlk1〉]q}.

The YASHE homomorphic encryption scheme

The YASHE scheme was introduced by Bos, Lauter, Loftus, and Naehrig [21] in
2013. The YASHE scheme is then defined as follows (full details can be found
in the original paper [21]).

• YASHE.ParamsGen(λ): For security parameter λ, choose a polynomial
Φd(x), moduli q and t and distributions χerr and χkey attaining

22 BACKGROUND

security level λ. Also choose base w and return the system parameters
(Φd(x), q, t, χerr, χkey, w).

• YASHE.KeyGen(Φd(x), q, t, χerr, χkey, w): Sample f ′, g ← χkey and set f =
(tf ′ + 1) ∈ Rq. If f is not invertible in Rq choose a new f ′. Define
h = tgf−1 ∈ Rq. Sample two vectors e, s of u + 1 elements from
χerr and compute γ = PowersOfw,q(f) + e + hs ∈ Ru+1

q and output
(pk, sk, evk) = (h, f, γ). The key generation is based on the modified
version of NTRU by Stehlé and Steinfeld [130].

• YASHE.Encrypt(h,m): To encrypt a message m ∈ Rt sample s, e← χerr
and output the ciphertext c = ∆ ·m+ e+ sh ∈ Rq with ∆ = bq/tc.

• YASHE.Decrypt(f, c): Recover m as m = b tq · [f · c]qe ∈ Rt with [·]q
reduction in the interval (−q/2, q/2].

• YASHE.Add(c1, c2): Return c1 + c2 ∈ Rq.

• YASHE.KeySwitch(c, evk): Return 〈WordDecompw,q(c), evk〉 ∈ Rq

• YASHE.Mult(c1, c2, evk): Return c = YASHE.KeySwitch(c′, evk) with c′ =
[b tq c1c2e]q ∈ Rq.

2.5 Primitives for ring-LWE-based cryptography

From the descriptions of the ring-LWE-based public-key encryption and
homomorphic encryption schemes, we see that the main primitives that
we need are: discrete Gaussian sampling for the generation of the error
polynomials, polynomial arithmetic unit for polynomial addition, subtraction
and multiplication, and a division-and-round unit for computing homomorphic
multiplications. These primitives are described as follows.

2.5.1 Discrete Gaussian sampler

Definition 2.5.1. (Discrete Gaussian distribution). The discrete Gaussian
distribution DZ,σ over Z with mean 0 and standard deviation σ > 0 is defined
by DZ,σ(E = z) = 1

S
e−(z)2/2σ2 , where E is a random variable on Z and S is

the normalization factor equal to 1 + 2
∑∞
z=1 e

−z2/2σ2 which is approximately
σ
√

2π.

PRIMITIVES FOR RING-LWE-BASED CRYPTOGRAPHY 23

In the same way we can define a discrete Gaussian distribution DL,σ over a
lattice L. It assigns a probability proportional to e−|v|2/2σ2 to each element
v ∈ L. Specifically when L = Zn, the discrete Gaussian distribution is the
product distribution of n independent copies of DZ,σ.

Tail bound of a discrete Gaussian distribution: The tail of the Gaussian
distribution is infinitely long and cannot be covered by any sampling algorithm.
Indeed we need to sample up to a bound known as the tail bound. A finite
tail-bound introduces a statistical difference with the true Gaussian distribution.
The tail-bound depends on the maximum statistical distance allowed by the
security parameters. As per Lemma 4.4 in [84], for any c > 1 the probability of
sampling v from DZm,σ satisfies the following inequality.

Pr(|v| > cσ
√
m) < cme

m
2 (1−c2) . (2.7)

Precision bound of a discrete Gaussian distribution: The probabilities in
a discrete Gaussian distribution have infinitely long binary representations
and hence no algorithm can sample according to a true discrete Gaussian
distribution. Secure applications require sampling with high precision to
maintain negligible statistical distance from the actual distribution. Let ρz
denote the true probability of sampling z ∈ Z according to the distribution
DZ,σ. Assume that the sampler selects z with probability pz where |pz−ρz| < ε
for some error-constant ε > 0. Let D̃Z,σ denote the approximate discrete
Gaussian distribution corresponding to the finite-precision probabilities pz. The
approximate distribution D̃Zm,σ corresponding to m independent samples from
D̃Z,σ has the following statistical distance ∆ to the true distribution DZm,σ [39]:

∆(D̃Zm,σ, DZm,σ) < 2−k + 2mztε . (2.8)

Here Pr(|v| > zt : v← DZm,σ) < 2−k represents the tail bound.

Methods for discrete Gaussian sampling

There are various methods for sampling from a discrete non-uniform (and also
Gaussian) distribution [33]. Here we review most of these methods.

The rejection sampling is one of the simplest methods for sampling from
a discrete nonuniform distribution. To sample from a target distribution T ,
the rejection sampling method first samples a value z from some easy proposal
distribution. Then the sampled value is accepted with a probability proportional
to TZ,σ(E = z). Though the method is simple in nature, in practice, rejection

24 BACKGROUND

sampling for a discrete Gaussian distribution is slow due to the high rejection
rate for the sampled values that are far from the center of the distribution [52].
Moreover, for each trial, many random bits are required which is very time
consuming on a constrained platform.

For continuous Gaussian distributions, the Ziggurat method is very efficient
to minimize the rejection rate. Buchmann, Cabarcas, Göpfert, Hülsing and
Weiden proposed a discrete version of the Ziggurat method [24] to sample
from discrete Gaussian distributions. Similar to the well known continuous
Ziggurat method, the discrete version divides the target distribution into several
rectangles distributions. The rectangles are ordered with respect to the x-
coordinates of their right edges. During a sampling operation, first a rectangle
is randomly chosen, and then a random coordinate x-coordinate is generated
within the rectangle. The random x-coordinate is accepted as the sample output
if it is also within the rectangle that is just before the randomly chosen rectangle
in the ordered list. When the condition is not satisfied, a random y coordinate
is generated and a costly exp() computation is performed. The authors showed
that discrete Ziggurat could be a good choice to reduce memory requirement
when the standard deviation is large.

The inversion sampling method first generates a random probability and
then selects a sample value such that the cumulative distribution up to
that sample point is just larger than the randomly generated probability.
To implement discrete Gaussian sampling using the inversion method, the
cumulative distribution function (CDF) table CDT is precomputed with necessary
tail and precision bound. The table has the property CDT[i + 1] − CDT[i] =
DZ,σ(E = i). During a sampling operation, a random number r is generated
uniformly and then the CDT table is searched to find an index z such that
CDT[z] ≤ r < CDT[z + 1]. The output from the sampling operation is z. Note
that the bit width of the random number r should be equal to the precision
bound of the distribution. As a result, this method requires a large number of
random bits.

The Knuth-Yao sampling [68] uses a random walk model to generate samples
from a known nonuniform discrete distribution. For the known distribution a
rooted binary tree known as the discrete distribution generating (DDG) tree
is constructed. The DDG tree consists of two types of nodes: intermediate
nodes (I) and terminal nodes. A terminal node contains a sample point,
whereas an intermediate node generates two child nodes in the next level of the
DDG tree. During a sampling operation a random walk is performed starting
from the root of the DDG tree. For every jump from one level of the DDG
tree to the next level, a random bit is used to determine a child node. The
sampling operation terminates when the random walk hits a terminal node.
The value of the terminal node is the value of the output sample point. The

PRIMITIVES FOR RING-LWE-BASED CRYPTOGRAPHY 25

Knuth-Yao algorithm performs sampling from non-uniform distributions using
a near-optimal number of random bits.

A detailed comparative analysis of different sampling methods can be found
in [39]. In this research we use the Knuth-Yao method to design a
discrete Gaussian sampler for the above mentioned public-key encryption and
homomorphic encryption schemes. We will review the Knuth-Yao random walk
in detail in Chap. 4.

2.5.2 Polynomial arithmetic

The ring-LWE-based schemes in Sect. 2.4 perform polynomial arithmetic in
Rq = Zq[x]/〈f〉. Polynomial addition are subtraction can be performed in O(n)
time simply by performing coefficient-wise additions or subtractions modulo q.
Computation of polynomial multiplication is the costliest operation in the ring-
LWE-based cryptographic schemes. In the general case, given two polynomials
a(x) and b(x), first their product c′(x) = a(x) · b(x) is computed and then the
product is reduced modulo f(x) to get the polynomial multiplication result
c(x) = c′(x) mod f(x). In the following we briefly review some of the well-
known polynomial multiplication methods for computing a(x) · b(x). A survey
of fast multiplication algorithms can be found in [16].

The school-book polynomial multiplication is the simplest method for
computing the product of two polynomials. It computes the result as a
summation of products using as follows.

a(x) · b(x) =
n−1∑
i=0

n−1∑
j=0

ai · bjxi+j . (2.9)

From the above equation it is clear that the school-book method has O(n2)
time complexity. The simplicity of this method makes it attractive for designing
a compact polynomial multiplier for small n. For the ring-LWE-based schemes
in Sect. 2.4, n is large and hence the school-book multiplication is not suitable.

Karatsuba polynomial multiplication uses a divide-and-conquer approach
to perform polynomial multiplication. For n a power of two, the Karatsuba
method divides the input polynomials into polynomials of half length. E.g. a(x)
is split into two polynomials ah and al each having n/2 coefficients.

ah = an−1x
n−1 + . . .+ an/2x

n/2

al = an/2−1x
n/2−1 + . . .+ a0 .

26 BACKGROUND

Similarly bh and bl are obtained after splitting b(x). The multiplication is
performed as follows.

a(x) · b(x) = ah · bhxn +
[
(ah + al) · (bh + bl)− ah · bh − al · bl

]
xn/2 + al · bl .

Thus the Karatsuba method has turned the n-coefficient polynomial multi-
plication into three n/2-coefficient polynomial multiplications. Following the
same strategy, each of these smaller multiplications can be turned into even
smaller multiplications. The Karatsuba method-based polynomial multiplication
algorithms use recursive function calls to realize the divide-and-conquer strategy.
The method has O(nlg2 3) time complexity.

The Fourier transform method is the most efficient method for computing
polynomial multiplication. The n-point forward Discrete Fourier Transform
(DFT) of a polynomial a(x) =

∑n−1
k=0 akx

k consists of n evaluations of a(x) at
n distinct points. The good thing is that, polynomial multiplication in the
Fourier domain turns into a coefficient-wise multiplication operation. Hence, if
the input polynomials are provided in their Fourier representation, then we can
multiply them in O(n) time. However the trivial way to compute the DFT has
quadratic time complexity.

The Fast Fourier Transform (FFT) is an efficient way to compute the DFT of a
polynomial in O(n lgn) time. It evaluates the input polynomial in the points
ωkn for the integer k ∈ [0, n− 1], where ωn is the n-th primitive root of the unity.
The FFT applies a divide-and-conquer approach for the evaluation by exploiting
a special property ω2k

n = ωkn/2 of ωn. For n a power of two, the input polynomial
a(x) is split into two smaller polynomials ae(x) = an−2xn/2−1 + . . .+ a0 and
ao(x) = an−1xn/2−1+. . .+a1 such that a(x) = ae(x2)+xao(x2). The evaluations
are performed only at the n/2 distinct points ωkn/2 for k ∈ [0, n/2 − 1]. Now
the evaluation of a(x) is obtained by combining the evaluations of ae(x) and
ao(x) as shown below and by using the special property of ωn i.e. ω2k

n = ωkn/2
for any k > n/2.

a(ωkn) = ae(ω2k
n) + ωknao(ω2k

n) .

In the FFT method, the n-th primitive root of unity ωn is a complex number,
and hence FFT involves floating point arithmetic. The Number Theoretic
Transform (NTT) corresponds to an FFT where the roots of unity are taken
from a finite ring Zq. Hence all computations in NTT are performed on integers.
The NTT exists if and only if n divides d− 1 for every prime divisor d of q. In
this research we use the NTT to efficiently compute polynomial multiplication in
Rq. In Chap. 5 we review an inplace iterative version of the NTT algorithm. For

PRIMITIVES FOR RING-LWE-BASED CRYPTOGRAPHY 27

two polynomials a and b, their multiplication using the NTT can be computed
as follows.

a · b = INTT 2n
ω

(
NTT 2n

ω (a) ∗NTT 2n
ω (b)

)
.

Here NTT 2n
ω (·) stands for a 2n-point NTT, INTT 2n

ω (·) stands for the inverse
transform, and the operator ∗ stands for coefficient-wise multiplications.

Reduction modulo f(x)

In a polynomial multiplication over Rq, the result c′(x) = a(x) · b(x) which
has 2n coefficients, is reduced modulo the irreducible polynomial f(x). In
the general case, i.e. when f(x) does not possess any special structure, we
can compute the modular reduction by computing the quotient quo(x) and
remainder rem(x) polynomials such that c′(x) = quo(x) · f(x) + rem(x). The
computation of quo(x) requires a polynomial division operation. An efficient
way to compute this division is to use the Newton iteration method. The steps
are as follows [139].

Let revk() be a function that reverses the positions of the first k coefficients
of the input polynomial. For e.g., when rev3() is applied to the polynomial
3x2 + 5x+ 2, the result is the polynomial 2x2 + 5x+ 3.

From the equation c′ = quo · f + rem, where c′ has degree 2n − 1 and f has
degree n, we get the relation

rev2n−1(c′) = revn−1(quo) · revn(f) + xnrevn−1(rem) .

Therefore, we can get the congruence relation

revn−1(quo) ≡ rev2n−1(c′) · revn(f)−1 (mod xn) .

For arithmetic in Rq, the irreducible polynomial f is always constant and
hence revn(f)−1 (mod xn) is a constant polynomial with n coefficients. We see
that revn−1(quo) (mod xn) can be computed by performing simple polynomial
multiplication and then taking the least n coefficients of the result. Computation
of quo from revn−1(quo) requires another application of revn−1(). Now the
remainder is computed as rem(x) = c′(x)− quo(x) · f(x).

2.5.3 Division and rounding

Both FV.Mult and YASHE.Mult require divisions by q. The basic division
algorithms [40] namely the restoring and non-restoring divisions are iterative in

28 BACKGROUND

nature and produce one digit of the quotient per iteration. Though accurate,
such algorithms are very slow for homomorphic encryption schemes. Fast division
methods use a reciprocal function computation to find a close approximation
of the quotient. Such methods are also iterative but after each iteration the
number of bits of accuracy of the approximate quotient doubles. As a result
the number of iterations for fast division methods is less than for basic division
methods. The Newton–Raphson and Goldschmidt methods are examples of
fast division methods. A comprehensive study of fast division algorithms is
provided in [41].

Note that the division operation that we need to perform always uses a constant
value q as the divisor. When the divisor is fixed, we can do a lot better than the
above mentioned methods as the reciprocal 1/q can be computed beforehand.
The quotient can be computed by multiplying the dividend by the reciprocal.
This multiplication can be computed efficiently if the underlying platform
supports word level integer multiplications. To compute the rounding of the
division result we use the following theorem.

Theorem 2. To round a division of two k-bit integers correctly to k-bits, the
quotient must be computed correctly to 2k + 1 bits [66].

Hence to round the result of dividing a k1-bit dividend by a k2-bit divisor we
need to pre-compute the reciprocal upto k1 + k2 + 1 bits.

2.6 Summary

In this chapter, we revisited the elliptic-curve discrete logarithm problem and
hard lattice problems, and introduced a set of PKC schemes based on these
problems. For elliptic-curve cryptography over binary extension fields, we
described the mathematics of the finite field primitives and introduced the
Koblitz curves for faster point multiplication. For lattice-based cryptography
over polynomial rings, we briefly introduced the mathematics of polynomial
arithmetic and discrete Gaussian sampling, and described the well-known
methods for implementing these primitives.

In the next chapter we will design a lightweight Koblitz curve point multiplier
and we will perform several lightweight optimizations to implement the scalar
conversion. Then, from Chap. 4 onwards we will optimize the primitives for the
ring-LWE-based PKC and design hardware architectures for the PKC schemes.

Chapter 3

Coprocessor for Koblitz
curves

CONTENT SOURCES:

Sujoy Sinha Roy, Kimmo Järvinen, Ingrid Verbauwhede Lightweight
Coprocessor for Koblitz Curves: 283-Bit ECC Including Scalar Conversion
with only 4300 Gates In Cryptographic Hardware and Embedded Systems
CHES (2015).

Contribution: Main author.

Sujoy Sinha Roy, Junfeng Fan, Ingrid Verbauwhede Accelerating Scalar
Conversion for Koblitz Curve Cryptoprocessors on Hardware Platforms
In IEEE Transactions on Very Large Scale Integration (VLSI) Systems
(2015).

Contribution: Main author.

3.1 Introduction

Koblitz curves [70] are a special class of elliptic-curves which enable very efficient
point multiplications and, therefore, they are attractive for hardware and
software implementations. However, these efficiency gains can be exploited only
by representing scalars as specific τ -adic expansions. Most cryptosystems require
the scalar also as an integer (see, e.g., ECDSA [94]). Therefore, cryptosystems

29

30 COPROCESSOR FOR KOBLITZ CURVES

utilizing Koblitz curves need both the integer and τ -adic representations of the
scalar, which results in a need for conversions between the two domains.

In the literature a few research works exist that address the challenges of
designing the scalar conversion operation in hardware. The first conversion
architecture was proposed in [72] and was followed by [135, 140]. Still the
converters were slow and had large area requirements. Brumley and Järvinen in
[23] proposed an efficient conversion algorithm tailored for hardware platforms.
Due to its sequential nature, the authors named the algorithm lazy reduction.
The algorithm uses only integer addition, subtraction and shifting operations;
no multi-precision divisions or multiplications are used. Later a speed optimized
version of the lazy reduction, known as the double lazy reduction was proposed
in [62] by Adikari, Dimitrov, and Järvinen. Still, the extra overhead introduced
by these conversions has so far prevented efforts to use Koblitz curves in
lightweight implementations. Lightweight applications that require elliptic-
curve cryptography include, e.g., wireless sensor network nodes, RFID tags,
medical implants, and smart cards. Such applications will have a central
role in actualizing concepts such as the Internet of Things. However such
applications have strict constraints on implementation resources such as power,
energy, circuit area, memory, etc. Since the Koblitz curves are a class of
computationally efficient elliptic-curves, they could potentially be the right
choice for the lightweight applications. Indeed [11] showed that Koblitz curves
result in a very efficient lightweight implementation if τ -adic expansions are
already available. But the fact that the conversion is not included seriously
limits possible applications of the implementation.

In this chapter we investigate a design methodology for implementing high
security Koblitz curve cryptoprocessor on hardware platforms. We choose the
NIST [92] recommended 283 bit Koblitz curve which offers around 140 bit
security. We introduce several optimizations in the conversion of integer scalars.
Finally, we design a lightweight coprocessor architecture of the 283-bit Koblitz
curve point multiplier by using the lightweight scalar conversion architecture.
We also include a set of countermeasures against timing attacks, simple power
analysis (SPA), differential power analysis (DPA) and safe-error fault attacks.

The remaining part of the chapter is organized as follows: In Sect. 3.2 we optimize
the Koblitz scalar conversion operation and introduce several lightweight
countermeasures against side channel attacks. In Sect. 3.3 we describe the
point multiplication operation. We use these optimization techniques to design
a lightweight coprocessor architecture in Sect. 3.4. We provide synthesis results
in 130 nm CMOS and comparisons to other works in Sect. 3.5. The final section
summarizes the contributions.

KOBLITZ CURVE SCALAR CONVERSION 31

Algorithm 2: Scalar reduction algorithm from [23]
Input: Integer scalar k
Output: Reduced scalar ρ = b0 + b1τ ≡ k (mod τm − 1)

1 (a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0) ;
2 for i = 0 to m− 1 do
3 u← d0[0] ; /* lsb of d0 is the remainder before division */
4 d0 ← d0 − u ;
5 (b0, b1)← (b0 + u · a0, b1 + u · a1) ;
6 (d0, d1)← (d1 − d0/2,−d0/2) ; /* Division of (d0, d1) by τ */
7 (a0, a1)← (−2a1, a0 − a1) ;
8 end
9 ρ = (b0, b1)← (b0 + d0, b1 + d1) ;

3.2 Koblitz curve scalar conversion

As described in Sect. 2.2.1, the scalar conversion is performed in two phases:
first the integer scalar k is reduced to ρ = b0 + b1τ ≡ k (mod τm − 1) and
then the τ -adic representation t is generated from the reduced scalar ρ [129, 97,
141]. The overhead of these conversions is specifically important for efficient
implementations. Another important aspect is resistance against side-channel
attacks. Only SPA countermeasures are required because only one conversion is
required per k. The scalar k is typically a nonce but even if it is used multiple
times, t can be computed only once and stored.

3.2.1 Scalar reduction

We choose the scalar reduction technique called lazy reduction (described as
Alg. 2) from [23]. The scalar k is repeatedly divided by τ for m number of times
to get the following relation.

k = (d0 + d1τ)τm + (b0 + b1τ)

= (d0 + d1τ)(τm − 1) + (b0 + d0) + (b1 + d1)τ

= λ(τm − 1) + ρ .

As shown in Theorem 1 in Sect. 2.2.1, this division can be implemented with
shifts, additions, and subtractions. This makes the scalar reduction algorithm
attractive for lightweight implementations. The τ -adic representation generated
from ρ has a length at most m+ 4 in F2m [23].

32 COPROCESSOR FOR KOBLITZ CURVES

To meet the constraints of a lightweight platform, we implement the lazy
reduction algorithm [23] in a word-serial fashion. Though this design decision
reduces the area requirement, it increases the cycle count. Hence we optimize
further the computational steps of Alg. 2 to reduce the number of cycles.
Further, we investigate side-channel vulnerability of the algorithm and propose
lightweight countermeasures against SPA.

Computational optimization

In lines 6 and 7 of Alg. 2, computations of d1 and a0 require subtractions from
zero. In a word-serial architecture with only one adder/subtracter circuit, they
consume nearly 33% of the cycles of the scalar reduction. We use the iterative
property of Alg. 2 and eliminate these two subtractions by replacing lines 6 and
7 with the following ones:

(d0, d1)← (d0/2− d1, d0/2)

(a0, a1)← (2a1, a1 − a0) .
(3.1)

However with this modification, (a0, a1) and (d0, d1) have a wrong sign after
every odd number of iterations of the for-loop in Alg. 2. It may appear that
this wrong sign could affect correctness of (b0, b1) in line 5. Since the remainder
u (in line 3) is generated from d0 instead of the correct value −d0, a wrong sign
is also assigned to u. Hence, the multiplications u · a0 and u · a1 in line 5 are
always correct, and the computation of (b0, b1) remains unaffected of the wrong
signs.

After completion of the for-loop, the sign of (d0, d1) is wrong as m is an odd
integer for secure fields. Hence, the correct value of the reduced scalar should
be computed as ρ← (b0 − d0, b1 − d1).

Protection against SPA

In line 5 of Alg. 2, computation of new (b0, b1) depends on the remainder bit
(u) generated from d0 which is initialized to k. Multi-precision additions are
performed when u = 1; whereas no addition is required when u is zero. A
side-channel attacker can detect this conditional computation and can use, e.g.,
the techniques from [23] to reconstruct the secret key from the remainder bits
that are generated during the scalar reduction.

One way to protect the scalar reduction from SPA is to perform dummy additions
(b′0, b′1) ← (b0 + a0, b1 + a1) whenever u = 0. However, such countermeasures

KOBLITZ CURVE SCALAR CONVERSION 33

Algorithm 3: SPA-resistant scalar reduction
Input: Integer scalar k
Output: Reduced scalar ρ = b0 + b1τ ≡ k (mod τm − 1)

1 (a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0) ;
2 if d0[0] = 0 then
3 e← 1 ; /* Set to 1 when d0 is even */
4 d0[0]← 1 ;
5 end
6 for i = 0 to m− 1 do
7 u← Ψ(d0 + d1τ) ; /* Remainder u ∈ {1,−1}, computed using (3.2) */
8 d0 ← d0 − u ;
9 (b0, b1)← (b0 + u · a0, b1 + u · a1) ;

10 (d0, d1)← (d0/2− d1, d0/2) ; /* Saves one subtraction */
11 (a0, a1)← (2a1, a1 − a0) ; /* Saves one subtraction */
12 end
13 ρ = (b0, b1)← (b0 − d0 − e, b1 − d1) ; /* Subtraction */

based on dummy operations require more memory and are vulnerable to C
safe-error fault attacks [42]. We propose a countermeasure inspired by the
zero-free τ -adic representations from [97, 141]. A zero-free representation is
obtained by generating the remainders u from d = d0 + d1τ using a map
Ψ(d) → u ∈ {1,−1} such that d − u is divisible by τ , but additionally not
divisible by τ2 (see Sect. 3.2.2). We observe that during the scalar reduction
(which is basically a division by τ), we can generate the remainder bits u as
either 1 or −1 throughout the entire for-loop in Alg. 2. Because u 6= 0, a
new (b0, b1) is always computed in the for-loop and protection against SPA is
achieved without dummy operations. The following equation generates u by
observing the second lsb of d0 and lsb of d1.

Case 1: If d0[1] = 0 and d1[0] = 0, then u← −1

Case 2: If d0[1] = 1 and d1[0] = 0, then u← 1

Case 3: If d0[1] = 0 and d1[0] = 1, then u← 1

Case 4: If d0[1] = 1 and d1[0] = 1, then u← −1 .

(3.2)

The above equation takes an odd d0 and computes u such that the new d0 after
division of d− u by τ is also an odd integer.

Alg. 3 shows our computationally efficient SPA-resistant scalar reduction
algorithm. All operations are performed in a word-serial fashion. Since the
remainder generation in (3.2) requires the input d0 to be an odd integer, the lsb

34 COPROCESSOR FOR KOBLITZ CURVES

Algorithm 4: Computation of zero-free τ -adic representation [97]
Input: Reduced scalar ρ = b0 + b1τ with b0 odd
Output: Zero-free τ -adic bits (t`−1, · · · t0)

1 i← 0 ;
2 while |b0| 6= 1 or b1 6= 0 do
3 u← Ψ(b0 + b1τ) ; /* Computed using (3.2) */
4 b0 ← b0 − u ;
5 (b0, b1)← (b1 − b0/2,−b0/2) ;
6 ti ← u ;
7 i← i+ 1 ;
8 end
9 ti ← b0 ;

of d0 is always set to 1 (in line 4) when the input scalar k is an even integer. In
this case, the algorithm computes the reduced scalar of k + 1 instead of k and
after the completion of the reduction, the reduced scalar should be decremented
by one. Alg. 3 uses a one-bit register e to implement this requirement. The
final subtraction in line 13 uses e as a borrow to the adder/subtracter circuit.
In the next section, we show that the subtraction d0 − u in line 8 also leaks
information about u and propose a countermeasure that prevents this.

3.2.2 Computation of τ -adic representation

For side-channel attack resistant point multiplication, we use the zero-free
τ -adic representation proposed in [97, 141] and described in Alg. 4. We add the
following improvements to the algorithm.

Computational optimization

Computation of b1 in line 5 of Alg. 4 requires subtraction from zero. Similar
to Sect. 3.2.1 this subtraction can be avoided by computing (b0, b1)← (b0/2−
b1, b0/2). With this modification, the sign of (b0, b1) will be wrong after an odd
number of iterations. In order to correct this, the sign of ti should be flipped
for odd i (by multiplying it with (−1)i).

KOBLITZ CURVE SCALAR CONVERSION 35

Protection against SPA

Though point multiplications with zero-free representations are resistant against
SPA [97], the generation of τ -adic bits (Alg. 4) is vulnerable to SPA. In line 3
of Alg. 4, a remainder u is computed as per the four different cases described in
(3.2) and then subtracted from b0 in line 4. We use the following observations
to detect the side-channel vulnerability in this subtraction and to propose a
countermeasure against SPA.

1. For Case 1, 2 and 3 in (3.2), the subtractions of u are equivalent to flipping
two (or one) least significant bits of b0. Hence, actual subtractions are
not computed in these cases.

2. For Case 4, subtraction of u from b0 (i.e. computation of b0 + 1)
involves carry propagation. Hence, an actual multi-precision subtraction
is computed in this case.

3. If any iteration of the while-loop in Alg. 4 meets Case 4, then the new
value of b1 will be even. Hence, the while-loop will meet either Case 1 or
Case 2 in the next iteration.

Based on the differences in computation, a side-channel attacker using SPA can
distinguish Case 4 from the other three cases. Hence, the attacker can reveal
around 25% of the bits of a zero-free representation. Moreover, the attacker
knows that the following τ -adic bits are biased towards 1 instead of −1 with a
probability of 1/3.

We propose a very low-cost countermeasure that skips this special addition
b0 + 1 for Case 4 by merging it with the computation of the new (b0, b1) in
Alg. 4. In line 5, we compute a new b0 as:

b0 ←
(
b0 + 1

2 − b1
)

=
(
b0 − 1

2 − {b′1, 0}
)

. (3.3)

Since b1 is an odd number for Case 4, we can represent it as {b′1, 1} and subtract
the least significant bit 1 from (b0 + 1)/2 to get (b0 − 1)/2. Since b0 is always
odd, the computation of (b0 − 1)/2 is just a left-shift of b0.

The computation of b1 ← (b0+1)/2 in line 5 of Alg. 4 involves a carry propagation
and thus an actual addition becomes necessary. We solve this problem by
computing b1 ← (b0 − 1)/2 instead of the correct value b1 ← (b0 + 1)/2 and
remembering the difference (i.e., 1) in a flag register h. Correctness of the
τ -adic representation can be maintained by considering this difference in the

36 COPROCESSOR FOR KOBLITZ CURVES

future computations that use this wrong value of b1. Now as per observation 3,
the next iteration of the while-loop meets either Case 1 or 2. We adjust the
previous difference by computing the new b0 as follows:

b0 ←
(
b0
2 − (b1 + h)

)
=
(
b0
2 − b1 − 1

)
. (3.4)

In a hardware architecture, this equation can be computed by setting the borrow
input of the adder/subtracter circuit to 1 during the subtraction.

In (3.5), we show our new map Ψ′(·) that computes a remainder u and a new
value h′ of the difference flag following the above procedure. We consider
b1[0]⊕ h (instead of b1[0] as in (3.2)) because a wrong b1 is computed in Case 4
and the difference is kept in h.

Case 1: If b0[1] = 0 and b1[0]⊕ h = 0, then u← −1 and h′ ← 0

Case 2: If b0[1] = 1 and b1[0]⊕ h = 0, then u← 1 and h′ ← 0

Case 3: If b0[1] = 0 and b1[0]⊕ h = 1, then u← 1 and h′ ← 0

Case 4: If b0[1] = 1 and b1[0]⊕ h = 1, then u← −1 and h′ ← 1 .

(3.5)

The same technique is also applied to protect the subtraction d0 − u in the
scalar reduction in Alg. 3.

Protection against timing attack

The terminal condition of the while-loop in Alg. 4 is dependent on the input
scalar. Thus by observing the timing of the computation, an attacker is able
to know the higher order bits of a short τ -adic representation. This allows the
attacker to narrow down the search domain. We observe that we can continue
the generation of zero-free τ -adic bits even when the terminal condition in
Alg. 4 is reached. In this case, the redundant part of the τ -adic representation is
equivalent to the value of b0 when the terminal condition was reached for the first
time; hence the result of the point multiplication remains correct. For example,
starting from (b0, b1) = (1, 0), the algorithm generates an intermediate zero-free
representation −τ−1 and again reaches the terminal condition (b0, b1) = (−1, 0).
The redundant representation −τ2 − τ − 1 is equivalent to 1. If we continue,
then the next terminal condition is again reached after generating another two
bits. In this chapter we generate zero-free τ -adic representations that have
lengths always larger than or equal to m of the field F2m . To implement this
feature, we added the terminal condition i < m to the while-loop.

POINT MULTIPLICATION 37

Algorithm 5: SPA-resistant generation of a zero-free τ -adic representation
Input: Reduced scalar ρ = b0 + b1τ
Output: τ -adic bits (tell−1, · · · t0) and flag f

1 f ← assign_flag(b0[0], b1[0]) ;
2 (b0[0], b1[0])← bitflip(b0[0], b1[0], f) ; /* Initial adjustment */
3 i← 0 ;
4 h← 0 ;
5 while i < m or |b0| 6= 1 or (b1 6= 0 and h = 0) or (b1 6= −1 and h = 1) do
6 (u, h′)← Ψ′(b0 + b1τ) ; /* Computed using (3.5) */
7 b0[1]← ¬b0[1] ; /* Second LSB is set to 1 when Case 1 occurs */
8 (b0, b1)← (b02 − b1 − h,

b0
2) ;

9 ti ← (−1)i · u ;
10 h← h′ ;
11 i← i+ 1 ;
12 end
13 ti ← (−1)i · b0 ;

In Alg. 5, we describe an algorithm for generating zero-free representations that
applies the proposed computational optimizations and countermeasures against
SPA and timing attacks. The while-loops of both Alg. 4 and 5 require b0 to
be an odd integer. When the input ρ has an even b0, then an adjustment is
made by adding one to b0 and adding (subtracting) one to (from) b1 when b1 is
even (odd). This adjustment is recorded in a flag f in the following way: if b0
is odd, then f = 0; otherwise f = 1 or f = 2 depending on whether b1 is even
or odd, respectively. In the end of a point multiplication, this flag is checked
and (τ + 1)P or (−τ + 1)P is subtracted from the point multiplication result if
f = 1 or f = 2, respectively. This compensates the initial addition of (τ + 1) or
(−τ + 1) to the reduced scalar ρ described in line 2 of Alg. 5.

We also designed a high-speed scalar conversion architecture based on [62].
The optimization strategy and the hardware architecture is described in the
appendix A.

3.3 Point multiplication

We base the point multiplication algorithm on the use of the zero-free
representation discussed in Sect. 3.2. We give our modification of the point
multiplication algorithm of [97, 141] with window size w = 2 in Alg. 6. The
algorithm includes countermeasures against SPA, DPA, and timing attacks as

38 COPROCESSOR FOR KOBLITZ CURVES

well as inherent resistance against C safe-error fault attacks. Implementation
details of each operation used by Alg. 6 are given in App. B. Below, we give a
high-level description.

Algorithm 6: Zero-free point multiplication with side-channel countermeasures
Input: An integer k, the base point P = (x, y), a random element r ∈ F2m

Output: The result point Q = kP
1 (t, f)← Convert(k) ; /* Alg. 3 and 5 */
2 P+1 ← φ(P) + P ;
3 P−1 ← φ(P)− P ;
4 if ` is odd then Q = (X,Y)← t`−1P ; i← `− 3;
5 ;
6 else Q = (X,Y)← t`−1Pt`−2t`−1 ; i← `− 4;
7 ;
8 Q = (X,Y, Z)← (Xr, Y r2, r) ;
9 while i ≥ 0 do

10 Q← φ2(Q) ;
11 Q← Q+ ti+1Ptiti+1 ;
12 i← i− 2 ;
13 end
14 if f = 1 then Q← Q+ P−1;
15 ;
16 else if f = 2 then Q← Q− P+1;
17 ;
18 Q = (X,Y)← (X/Z, Y/Z2) ;
19 return Q ;

Line 1 computes the zero-free representation t given an integer k using Alg. 3
and 5. It outputs a zero-free expansion of length ` with ti ∈ {−1,+1} represented
as an `-bit vector and a flag f . Lines 2 and 3 perform the precomputations by
computing P+1 = φ(P) + P and P−1 = φ(P)− P . Lines 4 and 5 initialize the
accumulator point Q depending on the length of the zero-free expansion. If the
length is odd, then Q is set to ±P depending on the msb t`−1. If the length is
even, then Q is initialized with ±φ(P)± P by using the precomputed points
depending on the values of the two msb’s t`−1 and t`−2. Line 6 randomizes Q by
using a random element r ∈ F2m as suggested by Coron [29]. This randomization
offers protection against DPA and attacks that calculate hypotheses about the
values of Q based on its known initial value (e.g., the doubling attack [44]).

