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Abstract

Multi-agent system (MAS) literature often assumes decentralized MAS to be
especially suited for dynamic and large scale problems. This assumption is based
on the decentralized nature of MAS that allows for partitioning of the problem
space such that individual agents can autonomously solve parts of the problem.
This enables agents to quickly respond to changes in the problem. There is,
however, little scientific evidence to support this assumption. Additionally, the
prevailing paradigm in operational research is the use of centralized algorithms.

The main problem addressed in this dissertation is the lack of a systematic
evaluation of decentralized MAS and centralized algorithms on dynamic and
large scale logistics problems. The problem under consideration is the dynamic
pickup-and-delivery problem with time windows (dynamic PDPTW). There are
four requirements of such an evaluation. First, exact definitions of dynamism and
scale are needed such that these properties can be varied independently. Second,
a dataset of dynamic PDPTW instances with varying levels of dynamism and
scale is required. Third, there is a need for a realistic and fair simulation platform
that allows real-time simulation of dynamic PDPTW and supports centralized
as well as decentralized algorithms. Fourth, representative centralized and
decentralized implementations are required.

Reproducibility is one of the main principles of the scientific method. Therefore,
all components needed for a systematic evaluation should be made open source.
A sub-problem also addressed in this dissertation is that of optimizing MAS.

This dissertation comprises five major contributions. Dynamism, urgency, and
scale are formally defined in the context of dynamic PDPTWs (contribution 1).
Existing definitions of dynamism often mix the concept of dynamism with that
of urgency. An empirical evaluation of our definitions of dynamism and urgency
shows that the degree of dynamism is negatively correlated with operating costs
while more urgent scenarios are correlated with significantly higher operating
costs. This justifies the conceptual separation of dynamism and urgency. We
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further define scale as a multiplier applied to the number of vehicles and
orders in a problem. These three formal definitions enable experiments that
investigate the influence of one property on operational costs independently of
other properties.

Based on the formal definitions of dynamism, urgency, and scale, a benchmark
dataset and problem instance generator of dynamic PDPTWs are constructed
(contribution 2). The generated benchmark dataset allows systematic
comparison of algorithms subject to varying problem properties.

For performing real-time experiments, a new open-source logistics simulator,
RinSim, is developed (contribution 3). The simulator has support for both
decentralized MAS as well as centralized algorithms and supports the dataset
with different levels of dynamism, urgency, and scale. Both the centralized
as well as the decentralized interface of RinSim provide the same software
limitations and hardware constraints, thereby providing a fair environment for
comparing performance.

A MAS based on the dynamic contract-net protocol (DynCNET) and a
centralized tabu search algorithm, based on the OptaPlanner optimization
library, are implemented. Using the measures, dataset, and RinSim, a systematic
evaluation of these two implementations is conducted (contribution 4). This
evaluation experiment is the first of its kind to compare the influence of
dynamism, urgency, and scale on the performance of two classes of algorithms
in such a systematic, thorough, and fair manner. The results of the comparison
show that the solutions found by the centralized algorithm cost, on average, only
94.2% of the operating cost of the solutions found by the DynCNET MAS. This
indicates that the centralized algorithms generally perform better compared
to the MAS. However, for scenarios that are medium to very dynamic, very
urgent, and medium to large scale, the average relative operating cost of the
centralized algorithm is 112.3%, indicating that under these circumstances, the
MAS performs better compared to the centralized algorithm. When assessing
the performance of the algorithms individually per scenario property, there is
not one algorithm that generally outperforms the other on that dimension.

To investigate whether the performance of agents can be optimized, the use
of hyper-heuristics, more specifically genetic programming (GP), for MAS
development is investigated (contribution 5). The heuristic that is evolved
by GP is used as agent bid function in the auction process of CNET. The
results show that our hyper-heuristic outperforms a reference algorithm, based
on OptaPlanner, in all scenarios. In addition, the decentralized hyper-
heuristic approach even outperforms the centralized reference algorithm in
most situations.



Beknopte samenvatting

In literatuur over multi-agent systemen (MAS’en) wordt vaak aangenomen
dat decentrale MAS’en erg geschikt zijn voor dynamische en grootschalige
problemen. Deze aanname is gebaseerd op de decentrale eigenschappen van
MAS’en die toelaten om problemen zodanig te splitsen dat agenten autonoom
deelproblemen kunnen oplossen. Dit stelt agenten in staat om snel te reageren op
veranderingen. Er is echter weinig wetenschappelijk bewijs voor deze aanname.
Daarnaast zijn juist centrale algoritmen dominant in operationeel onderzoek.

Het voornaamste probleem dat wordt behandeld in deze dissertatie is het gebrek
aan een systematische evaluatie van decentrale MAS’en en centrale algoritmen
op dynamische en grootschalige logistieke problemen. Het logistieke probleem
dat wordt bestudeerd is het dynamische pickup-and-delivery probleem met
tijdvensters (dynamisch PDPTW). Er zijn vier vereisten voor een goede evaluatie.
Ten eerste zijn er exacte definities van dynamiek en schaal vereist zodanig dat
deze eigenschappen onafhankelijk gevarieerd kunnen worden. Ten tweede is
er een dataset van dynamische PDPTW instanties met verschillende gradaties
van dynamiek en schaal benodigd. De derde vereiste is een realistisch en
onbevooroordeeld simulatie platform dat een dynamisch PDPTW in realtime kan
simuleren en ondersteuning biedt voor zowel centrale als decentrale algoritmen.
Ten vierde zijn er representatieve implementaties van centrale en decentrale
algoritmes nodig.

Reproduceerbaarheid is een van de belangrijkste principes van de wetenschappe-
lijke methode. Daarom moeten alle bovengenoemde componenten open source
beschikbaar worden gemaakt. Een probleem dat ook wordt behandeld in deze
dissertatie is het optimaliseren van MAS’en.

Deze dissertatie beschrijft vijf grote contributies. Dynamiek, urgentie, en schaal
zijn formeel gedefinieerd in de context van dynamische PDPTW (contributie 1).
Bestaande definities van dynamiek koppelen dynamiek vaak aan urgentie. Een
empirische evaluatie van onze definities wijst uit dat de mate van dynamiek
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negatief gecorreleerd is met operationele kosten terwijl meer urgente scenario’s
gecorreleerd zijn met significant hogere operationele kosten. Dit rechtvaardigt
de conceptuele scheiding van dynamiek en urgentie. We definiëren schaal als
een factor toegepast op het aantal voertuigen en bestellingen in een probleem.
Deze drie definities maken het mogelijk om de effecten van één eigenschap op
de operationele kosten te meten onafhankelijk van andere eigenschappen.

Gebaseerd op de formele definities van dynamiek, urgentie, en schaal is een
dataset en probleem instantie generator van dynamische PDPTWs geconstrueerd
(contributie 2). Deze benchmark dataset faciliteert systematische vergelijkingen
van algoritmen onderhevig aan variërende probleem eigenschappen.

RinSim is een nieuwe open-source simulator specifiek ontwikkeld voor realtime
logistieke experimenten (contributie 3). RinSim ondersteunt decentrale MAS’en,
centrale algoritmen, en de dataset met verschillende gradaties van dynamiek,
urgentie, en schaal. Zowel de centrale als de decentrale interface van RinSim
hebben dezelfde soft- en hardware beperkingen. Op deze manier biedt RinSim
een onbevooroordeelde omgeving voor het vergelijken van algoritme prestaties.

Een MAS, gebaseerd op het dynamisch contract-net protocol (DynCNET),
en een gecentraliseerd taboe zoek algoritme, gebaseerd op de OptaPlanner
optimalisatie bibliotheek, zijn geïmplementeerd. Met behulp van de formele
definities, dataset, en RinSim zijn deze implementaties systematisch geëvalueerd
(contributie 4). Dit evaluatie-experiment is het eerste in zijn soort dat de
invloed van dynamiek, urgentie, en schaal, op de prestaties van twee categorieën
algoritmen op een dusdanig systematische, grondige, en onbevooroordeelde
manier vergelijkt. De resultaten van deze vergelijking tonen aan dat de kosten
van de oplossingen die gevonden worden door het centrale algoritme gemiddeld
genomen maar 94.2% beslaan ten opzichte van de operationele kosten die
gevonden worden door het MAS. Dit geeft aan dat dit centrale algoritme over
het algemeen beter presteert ten opzichte van het MAS. Maar, voor scenario’s
die gemiddeld tot erg dynamisch zijn, erg urgent, en een gemiddelde tot grote
schaal hebben, zijn de gemiddelde relatieve operationele kosten van het centrale
algoritme 112.3%, het MAS werkt onder deze omstandigheden dus beter. Uit
het beoordelen van de prestaties van de algoritmen per probleem eigenschap
blijkt dat geen van de algoritmen in alle gevallen beter presteert dan de ander.

Om te onderzoeken of de prestaties van MAS’en kunnen worden geoptimaliseerd,
bestuderen we hyper-heuristieken, meer specifiek genetisch programmeren (GP)
(contributie 5). De heuristiek die wordt geëvolueerd door GP wordt gebruikt
als biedingsfunctie in het veiling proces van CNET. De resultaten laten zien
dat onze hyper-heuristiek in alle gevallen beter presteert dan het referentie
algoritme dat is gebaseerd op OptaPlanner. De decentrale hyper-heuristiek
presteert in de meeste gevallen zelfs beter dan het centrale referentie algoritme.
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Chapter 1

Introduction

Computational demands of most optimization problems grow at a superlinear
rate when their scale and dynamism increase. This dissertation constitutes
research on multi-agent systems (MAS’s) for dynamic optimization problems
in the domain of logistics. MAS’s are, due to their decentralized nature,
often assumed to be especially suited for large scale and dynamic problems.
An example dynamic optimization problem is the dynamic pickup and
delivery problem with time windows (PDPTW), which is an NP-hard logistics
problem (Savelsbergh & Sol, 1995). The prevailing paradigm for solving
logistics problems is the use of centralized optimization algorithms. There is
currently little scientific evidence that indicates that the centralized paradigm is
superior to the decentralized paradigm, or vice versa1. The main problem
addressed in this dissertation is the lack of an extensible and systematic
comparison between decentralized MAS’s and centralized algorithms in dynamic
optimization problems.

This dissertation comprises five major contributions, written as four separate
articles (van Lon et al., 2016, 2017; van Lon & Holvoet, 2015, 2017)2. Dynamism,
urgency, and scale are formally defined in the context of dynamic PDPTWs
(contribution 1). Using these definitions, a dataset with varying levels of
dynamism, urgency, and scale is constructed (contribution 2). For performing
experiments, a new logistics simulator, RinSim, was developed. RinSim
constitutes a technical contribution that provides a simulation platform for
comparing algorithms in real-time (contribution 3). Together, RinSim and

1In the remainder of this dissertation, references to ‘centralized versus decentralized’ should
always be interpreted as being in the context of dynamic PDPTW.

2Portions of the abstract, introduction, and conclusion are reused from these articles.
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the dataset enable the systematic evaluation of a decentralized MAS and a
centralized algorithm. The performance of both approaches is compared on
varying levels of dynamism, urgency, and scale (contribution 4). In this context,
performance is defined as minimizing operating costs, a combination of customer
waiting times and vehicle travel times. The results show that the centralized
approach performs better than the decentralized MAS in most cases, except
when the problem is medium to very dynamic, very urgent, and medium to large
scale. To investigate whether the performance of agents can be optimized, the use
of hyper-heuristics for MAS development is investigated (contribution 5). The
results of this experiment show that hyper-heuristics improve agent performance
significantly and even outperform the reference centralized algorithm in most
situations.

The remainder of this chapter discusses the context (Section 1.1), the problem
statement (Section 1.2), and the contributions (Section 1.3), in more detail.

1.1 Context

Multi-agent systems (Weiss, 1999; Wooldridge, 2002) make a broad research
area involving autonomous software entities, called agents, that typically have a
local view of the world. Areas include decentralized control systems, agent based
simulation, game theory, trust & reputation, negotiation, etc. In the present
dissertation we use MAS’s as a paradigm for designing decentrally controlled
systems.

In pickup and delivery problems (PDPs) a fleet of vehicles is tasked with the
pickup and delivery of customers or goods. Central to this dissertation is the
dynamic PDPTW (Berbeglia et al., 2010). The objective in dynamic PDPTW
is to serve all customers while minimizing fuel costs and time window violations.
Dynamism is often caused by the arrival of new orders (Pillac et al., 2013),
depending on their time windows, some of these orders may need to be serviced
urgently. In this dissertation, purely dynamic PDPTWs are considered. No
information about orders is known ahead of time, implying that algorithms
designed for PDPTWs are unable to plan ahead, all computations have to be
done online. In general, there are three different centralized approaches to the
PDP: exact methods, (meta)heuristics, and stochastic modeling or sampling.
Exact methods are known to be less scalable than non-exact methods (Pillac
et al., 2013). And, because of the NP-hard nature of PDP, exact methods
quickly become infeasible to use. Stochastic modeling or sampling assumes
knowledge of a priori information about the future, a possibility that is not
considered in this dissertation. Because of their capability of rapidly finding
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(sub-optimal) solutions, (meta)heuristics are used as a centralized reference
algorithm.

Agents can be applied to dynamic PDPTWs in a natural way. For example,
Fischer et al. (1995) use a truck agent that is responsible for operating a
vehicle and a shipping company agent responsible for handing out new tasks.
These agents can then participate in a dynamic version of contract-net protocol
(CNET), first introduced by Smith (1980). CNET is a decentralized auction
protocol for the task assignment problem. In CNET, agents can tender a task to
which potential contractors can respond by sending a bid. The task is assigned
to the agent with the best bid. Decentralized MAS’s are often considered to
be a good fit for large scale and dynamic problems because of their ability to
make swift local decisions (Fischer et al., 1995; Glaschenko et al., 2009; Weyns
et al., 2006). Collectively, the local decisions made by all agents aim to solve
the global optimization problem. Agents can make these local decisions using
two different approaches: 1) explicitly searching through the space of possible
schedules using an (exact or heuristic) optimization procedure, or, 2) using a
heuristic, a rule of thumb, that guides the agent by assigning priorities to actions
without explicitly searching the space of schedules. Creating a MAS using the
first approach can be done by using an algorithm or software library for the
PDPTW, such as OptaPlanner (De Smet et al., 2016). The second approach,
designing a heuristic that governs a single agent, is a challenging task. Local
decisions made by agents can have far reaching global consequences. However,
hyper-heuristics, a recent technique for the automatic design of heuristics, is a
promising alternative to human constructed heuristics.

Hyper-heuristics is a branch of optimization literature concerned with the
automatic design of heuristics (Burke et al., 2013). Genetic programming
(GP) is a subfield of evolutionary computing (Eiben & Smith, 2007), capable
of generating heuristics of arbitrary complexity. Just like any evolutionary
algorithm, GP maintains a population of solution candidates whom are
repeatedly recombined to increase their fitness using natural selection. GP can
be an effective hyper-heuristic for the design of a MAS because the effectiveness
of the entire MAS (global level) can be used as fitness indicator to evolve a
heuristic at the local level. This principle has been demonstrated before by
Beham et al. (2009) and van Lon et al. (2012).

1.2 Problem statement

The main problem addressed in this dissertation is the lack of a systematic
evaluation comparing decentralized MAS’s and centralized algorithms on
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logistics problems.

There are four requirements for a systematic evaluation of centralized and
decentralized algorithms with varying levels of dynamism, urgency, and scale.
First, measures for the problem properties under investigation are required.
These measures should be conceptually orthogonal, meaning that a measure for
one concept may not be (partially) mixed with aspects of other concepts. Such
a measure allows for independent variation of one problem property and study
its effect on optimization algorithms. Second, a problem instance generator
with varying levels of dynamism, urgency, and scale, that is based on these
measures, is required. With this problem instance generator a dataset can be
constructed that can serve as a benchmark. Third, a realistic and fair logistics
simulation platform is required that allows simulating problem instances from
the dataset while supporting centralized and decentralized algorithms. To be
able to investigate time related properties such as dynamism and urgency, the
simulator must be able to simulate in real-time. Fairness of the simulator should
be ensured by subjecting both algorithm paradigms to the same constraints with
respect to hardware resources and software limitations. Fourth, representative
centralized and decentralized implementations are required.

Additionally, all source code, datasets, and results produced in such an evaluation
should be made publicly available. It has been argued before by Ince et al.
(2012) and van Lon & Holvoet (2013) that opening all relevant artifacts would
aid reproducibility, accountability, and extensibility of research.

A sub-problem addressed in this dissertation is that of optimizing MAS for
logistics. This is a challenging task due to the decentralized nature of MAS’s,
at algorithm design time it is hard to foresee the consequences that an action
of a single agent has on the collective.

1.3 Summary of contributions and outline

The five contributions of this dissertation are summarized in this section. For
each contribution, the relevant content chapters that describe the contribution
are indicated. The four content chapters, chapters 2 to 5, are papers3 that
are included verbatim, with the following exceptions: typographical errors
are corrected, references between the papers have been changed into their
corresponding chapter names, and ‘paper’ has been changed to ‘chapter’ when
appropriate. The dissertation is concluded in Chapter 6.

3Chapters 2, 3, and 5 are published papers. At the time of writing, Chapter 4 is under
review, the submitted version is included in this dissertation.
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1.3.1 Measures of dynamic pickup-and-delivery problems

Formal definitions of dynamism and urgency (Chapter 2), and scale (Chapter 3)
are put forward. Existing definitions of dynamism often mix the concept of
dynamism with that of urgency. An empirical evaluation of the definitions of
dynamism and urgency shows that changes in dynamism and urgency have a
different influence on the solution quality in dynamic logistic problems. This
justifies the conceptual separation of dynamism and urgency. We further define
scale as a multiplier applied to the number of vehicles and orders in a problem.
These three formal definitions enable experiments that investigate the influence
of one property on solution quality independently of other properties.

1.3.2 Dataset

Based on the formal definitions of dynamism, urgency, and scale, a benchmark
dataset and problem instance generator are presented (Chapter 3). To avoid any
interactions between the variables, the dataset generator is created meticulously.
The generated benchmark dataset allows systematic comparison of algorithms.
By open sourcing the dataset generator, other researchers are enabled to create
their own datasets and conduct new investigations.

1.3.3 A realistic simulation platform

The real-time logistics simulator, RinSim, is presented as a technical contribution
(Chapter 4). The simulator has support for both decentralized MAS’s as well as
centralized algorithms and supports the dataset with different levels of dynamism,
urgency, and scale. Both the centralized as well as the decentralized interface
of RinSim provide the same software limitations and hardware constraints,
thereby providing a fair environment for comparing performance. RinSim is
entirely open-source to support reproducibility of all experiments and to allow
extensibility of all components.

1.3.4 Systematic evaluation of centralized algorithms and
decentralized multi-agent systems

AMAS based on CNET and a centralized tabu search algorithm are implemented
(Chapter 4). Using the measures, dataset, and RinSim, a systematic evaluation
of these two implementations is conducted. This evaluation experiment is the
first of its kind to compare the influence of dynamism, urgency, and scale on
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the performance of two classes of algorithms in such a systematic, thorough,
and fair manner. The code of the algorithms as well as the experiment results
data are published to allow complete reproducibility of the evaluation. Because
all components are completely open source, this evaluation provides a baseline
of performance comparisons between centralized and decentralized algorithms.

1.3.5 Genetic programming of multi-agent systems

Based on the evaluation of centralized and decentralized algorithms, an
investigation on optimizing MAS is conducted (Chapter 5). The main hypothesis
is that hyper-heuristics, more specifically GP, can be used to improve agents
decentrally coordinated via CNET. The heuristic that is evolved by GP is used
as agent bid function in the auction process of CNET. This contribution, the
combination of hyper-heuristics and MAS, provides a first step towards the
automatic design of MAS’s.



Chapter 2

Measures of dynamism and
urgency in logistics

In order to evaluate the performance of algorithms on differing degrees of
dynamism, a formal definition of dynamism is required. This chapter contains
the paper:

van Lon, R. R. S., Ferrante, E., Turgut, A. E., Wenseleers, T.,
Vanden Berghe, G., & Holvoet, T. (2016). Measures of dynamism
and urgency in logistics. European Journal of Operational Research,
253(3), 614–624. doi:10.1016/j.ejor.2016.03.021

The definitions proposed in this chapter are the result of discussions led by Rinde
R.S. van Lon with all authors. Rinde R.S. van Lon did all the programming
and most of the writing, the other authors gave feedback on the writing and
Eliseo Ferrante contributed an early version of the related work section.

Abstract

Dynamism was originally defined as the proportion of online versus offline orders
in the literature on dynamic logistics. Such a definition however, loses meaning
when considering purely dynamic problems where all customer requests arrive
dynamically. Existing measures of dynamism are limited to either 1) measuring
the proportion of online versus offline orders or 2) measuring urgency, a concept

7
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that is orthogonal to dynamism, instead. This chapter defines separate and
independent formal definitions of dynamism and urgency applicable to purely
dynamic problems. Using these formal definitions, instances of a dynamic logistic
problem with varying levels of dynamism and urgency were constructed and
several route scheduling algorithms were executed on these problem instances.
Contrary to previous findings, the results indicate that dynamism is positively
correlated with route quality; urgency, however, is negatively correlated with
route quality. This chapter contributes the theory that dynamism and urgency
are two distinct concepts that deserve to be treated separately.

2.1 Introduction

Logistic optimization problems aim at minimizing costs while serving customers’
transportation requests. The most common problem formalization is the vehicle
routing problem (VRP) (Dantzig & Ramser, 1959). Roads are treated as
edges of a graph and a traveling salesman problem (TSP) is solved for one or
more vehicles represented in such a graph (Flood, 1956). In practice, vehicle
schedules are devised offline, after all customer requests have been received, and
are applied later on without the possibility to modify the schedules once the
vehicles have started servicing.

A number of technological advances have fostered new interest and transformed
problems in the domain of logistics. Such advances are the introduction of the
Global Positioning System (GPS) in 1996, the increasing accuracy of Geographic
Information Systems (GIS), and more recently the development and spread of
tablets and smart phones with high-bandwidth Internet. Online changing of
routes or devising completely new routes is now possible due to the availability
of accurate information on the position of all vehicles. These developments open
new avenues for increasing customer satisfaction (i.e. relatively fast shipping of
goods, even at the day of ordering), while operational costs and environmental
impact can be further decreased. In the dynamic variant, the typical dynamic
aspect is the arrival time of the request containing the useful information needed
to compute optimal routes for the vehicles (Pillac et al., 2013).

Dynamic logistics is a well researched topic continuing to receive widespread
attention (Berbeglia et al., 2010; Parragh et al., 2008; Pillac et al., 2013).
Psaraftis (1995) and later Eksioglu et al. (2009) devised taxonomies for the
(dynamic) VRP, but did not formally define dynamism as such. Pillac et al.
(2013) suggested that a better formalization of the dynamics would allow more
precise classification of problem instances. Based on such a classification, it
would be possible to scientifically assess the quality of algorithms for dynamic
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logistic problems in different circumstances. For instance, datasets such as those
presented in (Gendreau et al., 2006; Li & Lim, 2001; Mitrović-Minić & Laporte,
2004) could be classified and compared quantitatively and it would be possible
to find specific dynamic properties within dynamic logistics where one class of
algorithms performs better than others. The cornerstone of a formalization of
dynamics in logistics is a formal definition of dynamism. Intuition suggests that
the frequency of change should be part of such a definition of dynamism. A
more dynamic problem is characterized by a more continuous distribution of
request arrivals. Static problems, on the other hand, have all requests available
at the same time or, alternatively, become available in bursts and thus have
a more varying request arrival frequency. Furthermore, different optimization
algorithms likely differ in their ability to find near-optimal solutions for highly
dynamic problems. When information is clustered together, the available time
can be used for devising a good schedule, contrastingly, frequent changes of
the problem definition make scheduling in advance almost useless and favor a
completely reactive strategy instead.

Lund et al. (1996) proposed the first formal measure for quantifying dynamism
in logistic problems. They define dynamism as the proportion of requests
known after the scheduling phase (i.e. when vehicles are already shipping) with
respect to the total number of requests. Their measure considers a problem
where all requests arrive during shipping as 100% dynamic. Contrary to our
intuition, the relative timing of the requests does not influence the value of
this dynamism measure. Larsen et al. (2002) recognized the limitation of the
measure by Lund et al. and aimed at fixing it by taking into account the urgency
of a request. Larsen et al.’s measure considers a request to be more dynamic
when announced closer to its deadline. However, this approach fails to measure
what intuitively could be considered dynamism, since it does not measure
the relative distribution of request announcements. On closer inspection, the
concept of urgency is included in the degree of dynamism considered by Larsen
et al. Moreover, Larsen et al. showed that for problems with a high dynamism
value, the algorithms tested produced a lower quality schedule. Based on
their experimental setup, concluding whether the negative correlation between
their measure and schedule quality is the result of dynamism, urgency or a
combination thereof is nearly impossible.