Lines 7 to 10 iterate the main loop of the algorithm by observing two bits
of the zero-free expansion on each iteration. Each iteration begins in line 8
by computing two Frobenius endomorphisms. Line 9 either adds or subtracts

ARCHITECTURE 39

P+1 = (x+1, y+1) or P−1 = (x−1, y−1) to or from Q depending on the values
of ti and ti+1 processed by the iteration. It is implemented by using the
equations from [5] which compute a point addition in mixed affine and López-
Dahab [82] coordinates. Point addition and subtraction are carried out with
the exactly same pattern of operations (see App. B). Lines 11 and 12 correct
the adjustments that ensure that b0 is odd before starting the generation of the
zero-free representation (see Sect. 3.2.2). Line 13 retrieves the affine point of
the result point Q.

The pattern of operations in Alg. 6 is almost constant. The side-channel
properties of the conversion (line 1) were discussed in Sect. 3.2. The
precomputation (lines 2 and 3) is fixed and operates only on the base point,
which is typically public. The initialization of Q (lines 4 and 5) can be carried
out with a constant pattern of operations with the help of dummy operations.
The randomization of Q protects from differential power analysis (DPA) and
comparative side-channel attacks (e.g., the doubling attack [44]). The main
loop operates with a fixed pattern of operations on a randomized Q offering
protecting against SPA and DPA. Lines 11 and 12 depend on t (and, thus, k)
but they leak at most one bit to an adversary who can determine whether they
were computed or not. This leakage can be prevented with a dummy operation.
Although the algorithm includes dummy operations, it offers good protection
also against C safe-error fault attacks. The reason is that the main loop does
not involve any dummy operations and, hence, even an attacker, who is able to
distinguish dummy operations, learns only few bits of information (at most, the
lsb and the msb and whether the length is odd or even). Hence, C safe-error
fault attacks that aim to reveal secret information by distinguishing dummy
operations are not a viable attack strategy [42].

3.4 Architecture

In this section, we describe the hardware architecture (Fig. 3.1) of our
ECC coprocessor for 16-bit microcontrollers such as TI MSP430F241x or
MSP430F261x [133]. Such families of low-power microcontrollers have at least
4KB of RAM and can run at 16 MHz clock. We connect our coprocessor to the
microcontroller using a memory-mapped interface [124] following the drop-in
concept from [144] where the coprocessor is placed on the bus between the
microcontroller and the RAM and memory access is controlled with multiplexers.
The coprocessor consists of the following components: an arithmetic and logic
unit (ALU), an address generation unit, a shared memory and a control unit
composed of hierarchical finite state machines (FSMs).

40 COPROCESSOR FOR KOBLITZ CURVES

>

+
−

25

27

212

R1

R2

RdB1

RdB2

WtB1

WtB2

CU

0 0

CL

1

0

ALU

RAM Address

ADDRESS

16

15 16

11

5 16

Single Port

RAM

CONTROL

Scalar Conversion, Field Addition/Squaring/Multiplication/Inversion, Point Arithmetic

16

din dout

LSB

clr en

en

LSB

ca
rr

y
in

Binary Add

16x16 Binary Mult

shift

Offset

1 1

clr2 2

addcarry carry1 2

CU CL

mask

T

0

ROM

18

+

Base
Address

Base

WtOffsetRdOffset

Reduction−ROM

Figure 3.1: Hardware architecture of the ECC coprocessor

The arithmetic and logic unit (ECC-ALU)

has a 16-bit data path and is used for both integer and binary field computations.
The ECC-ALU is interfaced with the memory block using an input register
pair (R1, R2) and an output multiplexer. The central part of the ECC-ALU
consists of a 16-bit integer adder/subtracter circuit, a 16-bit binary multiplier
and two binary adders. A small Reduction-ROM contains several constants
that are used during modular reductions and multiplications by constants. The
accumulator register pair (CU,CL) stores the intermediate or final results of
any arithmetic operation. Finally, the output multiplexer is used to store the
contents of the registers CL, T and a masked version of CL in the memory
block, which sets the msb’s of the most significant word of an alement to zero.

ARCHITECTURE 41

The memory block

is a single-port RAM which is shared by the ECC coprocessor and the 16-bit
microcontroller. Each 283-bit element of F2283 requires 18 16-bit words totaling
288 bits. The coprocessor requires storage for 14 elements of F2283 (see App. B),
which gives 4032 bits of RAM (252 16-bit words). Some of these variables are
reused for different purposes during the conversion.

The address unit

generates address signals for the memory block. A small Base-ROM is used
to keep the base addresses for storing different field elements in the memory.
During any integer operation or binary field operation, the two address registers
RdB1 and RdB2 in the address unit are loaded with the base addresses of the
input operands. Similarly the base addresses for writing intermediate or final
results in the memory block are provided in the registerWtB1 and in the output
from the Base-ROM (WtB2). The adder circuit of the address block is an 8-bit
adder which computes the physical address from a read/write offset value and
a base address.

The control unit

consists of a set of hierarchical FSMs that generate control signals for the blocks
described above. The FSMs are described below.

1) Scalar Conversion uses the part of the ECC-ALU shown by the red dashed
polygon in Fig. 3.1. The computations controlled by this FSM are mainly
integer additions, subtractions and shifts. During any addition or subtraction,
the words of the operands are first loaded in the register pair (R1, R2). The
result-word is computed using the integer adder/subtracter circuit and stored
in the accumulator register CL. During a right-shift, R2 is loaded with the
operand-word and R1 is cleared. Then the lsb of the next higher word of the
operand is stored in the one-bit register LSB. Now the integer adder is used to
add the shifted value {LSB,R2/2} with R1 to get the shifted word. One scalar
conversion requires around 78,000 cycles.

2) Binary Field Primitives use the registers and the portion of the ECC-ALU
outside the red-dashed polygon in Fig. 3.1.

42 COPROCESSOR FOR KOBLITZ CURVES

• Field addition sequentially loads two words of the operands in R2, then
multiplies the words by 1 (from the Reduction-ROM) and finally calculates
the result-word in CL after accumulation. One field addition requires 60
cycles.

• Field multiplication uses word-serial comb method [54]. It loads the
words of the operands in R1 and R2, then multiplies the words and finally
accumulates. After the completion of the comb multiplication, a modular
reduction is performed requiring mainly left-shifts and additions. The
left-shifts are performed by multiplying the words with the values from
the Reduction-ROM. One field multiplication requires 829 cycles.

• Field squaring computes the square of an element of F2283 in linear time
by squaring its words. The FSM first loads a word in both R1 and R2 and
then squares the word by using the binary multiplier. After squaring the
words, the FSM performs a modular reduction. The modular reduction is
shared with the field multiplication FSM. One field squaring requires 200
cycles.

• Field inversion uses the Itoh-Tsujii algorithm [61] and performs field multi-
plications and squarings following an addition chain (1, 2, 4, 8, 16, 17, 34, 35, 70,
140, 141, 282) for F2283 . One inversion requires 65,241 cycles.

3) Point Operations and Point Multiplication are implemented by combining
an FSM with a hardwired program ROM. The program ROM includes
subprograms for all operations of Alg. 6 and the address of the ROM is controlled
by the FSM in order to execute Alg. 6 (see App. B for details).

Alg. 6 is executed so that the microcontroller initializes the addresses reserved
for the accumulator point Q with the base point (x, y) and the random element
r by writing (X,Y, Z)← (x, y, r). The scalar k is written into the RAM before
the microcontroller issues a start point multiplication command. When this
command is received, the reduction part of the conversion is executed followed
by the computation of the msb(s) of the zero-free expansion. After this, the
precomputations are performed by using (x, y) and the results are stored into
the RAM. The initialization of Q is performed by writing either P+1 or P−1
in (X,Y) if the length of the expansion is even; otherwise, a dummy write
is performed. Similarly, the sign of Q is changed if t`−1 = −1 and a dummy
operation is computed otherwise. The main loop first executes two Frobenius
endomorphisms and, then, issues an instruction that computes the next two
bits of the zero-free expansion. By using these bits, either a point addition or a
point subtraction is computed with P+1 or P−1. One iteration of the main loop
takes 9537 clock cycles. In the end, the affine coordinates of the result point

RESULTS AND COMPARISONS 43

are retrieved and they become available for the microcontroller in the addresses
for the X and Y coordinates of Q.

3.5 Results and comparisons

We described the architecture of Sect. 3.4 by using mixed Verilog and VHDL and
simulated it with ModelSim SE 6.6d. We synthesized the code with Synopsys
Design Compiler D-2010.03-SP4 using the regular compile for UMC 130 nm
CMOS with voltage of 1.2V by using Faraday FSC0L low-leakage standard
cell libraries. The area given by the synthesis is 4,323 GE including everything
in Fig. 3.1 except the single-port RAM. Computing one point multiplication
requires in total 1,566,000 clock cycles including the scalar conversion. The
power consumption at 16MHz is 97.70 µW which gives an energy consumption
of approximately 9.56µJ per point multiplication. Table 3.1 summarizes our
synthesis results together with several other lightweight ECC implementations
from the literature. Since several of the reported implementations do not provide
details of the libraries they used, we mention only the CMOS technology in the
table. For a similar technology, there will be small variations in the area, power
and energy consumption for different libraries.

Among all lightweight ECC processors available in the literature, the processor
from [11] is the closest counterpart to our implementation because it is so far
the only one that uses Koblitz curves. Even it has many differences with our
architecture which make fair comparison difficult. The most obvious difference
is that the processor from [11] is designed for a less secure Koblitz curve NIST
K-163. Also the architecture of [11] differs from ours in many fundamental
ways: they use a finite field over normal basis instead of polynomial basis,
they use a bit-serial multiplier that requires all bits of both operands to be
present during the entire multiplication instead of a word-serial architecture
that we use, they store all variables in registers embedded into the processor
architecture instead of an external RAM, and they also do not provide support
for scalar conversions or any countermeasures against side-channel attacks.
They also provide implementation results on 65 nm CMOS. Our architecture is
significantly more scalable for different Koblitz curves because, besides control
logic and RAM requirements, other parts remain almost the same, whereas
the entire multiplier needs to be changed for [11]. It is also hard to see how
scalar conversions or side-channel countermeasures could be integrated into the
architecture of [11] without significant increases on both area and latency.

Table 3.1 includes also implementations that use the binary curve B-163 and
the prime curve P-160 from [94]. The area of our coprocessor is on the level

44 COPROCESSOR FOR KOBLITZ CURVES

of the smallest coprocessors available in the literature. Hence, the effect of
selecting a 283-bit elliptic-curve instead of a less secure curve is negligible in
terms of area. The price to pay for higher security comes in the form of memory
requirements and computation latency. The amount of memory is not a major
issue because our processor shares the memory with the microcontroller which
typically has a large memory (e.g. TI MSP430F241x and MSP430F261x have
at least 4KB RAM [133]). Also the computation time is on the same level with
other published implementations because our coprocessor is designed to run on
the relatively high clock frequency of the microcontroller which is 16MHz.

In this work our main focus was to investigate feasibility of lightweight
implementations of Koblitz curves for applications demanding high security. To
enable a somewhat fair comparison with the existing lightweight implementations
over F2163 , Table 3.1 provides estimates for area and cycles of ECC coprocessors
that follow the design decisions presented in this chapter and perform point
multiplications on curves B-163 or K-163. Our estimated cycle count for scalar
multiplication over F2163 is based on the following facts:

1. A field element in F2163 requires 11 16-bit words, and hence, is smaller
by a factor of 0.61 than a field element in F2283 . Since field addition and
squaring have linear complexity, we estimate that the cycle counts for these
operations scale down by a factor of around 0.61 and become 37 and 122
respectively. In a similarly way we estimate that field multiplication (which
has quadratic complexity) scales down to 309 cycles. A field inversion
operation following an addition chain (1, 2, 4, 5, 10, 20, 40, 81, 162) requires
nearly 22,700 cycles.

2. The for-loop in the scalar reduction operation (Alg. 3) executes 163 times
in F2163 and performs linear operations such as additions/subtractions
and shifting. Moreover the length of τ -adic representation of a scalar
reduces to 163 (thus reducing by a factor of 0.57 in comparison to F2283).
So, we estimate that the cycle count for scalar conversion scales down by
a factor of 0.57× 0.61 and requires nearly 27,000 cycles.

3. One Frobenius-and-add operation over F2283 in Alg. 6 spends total
9,537 cycles among which 6,632 cycles are spent in eight quadratic-time
field multiplications, and the rest 2,905 cycles are spent in linear-time
operations. After scaling down, the cycle count for one Frobenius-and-add
operation over F2163 can be estimated to be around 4,250. The point
multiplication loop iterates nearly 82 times for a τ -adic representation of
length 164. Hence the number of cycles spent in this loop can be estimated
to be around 348,500.

RESULTS AND COMPARISONS 45

4. The precomputation and the final conversion steps are mainly dominated
by the cost of field inversions. Hence the cycle counts can be estimated to
be around 45,400.

As per the above estimates we see that a point multiplication using K-163
requires nearly 420,900 cycles. Similarly, we estimate that Montgomery’s
ladder for B-163 requires nearly 485,000 cycles. Our estimates show that our
coprocessors for both B-163 and K-163 require more cycles in comparison to
[145] which also uses a 16-bit ALU. The reason behind this is that [145] uses
a dual-port RAM, whereas our implementation uses a single-port RAM (as it
works as a coprocessor of MSP430). Moreover [145] has a dedicated squarer
circuit to minimize cycle requirement for squaring.

Table 3.1 provides estimates for cycle and area of a modified version of the
coprocessor that performs point multiplications using the Montgomery’s ladder
on the NIST curve B-283. The estimated cycle count is calculated from the
cycle counts of the field operations described in Sect. 3.4. From the estimated
value, we see that a point multiplication on B-283 requires nearly 23.5% more
time. However, the coprocessor for B-283 is smaller by around 550 GE as no
scalar conversion is needed.

Although application-specific integrated circuits are the primary targets for our
coprocessor, it may be useful also for FPGA-based implementations whenever
small ECC designs are needed. Hence, we compiled our coprocessor also for
Xilinx Spartan-6 XC6SLX4-2TQG144 FPGA by using Xilinx ISE 13.4 Design
Suite. After place and route, it requires only 209 slices (634 LUTs and 309
registers) and runs on clock frequencies up to 106.598MHz.

Our coprocessor significantly improves speed, both classical and side-channel
security, memory, and energy consumption compared to leading lightweight
software [9, 32, 56, 64, 131]. For example, [32] reports a highly optimized
Assembly implementation running on a 32-bit Cortex-M0+ processor clocked at
48MHz that computes a point multiplication on a less secure Koblitz curve K-233
without strong side-channel countermeasures. It computes a point multiplication
in 59.18ms (177.54ms at 16MHz) and consumes 34.16µJ of energy.

46 COPROCESSOR FOR KOBLITZ CURVES

Table 3.1: Comparison to other lightweight coprocessors for ECC. The top
part consists of relevant implementations from the literature. We also provide
estimates for other parameter sets in order to ease comparisons to existing
works.

W
or

k
C

u
rv

e
C

on
v

.
R

A
M

T
ec

h
.

F
re

q
.

A
re

a
L

at
en

cy
L

at
en

cy
P

ow
er

E
n

er
gy

(n
m

)
(M

H
z)

(G
E

)
(c

y
cl

es
)

(m
s)

(µ
W

1
)

(µ
J1

)

[1
3]
,
20
06

B
-1
63

n/
a

no
13
0

0.
50
0

9,
92
6

95
,1
59

19
0.
32

<
60

<
5.
7

[1
8]
,
20
08

B
-1
63

n/
a

ye
s

22
0

0.
84
7

12
,8
76

–
95

93
7.
48

[5
5]
,
20
08

B
-1
63

n/
a

ye
s

18
0

0.
10
6

13
,2
50

29
6,
29
9

2,
79

2
80
.8
5

23
.9

[7
3]
,
20
06

B
-1
63

n/
a

ye
s

35
0

13
.5
60

16
,2
07

37
6,
86
4

27
.9
0

n/
a

n/
a

[7
4]
,
20
08

B
-1
63

n/
a

ye
s

13
0

1.
13
0

12
,5
06

27
5,
81
6

24
4.
08

32
.4
2

8.
94

[1
45
],
20
11

B
-1
63

n/
a

ye
s

13
0

0.
10
0

8,
95
8

28
6,
00
0

2,
86

0
32
.3
4

9.
25

[1
44
],
20
13

B
-1
63

n/
a

no
13
0

1.
00
0

4,
11
4

46
7,
37
0

46
7.
37

66
.1

30
.9

[1
00
],
20
14

P
-1
60

n/
a

ye
s

13
0

1.
00
0

12
,4
48

2
13
9,
93
0

13
9.
93

42
.4
2

5.
93

[1
1]
,
20
14

K
-1
63

no
ye
s3

65
13
.5
60

11
,5
71

10
6,
70
0

7.
87

5.
7

0.
6

O
ur
,
es
t.

B
-1
63

ye
s

no
13
0,

Fa
ra
da

y
16
.0
00

≈
3,
77
3

≈
48
5,
00
0

≈
30
.3
1

≈
6.
11

2.
96

O
ur
,
es
t.

K
-1
63

ye
s

no
13
0,

Fa
ra
da

y
16
.0
00

≈
4,
32
3

≈
42
0,
90
0

≈
26
.3
0

≈
6.
11

2.
57

O
ur
,
es
t.

B
-2
83

ye
s

no
13
0,

Fa
ra
da

y
16
.0
00

≈
3,
77
3

≈
1,
93
4,
00
0

≈
12
0.
89

≈
6.
11

11
.8

O
ur
,
es
t.

K
-2
83

ye
s

ye
s4

13
0,

Fa
ra
da

y
16

.0
00

10
,2
04

1,
56
6,
00
0

97
.8
9

>
6.
11

>
9.
6

O
u

r
K

-2
83

ye
s

n
o

13
0

16
.0

00
4,

32
3

1,
56

6,
00

0
97

.8
9

6.
11

9.
6

1
N
or
m
al
iz
ed

to
1
M
H
z.

2
C
on

ta
in
s
ev
er
yt
hi
ng

re
qu

ir
ed

fo
r
E
C
D
SA

in
cl
ud

in
g
a
K
ec
ca
k
m
od

ul
e.

3
A
ll
va
ri
ab

le
s
ar
e
st
or
ed

in
re
gi
st
er
s
in
si
de

th
e
pr
oc
es
so
r.

4
T
he

25
6
×

16
-b
it

R
A
M

is
es
ti
m
at
ed

to
ha

ve
an

ar
ea

of
57
94

G
E

be
ca
us
e
th
e
si
ze

of
a
si
ng

le
-p
or
t

25
6
×

8-
bi
t
R
A
M

ha
s
an

ar
ea

of
28
97

G
E

[1
44
].

N
ot
e:

Fo
r
a
si
m
ila

r
te
ch
no

lo
gy
,
th
er
e
ca
n
be

sm
al
lv

ar
ia
ti
on

s
in

ar
ea
,
po

w
er
,
an

d
en

er
gy

de
pe

nd
in
g
on

th
e
lib

ra
ry
.

SUMMARY 47

3.6 Summary

In this chapter we showed that implementing point multiplication on a high
security 283-bit Koblitz curve is feasible with extremely low resources making it
possible for various lightweight applications. We also showed that Koblitz curves
can be used in such applications even when the cryptosystem requires scalar
conversions. Beside these contributions, we improved the scalar conversion
by applying several optimizations and countermeasures against side-channel
attacks. Finally, we designed a very lightweight architecture in only 4.3 kGE
that can be used as a coprocessor for commercial 16-bit microcontrollers. Hence,
we showed that Koblitz curves are feasible also for lightweight ECC even with
on-the-fly scalar conversions and strong countermeasures against side-channel
attacks.

Chapter 4

Discrete Gaussian sampling

CONTENT SOURCES:

Sujoy Sinha Roy, Frederik Vercauteren, Ingrid Verbauwhede High precision
discrete Gaussian sampling on FPGAs In International Conference on
Selected Areas in Cryptography SAC (2013).

Contribution: Main author.

Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, Ingrid Verbauwhede
Compact and Side Channel Secure Discrete Gaussian Sampling In IACR
Cryptology ePrint Archive eprint/2014/591 (2014).

Contribution: Main author.

4.1 Introduction

In this chapter we propose an efficient hardware implementation of a discrete
Gaussian sampler for ring-LWE encryption schemes. The proposed sampler
architecture is based on the Knuth-Yao sampling Alg. [68]. It has high precision
and large tail-bound to keep the statistical distance below 2−90 to the true
Gaussian distribution for the secure parameter sets [52] that are used in the
public key encryption schemes [111, 78].

The remaining part of the chapter is organized as follows: In Sect. 4.2 we
describe the Knuth-Yao sampling algorithm in detail. In the next section
we analyze the Knuth-Yao algorithm and design an efficient algorithm that

49

50 DISCRETE GAUSSIAN SAMPLING

0 1 1 1 0

0 0 1 0 1
0 1 1 0 1Pmat =

I I

I I

I

10

210

0I

21

level 1

level 0

row 0

co
lu

m
n

0

Figure 4.1: Probability matrix and corresponding DDG-tree

consumes very little amount of resources. The hardware architecture of the
discrete Gaussian sampler is presented in Sect. 4.4. In Sect. 4.5 we describe side
channel vulnerability of the sampler architecture along with countermeasures.
Detailed experimental results are presented in Sect. 4.6. The final section has
the conclusion.

4.2 The Knuth-Yao algorithm

The Knuth-Yao algorithm uses a random walk model to perform sampling using
the probabilities of the sample space elements. The method is applicable for
any non-uniform distribution. Let pj be the probability of the jth sample in
the sample space. The binary expansions of the probabilities of the samples are
written in the form of a matrix which we call the probability matrix Pmat. The
jth row of the probability matrix corresponds to the binary expansion of pj . An
example of the probability matrix for a sample space containing three sample
points {0, 1, 2} with probabilities p0 = 0.01110, p1 = 0.01101 and p2 = 0.00101
is shown in Fig. 4.1.

A rooted binary tree known as a discrete distribution generating (DDG) tree is
constructed from the probability matrix. Each level of the DDG tree can have
two types of nodes: intermediate nodes (I) and terminal nodes. The number
of terminal nodes in the ith level of the DDG tree is equal to the Hamming
weight of ith column in the probability matrix. Here we provide an example
of the DDG tree construction for the given probability distribution in Fig. 4.1.
The root of the DDG tree has two children which form the 0th level. Both the
nodes in this level are marked with I since the 0th column in Pmat does not

DDG TREE ON THE FLY 51

contain any non-zero. These two intermediate nodes have four children in the
1st level. To determine the type of the nodes, the 1st column of Pmat is scanned
from the bottom. In this column only the row numbers ‘1’ and ‘0’ are non-zero;
hence the right-most two nodes in the 1st level of the tree are marked with ‘1’
and ‘0’ respectively. The remaining two nodes in this level are thus marked as
intermediate nodes. Similarly the next levels are also constructed. The DDG
tree corresponding to Pmat is given in Fig. 4.1. At any level of the DDG tree,
the terminal nodes (if present) are always on the right hand side.

The sampling operation is a random walk which starts from the root; visits a
left-child or a right-child of an intermediate node depending on the random input
bit. The sampling process completes when the random walk hits a terminal
node and the output of the sampling operation is the value of the terminal
node. By construction, the Knuth-Yao random walk samples accurately from
the distribution defined by the probability matrix.

The space requirement for the DDG tree can be reduced by constructing it at
run time during the sampling process. As shown in Fig. 4.1, the ith level of the
DDG tree is completely determined by the (i− 1)th level and the ith column of
the probability matrix. Hence it is sufficient to store only one level of the DDG
tree during the sampling operation and construct the next level on the fly (if
required) using the probability matrix [68].

In fact, in the next section we introduce a novel method to traverse the DDG
tree that only requires the current node and the ith column of the probability
matrix to derive the next node in the tree traversal.

4.3 DDG tree on the fly

In this section we propose an efficient hardware-implementation of the Knuth-
Yao based discrete Gaussian sampler which samples with high precision and
large tail-bound. We describe how the DDG tree can be traversed efficiently in
hardware and then propose an efficient way to store the probability matrix such
that it can be scanned efficiently and also requires near-optimal space. Before
we describe the implementation of the sampler, we first recall the parameter set
for the discrete Gaussian sampler from the LWE implementation in [52].

4.3.1 Parameter sets for the discrete Gaussian sampler

Table 4.1 shows the tail bound |zt| and precision ε required to obtain a statistical
distance of less than 2−90 for the Gaussian distribution parameters in Table 1

52 DISCRETE GAUSSIAN SAMPLING

of [52]. The dimension of the lattice is m. The standard deviation σ in Table 4.1
is derived from the parameter s using the equation s = σ

√
2π. The tail bound

|zt| is calculated from Eq. 2.7 for the right-hand upper bound 2−100. For a
maximum statistical distance of 2−90 and a tail bound |zt|, the required precision
ε is calculated using Eq. 2.8.

Table 4.1: Parameter sets to achieve statistical distance less than 2−90

m s σ Tail cut |zt| Precision ε
256 8.35 3.33 84 106
320 8.00 3.192 86 106
512 8.01 3.195 101 107
1024 8.01 3.195 130 109

However in practice the tail bounds are quite loose for the precision values in
Table 4.1. The probabilities are zero (upto the mentioned precision) for the
sample points greater than 39 for all three distributions. Given a probability
distribution, the Knuth-Yao random walk always hits a sample point when the
sum of the probabilities is one [68]. However if the sum is less than one, then
the random walk may not hit a terminal node in the corresponding DDG tree.
Due to finite range and precision in Table 4.1, the sum of the discrete Gaussian
probability expansions (say Psum) is less than one. We take an difference
(1− Psum) as another sample point which indicates out of range event. If the
Knuth-Yao random walk hits this sample point, the sample value is discarded.
This out of range event has probability less than 2−100 for all three distribution
sets.

4.3.2 Construction of the DDG tree during sampling

During the Knuth-Yao random walk, the DDG tree is constructed at run time.
The implementation of DDG tree as a binary tree data structure is an easy
problem [28] in software, but challenging on hardware platforms. As described
in Sect. 4.2, the implementation of the DDG tree requires only one level of the
DDG tree to be stored. However the ith level of a DDG tree may contain as
many as 2i nodes. On software platforms, dynamic memory allocation can be
used at run time to allocate sufficient memory required to store a level of the
DDG tree. But in hardware, we need to design the sampler architecture for the
worst case storage requirement which makes the implementation costly.

DDG TREE ON THE FLY 53

TI TI I I

1 2 k
d

n

Discover Terminal Nodes

2d

10

Figure 4.2: DDG Tree Construction

We propose a hardware implementation friendly traversal based on specific
properties of the DDG tree. We observe that in a DDG tree, all the intermediate
nodes are on the left hand side; while all the terminal nodes are on the right
hand side. This observation is used to derive a simple algorithm which identifies
the nodes in the DDG tree traversal path instead of constructing each level
during the random walk. Fig. 4.2 describes the (i − 1)th level of the DDG
tree. The intermediate nodes are I, while the terminal nodes are T . The node
visited at this level during the sampling process is highlighted by the double
circle in the figure. Assume that the visited node is not a terminal node. This
assumption is obvious because if the visited node is a terminal node, then we
do not need to construct the ith level of the DDG tree. At this level, let there
be n intermediate nodes and the visited node is the kth node from the left. Let
d = n − k denote the distance of the right most intermediate node from the
visited node.

In the next step, the sampling algorithm reads a random bit and visits a child
node on the ith level of the DDG tree. If the visited node is a left child, then
it has 2d + 1 nodes to its right side. Otherwise, it will have 2d nodes to its
right side (as shown in the figure). To determine whether the visited node is
a terminal node or an intermediate node, the ith column of the probability
matrix is scanned. The scanning process detects the terminal nodes from the
right side of the ith level and the number of terminal nodes is equal to the
Hamming weight h of the ith column of the probability matrix. The left child is
a terminal node if h > (2d+ 1) and the right child is a terminal node if h > 2d.
If the visited node is a terminal node, we output the corresponding row number
in the probability matrix as the result of sampling process. When the visited
node in the ith level is internal, its visited-child in the (i+ 1)th level is checked
in a similar way.

From the analysis of DDG tree construction, we see the following points :

1. The sampling process is independent of the internal nodes that are to the
left of the visited node.

54 DISCRETE GAUSSIAN SAMPLING

Algorithm 7: Knuth-Yao Sampling
Input: Probability matrix P
Output: Sample value S

1 begin
2 d← 0; /* Distance between the visited and the rightmost internal node */
3 Hit← 0; /* This is 1 when the sampling process hits a terminal node */
4 col← 0; /* Column number of the probability matrix */
5 while Hit = 0 do
6 r ← RandomBit() ;
7 d← 2d+ r̄ ;
8 for row = MAXROW down to 0 do
9 d← d− P [row][col] ;

10 if d = −1 then
11 S ← row ;
12 Hit← 1 ;
13 ExitForLoop() ;
14 end
15 end
16 col← col + 1 ;
17 end
18 end

2. The terminal nodes on the (i − 1)th level have no influence on the
construction of the ith level of the DDG tree.

3. The distance d between the right most internal node and the visited node
on the (i−1)th level of the DDG tree is sufficient (along with the Hamming
weight of the ith column of the probability matrix) to determine whether
the visited node on the ith level is an internal node or a terminal node.

During the Knuth-Yao sampling we do not store an entire level of the DDG
tree. Instead, the difference d between the visited node and the right-most
intermediate node is used to construct the visited node at the next level. The
steps of the Knuth-Yao sampling operation are described in Alg. 7. In Line
6, a random bit r is used to jump to the next level of the DDG tree. On this
new level, the distance between the visited node and the rightmost node is
initialized to either 2d or 2d+ 1 depending on the random bit r. In Line 8, the
for-loop scans a column of the probability matrix to detect the terminal nodes.
Whenever the algorithm finds a 1 in the column, it detects a terminal node.
Hence, the relative distance between the visited node and the right most internal
node is decreased by one (Line 9). When d is reduced to −1, the sampling
algorithm hits a terminal node. Hence, in this case the sampling algorithm
stops and returns the corresponding row number as the output. In the other
case, when d is positive after completing the scanning of an entire column of
the probability matrix, the sampling algorithm jumps to the next level of the
DDG tree.

DDG TREE ON THE FLY 55

4.3.3 Storing the probability matrix efficiently

The Knuth-Yao algorithm reads the probability matrix of the discrete Gaussian
distribution during formation of the DDG tree. A probability matrix having r
rows and c columns requires rc bits of storage. This storage could be significant
when both r (depends on the tail-bound) and c (depends on the precision)
are large. As an example, Fig. 4.3 shows a portion of the probability matrix
for the probabilities of 0 ≤ |z| ≤ 17 with 30-bits precision according to the
discrete Gaussian distribution with parameter s = 8.01. In [39] the authors
observed that the leading zeros in the probability matrix can be compressed.
The authors partitioned the probability matrix in different blocks having equal
(or near-equal) number of leading zeros. Now for any row of the probability
matrix, the conditional probability with respect to the block it belongs to is
calculated and stored. In this case the conditional probability expansions do
not contain a long sequence of leading zeros. The precision of the conditional
probabilities is less than the precision of the absolute probabilities by roughly
the number of leading zeros present in the absolute probability expansions. The
sampling of [39] then applies two rounds of the Knuth-Yao algorithm: first to
select a block and then to select a sample value according to the conditional
probability expansions within the block.

However the authors of [39] do not give any actual implementation details. In
hardware, ROM is ideal for storing a large amount of fixed data. To minimize
computation time, data fetching from ROM should be minimized as much as
possible. The pattern in which the probability expansions are stored in ROM
determines the number of ROM accesses (thus performance) during the sampling
process. During the sampling process the probability matrix is scanned column
by column. Hence to ease the scanning operation, the probability expansions
should be stored in a column-wise manner in ROM.

001101001000110011101100011010
001010010010001110000011001110
000111010011001101100110100000
000100101100101100100011010010
000010101111011110010010001110

000000010011011000000110100010
000000000111101001000111111011
000000000010101110111011001001
000000000000111000101110001100

000000000000000001000100110001
000000000000000000001111000100
000000000000000000000010111111

000001011100110110001001011000
000000101100100010110010101101

000000000000010000101011010101
000000000000000100011100100010

001111001101110110011011001101

#0

#2

#1
001110_1110111_110

11011_110010111_11

000111111111010111000101110101

Part of Probability Matrix First two ROM words

Figure 4.3: Storing Probability Matrix

56 DISCRETE GAUSSIAN SAMPLING

In Fig. 4.3, the probability matrix for a discrete Gaussian distribution contains
large chunks of zeros near the bottom of the columns. Since we store the
probability matrix in a column-wise manner in ROM, we perform compression
of zeros present in the columns. The column length is the length of the top
portion after which the chunk of bottom zeros start. We target to optimize
the storage requirement by storing only the upper portions of the columns in
ROM. Since the columns have different lengths, we also store the lengths of
the columns. The number of bits required to represent the length of a column
can be reduced by storing only the difference in column length with respect to
the previous column. In this case, the number of bits required to represent the
differential column length is the number of bits in the maximum deviation and
a sign bit. For the discrete Gaussian distribution matrix shown in Fig. 4.3, the
maximum deviation is three and hence three bits are required to represent the
differential column lengths. Hence the total number of bits required to store
the differential column lengths of the matrix (Fig. 4.3) is 86 (ignoring the first
two columns).

For the discrete Gaussian distribution matrix, we observe that the difference
between two consecutive column lengths is one for most of the columns. This
observation is used to store the distribution matrix more efficiently in ROM.

Algorithm 8: Knuth-Yao Sampling in Hardware Platform
Input: Probability matrix P
Output: Sample value S

1 begin
2 d← 0; /* Distance between the visited and the rightmost internal node */
3 Hit← 0; /* This is 1 when the sampling process hits a terminal node */
4 ColLen← INITIAL; /* Column length is set to the length of first column */
5 address← 0; /* This variable is the address of a ROM word */
6 i← 0; /* This variable points the bits in a ROM word */
7 while Hit = 0 do
8 r ← RandomBit() ;
9 d← 2d+ r̄ ;

10 ColLen← ColLen+ ROM [address][i] ;
11 for row = ColLen− 1 down to 0 do
12 i← i+ 1 ;
13 if i = w then
14 address← address+ 1 ;
15 i← 0 ;
16 end
17 d← d− ROM [row][i] ;
18 if d = −1 then
19 S ← row ;
20 Hit← 1 ;
21 ExitForLoop() ;
22 end
23 end
24 end
25 return (S)
26 end

DDG TREE ON THE FLY 57

We consider only non-negative differences between consecutive column lengths;
the length of a column either increases or remains the same with respect to
its left column. When there is a decrement in the column length, the extra
zeros are also considered to be part of the column to keep the column length
the same as its left neighbor. In Fig. 4.3 the dotted line is used to indicate
the lengths of the columns. It can be seen that the maximum increment in
the column length happens to be one between any two consecutive columns
(except the initial few columns). In this representation only one bit per column
is needed to indicate the difference with respect to the left neighboring column:
0 for no-increment and 1 for an increment by one. With such a representation,
28 bits are required to represent the increment of the column lengths for the
matrix in Fig. 4.3. Additionally, 8 redundant zeros are stored at the bottom of
the columns due to the decrease in column length in a few columns. Thus, a
total of 36 bits are stored in addition to the pruned probability matrix. There is
one more advantage of storing the probability matrix in this way in that we can
use a simple binary counter to represent the length of the columns. The binary
counter increments by one or remains the same depending on the column-length
increment bit.

In ROM, we only store the portion of a column above the partition-line in Fig. 4.3
along with the column length difference bit. The column-length difference bit is
kept at the beginning and then the column is kept in reverse order (bottom-
to-top). As the Knuth-Yao algorithm scans a column from bottom to top, the
column is stored in reverse order. Fig. 4.3 shows how the columns are stored in
the first two ROM words (word size 16 bits). During the sampling process, a
variable is used to keep track of the column-lengths. This variable is initialized
to the length of the first non-zero column. For the probability matrix in Fig. 4.3,
the initialization value is 5 instead of 4 as the length of the next column is 6.
Whilst scanning a new column, this variable is either incremented (starting bit
1) or kept the same (starting bit 0). Alg. 8 summarizes the steps when a ROM
of word size w is used as a storage for the probability matrix.

4.3.4 Fast sampling using a lookup table

A Gaussian distribution is concentrated around its center. In the case of a
discrete Gaussian distribution with standard deviation σ, the probability of
sampling a value larger than t · σ is less than 2 exp(−t2/2) [84]. In fact this
upper bound is not very tight. We use this property of a discrete Gaussian
distribution to design a fast sampler architecture satisfying the speed constraints
of many real-time applications. As seen from the previous section, the Knuth-
Yao random walk uses random bits to move from one level of the DDG tree to
the next level. Hence the average case computation time required per sampling

58 DISCRETE GAUSSIAN SAMPLING

operation is determined by the number of random bits required in the average
case.

The lower bound on the number of random bits required per sampling operation
in the average case is given by the entropy of the probability distribution [33].
The entropy of a continuous normal distribution with a standard deviation σ is
1
2 log(2πeσ2). For a discrete Gaussian distribution, the entropy is approximately
close to entropy of the normal distribution with the same standard deviation.
A more accurate entropy can be computed from the probability values as per
the following equation.

H = −
∞∑
−∞

pi log pi . (4.1)

The Knuth-Yao sampling algorithm was developed to consume the minimum
number of random bits on average [68]. It was shown that the sampling
algorithm requires at most H + 2 random bits per sampling operation in the
average case.

For a Gaussian distribution, the entropy H increases with the standard deviation
σ, and thus the number of random bits required in the average case also
increases with σ. For applications such as the ring-LWE based public key
encryption scheme and homomorphic encryption, small σ is used. Hence for
such applications the number of random bits required in the average case are
small. Based on this observation we can avoid the costly bit-scanning operation
using a small precomputed table that directly maps the initial random bits
into a sample value (with large probability) or into an intermediate node in the
DDG tree (with small probability). During a sampling operation, first a table
lookup operation is performed using the initial random bits. If the table lookup
operation returns a sample value, then the sampling algorithm terminates. For
the other case, bit scanning operation is initiated from the intermediate node.
For example, when σ = 3.33, if we use a precomputed table that maps the
first eight random bits, then the probability of getting a sample value after the
table lookup is 0.973. Hence using the lookup table we can avoid the costly
bit-scanning operation with probability 0.973. However extra storage space
is required for this lookup table. When the probability distribution is fixed,
the lookup table can be implemented as a ROM which is cheap in terms of
area in hardware platforms. In the next section we propose a cost effective
implementation of a fast Knuth-Yao sampler architecture.

THE SAMPLER ARCHITECTURE 59

4.4 The sampler architecture

The sampler architecture is composed of 1) a bit-scanning unit, 2) counters
for column length and row number, and 3) a subtraction-based down counter
for the Knuth-Yao distance in the DDG tree. In addition, for the fast sampler
architecture, a lookup table is also used. A control unit is used to generate control
signals for the different blocks and to maintain synchronization between the
blocks. We now describe the different components of the sampler architecture.

<<

<<

Scan Register

dout shifted data

ROM−Address

Word−bit
w−2

Comp2

w−1

Comp1

rst_internal

rst_internal

enable

scan−bit

SCAN−UNIT

Row Number
Comp3

0

Row_is_zero_reg

enable

Row_is_zero

COLUMN−ROW DISTANCE

scan−bit

ROM

1

sel1

doneCarry

enable sel1 randgen rst_internal

Control FSM

msb

left shift

comp2_true

comp2_true

rst_internal

Row_is_zero_reg

enable
Column Length

rst_internal
Distance

random bit

Carry

Lookup

Figure 4.4: Hardware Architecture for Knuth-Yao Sampler

4.4.1 The bit-scanning unit

The bit-scanning unit is composed of a ROM, a scan register, one ROM-address
counter, one counter to record the number of bits scanned from a ROM-word
and a comparator. The ROM contains the probabilities and is addressed by the
ROM-address counter. During a bit-scanning operation, a ROM-word (size w
bits) is first fetched and then stored in the scan register. The scan-register is a
shift-register and its msb is read as the probability-bit. To count the number of
bits scanned from a ROM-word, a counter word-bit is used. When the word-bit
counter reaches w−2 from zero, the output from the comparator Comp1 enables
the ROM-address counter. In the next cycle the ROM-address counter addresses
the next ROM-word. Also in this cycle the word-bit counter reaches w − 1 and

60 DISCRETE GAUSSIAN SAMPLING

the output from Comp2 enables reloading of the bit-scan register with the new
ROM-word. In the next cycle, the word-bit counter is reset to zero and the
bit-scan register contains the word addressed by the ROM-word counter. In this
way data loading and shifting in the bit-scan register takes place without any
loss of cycles. Thus the frequency of the data loading operation (which depends
on the widths of the ROM) does influence the cycle requirement of the sampler
architecture. This interesting feature of the bit-scan unit will be utilized in
the next part of this section to achieve optimal area requirement by adjusting
the width of the ROM and the bit-scan register. The bit-scanning unit is the
largest sub-block in the sampler architecture in terms of area. Hence this unit
should be designed carefully to achieve minimum area requirement. In FPGAs
a ROM can be implemented as a distributed ROM or as a block RAM. When
the amount of data is small, a distributed ROM is the ideal choice. The way a
ROM is implemented (its width w and depth h) affects the area requirement
of the sampler. Let us assume that the total number of probability bits to be
stored in the ROM is D and the size of the FPGA LUTs is t. Then the total
number of LUTs required by the ROM is around d D

w·2t e · w along with a small
amount of addressing overhead. The scan-register is a shift register of width w
and consumes around w LUTs and wf = w FFs. Hence the total area (LUTs
and FFs) required by the ROM and the scan-register can be approximated by
the following equation.

#Area =
⌈ D

w · 2t
⌉
· w + (w + wf) =

⌈ h
2t
⌉
· w + (w + wf) .

For optimal storage, h should be a multiple of 2t. Choosing a larger value of
h will reduce the width of the ROM and hence the width of the scan-register.
However with the increase in h, the addressing overhead of the ROM will also
increase. In Table 4.2 we compare area of the bit-scan unit for σ = 3.33 with
various widths of the ROM and the scan register using Xilinx Virtex V xcvlx30
FPGA. The optimal implementation is achieved when the width of the ROM is
set to six bits. Though the slice count of the bit-scan unit remains the same
in both the second and third column of the table due to various optimizations
performed by the Xilinx ISE tool, the actual effect on the overall sampler
architecture will be evident in Sect. 4.6.

Table 4.2: Area of the bit-scan unit for different widths and depths

width height LUTs FFs Slices
24 128 70 35 22
12 256 72 23 18
6 512 67 17 18

THE SAMPLER ARCHITECTURE 61

4.4.2 Row-number and column-length counters

As described in the previous section, we use a one-step differential encoding for
the column lengths in the probability matrix. The column-length counter in
Fig. 4.4 is an up-counter and is used to represent the lengths of the columns.
During a random-walk, this counter increments depending on the column-length
bit which appears in the starting of a column. If the column-length bit is
zero, then the column-length counter remains in its previous value; otherwise
it increments by one. At the starting of a column-scanning operation, the
Row-number counter is first initialized to the value of column-length. During
the scanning operation this counter decrements by one in each cycle. A column
is completely read when the Row Number counter reaches zero.

4.4.3 The distance counter

A subtraction-based counter distance is used to keep the distance d between the
visited node and the right-most intermediate node in the DDG tree. The register
distance is first initialized to zero. During each column jump, the row_zero_reg
is set and thus the subtrahend becomes zero. In this step, the distance register
is updated with the value 2d or 2d+ 1 depending on the input random bit. As
described in the previous section, a terminal node is visited by the random walk
when the distance becomes negative for the first time. This event is detected
by the control FSM using the carry generated from the subtraction operation.

After completion of a random walk, the value present in Row Number is the
magnitude of the sample output. One random bit is used as a sign of the value
of the sample output.

4.4.4 The lookup table for fast sampling

The output from the Knuth-Yao sampling algorithm is determined by the
probability distribution and by the input sequence of random bits. For a given
fixed probability distribution, we can precompute a table that maps all possible
random strings of bit-width s into a sample point or into an intermediate
distance in the DDG tree. The precomputed table consists of 2s entries for each
of the 2s possible random numbers.

On FPGAs, this precomputed table is implemented as a distributed ROM using
LUTs. The ROM contains 2s words and is addressed by random numbers of s
bit width. The success probability of a table lookup operation can be increased
by increasing the size of the lookup table. For example when σ = 3.33, the

62 DISCRETE GAUSSIAN SAMPLING

Table 1
Lookup
Table 2

Lookup

Sample Sample

Random Bits

Initial Distance

LU1 Distance

Figure 4.5: Hardware Architecture for two stage Lookup

probability of success is 0.973 when the lookup table maps the eight random
bits; whereas the success probability increases to 0.999 when the lookup table
maps 13 random bits. However with a larger mapping, the size of precomputed
table increases exponentially from 28 to 213. Additionally each lookup operation
requires 13 random bits. A more efficient approach is to perform lookup
operations in steps. For example, we use a first lookup table that maps the first
eight random bits into a sample point or an intermediate distance (three bit
wide for σ = 3.33). In case of a lookup failure, the next step of the random walk
from the obtained intermediate distance will be determined by the next sequence
of random bits. Hence, we can extend the lookup operation to speedup the
sampling operation. For example, the three-bit wide distance can be combined
with another five random bits to address a (the second) lookup table. Using this
two small lookup tables, we achieve a success probability of 0.999 for σ = 3.33.
An architecture for a two stage lookup table is shown in Fig. 4.5.

4.5 Timing and simple power analysis

The Knuth-Yao sampler presented in this chapter is not a constant-time
architecture as it uses a bit scanning operation in which the sample generated is
related to the number of probability-bits scanned during a sampling operation.
Hence, the number of cycles for a sampling operation provides some information
about the sample. In 2016, Bruinderink et al. [53] mounted an attack on
the BLISS [38] signature scheme by exploiting the timing information leakage
from the non constant-time discrete Gaussian sampler. In particular, the
attack targets a software implementation of the BLISS scheme and exploits
cache weakness of the Gaussian sampler to run the LLL lattice reduction [75]
algorithm. The attack requires as little as 450 signatures to recover the secrete
key. The attack technique is described in more details in [53].

TIMING AND SIMPLE POWER ANALYSIS 63

We recall that in the ring-LWE encryption scheme in Sect. 2.4.1, the Gaussian
sampler is used during key generation and message encryption. The key
generation operation is performed only to generate long-term keys and hence
can be performed in a secure environment. However, this is not the case
for the encryption operation where an encoded message m̄ is masked as
c2 = p · e1 + e3 + m̄ using two Gaussian distributed error polynomials e1
and e3. It should be noted that in a public key encryption scheme, the plaintext
is normally considered secret information. For example, it is a common practice
to use a public-key cryptosystem to encrypt a symmetric key that is subsequently
used for fast, bulk encryption (this construction is commonly named “hybrid
cryptosystems”). Hence, from the perspective of side-channel analysis, any leak
of information during the encryption operation about the plaintext (symmetric
key) is considered as a valid security threat. We would like to mention that
the timing attack proposed by Bruinderink et al. [53] on the BLISS signature
scheme may not be applied directly on the ring-LWE public key encryption
scheme as the attacker can have only one ciphertext per message. Whereas for
the signature scheme, the attacker can use the LLL algorithm since she can
have several signatures for the same secret key.

Figure 4.6: Two instantaneous power consumption measurements corresponding
to two different sampling operations. Horizontal axis is time, vertical axis
is electromagnetic field intensity. The different timing for the two different
sampling operations is evident.

64 DISCRETE GAUSSIAN SAMPLING

To verify to what extent the instantaneous power consumption provides
information about the sampling operation, we performed an SPA attack on
the unprotected design running on a Xilinx Spartan-III at 40 MHz. The
instantaneous power consumption is measured with a Langer RF5-2 magnetic
pick-up coil on top of the FPGA package (without decapsulation), amplified
(+50 dB), low-pass filtered (cutoff frequency of 48 MHz). In Fig. 4.6 we show
the instantaneous power consumption of two different sampling operations. The
horizontal axis denotes time, and both sampling operations are triggered on the
beginning of the sampling operation. One can distinguish enough SPA features
(presumably due to register updates) to infer that the blue graph corresponds
to a sampling that requires small number of cycles (7 cycles exactly) whereas
the red graph represents a sampling operation that requires more cycles (21
cycles). With this SPA attack, the adversary can predict the magnitudes of
the Gaussian distributed samples. Note that this information is partial as the
value of a sample also includes a random sign bit. We remark that with a more
sophisticated side channel attack, it might be possible to recover the sign bits
by observing the modular arithmetic operations during the message encryption.
If possible, then the message can be extracted easily from the ciphertext.

4.5.1 Strategies to mitigate the side-channel leakage

In this chapter we propose an efficient and cost effective scheme to protect
the Gaussian sampler from simple timing and power analysis based attacks.
Our proposal is based on the fact that the encryption scheme remains secure
as long as the attacker has no information about the relative positions of the
samples (i.e. the coefficients) in the noise polynomials. It should be noted that,
as the Gaussian distribution used in the encryption scheme is a publicly known
parameter, any one can guess the number of a particular sample point in an
array of n samples. Similar arguments also apply for other cryptosystems where
the key is a uniformly distributed random string of bits of some length (say l).
For such a random key, one has the information that almost half of the bits in
the key are one and the rest are zero. In other words, the Hamming weight is
around l/2. Even if the exact value of the Hamming weight is revealed to the
adversary (on average, say l/2), the key still mantains log2

(
l
l/2
)
bits of entropy

(≈ 124 bits for a 128 bit key). It is the random positions of the bits that make
a key secure.

In the ring-LWE encryption scheme (Sect. 2.4.1), the Gaussian sampler is used
to generate error polynomials. The sequential bit scanning operation reveals
information about the samples and their positions in the error polynomials. Our
strategy against simple timing and power analysis attack is described below:

TIMING AND SIMPLE POWER ANALYSIS 65

1. Use of a lookup: The table lookup operation is constant-time and has
a very large success probability. Hence with this lookup approach, we
protect most of the samples from leaking any information about the value
of the sample from which an attacker can perform simple power and
timing analysis.

2. Use of a random permutation: The table lookup operation succeeds in
most events, but fails with a small probability. For a failure, the sequential
bit scanning operation leaks information about the samples. For example,
when σ = 3.33 and the lookup table maps initial eight random bits, the bit
scanning operation is required for seven samples out of 256 samples in the
average case. To protect against SPA, we perform a random shuffle after
generating an entire array of samples. The random shuffle operation swaps
all bit-scan operation generated samples with other random samples in the
array. This random shuffling operation removes any timing information
which an attacker can exploit. In the next section we will describe an
efficient implementation of the random shuffling operation.

4.5.2 Efficient implementation of the random shuffling

We use a modified version of the Fisher and Yates shuffle which is also known
as the Knuth shuffle [67] to perform random shuffling of the bit-scan operation
generated samples. The advantages of this shuffling algorithm are its simplicity,
uniformness, inplace data handling and linear time complexity. In the original
shuffling algorithm, all the indexes of the input array are processed one after
another. However in our case we can restrict the shuffling operation to only
those samples that were generated using the sequential bit scanning operation.
This operation is implemented in the following way.

Algorithm 9: Random swap of samples
Input: Sample vector stored in RAM[] with timing information
Output: Sample vector stored in RAM[] without timing information

1 begin
2 while C2 > 0 do
3 L1 : random_index← random() ;
4 if random_index ≥ (m− C2) then
5 goto L1 ;
6 end
7 swap RAM [m− C2]↔ RAM [random_index] ;
8 C2 ← C2 − 1 ;
9 end

10 end

Assume that m samples are generated and then stored in a RAM with addresses
in the range 0 to (m − 1). We use two counters C1 and C2 to represent

66 DISCRETE GAUSSIAN SAMPLING

C1

C2

RAM

Gaussian
Sampler

Random Indecx

Comp 1

Comp 2

n−1

address

Control

done

address_sel

enable

address_sel

din_sel

wea

wea

n−1C2_dec
C2_inc

C1_inc

lookup_successdone

rand_bits
enable

rand_bit_gen

rand_index_gen

Random Index

din_sel

ram_buffer

Comp 3
0

lookup_success

Figure 4.7: Sampler with shuffling

the number of samples generated through successful lookup and bit-scanning
operations respectively. The total number of samples generated is given by
(C1 + C2). The samples generated using lookup operation are stored in the
memory locations starting from 0 till (C1 − 1); whereas the bit-scan generated
samples are stored in the memory locations starting from address m− 1 downto
m− C2. After generation of the m samples, the bit-scan operation generated
samples are randomly swapped with the other samples using Alg. 9

A hardware architecture for the secure consecutive-sampling is shown in Fig. 4.7.
In the architecture, C1 is an up-counter and C2 is an up-down-counter. When
the enable signal is high, the Gaussian sampler generates samples in an iterative
way. After generation of each sample, the signal Gdone goes high and the type
of the sample is indicated by the signal lookup_success. In the case when the
sample has been generated using a successful lookup operation, lookup_success
becomes high. Depending on the value of the lookup_success, the control
machine stores the sample in the memory address C1 or (m − C2) and also

EXPERIMENTAL RESULTS 67

Table 4.3: Performance of the discrete Gaussian sampler on xc5vlx30
Sampler Architecture ROM LU Area Delay Cycles

width/depth depth LUTs/FFs/Slices/BRAM ns

Basic Sampler 24/128 - 101/81/38/- 2.9 17
Basic Sampler 12/256 - 105/60/32/- 2.5 17
Basic Sampler? 6/512 - 102/48/30/- 2.6 17
Fast Sampler 6/512 8 118/48/35/- 3 ≈2.5
Bernoulli[105] -/- - 132/40/37/- 7.3 144

Polynomial Sampler–1 6/512 8 135/56/44/1 3.1 392
Polynomial Sampler–2 6/512 8 176/66/52/1 3.3 420

increments the corresponding counter. Completion of them sampling operations
is indicated by the output from Comparator2.

In the random-shuffling phase, a random address is generated and then compared
with (m− C2). If the random-address is smaller than (m− C2) then it is used
for the swap operation; otherwise another random-address is generated. Now
the memory content of address (m− C2) is swapped with the memory content
of random-address using the ram_buffer register. After this swap operation,
the counter C2 decrements by one. The last swap operation happens when C2
is zero.

4.6 Experimental results

We have evaluated the Knuth-Yao discrete Gaussian sampler architecture for
σ = 3.33 using the Xilinx Virtex V FPGA xcvlx30 with speed grade −3. The
results shown in Table 4.3 are obtained from the Xilinx ISE12.2 tool after
place and route analysis. In the table we show area and timing results of our
architecture for various configurations and modes of operations and compare
the results with other existing architectures. The results do not include the area
of the random bit generator. Area requirements for the basic bit-scan operation
based Knuth-Yao sampler for different ROM-widths and depths are shown in the
first three rows of the table. The optimal area is achieved when the ROM-width
is set to 6 bits. As the width of the ROM does not affect the cycle requirement
of the sampler architecture, all different configurations have same clock cycle
requirement. The average case cycle requirement of the sampler is determined
by the number of bits scanned on average per sampling operation. A C program
simulation shows that the number of memory-bits scanned on average is 13.5.
Before starting the bit-scanning operation, the sampler performs two column
jump operations for the first two all-zero columns of the probability matrix (for
σ = 3.33). This initial operation requires two cycles. After this, the bit scan
operation requires 14 cycles to scan 14 memory-bits and the final transition to

68 DISCRETE GAUSSIAN SAMPLING

the completion state of the FSM requires one cycle. Thus, on average 17 cycles
are spent per sampling operation. The compact Bernoulli sampler proposed in
[105] consumes 37 slices and spends on average 144 cycles to generate a sample
point.

The fast sampler architecture in the fourth column of Table 4.3 uses a lookup
table that maps eight random bits. The sampler consumes additional five slices
compared to the basic bit-scan based architecture. The probability that a table
lookup operation returns a sample is 0.973. Due to this high success rate of
the lookup operation, the average case cycle requirement of the fast sampler is
slightly larger than 2 cycles with the consideration that one cycle is consumed
for the transition of the state-machine to the completion state. In this cycle
count, we assume that the initial eight random bits are available in parallel
during the table lookup operation. If the random number generator is able
to generate only one random bit per cycle, then additional eight cycles are
required per sampling operation. However generating many (pseudo)random
bits is not a problem using light-weight pseudo random number generators
such as the trivium steam cipher which is used in [105]. The results in Table
4.3 show that by spending additional five slices, we can reduce the average
case cycle requirement per sampling operation to almost two cycles from 17
cycles. As the sampler architecture is extremely small even with the lookup
table, the acceleration provided by the fast sampling architecture will be useful
in designing fast cryptosystems.

The Polynomial Sampler–1 of Table 4.3 generates a polynomial of m = 256
coefficients sampled from the discrete Gaussian distribution by using the fast
sampler iteratively. The samples are stored in the RAM from address 0 to m−1.
During the consecutive sampling operations, the state-machine jumps to the
next sampling operation immediately after completing a sampling operation. In
this consecutive mode of sampling operations, the ‘transition to the end state’
cycle is not spent for the individual sampling operations. As the probability
of a successful lookup operation is 0.973, in the average case 249 out of the
256 samples are generated using successful lookup operations; whereas the
seven samples are obtained through the sequential bit-scanning operation. In
this consecutive mode of sampling, each lookup operation generated sample
consumes one cycle. Hence in the average case 249 cycles are spent for generating
the majority of the samples. The seven sampling operations that perform bit
scanning starting from the ninth column of the probability matrix require on
average a total of 143 cycles. Thus in total 392 cycles are spent on average to
generate a Gaussian distributed polynomial.

The Polynomial Sampler–2 architecture includes the random shuffling operation
on a Gaussian distributed polynomial of m = 256 coefficients. The architecture
is thus secure against simple time and power analysis attacks. However this

SUMMARY 69

security comes at the cost of an additional eight slices due to the requirement of
additional counter and comparator circuits. The architecture first generates a
polynomial in 392 cycles and then performs seven swap operations in 28 cycles
in the average case. Thus in total the proposed side channel attack resistant
sampler spends 420 cycles to generate a secure Gaussian distributed polynomial
of 256 coefficients.

4.7 Summary

In this chapter we presented an optimized instance of the Knuth-Yao sampling
architecture that consumes very small area. We showed that by properly tuning
the width of the ROM and the scan register, and by a decentralizing the control
logic, we can reduce the area of the sampler to only 30 slices without affecting
the cycle count. Moreover, we proposed a fast sampling method using a very
small-area precomputed table that reduces the cycle requirement by seven times
in the average case. We showed that the basic sampler architecture can be
attacked by exploiting its timing and power consumption related leakages. In
the end we proposed a cost-effective counter measure that performs random
shuffling of the samples.

Followup works. In joint works (coauthorship) with de Clercq et al. [31]
and Liu et al. [81], we adapted our approach and implemented the software
versions of the Knuth-Yao algorithm on 32-bit ARM and 8-Bit AVR processors
respectively. We found that the Knuth-Yao algorithm performs equally well on
the software platforms.

Bruinderink et al. [53] showed that the timing leakage from a non constant-time
Gaussian sampler could be exploited to break signature schemes. The work
mentions that the shuffling method (Sect. 4.5.1) increases the complexity of
their attack.

Pessel [99] analyzed our shuffling based countermeasure in detail and proposed
a profiled side channel attack that can recover the key by observing only 7,000
signatures. He proposed to use Gaussian convolution in conjunction with
shuffling to increase side channel resistance.

In a joint work with Karmakar et al. [65] (coauthorship, under review), we have
proposed a constant-time implementation of the Knuth-Yao sampling algorithm.
Since the Knuth-Yao random walk is dictated by a set of input random bits,
we could express the sample as a function of the input random bits. Hence we
represent each bit of the output sample as a Boolean expression of the random
input bits. During a sampling operation these Boolean expressions are evaluated

70 DISCRETE GAUSSIAN SAMPLING

in constant-time and hence the computation time does not vary. To increase
throughput, we use bit-slicing to generate multiple samples in batches.

Chapter 5

Ring-LWE public key
encryption processor

CONTENT SOURCES:

Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, and Ingrid Verbauwhede Compact ring-LWE cryptoprocessor In
International Workshop on Cryptographic Hardware and Embedded Systems
CHES (2014).

Contribution: Main author.

5.1 Introduction

In this chapter we analyze the LPR ring-LWE public key encryption scheme of
Sect. 2.4.1 and design a compact hardware architecture of the encryption
processor. From Fig. 2.5 of Sect. 2.4.1, we see that the LPR encryption
scheme is composed of a discrete Gaussian sampler, a polynomial arithmetic
(addition/multiplication) unit, a message encoder and a message decoder. In
the last chapter we described how to design the discrete Gaussian sampler
efficiently. In this chapter we first design a novel polynomial arithmetic unit
and integrate it with the discrete Gaussian sampler to realize the ring-LWE
public key encryption processor.

The polynomial arithmetic is computed in a ring Rq = Zq[x]/〈f(x)〉, where

71

72 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

one typically chooses f(x) = xn + 1 with n a power of two, and q a prime
with q ≡ 1 mod 2n. An implementation thus requires the basic operations in
such a ring Rq, with multiplication taking up the bulk of the resources both
in area and time. An efficient polynomial multiplier architecture therefore is a
pre-requisite for the deployment of ring-LWE based cryptography in real world
systems. In this chapter we investigate techniques to optimize the polynomial
multiplication operation in Rq.

When we started this research, only a few hardware implementations [10,
52, 104, 106] of polynomial multipliers over Rq were known. All of these
implementations have used the Number Theoretic Transform (NTT) to perform
polynomial multiplication in Rq efficiently. It is well known that the Fast
Fourier Transform (FFT) is asymptotically the fastest algorithm for computing
polynomial multiplication [28]. NTT corresponds to a FTT where the roots
of unity are taken from a finite ring instead of the complex numbers. Hence
in an NTT all computations are performed on integers. The first published
hardware implementation of ring-LWE encryption scheme [52] by Göttert et
al. uses a fully parallel NTT structure for the polynomial multiplier resulting
in a huge area consumption. For instance, even for medium security, their
implementation does not fit on the largest FPGA of the Virtex 6 family. The
later works [104, 106, 10] follow a sequential design methodology and use the
FPGA resources in an efficient way.

In this chapter we analyze the NTT algorithm and propose several optimizations
to reduce pre-computation overhead, memory requirement, and the number of
memory access. We apply these optimization techniques to design a compact
polynomial arithmetic core. We also perform several architectural optimizations
to improve the operating frequency. Finally we connect the polynomial
arithmetic core with the discrete Gaussian sampler and a memory bank to
design a compact and efficient ring-LWE public key encryption processor.

The remainder of the chapter is organized as follows: In Sect. 5.2 we briefly
describe the NTT algorithm and its application in computing polynomial
multiplication. Sect. 5.3 contains our optimization techniques of the NTT and
Sect. 5.4 presents the actual architecture of our optimized NTT algorithm.
A pipelined architecture is given in Sect. 5.5. In Sect. 5.6, we propose an
optimization of an existing ring-LWE encryption scheme and propose an efficient
architecture for the complete ring-LWE encryption system. Sect. 5.7 reports on
the experimental results of this implementation.

POLYNOMIAL MULTIPLICATION 73

Target parameter sets

We have chosen to instantiate the cryptoprocessor for the parameter sets (n, q, s)
(recall s =

√
2πσ), namely P1 = (256, 7681, 11.32) and P2 = (512, 12289, 12.18).

Note that the choice of primes is not optimal for fast modular reduction. To
estimate the security level offered by these two parameter sets we follow the
security analysis in [80] and [76] which improves upon [78, 136]. Apart from
the dimension n, the hardness of the ring-LWE problem mainly depends on the
ratio q/σ, where clearly the problem becomes easier for larger ratios. Although
neither parameter set was analyzed in [80], parameter set P1 is similar to the
set (256, 4093, 8.35) from [80] which requires 2105 seconds to break, or still over
2128 elementary operations. For paramater set P2 we expect it to offer a high
security level consistent with AES-256 (following [52]).

We limit the Gaussian sampler in our implementation to 12σ to obtain
a negligible statistical distance (< 2−90) from the true discrete Gaussian
distribution. Although one can normally sample the secret r2 ∈ Rq also
from the distribution Xσ, we restrict r2 to have binary coefficients.

5.2 Polynomial multiplication

Recall from Chap. 2.5.2 that NTT leads to a fast multiplication algorithm in
the ring Sq = Zq[x]/(xn − 1): indeed, given two polynomials a, b ∈ Sq we can
easily compute their (reduced) product c = a · b ∈ Sq by computing

c = NTT−1
ωn

(
NTTωn(a) ∗NTTωn(b)

)
, (5.1)

where ∗ denotes point-wise multiplication.

The NTT computation is usually described as recursive, but in practice we
use an in-place iterative version taken from [28] that is given in Alg. 10. For
the inverse NTT, an additional scaling of the resulting coefficients by n−1 is
performed. The factors ω used in line 8 are called the twiddle factors.

Multiplication in Rq:

Recall that we will use Rq = Zq[x]/〈f〉 with f = xn + 1 and n = 2k. Since
f(x)|x2n − 1 we could use the 2n-point NTT to compute the multiplication in
Rq at the expense of three 2n-point NTT computations and a reduction by
trivially embedding the ring Rq into Sq, i.e. expanding the coefficient vector of

74 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

Algorithm 10: Iterative NTT
Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)

1 begin
2 A← BitReverse(a);
3 for m = 2 to n by m = 2m do
4 ωm ← ωn/mn ;
5 ω ← 1 ;
6 for j = 0 to m/2− 1 do
7 for k = 0 to n− 1 by m do
8 t← ω · A[k + j +m/2] ;
9 u← A[k + j] ;

10 A[k + j]← u+ t ;
11 A[k + j +m/2]← u− t ;
12 end
13 ω ← ω · ωm ;
14 end
15 end
16 end

a polynomial a ∈ Rq by adding n extra zero coefficients. However, we can do
much better by exploiting the special relation between the roots of xn + 1 and
x2n − 1 using a technique known as the negative wrapped convolution.

Indeed, using the same evaluation-interpolation strategy used above for the
ordinary NTT, we conclude that we can efficiently multiply two polynomials
a, b ∈ Rq if we can quickly evaluate them in the roots of f . These roots are
simply ω2j+1

2n for j = 0, . . . , n − 1 (since the even exponents give the roots of
xn − 1) and as such can be written as ω2n · ωjn. These evaluations can thus
be computed efficiently using a classical n-point NTT (instead of a 2n-point
NTT) on the scaled polynomials a′(x) = a(ω2n · x) and b′(x) = a(ω2n · x). The
point-wise multiplication gives the evaluations of c(x) = a(x)b(x) mod f(x)
in the roots of f , and the classical inverse n-point NTT thus results in the
coefficients of the scaled polynomial c′(x) = c(ω2n ·x). To recover the coefficients
ci of c(x), we therefore simply have to compute ci = c′i · ω

−i
2n . Note that the

scaling operation by n−1 can be combined with the multiplications of c′i by ω−i2n .

5.3 Optimization of the NTT computation

In this section we optimize the NTT and compare with the recent hardware
implementations of polynomial multipliers [10, 104, 106]. First, the fixed cost
involved in computing the powers of ωn is reduced, then the pre-computation
overhead in the forward negative-wrapped convolution is optimized, and finally
an efficient memory access scheme is proposed that reduces the number of

OPTIMIZATION OF THE NTT COMPUTATION 75

memory accesses during the NTT and also minimizes the number of block
RAMs in the hardware architecture.

5.3.1 Optimizing the fixed computation cost

In line 13 of Alg. 10 the computation of the twiddle factor ω ← ω · ωm is
performed in the j-loop. This computation can be considered as a fixed cost.
However in [10, 104] the j-loop and the k-loop are interchanged, such that ω is
updated in the innermost loop which is much more frequent than in Alg. 10.
To avoid the computation of the twiddle factors, in [104] all the twiddle factors
are kept in a pre-computed look-up table (ROM) and are accessed whenever
required. As the twiddle factors are not computed on-the-fly, the order of the
two innermost loops does not result in an additional cost. However in [10] a
more compact polynomial multiplier architecture is designed without using any
look-up table and the twiddle factors are simply computed on-the-fly during
the NTT computation. Hence in [10], the interchanged loops cause substantial
additional computational overhead. In this chapter our target is to design a
very compact polynomial multiplier. Hence we do not use any look-up table for
the twiddle factors and follow Alg. 10 to avoid the extra computation of [10].

5.3.2 Optimizing the forward NTT computation cost

Here we revisit the forward negative-wrapped convolution technique used in
[10, 104, 106]. Recall that the negative-wrapped convolution corresponds to
a classical n-point NTT on the scaled polynomials a′(x) = a(ω2n · x) and
b′(x) = (ω2n · x). Instead of first pre-computing these scaled polynomials and
then performing a classical NTT, it suffices to note that we can integrate the
scaling and the NTT computation. Indeed, it suffices to change the initialization
of the twiddle factors in line 5 of Alg. 10: instead of initializing ω to 1, we can
simply set ω = ω2m. The rest of the algorithm remains exactly the same, and
no pre-computation is necessary. Note that this optimization only applies to
the NTT itself and not to the inverse NTT.