The present chapter investigates whether the experimental observations reported
by Larsen et al. are caused by dynamism, urgency or both. We analyze whether
splitting urgency and dynamism into separate concepts is desirable. To conduct a
sound scientific evaluation, we need to be able to formally define both dynamism
and urgency as two separate concepts and to develop the tools for classifying
logistic scenarios. These tools enable generating instances of logistic problems
with varying levels of dynamism and urgency. The instances are realistic,
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while capable of sharing common characteristics, excepting differing levels of
dynamism and urgency. The dataset thus generated contains instances of the
dynamic PDPTW, a special case of the VRP that is sufficiently relevant to allow
general claims. Further, the dataset, the simulator and all code is available
online to allow reproducibility of all results.

The chapter is organized as follows. First, the relevant literature is discussed
(Section 2.2). Second, dynamic PDPs are formally defined and dynamism and
urgency are explained intuitively (Section 2.3). The novel measures which
form the main contribution of the chapter are explained (Section 2.4) and the
empirical evaluation is discussed (Section 2.5). Finally, the conclusions based
on the experimental evaluation are presented and the usefulness of the proposed
measures to advance the field of dynamic logistics and beyond is discussed
(Section 2.6).

2.2 Related work

The VRP was first introduced (Dantzig & Ramser, 1959) as a generalization of
the TSP (Flood, 1956). A dynamic version of VRP was first studied considering
a dynamic version of a special case of VRP transportation of people (Wilson
& Colvin, 1977): the dial-a-ride-problem (DARP) (Cordeau & Laporte, 2003).
The customer requests (trips from a source to a destination) in a DARP appear
dynamically. These type of requests were later formally defined in (Psaraftis,
1980) as immediate requests, distinguished from advanced requests that are
received before the beginning of the planning horizon.

In this section, we review the existing literature on previously proposed
dynamism measures. We also briefly review the state of the art on the dynamic
PDPTW.

2.2.1 Dynamism and measures

The first dynamism measure was introduced by Lund et al. (1996) and later
refined by Larsen et al. (2002). Section 2.4.2 discusses these measures in detail
after an intuitive definition of dynamism is presented. Larsen (2000) proposed a
framework that distinguishes between weakly, moderately and strongly dynamic
systems. The intention of this framework is to quickly find an appropriate
algorithm based on the problem’s classification.
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Beside these works, we have no knowledge of any work that defines measures for
dynamism within the field of operations research. Nevertheless, several authors
make interesting observations related to dynamism in logistics.

A first observation, by Kilby et al. (1998), is that the arrival rate of new tasks in
a dynamic VRP is important. If the problem updates constantly, an algorithm
will require more restarts than in the case where requests arrive in widely
separated bursts. Similarly, Pillac et al. (2013) note that the frequency of
updates in problem information have a dramatic impact on the time available
for optimization. The statements made by Kilby et al. and Pillac et al. align
with what intuitively could be considered dynamism since the arrival rate of
requests is similar to the relative distribution of request announcements.

A second observation, also by Kilby et al. (1998), is about the time at which a
commitment to serve a customer at a particular time must be made. The time of
the commitment is one of the fundamental questions in dynamic routing. Kilby
et al. define a dynamism-related measure called the commit horizon, which
denotes the period where the schedule is fixed before the latest possible commit
time. The latter is problem-dependent but is often defined as the operation’s
starting time. Although we did not consider the commit horizon in our study,
it may be an interesting property to investigate related to dynamism.

A third noteworthy observation about dynamism in logistics is made by
Borndörfer et al. (1999). In the static DARP, the computed schedule and
the schedule executed on the next day often differ significantly because
of cancellations of requests, spontaneous requests, vehicle breakdowns and
other unpredictable events. This observation suggests that static DARPs are
exceptional in practice.

2.2.2 Literature review on the dynamic PDPTW

Gendreau & Potvin (1998) discussed application domains in which dynamic
vehicle routing problems occur, such as dial-a-ride (taxi) problems and courier
and repair services. Berbeglia et al. (2010) presented an extensive overview
of variants of dynamic PDPs. The dynamic PDPTW is a special case of the
dynamic VRP. It should be noted that the dynamic PDPTW is often seen as a
stochastic problem, in which some knowledge about the nature of the arrivals is
known in advance in a stochastic way, while the actual requests become known
only during the operation day (Fu, 2002; Pillac et al., 2013). Psaraftis (1995)
remarked, without formally defining near-term, that in dynamic vehicle routing
near-term events are more important than long-term events. Research on the
dynamic PDPTW has mainly concentrated on algorithm development, in this
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section, we only review work in which the dynamic PDPTW is seen from a
completely dynamic perspective, without any a priori knowledge.

Gendreau et al. (2006) presented a dynamic version of tabu search with a
neighboring structure based on ejection chains. The optimization procedure
is run while the environment is static. When new requests arrive, or when a
vehicle has finished pickup or delivery, the algorithm performs insertion and
ejection moves. Madsen et al. (1995) developed an insertion heuristic to tackle
the dynamic DARP with time windows for moving elderly and disabled people
in Denmark.

Mitrović-Minić et al. (2004) presented an approach based on two time horizons:
a short time horizon aimed at achieving the short-term goal of minimizing the
distance traveled, and a longer time horizon aimed at achieving the long-term
goal of facilitating the insertion of future requests. Five more rolling horizon
heuristics were considered and compared in (Yang et al., 2004). Mitrović-Minić
& Laporte (2004) first considered two very simple heuristics: drive-first, that
requires a vehicle to drive as soon as it is feasible according to the earliest
departure time, and wait-first that instead requires the vehicle to wait at its
current location as long as it is feasible. Two more waiting strategies aim to
achieve a trade-off between the first two heuristic and at better handling waiting
times in order to facilitate insertion of future requests.

Pureza & Laporte (2008) proposed two strategies, a waiting and a buffering
strategy. Differently from (Mitrović-Minić & Laporte, 2004), the waiting strategy
exploits extra information provided by the computation of the faster path. In
order to minimize the earliness of a service at a location, the buffering strategy,
instead, postpones the assignment of the least urgent new requests to the latest
possible time. The idea underlying both strategies is to schedule requests in
batches, retrieving as much information as possible to produce better schedules.

In search of a dispatching algorithm that could imitate a human being, Potvin
et al. (1993) presented a learning system based on linear programming. The
system is able to learn an optimal policy taking into account expert decisions
in former situations. The same idea was implemented by Shen et al. (1995),
who based an approach on neural networks and by Benyahia & Potvin (1998),
where genetic programming was used.

An alternative approach to the dynamic PDPTW relies on a decentralized
MAS instead of a centralized decision maker. Every vehicle is assumed to be
able to perform some computation and to communicate with any other vehicle
anytime. A first comparison between centralized and decentralized approaches
was performed by Mes et al. (2007). They compared traditional heuristics
developed in earlier work (van der Heijden et al., 2002) against novel distributed
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MAS that use a Vickrey auction to bid for new pickup and delivery requests
when they appear. It was shown that the performance of the MAS approach
is often at least as good as traditional heuristics. Mes et al. (2010) further
improved the performance of the MAS by introducing a look-ahead mechanism.
Bidding uses value functions to estimate the expected future revenue of inserting
a new order in an agent’s schedule. Other look-ahead strategy combinations
were proposed in (Mes et al., 2013).

2.3 Dynamic pickup-and-delivery problems

In PDPs, a fleet of vehicles deals with customer transportation requests. A
request is handled when an item is transported from pickup to delivery location
as requested by the customer. In dynamic PDPs, requests may arrive at any
time during the fleet’s operating hours, necessitating the maintenance of a
flexible schedule. No prior information is available about the number of requests
that may still arrive nor about their locations or time windows.

2.3.1 Formal definition

The definition of the dynamic PDP used throughout this chapter is based
on (Gendreau et al., 2006). A scenario, which describes the unfolding of a
dynamic PDP, is defined as a tuple:

〈T , E ,V〉 := scenario,

where

[0, T ) := time frame of the scenario, T > 0

E := list of events, |E| ≥ 2

V := set of vehicles, |V| ≥ 1

[0, T ) is the period in which the fleet of vehicles V have to handle all customer
requests. The events represent customer requests. We distinguish between
advance events and dynamic events. Advance events are known before time 0
of the time frame of the scenario. Dynamic events are instead revealed between
time 0 and time T and describe new transportation requests, or can possibly
introduce other new information. Each event ei ∈ E is defined by the following
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variables:

ai := announce time

pi :=
[
pLi , p

R
i

)
= pickup time window, pLi < pRi

di :=
[
dLi , d

R
i

)
= delivery time window, dLi < dRi

psti := pickup service time span

dsti := delivery service time span

ploci := pickup location

dloci := delivery location

tti := travel time from pickup location to delivery location

Similar to (Larsen et al., 2002) we define reaction time as the length of the
interval between the order arrival time ai and the closing of the pickup time
window pRi :

ri := pRi − ai = reaction time (2.1)
The time window related variables of a transportation request are visualized in
Figure 2.1.

time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Figure 2.1: Visualization of the time related variables of a single order event ei ∈ E.

Furthermore we assume that:

• vehicles start at a depot and have to return after all orders are handled;

• the fleet of vehicles V is homogeneous;

• the cargo capacity of vehicles is infinite (e.g. courier service);

• the vehicle is either stationary or driving at a constant speed;

• contrastingly to (Gendreau et al., 2006), vehicle diversion is allowed,
meaning that a vehicle can divert from its destination at any time;
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• vehicle fuel is infinite and driver fatigue is not an issue;

• each location can be reached from any other location; and,

• the scenario is completed when all pickup and deliveries have been executed
and all vehicles have returned to the depot.

Vehicle schedules are subject to both hard and soft constraints. The openings
of time windows are hard constraints and therefore:

spi ≥ pLi (2.2)

sdi ≥ dLi (2.3)

spi is the start of the pickup operation of order event ei by a vehicle; similarly,
sdi is the start of the delivery operation of order event ei by a vehicle. The
time windows closings (pRi and dRi ) are soft constraints. They are incorporated
into the objective function, which is defined similarly to (Gendreau et al., 2006)
and needs to be minimized:

min :=
∑
j∈V

(vttj + td {bdj , T }) +
∑
i∈E

(
td
{
spi, p

R
i

}
+ td

{
sdi, d

R
i

})
(2.4)

where
td {α, β} := max {0, α− β} = tardiness (2.5)

vttj is the total travel time of vehicle vj ; bdj is the return time of vehicle vj
to the depot. The objective function computes the total vehicle travel time,
the total tardiness of vehicles returning to the depot and the total pickup and
delivery tardiness. The objective function determines the route cost of a solution,
where a fleet of vehicles executes a scenario. A low route cost corresponds with
a high quality route.

We further impose the following hard constraints on the construction of scenarios
to ensure consistency and feasibility of individual orders:

ri ≥ 0 (2.6)

dRi ≥ pRi + psti + tti (2.7)

dLi ≥ pLi + psti + tti (2.8)

These constraints are visualized in Figure 2.2. The reaction time constraint
(eq. 2.6) ensures that an order is always announced before its due date. The
time window constraints (eq. 2.7 and eq. 2.8) ensure that pickup and delivery
time windows are compatible. These constraints ensure that a pickup operation
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pi
psti tti

psti tti
di≥ 0, eq. 2.8

≥ 0, eq. 2.7
ai ≥ 0, eq. 2.6

order i

time0 T

Figure 2.2: Time window constraints of an order event ei ∈ E.

started at any time within pi allows a delivery within di, given that a vehicle
is available and respecting vehicle capacity, service time and travel time
constraints.

2.4 Measure design

Although we aim at measuring properties of dynamic PDPTWs, the concepts of
dynamism and urgency are not limited to measuring properties of the problem
class dynamic PDPTW. In general, properties of a series of events should be
measured.

2.4.1 Intuitive definitions

Dynamism and urgency are abstract variables that capture two aspects of
dynamic PDPTWs. We consider these variables to be problem related as
opposed to algorithm related; the applied algorithm should have no influence on
the value of the measures. However, the dynamism and urgency measures may
assist in choosing an appropriate algorithm for a PDPTW instance. Further,
the measures should be conceptually orthogonal, i.e. a measure for one concept
should not be (partially) mixed with aspects of other concepts. Therefore,
urgency and dynamism should not be correlated.

Dynamism

We base our notion of dynamism on the meaning of the word dynamic: “marked
by usually continuous and productive activity or change” (Merriam Webster,
2014). Therefore we consider the degree of dynamism to be the continuity of
change. A very dynamic scenario is one that changes continuously while a less
dynamic scenario only changes occasionally. This is visualized in Figure 2.3. We
further define a change to be an event that introduces additional information
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0
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(a) very dynamic

0

1

0 2 4 6 8 10

(b) slightly less dynamic

0

1

0 2 4 6 8 10

(c) less dynamic

0

1

0 2 4 6 8 10

(d) not so dynamic

0

1

0 2 4 6 8 10

(e) almost not dynamic

0

10

0 2 4 6 8 10

(f) not dynamic

Figure 2.3: Visualization of order arrival times, each red bar indicates an event in which a
new order is announced. The figures (a) to (f) are presented in decreasing order of dynamism.
In (a) the events have equal interarrival times and are nicely distributed over the period, in
(b) and (c) we see that changes occur less frequently. In (d) and (e) all events arrive in one or
two batches making it less continuous and therefore less dynamic. In (f) all 10 events arrive
at the same time resulting in a scenario with no dynamism.

to the problem, such as an order event as defined formally in Section 2.3.1. In
our interpretation, knowing the dynamism of a problem does not give any extra
information on the predictability of events.

Urgency

Urgency is an indicator of the reaction time available for responding to an
incoming order. Urgency can be expressed in time units and defined as the
difference between order arrival time and closing of the pickup time window as
shown in Figure 2.4.

ai

ri

pi

(a) more urgent

ai

ri

pi

(b) less urgent

Figure 2.4: Visualization of events with different degree of urgency, a relatively urgent order
(a), and a relatively less urgent order (b).
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2.4.2 Degree of dynamism

The degree of dynamism was defined by Lund et al. (1996):

dod := Number of dynamic requests
Total number of requests (2.9)

It is the proportion of dynamic requests with respect to the total requests (
including dynamic and advance requests). The definition ignores information
related to dynamism defined in Section 2.4.1. For instance, a scenario where all
events are announced in a relatively short burst has the same dod as a scenario
where events are announced more evenly throughout the day (see Figure 2.5).
This means that the applicability of dod is limited and not suitable for purely

10 events

0

1

0 2 4 6 8

(a) burst

10 events

0

1

0 2 4 6 8

(b) continuously changing

Figure 2.5: Two scenarios both with 10 advance events and 10 dynamic events. Both scenarios
have a proportion of dynamic requests of 50% (eq. 2.9) but the dynamism of the two scenarios
is remarkably different.

dynamic scenarios (i.e. scenarios without advance events). Since this measure
does not measure dynamism as we conceive it, we propose to rename it to the
proportion of dynamic requests.

Larsen et al. (2002) recognized the limitations of eq. 2.9 and designed the effective
degree of dynamism in an attempt to measure dynamism more accurately:

edod :=

nimm∑
i=1

(ai
T

)
ntot

(2.10)

Where nimm is the number of dynamic requests and ntot is the total number
of events. They also proposed a similar measure that takes time windows into
account:

edodtw := 1
ntot

ntot∑
i=1

(
1− ri
T

)
(2.11)

Since the problem under investigation includes time windows, the analysis
focuses on edodtw (eq. 2.11), without loss of generality.

Figure 2.6 shows three scenarios with their respective value for the edodtw
measure. Figure 2.6(a) and Figure 2.6(b) show two similar scenarios that differ
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r0 = 2

p0

r1 = 2

p1

(a) edodtw = 5
7

0 7
r0 = 2

p0

r1 = 2

p1

(b) edodtw = 5
7

0 14
r0 = 2

p0

r1 = 2

p1

(c) edodtw = 6
7

Figure 2.6: Three different scenarios with two transportation requests. Only the pickup time
window is shown. (a) and (b) have T = 7 and (c) has T = 14.

in the arrival times of the transportation requests. They have the same value
for edodtw, even though their arrival times are quite different. It differs from
the definition of dynamism introduced in the present chapter (Section 2.4.1),
where the scenario depicted in Figure 2.6(b) has a higher degree of dynamism
than that of Figure 2.6(a).

The arrival times in Figure 2.6(b) have been multiplied by 2 in order to obtain
Figure 2.6(c). The reaction times are the same. According to our definition of
dynamism these two scenarios should have the same level of dynamism, but
according to edodtw they are different. This difference is problematic because it
means that edodtw is dependent on the length of the scenario T , hence scenarios
of different length can not be compared using the edodtw measure.

2.4.3 Dynamism measure

We define the list of interarrival times ∆ as follows:

∆ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i+ 1 ∧ ∀ai, aj ∈ E} (2.12)

|∆| := |E| − 1 (2.13)

Based on the visualization of a scenario with 100% dynamism in Figure 2.3(a)
we can define a perfect interarrival time that is required for 100% dynamism as
follows:

θ := perfect interarrival time = T
|E|

(2.14)
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The perfect interarrival time enables computing the deviation of an interarrival
time relative to the 100% case:

σi :=



θ − δi if i = 0 and δi < θ

θ − δi + θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(2.15)

Consequently, the deviation of an entire scenario is defined as:

|∆|∑
i=0

σi (2.16)

Since bursts are defined as interarrival times that are smaller than θ, this
definition focuses on interarrival times that are smaller than θ. In case δi < θ,
a recursive penalty, expressed by the term θ−δi

θ × σi−1, is applied. This penalty
proportionately adds the deviation of the previous interarrival time. In short,
the penalty term is used to recognize bursts, to measure their size, and to
take their contribution into account. The motivation for this recursive penalty
can best be explained using an example. Consider the scenario shown in
Figure 2.7. Following the description of dynamism in Section 2.4.1, the scenario

0

1

0 2 4 6 8 10

(a) Five small bursts

0

1

0 2 4 6 8 10

(b) One big burst

Figure 2.7: 10 events, 5 x interarrival time of .1, 4 x interarrival time of 2.

in Figure 2.7(a) is more dynamic than the one in Figure 2.7(b). When examining
the interarrival times of both scenarios, it shows that θ = 1 and both have five
interarrival times of .1 and four interarrival times of 2:

∆a = {.1, 2, .1, 2, .1, 2, .1, 2, .1}

∆b = {.1, .1, .1, .1, .1, 2, 2, 2, 2}

Computing only the deviations from the perfect interarrival time is not enough
to distinguish between these scenarios. Therefore the recursive penalty used in
eq. 2.15 distinguishes between these two scenarios by taking into account the
deviation of the preceding interarrival time. In this example (Figure 2.7) these
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deviations become:

σa = {.9, 0, .9, 0, .9, 0, .9, 0, .9}

σb = {.9, 1.71, 2.439, 3.0942, 3.68478, 0, 0, 0, 0}

The deviation of the event series from the 100% case has to be normalized with
respect to the theoretical maximum deviation for a scenario (i.e. the 0% case).
We compute the maximum as follows:

|∆|∑
i=0

σ̄i (2.17)

where

σ̄i := θ +


θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(2.18)

In eq. 2.18, the perfect interarrival time is multiplied by the number of
interarrival times and the recursive penalty is also added in order to dynamically
increase the maximum. Adding the recursive penalty to the maximum prevents
σ̄ from becoming greater than σ.

Combining eq. 2.15 and eq. 2.17 the definition of dynamism becomes:

dynamism := 1− deviation
max deviation = 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

(2.19)

Continuing with the scenarios in Figure 2.7, dynamism is 50% for scenario A
and 27.6% for scenario B (see Section 2.7 for the complete calculation).

2.4.4 Urgency measure

Based on Figure 2.4 we can define a measure for urgency of a single order event:

urgency (ei) := pRi − ai = ri (2.20)

Urgency is the reaction time expressed in time units. In order to get an
indication of the urgency of an entire scenario, one can compute the mean and
standard deviation of urgency.
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Note that this definition is similar to Larsen et al.‘s effective degree of dynamism
(eq. 2.11) but differs in a key aspect. The urgency value is not normalized to
the length of the scenario. We believe that the length of a scenario and urgency
should be independent and should therefore not be coupled in the definition of
urgency.

2.5 Evaluation

We evaluate the dynamism and urgency measures by investigating their impact
to route quality generated by scheduling algorithms. Route quality is defined
as the inverse of the cost of a route, where route cost is computed using the
objective function defined in eq. 2.4. Three hypotheses are investigated:

• When increasing the dynamism of a scenario the average route quality of
an algorithm decreases

• When increasing the urgency of a scenario the average route quality of an
algorithm decreases

• When increasing both dynamism and urgency the average route quality
of an algorithm decreases

2.5.1 Dataset generator

To evaluate the influence of dynamism and urgency on strategies developed for
dynamic PDPTW, it is imperative to be able to create scenarios with any level
of urgency and dynamism. Furthermore, these scenarios have to be as similar
as possible, except for their possibly different urgency and dynamism, while
still being the result of a stochastic process. Therefore, a dataset generator has
been constructed and used to generate a dataset with 11 levels of dynamism (0
to 100% with steps of 10%) and 10 levels of urgency (0 to 45 minutes with steps
of 5 minutes). This results in 110 different scenario settings. We produced 20
different instances for each setting resulting in 2200 scenarios.

Controlling dynamism of time series

A homogeneous Poisson process is a common model for the arrival of stochastic
events, e.g. phone calls (Willkomm et al., 2009) and requests of an individual
document on a web server (Arlitt & Williamson, 1997). The dynamism of time
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series obtained using a Poisson process was first investigated. Interestingly, the
results show that time series generated using a homogeneous Poisson process
are in a range of 45% to 60% dynamism. Other methods for generating time
series with dynamism lower than 45% and dynamism higher than 60% have
been investigated. A time period T = 12 and number of events |E| = 360
for generating time series was used. The homogeneous Poisson process has a
constant intensity function, which is defined as:

λ(t) = |E|
T

= 30 (2.21)

A non-homogeneous Poisson process has a variable intensity function. It is
based on a sine wave to control the dynamism of a scenario. By varying the
parameters of the sine wave, the properties of event bursts can be controlled:

λ(t) = a · sin(t · f · 2π − π · p) + h (2.22)

a = amplitude (2.23)

f = frequency (2.24)

p ∼ U(0, 1) phase shift (2.25)

h ∼ U(−.99, 1.5) height (2.26)

In order to keep the total number of events constant with different levels of
dynamism, the amplitude and height parameters are rescaled such that the
total area under the intensity function equals |E|. After rescaling, the resulting
events following a non-homogeneous Poisson process are generated using the
thinning method (Lewis & Shedler, 1979). Figure 2.8 visualizes the effect of the
height parameter on the event intensity and therefore on the dynamism of a
scenario.

Since the non-homogeneous Poisson process only generates scenarios with a
dynamism lower than or equal to scenarios generated with the homogeneous
Poisson process, a different method had to be used for generating more dynamic
scenarios. A method that generates higher levels of dynamism is attained by
drawing interarrival times from a normal distribution. We used the truncated
normal distribution N

(
T
|E| , 0.04

)
with a lower bound of 0 and a standard

deviation of 0.04 was found experimentally to yield the best results. If a value
x was drawn such that x < 0, a new number was drawn from the distribution.
Truncating a normal distribution actually shifts the mean, hence the mean was
rescaled to make sure the effective mean was equal to T|E| .
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Figure 2.8: Visualization of intensity function λ(t) = π · sin(t · 2π) + h with h = 3
4 , 0 and − 3

4 .
The area above y = 0 is highlighted to indicate the event intensity. In (a) the function is
shown before any scaling, in (b) the function is scaled such that the area above y = 0 equals 1
for all three functions. Generally, lower values for the h parameters result in lower dynamism
since this creates more intense bursts in shorter periods (resulting in higher peaks in (b)).

The fourth method for generating interarrival times is a uniform distribution
with mean T

|E| and a maximum deviation σ. The σ value is (for each scenario
again) drawn from the truncated normal distribution N (1, 1) with bounds
[0, .25]. If a value σ is obtained from the distribution such that σ > .25 or
σ < 0, a new value is drawn. The mean is not scaled, and therefore the effective
mean of σ is higher than 1.

An experiment was conducted where each previously described method was
used to generate 1000 samples (time series). For each sample the dynamism
was computed using eq. 2.19. We repeated this experiment until we found the
parameters that produce scenarios in the entire range of 0% to 100% dynamism.
Figure 2.9 shows the final results of this experiment as a frequency diagram.
Based on these experimental results we conclude that these four methods can
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0.0 0.2 0.4 0.6 0.8 1.0
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nt
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A non-homogeneous-Poisson process

B homogeneous-Poisson process

C normal distribution

D uniform distribution

Figure 2.9: Frequency diagram comparing four methods for generating time series. Each
method was used to produce 1000 time series, for each time series the dynamism was measured
using eq. 2.19.
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be used to generate scenarios with dynamism ranging from 0 to 100%. Table 2.1
shows the time series generators and the levels of dynamism they generate.
The probability that one of the time series generated has exactly the desired

Dynamism values Time series generator
0, 5, 10, 15, 20, 25, 30, 35, 40, 45 non-homogeneous Poisson process
50, 55 homogeneous Poisson process
60, 65 Normal distribution
70, 75, 80, 85, 90, 95, 100 Uniform distribution

Table 2.1: Overview of dynamism values used in the dataset and the corresponding time
series generator.

dynamism value is very small. A radius of 1% has therefore been defined around
each dynamism value. For this dataset, we consider a scenario with dynamism
d such that n − 1 < d < n + 1 to have dynamism n, where n is one of the
dynamism values listed in Table 2.1.

Generating comparable scenarios with different dynamism and urgency
levels

The aim of the dataset is to have a set of scenarios where all settings are the
same except for the dynamism and urgency levels. Also, we strive to minimize
any interactions between variables, e.g. dynamism should not correlate with
time window intervals. This ensures that any effect measured is solely the result
of the difference in dynamism and or urgency.

The dataset generators are stochastic functions. Although all parameters are
set as to make desired results as likely as possible, undesirable scenarios can not
be completely avoided. Therefore, we employ a filter that only accepts scenarios
corresponding with the following requirements:

• All scenarios must have exactly |E| events, (the time series generators all
produce time series which have on average the correct number of events,
but not always).

• Scenarios must have a dynamism that fits in one of the dynamism bins
from Table 2.1.

We further define the concept of office hours as the period [0,O) in which new
orders are accepted. To ensure feasibility of individual orders we need to take
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into account the travel time, service time durations and urgency:

O = T − pstmax − dstmax −


2 · ttmax if u < 1

2 · ttmax

11
2 · ttmax − u otherwise

(2.27)

Here, pstmax and dstmax are the maximum pickup and delivery service times
respectively, ttmax is the maximum travel time between a pickup and delivery
location and u is urgency.

The pickup and delivery time windows have to be randomly chosen while
respecting the constraints set out by the urgency level and the announce time.
The pRi is defined as the sum of ai and u, hence it follows that pLi needs to be
between ai and the sum of ai and u:

pLi =

∼ U
(
ai, p

R
i − 10

)
if u > 10

ai otherwise
(2.28)

Here, 10 is the minimum pickup time window length unless urgency is less than
10, in that case the urgency level is the pickup time window length. The upper
bound of dRi can be defined as:

ubdRi = T − tt(dloci, depotloc)− dsti (2.29)

This translates as the latest possible time to start the delivery operation such
that the delivery time window constraints are met and the vehicle can still
be back at the depot on time. The lower bound of dLi was already defined in
eq. 2.8:

lbdLi = pLi + psti + tti (2.30)
We define a minimum delivery time window length of 10, which results in an
upper bound of dLi :

ubdLi = ubdRi − 10 (2.31)
Based on these bounds we draw the opening of the delivery time window from
the following uniform distribution:

dLi ∼ U
(
lbdLi ,max

(
lbdLi , ubd

L
i

))
(2.32)

To find dRi we need to redefine the lower bound (from eq. 2.7) by using the
actual value of dLi :

lbdRi = min
(
max

(
pRi + psti + tti, d

L
i + 10

)
, ubdRi

)
(2.33)

Finally, the closing of the delivery time window is defined as:

dRi ∼ U
(
lbdRi , ubd

R
i

)
(2.34)
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All locations in a scenario are points on the Euclidean plane. It has a size of 10
by 10 kilometer with a depot at the center of this square. At the start of the
scenario all 10 vehicles are at the depot. The vehicles have a constant travel
speed of 50 km/h. All pickup and delivery locations are drawn from a two
dimensional uniform distribution U2(0, 10).

For simulating a scenario we use the discrete time simulator RinSim (van Lon
& Holvoet, 2012) version 3.0.0 (van Lon, 2014b). The time unit is set to
milliseconds and the tick size to 1000 ms. The pickup and delivery service times
psti and dsti are set to 5 minutes. For reproducibility, all code and data are
published on an accompanying web page (van Lon, 2016a).

2.5.2 Heuristic algorithms used to solve dynamic PDPTW

The cheapest insertion heuristic (Algorithm 1) and the 2-opt optimization
procedure (Algorithm 2) were used in the experiments. Since the 2-opt procedure
requires a complete schedule as input, it uses the cheapest insertion heuristic
for inserting new orders to yield a complete schedule. These two heuristics have
been used in earlier work for vehicle routing problems (Coslovich et al., 2006;
Psaraftis, 1983; Solomon, 1987) and the heuristics are general enough not to
have a bias towards scenarios with specific levels of dynamism or urgency. Each

Input: 〈T , E,V〉; /* A scenario as input */
Data: S; /* the current schedule or ∅ */
Sbest = ∅
foreach e ∈ E, e /∈ S do

/* generate all PDP insertion points in the current schedule: */
insertions = generate_insertion_points(S)
for i ∈ insertions do

/* construct a new schedule by inserting e at insertion i */
Snew = construct(S,e,i)
if cost(Snew) < cost(Sbest) then
Sbest = Snew

end
end

end

Algorithm 1: Cheapest insertion heuristic, source code available in (van Lon, 2014a).

time a new order is announced, the algorithms are executed to produce a new
schedule for the fleet of vehicles. It is assumed that execution of the algorithm
is instantaneous with respect to the dynamics of the simulations.
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Input: S
Sbest = S
swaps = generate_swaps(S)
foreach e ∈ swaps do
Snew = swap(S,e)
if cost(Snew) < cost(Sbest) then
Sbest = Snew

end
end
/* If a better schedule has been found, we start another iteration */
if Sbest 6= S then

2-opt(Sbest)
end

Algorithm 2: 2-opt procedure, source code available in (van Lon, 2014a).

2.5.3 Results and analysis

20 scenarios have been generated per level of dynamism and urgency. For each
scenario both algorithms were used for controlling the fleet of vehicles, Figures
2.10 and 2.11 show the experimental results.
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Figure 2.10: Experimental results using cheapest insertion heuristic.
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Figure 2.11: Experimental results using cheapest insertion heuristic with 2-opt.

The first hypothesis: increasing dynamism decreases average route quality, is
not supported by the results (Figures 2.10 and 2.11). In fact, for very urgent
scenarios, the route costs decreased when dynamism was increased (Figures
2.10(b) and 2.11(b)). We believe that the relatively small effect of dynamism on
route costs can be explained by the assumed instant response of the algorithms.
This means that the algorithms never need to or can be interrupted during
calculations and will always give their best possible answer. However, it is
expected (Kilby et al., 1998) that when requests arrive at a constant rate, an
algorithm has relatively little computation time due to restarts triggered by new
requests. Therefore, an interesting direction for future work is to investigate
advanced algorithms that require more computation time and can also be
interrupted.

Our second hypothesis is that more urgent scenarios (lower urgency values)
result in increased route costs. This prediction is strongly supported, under all
levels of dynamism considered. The data further suggests that when scenarios
become less urgent, route costs decreases diminish. This result is expected.
When new requests need to be handled urgently by a fleet of vehicles still
busy handling previous requests, it is natural that some delays are introduced.
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Further, when requests are urgent there is less room for optimizing the length
of routes, leading to longer processing times, which eventually results in higher
total routing costs.

The third hypothesis states that increasing both dynamism and urgency leads
to a lower average route quality. The computational results do not support
this hypothesis, as can be seen by the lack of a peak in the bottom right of
Figures 2.10(a) and 2.11(a). Rather surprisingly, an interaction effect can be
observed in the lower left corner of the same image. This effect is significantly
highly non-linear according to a multiple regression polynomial model. Very
urgent scenarios with low dynamism seem to be the hardest scenarios for the
algorithms to solve. An explanation for this area of most difficult scenarios
is possibly that these scenarios incorporate large bursts of very urgent orders.
These bursts may be as big or bigger than the fleet of available vehicles, which
therefore quickly run out of time to meet the time windows of requests.

Model selection based on the Akaike Information Criterion revealed that the
route cost was best predicted by a multiple regression model in which dynamism
was included as a quadratic polynomial, urgency as a cubic polynomial, plus
the interaction between both polynomials (overall model fit for Algorithm 1:
adjusted R2 = 0.609, p < 2 ·10−16, AIC = 37591, for Algorithm 2: R2 = 0.7322,
p < 2 · 10−16, AIC = 36833, significance of dynamism, urgency and their
interaction effect in Algorithm 1 and 2 was always p < 10−16). Furthermore,
calculated eta squared values show that urgency had a much larger effect than
dynamism or the interaction between both factors (for Algorithm 1: eta squared
is 0.54, 0.04 and 0.02, for Algorithm 2: eta squared is 0.70, 0.04 and 0.01).

Based on these results it can be concluded that dynamism and urgency are
two different concepts, each affecting the problem in a different way. This
justifies the presented theory that dynamism and urgency should be separated,
as opposed to the measure by Larsen (2000), in two different measures.

2.6 Conclusion

The present chapter argues that urgency and dynamism are conceptually
different and we propose separate measures for both concepts. In support
of this conceptual separation, the experimental results show that the degree
of dynamism and urgency have a different influence on the solution quality in
dynamic logistic problems. Interestingly, the degree of dynamism is negatively
correlated with operating costs while more urgent scenarios are correlated with
significantly higher operating costs.



CONCLUSION 31

The negative correlation between degree of dynamism and operating cost is
possibly explained by the algorithms’ assumptions. It can be expected that with
a real time setup, where an algorithm can be interrupted during computation,
a positive correlation may exist. Furthermore, the correlations between urgency
and operating cost are expected to be general in kind, since urgent requests
constrain the fleet of vehicles, regardless of the algorithm that is being used.

During the realization of this article the authors published a new benchmark
dataset for dynamic PDPTW with different levels of dynamism, urgency and
scale (Chapter 3), where scale is a combination of number of vehicles, number
of requests and area size. The dataset enables systematic comparison of the
performance of a broad range of algorithms under varying conditions. Similar
to Máhr et al. (2010), a comparison of centralized and decentralized approaches
applied to this dataset should shed more light on the strengths and weaknesses
of both approaches. Such a comparison should clarify whether problems with
different levels of dynamism, urgency and scale can better be addressed with
either of the two approaches.
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2.7 Appendix: Dynamism calculation example

Two examples of computing dynamism using eq. 2.19.

Ea = {.9, 1, 3, 3.1, 5.1, 5.2, 7.2, 7.3, 9.3, 9.4}

T a = 10

θa = 1

∆a = {.1, 2, .1, 2, .1, 2, .1, 2, .1}

σa = {.9, 0, .9, 0, .9, 0, .9, 0, .9}

σ̄a = {1, 1, 1, 1, 1, 1, 1, 1, 1}

dynamisma = 1− 4.5
9 = 0.5

Eb = {.5, .6, .7, .8, .9, 1, 3, 5, 7, 9}

T b = 10

θb = 1

∆b = {.1, .1, .1, .1, .1, 2, 2, 2, 2}

σb = {.9, 1.71, 2.439, 3.0942, 3.68478, 0, 0, 0, 0}

σ̄b = {1, 1.81, 2.539, 3.1951, 3.78478, 1, 1, 1, 1}

dynamismb = 1− 11.82798
16.32888 = 0.2756



Chapter 3

Towards systematic
evaluation of multi-agent
systems in large scale and
dynamic logistics

Using the definitions of dynamism and urgency from previous chapter and
the definition of scale that we propose in this chapter, we construct a dataset
generator. With this dataset generator we construct a dataset with varying
levels of dynamism, urgency, and scale. This chapter contains the paper:

van Lon, R. R. S. & Holvoet, T. (2015). Towards systematic
evaluation of multi-agent systems in large scale and dynamic logistics.
In Q. Chen, P. Torroni, S. Villata, J. Hsu, & A. Omicini (Eds.),
PRIMA 2015: Principles and Practice of Multi-Agent Systems: 18th
International Conference, Bertinoro, Italy, October 26-30, 2015,
Proceedings (pp. 248–264). Cham: Springer International Publishing.
doi:10.1007/978-3-319-25524-8_16

The content presented in this chapter is the result of discussions of both authors.
Rinde R.S. van Lon programmed the software and wrote the paper, Tom Holvoet
provided feedback on the writing.
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Abstract

A common hypothesis in multi-agent systems (MAS) literature is that
decentralized MAS are better at coping with dynamic and large scale problems
compared to centralized algorithms. Existing work investigates this hypothesis
in a limited way, often with no support for further evaluation, slowing down
the advance of more general conclusions. Investigating this hypothesis more
systematically is time consuming as it requires four main components: 1) formal
metrics for the variables of interest, 2) a problem instance generator using
these metrics, 3) (de)centralized algorithms and 4) a simulation platform that
facilitates the execution of these algorithms. Present chapter describes the
construction of an instance generator based on previously established formal
metrics and simulation platform with support for (de)centralized algorithms.
Using our instance generator, a benchmark logistics dataset with varying levels
of dynamism and scale is created and we demonstrate how it can be used for
systematically evaluating MAS and centralized algorithms in our simulator. This
benchmark dataset is essential for enabling the adoption of a more thorough and
systematic evaluation methodology, allowing increased insight in the strengths
and weaknesses of both the MAS paradigm and operational research methods.

3.1 Introduction

In PDPs a fleet of vehicles is tasked with transporting customers or goods from
origin to destination (Parragh et al., 2008; Savelsbergh & Sol, 1995). In dynamic
PDPs the orders describing the vehicles’ tasks arrive during the operating hours
(Berbeglia et al., 2010), necessitating online assignment of vehicles to orders.
The dynamic nature and potential large scale of this problem makes exact
algorithms often infeasible.

Decentralized MAS’s are often presented as a good alternative to centralized
algorithms (Fischer et al., 1995; Glaschenko et al., 2009; Weyns et al., 2006),
MAS’s are especially promising for large scale and dynamic problems due to
their ability to make quick local decisions. Previous work has shown that MAS’s
can sometimes outperform centralized algorithms in specific cases (Fischer et al.,
1995; Máhr et al., 2008, 2010; Mes et al., 2007). However, to the best of our
knowledge there has never been a systematic effort to compare centralized
algorithms to decentralized MAS’s with varying levels of dynamism and scale.

Although the previously mentioned papers each do a thorough evaluation of a
MAS applied to a logistics problem, it is often hard to do further comparisons
using these papers because of the lack of available problem data, source code or
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both. It has been argued before that this is a problem in science in general (Ince
et al., 2012), and in multi-agent systems literature in particular (van Lon &
Holvoet, 2013).

In this chapter we introduce a dataset generator and a benchmark dataset of
the dynamic PDPTW with support for varying three variables. The degree
of dynamism and urgency of a dynamic PDPTW are two variables that were
introduced before (Chapter 2). The proposed dataset contains an additional
variable, scale, that we define in the context of PDPTW as a multiplier applied
to the number of vehicles and orders in a problem. Using this dataset it will be
possible to systematically investigate the following hypotheses in the context of
PDPTW:

• Multi-agent systems perform better when compared to centralized
algorithms on very dynamic problem instances

• Multi-agent systems perform better when compared to centralized
algorithms on more urgent problem instances

• Multi-agent systems perform better when compared to centralized
algorithms on large scale problem instances

Investigating these hypotheses should lead to insight in the performance of
both decentralized MAS’s and centralized algorithms for PDPTWs. These
insights can then be used to make more informed decisions when designing
a system that needs to cope with dynamic, urgent and large scale problems.
Additionally, the dataset generator, the benchmark dataset instance and the
simulator (van Lon & Holvoet, 2012) that we use are open sourced. This
improves the reproducibility of this chapter while presenting an opportunity for
other researchers to investigate the above hypotheses using their own algorithms.

This chapter is organized as follows. First, the relevant literature is discussed
(Section 3.2) and we define dynamic PDPTWs including the measures for
dynamism, urgency and scale and the measure for algorithm performance
(Section 3.3). This is followed by a description of the dataset generator
and dataset benchmark instance (Section 3.4). It is demonstrated how the
hypotheses of dynamism, urgency and scale can be investigated using the
proposed benchmark instance (Section 3.5), leading to the conclusion that the
benchmark dataset facilitates a systematic and long term research effort into
these hypotheses (Section 3.6).
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3.2 Related work

Several literature surveys discuss the dynamic VRP and its special case, dynamic
PDPTW (Berbeglia et al., 2010; Gendreau & Potvin, 1998; Pillac et al., 2013;
Psaraftis, 1995). The dynamic PDPTW is often treated as a stochastic problem
where some a priori information is known about the orders. This section only
discusses papers that do not use a priori information but view the problem from
a completely dynamic perspective.

3.2.1 Centralized algorithms

Madsen et al. (1995) developed an insertion heuristic for the dynamic DARP
with time windows for moving elderly and disabled people. Potvin et al. (1993)
presented a learning system based on linear programming that can learn an
optimal policy taking into account decisions of an expert in past scenarios.
Mitrović-Minić et al. (2004) presented an approach based on two time horizons:
a short time horizon aimed at achieving the short-term goal of minimization of
distance traveled, and a longer time horizon aimed at achieving the long-term
goal of facilitating the insertion of future requests. Gendreau et al. (2006)
introduced a dynamic version of tabu search with a neighboring structure based
on ejection chains. When new requests arrive, the algorithm reacts by insertion
and ejection moves and with local search.

3.2.2 Multi-agent systems

An alternative approach to the dynamic PDPTW is using a decentralized
MAS instead of a centralized planner. Fischer et al. (1995) used a MAS with
the extended contract net protocol for cooperative transportation scheduling
and they showed that its performance was comparable to existing operational
research (OR) techniques. Mes et al. (2007) compared traditional heuristics
with a distributed MAS that uses a Vickrey auction to bid for new pickup and
delivery requests when they appear, showing that the MAS approach performs
often better than traditional heuristics. In subsequent work Mes et al. (2010)
further improved the performance of the MAS by introducing a look-ahead
mechanism in which bidding uses value functions to estimate the expected
future revenue of inserting a new order in an agent plan. Máhr et al. (2010)
thoroughly evaluated a MAS with auctions and a mixed-integer program on
real world data of a PDPTW. Their results show that both approaches have
comparable performance. Glaschenko et al. (2009) discussed the deployment of
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a MAS for a taxi company in London, adopting the MAS led to an increase of
taxi fleet utilization by 5 - 7 %.

3.3 Dynamic pickup-and-delivery problems

We base our definition of dynamic PDPs on Chapter 2 which is an adaptation
of the definition of (Gendreau et al., 2006). In PDPs there is a fleet of vehicles
responsible for the pickup-and-delivery of items. The dynamic PDP is an online
problem, the customer transportation requests are revealed over time during
the fleet’s operating hours. It is further assumed that the fleet of vehicles has
no prior knowledge about the total number of requests nor about their locations
or time windows.

3.3.1 Formal definition

For describing the dynamic PDP we adopt the formal definition of Chapter 2.
A scenario, which describes the unfolding of a dynamic PDP, is defined as a
tuple:

〈T , E ,V〉 := scenario,

where

[0, T ) := time frame of the scenario, T > 0

E := list of events, |E| ≥ 2

V := set of vehicles, |V| ≥ 1

[0, T ) is the period in which the fleet of vehicles V has to handle all customer
requests. The events represent customer transportation requests. Since we
consider the purely dynamic PDPTW, all events are revealed between time 0
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and time T . Each event ei ∈ E is defined by the following variables:

ai := announce time

pi := [pLi , pRi ) = pickup time window, pLi < pRi

di := [dLi , dRi ) = delivery time window, dLi < dRi

psti := pickup service time span

dsti := delivery service time span

ploci := pickup location

dloci := delivery location

tti := travel time from pickup location to delivery location

Reaction time is defined as:

ri := pRi − ai = reaction time (3.1)

The time window related variables of a transportation request are visualized in
Figure 3.1.

time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Figure 3.1: Visualization of the time related variables of a single order event ei ∈ E.

Furthermore we assume that:

• vehicles start at a depot and have to return after all orders are handled;

• the fleet of vehicles V is homogeneous;

• the cargo capacity of vehicles is infinite (e.g. courier service);

• the vehicle is either stationary or driving at a constant speed;

• vehicle diversion is allowed, this means that a vehicle is allowed to divert
from its destination at any time;
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• vehicle fuel is infinite and driver fatigue is not an issue;

• the scenario is completed when all pickup and deliveries have been made
and all vehicles have returned to the depot; and,

• each location can be reached from any other location.

Vehicle schedules are subject to both hard and soft constraints. The opening of
time windows is a hard constraint, hence vehicles need to adhere to these:

spi ≥ pLi (3.2)

sdi ≥ dLi (3.3)

Here, spi is the start of the pickup operation of order event ei by a vehicle;
similarly, sdi is the start of the delivery operation of order event ei by a vehicle.
The time window closing (pRi and dRi ) is a soft constraint incorporated into the
objective function, it is defined similarly to (Gendreau et al., 2006) and needs
to be minimized:

min :=
∑
j∈V

(vttj + td {bdj , T }) +
∑
i∈E

(
td
{
spi, p

R
i

}
+ td

{
sdi, d

R
i

})
(3.4)

where
td {α, β} := max {0, α− β} = tardiness (3.5)

Here, vttj is the total travel time of vehicle vj ; bdj is the time at which vehicle
vj is back at the depot. In summary, the objective function computes the total
vehicle travel time, the tardiness of vehicles returning to the depot and the total
pickup and delivery tardiness.

We further impose the following hard constraints on the construction of scenarios
to ensure consistency and feasibility of individual orders:

ri ≥ 0 (3.6)

dRi ≥ pRi + psti + tti (3.7)

dLi ≥ pLi + psti + tti (3.8)

These constraints are visualized in Figure 3.2. The reaction time constraint
(eq. 3.6) ensures that an order is always announced before its due date. The time
window constraints (eq. 3.7 and eq. 3.8) ensure that pickup and delivery time
windows are compatible with each other. Hence, a pickup operation started at
any time within pi guarantees feasibility of a delivery within di given that a
vehicle is available and respecting vehicle capacity, service time and travel time
constraints.
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pi
psti tti

psti tti
di≥ 0, eq. 3.8

≥ 0, eq. 3.7
ai ≥ 0, eq. 3.6

order i

time0 T

Figure 3.2: Visualization of the time window constraints of an order event ei ∈ E.

3.3.2 Dynamism

In this section we describe the measure for the degree of dynamism first defined
in Chapter 2. Informally, a scenario that changes continuously is said to be
dynamic while a scenario that changes occasionally is said to be less dynamic.
In the context of PDPTWs a change is an event that introduces additional
information to the problem, such as the events in E . More formally, the degree
of dynamism, or the continuity of change, is defined as:

dynamism := 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

(3.9)

where

∆ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i+ 1 ∧ ∀ai, aj ∈ E} (3.10)

θ := perfect interarrival time = T
|E|

(3.11)

σi :=



θ − δi if i = 0 and δi < θ

θ − δi + θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(3.12)

σ̄i := θ +


θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(3.13)

This measure can compute the degree of dynamism of any scenario.
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3.3.3 Urgency

In Chapter 2 urgency is defined as the maximum reaction time available to the
fleet of vehicles in order to respond to an incoming order. Or more formally:

urgency (ei) := pRi − ai = ri (3.14)

To obtain the urgency of an entire scenario the mean and standard deviation of
the urgency of all orders can be computed.

3.3.4 Scale

Assigning a scale level to a PDP instance allows to conduct a scalability
experiment to investigate the existence of a correlation between the scale
of a PDP and the computation time and solution quality of an algorithm.

In the context of computer systems scaling up is defined as maintaining a fixed
execution time per task while scaling the workload up in proportion to the
number of processors applied to it (Gunther, 2006). Analogously, scaling in the
context of PDPs can be defined as maintaining a fixed computation time per
order while scaling the workload (number of orders) up in proportion to the
number of vehicles in the fleet.