5.3.3 Optimizing the memory access scheme

The NTT computation requires memory to store the input and intermediate
coefficients. When the number of coefficients is large, RAM is most suitable for
hardware implementation [10, 104, 106]. In the innermost loop (lines 8-to-11)
of Alg. 10, two coefficients A[k + j] and A[k + j + m/2] are first read from

76 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

memory and then arithmetic operations (one multiplication, one addition and
one subtraction) are performed. The new A[k + j] and A[k + j + m/2] are
then written back to memory. During one iteration of the innermost loop,
the arithmetic circuits are thus used only once, while the memory is read
and written twice. This leads to idle cycles in the arithmetic circuits. The
polynomial multiplier in [104] uses two parallel memory blocks to provide a
continuous flow of coefficients to the arithmetic circuits. However this approach
could result in under-utilization of the RAM blocks if the coefficient size is much
smaller than the word size (for example in the ring-LWE cryptosystem [85]). In
the literature there are many papers on efficient memory management schemes
using segmentation and efficient address generation (see [86]) for the classical
FFT algorithm. Another well known approach is the constant geometry FFT (or
NTT) which always maintains a constant index difference between the processed
coefficients [101]. However the constant geometry algorithm is not in-place and
hence not suitable for resource constrained platforms. In [10] memory usage is
improved by keeping two coefficients A[k] and B[k] of the two input polynomials
A and B in the same memory location. We propose a memory access scheme
which is designed to minimize the number of block RAM slices and to achieve
maximum utilization of computational circuits present in the NTT architecture.

Since the two coefficients A[k+ j] and A[k+ j +m/2] are processed together in
Alg. 10, we keep the two coefficients as a pair in one memory location.

Let us analyze two consecutive iterations of the m-loop (line 3 in Alg. 10) for
m = m1 and m = m2 where m2 = 2m1. In the m1-loop, for some j1 and k1
(maintaining the loop bounds in Alg. 10) the coefficients (A[k1 + j1], A[k1 +
j1 + m1/2]) are processed as a pair. Then k increments to k1 + m1 and the
processed coefficient pair is (A[k1 + m1 + j1], A[k1 + m1 + j1 + m1/2]). Now
from Alg. 10 we see that the coefficient A[k1 + j1] will again be processed in
the m2-loop with coefficient A[k1 + j1 +m2/2]. Since m2 = 2m1, the coefficient
A[k1 + j1 + m2/2] is the coefficient A[k1 + j1 + m1] which is updated in the
m1-loop for k = k1 +m1. Hence during the m1-loop if we swap the updated
coefficients for k = k1 and k = k1 +m1 and store (A[k1 + j1], A[k1 + j1 +m1])
and (A[k1 + j1 +m1/2], A[k1 + j1 + 3m1/2]) as the coefficient pairs in memory,
then the coefficients in a pair have a difference of m2/2 in their index and thus
are ready for the m2-loop. The operations during the two consecutive iterations
k = k1 and k = k1 + m1 during m = m1 are shown in Alg. 11 in lines 8-15.
During the operations u1, t1, u2 and t2 are used as temporary storage registers.

A complete description of the efficient memory access scheme is given in Alg. 11.
In this algorithm for all values of m < n, two coefficient pairs are processed in
the innermost loop and a swap of the updated coefficients is performed before
writing back to memory. For m = n, no swap operation is required as this is
the final iteration of the m-loop. The coefficient pairs generated by Alg. 11 can

THE NTT PROCESSOR ORGANIZATION 77

Algorithm 11: Iterative NTT : Memory Efficient Version
Input: Polynomial a(x) ∈ Zq [x] of degree n− 1 and n-th primitive root ωn ∈ Zq of unity
Output: Polynomial A(x) ∈ Zq [x] = NTT(a)

1 begin
2 A← BitReverse(a); /* Coefficients are stored in the memory as proper pairs */
3 for m = 2 to n/2 by m = 2m do
4 ωm ← m-th primitiveroot(1) ;
5 ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;
6 for j = 0 to m/2− 1 do
7 for k = 0 to n/2− 1 by m do
8 (t1, u1)← (A[k + j +m/2], A[k + j]) /* From MEMORY[k+j] */ ;
9 (t2, u2)← (A[k +m+ j +m/2], A[k +m+ j]) /* MEMORY[k+j+m/2] */ ;

10 t1 ← ω · t1 ;
11 t2 ← ω · t2 ;
12 (A[k + j +m/2], A[k + j])← (u1 − t1, u1 + t1) ;
13 (A[k +m+ j +m/2], A[k +m+ j])← (u2 − t2, u2 + t2) ;
14 MEMORY [k + j]← (A[k + j +m], A[k + j]) ;
15 MEMORY [k + j +m/2]← (A[k + j + 3m/2], A[k + j +m/2]) ;
16 end
17 ω ← ω · ωn ;
18 end
19 end
20 m← n ;
21 k ← 0 ;
22 ω ← squareroot(ωm) or 1 /* Depending on forward or backward NTT */ ;
23 for j = 0 to m/2− 1 do
24 (t1, u1)← (A[j +m/2], A[j]) /* From MEMORY[j] */ ;
25 t1 ← ω · t1 ;
26 (A[j +m/2], A[j])← (u1 − t1, u1 + t1) ;
27 MEMORY [j]← (A[j +m/2], A[j]) ;
28 ω ← ω · ωm ;
29 end
30 end

be re-arranged easily for another (say inverse) NTT operation by performing
address-wise bit-reverse-swap operation. Appendix A describes the memory
access scheme using an example.

5.4 The NTT processor organization

In this section we present an architecture for performing the forward and
backward NTT using the proposed optimization techniques. Our NTT processor
(Fig. 5.1) consists of three main components: the arithmetic unit, the memory
block and the control-address unit.

78 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

The memory block

is implemented as a simple dual port RAM. To accommodate two coefficients, the
word size is 2dlog qe where q is the prime modulus. For the chosen parameter sets,
coefficients are 13-bit or 14-bit wide. In FPGAs, a RAM can be implemented
as a distributed or as a block RAM. When the amount of data is large, block
RAM is the ideal choice.

The arithmetic unit (NTT-ALU)

is designed to support Alg. 11 along with other operations such as polynomial
addition, point-wise multiplication and rearrangement of the coefficients. This
NTT-ALU is interfaced with the memory block and the control-address unit.
The central part of the NTT-ALU consists of a modular multiplier and
addition/subtraction circuits.

H1 H2 H3

L2L1

H1

L1

L1

H1

L2

H3

H2

L1

ωm
ω2n

n−1

R

R

R

R

R2

1

3

4

5

1

HL

0HLHL L11 2

2

MULdata

ROMdata

Multiplier
DOUT

DIN

Control Signals

read address

write enable

write address

NTT−ALU

Control−Address Unit

RAM

Load2

In
p

u
t

C
o

ef
fi

ci
en

ts
O

u
tp

u
t

C
o

ef
fi

ci
en

ts

DIN_high

DOUT_high

DOUT_low

DIN_low

Load1

Small
ROM

ω

1HL

Figure 5.1: Hardware Architecture for NTT

THE NTT PROCESSOR ORGANIZATION 79

Now we describe how the different components of the NTT-ALU are used during
the butterfly steps (excluding the last loop for m = n).

1. First, the memory location (k + j) is fetched and then the fetched data
(t1, u1) is stored in the input register pair (H1, L1).

2. The same also happens for the memory location (k+ j+m/2) in the next
cycle.

3. The multiplier computes ω ·H1 and the result is added to or subtracted
from L1 using the adder and subtracter circuits to compute (u1 + ωt1)
and (u1 − ωt1) respectively.

4. In the next cycle the register pair (R1, R4) is updated with (u1−ωt1, u1 +
ωt1).

5. Another clock transition shifts the contents of (R1, R4) to (R2, R5). In
this cycle the pair (R1, R4) is updated with (u2 − ωt2, u2 + ωt2) as the
computation involving (u2, t2) from the location (k + j + m/2) lags by
one cycle.

6. Now the memory location (k+j) is updated with the register pair (R4, R5)
containing (u2 + ωt2, u1 + ωt1).

7. Finally, in the next cycle the memory location (k + j +m/2) is updated
with (u2 − ωt2, u1 − ωt1) using the register pair (R2, R3).

The execution of the last m-loop is similar to the intermediate loops, without
any data swap between the output registers. The register pair (R2, R5) is used
for updating the memory locations. In Fig. 5.1, the additional registers (H2, H3
and L2) and multiplexers are used for supporting operations such as addition,
point-wise multiplication and rearrangement of polynomials. The Small-ROM
block contains the fixed values ωm, ω2n, their inverses and n−1. This ROM has
depth of order log(n).

The control-and-address Unit

consists of three counters for m, j and k in Alg. 11 and comparators to check
the terminal conditions during the execution of any loop. The read address is
computed from m, j and k and then delayed using registers to generate the
write address. The control-and-address unit also generates the write enable
signal for the RAM and the control signals for the NTT-ALU.

80 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

5.5 Pipelining the NTT processor

The maximum frequency of the NTT-ALU is determined by the critical path (red
dashed line in Fig. 5.1): it passes through the modular multiplier and the adder
(or subtracter) circuits . To increase the operating frequency of the processor,
we implement efficient pipelines based on the following two observations.

Observation 1: During the execution of any m-loop in Alg. 11, the
computations (multiplication, addition and subtraction) involving a coefficient
pair have no data dependency on other coefficient pairs. Such a data-flow
structure is suitable for pipeline processing as different computations can be
pipelined without inserting bubbles in the datapath.

Assume that the modular multiplier has dm pipeline stages and that the output
is latched in a buffer. In the (dm + 1)th cycle after the initialization of ω · t1,
the buffer is updated with the result ω · t1. Now we need to compute u1 + ω · t1
and u1 − ω · t1 using the adder and subtracter circuits. Hence we delay the
data u1 by dm cycles so that it appears as an input to the adder and subtracter
circuits in the (dm + 1)th cycle. This delay operation is performed with the
help of a shift register L1, . . . , Ldm+1 as shown in Fig. 5.2.

Observation 2: Every increment of j in Alg. 11 requires a new ω (line 17). If
the multiplier has dm pipeline stages, then the register-ω in Fig. 5.1 is updated
with the new value of ω in the (dm + 2)th cycle. Since this new ω is used by
the next butterfly operations, the data dependency results in an interruption in
the chain of butterfly operations for dm + 1 cycles. In any m-loop, the total
number of such interruption cycles is (m/2− 1) · (dm + 1).

To reduce the number of interruption cycles, we use a small look-up table to store
a few twiddle factors. Let the look-up table (red dashed rectangle in Fig. 5.2)
have l registers containing the twiddle factors (ω, . . . ωωl−1

m). This look-up table
is used to provide the twiddle factors during the butterfly operations for say
j = j′ to j = j′ + l − 1. The next time j increments, new twiddle factors are
required for the butterfly operations. We multiply the look-up table with ωlm
to compute the next l twiddle factors (ωωlm, . . . ωω2l−1

m). The multiplications
are independent of each other and hence can be processed in a pipeline. The
butterfly operations are resumed after ωωlm is loaded in the look-up table. Thus
using a small-look-up table of size l we reduce the number of interruption cycles
to (m2l − 1) · (dm + 1). In our architecture we use l = 4; a larger value of l will
reduce the number of interruption cycles, but will cost additional registers.

PIPELINING THE NTT PROCESSOR 81

Optimal pipeline strategy for speed:

During the execution of anym-loop in Alg. 11, the number of butterfly operations
is n/2. In the pipelined NTT-ALU, the cycle requirement for the n/2 butterfly
operations is slightly larger than n/2 due to an initial overhead. The state
machine jumps to the ω calculation state m

2l−1 times resulting in (m2l−1)·(dm+1)
interruption cycles. Hence the total number of cycles spent in executing any
m-loop can be approximated as shown below:

Cyclesm ≈
n

2 + (m2l − 1) · (dm + 1) . (5.2)

Assume that the delay of the critical path with no pipeline stages is Dcomb.
When the critical path is split into balanced-delay stages using pipelines, the
resulting delay (Ds) can be approximated by Dcomb

(dm+da) , where dm and da are
the number of pipeline stages in the modular multiplier and the modular adder
(subtracter) respectively. Since the delay of the modular adder is small compared
to the modular multiplier, we have da � dm. Now the computation time for

H1

L1

L2

H3

H2

L1

L
2

L
1

H
1

H
2

H
3

...

m
1

d

+

L

ωω
l−1
m

md +1L 2HL

md +1L

md +1L

ωm

ω2n

n−1

R

R

R

R

R

4

5

MULdata

DOUT

DIN

DIN_high

DIN_low

Control Signals

read address

write enable

write address

NTT−ALU

Control−Address Unit

RAM

HL1

0

HL2

Multiplier

...

...

Pipeline
Register

In
p

u
t

C
o

ef
fi

ci
en

ts
O

u
tp

u
t

C
o

ef
fi

ci
en

ts

Load1

Load2

ω

1HL

1

2

3

Small

ROM

1H

1

ROMdata

DOUT_high

DOUT_low

Figure 5.2: Pipelined Hardware Architecture for NTT

82 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

the m-loop is approximated as

Tm ≈
Dcomb

(dm + da)
[n

2 + (m2l − 1) · (dm + 1)
]
≈ Ds

n

2 + Cm . (5.3)

Here Cm is constant (assuming da � dm) for a fixed value of m. From the
above equation we find that the minimum computation time can be achieved
when Ds is minimum. Hence we pipeline the datapath to achieve minimum Ds.
The DSP based coefficient multiplier is optimally pipelined using the Xilinx
IPCore tool, while the modular reduction block is suitably pipelined by placing
registers between the cascaded adder and subtracter circuits.

5.6 The ring-LWE encryption scheme

Pöppelmann et al. [106] optimized the computation cost of the LPR public
key encryption scheme by keeping the fixed polynomials in the NTT domain.
The message encryption and decryption operations require three and two NTT
computations respectively. We reduce the number of NTT operations for
decryption from two to one. The proposed ring-LWE encryption scheme is
described below:

1. LPR.KeyGen(a) : Choose a polynomial r1 ∈ Rq from Xσ, choose another
polynomial r2 with binary coefficients and then compute p = r1−a·r2 ∈ Rq.
The NTT is performed on the three polynomials a, p and r2 to generate
ã, p̃ and r̃2. The public key is (ã, p̃) and the private key is r̃2.

2. LPR.Encrypt(ã, p̃,m): The message m is first encoded to m̄ ∈ Rq. Three
polynomials e1, e2, e3 ∈ Rq are sampled from Xσ. The ciphertext is then
computed as:

ẽ1 ← NTT (e1); ẽ2 ← NTT (e2)

(c̃1, c̃2)←
(
ã ∗ ẽ1 + ẽ2; p̃ ∗ ẽ1 +NTT (e3 + m̄)

)
.

3. LPR.Deccrypt(c̃1, c̃2, r̃2) : Compute m′ as m′ = INTT (c̃1 ∗ r̃2 + c̃2) ∈ Rq
and recover the original message m from m′ using a decoder.

The scheme requires both encryption and decryption to use a common primitive
root of unity.

THE RING-LWE ENCRYPTION SCHEME 83

. . .

Sampler
Gaussian
Discrete

RNG

M0

M5

Control−Address Unit

Memory File

NTT−ALU

Sampler

Load2Load1

Encoder

Message BitInput Coefficients

Input Buffers

Decoder

T
w

o
 M

es
sa

g
e

B
it

s
O

u
tp

u
t

C
o
ef

fi
ci

en
ts

Figure 5.3: Ring-LWE Cryptoprocessor

5.6.1 Hardware architecture

Fig. 5.3 shows the hardware architecture for the ring-LWE encryption system.
The basic building blocks used in the architecture are: the memory file,
the arithmetic unit, the discrete Gaussian sampler and the control-address
generation unit. The arithmetic unit is the NTT-ALU that we described in
the previous section. Here we briefly describe the memory file and the discrete
Gaussian sampler.

The Memory File is designed to support the maximum memory requirement
that occurs during the encryption of the message. Six memory blocks M0 to
M5 are available in the memory file and are used to store ā, p̄, e1, e2, e3 and m̄
respectively. The memory blocks have width 2dlog qe bits and depth n/2. All six
memory blocks share a common read and a write address and have a common
data-input line, while their data-outputs are selected through a multiplexer.
Any of the memory blocks in the memory file can be chosen for read and write
operation. Due to the common addressing of the memory blocks, the memory
file supports one read and one write operation in every cycle.

84 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

The Discrete Gaussian Sampler is based on the Knuth-Yao sampler
architecture that we designed in the last chapter. The sampler does not include
the shuffling countermeasure as in this work we intend to design the core of
the public key encryption processor and measure its performance without the
overhead of countermeasures. The sampler architecture has a sufficiently large
precision and tail-bound to satisfy a maximum statistical distance of 2−90 to
a true discrete Gaussian distribution for both s = 11.32 and s = 12.18. Two
look-up tables are used to speedup the sampling operation. The first lookup
table maps eight random bits and the second lookup table maps five random
bits. When the second lookup operation fails (probability<0.0016) then bit-scan
based Knuth-Yao random walk is started with the initial distance obtained from
the second lookup operation.

The Cycle Count for the encryption and decryption operations can be
minimized in the following way. During the encryption operation, first the three
error polynomials e1, e2 and e3 are generated by invoking the discrete Gaussian
sampler 3n times. Next the encoded message m̄ is added to e3 and then three
consecutive forward NTT operations are performed on e1, e2 and (e3 + m̄).
Finally the ciphertext c̃1, c̃2 is obtained using two coefficient-wise multiplications
followed by two polynomial additions and two rearrangement operations. The
decryption operation requires one coefficient-wise multiplication, one polynomial
addition and finally one inverse NTT operation.

During the encryption operation, 3n samples are generated to construct the
three error polynomials. Our fast Knuth-Yao sampler architecture requires
805 and 1644 cycles for the dimensions 256 and 512 respectively on average to
generate the three error polynomials. The polynomial addition and point-wise
multiplication operations require n cycles each with a small overhead. The
consecutive processing of I forward NTTs share a fixed computation cost fcfwd
and require in total fcfwd + I × n

2 log(n) cycles. Similarly I consecutive inverse
NTTs are processed in fcinv + I× n

2 log(n) + I×n cycles. One interesting point
is that the fixed cost fcinv is larger than fcfwd as it includes the computation
of ωi2n/N (Sect. 5.2) for i = (0 . . . n − 1). This observation has been used
to optimize the overall ring-LWE based encryption scheme in Sect. 5.6. The
additional I × n cycles during the inverse NTTs are required to multiply the
coefficients by the scaling factors. The rearrangement of polynomial coefficients
after an NTT operation requires less than n cycles. From the above cycle
counts for each primitive operations, we see that the encryption and decryption
operations require total fcfwd+ 3

2n log(n)+10n and fcinv+ n
2 log(n)+3n cycles

respectively along with additional overhead. Our ring-LWE architecture has
the fixed computation costs fcfwd = 667 and fcinv = 1048 cycles for n = 256;
and fcfwd = 1139 and fcinv = 1959 cycles for n = 512.

EXPERIMENTAL RESULTS 85

5.7 Experimental results

We have implemented the LPR ring-LWE cryptosystem on the Xilinx Virtex 6
FPGA for the parameter sets (n, q, s): (256,7681,11.32) and (512,12289,12.18).
The area and performance results are obtained from the Xilinx ISE12.2 tool
after place and route analysis and are shown in Table 5.1. In the table we
also compare our results with other reported hardware implementations of the
ring-LWE encryption scheme.

Our implementations are both fast and small due to the proposed computational
optimizations and resource efficient design style. The cycle counts shown in
the table do not include the cycles for data loading or reading operations.
Our Knuth-Yao samplers have less than 2−90 statistical distances from the
corresponding true discrete Gaussian distributions and consume around 164
LUTs and have delay less than 2.5ns (with optimization goal for speed). Such a
small delay makes the sampler suitable for integration in the pipelined ring-LWE
processor under a single clock domain. We use nine parallel true random bit
generators [51, 34] to generate the random bits for the sampler. The set of true
random bit generators consumes 378 LUTs and 9 FFs.

The first hardware implementation of the LPR ring-LWE encryption scheme
in [52] uses a heavily parallel architecture to minimize the number of clock
cycles for the NTT computation. Due to the many parallel computational
blocks, the architecture is very large (0.29 million LUTs and 0.14 million FFs
for n = 256) and does not even fit on the largest FPGA of the Virtex 6 family.
Performance results such as cycle count and frequency are not reported in their
paper. The architecture uses a Gaussian distributed array for sampling of the
error coefficients up to a tail-bound of ±2s.

The implementation in [106] is small and fast due to its resource-efficient design
style. A high operating frequency is achieved using pipelines in the architecture.
The architecture uses a ROM that keeps all the twiddle factors required during
the NTT operation. This approach reduces the fixed computation cost (fc)
but consumes block RAM slices in FPGAs. Additionally, the parallel RAM
blocks in the NTT processor result in a larger memory requirement compared
to our design. The discrete Gaussian sampler is based on the inversion sampling
method [33] and has a maximum statistical distance of 2−22 to a true discrete
Gaussian distribution. Since the inversion sampling requires many random bits
to output a sample value, an AES core is used as a pseudo-random number
generator. The AES core itself consumes an additional 803 LUTs and 341 FFs
compared to our true random number generator. Another reason behind the
larger area consumption of [106] compared to our architecture is due to the fact
that the architecture supports different parameter sets at synthesis time. Our

86 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

Table 5.1: Performance and Comparison

Im
p

le
m

en
ta

ti
on

P
ar

am
et

er
s

D
ev

ic
e

L
U

T
s/

F
F

s/
F

re
q

C
y

cl
es

/T
im

e(
µ
s
)

A
lg

or
it

h
m

D
S

P
s/

B
R

A
M

18
(M

H
z)

E
n

cr
y

p
ti

on
D

ec
ry

p
ti

on
O
ur

R
LW

E
(2
56
,7
68
1,
11
.3
2)

V
6L

X
75
T

13
49
/8
60
/1
/2

31
3

6.
3k

/2
0.
1

2.
8k

/9
.1

O
ur

R
LW

E
(5
12
,1
22
89
,1
2.
18
)

15
36
/9
53
/1
/3

27
8

13
.3
k/

47
.9

5.
8k

/2
1

R
LW

E
[1
06
]

(2
56
,7
68
1,
11
.3
2)

V
6L

X
75
T

45
49
/3
62
4/
1/
12

26
2

6.
8k

/2
6.
2

4.
4k

/1
6.
8

R
LW

E
(5
12
,1
22
89
,1
2.
18
)

V
6L

X
75
T

55
95
/4
76
0/
1/
14

25
1

13
.7
k/

54
.8

8.
8k

/3
5.
4

R
LW

E
-E

nc
[1
05
]

(2
56
,4
09
6,
8.
35
)

S6
LX

9
31
7/
23
8/
95
/1

14
4

13
6k

/9
46

-
R
LW

E
-D

ec
11
2/
87
/3
2/
1

18
9

-
66
k/

35
1

E
C
C
[1
10
]

B
in
ar
y-
23
3

V
5L

X
85
T

18
09
7/
-/
56
44
/0

15
6

1.
9k

/1
2.
3

1.
9k

/1
2.
3

N
T
R
U
[6
3]

N
T
R
U
-2
51

X
C
V
16
00
E

27
29
2/
51
60
/1
43
52
/0

62
.3

-/
1.
54

-/
1.
41

EXPERIMENTAL RESULTS 87

ring-LWE processor is also designed to achieve scalability for various parameter
sets. In our architecture the control block remains the same; while only the
data-width and the modular reduction block changes for different parameter
sets. Hence our architecture is also configurable by generating the HDL codes
for various parameter sets using a C program.

Although our architecture does not use a dedicated ROM for storing the twiddle
factors, it still achieves slightly smaller cycle count and faster computation time
compared to [106]. The encryption scheme in [106] computes one forward and
two inverse NTTs; while our encryption scheme computes only forward NTTs
and hence does not require the 4n cycles for the scaling operation. Additionally
our negative convolution method is free from the precomputation that takes n
cycles in [106]. Hence we save 5n cycles in total during the NTT operations
in an encryption operation. Since the fixed computation cost fcfwd is smaller
than 5n, we gain in cycle count for the encryption operation. The decryption
operation in our case is trivially faster than [106] as only one NTT is performed.
We also reduce the area and memory requirement significantly compared to
[52, 106]. This reduction is achieved by our resource-efficient design decisions
such as 1) absence of a dedicated ROM for the twiddle factors, 2) an efficient
RAM access and storage scheme, 3) use of one modular multiplier, 4) use of
a smaller and faster (low-delay) discrete Gaussian sampler, and finally 5) the
resource sharing between different computations.

The lightweight implementation [105] proposes ring-LWE encryption and
decryption architectures targeting small area at the cost of performance. The
implementation uses a quadratic-complexity multiplier instead of a complicated
NTT based polynomial multiplier. Additionally the special modulus also saves
some amount of area as the modular reduction is free of cost. However if we
consider a similar quadratic-complexity multiplication based architecture in the
dimension n = 512, then the cycle requirement will be nearly 40 times compared
to our NTT-based ring-LWE processor. Our target was to use FPGA resources
more efficiently without affecting the performance and to achieve similar speed
as [106].

We also compare our results with other cryptosystems such as ECC and NTRU.
The ECC processor [110] over the NIST recommended binary field GF (2233)
requires 12.3 µs to compute one scalar multiplication and is faster than our ring-
LWE processor. However the ECC processor is designed to achieve high speed
and hence consumes very large area compared to our ring-LWE processor. The
NTRU scheme [63] is much faster than our ring-LWE processor due to its less
complicated arithmetic. However the parameters chosen for the implementation
in [63] have security around 64 bits [59]. Though secure parameter sets for the
NTRU based encryption have been proposed in [57], no hardware implementation
for the secure parameter sets is available in the literature.

88 RING-LWE PUBLIC KEY ENCRYPTION PROCESSOR

5.8 Summary

In this chapter we analyzed the NTT based polynomial multiplication algorithm
and proposed several optimizations to increase its computational efficiency and
reduce storage requirement. We applied these optimization tricks to design
a compact hardware architecture for polynomial arithmetic in the ring-LWE
encryption scheme. We finally integrated the polynomial arithmetic unit with
the compact Knuth-Yao discrete sampler from the last chapter and designed a
compact and efficient ring-LWE public key encryption processor.

The design methodology and the optimizations make the cryptoprocessor
architecture suitable for resource-constrained platforms. Although the chapter
focuses on implementation of the ring-LWE based encryption system, we finally
remark that the proposed optimization techniques for the NTT computation
are applicable for other lattice based cryptosystems where similar polynomial
multiplications are performed. In the next chapters, we will design processors
for homomorphic encryption schemes. There we will show that the proposed
optimizations could be very helpful in reducing the computation time.

Followup works. In joint works (coauthorship) with de Clercq et al. [31] and
Liu et al. [81], we implemented the LPR ring-LWE public key encryption on
32-bit ARM and 8-Bit AVR processors respectively. The proposed optimizations
in this chapter were adapted in [31] for the 32-bit processor architecture. For
the parameter set (n, q, s) = (256, 7681, 11.32) the software requires 121,166
cycles per encryption and 43,324 cycles per decryption. The encryption would
be an order of magnitude faster than an implementation of the elliptic curve
based ECIES encryption scheme (see Sect. 2.2) on a similar platform if the
elliptic curve point multiplier of [32] is used. The software by Liu et al. shows
that fast implementation of the ring-LWE encryption scheme is feasible on
resource-constrained 8-bit AVR processors.

Side channel analysis of a new cryptographic constructions has always received
interest from the research community. In joint works (coauthorship) with
Reparaz et al. [116, 114, 115] we developed masking based countermeasures
against differential power analysis attacks. Oder et al. [96] proposed practical
ring-LWE based public key encryption that is protected against adaptive
chosen-ciphertext attacks and equipped with countermeasures against side
channel attacks. Park et al. [98] mounted an SPA attack combined with
chosen ciphertext attack on the ring-LWE encryption. The attack exploits the
computational variations during modular additions on 8-bit processors.

Chapter 6

Modular architecture for
somewhat homomorphic
function evaluation

CONTENT SOURCES:

The chapter is based on an extension of the following publication.

Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov,
and Ingrid Verbauwhede. Modular Hardware Architecture for Somewhat
Homomorphic Function Evaluation. In International Workshop on
Cryptographic Hardware and Embedded Systems CHES (2015).

Contribution: Main author.

6.1 Introduction

Since the construction of the first fully homomorphic encryption (FHE) scheme
by Gentry [46] in 2009, many researchers have developed more efficient schemes
to improve the performance of FHE [21, 22, 30, 137, 43, 47, 49, 91]. Despite
these major advances, the FHE schemes are too slow to be used in practical
applications. Even somewhat homomorphic encryption (SHE) schemes, that
can perform a limited number of operations on the encrypted data, are also very
slow. Software implementations still require minutes or hours to evaluate even

89

90 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

rather simple functions. For instance, evaluating the decryption of a lightweight
block cipher SIMON-64/128 (block/key size 64/128 bits) [15], requires 4193 s
(an hour and 10 minutes) on a 4-core Intel

Hardware accelerators have been successfully used for accelerating performance-
critical computations in cryptology (see, e.g, [71]). When we started this
research, only a few publications [142, 37, 90, 143] reported results on hardware-
based acceleration of FHE and SHE. Moreover, the homomorphic schemes used
in these implementations are not based on the ring-LWE problem. In this
chapter we design a hardware accelerator to speedup the ring-LWE based
somewhat homomorphic encryption scheme YASHE.

The chapter is structured as follows. Sect. 6.2 describes the system setup
and the parameter set that we use. The next section contains a high level
description of known optimization techniques to speed-up computations in
modular polynomial rings and describes how we represent polynomials using
the Chinese Remainder Theorem (CRT) in order to parallelize computations.
We present our hardware architecture for YASHE in Sect. 6.4. Sect. 6.5 shows
the performance results and the final section draws the summary.

6.2 System setup

As described in Sect. 2.4.2, the YASHE scheme computes in a polynomial ring
of the form R = Z[x]/(f(x)) where f(x) is a monic irreducible polynomial of
degree n. We choose the plaintext modulus t = 2, i.e., we evaluate bit-level
operations. We put no restriction on f(x), which allows us to deal with any
cyclotomic polynomial Φd(x) and thus to utilize single instruction multiple
data (SIMD) operations [127, 128]. Indeed to exploit the SIMD feature, we
choose an irreducible polynomial f(x) such that f(x) mod 2 splits into many
different irreducible factors, each factor corresponding to “one slot” in the SIMD
representation. It is easy to see that this excludes f(x) = xn + 1 with n a power
of two, since it results in only one irreducible factor modulo 2. Note that in
Chap. 5 we took f(x) = xn + 1 to compute polynomial multiplications without
performing reductions modulo f(x). With our current choice, we achieve SIMD,
but we pay in modular reductions by f(x).

We use the parameter set Set-III from [77] that supports homomorphic
evaluations of SIMON-64/128; in particular d = 65535 (and thus the degree of
f(x) is 32768 = 215), log2(q) = 1228 and χerr a discrete Gaussian distribution
with parameter σ = 8. When we started this research, the parameter set
was presumed to have a 128-bit security level for the YASHE scheme [77].
The irreducible polynomial f(x) splits modulo 2 in 2048 different irreducible

HIGH-LEVEL OPTIMIZATIONS 91

polynomials, which implies that we can work on 2048 bits in parallel using the
SIMD method first outlined in [127].

6.3 High-level optimizations

To efficiently implement YASHE we have to analyze the two main operations
in detail, namely homomorphic addition and homomorphic multiplication.
Homomorphic addition is easy to deal with since this simply corresponds to
polynomial addition in Rq. Homomorphic multiplication is much more involved
and is the main focus of this chapter. As can be seen from the definition of
YASHE.Mult in Sect. 2.4.2, to multiply two ciphertexts c1 and c2 one first needs
to compute c1 ·c2 over the integers, then scale by t/q and round, before mapping
back into the ring Rq. The fact that one first has to compute the result over
the integers (to allow for the scaling and rounding) has a major influence on
how elements of Rq are represented and on how the multiplication has to be
computed.

Since each element in Rq is a polynomial of degree n − 1, the result of a
polynomial multiplication (without reduction modulo f(x)) will have degree
2n − 2. As such we choose the smallest N = 2k > 2n − 2, and compute the
product of the two polynomials in the ring Zq[x]/(xN − 1) by applying the
N -point NTT (see Alg. 10). The NTT requires the N -th roots of unity to exist
in Zq, so we either choose q a prime with q ≡ 1 mod N or q a product of small
primes qi with each qi ≡ 1 mod N . It is the latter choice that will be used
throughout this work. The product of two elements a, b ∈ Rq is then computed
in two steps: firstly, the product modulo xN − 1 (note that there will be no
reduction, since the degree of the product is small enough) is computed using
two NTT’s, N pointwise multiplications modulo q and then finally, one inverse
NTT. To recover the result in Rq, we need a reduction modulo f(x). For this
purpose, we use the Newton iteration method that we described in Sect. 2.5.2.

Note that the multiplication of c1 and c2 in YASHE.Mult is performed over
integers. To get the benefit of NTT based polynomial multiplication, we
perform this multiplication in a ring RQ where Q is a sufficiently large modulus
of size ∼ 2 log q such that the coefficients of the result polynomial are in Z.

CRT representation of polynomials:

The biggest challenge while designing a homomorphic processor is the complexity
of computation. During a homomorphic operation, computations are performed
on polynomials of degree 215 or 216 and coefficients of size ∼1,200 or ∼2,500 bits.

92 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

If we use a bit-parallel coefficient multiplier, then a 2, 500× 2, 500-bit multiplier
will not only result in an enormous area. On the other side, a word-serial
multiplier is too slow for homomorphic computations.

To tackle the problem of long integer arithmetic, we take inspiration from the
application of the CRT in the RSA cryptosystems. We choose the moduli q
and Q as products of many small prime moduli qi, such that q =

∏l−1
0 qi and

Q =
∏L−1

0 qi, where l < L. We map any long integer operation modulo q or Q
into small computations moduli qi, and apply CRT whenever a reverse mapping
is required. We use the term small residue to represent coefficients modulo qi
and the term large residue to represent coefficients modulo q or Q.

YASHE.Mult in residue domain

Let us take two input ciphertext polynomials c1 and c2 ∈ Rq . The homomorphic
multiplication steps are described below.

1. Liftq→Q: Lift c1 and c2 to RQ from Rq, i.e., compute the additional
residue polynomials moduli qj for j ∈ [l, L− 1]. Note that c1 and c2 are
represented as residue polynomials moduli qi for i ∈ [0, l − 1] in Rq. So,
first compute the coefficients modulo q in (−q/2, q/2) by applying the
CRT, and then compute the additional residue polynomials.

2. PolyMultiplyQ: Compute the product polynomial c = c1 · c2 ∈ RQ by
computing multiplications of the residue polynomials moduli qj for j ∈
[0, L− 1].

3. LiftQ→q: Apply the CRT on the residue polynomials of c and compute
the coefficients modulo Q in (−Q/2, Q/2). Now compute the division-
and-rounding operation to c′ = b t·cq e. Next, reduce the coefficients of c′
modulo q in (−q/2, q/2).

4. WordDecomp : Split the coefficients of c′ into w-bit words to get the vector
c′ of dlg q/we polynomials.

5. YASHE.KeySwitch : Compute the residue polynomials for each member
of c′ and then compute cmult = 〈c′, evk〉 ∈ Rq. This gives the result of
the homomorphic multiplication as a set of residue polynomials in Rq.

The polynomial arithmetic on the residue polynomials can be performed in
parallel. The size of the moduli qi is an important design decision and depends
on the underlying platform. We implement the hardware accelerator on the

ARCHITECTURE 93

Xilinx ML605 board, which has a Virtex-6 FPGA. The FPGA provides 24× 17-
bit unsigned DSP multipliers to perform integer multiplications. We could
implement a slightly larger integer multiplier by combining a DSP multiplier
with LUT-based logic. In this work we choose 30-bit prime qi that satisfy
qi ≡ 1 mod N . The reasons for selecting only 30-bit of primes are: 1) there are
sufficiently many primes of size 30-bit to compose 1,228-bit q and 2,471-bit Q,
2) the data-paths for performing computations modulo qi become symmetric,
and 3) the basic computation blocks, such as adders and multipliers of size
30-bit can be implemented efficiently using the available DSP slices and a few
LUTs.

6.4 Architecture

In this section we design a hardware architecture, which we call HE-coprocessor,
to accelerate YASHE.Add and YASHE.Mult . The design decisions take account
of the computational resources available on the Xilinx ML605 board which
has a medium size Xilinx Virtex-6 FPGA XC6VLX240T. Since the ciphertexts
are large, of size 4.8MB, we use the DDR3 memory of the board to store
the ciphertexts. During a computation, portions of the ciphertext(s) are
read from the DDR memory and stored in the on-FPGA BRAMs. After
the computation, the result is written back in the DDR memory. The speed
of the communication between the DDR memory and the FPGA has a major
impact on the performance. In this work we restrict the data-size to 256 bits
per DDR memory access.

In the remaining part of this section, we describe our design decisions and
optimization tricks.

6.4.1 Architecture for polynomial arithmetic

From Sect. 6.3 we see that YASHE.Mult involves arithmetic on polynomial with
large degree and large coefficient size. Following the design methodology of
the public key encryption processor of Chap. 5, we apply the NTT to compute
the multiplications of the residue polynomials. However, a simple scale-up of
the NTT computation core of Chap. 5 will not be enough as it will take more
than 524K cycles to compute an N -point NTT. Note that the NTT (Alg. 10 in
Chap. 5) is amicable to parallelism. Hence on FPGAs, we use parallel butterfly
cores to reduce the number of cycles.

94 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

Optimization in the routing:

Let a residue polynomial of N coefficients be stored in b BRAMs and then
processed using v butterfly cores. For simplicity, let v be a divisor of b and a
power of two. We can split the NTT computation into equal parts among the
v parallel cores. However there are two main technical issues related to the
memory access that would affect the performance of the NTT computation.
The first one is: all the parallel cores access the BRAMs simultaneously. Since
a simple dual port BRAM has one port for reading and one port for writing, it
can support only one read and write in a clock cycle. This puts the restriction
that a memory block can be read (or written) by one butterfly core in a cycle,
i.e., the generation of the BRAM-addresses by the parallel cores should be free
from conflicts.

The second issue is related to the routing complexity. A residue polynomial is
stored in many BRAMs, and hence, if a core needs to access a BRAM that is
very far from it, then the routing of wires will very long. Note that in the basic
NTT (Alg. 10) we see that the maximum difference between the indexes of the
two coefficients is N/2. For the chosen parameter set N = 216; hence fetching
data from memory locations at a relative distance of 215 will result in a very
long routing, and thus could drastically reduce the clock frequency.

To address these two technical issues, we have developed a memory access
scheme by analyzing the generation of indexes during NTT computation. We
segment the set of b BRAMs into b/v groups. The read ports of a group are
accessed by only one butterfly core. This dedicated read prevents any sort of
conflict during the memory read operations. Moreover, in the FPGA the group
of BRAMs can be placed close to the corresponding butterfly core and thus the
routing complexity can be reduced.

We describe the proposed memory access scheme during an execution of the
NTT by parallel cores in Alg. 12. Following the memory-efficient NTT algorithm
of Chap. 5, the module butterfly-core in Alg. 12 performs butterfly operations
on two coefficent pairs. In the algorithm the v parallel butterfly cores of a
processor are indexed by c where c ∈ [0, v − 1]. During the m-th loop of a
NTT, the twiddle factor in the c-th core is initialized to a constant value ωm,c.
In the hardware, these constants are stored in a ROM. The counter Itwiddle
denotes the interval between two consecutive calculations of the twiddle factors.
Whenever the number of butterfly operations (Nbutterfly) becomes a multiple
of Itwiddle, a new twiddle factor is computed. The c-th butterfly core reads
the c−th group of BRAMs MEMORYc using two addresses address1 and
address2. The addresses are computed from the counters: base, increment, and
offset, that represent the starting memory address, the increment value, and

ARCHITECTURE 95

the difference between address1 and address2 respectively. A butterfly core
outputs the two addresses and the four coefficients s1,c, s2,c, s3,c, s4,c. These
output signals from the parallel butterfly cores are collected by a set of parallel
modules memory-write that are responsible for writing the groups of BRAMs.
The input coefficients that will be read by the adjacent butterfly core in the next
iteration of the m-th loop, are selected for the writing operation in MEMORYc
by the c-th memory-write module. The top module Parallel-NTT instantiates
v butterfly cores and memory write blocks. These instances run in parallel and
exchange signals.

Internal architecture of the PAU:

In Fig. 6.1 we show the internal architecture of the cores that we use to perform
arithmetic on the residue polynomials. The cores have been designed following
the footprints of the polynomial arithmetic core of Chap. 5. The input register
bank contains registers to store data from the BRAMs. In addition, the register
bank also contains shift registers to delay the input coefficients in a pipeline
during a NTT computation. The register bank has several ports to provide data
to several other components present in the core. We use the common name
Dregbank to represent all data-outputs from the register bank. The small ROM
block in Fig. 6.1 contains the twiddle factors and the value of N−1 to support
the computation of NTT and INTT.

The integer multiplier (shown as a circle in Fig. 6.1) is a 30×30-bit multiplier. We
maintain a balance between area and speed by combining two DSP multipliers
and additional LUT based small multipliers to form this multiplier. After an
integer multiplication, the result is reduced using the Barrett reduction circuit
shown in Fig. 6.1. We use the Barrett reduction technique due to two reasons.
The first reason is that the primes used in this implementation are not of
pseudo-Mersenne type which support fast modular reduction technique [54].
The second reason is that the cores are shared by all the prime moduli, and
hence, a generic reduction circuit is more preferable than several dedicated
reduction circuits. The Barrett reduction circuit is bit parallel to process the
outputs from the bit-parallel multiplier in a flow. The reduction consists of three
31× 31-bit multipliers and additional adders and subtractors. The multipliers
are implemented by combining two DSP multipliers with additional LUTs. Thus
in total, the Barrett reduction block consumes six DSP multipliers. Beside
performing the modular reduction operations, the multipliers present in the
Barrett reduction circuit can be reused to perform 30× 59-bit multiplications
during the CRT computations.

The adder/subtracter circuits after the Barrett reduction block in Fig. 6.1 are

96 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

Algorithm 12: Routing Efficient Parallel NTT using v cores
/* This module computes butterfly operations */

1 module butterfly-core(input c; output m, address1, address2, s1,c, s2,c, s3,c, s4,c)
2 begin
3 (Itwiddle, offset)← (N/2, 1)
4 for m = 0 to logN − 1 do
5 ωm ← 2m-th primitiveroot(1)
6 Nbutterfly ← 0 /* Counts the number of butterfly operation in a m-loop */
7 ω ← ωm,c /* Initialization to a power of ωm for a core-index c */
8 for base = 0 to base < offset do
9 increment← 0

10 while base + offset + increment < N
2v do

11 (address1, address2)← (base + increment, base + offset + increment)
12 (t1, u1)←MEMORYc[address1] /* Read from c-th group of RAMs */
13 (t2, u2)←MEMORYc[address2]
14 if m < logN − 1 then
15 (t1, t2)← (ω · t1, ω · t2)
16 (s1,c, s2,c, s3,c, s4,c)← (u1 + t1, u1 − t1, u2 + t2, u2 − t2)
17 Nbutterfly ← Nbutterfly + 2
18 increment = increment + 2 · offset
19 if Nbutterfly ≡ Itwiddle then ω ← ω · ωv/2

m

20 end
21 else
22 t1 ← ω · t1; ω ← ω · ωv/2

m

23 t2 ← ω · t2; ω ← ω · ωv/2
m

24 (s1,c, s2,c, s3,c, s4,c)← (u1 + t1, u1 − t1, u2 + t2, u2 − t2)
25 Nbutterfly ← Nbutterfly + 2
26 increment = increment + 2 · offset
27 end
28 end
29 end
30 Itwiddle ← Itwiddle/2
31 if offset < v/2 then offset← 2 · offset
32 end
33 end

/* This module writes the coefficients computed by two butterfly-cores */
34 module memory-write(input c,m, address1, address2, s1,0, . . . s4,v−1)
35 begin
36 if 2m < v

2 then gap← 2m
37 else gap← v

2 /* This represents the index gap between the two cores */
38 if c < v/2 then
39 MEMORYc[address1]← (s2,c, s1,c)
40 MEMORYc[address2]← (s2,c+gap, s1,c+gap)
41 end
42 else
43 MEMORYc[address1]← (s4,c, s3,c)
44 MEMORYc[address2]← (s4,c+gap, s3,c+gap)
45 end
46 end

/* This is the top module that executes butterfly-core in parallel */
47 module Parallel-NTT()
48 begin
49 butterfly-core bc0(0, m, address1, address2, s1,0, s2,0, s3,0, s4,0)
50 memory-write mw0(0, m, address1, address2, s1,0, . . . s4,v−1)
51 . . .
52 butterfly-core bcv−1(v − 1,m, address1, address2, s1,v−1, s2,v−1, s3,v−1, s4,v−1)
53 memory-write mwv−1(v − 1,m, address1, address2, s1,0, . . . s4,v−1)
54 end

ARCHITECTURE 97

...

D
R
eg
B
a
n
k

D
R
eg
B
a
n
k

...

...

D
R
eg
B
a
n
k

DatatoBRAM

D
at

a
d

u
ri

n
g

 l
if

ti
n

g
D

at
a

fr
o

m
 B

R
A

M

T
w

id
d

le

F
ac

to
rs

R
ed

u
ct

io
n

B
a

rr
et

t

R
eg

is
te

r
B

an
k

O
u

tp
u

t

3
0

−
b

y
−

5
9

 b
it

 M
u

lt
ip

li
ca

ti
o

n

S
m

al
l

R
O

M
 f

o
r

N
T

T

C
o
n
st

an
ts

 i
n

In
p

u
t

R
eg

is
te

r
B

an
k

C
ac

h
e

fo
r

In
te

g
er

 M
u

lt
ip

li
er

P
A

U

Figure 6.1: Architecture for the Vertical Cores

98 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

Algorithm 13: Calculation of the reverse of an index. A polynomial of 216

coefficients is stored as 215 coefficient pairs in 16 memory elements. BiasTable
contains 16 bias values {0, 16, 8192, 8208, 4096, 4112, 12288, 12304, 2048,
2064, 10240, 10256, 6144, 6160, 14336, 14352} corresponding to the 16 memory
elements.
Input: An index of a coefficient pair where index ∈ [0, 215 − 1]
Output: Reverse of the index reverse_index ∈ [0, 215 − 1]

1 begin
2 c← index� 11 ; /* index of the memory element */
3 low← index&31 ; /* least five bits */
4 high← (i� 5)&63 ; /* next six bits */
5 lsb← low[0] ;
6 low← low− lsb ;
7 low_reverse← bitreverse(low) ; /* bits in reverse order */
8 high_reverse← bitreverse(high) ;
9 bias← BiasTable[c] ;

10 reverse_index← bias + (high_reverse� 5) + low_reverse + (lsb� 14) ;
11 end

used to compute the butterfly operations during a NTT computation and to
perform coefficient-wise additions and subtractions of polynomials. Finally, the
results of a computation are stored in the output register bank and then the
registers are written back in the memory. To achieve high operating frequency,
we put pipeline registers (shown as magenta colored lines) in the data paths of
the computation circuits.

External memory access during NTT:

During an NTT, the coefficients of the residue polynomial are read sequentially
from the DDR memory and then loaded in the 16 internal memory blocks.
For this purpose the 256-bit DDR3 interface is used to receive four coefficient
pairs (i.e. eight coefficients) in a burst. However Alg. 12 generates the
output coefficient pairs in a permutation that is different from their initial
arrangement. The coefficients pairs are written back in the DDR memory in
the right arrangement using Alg. 13. For a write address index, the coefficient
pair from the address reverse_index should be read from the internal memory.
Note that we perform this rearrangement of the coefficients after the completion
of an NTT following Alg. 12; whereas in the traditional NTT Alg. 10 this
rearrangement is performed in the beginning using the bitreverse function.

ARCHITECTURE 99

6.4.2 Architecture for lifting back and forth in Rq ↔ RQ

In Sect. 6.3 we described the lifting operations that we need to perform during
YASHE.Mult. In this section we describe the computational steps that we
follow to implement the lifting operations, and then we describe the hardware
architectures of the building blocks. In the end we design a unified architecture
for computing the two lifting operations.

Computation steps for Liftq→Q

Let for an integer a mod q, the residues be [a]qi for i ∈ [0, l − 1]. So we are
interested in computing [a]qj for j ∈ [l, L − 1]. We first compute the sum of
products for i ∈ [0, l − 1] as follows.

asp =
∑

[a]qi · (
q

qi
) · [(q

qi
)−1]qi =

∑
[a]qi · bi . (6.1)

Next we compute [a′]qj for j ∈ [l, L− 1] using

[a′]qj =
[∑

[a]qi · [bi]qj
]
qj
. (6.2)

Note that [bi]qj are 30-bit integers. Finally, we compute the residues [a]qj for
j ∈ [l, L− 1] using the following equation:

[a]qj =
[
[a′]qj − [basp/qc]qj · [q]qj − sign · [q]qj

]
qj
. (6.3)

This computation involves a division of asp by q. The sign takes a value 0 or 1
depending on asp − basp/qc · q is smaller than q/2 or not.

Computation steps for LiftQ→q

We compute the sum of products asp from the residue polynomials moduli qj
for j ∈ [0, L− 1].

asp =
∑

[a]qj · [(
Q

qj
)−1]qj · (

Q

qj
) =

∑
[a′]qj · bj . (6.4)

Here the values [(Qqj)−1]qj are 30-bit integers and hence the computation [a′]qj =
[a]qj · [(Qqj)−1]qj is a 30-bit modular multiplication. Next we reduce asp by Q and

100 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

get aQ in (−Q/2, Q/2). Then the division and rounding operation is performed
on aQ and the result is reduced modulo q to a value in (−q/2, q/2).

Unified architecture

Note that Liftq→Q and LiftQ→q operations involve similar computation steps
such as sum of products in Eq. 6.1, 6.2 and 6.4, and divisions by q. Hence
we design a unified architecture to compute both Liftq→Q and LiftQ→q. The
architecture is composed of four blocks: 1) sum of products, 2) reduction
modulo Q, 3) division-and-rounding, and 4) reduction modulo q. The blocks
are described as follows.

sum of products block. Fig. 6.6 shows a multiply-and-accumulate (MAC)
core to compute the sum of products in Eq. 6.1, 6.2 and 6.4. In the figure,
the ‘multiplier’ block is borrowed from the PAU (Fig. 6.1). Since there are 16
PAU cores in the HE-processor, we instantiate 16 MAC cores. These cores are
divided into two parallel MAC-groups: MAC-0 to MAC-7 form the first group,
and MAC-8 to MAC-15 form the second group. Each MAC-group is responsible
for computing one sum of products.

a[]

ROM

MAC

Multiplier

C
R

T
 C

o
n

st
an

ts

q

BRAM

re
si

d
u
e

co
ef

fi
ci

en
ts

 c

accc

partial sum from the previous MAC

partial sum from the next MAC

qa[]
j +1

j +2

Figure 6.2: Architecture for computing sum of products

The ROM block in the MAC core is a loadable memory and is used to store the
constants for Liftq→Q or LiftQ→q. We set the word size of the ROM to 59 bits.

ARCHITECTURE 101

Note that Eq. 6.1 and 6.4 require multiplications of 30-bit coefficients [a]qi by
long bi. The MAC cores compute these long multiplications word-serially using
the 31× 59-bit integer multipliers that are present inside the multiplier blocks.
Alg. 14 shows the word-serial computation of the sum of products by the c-th
MAC core. In the algorithm we assume that the MAC core is responsible for
the accumulation of m products and each bi has w 59-bit words in the ROM.
The k-loop computes the kth 59-bit word of the partial result in sumc. In this
way each MAC core computes a partial sum of products.

Now the partial results from the MAC cores are accumulated to get the kth
word of the final sum of products. The sequence of accumulation in the first
group happens as follows: sum0 from MAC-0 is forwarded to MAC-1. Now
MAC-1 computes Alg. 14 with the initialization of acc1 to sum0 and computes
sum1. Following the same sequence, MAC-3 computes sum3. In parallel to
this flow, MAC-7 downto MAC-4 computes sum4. Finally sum4 is added with
sum3 in MAC-3 to get the word of the final sum of products.

Algorithm 14: Calculation of partial sum in Eq. 6.1
Input: Residue coefficients [a]qj , constants bj , and MAC core index c
Output: Partially accumulated sum of products

1 begin
2 accc ← 0 ;
3 for k = 0 to w − 1 do
4 for j = 0 to m− 1 do
5 accc ← accc + [a]qj · bj [k] ;
6 end
7 sumc ← least59bits(accc) ;
8 accc ← accc � 59 ;
9 end

10 sumc ← least59bits(accc) ;
11 end

The computation of Eq. 6.2 requires sum of modular multiplication results.
30-bit coefficients [a]qi are fetched from the BRAM and then multiplied with the
30-bit constants [bi]qj using the modular multiplier. Each MAC core computes
a partial sum and then the partial sums are accumulated together. The final
result is larger than 30-bits and is reduced modulo qj during the computation
of Eq. 6.3. In Fig. 6.3 we show the timing diagram for the pipeline processing.

Reduction modulo Q block Let asp be the sum of the products in Eq. 6.4.
For the chosen parameter set, asp is 7 bits larger than Q. We first reduce asp
to a value in [0, Q− 1] and then central-lift the result to a value in the range

102 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

sp

sp
1

2

end of sp end of sp
1 2

MAC7

MAC3

MAC0

Time

Figure 6.3: Timing diagram for pipeline processing of two consecutive sum-of-
products (sp) by the first MAC-group.

(−Q/2, Q/2). To reduce asp in [0, Q− 1], we sequentially reduce the extra bits
of asp from the most significant side. The steps are shown in Alg. 15.

Algorithm 15: Reduction modulo Q
Input: An integer asp that is 7-bit larger than Q
Output: Integer asp in [0, Q− 1]

1 begin
2 Qn ← (Q� 7) ;
3 for i = 0 to 6 do
4 if msb(asp) > 0 then
5 temp← asp −Qn ;
6 if temp ≥ 0 then
7 asp ← temp ;
8 end
9 end

10 asp ← (asp � 1) ;
11 end
12 asp ← (asp � 7) ;
13 if asp ≥ Q then
14 asp ← asp −Q ;
15 end
16 end

A word-serial architecture for computing the reduction modulo Q is shown in
Fig. 6.4. The architecture has three addressable memory components: M and
Mt are used to store the computational data andMQ is used to keep the modulus
Q. These memory components are distributed RAMs of word size 59-bits and

ARCHITECTURE 103

depth 64. At the beginning of a computation, the input number asp is loaded
in M . Then within the for-loop of Alg. 15, the words of asp are left-shifted
by one position and then stored in Mt. Note that, line 5 has a conditional
subtraction operation. In our implementation, the subtraction is performed
word-serially using the subtraction circuit, and the result words are left-shifted
by one position and then stored in M . Based on the sign of the subtraction,
either M or Mt is used as the source of asp for the next computations.

reg

M

reg01

t

M

In
p
u
t

w
o
rd

s

O
u
tp

u
t

w
o
rd

s

MQ

Figure 6.4: Architecture for reduction modulo Q

Division and Rounding Unit (DRU)

The DRU computes btc/qe during LiftQ→q where t = 2, c is a coefficient
computed from the reduction modulo Q, and b·e denotes rounding towards the
nearest integer. The division is carried out by precomputing the reciprocal
r = 2/q and then computing r × c. The word size of the DRU was selected to
be 118 bits (2× 59) as a compromise between area and latency.

To round a division of two k-bit integers correctly to k-bits, the quotient must
be computed correctly to 2k + 1 bits [66, Theorem 5.2]. In our case, the
computation of btc/qe requires a division of a k1-bit dividend by a k2-bit divisor.
The precision that we will need in this case to guarantee correct rounding, based
on the above, is k1 + k2 + 1 bits. The divisor q is a 1228-bit constant integer
and the dividend c is an at most 2470-bit integer, which gives a bound of 3699
bits. Hence, the reciprocal r is computed up to a precision of 32 118-bit words,
of which 22 words are nonzero.

Fig. 6.5 shows the architecture of the DRU. The multiplication r × c is
computed by using a 118× 118-bit multiplier that computes 222 = 484 partial
multiplications. This multiplier performs a 118-bit Karatsuba multiplication by
using three 59×59-bit multipliers generated with the Xilinx IP Core tool (which

104 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

en

118 × 118-bit

236

multiplier

595959 59

5959

ROM
for r

118 118

control signals

din

doutb douta

for additions

5

59

1

0

59 59 59
64

controladdr
ready
busy

0

Figure 6.5: The Division and Rounding Unit (DRU)

supports only up to 64-bit multipliers). The 59-bit multipliers each require 16
DSP blocks giving the total number of 48 DSP blocks. In order to achieve a
high clock frequency, the 118-bit multiplier utilizes a 23-stage pipeline, of which
18 stages are in the 59-bit multipliers (the optimal number according to the
tool).

The partial products from the 118-bit multiplier are accumulated into a 241-bit
(2× 118 + 5) register using the Comba Alg [27]. These additions are computed
in a 4-stage pipeline with three 59-bit adders and one 64-bit adder, which are all
implemented with LUTs. Whenever all partial products of an output word have
been computed, the register is shifted to the right by 118 bits and the overflowing
bits are given at the output of the DRU. Once the computation proceeds to
the first word after the fractional point, then the msb of the fractional part
is added to the register in order to perform the rounding. The DRU has a
constant latency of 687 clock cycles per coefficient.

The DRU is reused for computing basp/qc during the Liftq→Q. The computation
proceeds analogously to the above. The differences are that the reciprocal is
now r = 1/q and it needs to be computed only to a precision of 2493 bits (12
nonzero words) because c can be only 36 bits longer than q. The computation
has a latency of 246 clock cycles per division.

ARCHITECTURE 105

Reduction modulo q block The architecture for this block is same as the
architecture for the reduction modulo Q block; only the operands are smaller.

Note that in the first MAC-group, MAC-3 computes the final sum of products.
So the reduction and division blocks are attached to the MAC-3 core. In
Fig. 6.6 we show the connection of MAC-3 core with the remaining three blocks.
Similarly in the second MAC-group, MAC-11 core is accompanied by the
reduction and division blocks. The four blocks are in a pipeline during LiftQ→q
to achieve optimum computation time. The division block takes the maximum
cycles and hence determines the throughput of the entire pipeline. Every block
contains additional memory elements to enable the pipeline processing: while
one memory element is read by the next block in the pipeline, the other memory
element is used to store the new results.

During Liftq→Q operation, the sum of products asp in Eq. 6.1 is computed by a
MAC-group, and then it is passed to the DRU for the computation of basp/qc.
In parallel to this division, the MAC-group computes [a′]qj in Eq. 6.2. For the
computation of Eq. 6.3, a small computation block (consisting of a multiplier,
subtracter and some small memory components) is used in the pipeline. The
sign is computed by performing arithmetic on the most significant words of
asp and q. This block is common to both the MAC-groups as the amount of
computation in Eq. 6.3 is small. The throughput of the pipeline during Liftq→Q
is determined by the ‘computation of asp followed by the division basp/qc’.

External memory access:

The DDR memory access during the Liftq→Q and LiftQ→q is more complicated
than the memory access during NTT. Here we need to fetch the residue
coefficients for different moduli, whereas during an NTT we fetch coefficients
from a single moduli. So we design a customized DDR memory access interface
for the lifting operations. Since the DDR-burst data length is 256 bits, at a
time we read eight coefficients for a single residue from the DDR memory and
copy them in the BRAM. Eight lifting operations are computed by the two
MAC-groups, i.e., four lifting operations per MAC-group, before writing back
the result in the DDR memory.

In the case of Liftq→Q, the result is a collection of 42 × 8 coefficients. This
is because there are additional 42 moduli in Q and for each moduli there are
eight coefficients. Hence 42 DDR-write operations are performed to copy the
result in the DDR memory. Similarly after a LiftQ→q operation, the result is
a collection of eight coefficients, each of size 1228 bits. Note that WordDecomp
follows LiftQ→q in YASHE.Mult. So we write back the coefficients in the DDR

106 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

t
M

M
Q

re
g

re
g

t
M

a[
]

j
+

1
q

a[
]

j
+

2

0
1

R
O

MCRT Constants

re
g

re
gM

q

p
a
rt

ia
l

su
m

 f
ro

m
 M

A
C

4

p
a
rt

ia
l

su
m

 f
ro

m
 M

A
C

3

M
A

C
3

M
o
d

u
lo

 Q

D
iv

is
io

n

R
o
u

n
d

in
g

M
o
d

u
lo

 q
c

M
u
lt

ip
li

er

a
cc

q

B
R

A
Mresidue coefficients

Figure 6.6: Unified architecture for Liftq→Q and LiftQ→q.

RESULTS 107

Table 6.1: Area results on Xilinx Virtex-6 XC6VLX240T-1FF1156 FPGA

Resource Used Avail. Percentage
Slice Registers 59,669 301,440 19.8%
Slice LUTs 67,861 150,720 45.0%
BlockRAM 80 BRAM36, 22 BRAM18 416 21.8%
DSP48 232 768 30.2%

Table 6.2: Latencies of the building blocks without DDR access overhead

Operation Cycles
N -point NTT 47,795
N -point INTT 51,909
N -point-wise add/sub/mult 4,096
LiftQ→q (per coeff)† 687
Liftq→Q (per coeff)† 401
Poly mult in Rqj 361,376
† Assuming pipeline processing of many coefficients

memory as words of length 60 bits. A total of 44 DDR-write operations are
performed.

6.5 Results

We compiled the processor for the ML605 board which has a Virtex-6 FPGA
XC6VLX240T-1FF1156. Different clock domains are used in the design:
communication with the DDR memory is performed at 200 MHz, whereas
computations are performed using a 100 MHz clock. The HE-coprocessor has
v = 16 parallel cores for performing polynomial arithmetic, and two cores
for computing the lifting operations. The area counts of our HE-coprocessor,
including the DDR interface, are shown in Table 6.1.

Table 6.2 gives the latencies of the building blocks excluding the cost of DDR
memory access. NTT and INTT computations are performed on polynomials
of N = 216 coefficients. To save memory requirement, we compute the twiddle
factors on the fly at the cost of N integer multiplications. One NTT computation
using v = 16 cores requires (N + N

2 log2(N))/16 = 36, 864 multiplications.

108 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

However the computation of the twiddle factors in the pipelined data path of
the PAU (Fig. 6.1) has data dependencies and thus causes bubbles in the pipeline.
Following the design methodology of the public key encryption processor of
Chap. 5, we use a small register-file that stores four consecutive twiddle factors,
and reduce the cycles spent in the pipeline bubbles to around 10,000. In the
case of an INTT, the additional cycles are spent during scaling operation by
N−1. To compute N -point-wise addition/subtraction/multiplication we need
slightly more than 4,096 cycles.

Computation cost of the lifting operations: The cycle requirement for
LiftQ→q is determined by the division-and-rounding operation, since it is the
costliest computation in the pipeline of Fig. 6.6. If we assume that many
LiftQ→q operations are performed in pipeline, then the cycle requirement per
coefficient will be 687. However, due to the restrictions put by the DDR interface,
we process only four LiftQ→q in pipeline (see Sect. 6.4.2). As a consequence
4,744 cycles are needed to process four coefficients. Similarly, when we assume
that many Liftq→Q operations are performed in pipeline, cycle requirement per
coefficient is 401. In practice, we can compute only four Liftq→Q in pipeline,
and thus it takes total 2,016 cycles for computing four Liftq→Q operations.

Computation cost of polynomial multiplication modulo qj: To multiply
two residue polynomials modulo qj , we compute two NTTs, then N -point-wise
multiplications, and one INTT. The reduction of the result modulo f(x) follows
the Newton iteration method of Sect. 2.5.2. In this step, two NTTs, two
N -point-wise multiplications, one N/2-point-wise subtraction and two INTTs
are computed. Hence the computation of a polynomial multiplication in Rqj
requires four NTTs, three N -point-wise multiplications, one N/2-point-wise
subtraction and three INTTs. This translates into 361,376 cycles.

Computation cost of YASHE.Mult: The cycle counts for the steps (see
Sect. 6.3) are enumerated below.

1. To lift c1 and c2 (each having N/2 coefficients) from Rq to RQ, we compute
N Liftq→Q operations. This takes total 16,515,072 cycles using the two
lifting cores, as each taking 2016 cycles to process four coefficients.

2. PolyMultiplyQ performs 83 polynomial multiplications in Rqj . This
translates into 29,994,208 cycles.

3. To bring the result back toRq, LiftQ→q is performed on theN/2 coefficients.
Since each lifting core takes 4,744 cycles to process four coefficients, it
takes 19,431,424 cycles to lift the result back to Rq.

4. WordDecomp does not have computation cost since it only splits the
large coefficients into words. In our architecture, this splitting is done

RESULTS 109

Table 6.3: Latencies and timings at 100/200 MHz computation/DDR clock

Operation Computation cycles DDR cycles Total time
YASHE.Add 83,968 9,740,288 0.050s
YASHE.Mult 127,050,548 1,353,555,968 8.038s

automatically when we copy the data in the DDR memory from the
FPGA.

5. In YASHE.KeySwitch summation of 22 polynomial multiplications is
computed in Rq. Note that evk is constant, and hence can be kept
in the NTT domain. For a single moduli, it requires 22 NTTs, 22 N -point-
wise multiplications, 21 N -point-wise additions to get the summation of
unreduced polynomial multiplications in the NTT domain. Now only
one INTT is needed to get the unreduced result. For the reduction, two
NTTs, two N -point-wise multiplications, one N/2-point-wise subtraction
and two INTTs are computed. Hence, in total 24 NTTs, 24 N -point-
wise multiplications, 21 N -point-wise additions, one N/2-point-wise
subtraction, and 3 INTTs are performed for a single moduli. This
translates into 61,109,844 cycles for all the 41 moduli.

Overall 127,050,548 cycles are spent in YASHE.Mult. At 100 MHz clock
frequency, this corresponds to 1.27 seconds.

Overhead of the DDR memory access: The DDR interface reads or writes
256 bits in a single burst. For YASHE.Mult, the communication with the DDR
memory takes around 1,353,555,968 cycles at 200 MHz. For YASHE.Add, the
number of cycles spent in the DDR access is around 9,740,288.

Table 6.3 shows the timing requirement for computing YASHE.Add and
YASHE.Mult operations including the overhead of DDR memory access. Based
on the timing of YASHE.Mult we see that the designed architecture would take
roughly 11316s, which is about 3h and 9m to evaluate SIMON-64/128 (44
rounds with 32 ANDs). Since the chosen parameter set processes 2048 slots in
SIMD, the per-block timing will be roughly 5.5s.

Discussions: Lepoint and Naehrig [77] presented C++ implementations for
homomorphic evaluations of SIMON 64/128 with YASHE running on a 4-core
Intel Core i7-2600 at 3.4 GHz. They reported computation times of 4193s for
SIMON-64/128 using all 4 cores. With respect to their software implementation,
our hardware implementation is 2.7 times slower. In this work our focus was
on designing the computation core of the YASHE; the DDR memory interface

110 MODULAR ARCHITECTURE FOR SOMEWHAT HOMOMORPHIC FUNCTION EVALUATION

is a proof of concept implementation. With 256-bit burst data width, the
DDR interface offers a only 1.97Gb/s read speed and hence becomes the main
bottleneck in our implementation. Desktop computers have industry-optimized
DDR interface, and the Intel Core i7-2600 processor has 8MB cache memory
[60]. Since a ciphertext is of size 4.8MB, that the overhead of memory access in
[77] would be much lower than ours.

We have implemented a new DDR memory interface with 2048-bit burst data
length. The interface provides 10Gb/s read and 27Gb/s write speed, and hence
with this interface, the memory access overhead would become almost equal
to the computation cost. This would allow us to reduce the overall time by
performing the memory access in parallel with computation using two sets of
BRAMs in the FPGA: when one set is used for the computation, the other set
is used for the memory access. We consider the integration of the new memory
interface in the HE-coprocessor as a future work.

The ML605 board has a medium size FPGA. To know the amount of speedup
that we can achieve using large FPGAs, we have designed a new architecture
that keeps eight instantiates of the computation core of the present architecture.
The new architecture brings down the computation cost roughly by a factor of
eight. On a Xilinx Virtex-7 FPGA XC7V1140T, which is the largest device of
the Virtex-7 FPGA family, the parallel architecture consumes 23 % of registers,
53 % of LUTs, 53 % of DSP slices, and 38 % of BlockRAM memory. It will be
interesting to know the effect of DDR memory access in the overall computation
time.

6.6 Summary

In this work we designed the hardware building blocks for homomorphic
evaluation of small-complexity algorithms using the YASHE scheme. We
showed that FPGAs can accelerate the computation intensive operations during
a homomorphic function evaluation. Despite this, we found that a massive
amount of data exchange takes place between the FPGA and the external DDR
memory during a homomorphic function evaluation. This is because only a part
of the ciphertext can be fit in the internal memory of the FPGA. The interface
with the DDR memory plays a very important role in the performance and may
even become a bottleneck unless it is implemented with special care.

We presented a single-FPGA design of homomorphic evaluation with YASHE.
An obvious way to improve the performance would be to use a multi-FPGA
design (a cluster). We see several parallelization approaches. The first and
simplest option is to instantiate parallel FPGAs so that each of them computes

SUMMARY 111

different homomorphic evaluations independently of each other. This approach
improves throughput, but the latency of an individual evaluation remains the
same. The second option is to distribute the residue polynomial arithmetic into
several FPGAs since they can be computed independently. This approach will
reduce the latency. However, the lifting operations require the coefficients from
different residue polynomials during the computation of the sum of products.
To do this, inter-FPGA communication will be needed. The third option is to
divide different parts of a homomorphic multiplication to different FPGAs and
perform them in a pipelined fashion in order to increase throughput. The fourth
option is to mix the other three options and it may lead to good tradeoffs that
avoid the disadvantages of the other options. The techniques represented in
this research can be extrapolated to support these options.

Other relevant works.