However, there are three factors that limit the usefulness of this definition. First,
it is known that PDPTWs are NP-hard (Savelsbergh & Sol, 1995), therefore
an exact algorithm for a PDPTW requires time that is superpolynomial in the
input size. Therefore, maintaining a fixed computation time per order when
using an exact algorithm is infeasible. When using an anytime algorithm (an
algorithm that can be stopped at any moment during its execution to return a
valid solution) such as a heuristic, maintaining a fixed computation time per
order is trivial, but will likely have an influence on the solution quality.

Second, the previously mentioned notion of urgency influences the amount of
available computation time. Within an order’s urgency period three activities
need to be performed, first a vehicle needs to be selected, then the selected
vehicle needs to drive towards the pickup location and it needs to perform the
actual pickup operation. The longer the computation of the vehicle selection
takes, the less time remains for the driving and picking up.

Third, depending on the degree of dynamism there may be many orders with a
small interarrival time. Each order that arrives while a computation takes place
forces a premature halt and subsequent restart of the algorithm. Therefore,
maintaining a fixed computation time per order is nonsensical for PDPTWs.
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For these reasons, we define scaling in PDPTWs as maintaining a fixed objective
value per order while scaling the number of orders up in proportion to the number
of vehicles in the fleet. Using this definition, scaling up a scenario 〈T , E ,V〉
with a factor α will create a new scenario 〈T , E ′,V ′〉 where |V ′| = |V| · α and
|E ′| = |E| · α. To compute the objective value per order, the global objective
value needs to be divided by the number of orders.

3.4 Dataset

This section describes the construction of the scenario generator that creates
scenarios with specific levels of dynamism, urgency and scale. Using the scenario
generator a benchmark dataset is constructed.

3.4.1 Scenario generator

To create a scenario generator capable of generating scenarios with specific
levels of scale, dynamism, and urgency we adapted the generator developed
in Chapter 2.

Controlling dynamism of time series

Based on Chapter 2 we assigned a time series generator method to a specific
range of dynamism levels such that the entire range [0, 1] is covered (Table 3.1).

Table 3.1: Overview of dynamism ranges and the corresponding time series generator used
for generating scenarios in that range.

Dynamism range Time series generator
[0, .475) non-homogeneous Poisson process
[.475, .575) homogeneous Poisson process
[.575, .675) Normal distribution
[.675, 1] Uniform distribution



DATASET 43

The non-homogeneous Poisson process that is used for [0, .475) has an intensity
function based on a sine wave with the following parameters:

λ(t) = a · sin(t · f · 2π − π · p) + h (3.15)

a = 1 amplitude (3.16)

f = 1 frequency (3.17)

p ∼ U(0, 1) phase shift (3.18)

h ∼ U(−.99, 1.5) height (3.19)

In order to keep the total number of events constant with different levels of
dynamism, the amplitude and height parameters are rescaled such that the
total area under the intensity function equals |E|.

For the [.475, .575) range we used the homogeneous Poisson process, with the
(constant) intensity function defined as:

λ(t) = |E|
T

= 30 (3.20)

The normal distribution for the [.575, .676) range is the truncated normal
distribution N

(
T
|E| , 0.04

)
with a lower bound of 0 and a standard deviation of

0.04. If a value x was drawn such that x < 0, a new number was drawn from
the distribution. Truncating a normal distribution actually shifts the mean,
hence the mean was rescaled to make sure the effective mean was equal to T|E| .

In the [.675, 1] range a uniform distribution with mean T
|E| and a maximum

deviation from the mean, σ, is used. The σ value is (for each scenario again)
drawn from the truncated normal distribution N (1, 1) with bounds [0, 15]. If a
value σ is obtained from the distribution such that σ > 15 or σ < 0 a new value
is drawn. Since the mean is not scaled, the effective mean of σ is higher than 1.

Generating comparable scenarios with different dynamism, urgency and
scale levels

The generator should be able to generate a set of scenarios where all settings are
the same except for dynamism, urgency and scale levels. Also, any interactions
between variables should be minimized, e.g. dynamism should not correlate
with time window intervals. This ensures that any effect measured is solely
caused by the difference in dynamism, urgency and or scale.
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Because the dataset generator is stochastic, the number of events |E| and the
degree of dynamism of a scenario can not be directly controlled. To construct a
consistent dataset, scenarios that do not have exactly |E| events are rejected.
For each desired dynamism level a bin with an acceptable deviation is defined,
only generated scenarios with a dynamism value that lies within a bin are
accepted.

We further define the concept of office hours as the period [0,O) in which new
orders are accepted. To ensure feasibility of individual orders we need to take
into account the travel time, service time durations and urgency:

O = T − pstmax − dstmax −


2 · ttmax if u < 1

2 · ttmax

11
2 · ttmax − u otherwise

(3.21)

Here, pstmax and dstmax are the maximum pickup and delivery service times
respectively, ttmax is the maximum travel time between a pickup and delivery
location, and u is urgency.

The pickup and delivery time windows have to be randomly chosen while
respecting the constraints as set out by the urgency level and the announce
time. The pRi is defined as the sum of ai and u, hence it follows that pLi needs
to be between ai and the sum of ai and u:

pLi =

∼ U
(
ai, p

R
i − 10

)
if u > 10

ai otherwise
(3.22)

Here, 10 is the minimum pickup time window length unless urgency is less than
10, in that case the urgency level equals the pickup time window length. The
upper bound of dRi can be defined as:

ubdRi = T − tt(dloci, depotloc)− dsti (3.23)

This translates as the latest possible time to start the delivery operation such
that the delivery time window constraints are met and the vehicle can still
be back at the depot on time. The lower bound of dLi was already defined in
eq. 3.8:

lbdLi = pLi + psti + tti (3.24)
We define a minimum delivery time window length of 10, which then results in
an upper bound of dLi :

ubdLi = ubdRi − 10 (3.25)
Based on these bounds we draw the opening of the delivery time window from
the following uniform distribution:

dLi ∼ U
(
lbdLi ,max

(
lbdLi , ubd

L
i

))
(3.26)
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To find dRi we need to redefine the lower bound (from eq. 3.7) by using the
actual value of dLi :

lbdRi = min
(
max

(
pRi + psti + tti, d

L
i + 10

)
, ubdRi

)
(3.27)

Finally, the closing of the delivery time window is defined as:

dRi ∼ U
(
lbdRi , ubd

R
i

)
(3.28)

For the pickup and delivery service times we choose psti = dsti = 5 minutes.

All locations in a scenario are points on the Euclidean plane. It has a size of 10
by 10 kilometer with a depot at the center of this square. Vehicles start at the
depot and have a constant travel speed of 50 km/h. All pickup and delivery
locations are drawn from a two dimensional uniform distribution U2(0, 10).

3.4.2 Benchmark dataset

The benchmark dataset that we created for this chapter has three levels for
each of the dimensions of interest resulting in a total of 3 · 3 · 3 = 27 scenario
categories. The dimensions of interest are dynamism, urgency and scale, the
used values are listed in Table 3.2a, the other parameters are listed in Table 3.2b.
Since the generation of the order arrival times is a stochastic process the exact

Table 3.2: Overview of the parameters used to generate the benchmark dataset.

(a) Dimensions

Dimension Values
Dynamism .2 .5 .8
Urgency 5 20 35
Scale 1 5 10

(b) Settings

Parameter Value
T 8 hours
|E| scale · 240
|V| scale · 10

degree of dynamism can not be controlled. Therefore, we define a dynamism bin
using a radius of 1% around each dynamism value. For this dataset, we consider
a scenario with dynamism d where b− .01 < d < b+ .01 to have dynamism b,
where b is one of the dynamism bins listed in Table 3.2a.

For each scenario category 50 instances are generated, resulting in a total
of 50 · 27 = 1350 scenarios. Each scenario is written to a separate file with
the following name format: dynamism-urgency-scale-id.scen, for example
0.20-5-1.00-0.scen depicts a scenario with 20% dynamism, an urgency level
of 5 minutes, a scale of 1 and id 0. This format allows easy selection of a subset
of the dataset. The scenario file contains the entire scenario in JavaScript Object
Notation (JSON). Time in a scenario is expressed in milliseconds, distance in
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kilometer and speed in kilometer per hour. A scenario is considered to be
finished when all vehicles are back at the depot and the current time is ≥ T .

The open source discrete time simulator RinSim (van Lon & Holvoet, 2012)
version 4.0.0 (van Lon, 2015e) has native support for the scenario format. With
RinSim it is easy to run the scenario with centralized algorithms and multi-agent
systems, allowing researchers to only have to focus on their algorithms. For
reproducibility, the code of the dataset generator is released (van Lon, 2015c) as
well as the dataset scenarios (van Lon, 2015b) and all other code and results (van
Lon, 2015a).

3.5 Demonstration

As a demonstration a centralized algorithm is compared with a decentralized
multi-agent system on 10 instances of each category in the benchmark dataset,
resulting in a total of 270 experiments per approach. For reproducibility, the
code and results of this experiment are published on an accompanying web
page (van Lon, 2015a)

3.5.1 Heuristics

Just as in Chapter 2 two well known heuristics are used, the cheapest insertion
heuristic (Algorithm 3) and the 2-opt optimization procedure (Algorithm 4).
Since the 2-opt procedure requires a complete schedule as input, it uses the
cheapest insertion heuristic to construct a complete schedule first. Both these
algorithms have been used in earlier work for vehicle routing problems (Coslovich
et al., 2006; Solomon, 1987).

Input: 〈T , E,V〉; /* A scenario as input */
Data: S; /* the current schedule or ∅ */
Sbest = ∅
foreach e ∈ E, e /∈ S do

/* generate all PDP insertion points in the current schedule: */
insertions = generate_insertion_points(S)
for i ∈ insertions do

/* construct a new schedule by inserting e at insertion i */
Snew = construct(S,e,i)
if cost(Snew) < cost(Sbest) then
Sbest = Snew

end
end

end

Algorithm 3: Cheapest insertion heuristic, source code available in (van Lon, 2015d).
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Input: S
Sbest = S
swaps = generate_swaps(S)
foreach e ∈ swaps do
Snew = swap(S,e)
if cost(Snew) < cost(Sbest) then
Sbest = Snew

end
end
/* If a better schedule has been found, we start another iteration */
if Sbest 6= S then

2-opt(Sbest)
end

Algorithm 4: 2-opt procedure, source code available in (van Lon, 2015d).

3.5.2 Centralized algorithm

Each time a new order is announced the cheapest insertion heuristic is executed
to produce a new schedule for the fleet of vehicles. It is assumed that execution of
the algorithm is instantaneous with respect to the dynamics of the simulations.

3.5.3 Contract net protocol multi-agent system

The multi-agent system implementation is based on the contract net protocol
(CNP) as described by Fischer et al. (1995). For each incoming order an auction
is organized, when the auction is finished the order will be assigned to exactly
one vehicle. All vehicles always bid on each order, the bid contains an estimate
of the additional cost that including the new order in the vehicles assignment
would incur. This estimate is computed using the cheapest insertion heuristic as
described in Algorithm 3. The vehicle with the lowest bid will win the auction
and receive the order. Each vehicle computes a route to visit all its pickup and
delivery sites using the 2-opt procedure described in Algorithm 4.

3.5.4 Results and analysis

The results1 of the experiments are plotted along the dynamism, urgency
and scale dimension in Figures 3.3, 3.4 and 3.5 respectively. Although all
results indicate that the MAS performs better than the centralized algorithm,
the current experiment is too limited to verify the hypotheses posed in this
chapter. Instead, we discuss the behavior of both algorithms with respect to
the dimensions of interest.

1In (van Lon, 2015a) the raw results are published.
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Dynamism

Figure 3.3 shows that the level of dynamism has very little influence on the
performance of both the MAS and the centralized algorithm. This lack of effect
is very consistent among all urgency and scale settings.
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Figure 3.3: Comparison with mean relative cost versus dynamism for all levels of scale and
urgency. The error bars indicate one standard deviation around the mean.

Urgency

In Figure 3.4 a clear trend can be observed for both algorithms, the less urgent
orders are, the lower the average cost per order is. This effect can be explained
by the fact that when orders are less urgent, vehicles have more time to handle
other nearby orders first while still respecting the time windows.
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Figure 3.4: Comparison with mean relative cost versus urgency for all levels of scale and
dynamism. The error bars indicate one standard deviation around the mean.

Scale

Contrary to what one would expect, Figure 3.5 shows that the larger scale the
problem is the lower the average cost of an order. This surprising result can be
explained by the fact that computation time is ignored in our current setup, this
means that the algorithms have enough time to deal with greater complexity of
larger scale problems. The lower average cost per order can be explained by the
fact that with more vehicles the average distance of a new order to the closest
vehicle is smaller, resulting in reduced average travel times and tardiness.
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Figure 3.5: Comparison with mean relative cost versus scale for all levels of urgency and
dynamism. The error bars indicate one standard deviation around the mean.

3.6 Conclusion

In this chapter we present an open source dataset generator and benchmark
dataset instance of dynamic PDPTW with support for varying levels of
dynamism, urgency and scale. We demonstrate how to use the benchmark
instance to compare a decentralized MAS with a centralized algorithm. Although
both algorithms are too basic to generalize upon the results, this demonstration
can form a baseline to which future work can compare to. Using the work
presented in this chapter, other researchers in the MAS and OR domains are
empowered to conduct thorough and systematic evaluations of their work. In
our next paper we plan to reap the benefits of this work by extending the
comparison demonstration with a state of the art centralized algorithm and an
advanced MAS.
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Chapter 4

When do agents outperform
centralized algorithms? A
systematic empirical
evaluation in logistics

Using the formal definitions and dataset presented in previous chapters,
we systematically evaluate multi-agent systems and centralized algorithms.
Additionally, we present a real-time logistics simulator, RinSim, that is used for
the evaluation. This chapter contains the paper:

van Lon, R. R. S. & Holvoet, T. (2017). When do agents outperform
centralized algorithms? A systematic empirical evaluation in logistics.
Autonomous Agents and Multi-Agent Systems. Under review. The
first submitted version is published as a technical report (van Lon
& Holvoet, 2016)

The content presented in this chapter is the result of discussions of both authors
and also based on discussions held during the writing of the previous chapters.
Rinde R.S. van Lon programmed the software and wrote the paper, Tom Holvoet
provided feedback on the writing.
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Abstract

Multi-agent systems (MAS) literature often assumes decentralized MAS to be
especially suited for dynamic and large scale problems. In operational research,
however, the prevailing paradigm is the use of centralized algorithms. Present
chapter empirically evaluates whether a multi-agent system can outperform
a centralized algorithm in dynamic and large scale logistics problems. This
evaluation is novel in three aspects: 1) to ensure fairness both implementations
are subject to the same constraints with respect to hardware resources and
software limitations, 2) the implementations are systematically evaluated
with varying problem properties, and 3) all code is open source, facilitating
reproduction and extension of the experiments. Existing work lacks a systematic
evaluation of centralized versus decentralized paradigms due to the absence of
a real-time logistics simulator with support for both paradigms and a dataset
of problem instances with varying properties. We extended an existing logistics
simulator to be able to perform real-time experiments and we use a recent
dataset of dynamic pickup-and-delivery problem with time windows instances
with varying levels of dynamism, urgency, and scale. The OptaPlanner constraint
satisfaction solver is used in a centralized way to compute a global schedule
and used as part of a decentralized MAS based on the dynamic contract-net
protocol (DynCNET) algorithm. The experiments show that the DynCNET
MAS finds solutions with a relatively lower operating cost when a problem
has all following three properties: medium to high dynamism, high urgency,
and medium to large scale. In these circumstances, the centralized algorithm
finds solutions with an average cost of 112.3% of the solutions found by the
MAS. However, averaged over all scenario types, the average cost of centralized
algorithms is 94.2%. The results indicate that the MAS performs best on very
urgent problems that are medium to large scale.

4.1 Introduction

Multi-agent systems (Weiss, 1999; Wooldridge, 2002) is a broad research area
involving autonomous software entities, called agents, that typically have a
local view of the world. Areas include decentralized control systems, agent
based simulation, game theory, trust & reputation, negotiation, etc. In the
present chapter we use MAS’s as a paradigm for designing decentrally controlled
systems. MAS’s have been applied in numerous industrial deployments as
described by Pěchouček & Mařík (2008). One category of deployments involves
OR and logistics. For example, Weyns et al. (2005) describe an application of
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MAS technology for operating automated guided vehicles in a warehouse and
Dorer & Calisti (2005) describe a MAS for dynamic transport optimization.

The focus in the present chapter is on dynamic logistics, more specifically, on
dynamic PDPs (Berbeglia et al., 2010). Although literature reports on various
studies on applying MAS’s for dynamic PDP, no systematic evaluation has been
conducted that allows to draw conclusions of benefits or limitations of MAS
approaches compared to centralized approaches. The aim of the present chapter
is to systematically evaluate both approaches with varying levels of dynamism,
urgency, and scale.

4.1.1 Multi-agent systems related work

Fischer et al. (1995) were one of the first to compare a decentrally controlled
MAS with centralized OR heuristics in logistics. In their paper, the authors use
a natural mapping of agents to the problem domain, a truck agent is responsible
for a single vehicle and a shipping company agent is responsible for handing
out new tasks. These agents participate in a dynamic version of CNET first
introduced by Smith (1980). Fischer et al. (1995) report that the centralized and
the decentralized approaches have similar performance but the decentralized
approach performs relatively better when the tasks are more urgent. The
authors speculate that this might be a general property of contract-net-like
algorithms, but they recognize that this speculation must be confirmed by more
empirical experiments, such as the one presented in this chapter.

In a similar spirit, Mes et al. (2007) evaluated an agent-based scheduling
approach and look-ahead heuristics for a real-time transportation problem on
an underground transport network. In their study, the authors varied several
problem properties such as time between orders (related to degree of dynamism),
time window length (related to urgency) and the number of nodes in the network
(related to scale). The look-ahead heuristics that they used are LocalControl and
SerialScheduling. Unfortunately Mes et al. do not specify the exact definitions
of the heuristics, hindering the reproducibility of their work. The experimental
results show that the agent-based approach always outperforms the look-ahead
heuristics. These results are very interesting, especially when considering that
MAS’s are not used as often in logistics compared to centralized algorithms.

In 2008, Máhr et al. (2008) did a similar comparison but used a mixed integer
program (MIP) instead of simple heuristics. The authors used an auction based
coordination mechanism similar to CNET. Their results show that the MAS
based approach and the MIP based approach perform comparable in dynamic
problem instances. However, compared to the present chapter, the problem
size used by Máhr et al. is relatively small. The dataset of Chapter 3 that we
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use contains instances that are 2 to 18 times larger. Interestingly, Máhr et al.
suggest, for future work, to do a similar experiment but on differing problem
sizes, which is, among other things, what we do in the present chapter.

In a subsequent work from 2010, Máhr et al. (2010) focused on two types of
uncertainty in their problem definition: service time uncertainty and job arrival
uncertainty. The results obtained by the authors were mixed. With high service
time uncertainty the agent based approach performs better, while in the case
of extreme service time combined with job arrival uncertainty the centralized
optimization approach outperforms the agent-based approach. However, in the
setup by Máhr et al. the urgency of the tasks is variable, it is unclear how this
variation influences the result. Therefore, their experiment provides limited
insight in the influence of specific problem properties on the effectiveness of
centralized and decentralized approaches. This is contrary to the experiments
described in the present chapter where we systematically investigate the different
problem properties explicitly.

The works described above have several shortcomings that hinder the
advancement of the fields of MAS’s and OR. Firstly, there is no common
platform on which centralized and decentralized algorithms can be tested on
logistics problems in real-time with a fair allocation of hardware resources. Such
a simulation platform would facilitate evaluations of algorithms from both the
MAS’s and OR domains, allowing researchers to focus on the improvement of the
algorithms while also learning their relative strengths and weaknesses. Secondly,
the previously mentioned work did not publish the datasets, algorithms, and
supporting code that was used to conduct experiments. It has been argued
before by Ince et al. (2012) and van Lon & Holvoet (2013) that this is a problem
that needs to be addressed as it would aid reproducibility and extensibility
of existing research. Ideally, the opening of source code, data, and related
tools should be the default state of practice as this increases the accountability
and thus the value of this field of scientific research. Thirdly, to be able to
investigate the circumstances for which specific algorithms perform better than
another, it is paramount to be able to independently vary specific problem
properties. Therefore, exact definitions of the problem properties are required,
allowing precise measurements of the properties. These measures can then be
used to meticulously create problem instances that vary only in the selected
problem property. Unfortunately, the previously cited works did not isolate the
relevant properties (for example urgency in (Máhr et al., 2010)), this limits the
usefulness of the experimental results with respect to properties in the problem.
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4.1.2 Operational research related work

Most of the papers discussed above target a variant of the dynamic PDP.
Berbeglia et al. (2010) gave an overview of variants of dynamic PDPs. In
this chapter we target the dynamic PDPTW which is a special case of the
dynamic VRP. In these problems, dynamism is often caused by the arrival of
new tasks (Pillac et al., 2013). At the beginning of a work day, typically only
a proportion of tasks is known. In the present chapter we consider a purely
dynamic PDP, no information about tasks is known beforehand. Therefore it is
not possible to plan ahead, all computations have to be done online. In general,
there are three different centralized approaches to the PDP: exact methods,
heuristics, and stochastic modeling or sampling. Exact methods are known to
be less scalable than non-exact methods (Pillac et al., 2013). And, because
of the NP-hard nature of PDP, exact methods quickly become infeasible to
use. Stochastic modeling or sampling assumes that some a priori information
about the future is known, in the present chapter we do not assume to have
such information. Therefore we focus our description of centralized approaches
on heuristics. Heuristics are capable of quickly finding (sub-optimal) solutions.
Gendreau et al. (2006) developed a dynamic version of tabu search with a
neighboring structure based on ejection chains. The algorithm runs in between
dynamic changes of the problem and when a vehicle has finished a pickup or
delivery. Madsen et al. (1995) created an insertion heuristic for a dynamic
DARP. Several rolling horizon heuristics were investigated by Yang et al. (2004),
with a rolling horizon, only tasks in the near future, within the time horizon,
are considered.

4.1.3 Objectives

The goal of the current chapter is to systematically evaluate the performance
of a centralized and a decentralized algorithm in a real-time logistics problem.
The algorithms guide a cooperative fleet of vehicles to service dynamically
appearing customers while minimizing customer waiting times and vehicle
travel times. The aim is not to find the best conceivable algorithm but to
get insight into the strengths and weaknesses of equivalent centralized and
decentralized algorithms under varying circumstances while constrained by the
same amount of computational power. We consider a centralized algorithm
equivalent to its decentralized counterpart if they use the same underlying solver
of problem instances. The method of control, i.e. centralized or decentralized,
determines how the solver is used which is the distinguishing difference between
the algorithms. Since the two algorithms are constrained by the same amount
of computational power, any performance difference measured between the
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algorithms can be attributed to their method of control. There are several
hypotheses related to the domain of logistics that are of interest for the current
chapter:

1. A CNET based MAS finds solutions with a lower operating cost compared
to a centralized algorithm on more dynamic problem instances

2. A CNET based MAS finds solutions with a lower operating cost compared
to a centralized algorithm on more urgent problem instances

3. A CNET based MAS finds solutions with a lower operating cost compared
to centralized algorithms on larger scale problem instances

Operating cost is defined as a combination of customer waiting times and vehicle
travel times. To investigate these hypotheses systematically, it is imperative
to formally define the concepts of dynamism, urgency, and scale. Dynamism
and urgency have recently been defined in the context of dynamic logistics
(Chapter 2). In short, dynamism is defined as the continuity of change and
urgency is defined as the amount of time that is available to respond to an
incoming request. These properties are, together with scale, used in Chapter 3
to define a dataset with varying levels of dynamism, urgency, and scale. The
open source logistics simulator RinSim (van Lon & Holvoet, 2012) has support
for this dataset, allowing easy comparison of centralized and decentralized
algorithms. Present chapter describes how we use this dataset and simulator to
investigate the aforementioned hypotheses.

4.1.4 Contributions and overview

The formal problem definition and definitions of dynamism, urgency, and scale
as defined by the dataset (Chapter 3) are presented in Section 4.2. The present
chapter contributes the following:

• the RinSim simulator is extended such that centralized and decentralized
approaches can be compared in a fair manner, each approach receives the
same amount of processing power and is subject to the same real-time
constraints (Section 4.3);

• an online centralized optimization algorithm and a decentralized dynamic
contract-net protocol (DynCNET) that uses the same problem solver,
based on the well known OptaPlanner library, are implemented
(Section 4.4);
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• the centralized and decentralized algorithms are systematically evaluated
on differing levels of dynamism, urgency, and scale (Section 4.5); and,

• the code of the simulator, algorithms, and experiments as well as
the datasets and results are made available online to allow complete
reproducibility and future extension of the present work.