Concurrent to our initial version of the work, Pöppelmann et al. [107] and Doröz
et al. [36] designed hardware accelerators for SHE. For a parameter set with
n = 16384 and a 512-bit prime q, capable of evaluating 9 levels of YASHE.Mult,
the hardware accelerator by Pöppelmann et al. [107] takes 48.67ms to compute
a homomorphic multiplication on a data-center accelerator infrastructure called
Catapult [108], which has a medium size Stratix V GS D5 (5GSMD5) FPGA.
Their parameter set is smaller in size than ours and allows the negative-wrapped
convolution for polynomial multiplication, but lacks the SIMD feature. Doröz et
al. [36] applies CRT similar to us and uses a large Virtex-7 FPGA to compute
the polynomial multiplications only. They use a high-speed PCIe interface to
compute the other operations on a desktop computer. They evaluate the AES
block cipher and estimate a per block of 442 msec using the LTV [83] scheme.

Recently in 2016, Albrecht et al. [6] published a subfield lattice attack that
runs in sub-exponential time on overstretched NTRU assumptions. Since the
key generation part of the YASHE scheme relies on a mildly overstretched
NTRU assumption, the subfield attack makes YASHE insecure. We would
like to remark that this attack does not make our entire work invalid since
the hardware architecture can reused to evaluate other ring-LWE based
homomorphic encryption schemes. For example, the FV scheme (see Sect. 2.4.2),
which is secure against known cryptanalysis methods, can be evaluated using
our architecture after a small modification. The modification is required to
support the FV.Relin operation, as c0 and c1 require computation of reqidues
modulo qi from coefficients modulo q. At the moment our HE-coprocessor does
not support this operation.

Chapter 7

Recryption-box assisted
homomorphic function
evaluation

CONTENT SOURCES:

Sujoy Sinha Roy, Frederik Vercauteren, Jo Vliegen, and Ingrid Verbauwhede
Hardware Assisted Fully Homomorphic Function Evaluation and Encrypted
Search Accepted in IEEE Transactions on Computers. Preprint available
on IEEE Xplore, DOI: 10.1109/TC.2017.2686385.

Contribution: Main author.

7.1 Introduction

A somewhat homomorphic encryption (SHE) scheme can be used to compute
on the encrypted data, but each operation increases the noise inherent in the
ciphertexts. Once the noise reaches a certain threshold that depends on the
parameters of the scheme, decryption will fail. Gentry’s FHE scheme uses
an SHE scheme combined with a mechanism known as bootstrapping. The
bootstrapping operation is used to publicly "refresh" a noisy ciphertext and
repeated application enables evaluations of arbitrary depth. However FHE is
very slow even after orders of magnitude improvement in [21, 22, 30, 137, 43, 47,

113

114 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

49, 91]. The main problem is that the bootstrapping operation is only possible
if the parameters of the SHE scheme are chosen large enough to accommodate
for the bootstrapping operation. This requirement makes the bootstrapping
operation tremendously slow, e.g. for [25] it takes 172 seconds on an Intel Core-i7
processor. Hence it is not yet possible to deploy FHE in cloud computations.
Even SHE schemes that can evaluate functions of small complexity take a
large amount time. For e.g., evaluation of one SIMON-64/128 decryption on
encrypted data takes more than an hour on a 4-core Intel Core-i7 processor [76].
Moreover from the performance results presented in the last chapter we find
that even with a powerful hardware accelerator, evaluation remains too slow to
use in practical applications.

In this chapter we propose a scheme to perform homomorphic evaluations
of arbitrary depth in much less time with the assistance of a special module
recryption-box. Our solution is to bypass the costly bootstrapping operation
using a third party recryption-box that is instantiated in two different setups.
In the first setup the recryption-box uses a key switching technique that allows
the cloud server to convert a ciphertext encrypted under user’s public key into
a ciphertext encrypted under box’s public key. With this, the box performs
a decryption using its own private key and then a re-encryption using user’s
public key. Naturally the large noise in the encrypted data is eliminated. In
the second setup a multiparty computation scheme is used: noisy ciphertexts
are decrypted among multiple parties, and then reencrypted again. This re-
encryption operation gives a freshly encrypted data with limited noise as the
shared multiparty decryption operation removes the large noise inherent in the
ciphertexts. During the execution of an application on encrypted data, the cloud
performs the homomorphic operations, and then sends the dirty ciphertexts to
the third party recryption-box (or boxes).

We implement the recryption-box on a Xilinx Virtex 6 FPGA board ML605.
The recryption-box is connected to the cloud computer over the internet using
the Ethernet interface. During a recryption operation, the cloud computer
sends noisy (masked) encrypted data to the recryption-box, which then returns
refreshed encrypted data. To know the effect of the recryption-box model on
the run time, we have implemented encrypted search as the target application.
In an encrypted search, clients send encrypted queries to the search engine, and
the search engine returns encrypted results. Neither the search engine, nor the
other parties come to know about the client’s search queries. We show that
with the usage of the recryption-boxes we could reduce the encrypted search
time by an order of magnitude. Although we instantiate the recryption-box
on an FPGA, we note it is possible to implement it in a trusted execution
environment or using specialized instructions such as SGX, assuming sufficient
countermeasures are taken against physical attacks.

INSTANTIATIONS OF THE RECRYPTION-BOX 115

The chapter is organized as follows. Sect. 7.2 describes the recryption-box and
its instantiations. The recryption-box is used in Sect. 7.3 to assist an encrypted
search algorithm. Sect. 7.4 gives implementation details of the recryption-box
and describes the optimization techniques. Experimental results are provided
in Sect. 7.5. The final section draws conclusions.

7.2 Instantiations of the recryption-box

In this section, we describe two possible instantiations of the recryption-box
and analyze their security and ease of use. In all cases, the parameters of the
scheme become independent of the minimum size required for bootstrapping,
resulting in faster homomorphic evaluations overall. We also consider possible
applications of the setup described in this chapter.

Most homomorphic encryption schemes (including FV) admit an operation called
key switching. Key switching allows to transform a ciphertext encrypted under
one public key, into a valid ciphertext encrypted under a different public key.
More in detail: assume the recryption-box has its own private/public key pair
(sr, br, ar) and the i-th user’s keypair is (si, bi, ai). The user can then compute
the key switching key as follows: he samples a vector u of l elements uniformly
from χkey (in our case a signed binary distribution), and two vectors e1 and e2 of
l elements from χerr. Next he computes the key switching key {ksk0i ,ksk1i} =
{PowersOfw,q(si) + u · br + e1 ∈ Rlq,u · ar + e2 ∈ Rlq}. The {ksk0i ,ksk1i}
together with {bi, ai} is sent to the cloud. The cloud uses the key switching
key to switch a ciphertext {c0i , c1i} encrypted under the user’s public key to
a valid ciphertext {c0r , c1r} encrypted under the box’s public key as follows:
{c0r , c1r} = {〈WordDecompw,q(c1i),ksk0i〉 + c0, 〈WordDecompw,q(c1i),ksk1i〉}.
Before sending the ciphertext {c0r , c1r} to the box, the cloud additively masks
it (using the fact that the scheme is additively homomorphic) to obtain {c′0r , c

′
1r}.

The ciphertext {c′0r , c
′
1r} together with user’s public key {bi, ai} is sent to the

box, who decrypts it using its own private key and freshly encrypts it using the
user’s public key. The resulting ciphertext c̃i is then sent back to the cloud,
who removes the additive mask it added before.

For the above setup to offer any security at all, the following assumptions have
to be made: firstly, we assume that both the box and cloud are honest but
curious. In particular, the cloud has to apply a random mask before sending the
ciphertext to the box such that it cannot recover the underlying plaintext. And
in turn, the box has to execute the encryption correctly by choosing random
error polynomials. Secondly, we assume that the cloud and box do not collude,
e.g. the key switching key {ksk0i ,ksk1i} should not be given to the box since

116 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

it would allow the box to derive the private key of the user. The advantage
of this setup clearly is that a single recryption-box can deal with many users.
The downsides are the slightly stronger security assumptions and the extra
operations involved such as key switching and additive masking by the cloud.

The second instantiation does not rely on a key switching key and makes it
much more difficult for the cloud and the recryption-box to collude by using
a threshold scheme to split the secret key over several parties and using a
distributed decryption protocol. The idea has similarity with the work in
[26] where the authors interpolate between multiparty computation and fully
homomorphic encryption. The secret key can be split using a th out of n
Shamir threshold sharing over the ring Rq. The i-th party receives a share
sri ∈ Rq that equals the evaluation of a random polynomial p(x) of degree
th− 1 in a public value ai ∈ Rq assigned to each party (one could sometimes
even take ai = i), i.e. sri = p(ai). The secret key s of the user can then be
obtained as s = p(0), and it is clear that any set of th valid shares allows to
recover s using for instance Lagrange interpolation. Denote the i-th Lagrange
multiplier (for the set of th contributors) by λi =

∏
j 6=i aj/(aj − ai), then s can

be recovered as s =
∑
i λisri . Denote by s̃ri the scaled share λisri , then s can

be simply recovered as s =
∑
i s̃ri . The main advantage of using Shamir secret

sharing is that it defines a ring homorphism between Rq,+, · and Rthq ,+, ·. In
particular, any algebraic expression in Rq can be recovered from executing the
same expression on each of the th shares and reconstructing the result using
interpolation.

The distributed decryption protocol will work in two steps. In the first step,
for a given ciphertext (c0, c1) each party computes di = s̃ri · c1 + ei where ei is
a Gaussian distributed error polynomial. Note that recovering s̃ri from di is
hard since this corresponds precisely to the ring-LWE problem, so one party
cannot recover another party’s share. The shares di are then distributed over
an encrypted channel to the other parties. In the second step, each party adds
the shares to recover c1 · s+ e. Now the end-party (or any party) then recovers
the message m as m = b tq · [c0 + s · c1 + e]qe ∈ Rt and returns a fresh encryption
of m as the final result. Since the end-party recovers the message m, it is
required that the server additively masks the message before sending it to the
recryption-boxes. The security of the system now relies on the fact that not
more than th− 1 parties collude with the cloud server and that the cloud server
uses additive masking.

ENCRYPTED SEARCH 117

7.3 Encrypted search

To know the effect of the proposed recryption-box in real life, we have
implemented encrypted search as the target application. The reason behind
this particular choice is mainly because of its future prospects. In an encrypted
search, a client sends an encrypted keyword to the search engine and then the
search engine returns the search-response in an encrypted format to the client.
Due to its encrypted nature, the search engine remains oblivious of the search
keyword. Such an encrypted search application is possible when the encryption
scheme is homomorphic.

In the search engine, the search results are stored in unencrypted format in a
table (as table entries) indexed by the numeric representations of the search
keywords. During an encrypted search, a client’s encrypted keyword is compared
with the encryptions of the table indexes, and then the comparison results are
used to perform arithmetic on the encryptions of the table entries. Since the
search table is in unencrypted format, the search engine needs to encrypt the
entire table under the public key of the client in order to perform homomorphic
operations. However in reality the search engine needs to encrypt only two
bits instead of the entire table. The client sends her public key along with the
encrypted keyword to the search engine. Next, the search engine encrypts bit-0
and bit-1 using the public key of the client and constructs encryptions of the
search table indexes and the entries by simply replacing the plaintext bits with
the encryptions of bit-0 and bit-1. After the completion of the search operation,
the result is an encryption of the search result that is associated with the search
keyword. The total amount of data exchange between the client and the search
engine is: the public key of the user, the homomorphic encryption of the search
keyword, and the homomorphic encryption of the search result.

There are several algorithms to search in a plaintext database. The most
efficient ones such as binary search or half-interval search [146] have logarithmic
complexity. But in the case of an encrypted search, the search algorithm has
linear complexity as it does not see the search term in plaintext and thus has
to go through all of the database entries. A linear encrypted search operation
is shown in Algorithm 16. The table to be searched is represented as an array
of 2l elements and the elements are accessed using the l-bit index variable. We
assume that the table entries (i.e. the search data in any location) are of p
bit. The encrypted search keyword K is a string of l ciphertexts ki. In the
start phase, the algorithm computes the encryptions e0 and e1 of bit-0 and
bit-1 respectively (line 2 and 3), and then initializes the accumulator R to a
string of p encryptions of bit-0 (line 4). Next, in the search phase the for-loop
goes through all the indexes of the table. In line 6 the algorithm constructs an
encryption of the one’s complement of index (i.e. index) in the variable C by

118 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

Algorithm 16: Linear encrypted search
Input: Encrypted search keyword K = {kl−1 . . . k0} and the client’s public key pk
Output: Encrypted search result R = {rp−1 . . . r0}

1 begin
2 e0 ← enc(0, pk);
3 e1 ← enc(1, pk);
4 R← {e0, . . . , e0};
5 for index = 0 to 2l − 1 do
6 C ← {e

indexl−1
, . . . , e

index0
} ; /* enc. of index */

7 T ← {add(kl−1, cl−1), . . . , add(k0, c0)};
8 b← t0;
9 for i = 1 to l− 1 do

10 b← mul(b, ti);
11 end
12 D ← table[index];
13 for i = 0 to p− 1 do
14 if di = 1 then
15 ri ← add(ri, b) ; /* i-th bit of R */
16 end
17 end
18 end
19 end

concatenating the encryptions of the bits of index. Next the algorithm adds
the encrypted one’s complement of the index with the encrypted keyword and
obtains T , and then cumulatively multiplies the l encrypted bits of T to get a
single encrypted bit b (lines 8-10). Note that b will be an encryption of bit-1 only
for the loop index that is equal to the unencrypted search keyword; otherwise b
will be an encryption of bit-0. Now the algorithm fetches the table entry and
stores it in the variable D. In the next part of the loop, the algorithm adds b
for each nonzero bits di of D with the encrypted bits ri of the accumulator R.
Note that only when the unencrypted search keyword matches with the index of
the search table, this b is an encryption of bit-1, and hence an encryption of the
associated search result is added with the R; for all other indexes, encryptions
of zeros are added with the accumulator. In this way when the for-loop covers
all the indexes of the search table, we get an encryption of the search result in
R.

Faster linear search on encrypted data

The most costly part in Algorithm 16 is the homomorphic multiplication of the
l encrypted bits of T in lines 8 to 10. We reduce the number of homomorphic
multiplications with the help of a window based pre-computation technique
shown in Algorithm 17. With a window size w, the given encrypted keyword
is split into l/w chunks. For simplicity let us assume that l is a multiple of
w. Then for each chunk of the encrypted keyword, a pre-computation table is

ENCRYPTED SEARCH 119

Algorithm 17: Precomputation in linear search
Input: w-bit chunk of encrypted keyword K = {kw−1 . . . k0} and client’s public key pk
Output: Precomputation table precomp[] with 2w entries

1 begin
2 e0 ← enc(0, pk);
3 e1 ← enc(1, pk);
4 for index = 0 to 2w − 1 do
5 C ← {e

indexw−1
, . . . , e

index0
};

6 T ← {add(kw−1, cw−1), . . . , add(k0, c0)};
7 b← t0;
8 for i = 1 to w − 1 do
9 b← mul(b, ti);

10 end
11 precomp[index]← b;
12 end
13 end

constructed. The algorithm considers all 2w w-bit indexes: first an encryption
of the one’s complement of the index is added to the keyword-chunk to obtain
T , and then the w encrypted bits in T are multiplied together to obtain the
ciphertext b. Next b is stored in the precomputation table.

The search algorithm 18 uses the pre-computation tables to speedup
computation. The loop index is split into l/w chunks in lines 4-5, and then the
pre-computation tables corresponding to the chunks are accessed in line 6 to
perform the cumulative multiplications in line 9. In comparison to Algorithm
16 this algorithm reduces the number of homomorphic multiplications within
the search loop by a factor w. The new algorithm requires additional memory
to store the 2w l

w precomputed table entries.

Comparison with private information retrieval (PIR)

A PIR protocol allows a user to retrieve an item from a server without revealing
any information about the item. An l-server PIR protocol, such as the protocol
by Goldberg et al. [50], will be faster than our encrypted search algorithm. But
our encrypted search has several advantages as follows. Our protocol is less
interactive: the user sends an encrypted query to the search engine and then
waits for the encrypted search result. In the l-server PIR protocol the user
sends queries to all the servers. The amount of data exchange increases with the
number of servers. Whereas in the encrypted search this is determined by the
ciphertext expansion ratio of the homomorphic encryption scheme. Thus our
encrypted search has an asymptotically lower communication cost. Note that a
lot of communication happens between the search engine and the recryption-
boxes during the pre-computation phase of an encrypted search operation. It

120 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

Algorithm 18: Precomputation assisted linear encrypted search
Input: Encrypted search keyword K = {kl−1 . . . k0} and the client’s public key pk
Output: Encrypted search result R = {rp−1 . . . r0}

1 begin
2 R← {e0, . . . , e0};
3 for index = 0 to 2l − 1 do
4 for i = 0 to l/w − 1 do
5 chunki ← {indexiw+w−1 . . . indexiw} ;
6 end
7 b← precomp0[chunk0];
8 for i = 1 to l/w − 1 do
9 temp← precompi[chunki];

10 b← mul(b, temp);
11 end
12 D ← table[index];
13 for i = 0 to p− 1 do
14 if di = 1 then
15 ri ← add(ri, b);
16 end
17 end
18 end
19 end

is quite feasible to bring this cost down by keeping the recryption-boxes in a
dedicated very high-speed network (e.g. Terabit Ethernet). In the l-server PIR
protocol we cannot assume that all the users are connected to the servers by a
dedicated high-speed network. One problem with the l-server PIR protocol is
that the protocol assumes that the servers possess copies of the database. In
practice due to several business-related issues the internet search companies
cannot share their databases with the server parties. In our approach this is
not a problem as the recryption-boxes are used only to perform computation
on masked encrypted data. The other advantage is that with a little effort we
can turn our encrypted search algorithm into an encrypted database update
algorithm. With PIR this is not possible.

There are many single database PIR protocols in the literature. But their
implementations are slow. In [87] Melchor et al. presents performance results
of three PIR protocols for a database of 1000 elements, each of size 2MB. On a
Core 2 Duo processor their implementations of the PIR protocols from [79] and
[48] take around 33 hours and 17 hours respectively. Their own lattice-based
PIR protocol takes 10 minutes. In [150] Yi et al. proposes a practical PIR based
on a variant of the DGHV somewhat homomorphic encryption scheme [138].
Their implementation of the PIR for a 60-bit security parameter set reduces the
computation cost by an order of magnitude and takes only one minute for the
1000 element database. Our encrypted search is faster than the PIR protocol of
Yi et al.

IMPLEMENTATION 121

7.4 Implementation

In this chapter we implement a fast architecture for the proposed recryption-box
and then use this box to assist an encrypted search engine running on a server
machine. The search algorithm is written in high level C and the recryption-box
is implemented as a hardware module running on Xilinx ML605 board. The
search engine performs homomorphic evaluations on the encrypted data. When
the number of homomorphic evaluations reaches the maximum depth supported
by the parameter set of the homomorphic encryption scheme, the search engine
blinds the encrypted data and then sends it to the recryption-box over a Gigabit
Ethernet channel. After a recryption, fresh encrypted data is sent back to the
search engine.

7.4.1 Parameter set used in the implementation

We use the FV scheme [43] that we described in Sect. 2.4.2 as the homomorphic
encryption scheme. We target fastest computation time and at least 90-bit
security. Since the computation time of the FV homomorphic encryption scheme
has almost a quadratic-complexity with respect to the multiplicative depth,
we chose a parameter set that supports the minimum multiplicative depth, i.e.
the depth one. Following [76] we set the dimension of the polynomial ring Rq
to n = 1024, the modulus q to a 40-bit integer, and the parameter s of the
discrete Gaussian distribution to 11.32. This parameter set has 96-bit security
[7]. Similar to the last chapter we work in the polynomial ring R = Z[x]/(f(x)),
but with the irreducible polynomial f(x) = xn + 1. The irreducible polynomial
does not allow SIMD, and hence only one bit is encrypted in a ciphertext.

7.4.2 Algorithmic optimizations for efficient architecture

The basic computations in the FV encryption and decryption (Sect. 2.4.2)
are discrete Gaussian sampling, polynomial addition and multiplication, and
decoding-encoding. Among the arithmetic operations, polynomial multiplication
is the costliest one. We use the memory efficient NTT Alg. 11 from Sect. 5.3.3
to perform polynomial multiplication in the most efficient way. For the chosen
parameter set, integer arithmetic operations are performed with respect to a
40-bit modulus q. To achieve faster processing through parallelization, we use
the Chinese Remainder Theorem (CRT) to split 40-bit arithmetic into two
parallel 20-bit arithmetic operations. We take the modulus q as a product of
two 20-bit primes q0 = 878593 and q1 = 890881. Since both q0 and q1 are
congruent to 1 modulo 2n, we use the negative-wrapped convolution for faster

122 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

NTT computation. With the application of CRT each operation modulo q
during a polynomial arithmetic turns into two parallel 20-bit operations modulo
q0 and q1. Note that the security of the encryption scheme does not get affected
by this choice for q.

This parallel nature of the algorithm is very useful since the underlying hardware
platform is also parallel. Hence two computation threads modulo q0 and q1 run
in parallel. Beside this parallel processing, there is an another advantage of
splitting the computation into two half-sized integers. Xilinx Virtex 6 FPGAs
have fast but small 25×18 DSP multipliers. Hence a 20-bit coefficient can
be easily processed by the small DSP multipliers (with some additional logic
elements). Moreover smaller integer size is also very helpful to keep a pair
of coefficients of a residue polynomial in one BRAM address and reduce the
memory access overhead by using Alg. 11. We need only one 36K BRAM slice
to store a residue polynomial with two coefficients in one address.

Though CRT allows parallel processing, it has the overhead of inverse-CRT
computation whenever the computation demands arithmetic in modulo q. For
the proposed recryption-box, inverse-CRT is required only during the decoding
phase of the FV decryption operation. This is because the decoding operation
needs to compare the coefficients with q/4 and 3q/4. However, for our application
this inverse-CRT computation is actually not a major overhead since we only
need to decode the least significant coefficient of the ciphertext polynomial, and
it is known that the remaining coefficients decode to zeros. This is because of
the fact that we encrypt only one bit in a ciphertext using the FV homomorphic
scheme, and the encrypted bit remains in the least significant coefficient of the
ciphertext. Hence we compute the inverse CRT only once. Note that all of the
remaining arithmetic operations in the FV encryption and decryption can be
performed on the CRT-represented shares.

7.4.3 Architecture

The internal architecture of the processor part of the recryption-box is shown
in Fig. 7.1. The processor has two symmetric polynomial arithmetic and logic
units (PALUs) for performing residue arithmetic modulo q0 and q1 in parallel.
The PALUs are designed following the footprint of the compact ring-LWE
encryption architecture in Sect. 5. Each PALU is connected to a memory file
that keeps the residue polynomials.

IMPLEMENTATION 123

H
2

L
1

. . .

ω
ω

l−
1

m
ω

m

ω
2

n

n
−

1

. . .

M
0

M
5

M
4

M
3

M
2

M
1

M
0

M
5

M
4

M
3

M
2

M
1

ω
ω

l−
1

m
ω

m

ω
2

n

n
−

1
L

1

H
2

Lm1 d +

R
3

R
4

R
5

C
o

u
n

te
r

C
o

u
n

te
r

C
o

u
n

te
r

Scanreg

R
O

M
P

ro
b

ab
il

it
y

L
U

T
1

L
U

T
2

RAND

H
1

L
1

H
1

L
1

M
u

lt
ip

li
er

M
o

d
u

la
r

M
u

lt
ip

li
er

M
o

d
u

la
r

H

H

H1

2

3

m1 d +

.

L1

L2

L

..

m
d

+

 1
L

 2
H

L

m
d

+

 1
L

m
d

+

 1
L

m
d

+

 1
L

 2
H

L
m

d

+
 1

L

m
d

+

 1
L

L H

2 3

L H

2 3
1H

1

1H
1

R R R

R R

4 5

M
U

L
d

a
ta

H
L

1

2

. . .
ω

1 2 3

R
O

M
R

O
M

d
a

ta

R R

M
U

L
d

a
ta

D
O

U
T

D
IN

H
L

. . .

..

.

ω

R
O

M

D
O

U
T

_
h

ig
h

D
O

U
T

_
lo

w

M
em

o
ry

M
em

o
ry

C
o
n

tr
o
l−

A
d

d
re

ss
 U

n
it

w
r
it

e
 a

d
d

r
e
s
s

r
e
a

d
 a

d
d

r
e
s
s

w
r
it

e
 e

n
a

b
le

w
r
it

e
 e

n
a

b
le

R
eg

is
te

r
1

IC
R

T
 R

eg

D
ec

o
d

e
E

n
co

d
e

1 1

1

1 2

G
a

u
ss

ia
n

 S
a

m
p

le
r Inverse CRT

P
A

L
U

 m
o
d

 q
0

P
A

L
U

 m
o
d

 q

 D
IN

 D
O

U
T

D
IN

_
lo

w

D
IN

_
h

ig
h

D
IN

_
lo

w

D
IN

_
h

ig
h

R
O

M
d

a
ta

S
am

p
le

 m
o

d
 q

0 0
S

am
p

le
 m

o
d

 q

S
am

p
le

 m
o

d
 q

S
am

p
le

 m
o

d
 q

w
r
it

e
 a

d
d

r
e
s
s

r
e
a

d
 a

d
d

r
e
s
s

P
ip

el
in

e

D
O

U
T

_
h

ig
h

D
O

U
T

_
lo

w

L

L2

H

H

3

H1

2

1

0
H

L
1

0
H

L
1

H
L

2
H

L

S
m

al
l

S
m

al
l

Figure 7.1: Architecture of The Recryption-box

124 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

PALUs

Each PALU has modular multiplier, modular addition and subtraction
circuits to perform arithmetic operations on the input coefficients during a
polynomial operation. The integer multipliers inside the modular multipliers are
implemented using DSP multipliers. For the modular reduction of the integer
multiplication result, we have used window based modular reduction technique.
This modular reduction technique does not depend on the choice of the 20-bit
prime modulus and is thus generic. The critical path of the PALU is through
the modular multiplier and then through the addition (or subtraction) circuit.
We split the critical path in almost equal delay sections using pipelines and
achieve high operating frequency.

During an NTT computation on a residue polynomial, the control logic follows
the memory efficient NTT Alg. 11 and processes two coefficient-pairs (A[k +
j+m/2], A[k+ j]) and (A[k+m+ j+m/2], A[k+m+ j]) (i.e. four coefficients)
simultaneously excluding the last loop. In this architecture we do not store
the fixed twiddle factors, and instead compute them on the fly during an NTT
operation. The small ω-ROM stores the log(n) twiddle factors ωm to generate
the new twiddle factors. The modular multiplier circuit is reused for computing
coefficient wise multiplications, and the modular addition/subtraction circuit is
reused for coefficient wise addition/subtraction operations during polynomial
arithmetic.

7.4.4 Inverse CRT

The inverse CRT combines two residues and computes the coefficient modulo
q. Let a0 and a1 be the two residues. Then the equation for the inverse CRT
computation is shown below.

a = [a0 · q−1
1]q0 · q1 + [a1 · q−1

0]q1 · q0 mod q . (7.1)

In the above computation [q−1
1]q0 , q1, [q−1

0]q1 , and q0 are constants. Hence we
store these constants in the PALUs. The PALU for the residue q0 computes
[a0 · q−1

1]q0 · q1 part of Eq. 7.1 and the other PALU computes the remaining
part. The first PALU computes in two steps: first it computes [a0 · q−1

1]q0 using
the modular multiplier, then it multiplies this 20-bit result with q1 to get the
40-bit integer multiplication result [a0 · q−1

1]q0 · q1. The other PALU associated
with the modulus q1 computes [a1 · q−1

0]q1 · q0 in a similar way. These two 40-bit
outputs from the two PALUs are added together using the adder in the Inverse
CRT block (Fig. 7.1). Next the 41-bit addition result is reduced by the 40-bit q
by performing one subtraction. The Decode-Encode block in Fig. 7.1 compares

IMPLEMENTATION 125

the inverse CRT output with q/4 and 3q/4 and then encodes the coefficient to
either 0 or q/2. Note, that this inverse CRT is performed only once as we need
to decode-encode only the least significant coefficient in the FV decryption.

7.4.5 The memory

The memory of the recryption-box consists of two independent memory files
(Fig. 7.1) for the two PALUs. Each of the two memory files contains six
RAM blocks M0, M1, M2, M3, M4 and M5, each containing 512 words. The
coefficients of residue polynomials are kept as pairs in these RAM words. Each
of these six RAM blocks consumes one 36K BRAM slice. During a recryption
operation, the box’s share of the client’s secret key is loaded in M0, and the
clients public key is loaded in M1 and M2. Since these keys are constants for a
client, they are kept in the NTT domain to avoid unnecessary computation.

In the decryption phase, RAM blocks M3 and M4 are used to store the two
polynomials c0 and c1 of the ciphertext. Hence a forward NTT of M3 is
computed followed by a coefficient-wise multiplication of M0 and M3, and then
the result is stored in M3. Next an inverse NTT is computed on M3 and this
ends the polynomial multiplication in the multiparty decryption operation.

During the encryption phase, the encoded message is kept in M3. The noise
polynomial e1 is generated in M4, then added with the encoded message and
finally the result is kept in M3. Another noise polynomial u is generated in M5.
The two polynomial multiplications pk0 · u and pk1 · u are kept in M4 and M5.

7.4.6 The discrete Gaussian sampler

The sampler uses the Knuth-Yao random walk algorithm. It is borrowed from
the LPR ring-LWE public key encryption processor of Chap. 5.

7.4.7 The ethernet communication unit

The Xilinx ML605 development board has a single physical networking interface
which is wired to the FPGA. This FPGA has four Embedded Tri-Mode Ethernet
MAC cores [148] which are present in the silicon of the FPGA (hard-cores).
To incorporate such a core in the design, the Xilinx CORE Generator is used
to provide wrapper files which help to configure and interface the Ethernet
MAC. Because high throughput is required and all the wiring between the

126 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

physical interface (PHY) and the MAC on the FPGA are present, the Gigabit
media-independent Inteface (GMII) is used.

Using the wrapper files (as generated by the Xilinx IPCore tool) to interface
the hard-core MAC provides an easy-to-use interface, consisting of four signals:
the data vector (8-bit wide), a data-valid signal, a data-user, and the data-last
signal. For a more detailed explanation on these signals and their usage, the
reader is referred to the Xilinx documentation [148, 147].

7.5 Results

We have implemented the encrypted search (Algorithm 18) as the target
application for performance evaluation. The search algorithm is a software
program written using high-level C with GMP library for long integer arithmetic,
and runs on a powerful server that has Intel(R) Xeon(R) CPU E5-2687W v3
with 40 cores running at 3.10GHz. During an encrypted search operation, the
search engine, i.e. the server machine sends noisy ciphertexts to the third party
recryption-boxes over a gigabit Ethernet channel. The recryption-boxes are
implemented on Xilinx FPGA boards ML605, which comes with a medium-
size Virtex 6 FPGA XC6VLX240T and a gigabit Ethernet for the external
communication [149].

In this implementation, we have restricted the size of the search table to 216

entries. Thus the index of the search table has 16 bit width. We use an 8-
bit window size in Algorithm 18. With this window size, the index variable
in Algorithm 18 consists of two chunks, and hence only one homomorphic
multiplication is required per iteration of the search loop. This is also very helpful
in reducing the network traffic between the search engine and the recryption-
boxes, because the parameter set of the homomorphic scheme supports only one
multiplication, and with only one multiplication per iteration of the search loop,
the search engine does not need to refresh its encrypted data. The recryption-
boxes are required only during the precomputation phase of the encrypted
search operation (Algorithm 17). Since this precomputation phase has a very
small computation overhead with respect to the actual search loop, the network
communication overhead is not a big issue.

The high level software implementation takes 21 seconds to perform one
encrypted search operation. To know the actual effect of the proposed recryption-
box assisted encrypted search model, we have also implemented an encrypted
search software that does not use the recryption-boxes. The parameter set for
this implementation supports the full multiplicative depth of the encrypted
search, and has polynomial dimension n = 4096, modulus size 141 bits, and

RESULTS 127

Table 7.1: Area of the recryption-box on Xilinx Virtex-6 XC6VLX240T-1FF1156

Component Resource Used Avail. Percentage
recryption-box Slice Registers 2,684 301,440 0.9%

Slice LUTs 3,379 150,720 2.3%
BlockRAM36k 12 416 2.9%
DSP48 4 768 0.5%

Processor Slice Registers 1,848 301,440 0.6%
Slice LUTs 2,751 150,720 1.8%
BlockRAM36k 12 416 2.9%
DSP48 4 768 0.5%

Gaussian distribution parameter s = 11.32. The security analysis following [7]
gives 96 bit security for this parameter set. The software takes 6 minutes and
40 seconds to perform an encrypted search on the same server machine, which
is roughly 20 times slower than with the recryption-box.

We have used mixed Verilog and VHDL to describe the recryption-box
architecture and have compiled the architecture using the Xilinx ISE 14.7 tool
with a constraint file. The area requirements of the recryption-box architectures
are shown in Table 7.1. The processor part of the recryption-box consumes
around 1.8% of the slice LUTs and 0.6% of the registers available in the FPGA.
For the recryption-box architectures, the additional area requirement is mostly
due to the Ethernet wrapper and the small components that are used to perform
the communication between the FPGA and the computer.

The latencies of different operations are shown in Table 7.5. In the design
constraint file the operating frequencies of the clocks were set to 125MHz; both
the Ethernet wrapper and the arithmetic unit run at 125 MHz, but using
different clock domains. From the table we see that the most computation
intensive operations are NTT and INTT. A decryption operation computes
one NTT, one coefficient wise multiplication and one INTT, one coefficient
wise addition, inverse CRT followed by a decode-encode of one coefficient.
Thus it takes around 0.153 ms. An encryption computes additional discrete
Gaussian sampling operations and thus takes slightly more amount of time that
the decryption operation. One recryption operation is basically a decryption
followed by an encryption and thus takes around 0.428 ms, excluding the cost of
data transfer between the FPGA and the host computer. To know the overall
time (data exchange + computation) of one recryption operation, we measured
the actual timing from the FPGA board using a counter, and found this to be
0.6 ms.

128 RECRYPTION-BOX ASSISTED HOMOMORPHIC FUNCTION EVALUATION

Table 7.2: Latencies and timings at 125MHz

Operation Clocks Time
NTT 7181 0.0575 ms
INTT 9910 0.0793 ms
Coefficient wise add 1032 0.0083 ms
Coefficient wise mul 1040 0.0083 ms
Gaussian sampling 1080 0.0086 ms
Inverse CRT 28 0.0002 ms
Decryption 19191 0.153 ms
Encryption 34385 0.275 ms
Recryption † 53576 0.428 ms
† The recryption-box is instantiated in the first mode (i.e. with key switching)
or in the second mode (threshold sharing) with th = 1.

To get a sense of comparison with the actual bootstrapping operation, we
consider the FHE implementation on an Intel Core i7 processor running at
3.4GHZ in [25]. The authors in [25] implement the FHE scheme over integers and
choose a very large parameter set to support the bootstrapping operation. One
bootstrapping operation requires 172 s to refresh encrypted data. In comparison,
using the proposed single-processor recryption-box we can refresh a ciphertext
in only 0.6 ms; this is roughly 2.8 × 105 times faster than the bootstrapping
operation in [25]. Moreover the efficiency gain is not only restricted to the
cleaning of the encrypted data. The large parameter set used in [25] also
slows down the homomorphic multiplication and addition operations. One
homomorphic multiplication in [25] takes 0.72 s; whereas for our parameter set
it takes roughly 11 ms on a single core running at 3.1 GHZ.

7.6 Summary

In this chapter we have proposed a recryption-box model to assist fully
homomorphic function evaluation. This recryption-box is used to bypass the
costly bootstrapping operation and achieve an order of magnitude speedup in
homomorphic evaluation time. We described two possible instantiations of the
recryption-box and analyzed their security and ease of use. In our opinion,
the main advantage of the recryption-box is that the costly bootstrapping
mechanism is no longer required, and therefore with this we can reduce the
parameters of the somewhat homomorphic encryption scheme and achieve near
practical evaluation time. We demonstrated the soundness of our proposal by

SUMMARY 129

implementing a recryption-box assisted encrypted search that achieves nearly
twenty times speedup with respect to an implementation that does not use a
recryption-box.

Chapter 8

Conclusions and future work

In this chapter we summarize the contributions of this thesis and point out
some of the possible future directions.

8.1 Conclusions

Strong ECC is feasible on IoT. Efficient implementations of elliptic-curve
cryptography (ECC) targeting different application requirements have received
interest for over two decades. However the proposals for implementing ECC
on tiny devices focused predominately on 163-bit elliptic-curves which provide
only 80-bit security. Feasibility of larger elliptic-curves on such devices was
not investigated. In this thesis we designed a 140-bit secure lightweight ECC
architecture based on a 283-bit Koblitz curve with countermeasures against
timing and power side channel attacks. When instantiated as a coprocessor of
commercial 16-bit microcontrollers, the ECC architecture consumes only 4.3
KGE, showing its potential use in low-end Internet of things (IoT) devices.

Ring-LWE-based PKC is fast. Construction of public-key cryptography
(PKC) primitives that are secure against quantum computers is a very recent
topic. In this thesis we investigated the implementation aspects of public-
key encryption based on the ring learning with errors (ring-LWE) problem,
which is presumed to be secure against quantum computers. We analyzed
the arithmetic primitives, namely discrete Gaussian sampling and polynomial
arithmetic. We showed that high precision discrete Gaussian sampling can be

131

132 CONCLUSIONS AND FUTURE WORK

implemented in hardware using a very small amount of resources following an
adaptation of the Knuth-Yao algorithm. Our sampler architecture is also very
fast. For polynomial multiplication, we used the NTT method coupled with
additional optimizations in the computation steps and the architecture. As
a result of our design decisions and optimization strategies, the implemented
public-key encryption processor achieves very fast computation time (48/21µs
per encryption/decryption) while using minimum area and memory.

Hardware accelerates SHE, yet not enough. When we started
this research, very few publications existed on implementing homomorphic
encryption schemes in hardware. We designed the first hardware architecture of
the building blocks required for the ring-LWE-based homomorphic encryption
scheme YASHE. To accelerate the arithmetic on large polynomials with large
coefficient size, we proposed computational and architectural optimizations. For
a proof of concept implementation on a Xilinx ML605 board, it turned out that
the arithmetic operations can be accelerated using the FPGA; but the large
data transfer which happens between the FPGA and the external memory, slows
down the speed. With a more advanced memory interface and a larger FPGA,
we can achieve significant speedup with respect to software implementations.
But even then, the speedup will not be able to make homomorphic encryption
fast enough for deployment on cloud computers.

With some trust, FHE is close to being practical. Since hardware
accelerators are not fast enough, we designed a special hardware module called
recryption box to assist homomorphic function evaluation. The security of this
module is related to the security of a multiparty computation scheme; hence
there is a certain amount of trust involved. We evaluated encrypted search as
an example application, and observed that the recryption box can accelerate
the encrypted search by a factor of twenty.

8.2 Future works

ECC-ring-LWE hybrid schemes. There are new publications [20, 19] that
propose hybrid public-key schemes for present-day applications: ring-LWE for
public-key encryption or key exchange and ECC for digital signature. The idea
is that encryption or key exchange schemes should remain secure against future
quantum computing attacks; whereas for digital signature based authentication
schemes, security against the existing cryptanalysis techniques is sufficient.
Hence it would be interesting to design a unified cryptoprocessor by combining

FUTURE WORKS 133

the Koblitz curve processor of Chap. 3 with with the ring-LWE-based public-key
encryption processor of Chap. 5.

Post-quantum digital signature schemes. In this thesis we investigated
the implementation aspects of ring-LWE-based public-key and homomorphic
encryption schemes. There are several post-quantum digital signature schemes
that work on polynomial rings. The main challenge in some of these schemes
is that they require sampling from a discrete Gaussian distribution with large
standard deviation. Pöppelmann, Ducas and Güneysu [103] showed how to
efficiently sample from such wide distributions. Still it will be interesting to
develop more efficient sampling algorithms that achieve better performance.
New signature schemes, such as TESLA [8], do not require Gaussian sampling
during signature generation. It will be interesting to evaluate their performance
on hardware platforms.

Post-quantum cryptography for IoT. From this thesis we can conclude
that ring-LWE problem based public-key cryptography is as computationally
intensive as the classical schemes. IoT devices are constrained by the amount of
available resources such as computation capability, storage or memory, power
and energy consumption.

In this research, we mainly investigated the implementation aspects of ring-LWE-
based post-quantum public-key cryptography and performed implementation
specific optimizations targeting fast computation time. An interesting direction
for future work would be to investigate lightweight design methodology taking
into account the limitations of IoT devices such as small silicon area and
low energy/power consumption. This would require mathematical or system-
level optimizations and modifications tailored towards IoT. Ring-LWE-based
cryptography relies a lot on polynomial arithmetic. Hence it would be interesting
to design algorithms that could perform polynomial arithmetic by consuming a
very small amount of resources.

Customized FPGAs for homomorphic schemes. In this thesis we found
that the memory access overhead is the main factor in restricting the speed of
homomorphic evaluation using FPGAs. Hence designing of FPGAs specific to
homomorphic function evaluation will be an interesting future research. For
e.g., if FPGAs are manufactured with sufficient amount of on-chip memory to
store two ciphertexts, then the overhead of external memory access could be
reduced significantly. Beside this, integration of a cache memory to the FPGA
chip would enable prefetching of data from the slower external memory, and
hence would reduce the time spent in the external communication.

134 CONCLUSIONS AND FUTURE WORK

Protection against physical attacks. In this thesis we developed efficient
algorithms and architectures for ring-LWE-based cryptographic schemes.
Designing of countermeasures against side channel and fault attacks would
be a very interesting future research.

Effect of bias in randomness on Gaussian sampling. The discrete
Gaussian sampler requires random numbers. Any bias in the randomness
would result in a large statistical distance to the accurate Gaussian distribution,
and this could be exploited by an attacker. Hence it would be interesting to
study the effect of a biased random number generator on the Gaussian sampling.

Appendix A

High speed scalar conversion
for Koblitz curves

Here we show that optimization tricks similar to Sect. 3.2 can be applied to
design a high speed scalar conversion algorithm. We choose the high-speed
variant of the lazy reduction algorithm [62] known as the double lazy reduction.
The algorithm is based on the fact that division by τ2 is also easy to perform
in hardware following Theorem 2 in Sect. 2.2.1. During a scalar reduction, the
algorithm performs repeated divisions by τ2 for (m − 1)/2 number of times.
As a result, the cycle requirement reduces to nearly half compared to the lazy
reduction. The computational steps performed in the double lazy reduction are
shown in Alg. 19.

Elimination of long subtractions for nonzero remainders

In line 6 of Alg. 19, remainders u0 and u1 ∈ {0, 1} are subtracted from d0 and
d1. We observe that the subtractions are easy in some cases. For example,
when d0 ≡ 1 (mod 4) and 2d1 ≡ 0 (mod 4) (i.e. u0 = 1 and u1 = 0), the
subtraction of u0 from d0 is equivalent to changing the least significant bit
of d0 from 1 to 0. Hence, in this case the long subtraction can be replaced
by a bit alteration. However, when carry propagations are involved with long
subtractions, alteration of few specific bits do not work as a replacement. For
example, when d0 ≡ 3 (mod 4) and 2d1 ≡ 0 (mod 4) (i.e. when u0 = 1 and
u1 = 1), a long subtraction appears. Use of signed remainder set u0 and
u1 ∈ {0,±1} helps to a certain extent in eliminating the long subtractions of

135

136 HIGH SPEED SCALAR CONVERSION FOR KOBLITZ CURVES

Algorithm 19: Fast scalar reduction from [62]
Input: integer k
Output: reduced scalar γ

1 begin
2 (a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0) ;
3 for i = 1 to (m− 1)/2 do
4 u← (d0 − 2d1) mod 4 ;
5 u0 ← u mod 2, u1 ← bu/2c ;
6 d0 ← d0 − u0, d1 ← d1 − u1 ;
7 (d0, d1)← ((−d0 − 2d1)/4,−(−d0 + 2d1)/4) ;
8 if u > 0 then
9 b0 ← (b0 + u0a0 − 2u1a1) ;

10 b1 ← b1 + u0a1 + u1(a0 − a1) ;
11 end
12 (a0, a1)← (−2(a0 − a1), −a0 − a1) ;
13 end
14 if d0 ≡ 1(mod 2) then
15 u← 1, d0 ← d0 − 1 ;
16 (b0, b1)← (b0 + a0, b1 + a1) ;
17 end
18 (d0, d1)← (−d0/2 + d1,−d0/2) ;
19 γ ← (b0 + d0, b1 + d1) ;
20 end

nonzero remainders for such cases. Table A.1 shows how the signed remainders
are generated during the reduction steps depending on the low bits of d0 and
2d1. It can be noticed from the table that, except Case 4, subtractions of the u0
and u1 from d0 and d1 involve no carry propagation and thus can be replaced
by alterations of the low bits in d0 and d1.

For Case 4, if we perform the subtraction of u0 = −1 in line 7 of Alg. 19
instead of line 6 (i.e. we put d0 + 1 in place of d0), then we have the following
observation.

d0 ← −2d1 + (d0 + 1)
4

d1 ← −2d1 − (d0 + 1)
4

HIGH SPEED SCALAR CONVERSION FOR KOBLITZ CURVES 137

Table A.1: Signed remainders during reduction of scalar

Cases d0 (mod 4) 2d1 (mod 4) u0 u1
1 0 0 0 0
2 1 0 1 0
3 2 0 0 −1
4 3 0 −1 0
5 0 2 0 1
6 1 2 −1 0
7 2 2 0 0
8 3 2 1 0

This is equivalent to taking carry/borrow inputs in the adder/subtracter circuits
during the computations of d0 and d1. This is shown below.

d0 ← −2d1 + d0 + (Carry input = 1)
4

d1 ← −2d1 − d0 − (Borrow input = 1)
4

From the observations presented in this subsection, we draw the conclusion that
the long subtractions of the nonzero remainders can be eliminated by changing
the low order bits of d0 and d1 or by considering carry/borrow inputs to the
adder/subtracter circuits.

Elimination of subtractions from zero

In line 7 of Alg. 19, a subtraction from zero is required for d0 after computing
2d1 + d0 (Eq. A.1).

(d0, d1) ← (−2d1 + d0
4 ,−2d1 − d0

4) (A.1)

We eliminate the subtraction from zero using the following scheme. Instead of
Eq. A.1, we compute Eq. A.2.

(d0, d1) ← (2d1 + d0
4 ,

2d1 − d0
4) (A.2)

The results from Eq. A.1 and A.2 have opposite signs, but same magnitudes.
So, when Eq. A.1 and A.2 are computed inside the for-loop in Alg. 19 for

138 HIGH SPEED SCALAR CONVERSION FOR KOBLITZ CURVES

an even number of times, the results of the equations are same; otherwise the
results have opposite signs.

The same trick is applied to eliminate the subtractions from zero during the
computation of (a0, a1) in line 12 of Alg. 19. Instead of computing Eq. A.3

(a0, a1)← (−2(a0 − a1), −(a0 + a1)) (A.3)

we compute Eq. A.4.

(a0, a1)← (2(a0 − a1), (a0 + a1)) (A.4)

After completion of the for-loop, one subtraction from zero is required to make
the signs correct for (a0, a1) when (m− 1)/2 is odd. This subtraction from zero
can be eliminated if we compute Eq. A.5 in line 16 of Alg. 19.

(b0, b1)← (b0 − a0, b1 − a1) (A.5)

The improved high-speed scalar reduction algorithm is described in Alg. 20.

IMPROVED DOUBLE DIGIT τNAF GENERATION 139

Algorithm 20: New Reduction Algorithm
Input: integer k
Output: reduced scalar γ

1 begin
2 (a0, a1)← (1, 0), (b0, b1)← (0, 0), (d0, d1)← (k, 0) ;
3 /* Iterative divisions by τ2 start here */ ;
4 for i = 1 to (m− 1)/2 do
5 u← (d0 − 2d1) mod 4 ;
6 (u0, u1)← Table 1 ;
7 (d0, d1)← AlterLowBits(d0, d1) ;
8 if Case 4 is True then
9 (B,C)← (1, 1) /* Borrow and Carry Inputs */

10 end
11 else
12 (B,C)← (0, 0)
13 end
14 (d0, d1)← ((2d1 + d0 + C)/4, (2d1 − d0 − B)/4) ;
15 if u > 0 then
16 b0 ← (b0 + u0a0 − 2u1a1) ;
17 b1 ← (b1 + u0a1 + u1(a0 − a1)) ;
18 end
19 (a0, a1)← (2(a0 − a1), a0 + a1) ;
20 end
21 /* Iterative divisions by τ2 finish here */ ;
22 if d0 ≡ 1(mod 2) then
23 d0 ← AlterLeastBit(d0) ;
24 if m−1

2 ≡ 0(mod 2) then
25 (b0, b1)← (b0 + a0, b1 + a1) ;
26 end
27 else
28 (b0, b1)← (b0 − a0, b1 − a1) ;
29 end
30 end
31 (d0, d1)← ((2d1 − d0)/2, d0/2) /* Final division by τ */ ;
32 if m−1

2 ≡ 0(mod 2) then
33 γ ← (b0 + d0, b1 − d1) ;
34 end
35 else
36 γ ← (b0 − d0, b1 + d1) ;
37 end
38 end

A.1 Improved double digit τNAF generation

In [62], two consecutive τNAF digits are generated in a single step from the
reduced scalar d0 + τd1 by performing divisions by τ2. The authors call the
NAF as double τNAF. Table A.2 shows how the consecutive τNAF digits r0
and r1 are generated by observing the low order bits of d0 and d1. Similar to
Section 3.2.1, we eliminate the subtractions of nonzero remainders from d0 and
d1 during the τNAF generation process.

From Table A.2, we see that for the cases 2, 3.B, 3.C, 3.D, 5.A, 5.B, 5.D, 6 and

140 HIGH SPEED SCALAR CONVERSION FOR KOBLITZ CURVES

Table A.2: NAF Generation for µ = −1

Cases d0(mod4) 2d1(mod4) d0(mod8) 2d1(mod8) r0 r1
1 0 0 0 0
2 1 0 1 0

3.A 2 0 2 0 0 1
3.B 2 0 6 0 0 −1
3.C 2 0 2 4 0 −1
3.D 2 0 6 4 0 1
4 3 0 −1 0

5.A 0 2 0 2 0 1
5.B 0 2 4 2 0 −1
5.C 0 2 0 6 0 −1
5.D 0 2 4 6 0 1
6 1 2 −1 0
7 2 2 0 0
8 3 2 1 0

8, the subtractions of nonzero remainders from d0 or d1 affect only the low order
bits of d0 and d1. For the above cases, the long subtractions are replaced by
cheaper bit alterations in d0 and d1. Subtraction of r0 = −1 in Case 4 in Table
A.2 can be handled in the same way we did for Case 4 in Table A.1 (Sect. 20).

In Case 3.A, the subtraction of r1 = 1 from d1 involves borrow propagation and
thus may affect all the bits of d1. If we incorporate this subtraction in the next
step where we perform the division by τ2, then by putting d1 − 1 in place of d1
in Eq. A.1, we have the following observation.

(d0, d1) ← (−2(d1 − 1) + d0
4 ,−2(d1 − 1)− d0

4)

← (−2d1 + (d0 − 2)
4 ,−2d1 − (d0 + 2)

4) (A.6)

Thus we find that the subtraction of r1 from d1 is equivalent to the addition or
subtraction of two with d0. As d0 ≡ 2 (mod 8), the subtraction or addition of 2
changes only the three low bits of d0.

In Case 5.C, the subtraction of r1 = −1 from d1 involves carry propagation.
When we put d1 + 1 in place of d1 in Eq. A.1, we have the following observation.

(d0, d1) ← (−2(d1 + 1) + d0
4 ,−2(d1 + 1)− d0

4)

← (2d̄1 − d0
4 ,

2d̄1 + d0
4) (A.7)

HARDWARE ARCHITECTURE 141

Algorithm 21: New τNAF Generation Algorithm
Input: Reduced Scalar γ = d0 + τd1
Output: τNAF(γ)

1 begin
2 S ←

〈〉
/* Used to store τNAF */ ;

3 Sign← 0 /* Used to keep sign of (d0, d1) */ ;
4 while d0 6= 0 or d1 6= 0 do
5 (r0, r1)← Table 2 ;
6 (d0, d1)← AlterLowBits(d0, d1) in Sect. A.1 ;
7 (B,C)← (0, 0) /* Borrow and Carry Inputs */ ;
8 if Sign = 1 then
9 (r0, r1)← (−r0,−r1) ;

10 end
11 Prepend (r1, r0) to S /* τNAF digits */ ;
12 if Case 4 True then
13 (B,C)← (1, 1)
14 end
15 if Case 5.C True then
16 (d0, d1)← (2d̄1−d0

4 ,
2d̄1+d0

4) ;
17 Sign← Sign ;
18 end
19 else
20 (d0, d1)← (2d1+d0+C

4 ,
2d1−d0−B

4) ;
21 Sign← 1⊕ Sign ;
22 end
23 end
24 end

So, using one’s complement of d1 in Case 5.C, we eliminate the long subtraction
of r1 from d1. Computing one’s complement in hardware platform is easy as all
the bits of d1 can be altered in parallel.

Algorithm 21 describes the steps of the new τNAF generation technique. Only
one addition or subtraction operations are performed on d0 and d1 during
division by τ2 in any iteration. Thus, for the τNAF generation part of the
scalar conversion, presence of only one adder/subtracter circuits in the critical
paths of d0 and d1 is sufficient.

A.2 Hardware architecture

We use these optimizations to design a high-speed and pipelined scalar conversion
architecture. The architecture is described in details our publication

Sujoy Sinha Roy, Junfeng Fan, Ingrid Verbauwhede. Accelerating Scalar
Conversion for Koblitz Curve Cryptoprocessors on Hardware Platforms In
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 23,

142 HIGH SPEED SCALAR CONVERSION FOR KOBLITZ CURVES

no. 5, pp. 810-818, May 2015.

We would like to mention that the high-speed architecture is a proof of concept
implementation and is not resistant against side channel attacks.

Table A.3: Performance results on Xilinx Virtex 4 FPGA

Work Slices Freq Reduction Conversion
MHz Time (µs) Time (µs)

Brumley et. al.[62] 1671 65.9 4.3 8.6
Adikari et. al.[62] 1998 65.1 2.2 4.4

Our implementation 1814 107 1.3 2.6

A.3 Implementation results

Table A.3 shows the performance of our high-speed scalar conversion architecture
for K-283. Results were obtained from Xilinx ISEv12.2 tool after place and
route analysis with optimization for speed. The conversion time is the total
time required for the scalar reduction and the complete τNAF generation.

Appendix B

Implementation of operations
used by algorithm 6

The operations required by Alg. 6 are implemented by combining an FSM and
a program ROM. The program ROM includes subprograms for all operations
of Alg. 6 and the FSM sets the address of the ROM to the first instruction of
the subprogram according the phase of the algorithm and ti+1, ti.

Table B.1 shows the contents of the program ROM. The operations required by
Alg. 6 are in this ROM as follows:

• Line 0 obtains the next bits of the zero-free representation.

• Lines 1–23 perform the precomputation that computes (x+1, y+1) =
φ(P) + P and (x−1, y−1) = φ(P)− P .

• Line 24 computes the negative of Q during the initialization and Line 25
is the corresponding dummy operation.

• Lines 26–28 randomize the projective coordinates ofQ by using the random
r ∈ F2283 which is stored in Z.

• Lines 29–34 compute two Frobenius endomorphisms for Q.

• Lines 35–37 set (xp, yp) ← (x+1, y+1) = φ(P) + P and compute the
y-coordinate of its negative to ym.

• Lines 38–40 set (xp, yp) ← (x−1, y−1) = φ(P) − P and compute the
y-coordinate of its negative to ym.

143

144 IMPLEMENTATION OF OPERATIONS USED BY ALGORITHM ??

Table B.1: The program ROM includes instructions for the following operations

0 Convert(k) 20 y−1 ← y−1 × T1 40 ym ← x−1 + y−1 60 T2 ← xp × Z
1 x+1 ← X2 21 y−1 ← y−1 + x−1 41 xp ← x+1 61 T2 ← T2 +X
2 y+1 ← Y 2 22 y−1 ← y−1 + Y 42 ym ← y+1 62 Y ← Y + Z
3 x+1 ← X + x+1 23 y−1 ← y−1 +X 43 yp ← x+1 + y+1 63 Y ← Y × T2
4 x−1 ← x−1

+1 24 Y ← X + Y 44 xp ← x−1 64 T1 ← Z2

5 T1 ← Y + y+1 25 T1 ← X + Y 45 ym ← y−1 65 T1 ← T1 × ym
6 y−1 ← T1 × x−1 26 X ← X × Z 46 yp ← x−1 + y−1 66 Y ← Y + T1
7 T1 ← y2

−1 27 T1 ← Z2 47 T1 ← Z2 67 x+1 ← Z
8 T1 ← T1 + y−1 28 Y ← Y × T1 48 T1 ← T1 × yp 68 x−1 ← x−1

+1
9 x+1 ← T1 + x+1 29 Y ← Y 2 49 T1 ← T1 + Y 69 X ← X × x−1
10 T1 ← x+1 +X 30 Y ← Y 2 50 T2 ← Z × xp 70 x−1 ← x2

−1
11 y+1 ← T1 + y−1 31 X ← X2 51 T2 ← T2 +X 71 Y ← Y × x−1
12 y+1 ← y+1 + x+1 32 X ← X2 52 X ← T 2

2 72 X ← x+1
13 y+1 ← y+1 + Y 33 Z ← Z2 53 X ← X + T1 73 Y ← y+1
14 x−1 ← x−1 ×X 34 Z ← Z2 54 T2 ← T2 × Z 74 X ← x−1
15 y−1 ← y−1 + x−1 35 xp ← x+1 55 X ← X × T2 75 Y ← y−1
16 T1 ← x2

−1 36 yp ← y+1 56 Y ← T1 × T2 76 T1 ← x+1
17 x−1 ← x−1 + T1 37 ym ← x+1 + y+1 57 T1 ← T 2

1 77 T2 ← y+1
18 x−1 ← x−1 + x+1 38 xp ← x−1 58 X ← X + T1
19 T1 ← x−1 +X 39 yp ← y−1 59 Z ← T 2

2

• Lines 41–43 compute (xp, yp) ← −(x+1, y+1) = −φ(P) − P and set the
y-coordinate of its negative to ym.

• Lines 44–46 compute (xp, yp) ← −(x−1, y−1) = −φ(P) + P and set the
y-coordinate of its negative to ym.

• Lines 47–66 compute the point addition (X,Y, Z)← (X,Y, Z) + (xp, yp)
in López-Dahab coordinates using the equations from [5].

• Lines 67–71 recover the affine coordinates of Q by computing (X,Y)←
(X/Z, Y/Z2).

• Lines 72–73 and lines 74–75 initialize Q with (x+1, y+1) and (x−1, y−1),
respectively, and lines 76–77 perform a dummy operation for these
operations.

Point addition and point subtraction are computed with exactly the same
sequence of operations. This is achieved by introducing an initialization which
sets the values of three internal variables xp, yp, and ym according to Table B.2

IMPLEMENTATION OF OPERATIONS USED BY ALGORITHM ?? 145

(these are in lines 35–46 in Table B.1). This always requires two copy instructions
followed by an addition. After this initialization, both point addition and point
subtraction are computed with a common sequence of operations which adds
the point (xp, yp) to Q. The element xm is the y-coordinate of the negative of
(xp, yp) and it is also used during the point addition.

Table B.2: Initialization of point addition and point subtraction

ti+1, ti 1st 2nd 3rd
+1,+1 xp ← x+1 yp ← y+1 ym ← x+1 + y+1
+1,−1 xp ← x−1 yp ← y−1 ym ← x−1 + y−1
−1,+1 xp ← x−1 ym ← y−1 yp ← x−1 + y−1
−1,−1 xp ← x+1 ym ← y+1 yp ← x+1 + y+1

Bibliography

[1] M. Abdalla, M. Bellare, and P. Rogaway. The Oracle Diffie-Hellman
Assumptions and an Analysis of DHIES. In Topics in Cryptology — CT-
RSA 2001: The Cryptographers’ Track at RSA Conference 2001 San
Francisco, CA, USA, April 8–12, 2001 Proceedings, pages 143–158, Berlin,
Heidelberg, 2001. Springer Berlin Heidelberg.

[2] M. Ajtai. Generating Hard Instances of Lattice Problems (Extended
Abstract). In Proceedings of the Twenty-eighth Annual ACM Symposium
on Theory of Computing, STOC ’96, pages 99–108, New York, NY, USA,
1996. ACM.

[3] M. Ajtai. The Shortest Vector Problem in L2 is NP-hard for Randomized
Reductions (Extended Abstract). In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing, STOC ’98, pages 10–19, New
York, NY, USA, 1998. ACM.

[4] M. Ajtai, R. Kumar, and D. Sivakumar. A Sieve Algorithm for the Shortest
Lattice Vector Problem. In Proceedings of the Thirty-third Annual ACM
Symposium on Theory of Computing, STOC ’01, pages 601–610, New
York, NY, USA, 2001. ACM.

[5] E. Al-Daoud, R. Mahmod, M. Rushdan, and A. Kilicman. A New
Addition Formula for Elliptic Curves over GF (2n). IEEE Transactions
on Computers, 51(8):972–975, Aug. 2002.

[6] M. Albrecht, S. Bai, and L. Ducas. A Subfield Lattice Attack on
Overstretched NTRU Assumptions, pages 153–178. Advances in Cryptology
– CRYPTO 2016: 36th Annual International Cryptology Conference, Santa
Barbara, CA, USA, August 14-18, 2016, Proceedings, Part I, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[7] M. R. Albrecht. Complexity Estimates for Solving LWE. https://
bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py.

147

https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py
https://bitbucket.org/malb/lwe-estimator/raw/HEAD/estimator.py

148 BIBLIOGRAPHY

[8] E. Alkim, N. Bindel, J. Buchmann, Özgür Dagdelen, and P. Schwabe.
TESLA: Tightly-Secure Efficient Signatures from Standard Lattices.
Cryptology ePrint Archive, Report 2015/755, 2015. http://eprint.
iacr.org/2015/755.

[9] D. F. Aranha, R. Dahab, J. López, and L. B. Oliveira. Efficient
Implementation of Elliptic Curve Cryptography in Wireless Sensors.
Advances in Mathematics of Communications, 4(2):169–187, 2010.

[10] A. Aysu, C. Patterson, and P. Schaumont. Low-Cost and Area-Efficient
FPGA Implementations of Lattice-Based Cryptography. In 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), pages 81–86, June 2013.

[11] R. Azarderakhsh, K. U. Järvinen, and M. Mozaffari-Kermani. Efficient
Algorithm and Architecture for Elliptic Curve Cryptography for Extremely
Constrained Secure Applications. IEEE Transactions on Circuits and
Systems I—Regular Papers, 61(4):1144–1155, Apr. 2014.

[12] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid. Recommendation
for Key Management – Part 1: General. http://csrc.nist.
gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_
Mar08-2007.pdf, March, 2007, Revised January 2016.

[13] L. Batina, N. Mentens, K. Sakiyama, B. Preneel, and I. Verbauwhede.
Low-Cost Elliptic Curve Cryptography for Wireless Sensor Networks. In
Security and Privacy in Ad-Hoc and Sensor Networks — ESAS 2006,
volume 4357 of Lecture Notes in Computer Science, pages 6–17. Springer,
2006.

[14] BBC News. NSA ‘Developing Code-Cracking Quantum Computer’.
January 2014. http://www.bbc.com/news/technology-25588605.

[15] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers. The SIMON and SPECK Lightweight Block Ciphers. In 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), pages
1–6, June 2015.

[16] D. Bernstein. Fast Multiplication and its Applications. Algorithmic
Number Theory, 44:325–384, 2008.

[17] D. J. Bernstein, S. Engels, T. Lange, R. Niederhagen, C. Paar, P. Schwabe,
and R. Zimmermann. Faster Elliptic-Curve Discrete Logarithms on
FPGAs. Cryptology ePrint Archive, Report 2016/382, 2016. http:
//eprint.iacr.org/2016/382.

http://eprint.iacr.org/2015/755
http://eprint.iacr.org/2015/755
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://eprint.iacr.org/2016/382
http://eprint.iacr.org/2016/382

BIBLIOGRAPHY 149

[18] H. Bock, M. Braun, M. Dichtl, E. Hess, J. Heyszl, W. Kargl, H. Koroschetz,
B. Meyer, and H. Seuschek. A Milestone Towards RFID Products Offering
Asymmetric Authentication Based on Elliptic Curve Cryptography. In
Proceedings of the 4th Workshop on RFID Security — RFIDSec 2008,
2008.

[19] J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko,
A. Raghunathan, and D. Stebila. Frodo: Take off the Ring! Practical,
Quantum-Secure Key Exchange from LWE. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’16, pages 1006–1018, New York, NY, USA, 2016. ACM.

[20] J. W. Bos, C. Costello, M. Naehrig, and D. Stebila. Post-Quantum
Key Exchange for the TLS Protocol from the Ring Learning with Errors
Problem. In 2015 IEEE Symposium on Security and Privacy, pages
553–570, May 2015.

[21] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved Security for
a Ring-Based Fully Homomorphic Encryption Scheme. In Proceedings
of the 14th IMA International Conference on Cryptography and Coding
(IMACC 2013), volume 8308 of Lecture Notes in Computer Science, pages
45–64. Springer, 2013.

[22] Z. Brakerski. Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP. In Advances in Cryptology — CRYPTO 2012,
volume 7417 of Lecture Notes in Computer Science, pages 868–886.
Springer, 2012.

[23] B. B. Brumley and K. U. Järvinen. Conversion Algorithms and
Implementations for Koblitz Curve Cryptography. IEEE Transactions on
Computers, 59(1):81–92, Jan. 2010.

[24] J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and P. Weiden.
Discrete Ziggurat: A Time-Memory Trade-Off for Sampling from a
Gaussian Distribution over the Integers. In Selected Areas in Cryptography
– SAC 2013: 20th International Conference, Burnaby, BC, Canada, August
14-16, 2013, Revised Selected Papers, pages 402–417, Berlin, Heidelberg,
2014. Springer Berlin Heidelberg.

[25] J. H. Cheon, J.-S. Coron, J. Kim, M. S. Lee, T. Lepoint, M. Tibouchi, and
A. Yun. Batch Fully Homomorphic Encryption over the Integers, pages
315–335. Advances in Cryptology – EUROCRYPT 2013: 32nd Annual
International Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

150 BIBLIOGRAPHY

[26] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart. Between
a Rock and a Hard Place: Interpolating between MPC and FHE.
In Advances in Cryptology - ASIACRYPT 2013: 19th International
Conference on the Theory and Application of Cryptology and Information
Security, Bengaluru, India, December 1-5, 2013, Proceedings, Part II,
pages 221–240, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[27] P. G. Comba. Exponentiation Cryptosystems on the IBM PC. IBM
Systems Journal, 29(4):526–538, 1990.

[28] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[29] J.-S. Coron. Resistance Against Differential Power Analysis for Elliptic
Curve Cryptosystems. In Cryptographic Hardware and Embedded Systems
— CHES 1999, volume 1717 of Lecture Notes in Computer Science, pages
292–302. Springer, 1999.

[30] J.-S. Coron, T. Lepoint, and M. Tibouchi. Scale-Invariant Fully
Homomorphic Encryption over the Integers. In Public-Key Cryptography
— PKC 2014, volume 8383 of Lecture Notes in Computer Science, pages
311–328. Springer, 2014.

[31] R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Efficient
Software Implementation of Ring-LWE Encryption. In Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE ’15, pages 339–344, 2015.

[32] R. de Clercq, L. Uhsadel, A. Van Herrewege, and I. Verbauwhede. Ultra
Low-Power Implementation of ECC on the ARM Cortex-M0+. In
Proceedings of the 51st Annual Design Automation Conference, DAC
’14, pages 112:1–112:6, New York, NY, USA, 2014. ACM.

[33] L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag,
New York, 1986.

[34] M. Dichtl and J. D. Golic. High-Speed True Random Number Generation
with Logic Gates Only. In Cryptographic Hardware and Embedded Systems
- CHES 2007, volume 4727 of LNCS, pages 45–62. Springer Berlin, 2007.

[35] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE
Transactions on Information Theory, IT-22(6):644–654, 1976.

[36] Y. Doröz, E. Öztürk, E. Savas, and B. Sunar. Accelerating LTV Based
Homomorphic Encryption in Reconfigurable Hardware. In Cryptographic
Hardware and Embedded Systems - CHES 2015 - 17th International

BIBLIOGRAPHY 151

Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, pages
185–204, 2015.

[37] Y. Doröz, E. Öztürk, and B. Sunar. Evaluating the Hardware Performance
of a Million-bit Multiplier. In Proceedings of the 16th Euromicro
Conference on Digital System Design (DSD 2013), pages 955–962, 2013.

[38] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice Signatures
and Bimodal Gaussians, pages 40–56. Advances in Cryptology – CRYPTO
2013: 33rd Annual Cryptology Conference, Santa Barbara, CA, USA,
August 18-22, 2013. Proceedings, Part I, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[39] N. Dwarakanath and S. Galbraith. Sampling from Discrete Gaussians for
Lattice-Based Cryptography on a Constrained Device. Applicable Algebra
in Engineering, Communication and Computing, 25(3):159–180, 2014.

[40] M. D. Ercegovac and T. Lang. Chapter 1 - Review of Basic Number
Representations and Arithmetic Algorithms. In Digital Arithmetic, The
Morgan Kaufmann Series in Computer Architecture and Design, pages 3 –
49. Morgan Kaufmann, San Francisco, 2004.

[41] M. D. Ercegovac and T. Lang. Chapter 7 - Reciprocal, Division, Reciprocal
Square Root, and Square Root by Iterative Approximation. In Digital
Arithmetic, The Morgan Kaufmann Series in Computer Architecture and
Design, pages 366 – 395. Morgan Kaufmann, San Francisco, 2004.

[42] J. Fan and I. Verbauwhede. An Updated Survey on Secure ECC
Implementations: Attacks, Countermeasures and Cost. In Cryptography
and Security: From Theory to Applications, volume 6805 of Lecture Notes
in Computer Science, pages 265–282. Springer, 2012.

[43] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic
Encryption. Cryptology ePrint Archive, Report 2012/144, 2012. http:
//eprint.iacr.org/.