The chapter is concluded in Section 4.6.

4.2 Dynamic pickup-and-delivery problems

We adopt the definition of dynamic PDPs from the dataset described in
Chapter 3. In PDPs there is a fleet of vehicles responsible for the pickup-and-
delivery of items. Dynamic PDP is an online problem. Customer transportation
requests are revealed over time, during the fleet’s operating hours. It is further
assumed that the fleet of vehicles has no prior knowledge about the total number
of requests nor about their locations or time windows. In this section, we provide
an overview of the existing work about dynamic PDP and the dataset as it
serves as a foundation of the evaluation in present chapter.

4.2.1 Formal definition

In Chapter 3 a scenario, which describes the unfolding of a dynamic PDP, is
defined as a tuple:

〈T , E ,V〉 := scenario,

where

[0, T ) := time frame of the scenario, T > 0

E := list of events, |E| ≥ 2

V := set of vehicles, |V| ≥ 1

[0, T ) is the period in which the fleet of vehicles V has to respond to customer
requests. The events, E , represent customer transportation requests. Since we
consider the purely dynamic PDPTW, all events are revealed between time 0
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and time T . Each event ei ∈ E is defined by the following variables:

ai := announce time

pi := [pLi , pRi ) = pickup time window, pLi < pRi

di := [dLi , dRi ) = delivery time window, dLi < dRi

psti := pickup service time span

dsti := delivery service time span

ploci := pickup location

dloci := delivery location

tti := travel time from pickup location to delivery location

Reaction time is defined as:

ri := pRi − ai = reaction time (4.1)

The time window related variables of a transportation request are visualized in
Figure 4.1.

time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Figure 4.1: Visualization of the time related variables of a single order event ei ∈ E.

Furthermore it is assumed that:

• vehicles start at a depot and have to return after all orders are handled;

• the fleet of vehicles V is homogeneous;

• the cargo capacity of vehicles is infinite (e.g. courier service);

• the vehicle is either stationary or driving at a constant speed;

• vehicle diversion is allowed, this means that a vehicle is allowed to divert
from its destination at any time;
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• vehicle fuel is infinite and driver fatigue is not an issue;

• the scenario is completed when all pickup and deliveries have been made
and all vehicles have returned to the depot; and,

• each location can be reached from any other location.

Vehicle schedules are subject to both hard and soft constraints. The opening of
time windows is a hard constraint, hence vehicles need to adhere to these:

spi ≥ pLi (4.2)

sdi ≥ dLi (4.3)

spi is the start of the pickup operation of order event ei by a vehicle; similarly,
sdi is the start of the delivery operation of order event ei by a vehicle. The time
window closing (pRi and dRi ) is a soft constraint incorporated into the objective
function, it computes the operating cost and needs to be minimized:

min :=
∑
j∈V

(vttj + td {bdj , T }) +
∑
i∈E

(
td
{
spi, p

R
i

}
+ td

{
sdi, d

R
i

})
(4.4)

where
td {α, β} := max {0, α− β} = tardiness (4.5)

vttj is the total travel time of vehicle vj ; bdj is the time at which vehicle vj
is back at the depot. In summary, the objective function computes the total
vehicle travel time, the tardiness of vehicles returning to the depot and the total
pickup and delivery tardiness.

4.2.2 Dataset

Earlier work has argued for, and presented, a dataset characterized by
three different properties of dynamic PDPs: dynamism, urgency, and scale
(Chapter 3).

Dynamism

Dynamism is defined in Chapter 2. Informally, a scenario that changes
continuously is said to be dynamic while a scenario that changes occasionally
is said to be less dynamic. In the context of PDPTWs a change is an event
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that introduces additional information to the problem, such as the events in E .
Formally, the degree of dynamism, or the continuity of change, is defined as:

dynamism := 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

(4.6)

∆ is the list of event interarrival times:

∆ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i+ 1 ∧ ∀ai, aj ∈ E} (4.7)

The interarrival time for a scenario with 100% dynamism is called the perfect
interarrival time:

θ := perfect interarrival time = T
|E|

(4.8)

Based on this definition, the deviation and maximum possible deviation to the
perfect interarrival time can be computed:

σi :=



θ − δi if i = 0 and δi < θ

θ − δi + θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(4.9)

σ̄i := θ +


θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(4.10)

eq. 4.6 uses the proportion of the actual deviation and the maximum possible
deviation. Using this definition the degree of dynamism of any scenario can be
computed.

Urgency

In Chapter 2 urgency is defined as the maximum reaction time available to the
fleet of vehicles in order to respond to an incoming order. Or more formally:

urgency (ei) := pRi − ai = ri (4.11)

To obtain the urgency of an entire scenario the mean and standard deviation of
the urgency of all orders can be computed.
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Scale

Scale is defined in Chapter 3 as maintaining a fixed objective value per order
while scaling the number of orders up in proportion to the number of vehicles
in the fleet. Scaling up a scenario 〈T , E ,V〉 with a factor α will create a new
scenario 〈T , E ′,V ′〉 where |V ′| = |V| · α and |E ′| = |E| · α.

4.3 A realistic experimentation platform

The dataset presented in Chapter 3 uses the RinSim logistics simulator (van Lon
& Holvoet, 2012). In the present chapter we intend to quantify the performance
of algorithms on scenarios with different properties. Dynamism and urgency are
both time related properties, that, in the real world, have a direct impact on
the amount of available computation time before an action is required. Scale,
on the other hand, is a property that impacts the solution space. Since the
dynamic PDP is NP-hard, the problem scale has a significant impact on the
amount of time needed for computations. In order to evaluate the impact of
these properties on the performance of the algorithms in dynamic PDPs, it is
imperative to execute the algorithms in real-time. In a logistics scenario, this
means that while vehicles are driving or performing operations the algorithms
can compute in parallel. To support a realistic evaluation of the algorithms
on the dataset, the RinSim simulator is extended with real-time support. This
section first presents an overview of the RinSim architecture followed by the
design and evaluation of the real-time extension.

RinSim is a discrete-time logistics simulator that supports running both
centralized algorithms and decentralized multi-agent systems. RinSim is written
in Java and has a modular design (Figure 4.2), a Model encapsulates a part of a
problem domain or algorithm. The simulator can be customized by selecting the
models that are used, this allows simulating a wide variety of logistics problems
while maximally reusing existing code. RinSim has a number of built-in models.

TimeModel is one of the core models in the simulator, it is responsible for
simulating the advancing of time. RinSim is an activity-based simulator, a
special case of an event-based simulator (Law, 2007). Event-based simulation
models a system as it evolves over time, the system state changes at discrete
points in time. Events indicate system state changes at specific points in time.
Typically, system state changes trigger the scheduling of new events in the future.
An advantage of event-based simulation is that time advances are irregular,
allowing the simulator to jump over periods with no events. In activity-based
simulation, the simulator clock is advanced using a fixed time increment. Any
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TimeModel RoadModel

ScenarioController StatsTracker CommModel PDPModel

RinSim

MAS

Solver

GUI

Figure 4.2: UML component diagram of RinSim. The simulator subsystem can be configured
with a variety of models that all provide some interface. MASs, solvers, and the graphical
user interface use these interfaces to interact with RinSim.

events that are scheduled to occur during this interval are considered to occur
at the end of the interval. Therefore, events in activity-based simulations may
deviate from their real time. However, the time increment can be chosen to be
small enough for these deviations to have no significant effect on the simulations.
RinSim is designed with a variety of use cases in mind, one use case is where
agents are free to roam around and make ad hoc decisions. When there are
many of these agents, the total number of events that need to be scheduled
is overwhelming. For that reason, RinSim uses a fixed time increment called
a ‘tick’. The simulator is initialized with a fixed tick length, for example a
tick length of 250 milliseconds. Each tick, RinSim advances the clock and
notifies all objects in the simulator that implement the TickListener interface
(Figure 4.3). The order in which the TimeModel notifies the TickListeners is

:RtCentralModel

t1

t2

t3

t4

t5

t6

t7

New order Start

TimeModel thread RtSolverModel thread

:OptaPlannerRTSolver

New schedule
New order Restart

New schedule

New schedule

Finished

Figure 4.3: Execution order of TickListeners in the TimeModel.

fixed, this ensures that the simulation is deterministic allowing reproducibility
of experiments. Each tick, the TimeModel hands out a TimeLapse instance that
indicates the current time and duration of the tick. Each TickListener can
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choose to consume the TimeLapse and spend it on an action. Once a TimeLapse
is completely consumed, it can not be used again during that same tick. Using
this mechanism RinSim ensures time consistency throughout a simulation.

A RoadModel provides an interface for traveling on a road structure.
RinSim provides several RoadModel implementations, there are graph based
implementations that allow objects to traverse a graph. Additionally, there are
graph based RoadModels that allow dynamic changes to the graph or that have
support for collisions, which allows to simulate a warehouse environment for
autonomous guided vehicles. Alternatively, there is a RoadModel based on a
plane (such as used in Chapter 3) which allows vehicles to travel in a straight
line. All RoadModels provide location consistency and ensure that maximum
speeds are adhered to.

There are several other major components in RinSim. PDPModel is a model that
provides simulation of pickup-and-delivery of goods by a vehicle. It ensures
capacity and location constraints such that a pickup or delivery operation can
only be performed when a vehicle is at the correct location. CommModel is a
model that provides message based communication to agents, StatsTracker
records statistics of a simulation run and ScenarioController allows the
simulation of a predefined scenario (such as the scenarios from Chapter 3).

Figure 4.2 also shows several external components. The MAS component shows
how an agent implementation would interact with the simulator. The Solver
component has a similar interaction with RinSim but both the MAS and Solver
components provide default implementations to aid in the development of the
respective algorithms. The GUI component provides the RinSim graphical
user interface (Figure 4.4). The RinSim GUI provides several customizable
visualizations for different aspects of a simulation.

Besides enforcing consistency inside the simulator models, the code of RinSim
itself is meticulously checked by a large number of unit and integration tests (over
1550 tests at the time of writing) to ensure code quality. There are a number of
papers reporting on applications of RinSim for scientific experiments. RinSim
has been used for simulating bike sharing by Preisler et al. (2015, 2016), and in
our research group for experiments with dynamism and urgency (Chapter 2),
for experiments on the dataset (Chapter 3), for evolving multi-agent systems
for PDPTW (Merlevede et al., 2014; van Lon et al., 2012), and for simulating
autonomous guided vehicles in a warehouse (Dinh et al., 2016). Additionally,
RinSim is used at KU Leuven, Belgium, as an educational platform for students
in the context of a course on MAS.
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Figure 4.4: Screen shot of RinSim. The top part of the screen shows a time window
visualization with pickup time windows above the line in blue and delivery time windows
below the line in red. The bottom part of the screen shows a two dimensional geographical
view of the simulation world. It shows vehicles (red dots), pickup locations (green dots), and
the routes vehicles are following (black lines).

4.3.1 Real-time extension

The standard Java virtual machine (JVM) has no built-in support for real-time
execution. However, with a careful software design, the standard JVM can
be used to obtain soft real-time behavior. Soft real-time, as opposed to hard
real-time, allows occasional deviations from the desired execution timing. In
order to obtain acceptable soft real-time behavior, we applied two strategies,
first, we minimize the possible deviations from the desired execution timing,
and second, we measure and report the actual deviations that occur.

When simulating without real-time constraints, the TimeModel will compute all
ticks as fast as possible. In a real-time simulator the interval between the start
of two ticks should be the tick length (e.g. 250 ms). Since the JVM doesn’t
allow precise control over the timings of threads it is generally impossible
to guarantee hard real-time constraints. In real-time mode, RinSim uses a
dedicated thread for executing the ticks. If computations need to be done
that are expected to last longer than a tick, they must be done in a different
thread. RinSim provides a separate model for running solvers in a separate
thread called RtSolverModel. This minimizes interference of RtSolverModel
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computations with the advancing of time in the simulated world as executed
by the TimeModel. Additionally, the processor affinity of the threads are set
at the operating system level. Setting the processor affinity to a Java thread
instructs the operating system to use one processor exclusively for executing
that thread. In practice, the actual scheduling of threads on processors depends
on the number of available processors and the operating system. Informal tests
on a multi core processor running Linux have shown that different threads
are indeed run on different processor cores, exactly as specified. By setting
the processor affinity of the TimeModel thread, deviations from the desired
execution timing are minimized.

Nevertheless, time deviations can and do happen because the behavior of the
standard JVM can not be controlled completely. In order to be able to measure
the possible deviations, RinSim keeps a real-time tick log (Figure 4.5). In this

Time (ms)
0 250 500 750

TimeModel thread t1 t2

−50

t′2 t3

+50

t′3

Figure 4.5: Illustration of the execution of real-time ticks. In this example tick t′2 is executed
50 ms earlier than the perfect timing as indicated by tick t2, tick t′3 is executed 50 ms later
than the perfect timing as indicated by tick t3.

log the exact timings (in nanoseconds) of all real-time ticks are kept. With this
log, different runs of the simulator can be compared and possible influence on
the results can be investigated.

Running a complete logistics simulation in real-time is time consuming, as it
will simulate every tick synchronized with real time. However, depending on
the specific simulation that is being run, there may be long intervals where
no computations are being done other than that of the simulator advancing
time in the simulated world. For this reason, RinSim employs a mechanism to
dynamically switch between real-time and simulated time (Figure 4.6). When
the simulator is in simulated time, ticks will be executed as fast as possible
speeding up the simulation significantly. As soon as a computation needs to
be done, the simulator must first switch back to real-time mode before this
computation can be started.

When a solver starts computing, it receives a snapshot of the current state
of the world and starts optimizing the current schedule using that snapshot.
Now, the longer a solver is computing, it becomes increasingly likely that the
information with which it started computing is outdated. To avoid keeping
outdated information for too long, RinSim provides the facility to keep the solver
updated in real-time (Figure 4.7). However, each time the solver thread needs
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Figure 4.6: An example of RinSim with a RtSolverModel with two threads. In tick t1, two
solver computation tasks are dispatched in their own threads. In tick t4 it is detected that all
computations have finished, therefore the simulator switches to simulated time in the next
tick. Tick t5, t6, and t7 are executed consecutively in simulated time.
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Figure 4.7: Graphical depiction of the TimeModel updating the solver on every tick. In tick t1
the solver is started, subsequent ticks can optionally stop, update, and start the solver.

to be updated the solver has to pause for a short period of time, therefore the
number of updates should be limited. To balance between the cost of computing
based on outdated information and the cost of interrupting the solver thread,
the solver is updated only when the problem has changed in a way that changes
the search space significantly. The first event which is considered significant is
when a new order arrives. A new order must eventually be assigned, so it is
important to take this into account as soon as possible. The second significant
event is when a vehicle has committed to perform a specific servicing operation.
This is important as it fixes a part of the search space, the order that is being
serviced can no longer be moved to another vehicle.

4.3.2 Real-time reliability

Using the log of interarrival times that RinSim keeps, the effect of deviations
on the results can be examined. Therefore we did an experiment using three
different solvers on the same scenario. We performed 10 repetitions for each
algorithm using the same random seed and same scenario. This setup allows
to investigate the influence of any deviations of tick interarrival times on the
measured scenario cost (using the objective function from Section 4.2.1). The
solvers that were used are a cheapest insertion (CI) heuristic, a first fit decreasing
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heuristic (FFD), and FFD combined with tabu search (FFD.TABU). Figure 4.8
shows that FFD.TABU outperforms the simpler heuristics but it introduces
some variation in the cost. The tick interarrival time logs (Table 4.1) show
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Figure 4.8: Boxplots of three OptaPlanner algorithms on a scenario with 10 repetitions with
the same random seed, dynamism of 50%, urgency of 20 minutes, and scale 10. FFD.TABU
performs best but the cost values are more stochastic.

that FFD.TABU uses about 10 times more real-time ticks compared to the CI
and FFD algorithms. The difference in real-time ticks is expected because

Table 4.1: Accumulated tick interarrival time statistics for the 10 experiments that were
conducted for each algorithm. Count indicates the number of real-time ticks, the columns to
the right indicate the number of ticks that have a deviation of -10, -1, +1 or +10 milliseconds,
respectively, to the expected interarrival time of 250 milliseconds.

Algorithm µ σ Count −10 ms −1 ms +1 ms +10 ms
CI 250.0493 ms 2.85 ms 34950 23 168 231 36
FFD 250.0428 ms 3.44 ms 34950 26 193 278 40
FFD.TABU 250.0004 ms 1.73 ms 373055 198 3076 3086 198

FFD.TABU is more complex and therefore requires more computation time.
The variation in cost of FFD.TABU is caused by the small variations of tick
length that cause small differences in reached solution quality at a specific
time in the simulation. For example, when comparing two simulation runs,
a deviation of a single tick may already have an impact on the final result.
Consider the situation where due to the deviation of a tick of a few milliseconds
a new solution is found by the algorithm one tick later (or earlier), this causes
the vehicles to receive the new solution one tick (250 ms) later (or earlier).
These small differences may have relatively large effects because the costs that
are incurred accumulate over time. Therefore, to minimize the effect of this
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real-time related stochasticity, a scientific experiment should never rely on a
single repetition of a simulation. For that reason, we repeat each simulation
three times and we use ten scenarios with the same properties in our experiment
setup (Section 4.5.1).

4.3.3 Computational fairness

When comparing centralized algorithms with decentralized MAS’s in a real-time
setting, it is important that assignment of computational resources is balanced.
For example, both approaches must have the same number of available processor
cores, but not necessarily the same number of threads. For this reason, the
RtSolverModel has a thread grouping option, this binds all solver threads to
the same processor core (using processor affinity). When more than one thread
is bound to the same processor core, the execution of the threads are interleaved,
giving a similar percentage of computation time to each thread. Even though
a MAS is typically deployed in a distributed fashion and has therefore access
to many processor cores, in the experiments described in this chapter the
hardware constraints are balanced because the goal is to evaluate centralized
and decentralized software paradigms, and not their deployments. In a real-
world deployment the hardware constraints of centralized and decentralized
approaches most certainly differ from our simulation setup, however, there
will invariably be some hardware constraints. Therefore, we compare the
centralized and decentralized software paradigms irrespective of deployment
related hardware constraints.

4.3.4 Experiments

RinSim has several features to ease running large scale experiments with a
lot of individual real-time simulations. RinSim can run multiple simulations
in parallel, by giving each simulation its own dedicated set of processor cores,
simulations do not affect each other’s computational resources. However, this
also puts an upper bound to the number of simulations that can be run in
parallel. For example, when twelve cores are available and each simulation
requires two cores, the maximum number of simulations that can be run in
parallel is five. These five simulations will use ten cores, so that leaves two cores
for the operating system to perform background tasks. When an experiment
contains more simulations than can be run in parallel, the remainder will be
queued by RinSim.

The standard JVM performs just-in-time compilation and adaptive optimization
of often used code. These JVM activities can influence the real-time experiments.
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Therefore, RinSim provides a warm up period that runs several simulations
for a predefined time to warm up the JVM. This warm up period reduces the
influence on the simulations because the JVM will already be optimized to
the code that is going to be run. When running real-time experiments it is
recommended to always use a warm up period, as we do (Section 4.5.1). RinSim
also has an option to change the ordering in which individual simulations are
run. For example, when two different configurations are tested, it is better to
alternate between the configurations instead of first running all simulations
with one configuration and then all simulations with another configuration.
Alternating the configurations ensures that the individual configurations are
subject to similar fluctuations in computation speed and memory availability
that are beyond the control of the JVM.

4.4 Algorithms

To evaluate centralized and decentralized algorithms it is important that the
quality of the algorithms is comparable. Comparing a strong centralized
algorithm with a weak MAS will not yield meaningful results. For that reason,
we use the same solver algorithms framework in both the centralized as well
as the decentralized setting. The evaluation focuses on how the algorithms
are used, not on the specific algorithms that are used. For the centralized
algorithm we have chosen the well known OptaPlanner framework created
by De Smet et al. (2016). For the decentralized algorithm we have chosen a
multi-agent system with DynCNET because it is a proven technology that has
been applied numerous times for task allocation optimization in the context of
manufacturing (Shen et al., 2006). DynCNET uses the same solver from the
OptaPlanner framework, but in a decentralized fashion.

4.4.1 Centralized algorithm

OptaPlanner (De Smet et al., 2016) is an open source Java constraint satisfaction
engine that optimizes planning problems. The project is developed by De Smet
et al. (2016) and sponsored by RedHat. OptaPlanner provides a wide range of
optimization algorithms such as construction heuristics and metaheuristics. It
has support for many problem domains such as scheduling and vehicle routing.

OptaPlanner allows customization of the problem definition to that of the
PDPTW (Section 4.2) as is used in the dataset. OptaPlanner is incorporated
into RinSim using the RtCentralModel and OptaPlannerRtSolver classes,
the model controls all vehicles centrally using the schedule computed by the
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solver (Figure 4.9). The OptaPlannerRtSolver continuously updates the
RtCentralModel of its progress and the model restarts the solver when the
problem definition changes (i.e. when a new order is announced). The continuous
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Figure 4.9: UML interaction diagram of communication between RtCentralModel and
OptaPlannerRtSolver. In this example the solver is interrupted at t3, the problem definition
is updated with the new order after which the solver continues its search. In t4 and t5 it has
found a new improving schedule. In t7 the solver is done computing as it couldn’t find an
improving schedule anymore.

updates of the solver use the RinSim mechanism as described in Section 4.3.
This setup allows real-time control of the fleet of vehicles and avoids unnecessary
long computations based on outdated information.

OptaPlanner requires a stop condition to halt its search process. We are using
the unimproved time spent stop condition, that halts the search when the best
score has not improved for an amount of time.

4.4.2 Decentralized multi-agent system

The multi-agent system that is investigated is an implementation of the
DynCNET presented by Weyns et al. (2007). DynCNET is a dynamic extension
of the CNET first proposed by Smith (1980). Inspired by how companies use
subcontracting to collaboratively solve problems, CNET uses contracting to
approach the task assignment problem. In CNET, the agent that tenders a task
is called the manager and it sends a task announcement to potential contractors.
Each potential contractor can either ignore the announcement or send a bid
to the manager. The manager then selects its best bid and awards the task
to the contractor. Figure 4.10 shows the UML interaction diagram for the
CNET auction process. Although an auction can be, and usually is, used in a
competitive setting, we use auctions in a purely cooperative setting. We assume
that both the contractors and the manager are working for the same company.
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Figure 4.10: UML interaction diagram of a CNET auction.

The dynamic extension of CNET provides flexibility to the assignment until
a contractor has to commit to the execution of the task. The same task can
be announced several times before its execution, its assignment changing after
every announcement.

In our MAS implementation for the dynamic PDPTW, both the vehicle as
well as the transportation requests are modeled as agents. In the remainder of
this text we will call the agent controlling a vehicle a VehicleAgent and the
agent responsible for a transportation request an OrderAgent. OrderAgents are
playing the role of the manager in DynCNET, VehicleAgents are the potential
contractors. Figure 4.11 shows an interaction diagram of an auction using
our DynCNET implementation. At the end of an auction, each VehicleAgent
is either awarded the order or notified of the end of the auction. At this
moment the VehicleAgents have the possibility of starting a new auction by
offering one of their previously awarded orders. The VehicleAgent will inform
the OrderAgent responsible for the order that is to be offered to start a new
auction, the OrderAgent will then perform a new auction process similar to
Figure 4.11. A possible outcome of this auction is that the order is not awarded
to another vehicle but stays assigned to the original vehicle. Allowing the
vehicles to start a new auction process enables the dynamic (re)allocation of
orders and makes our CNET implementation dynamic.

Order agent

The OrderAgent (the manager in CNET terminology) is responsible for the
auction process. It announces the start of the auction to all vehicles and waits
until it receives enough bids to make a decision. The stop criterion for the
bidding process is:

|bids| ≥ 2∧(|bids| = |vehicles| ∨ auction_duration ≥ max_auction_duration)
(4.12)
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Figure 4.11: UML interaction diagram of an auction of an order with two vehicles. Upon
receiving the auction announcement, both VehicleAgents start computing a bid. The
computations take several ticks. As soon as the OrderAgent has met the stop criterion,
in this case receiving two bids is enough, the auction is finalized and the order is awarded to
v1. Vehicle v2 is notified of the end of the auction. The RtSolverModel lifeline is a simplified
view of the implementation, the actual computations can be performed in multiple threads
(as discussed in Section 4.3). Note that the filled arrows indicate synchronous calls and the
stick arrows indicate asynchronous calls.

where, |bids| is the number of received bids, |vehicles| is the total number
of vehicles which equals the potential maximum number of bids and
max_auction_duration is a duration limit that is a parameter of the MAS.
An alternative stop criterion would be to wait until all vehicles have submitted
their bid, but we use a maximum auction duration because it is more robust
in case of (partial) communication loss, vehicle failures, and other unforeseen
events.

When the stop criterion evaluates to true, the OrderAgent finalizes the auction
by selecting the best bid as the winner. The best bid is defined as the bid
with the lowest price (cost). The order is assigned to the winner, the winner
must therefore service that order, unless it decides to auction it and somebody
else wins that auction at a later time. All VehicleAgents are informed of the
end of the auction. This allows agents that are still computing their bids for
this auction to cancel their computations. Bids that are received after the
finalization of the auction are ignored.
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Vehicle agent

A VehicleAgent needs to compute a bid value in order to propose a bid. In our
implementation the bids are computed using a solver (the bid solver) managed
by the RtSolverModel. The cost of an order is defined as the additional cost
that including that order incurs to a vehicle’s current schedule:

cost(order) = cost(new_schedule)− cost(current_schedule) (4.13)

where, current_schedule is the schedule of the vehicle including all previous
order assignments, and new_schedule is the current schedule of the vehicle
including the proposed order. The task of the solver is finding the best
new_schedule in a relatively short amount of time to get a reliable estimate of
the cost of the auctioned order. The time for computing the new schedule is
limited because the auction process has a limited duration, the bid needs to be
proposed before the end of this duration in order to ensure that the OrderAgent
will take the bid into account.

As soon as the assignment of orders to a vehicle has changed, the VehicleAgent
needs to update its schedule. The vehicle’s schedule is optimized by a solver
(the schedule solver), although it is imperative to generate a complete schedule
quickly (e.g. to respond to urgent requests), the solver can compute for a
longer time as the solver can continuously notify the VehicleAgent of improved
schedules. This allows the optimization process to continue for an extended
period.

The VehicleAgent considers starting a new auction (a reauction) in the
following two situations:

• when a vehicle hasn’t won an auction for at least five minutes; or,

• when the vehicle’s current schedule has changed.

When starting a new auction the vehicle has to decide which of its previously
assigned orders it should auction. The order that when removed yields the
greatest schedule cost reduction, for that vehicle, is selected. Computing the
cost reduction of removing an order from the current route does not require
an optimization step (the route is not optimized again) and can therefore be
computed quickly for all orders assigned to a vehicle (similar to eq. 4.13). Orders
for which the pickup operation is in process or is already done are not considered
for auctioning as they can’t be reassigned. If the order with the greatest cost
reduction is the last received order, no auction is performed to avoid excessive
auctioning. The VehicleAgent itself has to propose a bid to its own auction,
only when another agent proposes a better bid will the order be reassigned.
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4.4.3 Tuning

For tuning we have run the algorithms on the dataset used by Gendreau
et al. (2006). This dataset was chosen because it is very similar to the dataset
presented in Chapter 3 as the problem definition is nearly identical. Additionally,
using the Gendreau et al. dataset allows comparison with their algorithm. The
Gendreau et al. dataset consists of 15 scenarios divided in three different
scenario classes (Table 4.2). It is worth noting that within a scenario class there

Table 4.2: Characteristics of the three scenario classes of the Gendreau et al. dataset.

Scenario class Duration Average request intensity Fleet size
4H-24 4 hours 24 requests per hour 10 vehicles
4H-33 4 hours 33 requests per hour 10 vehicles
7.5H-24 7.5 hours 24 requests per hour 20 vehicles

is quite some variability of characteristics. For example in 4H-24 the number of
orders ranges from 84 to 94, that is an intensity of 21 to 23.5 requests per hour.
Similar variability exists in the other scenario classes and also for characteristics
such as dynamism and urgency. We performed a benchmark experiment with
28 different OptaPlanner solver configurations. We tested two construction
heuristics, first-fit decreasing (FFD) heuristic and cheapest insertion heuristic
(CI) and combined each with 14 different local search algorithms. All available
local search algorithms provided by OptaPlanner are used with the parameters
as advised by the OptaPlanner manual (De Smet et al., 2016). We used a period
of ten seconds for the unimproved time spent stop condition, this is a rather
long period that we chose to give OptaPlanner enough time for searching. Since
OptaPlanner can be interrupted when the problem changes, there is no downside
to this long period. When OptaPlanner is interrupted, it remembers its current
best solution, inserts the new problem information, and then continues the
search. The algorithms were run three times per scenario, each time with a
different random seed. This resulted in a total of 28 · 15 · 3 = 1260 simulations.
Table 4.3 displays the most relevant results, the complete overview of results can
be found in (van Lon, 2017g). The best Gendreau et al. algorithms outperform
the OptaPlanner algorithms for all scenario classes. This is expected because
the Gendreau et al. algorithms are designed and optimized specifically for this
problem while the OptaPlanner algorithms are generic local search heuristics.
However, the results in Table 4.3a to 4.3c indicate that the relative difference
between the Gendreau et al. algorithms and the best OptaPlanner algorithm
is larger for the small scale scenario (26.4% for 4H-24) and smaller for the
larger scale scenarios (4.9% for 4H-33 and 9% for 7.5H-24). Since the small
scale scenarios in the dataset from Chapter 3 are already larger scale than the
scenarios in the 4H-24 class, we expect that the performance difference on the
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Table 4.3: Selection of results of the tuning experiment on the Gendreau dataset. Per scenario
class, the average cost and rank of a selection of algorithms is shown.

Algorithm Cost #
Gendreau 485.6 1
FFD.SHTS 613.8 2
FFD.SA1 614.6 3
FFD.SA4 616.2 4
CI 1023.6 28
FFD 1420.6 29

(a) 4H-24

Algorithm Cost #
Gendreau 3159.4 1
FFD.SHTS 3313.1 2
FFD.LAT 3336.5 3
FFD.SCHC 3337.5 4
CI 5051.7 28
FFD 5778.3 29

(b) 4H-33

Algorithm Cost #
Gendreau 634.8 1
CI.TABU 691.9 2
CI.SA1 693.1 3
FFD.SHTS 702.9 13
CI 1074.4 28
FFD 2656.0 29

(c) 7.5H-24

Algorithm Description
Gendreau The cost values reported are the average of the best algorithm per scenario.

The best algorithms proposed by Gendreau et al. (2006) are an adaptive
descent algorithm and a tabu search algorithm.

CI Cheapest insertion construction heuristic.
FFD First-fit decreasing construction heuristic.
FFD.SHTS FFD with step counting hill climbing with tabu search and strategic

oscillation.
FFD.SA1 FFD with simulated annealing with an accepted count limit of 1.
FFD.SA4 FFD with simulated annealing with an accepted count limit of 4.
FFD.LAT FFD with late acceptance with tabu search.
FFD.SCHC FFD with step counting hill climbing.
CI.TABU CI with tabu search.

(d) Algorithm descriptions, details about the algorithms can be found in (De Smet et al., 2016).

Chapter 3 dataset between the Gendreau et al. algorithms and the OptaPlanner
algorithms lies between 5 and 9%. This difference is acceptable for the purpose
of the current study: analyzing the performance difference between centralized
and decentralized usage of the same algorithm. Based on the results we conclude
that FFD.SHTS is the best OptaPlanner algorithm to use in the experiments.

4.4.4 MAS tuning

The MAS has four main parameters that influence the experiment results the
most:

• Bid, bid solver unimproved time spent.

• Schedule, schedule solver unimproved time spent.

• MAD, maximum auction duration (eq. 4.12).

• Reauctions, can be enabled, disabled, or enabled with a cooldown period.
The cooldown period is defined as the time that a VehicleAgent is
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not allowed to start a new reauction for an order that was previously
reauctioned unsuccessfully.

Choosing the best values for these parameters is especially important because
all computational tasks done by agents in the MAS have to be performed on
a single core. This means that in large scale scenarios, 100 agents need to
compute their bids on the same core. Using the dataset generator of Chapter 3,
we created a dataset of large scale scenarios for tuning the MAS. The dataset
consists of three levels of dynamism, three levels of urgency, and one level of
scale. This gives nine scenario classes, with five scenarios per class, the tuning
dataset contains 3 · 3 · 5 = 45 scenarios. In the first MAS tuning experiment
we varied Bid. Table 4.4 shows the MAS settings and the results. The cost

Table 4.4: First MAS tuning experiment settings and results. Cost is the cumulative cost
of the average cost per scenario class, rank is the average rank of the MAS over the nine
scenario classes.

Bid (ms) Schedule (ms) MAD (s) Reauctions Cost Rank
1 100 5 Enabled 129.1 6.8
2 100 5 Enabled 113.7 5.4
5 100 5 Enabled 105.0 3.9
8 100 5 Enabled 102.2 2.9

10 100 5 Enabled 101.0 2.3
15 100 5 Enabled 102.9 2.2
25 100 5 Enabled 110.8 4.4

and rank values indicate that the Bid values 8, 10, and 15 perform best. When
looking at the results for these best settings we found that around 66-93% of
the auctions are concluded after receiving bids from all agents. Because we
expect that receiving less than all bids is not beneficial, we decided to increase
the auction duration to ten seconds.

We designed a second experiment that uses the best Bid values from last
experiment, adds a Bid value of 20, tests a higher Schedule value, and uses
a longer MAD. Table 4.5 shows the settings and the results of the second MAS
tuning experiment. The results show that a Schedule of 100 milliseconds
performs better than a Schedule of 250 milliseconds. For Bid 8, 10, and 15,
with Schedule 100, the percentage of auctions that are concluded after receiving
bids from all agents has increased to 77-97%. It further appears that increasing
MAD improves performance of Bid 15 while performance of Bid 8 and 10 is almost
unaffected. We decided to keep the MAD at 10, and to select the algorithm with
the lowest cost and rank, that is a Bid of 15 milliseconds and a Schedule of
100 milliseconds.
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Table 4.5: Second MAS tuning experiment settings and results. Cost is the cumulative cost
of the average cost per scenario class, rank is the average rank of the MAS over the nine
scenario classes.

Bid (ms) Schedule (ms) MAD (s) Reauctions Cost Rank
8 100 10 Enabled 102.0 5.4

10 100 10 Enabled 101.3 3.9
15 100 10 Enabled 101.3 3.0
20 100 10 Enabled 104.7 4.4
8 250 10 Enabled 102.5 5.6

10 250 10 Enabled 102.1 4.9
15 250 10 Enabled 103.0 3.7
20 250 10 Enabled 106.2 5.1

In the third MAS tuning experiment we investigated the effectiveness of
reauctions. Table 4.6 shows the settings and the results of the experiment.
As can be seen, the performance difference between enabling and disabling

Table 4.6: Third MAS tuning experiment settings and results. Cost is the cumulative cost
of the average cost per scenario class, rank is the average rank of the MAS over the nine
scenario classes.

Bid (ms) Schedule (ms) MAD (s) Reauctions Cost Rank
15 100 10 Enabled 101.3 3.1
15 100 10 Disabled 103.2 4.1
15 100 10 Cooldown period 1 min. 101.2 2.7
15 100 10 Cooldown period 10 min. 100.8 2.8
15 100 10 Cooldown period 20 min. 100.5 2.3

reauctions are small. Nevertheless, enabling reauctions performs better
compared to disabling them. Using a cooldown period seems to be beneficial,
additionally, we found that a longer cooldown period results in a lower number
of reauctions and a higher reauction success rate (Table 4.7). The slightly

Table 4.7: Third MAS tuning experiment reauction details. Total num. reauctions is the
cumulative number of reauctions, success rate is the average reauction success rate per
scenario.

Reauctions Total num. reauctions Success rate
Enabled 53214 27.2%
Disabled 0

Cooldown period 1 min. 49533 27.6%
Cooldown period 10 min. 31827 31.8%
Cooldown period 20 min. 26522 32.8%
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higher costs when a shorter cooldown period is used appears to be related
with the high number of unsuccessful reauctions in this case. We expect that
these unsuccessful reauctions and the computations that are involved delay
computations for regular auctions, which explains the higher costs in this case.
For the main experiments we decided to use a cooldown period of 20 minutes.

4.5 Evaluation

To evaluate the hypotheses about multi-agent systems and centralized
algorithms, our implementations (Section 4.4) are run using real-time RinSim
(Section 4.3) on the dataset of Chapter 3.

4.5.1 Experiment setup

The dataset of Chapter 3 has three dimensions: dynamism, urgency, and scale,
with three values per dimension that results in a total of 27 different scenario
classes. We use ten scenarios for each class and we perform three repetitions per
scenario (with different random seeds), this results in a total of 27 · 10 · 3 = 810
simulations per algorithm. For each dimension there is a hypothesis that
addresses the performance of the algorithms on that dimension.

The dataset of Chapter 3 contains scenarios with a length of 8 hours. Since we
need to do a large number of experiments in real-time we shortened the scenario
length to 4 hours. We used the dataset generator to generate a new dataset
and made it available online (van Lon, 2017g). The reduction of scenario length
was done purely for computational reasons as running such a large number of
simulations in real-time takes considerable time. Additionally, the tick size is set
to 250 milliseconds and scenarios now require a real-time simulator by default.

Because performance in real-time simulations is hardware dependent, all real-
time simulations are performed on the same computer. We used a dedicated
Ubuntu machine (version 12.04.5 LTS) with 24 logical cores (two six core Intel
Xeon 2.6GHz E5-2630 v2 processors with hyper threading). For the experiments
the Java HotSpot 64-Bit Server VM (runtime version: 1.8.0_74-b02) was used.
A single simulation requires two logical cores, one for the simulator and one for
the solver computations. For the solver computations we used a thread pool of
size three, meaning that any additional computations are queued until one of
the three threads are available. At least one core needs to be available for the
operating system so a maximum number of 11 simulations were run in parallel.
Even though no other processes were started on the dedicated computer during
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the course of the experiments, we opted to use the experiment ordering feature
in RinSim (Section 4.3.4). The factorial setup order that is used is: repetition,
scenario, algorithm. This means that the first few simulations are: r0s0a0,
r0s0a1, r0s1a0, r0s1a1, etc. Here rn stands for random seed (repetition) n, sn
stands for scenario n, and an stands for algorithm n. This setup ensures that
the execution of the different algorithms is interleaved as much as possible.
Additionally, a JVM warm up period of 30 seconds is used to let the JVM
perform code optimizations before the actual experiment is started. We choose
30 seconds because this is the default warm up time in OptaPlanner (De Smet et
al., 2016). RinSim nor the algorithms make use of any I/O operations during a
simulation. The entire experiment is programmed using Java and is run entirely
from memory. Before and after a simulation, RinSim does use I/O operations
to read the scenario file and write the results to disk, but since these operations
are not done during the simulation itself, this does not influence the results.

For performing the experiments described in this section we used the following
software. As simulator, we used RinSim v4.3.0 (van Lon, 2016d), for the
centralized and decentralized algorithms we used RinLog v3.2.2 (van Lon, 2017a),
to generate the scenarios we used the PDPTW dataset generator v1.1.0 (van
Lon, 2016b). The experiment code including the launch scripts can be found
in a separate repository (van Lon, 2017f). The datasets that were used in the
tuning experiments, the main dataset, as well as all results discussed in this
chapter, can be found in (van Lon, 2017g). We have made sure to archive
each of these artifacts, using a Digital Object Identifier (DOI), to ensure their
long-term availability.

Algorithms

Based on the tuning experiment (Section 4.4.3) we selected the FFD.SHTS
algorithm that performed best on average on all three scenario classes. Table 4.8
shows how and with what settings FFD.SHTS is used.

Table 4.8: OptaPlanner settings used in the centralized and decentralized configurations. The
type refers to how the solver is used, the limit is the maximum unimproved time parameter
of the OptaPlanner solver.

Short name Name Type Limit

MAS DynCNET Bid 15 ms
Schedule 100 ms

COP Centralized OptaPlanner Schedule 10000 ms
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4.5.2 Results and analysis

Figures 4.12-4.17 display the results of the experiments. Each data point in
the graphs is the average of 30 simulations, 10 scenarios from the same class,
each repeated 3 times. For each two means obtained under the same settings
we analyzed whether they are statistically different using Welch’s paired t-test.
In the following analysis we refer to this test by mentioning the p-values (when
relevant) that were observed. The significance threshold was set at p = .01. The
cumulative computation time of all 1620 simulations was 1794.4 hours (≈ 74.8
days), since 11 experiments were conducted in parallel, the actual computation
time was 165.1 hours (≈ 6.9 days).

Dynamism

Recall the first hypothesis (Section 4.1): A CNET based MAS finds solutions
with a lower operating cost compared to a centralized algorithm on more dynamic
problem instances. More specifically, we can refine this hypothesis into several
related sub-hypotheses. First, we expect that more dynamism correlates
positively with the average costs for MAS. Figure 4.12 shows that the costs
of MAS remain stable or decrease for every level of scale and urgency when
dynamism increases, therefore this hypothesis is rejected. The cost for MAS
always decreases significantly between 20% and 50%, between 50% and 80% the
decrease is not significant except in Figure 4.12(i) (p ≈ 0.006) and in Figures
4.12(e), 4.12(f), and 4.12(g), where the cost is actually increasing. Second, we
expect that more dynamism correlates positively with the average costs for COP.
This hypothesis is rejected because the costs of COP are significantly decreasing
in Figure 4.12 between 20% and 50% dynamism (except in Figure 4.12(c)),
between 50% and 80% the costs difference is never significantly different. These
results are similar to the results based on simulated time as reported in Chapter 3,
this comes as a surprise since we expected that simulating in real-time would
make dealing with highly dynamic situations more challenging. However, it
turns out that dealing with occasional but relatively big bursts of change
is more demanding for the algorithms than more frequent smaller changes.
Third, we expect that increasing dynamism increases the cost of MAS less than
that it increases the cost of COP. Figure 4.13 shows that in many situations,
MAS performs relatively better when dynamism increases. In Figures 4.13(c),
4.13(e), and 4.13(f), however, this is not the case. In very urgent and large
scale scenarios, the hypothesis can be accepted because the performance of
MAS decreases more relative to COP. This result is contrary to the experiments
performed in Chapter 2 and Chapter 3 where dynamism had almost no influence.
We attribute this difference in results to the fact that in the present chapter
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Figure 4.12: Comparison with mean relative cost versus dynamism for all levels of scale and
urgency. The error bars indicate a confidence interval of 99%.

the experiments were conducted using real-time simulation, contrary to the
simulations in Chapter 2 and Chapter 3. This is confirmed by the fact that this
effect only occurs in very urgent and in large scale situations, as these are the
conditions where real-time simulation has the biggest impact on the available
computation time. In general, we can conclude, based on this experiment, that
dynamism influences the relative performance of COP and MAS in very urgent
and in large scale scenarios. In absolute terms, however, lower dynamism tends
to induce higher average costs.
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Figure 4.13: Comparison with competitive ratio to MAS versus dynamism for all levels of
scale and urgency. The error bars indicate a confidence interval of 99%.

Urgency

The second hypothesis (Section 4.1) concerns urgency: A CNET based MAS
finds solutions with a lower operating cost compared to a centralized algorithm
on more urgent problem instances. Regarding urgency, we expect that more
urgent problems (lower urgency values) are correlated with higher average costs
per order for MAS and COP. The results (Figure 4.14) show that for both COP
and MAS this is true. Between 5 and 20 minutes the difference in cost is always
significant. Between 20 and 35 minutes, this is not the case for COP in Figures
4.14(a) and 4.14(g), and for MAS, the differences are not significant between 20
and 35 minutes in Figures 4.14(a), 4.14(b), 4.14(c), 4.14(d), and 4.14(g).



EVALUATION 85

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

(a) Scale = 1, dyn = 20

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

(b) Scale = 1, dyn = 50

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

Algorithm
COP

MAS

(c) Scale = 1, dyn = 80

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

(d) Scale = 5, dyn = 20

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

(e) Scale = 5, dyn = 50

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

Algorithm
COP

MAS

(f) Scale = 5, dyn = 80

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

(g) Scale = 10, dyn = 20

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

(h) Scale = 10, dyn = 50

0

10

20

30

5 20 35
Urgency (min)

A
ve

ra
ge

co
st

pe
r

or
de

r

Algorithm
COP

MAS

(i) Scale = 10, dyn = 80

Figure 4.14: Comparison with mean relative cost versus urgency for all levels of scale and
dynamism. The error bars indicate a confidence interval of 99%.

These results and the figures show a diminishing of the cost decreases the less
urgent a problem gets. However, it appears that this effect is stronger for MAS
than for COP. The relative cost of MAS versus COP (Figure 4.15) shows that
less urgency (higher values) benefits COP more than it benefits MAS. Similarly,
COP suffers to a greater extent from more urgency than MAS. We have to
reject the hypothesis, however, because there are only four very urgent cases
where MAS outperforms COP significantly (Figures 4.15(e), 4.15(f), 4.15(h),
and 4.15(i)). In four other very urgent situations, the costs of MAS and COP
are not significantly different (Figures 4.15(b), 4.15(c), 4.15(d), and 4.15(g)).
Therefore, MAS is not always better at responding to the most urgent requests.
More generally, it seems that MAS is better at coping with a simultaneous
increase of urgency, dynamism, and scale compared to COP. This indicates that
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Figure 4.15: Comparison with competitive ratio to MAS versus urgency for all levels of scale
and dynamism. The error bars indicate a confidence interval of 99%.

MAS is better at coping with a continuously changing and large scale problem
that requires quick decisions.

Scale

The third hypothesis: A CNET based MAS finds solutions with a lower operating
cost compared to centralized algorithms on larger scale problem instances, raises
several related hypotheses. First, when scaling up a problem it is expected
that, because of the larger solution space, algorithms have more difficulty of
finding good solutions. Therefore, we expect that the average cost per order
increases for larger scale problems. Figure 4.16 shows that this is not true for
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Figure 4.16: Comparison with mean relative cost versus scale for all levels of urgency and
dynamism. The error bars indicate a confidence interval of 99%.

MAS. The average cost for scale 5 is always significantly lower than the average
cost for scale 1, this is similarly the case between scale 5 and scale 10, except
for Figures 4.16(a) and 4.16(g) where the difference is not significant (p ≈ .027
and p ≈ .348 respectively). For COP the situation is similar, there are only
two cases where the cost is not decreasing significantly, between scale 5 and 10
in Figure 4.16(a) (p ≈ .050) and in Figure 4.16(g) (p ≈ .102). This leads us
to reject the hypothesis for both COP and MAS. Although seemingly counter
intuitive, these results are logical when considering the fact that with larger
scale problems both the number of vehicles and the number of orders increase.
Since there are more vehicles, the average distance of a new arriving order to
the closest vehicle will be lower. This has a positive effect on the tardiness and
distance traveled. The results indicate that both algorithms have enough time
to explore the search space to exploit the larger number of available vehicles.
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Figure 4.17 shows that the relative performance of COP and MAS depends on
the level of dynamism and urgency. For example, in very urgent and medium
to very dynamic situations (Figures 4.17(b) and 4.17(c)), MAS benefits more
from an increasing scale compared to COP, while in not so dynamic situations,
this trend seems to be reverse (Figures 4.17(d) and 4.17(g)). In Figure 4.17(f)
the trend appears approximately parallel. Based on these differing trends we
cannot accept the hypothesis that MAS is generally more scalable than COP.
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Figure 4.17: Comparison with competitive ratio to MAS versus scale for all levels of urgency
and dynamism. The error bars indicate a confidence interval of 99%.
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4.5.3 Discussion

All three hypotheses, about MAS’s being better to cope with increasing
dynamism, urgency, and scale, compared to centralized algorithms have been
rejected. However, the reverse hypotheses can neither be accepted. The results
are more nuanced, the centralized algorithm is better in most situations but
there exist specific problems that are very dynamic, very urgent, and large
scale, for which MAS’s are better. Table 4.9 shows that of the 27 different
settings in the experiment, there are four settings where MAS significantly
outperforms COP, 18 settings where COP significantly outperforms MAS, and
five settings where the difference is not significant. The four settings where

Table 4.9: Average results of both COP and MAS for each setting. The ‘Best’ column indicates
the best performing algorithm for that scenario class, a † indicates that the difference is not
statistically significant (p < 0.01).