[44] P.-A. Fouque and F. Valette. The Doubling Attack—Why Upwards
is Better than Downwards. In Cryptographic Hardware and Embedded
Systems — CHES 2003, volume 2779 of Lecture Notes in Computer
Science, pages 269–280. Springer, 2003.

[45] S. D. Galbraith and P. Gaudry. Recent Progress on the Elliptic Curve
Discrete Logarithm Problem. Des. Codes Cryptography, 78(1):51–72, Jan.
2016.

http://eprint.iacr.org/
http://eprint.iacr.org/

152 BIBLIOGRAPHY

[46] C. Gentry. Fully Homomorphic Encryption using Ideal Lattices. In
Proceedings of the 41st ACM Symposium on Theory of Computing (STOC
2009), pages 169–178, 2009.

[47] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic Evaluation of the
AES Circuit. In Advances in Cryptology — CRYPTO 2012, volume 7417
of Lecture Notes in Computer Science, pages 850–867. Springer, 2012.

[48] C. Gentry and Z. Ramzan. Single-Database Private Information Retrieval
with Constant Communication Rate. In Automata, Languages and
Programming: 32nd International Colloquium, ICALP 2005, Lisbon,
Portugal, July 11-15, 2005. Proceedings, pages 803–815, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[49] C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from
Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In Advances in Cryptology — CRYPTO 2013, volume
8042 of Lecture Notes in Computer Science, pages 75–92. Springer, 2013.

[50] I. Goldberg. Improving the Robustness of Private Information Retrieval. In
2007 IEEE Symposium on Security and Privacy (SP ’07), pages 131–148,
May 2007.

[51] J. D. Golic. New Methods for Digital Generation and Postprocessing
of Random Data. IEEE Transactions on Computers, 55(10):1217–1229,
2006.

[52] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss. On the
Design of Hardware Building Blocks for Modern Lattice-Based Encryption
Schemes. In Cryptographic Hardware and Embedded Systems – CHES
2012, volume 7428 of LNCS, pages 512–529. Springer Berlin, 2012.

[53] L. Groot Bruinderink, A. Hülsing, T. Lange, and Y. Yarom. Flush, Gauss,
and Reload – A Cache Attack on the BLISS Lattice-Based Signature
Scheme. In Cryptographic Hardware and Embedded Systems – CHES 2016:
18th International Conference, Santa Barbara, CA, USA, August 17-19,
2016, Proceedings, pages 323–345, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

[54] D. Hankerson, A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2003.

[55] D. Hein, J. Wolkerstorfer, and N. Felber. ECC Is Ready for RFID – A
Proof in Silicon. In Selected Areas in Cryptography — SAC 2008, volume
5381 of Lecture Notes in Computer Science, pages 401–413. Springer,
2009.

BIBLIOGRAPHY 153

[56] G. Hinterwälder, A. Moradi, M. Hutter, P. Schwabe, and C. Paar. Full-
Size High-Security ECC Implementation on MSP430 Microcontrollers. In
Progress in Cryptology — LATINCRYPT 2014, volume 8895 of Lecture
Notes in Computer Science, pages 31–47. Springer, 2015.

[57] P. Hirschhorn, J. Hoffstein, N. Howgrave-graham, and W. Whyte.
Choosing NTRUEncrypt Parameters in Light of Combined Lattice
Reduction and MITM Approaches. In In Proc. ACNS 2009, LNCS
5536, pages 437–455. Springer-Verlag, 2009.

[58] J. Hoffstein, J. Pipher, and J. Silverman. An Introduction to Mathematical
Cryptography. Springer Publishing Company, Incorporated, 1 edition,
2008.

[59] N. Howgrave Graham. A Hybrid Lattice-Reduction and Meet-in-the-
Middle Attack Against NTRU. In Advances in Cryptology - CRYPTO
2007, volume 4622 of Lecture Notes in Computer Science, pages 150–169.
Springer Berlin Heidelberg, 2007.

[60] Intel®. Core™i7-2600 processor. https://ark.intel.com/products/
52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3_80-GHz.

[61] T. Itoh and S. Tsujii. A Fast Algorithm for Computing Multiplicative
Inverses in GF (2m) Using Normal Bases. Information and Computation,
78(3):171–177, Sept. 1988.

[62] J. Adikari, V.S. Dimitrov, and K. Järvinen. A Fast Hardware Architecture
for Integer to τNAF Conversion for Koblitz Curves. Computers, IEEE
Transactions on, 61(5):732 –737, may 2012.

[63] A. Kamal and A. Youssef. An FPGA Implementation of the NTRUEncrypt
Cryptosystem. In Microelectronics (ICM), 2009 International Conference
on, pages 209–212, Dec 2009.

[64] A. Kargl, S. Pyka, and H. Seuschek. Fast Arithmetic on ATmega128
for Elliptic Curve Cryptography. Cryptology ePrint Archive, Report
2008/442, 2008.

[65] A. Karmakar, S. S. Roy, F. Vercauteren, and I. Verbauwhede. Constant-
time Discrete Gaussian Sampling. In under review, 2017.

[66] A. H. Karp and P. Markstein. High-precision Division and Square Root.
ACM Transactions on Mathematical Software, 23(4):561–589, 1997.

[67] D. E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.):
Seminumerical Algorithms. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

https://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3_80-GHz
https://ark.intel.com/products/52213/Intel-Core-i7-2600-Processor-8M-Cache-up-to-3_80-GHz

154 BIBLIOGRAPHY

[68] D. E. Knuth and A. C. Yao. The Complexity of Non-Uniform Random
Number Generation. Algorithms and Complexity, pages 357–428, 1976.

[69] N. Koblitz. Elliptic Curve Cryptosystems. Mathematics of Computation,
48:203–209, 1987.

[70] N. Koblitz. CM-curves with good cryptographic properties. In Advances
in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes in Computer
Science, pages 279–287. Springer, 1991.

[71] C. K. Koç, editor. Cryptographic Engineering. Springer, 2009.

[72] K.U. Järvinen, J. Forsten, and J.O. Skyttä. Efficient Circuitry for
Computing τ -adic Non-Adjacent Form. Proc. IEEE Int’l Conf. Electronics,
Circuits and Systems (ICECS ’06), pages 232–235, 2006.

[73] S. Kumar, C. Paar, J. Pelzl, G. Pfeiffer, and M. Schimmler. Breaking
Ciphers with COPACOBANA— A Cost-Optimized Parallel Code Breaker.
In Cryptographic Hardware and Embedded Systems (CHES 2006), volume
4249 of Lecture Notes in Computer Science, pages 101–118. Springer,
2006.

[74] Y. K. Lee, K. Sakiyama, L. Batina, and I. Verbauwhede. Elliptic-Curve-
Based Security Processor for RFID. IEEE Transactions on Computers,
57(11):1514–1527, Nov. 2008.

[75] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring Polynomials with
Rational Coefficients. Mathematische Annalen, 261(4):515–534, 1982.

[76] T. Lepoint and M. Naehrig. A Comparison of the Homomorphic
Encryption Schemes FV and YASHE, pages 318–335. Progress in
Cryptology – AFRICACRYPT 2014: 7th International Conference on
Cryptology in Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings,
Springer International Publishing, Cham, 2014.

[77] T. Lepoint and M. Naehrig. A Comparison of the Homomorphic
Encryption Schemes FV and YASHE. In Progress in Cryptology —
AFRICACRYPT 2014, volume 8469 of Lecture Notes in Computer Science,
pages 318–335. Springer, 2014.

[78] R. Lindner and C. Peikert. Better Key Sizes (and Attacks) for LWE-based
Encryption. CT-RSA 2011, pages 319–339, 2011.

[79] H. Lipmaa. An Oblivious Transfer Protocol with Log-Squared
Communication. In Information Security: 8th International Conference,
ISC 2005, Singapore, September 20-23, 2005. Proceedings, pages 314–328,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

BIBLIOGRAPHY 155

[80] M. Liu and P. Q. Nguyen. Solving BDD by Enumeration: An Update. In
Proceedings of the 13th International Conference on Topics in Cryptology,
CT-RSA’13, pages 293–309, Berlin, Heidelberg, 2013. Springer-Verlag.

[81] Z. Liu, H. Seo, S. S. Roy, J. Großschädl, H. Kim, and I. Verbauwhede.
Efficient Ring-LWE Encryption on 8-Bit AVR Processors. In Cryptographic
Hardware and Embedded Systems – CHES 2015: 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, pages
663–682, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[82] J. López and R. Dahab. Improved Algorithms for Elliptic Curve Arithmetic
in GF (2n). In Selected Areas in Cryptography — SAC’98, volume 1556 of
Lecture Notes in Computer Science, pages 201–212. Springer, 1999.

[83] A. López-Alt, E. Tromer, and V. Vaikuntanathan. On-the-fly Multiparty
Computation on the Cloud via Multikey Fully Homomorphic Encryption.
In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of
Computing, pages 1219–1234, New York, NY, USA, 2012. ACM.

[84] V. Lyubashevsky. Lattice Signatures without Trapdoors. In Proceedings
of the 31st Annual international conference on Theory and Applications
of Cryptographic Techniques, EUROCRYPT’12, pages 738–755, Berlin,
2012. Springer-Verlag.

[85] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices
and Learning with Errors over Rings. In Advances in Cryptology –
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 1–23. Springer Berlin Heidelberg, 2010.

[86] Y. Ma and L. Wanhammar. A Hardware Efficient Control of Memory
Addressing for High-performance FFT Processors. Signal Processing,
IEEE Transactions on, 48(3):917–921, Mar 2000.

[87] C. A. Melchor and P. Gaborit. A Fast Private Information Retrieval
Protocol. In 2008 IEEE International Symposium on Information Theory,
pages 1848–1852, July 2008.

[88] D. Micciancio. The Hardness of the Closest Vector Problem with
Preprocessing. IEEE Trans. Information Theory, 47(3):1212–1215, 2001.

[89] V. Miller. Uses of Elliptic Curves in Cryptography. Advances in Cryptology,
Crypto’85, 218:417–426, 1986.

[90] C. Moore, N. Hanley, J. McAllister, M. O’Neill, E. O’Sullivan, and X. Cao.
Targeting FPGA DSP Slices for a Large Integer Multiplier for Integer
Based FHE. In Financial Cryptography and Data Security Workshops,

156 BIBLIOGRAPHY

the 1st Workshop on Applied Homomorphic Cryptography and Encrypted
Computing (WAHC 2013), volume 7862 of Lecture Notes in Computer
Science, pages 226–237. Springer, 2013.

[91] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can Homomorphic
Encryption Be Practical? In Proceedings of the 3rd ACM Workshop on
Cloud Computing Security Workshop (CCSW 2011), pages 113–124. ACM,
2011.

[92] National Institute of Standard and Technology. FIPS 186-2,
Digital Signature Standard, Federal Information Processing Standards
Publication, 2000.

[93] National Institute of Standards and Technology. Discussion
Paper: the Transitioning of Cryptographic Algorithms and Key
Sizes. http://csrc.nist.gov/groups/ST/key_mgmt/documents/
Transitioning_CryptoAlgos_070209.pdf, 2009.

[94] National Institute of Standards and Technology. Digital signature standard
(DSS). Federal Information Processing Standard, FIPS PUB 186-4, July
2013.

[95] National Institute of Standards and Technology. NIST Kicks Off
Effort to Defend Encrypted Data from Quantum Computer Threat,
2016. www.nist.gov/news-events/news/2016/04/nist-kicks-effort-defend-
encrypted-data-quantum-computer-threat.

[96] T. Oder, T. Schneider, T. Pöppelmann, and T. Güneysu. Practical
CCA2-Secure and Masked Ring-LWE Implementation. Cryptology ePrint
Archive, Report 2016/1109, 2016. http://eprint.iacr.org/2016/1109.

[97] K. Okeya, T. Takagi, and C. Vuillaume. Efficient Representations on
Koblitz Curves with Resistance to Side Channel Attacks. In Proc. the 10th
Australasian Conference on Information Security and Privacy — ACISP
2005, volume 3574 of Lecture Notes in Computer Science, pages 218–229.
Springer, 2005.

[98] A. Park and D. G. Han. Chosen Ciphertext Simple Power Analysis on
Software 8-bit Implementation of Ring-LWE Encryption. In 2016 IEEE
Asian Hardware-Oriented Security and Trust (AsianHOST), pages 1–6,
Dec 2016.

[99] P. Pessl. Analyzing the Shuffling Side-Channel Countermeasure for
Lattice-Based Signatures. In Progress in Cryptology – INDOCRYPT
2016: 17th International Conference on Cryptology in India, Kolkata,
India, December 11-14, 2016, Proceedings, pages 153–170, Cham, 2016.
Springer International Publishing.

http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://csrc.nist.gov/groups/ST/key_mgmt/documents/Transitioning_CryptoAlgos_070209.pdf
http://eprint.iacr.org/2016/1109

BIBLIOGRAPHY 157

[100] P. Pessl and M. Hutter. Curved Tags — A Low-Resource ECDSA
Implementation tailored for RFID. In Workshop on RFID Security —
RFIDSec 2014, 2014.

[101] J. Pollard. The Fast Fourier Transform in a Finite Field. Mathematics of
Computation, 25:365–374, 1971.

[102] J. M. Pollard. A Monte Carlo Method for Factorization. BIT Numerical
Mathematics, 15(3):331–334, 1975.

[103] T. Pöppelmann, L. Ducas, and T. Güneysu. Enhanced Lattice-Based
Signatures on Reconfigurable Hardware, pages 353–370. Cryptographic
Hardware and Embedded Systems – CHES 2014: 16th International
Workshop, Busan, South Korea, September 23-26, 2014. Proceedings,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[104] T. Pöppelmann and T. Güneysu. Towards Efficient Arithmetic for
Lattice-Based Cryptography on Reconfigurable Hardware. In Progress in
Cryptology – LATINCRYPT 2012, volume 7533 of LNCS, pages 139–158.
Springer Berlin, 2012.

[105] T. Pöppelmann and T. Güneysu. Area Optimization of Lightweight
Lattice-based Encryption on Reconfigurable Hardware. In 2014 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 2796–
2799, June 2014.

[106] T. Pöppelmann and T. Güneysu. Towards Practical Lattice-Based Public-
Key Encryption on Reconfigurable Hardware. In Selected Areas in
Cryptography – SAC 2013, Lecture Notes in Computer Science, pages
68–85. Springer Berlin Heidelberg, 2014.

[107] T. Pöppelmann, M. Naehrig, A. Putnam, and A. Macias. Accelerating
Homomorphic Evaluation on Reconfigurable Hardware. In Cryptographic
Hardware and Embedded Systems – CHES 2015: 17th International
Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, pages
143–163, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[108] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K. Constantinides,
J. Demme, H. Esmaeilzadeh, J. Fowers, G. P. Gopal, J. Gray, M. Haselman,
S. Hauck, S. Heil, A. Hormati, J. Y. Kim, S. Lanka, J. Larus,
E. Peterson, S. Pope, A. Smith, J. Thong, P. Y. Xiao, and D. Burger. A
Reconfigurable Fabric for Accelerating Large-scale Datacenter Services. In
2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA), pages 13–24, June 2014.

158 BIBLIOGRAPHY

[109] C. Rebeiro and D. Mukhopadhyay. Power Attack Resistant Efficient
FPGA Architecture for Karatsuba Multiplier. In VLSID ’08: Proceedings
of the 21st International Conference on VLSI Design, pages 706–711,
Washington, DC, USA, 2008. IEEE Computer Society.

[110] C. Rebeiro, S. S. Roy, and D. Mukhopadhyay. Pushing the Limits of
High-Speed GF (2m) Elliptic Curve Scalar Multiplication on FPGAs.
In Cryptographic Hardware and Embedded Systems – CHES 2012:
14th International Workshop, Leuven, Belgium, September 9-12, 2012.
Proceedings, pages 494–511, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

[111] O. Regev. On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing, STOC ’05, pages 84–93, New York,
NY, USA, 2005. ACM.

[112] O. Regev. Lattices in Computer Science. Lecture notes of a course
given in Tel Aviv University., 2009. http://www.cims.nyu.edu/~regev/
teaching/lattices_fall_2009/.

[113] O. Regev. On Lattices, Learning with Errors, Random Linear Codes, and
Cryptography. J. ACM, 56(6), 2009.

[114] O. Reparaz, R. de Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede.
Additively Homomorphic Ring-LWE Masking. In Post-Quantum
Cryptography: 7th International Workshop, PQCrypto 2016, Fukuoka,
Japan, February 24-26, 2016, Proceedings, pages 233–244, Cham, 2016.
Springer International Publishing.

[115] O. Reparaz, S. S. Roy, R. de Clercq, F. Vercauteren, and I. Verbauwhede.
Masking Ring-LWE. Journal of Cryptographic Engineering, 6(2):139–153,
2016.

[116] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede. A Masked
Ring-LWE Implementation. In Cryptographic Hardware and Embedded
Systems – CHES 2015: 17th International Workshop, Saint-Malo, France,
September 13-16, 2015, Proceedings, pages 683–702, Berlin, Heidelberg,
2015. Springer Berlin Heidelberg.

[117] R. L. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital
Signatures and Public-key Cryptosystems. Commun. ACM, 21(2):120–126,
Feb. 1978.

[118] S. S. Roy, J. Fan, and I. Verbauwhede. Accelerating Scalar Conversion
for Koblitz Curve Cryptoprocessors on Hardware Platforms. IEEE

http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2009/
http://www.cims.nyu.edu/~regev/teaching/lattices_fall_2009/

BIBLIOGRAPHY 159

Transactions on Very Large Scale Integration (VLSI) Systems, 23(5):810–
818, May 2015.

[119] S. S. Roy, K. Järvinen, and I. Verbauwhede. Lightweight Coprocessor for
Koblitz Curves: 283-Bit ECC Including Scalar Conversion with only 4300
Gates. In Cryptographic Hardware and Embedded Systems – CHES 2015:
17th International Workshop, Saint-Malo, France, September 13-16, 2015,
Proceedings, pages 102–122, Berlin, Heidelberg, 2015. Springer Berlin
Heidelberg.

[120] S. S. Roy, K. Jarvinen, F. Vercauteren, V. Dimitrov, and I. Verbauwhede.
Modular Hardware Architecture for Somewhat Homomorphic Function
Evaluation. Cryptology ePrint Archive, Report 2015/337, 2015. http:
//eprint.iacr.org/.

[121] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede. Compact
and Side Channel Secure Discrete Gaussian Sampling. Cryptology ePrint
Archive, Report 2014/591, 2014. http://eprint.iacr.org/.

[122] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede.
Compact Ring-LWE Cryptoprocessor. In Cryptographic Hardware and
Embedded Systems – CHES 2014, volume 8731 of Lecture Notes in
Computer Science, pages 371–391. Springer Berlin Heidelberg, 2014.

[123] S. S. Roy, F. Vercauteren, and I. Verbauwhede. High Precision Discrete
Gaussian Sampling on FPGAs. In Selected Areas in Cryptography – SAC
2013, Lecture Notes in Computer Science, pages 383–401. Springer Berlin
Heidelberg, 2014.

[124] P. R. Schaumont. A Practical Introduction to Hardware/Software Codesign.
Springer, 2nd edition, 2013.

[125] C. P. Schnorr and M. Euchner. Lattice Basis Reduction: Improved
Practical Algorithms and Solving Subset Sum Problems. Mathematical
Programming, 66(1):181–199, 1994.

[126] P. W. Shor. Algorithms for Quantum Computation: Discrete Logarithms
and Factoring. In Proceedings of the 35th Annual Symposium on
Foundations of Computer Science, SFCS ’94, pages 124–134, Washington,
DC, USA, 1994. IEEE Computer Society.

[127] N. Smart and F. Vercauteren. Fully Homomorphic Encryption with
Relatively Small Key and Ciphertext Sizes. In Public Key Cryptography
– PKC 2010, volume 6056 of Lecture Notes in Computer Science, pages
420–443. Springer Berlin Heidelberg, 2010.

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

160 BIBLIOGRAPHY

[128] N. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations.
Designs, Codes and Cryptography, 71(1):57–81, 2014.

[129] J. A. Solinas. Efficient Arithmetic on Koblitz Curves. Designs, Codes
and Cryptography, 19(2–3):195–249, 2000.

[130] D. Stehlé and R. Steinfeld. Making NTRU as Secure as Worst-Case
Problems over Ideal Lattices. In Advances in Cryptology – EUROCRYPT
2011, volume 6632 of Lecture Notes in Computer Science, pages 27–47.
Springer Berlin Heidelberg, 2011.

[131] P. Szczechowiak, L. B. Oliveira, M. Scott, M. Collier, and R. Dahab.
NanoECC: Testing the Limits of Elliptic Curve Cryptography in Sensor
Networks. In European Conference on Wireless Sensor Networks — ESWN
2008, volume 4913 of Lecture Notes in Computer Science, pages 305–320.
Springer, 2008.

[132] I. T. U. Telecommunication Development Bureau. ICT Facts and
Figures. https://www.itu.int/en/ITU-D/Statistics/Documents/
facts/ICTFactsFigures2015.pdf, 2015.

[133] Texas Instruments. MSP430F261x and MSP430F241x, Jun. 2007, Rev.
Nov. 2012. http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
(accessed July. 22, 2015).

[134] The Guardian. The NSA files: Decoded. https://www.theguardian.
com/us-news/the-nsa-files, November 2013.

[135] V. S. Dimitrov, K. U. Järvinen, M. J. Jacobson, W. F. Chan, and Z. Huang.
FPGA Implementation of Point Multiplication on Koblitz Curves using
Kleinian Integers. In Cryptographic Hardware and Embedded Systems,
CHES’06, pages 445–459, Berlin, Heidelberg, 2006. Springer-Verlag.

[136] J. van de Pol and N. P. Smart. Estimating Key Sizes for High Dimensional
Lattice-Based Systems. In IMA Int. Conf., volume 8308 of Lecture Notes
in Computer Science, pages 290–303. Springer, 2013.

[137] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
Homomorphic Encryption over the Integers. In Advances in Cryptology —
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 24–43. Springer, 2010.

[138] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
Homomorphic Encryption over the Integers. In Advances in Cryptology –
EUROCRYPT 2010: 29th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, French Riviera, May 30 –

https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
https://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2015.pdf
http://www.ti.com/lit/ds/symlink/msp430f2618.pdf
https://www.theguardian.com/us-news/the-nsa-files
https://www.theguardian.com/us-news/the-nsa-files

BIBLIOGRAPHY 161

June 3, 2010. Proceedings, pages 24–43, Berlin, Heidelberg, 2010. Springer
Berlin Heidelberg.

[139] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
University Press, New York, NY, USA, 1999.

[140] V.S. Dimitrov, K.U. Järvinen, M.J. Jacobson, W.F. Chan, and Z.
Huang,. Provably Sublinear Point Multiplication on Koblitz Curves
and Its Hardware Implementation. In Computers, IEEE Transactions on,
volume 57, pages 1469–1481, Nov. 2008.

[141] C. Vuillaume, K. Okeya, and T. Takagi. Defeating Simple Power Analysis
on Koblitz Curves. IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, E89-A(5):1362–1369, May 2006.

[142] W. Wang and X. Huang. FPGA Implementation of a Large-Number
Multiplier for Fully Homomorphic Encryption. In IEEE International
Symposium on Circuits and Systems (ISCAS 2013), pages 2589–2592,
2013.

[143] W. Wang and X. Huang. VLSI Design of a Large-Number Multiplier for
Fully Homomorphic Encryption. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 22(9):1879–1887, 2014.

[144] E. Wenger. Hardware Architectures for MSP430-Based Wireless Sensor
Nodes Performing Elliptic Curve Cryptography. In Applied Cryptography
and Network Security — ACNS 2013, volume 7954 of Lecture Notes in
Computer Science, pages 290–306. Springer, 2013.

[145] E. Wenger and M. Hutter. A Hardware Processor Supporting Elliptic
Curve Cryptography for Less than 9 kGEs. In Smart Card Research and
Advanced Applications — CARDIS 2011, volume 7079 of Lecture Notes
in Computer Science, pages 182–198. Springer, 2011.

[146] L. F. Williams, Jr. A Modification to the Half-interval Search (Binary
Search) Method. In Proceedings of the 14th Annual Southeast Regional
Conference, ACM-SE 14, pages 95–101, New York, NY, USA, 1976. ACM.

[147] Xilinx. LogiCORE IP Virtex-6 FPGA Embedded Tri-Mode Ethernet
MAC wrapper (ug800), 3 2011. http://www.xilinx.com/support/
documentation/ip_documentation/ug800_v6_emac.pdf.

[148] Xilinx. Virtex-6 FPGA Embedded Tri-Mode Ethernet MAC (ug368),
3 2011. http://www.xilinx.com/support/documentation/user_
guides/ug368.pdf.

http://www.xilinx.com/support/documentation/ip_documentation/ug800_v6_emac.pdf
http://www.xilinx.com/support/documentation/ip_documentation/ug800_v6_emac.pdf
http://www.xilinx.com/support/documentation/user_guides/ug368.pdf
http://www.xilinx.com/support/documentation/user_guides/ug368.pdf

162 BIBLIOGRAPHY

[149] Xilinx. ML605 Hardware User Guide, 2012. http://www.xilinx.com/
support/documentation/boards_and_kits/ug534.pdf.

[150] X. Yi, M. G. Kaosar, R. Paulet, and E. Bertino. Single-Database
Private Information Retrieval from Fully Homomorphic Encryption. IEEE
Transactions on Knowledge and Data Engineering, 25(5):1125–1134, May
2013.

[151] ZDNet. The Internet of Things and Big Data: Unlocking the Power.
http://www.zdnet.com/, March 2015.

http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.zdnet.com/

Curriculum Vitae

Sujoy Sinha Roy was born on June 4th in Hooghly, India. He received the
B.E degree in Electronics and Telecommunication Engineering from Bengal
Engineering and Science University, Shibpur in 2007. He subsequently worked
as an engineer in Tata Consultancy Services, Mumbai. In 2012, he received
the M.S. degree in Computer Science and Engineering from Indian Institute of
Technology, Kharagpur.

In September 2012, he started his PhD at the COSIC (Computer Security
and Industrial Cryptography) research group at the Department of Electrical
Engineering (ESAT) of the KU Leuven. His research area has been broadly in
the field of efficient implementation of public key cryptography. His research
has been generously funded by the European Commission through the Erasmus
Mundus PhD Scholarship.

163

List of publications

Journals

1. Sujoy Sinha Roy, Frederik Vercauteren, Jo Vliegen, Ingrid Verbauwhede,
"Hardware Assisted Fully Homomorphic Function Evaluation and En-
crypted Search", Accepted in IEEE Transactions on Computers as a regular
paper. Preprint available on IEEE Xplore, DOI: 10.1109/TC.2017.2686385.

2. Sujoy Sinha Roy, Junfeng Fan, Ingrid Verbauwhede, "Accelerating Scalar
Conversion for Koblitz Curve Cryptoprocessors on Hardware Platforms",
In IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 23, no. 5, pp. 810-818, May 2015. 2015.

3. Donald Donglong Chen, Nele Mentens, Frederik Vercauteren, Sujoy
Sinha Roy, Ray CC Cheung, Derek Pao, Ingrid Verbauwhede, "High-
Speed Polynomial Multiplication Architecture for Ring-LWE and SHE
Cryptosystems", In IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 62, no. 1, pp. 157-166, Jan. 2015.

4. Oscar Reparaz, Sujoy Sinha Roy, Ruan de Clercq, Frederik Vercauteren,
Ingrid Verbauwhede, "Masking ring-LWE", In Journal of Cryptographic
Engineering, Springer Berlin Heidelberg, 2016, Vol.6(2), p.139-153.

5. Zhe Liu, Thomas Pöppelmann, Tobias Oder, Hwajeong Seo, Sujoy
Sinha Roy, Tim Güneysu, Johann Großschädl, Howon Kim, Ingrid
Verbauwhede, "High-Performance Ideal Lattice-Based Cryptography on 8-
bit AVR Microcontrollers", Accepted in ACM Transactions on Embedded
Computing Systems.

6. Kimmo Järvinen, Sujoy Sinha Roy, Ingrid Verbauwhede, "Arithmetic
of τ -adic Expansions for Lightweight Koblitz Curve Cryptography",
Under review in Journal of Cryptographic Engineering, Springer Berlin
Heidelberg.

165

166 LIST OF PUBLICATIONS

Conferences and workshops

1. Sujoy Sinha Roy, Angshuman Karmakar, Ingrid Verbauwhede, "Ring-
LWE: Applications to Cryptography and Their Efficient Realization", In
International Conference on Security, Privacy, and Applied Cryptography
Engineering, Springer International Publishing, Volume 10076 of the book
series Lecture Notes in Computer Science (LNCS).

2. Oscar Reparaz, Ruan de Clercq, Sujoy Sinha Roy, Frederik Vercauteren,
Ingrid Verbauwhede, "Additively homomorphic ring-LWE masking",
In International Workshop on Post-Quantum Cryptography, Springer
International Publishing, Volume 9606 of the book series Lecture Notes
in Computer Science (LNCS).

3. Jeroen Bosmans, Sujoy Sinha Roy, Kimmo Järvinen, Ingrid Verbauwhede,
"A Tiny Coprocessor for Elliptic Curve Cryptography over the 256-bit
NIST Prime Field", In 2016 29th International Conference on VLSI Design
and 2016 15th International Conference on Embedded Systems (VLSID).

4. Sujoy Sinha Roy, Kimmo Järvinen, Frederik Vercauteren, Vassil Dimitrov,
Ingrid Verbauwhede, "Modular hardware architecture for somewhat
homomorphic function evaluation", In International Workshop on
Cryptographic Hardware and Embedded Systems CHES 2015, pp 164-184,
Springer Berlin Heidelberg, Volume 9293 of the book series Lecture Notes
in Computer Science (LNCS).

5. Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Großschädl, Howon
Kim, Ingrid Verbauwhede, "Efficient Ring-LWE Encryption on 8-Bit AVR
Processors", In International Workshop on Cryptographic Hardware and
Embedded Systems CHES 2015, pp 663-682, Springer Berlin Heidelberg,
Volume 9293 of the book series Lecture Notes in Computer Science (LNCS).

6. Sujoy Sinha Roy, Kimmo Järvinen, Ingrid Verbauwhede, "Lightweight
coprocessor for Koblitz curves: 283-bit ECC including scalar conversion
with only 4300 gates", In International Workshop on Cryptographic
Hardware and Embedded Systems CHES 2015, pp 102-122, Springer
Berlin Heidelberg, Volume 9293 of the book series Lecture Notes in
Computer Science (LNCS).

7. Oscar Reparaz, Sujoy Sinha Roy, Frederik Vercauteren, Ingrid Ver-
bauwhede, "A masked ring-LWE implementation", In International
Workshop on Cryptographic Hardware and Embedded Systems, CHES
2015, pp 683-702, Volume 9293 of the book series Lecture Notes in
Computer Science (LNCS).

LIST OF PUBLICATIONS 167

8. Ruan De Clercq, Sujoy Sinha Roy, Frederik Vercauteren, Ingrid
Verbauwhede, "Efficient software implementation of ring-LWE encryption",
In DATE ’15 Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition Pages 339-344.

9. Ingrid Verbauwhede, Josep Balasch, Sujoy Sinha Roy, Anthony Van
Herrewege, "Circuit challenges from cryptography", In 2015 IEEE
International Solid-State Circuits Conference - (ISSCC) Digest of Technical
Papers, San Francisco, CA, 2015, pp. 1-2.

10. Sujoy Sinha Roy, Frederik Vercauteren, Nele Mentens, Donald Donglong
Chen, Ingrid Verbauwhede, "Compact ring- LWE cryptoprocessor", In
International Workshop on Cryptographic Hardware and Embedded
Systems CHES 2014: pp 371-391, Springer Berlin Heidelberg, Volume
8731 of the book series Lecture Notes in Computer Science (LNCS).

11. Sujoy Sinha Roy, Frederik Vercauteren, Ingrid Verbauwhede, "High
precision discrete Gaussian sampling on FPGAs", In International
Conference on Selected Areas in Cryptography, SAC 2013 pp 383-401,
Springer Berlin Heidelberg, Volume 8282 of the book series Lecture Notes
in Computer Science (LNCS).

FACULTY OF ENGINEERING SCIENCE
DEPARTMENT OF ELECTRICAL ENGINEERING

COMPUTER SECURITY AND INDUSTRIAL CRYPTOGRAPHY
Kasteelpark Arenberg 10, bus 2452

B-3001 Leuven
sujoy.sinharoy@esat.kuleuven.be

https://www.esat.kuleuven.be/cosic/

	Abstract
	Abbreviations
	List of Symbols
	Contents
	List of Figures
	List of Tables
	Introduction
	Summary of the thesis

	Background
	Introduction to public-key cryptography
	The elliptic-curve discrete logarithm problem
	Lattice problems

	Elliptic-curve cryptography over F2m
	Koblitz curves

	Primitives for arithmetic in F2m
	Reduction
	Multiplication
	Squaring
	Inversion

	Ring-LWE-based cryptography
	The LPR public-key encryption scheme
	Ring-LWE-based homomorphic encryption schemes

	Primitives for ring-LWE-based cryptography
	Discrete Gaussian sampler
	Polynomial arithmetic
	Division and rounding

	Summary

	Coprocessor for Koblitz curves
	Introduction
	Koblitz curve scalar conversion
	Scalar reduction
	Computation of -adic representation

	Point multiplication
	Architecture
	Results and comparisons
	Summary

	Discrete Gaussian sampling
	Introduction
	The Knuth-Yao algorithm
	DDG tree on the fly
	Parameter sets for the discrete Gaussian sampler
	Construction of the DDG tree during sampling
	Storing the probability matrix efficiently
	Fast sampling using a lookup table

	The sampler architecture
	The bit-scanning unit
	Row-number and column-length counters
	The distance counter
	The lookup table for fast sampling

	Timing and simple power analysis
	Strategies to mitigate the side-channel leakage
	Efficient implementation of the random shuffling

	Experimental results
	Summary

	Ring-LWE public key encryption processor
	Introduction
	Polynomial multiplication
	Optimization of the NTT computation
	Optimizing the fixed computation cost
	Optimizing the forward NTT computation cost
	Optimizing the memory access scheme

	The NTT processor organization
	Pipelining the NTT processor
	The ring-LWE encryption scheme
	Hardware architecture

	Experimental results
	Summary

	Modular architecture for somewhat homomorphic function evaluation
	Introduction
	System setup
	High-level optimizations
	Architecture
	Architecture for polynomial arithmetic
	Architecture for lifting back and forth in Rq RQ

	Results
	Summary

	Recryption-box assisted homomorphic function evaluation
	Introduction
	Instantiations of the recryption-box
	Encrypted search
	Implementation
	Parameter set used in the implementation
	Algorithmic optimizations for efficient architecture
	Architecture
	Inverse CRT
	The memory
	The discrete Gaussian sampler
	The ethernet communication unit

	Results
	Summary

	Conclusions and future work
	Conclusions
	Future works

	High speed scalar conversion for Koblitz curves
	Improved double digit NAF generation
	Hardware architecture
	Implementation results

	Implementation of operations used by algorithm 6
	Bibliography
	Curriculum Vitae
	List of publications