Dynamism Urgency Scale COP MAS Ratio p-value Best
20 5 1 24.804 27.115 0.915 1.683e-07 COP
50 5 1 22.318 22.813 0.978 7.068e-02 COP†

80 5 1 21.836 22.392 0.975 7.209e-02 COP†

20 20 1 17.444 20.101 0.868 7.191e-11 COP
50 20 1 15.080 16.821 0.896 3.908e-07 COP
80 20 1 14.747 15.330 0.962 1.913e-02 COP†

20 35 1 14.514 17.399 0.834 9.080e-12 COP
50 35 1 12.878 15.322 0.840 1.390e-11 COP
80 35 1 12.267 14.733 0.833 2.128e-10 COP
20 5 5 18.758 18.896 0.993 1.227e-01 COP†

50 5 5 17.038 15.644 1.089 2.690e-14 MAS
80 5 5 17.188 15.629 1.100 2.293e-16 MAS
20 20 5 14.128 15.310 0.923 3.487e-13 COP
50 20 5 10.039 10.562 0.950 4.042e-07 COP
80 20 5 10.290 10.794 0.953 2.509e-07 COP
20 35 5 10.878 12.652 0.860 1.770e-15 COP
50 35 5 8.628 9.920 0.870 7.927e-16 COP
80 35 5 8.817 9.997 0.882 1.809e-12 COP
20 5 10 17.506 17.463 1.002 6.332e-01 MAS†

50 5 10 15.574 13.513 1.153 8.956e-25 MAS
80 5 10 15.843 13.771 1.150 1.886e-21 MAS
20 20 10 11.531 13.074 0.882 1.099e-14 COP
50 20 10 9.308 9.685 0.961 1.686e-06 COP
80 20 10 9.150 9.511 0.962 3.054e-06 COP
20 35 10 9.736 11.936 0.816 5.141e-20 COP
50 35 10 7.901 8.901 0.888 2.529e-18 COP
80 35 10 7.752 8.609 0.900 1.268e-14 COP
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MAS outperforms COP all have an urgency of 5 minutes. This indicates that
the advantage of COP of having a global view on the problem diminishes for
very urgent problems. For very urgent problems, COP may not have enough
time for searching the solution space, apparently, the implicit solution space
partitioning of the CNET algorithm helps finding a good solution in a short
amount of time. This is interesting because centralized algorithms can also
benefit from this knowledge, for example, it would be interesting to experiment
with a similar partitioning but in a centralized setting.

The average COP-to-MAS ratio is 0.942, meaning that when COP operates
the fleet of vehicles it costs, on average, only 94.2% relative to MAS. This
means that in general, COP is the preferred solution approach. However, if it
is known beforehand that the problem is very urgent (ratio 1.039), very urgent
and medium to large scale (ratio 1.081), or, medium to very dynamic, very
urgent, and medium to large scale (ratio 1.123).

In practice, the deployment of the algorithms under investigation is relevant. A
benefit of MAS’s is their ability to be deployed decentrally as well as centrally,
this allows MAS’s to replace algorithms in an existing centralized deployment.
Additionally, due to their decentralized nature, parallelizing MAS’s is trivial,
in fact the current implementation is already multi-threaded (although in the
experiments limited to a single thread) but executed on a single core. Although
out of scope of the current study, running the MAS’s using multiple cores would
theoretically decrease the average costs per order. Additionally, MAS’s can be
deployed in a distributed setting using smartphones to run the agents on. This
allows a purely decentralized setup that is robust to hardware failure. If some
hardware fails (e.g. a smartphone) it would only affect one vehicle and the
orders that it has won in an auction. These effects could even be reduced by
implementing a protocol between a vehicle agent and order agent that frequently
checks whether it is still alive, similarly to pheromone evaporation in Delegate
MAS (Holvoet et al., 2009).

4.6 Conclusion

A widely held belief in multi-agent systems literature is that MAS is
advantageous in operational research problems that are very dynamic and/or
large scale. However, such claims were never supported by evidence based on
a systematic empirical study. Present chapter is the first to systematically
investigate the influence of dynamism, urgency, and scale on the performance of
both multi-agent systems and centralized algorithms. Based on the experimental
results, we reject the hypotheses that the MAS has a lower average operating



CONCLUSION 91

cost compared to the centralized algorithm on more dynamic, more urgent, or
larger scale problems. However, the reverse hypotheses can neither be accepted.
The results are more nuanced, the solutions found by the centralized algorithm
cost, on average, only 94.2% of the cost of the solutions found by the multi-
agent system. This indicates that the centralized algorithm generally performs
better compared to the multi-agent system. However, for scenarios that are
medium to very dynamic, very urgent, and medium to large scale, the average
relative cost of the centralized algorithm is 112.3%, indicating that under these
circumstances, the multi-agent system performs better than the centralized
algorithm. When assessing the performance of the algorithms individually per
scenario property, there is not one algorithm that generally outperforms the
other on that dimension.

Running an empirical study for comparing distinct algorithms is a tedious
task. We have formally defined the pickup-and-delivery problem, including the
scenario properties: dynamism, urgency, and scale. For the algorithms we used
OptaPlanner, a well known satisfaction solver library. A tuning experiment was
conducted to find the best performing OptaPlanner algorithm for this problem.
The best algorithm was incorporated in an online centralized algorithm and
a multi-agent system based on the dynamic contract-net protocol. In order
to perform a fair empirical study it is imperative to use a real-time simulator
that assigns the same processing power to the approaches. For this reason
we have extended the RinSim logistics simulator and have demonstrated that
fluctuations caused by the real-time nature of the simulator have a minimal
impact on the end result.

To facilitate complete reproducibility, the simulator, datasets, algorithms, and
results are available online. This allows some interesting directions for future
work. For example, the algorithms could be evaluated on different problem
instances generated with our dataset generator or on different problems in
the field of logistics. Additionally, there are many other MAS coordination
protocols such as Delegate MAS or Gradient Field, that can be evaluated and
compared to the algorithms used in the present chapter. Similarly, there are
many more centralized algorithms and libraries that implement them. Present
chapter provides a benchmark, an ideal starting point for further research into
more advanced algorithms.

During the realization of this chapter the authors published an investigation
into optimizing multi-agent systems with genetic programming (Chapter 5) and
evaluated it using the benchmark presented in this chapter.
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Chapter 5

Optimizing agents with
genetic programming - An
evaluation of hyper-heuristics
in dynamic real-time logistics

Building upon the results of the evaluation described in the previous chapter,
we explore hyper-heuristics as a technique for optimizing agents in dynamic
logistics. This chapter contains the paper:

van Lon, R. R. S., Branke, J., & Holvoet, T. (2017). Optimizing
agents with genetic programming: an evaluation of hyper-heuristics
in dynamic real-time logistics. Genetic Programming and Evolvable
Machines, (pp. 1–28). doi:10.1007/s10710-017-9300-5

The content presented in this chapter is the result of discussions led by Rinde
R.S. van Lon with the other two authors. Rinde R.S. van Lon programmed
the software and wrote the paper, Juergen Branke and Tom Holvoet provided
feedback on the writing.
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Abstract

Dynamic pickup and delivery problems (PDPs) require online algorithms for
managing a fleet of vehicles. Generally, vehicles can be managed either centrally
or decentrally. A common way to coordinate agents decentrally is to use
the contract-net protocol (CNET) that uses auctions to allocate tasks among
agents. To participate in an auction, agents require a method that estimates
the value of a task. Typically, this method involves an optimization algorithm,
e.g. to calculate the cost to insert a customer. Recently, hyper-heuristics
have been proposed for automated design of heuristics. Two properties of
automatically designed heuristics are particularly promising: 1) a generated
heuristic computes quickly, it is expected therefore that hyper-heuristics perform
especially well for urgent problems, and 2) by using simulation-based evaluation,
hyper-heuristics can create a ‘rule of thumb’ that anticipates situations in the
future. In the present chapter we empirically evaluate whether hyper-heuristics,
more specifically genetic programming (GP), can be used to improve agents
decentrally coordinated via CNET. We compare several GP settings and compare
the resulting heuristic with existing centralized and decentralized algorithms
based on the OptaPlanner optimization library. The tests are conducted in
real-time on a dynamic PDP dataset with varying levels of dynamism, urgency,
and scale. The results indicate that the evolved heuristic always outperforms
the optimization algorithm in the decentralized multi-agent system (MAS)
and often outperforms the centralized optimization algorithm. This chapter
demonstrates that designing MASs using genetic programming is an effective
way to obtain competitive performance compared to traditional operational
research approaches. These results strengthen the relevance of decentralized
agent based approaches in dynamic logistics.

5.1 Introduction

The PDP is a logistics problem where a fleet of vehicles transports customers or
goods from origin to destination (Parragh et al., 2008). The dynamic PDPTW is
an online variant where some or all customers’ orders arrive during the operating
hours and where customers impose time window constraints on pickups and
deliveries (Berbeglia et al., 2010). Typically, the objective in PDPTW is to
serve all customers while minimizing fuel costs and time window violations. In a
purely dynamic PDPTW, no order is known before the operating hours. When
a new order is announced, the available computation time for an algorithm is
limited by the order’s urgency, the amount of available time until the order
needs to be serviced (Chapter 2). Together, the dynamism, urgency, and scale
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of a problem, directly affect the amount of computations that need to be done
as well as how much time is available for performing them (Chapter 3).

Decentralized MAS’s are commonly considered to be a good fit for large scale and
dynamic problems because of their ability to make quick local decisions (Fischer
et al., 1995; Glaschenko et al., 2009; Weyns et al., 2006). Together, the local
decisions made by all agents aim to solve the global optimization problem.
There are two different approaches for making these decisions: 1) explicitly
searching through the space of possible schedules using an (exact or heuristic)
optimization procedure, or, 2) using a heuristic, a rule of thumb, that guides the
agent by assigning priorities to actions without explicitly searching the space
of schedules. The aim of the present chapter is to compare the performance
of these two different approaches. For the first approach we use a tabu search
algorithm from the OptaPlanner (De Smet et al., 2016) optimization library.
For the second approach we use genetic programming to automatically design
an agent-based heuristic.

5.1.1 Related work

A recent empirical study (Chapter 4) employs a MAS with an auction based
CNET. The agents place bids to the customer indicating the estimated additional
cost to perform the transportation task. Each agent computes this bid value by
running an optimization procedure for a limited time. The experiments indicate
that the MAS only outperforms a reference centralized algorithm in case the
problem is medium to very dynamic, very urgent, and medium to large scale. A
problem instance with these properties is changing continuously (medium to very
dynamic), vehicles have a short amount of time to respond to incoming requests
(very urgent), and there are relatively many vehicles and orders (medium to
large scale). In this situation the computational demands are very high, limiting
the viability of searching the solution space centrally. The CNET approach,
however, uses implicit partitioning of the search space, apparently this helps in
these circumstances to find a good solution in a short period. Since Chapter 4
considers purely dynamic PDPTWs, we know that the problem is likely to
change soon after a bid value is computed. A reasonable assumption is therefore
that a good bid value should incorporate expected future events that affect
the transportation cost of an order. However, in the setup of Chapter 4, the
optimization algorithm, OptaPlanner (De Smet et al., 2016), only considers all
information that is known up to the moment of computation. An alternative for
the optimization procedure is a heuristic that may include estimates of future
events. Designing such a heuristic is, however, a difficult task. A local decision
made by an agent can have far reaching global consequences. That is because a
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collection of agents acting according to decentralized local rules constitutes a
complex system with emergent and difficult to predict behavior.

Research on dynamic optimization problems, such as dynamic PDPTWs, is
concerned with optimization in an environment that changes over time (Cruz
et al., 2011). Dynamic optimization problems are often approached using
metaheuristics (Nguyen et al., 2012; Yang et al., 2012). Metaheuristics, such as
swarm intelligence and evolutionary computation, are a good fit for these
dynamic problems because they are inspired on natural processes, which
themselves are subject to a continuously changing environment. In present
chapter, instead of using evolutionary algorithms to solve our problem directly,
we use genetic programming to generate a heuristic that solves our problem.

Hyper-heuristics is a branch of optimization literature concerned with the
automatic design of heuristics (Burke et al., 2013). Burke et al. (2010)
distinguishes two different categories of hyper-heuristics, heuristic selection and
heuristic generation. Heuristic selection comprises methodologies for choosing
or selecting existing heuristics while heuristic generation is concerned with
generating new heuristics from components of existing heuristics. GP is a
subfield of evolutionary computing (Eiben & Smith, 2007), that works with
variable size LISP-tree representations and thus is able to evolve functions of
arbitrary complexity, making it particularly suitable for the design of heuristics.
Hyper-heuristics and GP in particular, have been applied in a wide range
of contexts, including production scheduling (Branke et al., 2016), traveling
salesman problems (Keller & Poli, 2008), bin packing (Burke et al., 2006), etc.

The combination of hyper-heuristics and MAS for dynamic PDPTW has been
explored before. To the best of our knowledge, Beham et al. (2009) were the
first to apply hyper-heuristics to an agent-based algorithm for the PDPTW. In
their MAS, vehicle agents are governed by two separate heuristics, one heuristic
determines its next location to travel to and another heuristic determines the
order(s) to pick up at a pickup site. Both heuristics are weighted sums of hand-
crafted heuristics, the weights are set by an evolution strategy (ES). Determining
the quality of the heuristics during evolution is done with a simulation-based
fitness function. Beham et al. (2009) did not compare their approach with
alternative algorithms.

Similarly, van Lon et al. (2012) used GP to evolve the guiding heuristic for a
MAS in a dynamic PDPTW context. Vehicles have a capacity of one order,
implying that a vehicle must immediately go to an order’s destination after pick
up. The evolved heuristic assigns priorities to all available orders. Each vehicle
that is not currently carrying an order executes its heuristic frequently, and
travels to the order with the highest priority. The agents do not communicate
amongst each other, leading to inefficiencies in case several vehicles have the
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same priority. Because the problem is dynamic, priorities of vehicles change,
causing vehicles to divert from their route. In their paper, van Lon et al. show
that their MAS approach with an evolved heuristic outperforms a centralized
meta-heuristic.

The work by Vonolfen et al. (2013) extends (van Lon et al., 2012). Instead
of using just three terminals in GP as was done in (van Lon et al., 2012),
Vonolfen et al. use 18 different terminals. This includes several terminals
that incorporate information about other agents’ distances and destinations.
The authors compare their approach with two algorithms, a (centralized) tabu
search algorithm and the evolution strategy presented in (Beham et al., 2009).
Vonolfen et al. report that the tabu search algorithm outperforms both the GP
as well as the ES approach, while GP outperforms ES.

Continuing in this line of research, Merlevede et al. (2014) use neuroevolution of
augmenting topologies (NEAT) to evolve a neural network as a priority heuristic.
The authors use the same MAS approach as in (van Lon et al., 2012) but they
evaluate their performance on an existing dynamic PDPTW benchmark. They
are the first to report negative results, the reference centralized algorithm always
outperforms the NEAT approach. These results are likely caused by the lack of
a coordinating mechanism for their MAS.

5.1.2 Contributions and overview

The papers described above that apply hyper-heuristics to MAS for dynamic
PDPTW have several drawbacks which we aim to overcome in present chapter.
First, the discussed hyper-heuristics have not been evaluated in real-time. In
a dynamic logistics problem, algorithm computation time directly affects the
performance of the fleet of vehicles. Therefore, when comparing hyper-heuristics
to traditional optimization algorithms in dynamic PDPTW, a real-time simulator
is required. Second, for a fair comparison of two different algorithms, it is
important that both algorithms are subject to exactly the same constraints.
When comparing hyper-heuristics in a MAS setting, a fair comparison is to
have a reference algorithm that is also used in a MAS setting. Unfortunately,
none of the above described works evaluate their agent-based hyper-heuristic in
this way. Third, to understand the exact circumstances in which one algorithm
outperforms another, it is imperative to vary the problem properties on which
they are evaluated. Fourth, to allow reproducibility and extensibility, the
algorithms, datasets, and software that are used should be freely available.

The aim of present chapter is to determine whether using hyper-heuristics
can improve the performance of an existing MAS for a real-time logistics
problem. More specifically, we are investigating two hypotheses comparing
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a hyper-heuristic setup with the centralized OptaPlanner algorithm and the
decentralized MAS both from Chapter 4:

• GP designed heuristic in a MAS can outperform OptaPlanner in a MAS.

• GP designed heuristic in a MAS can outperform centralized OptaPlanner.

If these hypotheses are true, it would demonstrate the relevance of decentralized
MAS’s in dynamic logistics and constitute an important first step towards
their automatic design. Since a heuristic typically requires only a fraction of
the computation time that a solver requires, we also investigate the following
hypothesis:

• GP designed heuristic works especially well for more urgent problems
because of its minimal computational cost.

Using the dataset and dataset generator from Chapter 3 we can train and test
the heuristics on instances with different values of dynamism, urgency, and
scale. We define a specialized heuristic as a heuristic that is trained on one
specific scenario setting with specific properties, as opposed to a generalized
heuristic that is trained on a wide range of scenario settings. We expect that:

• Specialized heuristics outperform general heuristics on scenarios for which
they are specialized.

• Generalized heuristics outperform specialized heuristics on scenarios for
which they are not specialized.

The chapter is organized as follows. A formal problem definition, including
dynamism, urgency, and scale, and the real-time simulation platform are
presented (Section 5.2). The MAS that we start from is presented in Section 5.3.
The chapter presents the following contributions:

• a new application of hyper-heuristics to decentralized MAS using GP is
presented (Section 5.4);

• the performance of GP and the resulting heuristics are thoroughly
evaluated using real-time simulation and compared to existing results
obtained by a centralized and a decentralized OptaPlanner algorithm
under varying circumstances (Section 5.5);

• following Chapter 4, all code, data, and results needed to reproduce this
work are made available online.
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Finally, we summarize the chapter and discuss directions for future research
(Section 5.6).

5.2 Dynamic pickup-and-delivery problems

This section is adapted from Chapter 3 and Chapter 4. In PDPs there is a fleet
of vehicles responsible for the pickup-and-delivery of items. Dynamic PDP is
an online problem. Customer transportation requests are revealed over time,
during the fleet’s operating hours. It is further assumed that the fleet of vehicles
has no prior knowledge about the total number of requests nor about their
locations or time windows. In this section, we provide an overview of the work
about dynamic PDP from Chapter 3 and Chapter 4 as it serves as a foundation
of the evaluation in present chapter.

5.2.1 Formal definition

In Chapter 3 a scenario, which describes the unfolding of a dynamic PDP, is
defined as a tuple:

〈T , E ,V〉 := scenario,

where

[0, T ) := time frame of the scenario, T > 0

E := list of events, |E| ≥ 2

V := set of vehicles, |V| ≥ 1

[0, T ) is the period in which the fleet of vehicles V has to respond to customer
requests. The events, E , represent customer transportation requests. Since we
consider the purely dynamic PDPTW, all events are revealed between time 0
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and time T . Each event ei ∈ E is defined by the following variables:

ai := announce time

pi := [pLi , pRi ) = pickup time window, pLi < pRi

di := [dLi , dRi ) = delivery time window, dLi < dRi

psti := pickup service time span

dsti := delivery service time span

ploci := pickup location

dloci := delivery location

Reaction time is defined as:

ri := pRi − ai = reaction time (5.1)

The time window related variables of a transportation request are visualized in
Figure 5.1.

time0 T
ri

order i

ai pLi pRi dLi dRi
pickup time window

pi

delivery time window

di

Figure 5.1: Visualization of the time related variables of a single order event ei ∈ E.

Furthermore it is assumed that:

• vehicles start at a depot and have to return after all orders are handled;

• the fleet of vehicles V is homogeneous;

• the cargo capacity of vehicles is infinite (e.g. courier service);

• the vehicle is either stationary or driving at a constant speed;

• vehicle diversion is allowed, this means that a vehicle is allowed to divert
from its destination at any time;
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• vehicle fuel is infinite and driver fatigue is not an issue;

• the scenario is completed when all pickup and deliveries have been made
and all vehicles have returned to the depot; and,

• each location can be reached from any other location.

Vehicle schedules are subject to both hard and soft constraints. The opening of
time windows is a hard constraint, hence vehicles need to adhere to these:

spi ≥ pLi (5.2)

sdi ≥ dLi (5.3)

spi is the start of the pickup operation of order event ei by a vehicle; similarly,
sdi is the start of the delivery operation of order event ei by a vehicle. The time
window closing (pRi and dRi ) is a soft constraint incorporated into the objective
function, it needs to be minimized:

min :=
∑
j∈V

(vttj + td {bdj , T }) +
∑
i∈E

(
td
{
spi, p

R
i

}
+ td

{
sdi, d

R
i

})
(5.4)

where
td {α, β} := max {0, α− β} = tardiness (5.5)

vttj is the total travel time of vehicle vj ; bdj is the time at which vehicle vj
is back at the depot. In summary, the objective function computes the total
vehicle travel time, the tardiness of vehicles returning to the depot and the total
pickup and delivery tardiness.

5.2.2 Dataset

Earlier work has argued for, and presented, a dataset characterized by
three different properties of dynamic PDPs: dynamism, urgency, and scale
(Chapter 3).

Dynamism

Dynamism is defined in Chapter 2. Informally, a scenario that changes
continuously is said to be dynamic while a scenario that changes occasionally
is said to be less dynamic. In the context of PDPTWs a change is an event
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that introduces additional information to the problem, such as the events in E .
Formally, the degree of dynamism, or the continuity of change, is defined as:

dynamism := 1−

|∆|∑
i=0

σi

|∆|∑
i=0

σ̄i

(5.6)

∆ is the list of event interarrival times:

∆ := {δ0, δ1, . . . , δ|E|−2} = {aj − ai|j = i+ 1 ∧ ∀ai, aj ∈ E} (5.7)

For a scenario with 100% dynamism, the perfect interarrival time is defined as:

θ := perfect interarrival time = T
|E|

(5.8)

Based on this definition, the deviation and maximum possible deviation to the
perfect interarrival time can be computed:

σi :=



θ − δi if i = 0 and δi < θ

θ − δi + θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise

(5.9)

σ̄i := θ +


θ − δi
θ
× σi−1 if i > 0 and δi < θ

0 otherwise
(5.10)

Eq. 5.6 uses the proportion of the actual deviation and the maximum possible
deviation. Using this definition the degree of dynamism of any scenario can be
computed.

Urgency

In Chapter 2 urgency is defined as the maximum reaction time available to the
fleet of vehicles in order to respond to an incoming order. Or more formally:

urgency (ei) := pRi − ai = ri (5.11)

To obtain the urgency of an entire scenario the mean and standard deviation of
the urgency of all orders can be computed.
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Scale

Scale is defined in Chapter 3 as maintaining a fixed objective value per order
while scaling the number of orders up in proportion to the number of vehicles
in the fleet. Scaling up a scenario 〈T , E ,V〉 with a factor α will create a new
scenario 〈T , E ′,V ′〉 where |V ′| = |V| · α and |E ′| = |E| · α.

5.2.3 Realistic simulation platform

The experiments performed in Chapter 4 use the RinSim real-time logistics
simulator (van Lon & Holvoet, 2012). For fair comparison we use the same
simulator. RinSim is a discrete-time logistics simulator that supports running
both centralized algorithms and decentralized multi-agent systems. RinSim is
written in Java and has a modular design (Figure 5.2), a Model encapsulates
a part of a problem domain or algorithm. The simulator can be customized

TimeModel RoadModel

ScenarioController StatsTracker CommModel PDPModel

RinSim

MAS

Solver

GUI

Figure 5.2: UML component diagram of RinSim. The simulator subsystem can be configured
with a variety of models that all provide some interface. MASs, solvers, and the graphical
user interface use these interfaces to interact with RinSim.

by selecting the models that are used, this allows simulating a wide variety of
logistics problems while maximally reusing existing code.

RinSim supports simulations using simulated time as well as real-time. The
standard JVM has no built-in support for real-time execution. However, RinSim
is designed such that it provides soft real-time behavior using the standard
JVM. Soft real-time, as opposed to hard real-time, allows occasional deviations
from the desired execution timing.

RinSim discretizes time into intervals called ‘ticks’. The simulator is initialized
with a fixed tick length, for example a tick length of 250 milliseconds. When
simulating without real-time constraints, the simulator computes all ticks as
fast as possible. In a real-time simulator the interval between the start of
two ticks should be the tick length (e.g. 250 ms). Since the JVM doesn’t
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allow precise control over the timings of threads it is generally impossible
to guarantee hard real-time constraints. In real-time mode, RinSim uses a
dedicated thread for executing the ticks. If computations need to be done that
are expected to last longer than a tick, they must be done in a different thread.
This minimizes interference of computations with the advancing of time in
the simulated world. Additionally, the processor affinity of the threads are set
at the operating system level. Setting the processor affinity to a Java thread
instructs the operating system to use one processor exclusively for executing
that thread. In practice, the actual scheduling of threads on processors depends
on the number of available processors and the operating system.

Running a complete logistics simulation in real-time is time consuming, as it
will simulate every tick synchronized with real time. However, depending on
the specific simulation that is being run, there may be long intervals where
no computations are being done other than that of the simulator advancing
time in the simulated world. For this reason, RinSim employs a mechanism to
dynamically switch between real-time and simulated time. When the simulator
is in simulated time, ticks will be executed as fast as possible speeding up
the simulation significantly. As soon as a computation needs to be done, the
simulator must first switch back to real-time mode before this computation can
be started.

5.3 Multi-agent systems for dynamic PDP

This section is adapted from Chapter 4. The multi-agent system that is
extended is an implementation of the DynCNET presented by Weyns et al.
(2007). DynCNET is a dynamic extension of the CNET first proposed by Smith
(1980). Inspired by how companies use subcontracting to collaboratively solve
problems, CNET uses contracting to approach the task assignment problem. In
CNET, the agent that tenders a task is called the manager and sends a task
announcement to potential contractors. Each potential contractor can either
ignore the announcement or send a bid to the manager. The manager then
selects the best bid and awards the task to the contractor. Figure 5.3 shows the
UML interaction diagram for the CNET auction process. Although an auction
can be, and usually is, used in a competitive setting, we use auctions in a purely
cooperative setting. We assume that both the contractors and the manager
are working for the same company. The dynamic extension of CNET provides
flexibility to the assignment until a contractor has to commit to the execution
of the task. The same task can be announced several times before its execution,
its assignment changing after every announcement.
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Manager

New task
Task announcement

Potential contractor

Compute bidPropose bid

Award task

Figure 5.3: UML interaction diagram of a CNET auction.

In our MAS implementation for the dynamic PDPTW, both the vehicle as
well as the transportation requests are modeled as agents. In the remainder of
this text we will call the agent controlling a vehicle a VehicleAgent and the
agent responsible for a transportation request an OrderAgent. OrderAgents are
playing the role of the manager in DynCNET, VehicleAgents are the potential
contractors. Figure 5.4 shows an interaction diagram of an auction using our
DynCNET implementation. At the end of an auction, each VehicleAgent

New task

:OrderAgent

Announce

v2:VehicleAgent

Compute

:RinSim

Announce

v1:VehicleAgent

Compute

Several ticks DonePropose bid

Several ticks DonePropose bid

opt [Stop criterion]
Finalize auction

Award

End of auction

Figure 5.4: UML interaction diagram of an auction of an order with two vehicles. Upon
receiving the auction announcement, both VehicleAgents start computing a bid. The
computations take several ticks. As soon as the OrderAgent has met the stop criterion,
in this case receiving two bids is enough, the auction is finalized and the order is awarded to
v1. Vehicle v2 is notified of the end of the auction. The RinSim lifeline is a simplified view of
the multi-threaded computation facilities provided by RinSim. Note that the filled arrows
indicate synchronous calls and the stick arrows indicate asynchronous calls.

is either awarded the order or notified of the end of the auction. At this
moment the VehicleAgents have the possibility of starting a new auction by
offering one of their previously awarded orders. The VehicleAgent will inform
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the OrderAgent responsible for the order that is to be offered to start a new
auction, the OrderAgent will then perform a new auction process similar to
Figure 5.4. A possible outcome of this auction is that the order is not awarded
to another vehicle but stays assigned to the original vehicle. Allowing the
vehicles to start a new auction process enables the dynamic (re)allocation of
orders and makes the CNET implementation dynamic.

5.3.1 Order agent

The OrderAgent (the manager in CNET terminology) is responsible for the
auction process. It announces the start of the auction to all vehicles and waits
until it receives enough bids to make a decision. The stop criterion for the
bidding process is:

|bids| ≥ 2 ∧ (|bids| = |vehicles| ∨ auction_duration ≥ 5000)

where, |bids| is the number of received bids, |vehicles| is the total number
of vehicles which equals the potential maximum number of bids and
auction_duration is the duration of the auction in milliseconds.

When the stop criterion evaluates to true, the OrderAgent finalizes the auction
by selecting the best bid as the winner. The best bid is defined as the bid
with the lowest price (cost). The order is assigned to the winner, the winner
must therefore service that order, unless it decides to auction it and somebody
else wins that auction at a later time. All VehicleAgents are informed of the
end of the auction. This allows agents that are still computing their bids for
this auction to cancel their computations. Bids that are received after the
finalization of the auction are ignored.

5.3.2 Vehicle agent

A VehicleAgent needs to compute a bid value in order to propose a bid. In
Chapter 4 the bid value is computed using a solver. The cost of an order is
defined as the additional cost that including that order incurs to a vehicle’s
current schedule:

cost(order) = cost(new_schedule)− cost(current_schedule) (5.12)

where, current_schedule is the schedule of the vehicle including all previous
order assignments, and new_schedule is the current schedule of the vehicle
including the proposed order. The task of the solver is finding the best
new_schedule in a relative short amount of time to get a reliable estimate of
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the cost of the auctioned order. The time for computing the new schedule is
limited because the auction process has a limited duration, the bid needs to be
proposed before the end of this duration in order to ensure that the OrderAgent
will take the bid into account.

As soon as the assignment of orders to a vehicle has changed, the VehicleAgent
needs to update its schedule. The vehicle’s schedule is optimized by a solver
(the schedule solver), although it is imperative to generate a complete schedule
quickly, the solver can compute for a longer time as the solver can continuously
notify the VehicleAgent of improved schedules. This allows the optimization
process to continue for an extended period.

The VehicleAgent considers starting a new auction (a reauction) in the
following two situations:

• when a vehicle has not won an auction for at least five minutes; or,

• when the vehicle’s current schedule has changed.

When starting a new auction the vehicle has to decide which of its previously
assigned orders it should auction. The order that when removed yields the
greatest schedule cost reduction, for that vehicle, is selected. Computing the
cost reduction of removing an order from the current route does not require
an optimization step (the route is not optimized again) and can therefore be
computed quickly for all orders assigned to a vehicle (similar to eq. 5.12). Orders
for which the pickup operation is in process or is already done are not considered
for auctioning as they can’t be reassigned. If the order with the greatest cost
reduction is the last received order, no auction is performed to avoid excessive
auctioning. The VehicleAgent itself has to propose a bid to its own auction,
only when another agent proposes a better bid will the order be reassigned.

In Chapter 4 computations by the agents are done using an optimization
algorithm from the OptaPlanner library (De Smet et al., 2016). OptaPlanner
is an open source Java constraint satisfaction engine that optimizes planning
problems. The project is developed by De Smet et al. and sponsored by
RedHat. OptaPlanner provides a wide range of optimization algorithms such as
construction heuristics and metaheuristics. It has support for various problem
domains such as scheduling and vehicle routing. In the experiments described
in this chapter we use version 6.4.0. In Chapter 4 it was established that a
first-fit decreasing construction heuristic followed by step counting hill climbing
with tabu search and strategic oscillation performs best on dynamic PDPTWs.
Therefore we use the same algorithm in this chapter. In the remainder of this
chapter, when we refer to OptaPlanner we refer to this specific algorithm unless
mentioned otherwise.
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5.4 Genetic programming for enhancing agents

To enhance the MAS discussed in Section 5.3 using GP we replaced OptaPlanner
in the VehicleAgent with an evolved heuristic.

5.4.1 Heuristics in agents

As described in Section 5.3, the VehicleAgent has three different decisions to
make:

1. Assigning a bid value to an auctioned parcel, currently being done using
cheapest insertion cost with the insertion computed by OptaPlanner.

2. Deciding what parcel to reauction, currently taking the most expensive
parcel.

3. Finding the cheapest route to all destinations, currently computed using
OptaPlanner.

Assigning a bid value to a parcel (1) and deciding which parcel to reauction (2)
can easily be done by a heuristic:

(vehicle,parcel) -> cost

The heuristic is executed by a vehicle, the output is an estimation of the cost of
adding the specified parcel into the route of the vehicle and possibly further
considerations.

5.4.2 Genetic programming setup

Since the quality of a heuristic cannot be deduced analytically, we are using
simulation-based fitness evaluation. Since real-time simulation is very time
consuming, we are using RinSim (Section 5.2.3) with simulated time during
evolution. Additionally, to also save computation time, we use the cheapest
insertion cost heuristic instead of OptaPlanner for computing the cheapest route
to all destinations. To avoid spending too much time on simulating inferior
individuals we use RinSim with a custom stop condition:

stop(t) :=

∃vi ∈ V route_length(vi) > max (40, |Et| − |Dt|) if t ≤ 8 hours

true otherwise
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where t is the current time, |Et| is the number of parcel announce events up
to time t, and |Dt| is the number of delivered parcels up to time t. The stop
condition is designed to stop the simulation if it takes too long to deliver all
parcels or if there is a single vehicle that is hoarding parcels. Hoarding is defined
as a vehicle that has more than about 50% of all possible visits in its route.
The theoretical maximum number of visits is indicated by 2 · |Et| − |Dt|. A
vehicle route may contain each parcel at most twice (once for pickup, once for
delivery), if the route length is larger than the number of undelivered parcels this
means that about 50% of the parcels are in that route. The stop condition only
applies when the total route length is more than 40. The stop condition halts
simulations of bad quality individuals, saving computation time for individuals
of higher quality.

The fitness function, that needs to be minimized, is:

fitness :=

fitnessmax − t if simulation terminated early

cost (eq. 5.4) otherwise

The fitness of individuals that are stopped by the stop condition is the maximum
fitness value subtracted with the time of the simulator at which it was stopped.
This adds some differentiation to low quality individuals.

The GP settings that we use are listed in Table 5.1. The best number of

Table 5.1: Genetic programming settings.

Parameter Value
Population size 500
Generations 100
Number of evaluations per individual 50
Num evals in last generation 250
Crossover proportion 90%
Mutation proportion 10%
Elitism 1
Selection method Tournament selection (size 7)
Maximum tree depth 17

evaluations is highly problem specific (Branke et al., 2016). The choice of number
of evaluations per individual needs to be high enough to avoid over specialization
within a single generation while it needs to be low enough to keep the experiments
computationally feasible. Preliminary experiments showed that 50 evaluations
produces convergence graphs that are considerably smoother compared to lower
number of evaluations, while still being computationally feasible. Similar to (van
Lon et al., 2012), we choose a large number of evaluations in the last generation
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since this is the most important generation as it chooses the champion heuristic.
The maximum tree depth of 17 is also used by Koza (1994, p. 265) and is the
default of ECJ, the evolution software framework (Luke et al., 2011) that we
use.

Table 5.2 lists the functions, and Table 5.3 lists the terminals that are used.

Table 5.2: Functions used in GP.

Function name Arity Description
if4 4 if arg0 < arg1 then arg2 else arg3
+, -, /, x 2 Mathematical operators
pow 2 arg0arg1, raises arg0 to the power of arg1
neg 1 Negates arg0
min, max 2 Takes the minimum or maximum, respectively, of the

provided arguments.

Table 5.3: Terminals used in GP. The terminals have a context of a vehicle (the vehicle that
executes the heuristic) and a parcel of interest.

Function name Description
insertion cost Computes the difference between the current and a

possible new tour of a vehicle, as computed by the
cheapest insertion heuristic. Cost is the sum of travel
time, tardiness, and over time (as in eq. 5.4). Flexibility is
defined in eq. 5.13.

insertion travel time
insertion tardiness
insertion over time
insertion flexibility
ado Average, minimum, or maximum travel time, respectively,

from the pickup and delivery location of the parcel of
interest to all locations in the vehicle’s route. These
heuristics are inspired by the heuristics of the same name
by Beham et al. (2009).

mido
mado

pickup urgency The time left until the end of the pickup/delivery time
window of the parcel of interest (in minutes).delivery urgency

time left The time left in minutes until the end of the day.
slack The amount of idle time, in minutes, that the current

vehicle has.
route length The current size of the vehicle’s route.
0,1,2,10 Constants, to limit the search space we only use the four

most relevant constants.

One of the terminals is based on the concept of flexibility in a route. Flexibility
is the degree to which arrival times in a vehicle’s route can be changed without
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Listing 5.1: Simple heuristic example code.

( x (max (− (+ i n s e r t i o n overt ime d e l i v e r y urgency )
i n s e r t i o n f l e x i b i l i t y )

(pow i n s e r t i o n t a r d i n e s s 2 . 0 ) )
(pow 10 .0 i n s e r t i o n co s t ) )

introducing time window violations. This is calculated as follows:

flexibility(route) :=
|route|∑
ri∈route

lpa(ri)− epa(ri) (5.13)

where, lpa(ri) is the last possible arrival time without time window violations
and epa(ri) is the earliest possible arrival time without time window violations.

We use the standard tree-based representation of GP. A simple example of a
heuristic composed of an arbitrary set of functions and terminals is shown as a
Lisp expression (Listing 5.1) and as a tree (Figure 5.5).

x

max

insertion flexibility pow

insertion tardiness 2

pow

10 insertion cost

Figure 5.5: Simple heuristic example visualized as a tree.

We simulate each individual on 50 different scenarios. Each scenario describes
a period of four hours in which 120 orders (in the small scale variant) are
announced. Since a scenario is the product of a stochastic process, the
difficulty of scenarios varies. Within a generation this is not a problem because
fitness indicates an algorithm’s quality on a set of scenarios. Consequently,
when comparing two algorithms within a generation, the fitness values can be
compared directly. However, a convergence graph that shows absolute values
will show a lot of noise because the values between generations can not be
compared directly. Therefore, we normalize the fitness values relative to the
cost of the decentralized cheapest insertion cost heuristic.
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5.4.3 Tuning

For investigating the performance of GP we ran some experiments with a smaller
number of generations. Figure 5.6 shows a breakdown of the convergence graph
of three such runs. The figure shows that most of the improvement during
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Figure 5.6: Breakdown of cost per generation of three evolutionary runs on a scenario with
50% dynamism, 20 minutes urgency, and scale 1.

evolution is caused by a reduction of tardiness and over time while travel
time remains relatively constant. This suggests that it may be worthwhile
to emphasize the tardiness in the objective function during evolution. We
experimented with two weighted versions of decentralized GP (DGP). DGP-1:1
uses the objective function as defined in eq. 5.4. DGP-1:2 replaces the insertion
based GP terminals with weighted versions in favor of tardiness and over time.
Figure 5.7 compares the GP runs with two weighted decentralized insertion
cost heuristics, DIC-1:2 and DIC-1:4. From Figure 5.7 it can be concluded that
DIC-1:2 performs better than the 1:1 objective function while DIC-1:4 performs
worse than 1:1. However, replacing the insertion based GP terminals with
weighted versions does not benefit evolution, DGP-1:1 outperforms DGP-1:2.
This is presumably because evolution already favors heuristics that emphasize
reducing tardiness and over time as this yields the greatest performance increase.

5.5 Evaluation

To compare the agent-based hyper-heuristic approach (DGP, Section 5.4) with
the MAS using OptaPlanner (DOP, Section 5.3) and the centralized OptaPlanner
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Figure 5.7: Comparison of two evolutionary settings (average of three repetitions each),
DGP-1:1 with standard objective function weights of its terminals defined in Table 5.2 and
DGP-1:2 with objective functions weights in favor of tardiness and over time. DIC-1:2 and
DIC-1:4 are using weighted insertion cost (without evolution) on the same set of scenarios as
are used in every generation of the GP.

(COP, Chapter 4) we first need to generate (train) the heuristics that can be
used in real-time.

5.5.1 Training

For training we have generated a separate dataset using the same settings (but
different random seeds) as used in Chapter 4. During training we use small
scale scenarios to save computation time.

Experiment setup

We have opted for four different GP setups (Table 5.4). Three setups are meant
to specialize on one specific scenario class, while the DGP-mixed setup aims
to generate generalized heuristics that are equally adapted to all scenarios.
Because there are nine small scale scenario classes, we use 54, a multiple of nine,
evaluations every generation. This ensures that each generation each individual
is evaluated on exactly six scenarios of every scenario class.

For the specialized GP runs we need to do 500 · (99 · 50 + 250) = 2,600,000
simulations and for the generalized GP run 500 · (99 · 54 + 270) = 2,808,000.
Since we repeat each setting ten times, the grand total of required simulations
is 106,080,000. A single simulation may take from about half a second to
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Table 5.4: The four different GP setups. The three specialized setups, DGP-20-35-1,
DGP-50-20-1, and DGP-80-5-1, are trained on one specific class of scenarios. DGP-mixed is
a setup that is trained on all small scale scenario classes simultaneously.

Dynamism Urgency Scale Num evals Num last evals Name
20% 35 1

50 250
DGP-20-35-1

50% 20 1 DGP-50-20-1
80% 5 1 DGP-80-5-1

20%/50%/80% 35/20/5 1 54 270 DGP-mixed

several seconds each on a modern PC. If the average simulation time would
be exactly 1 second, the expected total computation time is about 1227 days
(3.3 years). Clearly, it is not feasible to run such an experiment on a single
computer, therefore we have pooled the resources of about 80 modern quad-core
computers to run our simulations. Theoretically, these 80 machines allow us to
perform about 320 simulations in parallel. In practice, however, these are shared
university machines that may have other processes running or may simply be
turned off during an experiment. To utilize these machines we use a feature
of RinSim that allows to spread simulations over multiple machines (internally
using JPPF (Cohen, 2016)) and that is resistant to single node failures.

Results and analysis

A total of 103,374,996 simulations were computed during the course of the 40
evolutionary runs. The cumulative computation time is 1295 days, using the
distributed computing setup, it took slightly more than 10 days. The actual
number of simulations that were performed is slightly lower than computed in
the previous paragraph because when identical individuals are found within a
generation they are evaluated only once.

Figure 5.8 shows the average convergence graphs of each GP variant. For all
GP variants, the majority of the improvement occurs in the first 25 generations.
It is striking that 80-5-1 shows much less improvement compared to the other
variants. This may be explained by the fact that this is probably one of the
hardest problems for any algorithm. With 80% dynamism, the problem is
changing nearly continuously and with an urgency of 5 minutes, each new
order needs to be dealt with swiftly. Based on this graph, it appears that
the insertion cost heuristic is performing relatively well in these circumstances.
For the 20-35-1 and 50-20-1 settings, GP seems to be able to find the largest
improvement relative to the insertion cost heuristic. GP-mixed uses all scenario
classes and lies, as expected, somewhere between the others.
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Figure 5.8: Average convergence graphs based on ten repetitions for each of the four GP
settings.

5.5.2 Testing

In order to evaluate the effectiveness of our GP approach, we test the evolved
heuristics using real-time RinSim (van Lon & Holvoet, 2012) on the same dataset
as was used in Chapter 4.

Experiment setup

The test dataset has three levels of dynamism, urgency, and scale, resulting
in 27 different scenarios classes. For each class, the dataset contains ten
scenario instances. The evolutionary runs (Section 5.5.1) produced 40 heuristics,
additionally we are also testing the insertion cost heuristic. This means we have
41 algorithms, each of whom we need to test in real-time on the 270 different
scenarios in the dataset, resulting in a total of 11,070 real-time simulations.
Unlike Chapter 4, we do not repeat the execution of simulations with exactly
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the same settings. Instead, we combine the results of the ten heuristics evolved
with the same GP settings and compare those with the results of Chapter 4.

To allow direct comparison of the results, we use the same hard- and software
as in Chapter 4. The test computer has 24 logical cores (two six core
Intel Xeon 2.6GHz E5-2630 v2 processors with hyper threading). A single
simulation requires two logical cores, one for the simulator and one for the solver
computations. At least one core needs to be available for the operating system,
resulting in a maximum of 11 simulations that can be run in parallel. As in
Chapter 4, we warm up the JVM for 30 seconds before starting the real-time
experiment.

Results

Table 5.5 lists the algorithms that we compare. Similar to Chapter 4, we

Table 5.5: Algorithm names with their meaning and number of simulations per class that
were performed. For COP and DOP, three repetitions were done for each of the ten scenarios
in a class. For the other algorithms, no repetitions were done. For the DGP variants, each of
the ten evolved heuristics were simulated on each scenario.

Algorithm Description Simulations per class
COP Centralized OptaPlanner (from Chapter 4) 30
DOP Decentralized OptaPlanner (from Chapter 4) 30
DIC Decentralized insertion cost 10
DGP-20-35-1 Decentralized GP trained on 20-35-1 class 100
DGP-50-20-1 Decentralized GP trained on 50-20-1 class 100
DGP-80-5-1 Decentralized GP trained on 80-5-1 class 100
DGP-mixed Decentralized GP trained on all small scale classes 100

apply Welch’s t-test for testing the significance of the differences between the
algorithms. In the following analysis we refer to this test by mentioning the
p-values (when relevant) that were observed. The significance threshold was set
at p = .01. For pairs of algorithms that have the same number of simulations
we perform a paired t-test instead of an unpaired t-test. The total experiment
computation time of the 11,070 real-time simulations was about 551.9 hours
(≈ 23 days), during this time 11 simulations were run in parallel. Table 5.7
shows all simulation results.

5.5.3 Analysis

The first hypothesis (Section 5.1) states that hyper-heuristics (DGP) can
outperform DOP. We can accept this hypothesis as the results indicate that there
is always at least one of the DGP variants that outperform DOP (Table 5.6).
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Table 5.6: Summary of relative performance of DGP variants to DOP. Each number indicates
the number of classes on which the algorithm is (significantly) better or worse compared to
DOP.

Algorithm sign. better better (not sign.) worse (not sign.) sign. worse
DIC 0 6 9 12
DGP-20-35-1 18 0 5 4
DGP-50-20-1 21 8 0 0
DGP-80-5-1 27 0 0 0
DGP-mixed 27 0 0 0

In fact, DGP-mixed, DGP-80-5-1, and DGP-50-20-1 are better than DOP for
all scenario classes. Table 5.6 shows that DGP-20-35-1 also often outperforms
DOP but not as often. It’s also noteworthy that DIC outperforms DOP in
several (mostly small scale) classes, indicating that in some cases even a simple
heuristic can be better than OptaPlanner.
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Table 5.7: Average results for each setting. The ‘Best’ column indicates which algorithms has the best performance, the rank of each value
is indicated by the number in superscript, a † appended to a value with rank n indicates that the difference between the value of rank n and
rank n+ 1 is not statistically significant (p < 0.01). The results of the four evolved algorithms also report their standard deviation as the
numbers are the average of the different heuristics produced by GP.

Class COP DOP DIC DGP-20-35-1 DGP-50-20-1 DGP-80-5-1 DGP-mixed Best
20-5-1 25.1001† 28.5506† 27.0425† 31.0257 ± 13.876 26.4804† ± 1.169 25.7543 ± 0.579 25.6112† ± 0.392 COP†
50-5-1 22.2763† 23.9026† 23.2185† 25.8357 ± 8.489 22.8984† ± 1.462 21.6651† ± 0.372 21.9122† ± 0.398 DGP-80-5-1†
80-5-1 21.4812† 23.5116† 22.7825† 25.9697 ± 10.079 22.6584† ± 1.259 21.2811† ± 0.380 21.7553 ± 0.334 DGP-80-5-1†

20-20-1 17.6921† 21.6617 20.7486† 18.9874† ± 0.363 18.7052† ± 0.300 19.1525† ± 0.330 18.8693† ± 0.306 COP†
50-20-1 14.8521† 17.5757 16.8786† 15.2674† ± 0.376 15.2233† ± 0.243 15.5075† ± 0.678 15.1812† ± 0.272 COP†
80-20-1 14.4381† 17.1686† 17.7507 15.0184 ± 0.338 14.8002† ± 0.155 15.3355 ± 0.491 14.8663† ± 0.296 COP†
20-35-1 14.5201 19.3967 18.7486† 16.4773† ± 0.340 16.3732† ± 0.277 17.0215† ± 0.818 16.5694 ± 0.278 COP
50-35-1 12.9211 17.3596† 17.6367 14.4362† ± 0.453 14.5433† ± 0.321 14.9635 ± 0.458 14.5984† ± 0.283 COP
80-35-1 12.3951 15.7436† 16.3037 13.7423† ± 0.239 13.6102† ± 0.181 14.1785 ± 0.547 13.7924 ± 0.342 COP
20-5-5 18.8093† 20.0685† 20.2296† 22.2177 ± 9.248 19.1014† ± 2.516 17.7811† ± 0.231 17.8832† ± 0.288 DGP-80-5-1†
50-5-5 17.1315 16.5654 18.5906† 18.6167 ± 6.244 16.0053† ± 1.834 14.7621† ± 0.180 14.8842 ± 0.291 DGP-80-5-1†
80-5-5 17.2495† 16.4024 18.5497 18.4856† ± 6.164 15.9123† ± 1.723 14.6641† ± 0.160 14.7902 ± 0.231 DGP-80-5-1†

20-20-5 13.9873† 16.9046† 17.6567 13.9412† ± 0.303 13.8331† ± 0.139 14.6905 ± 0.730 14.0344 ± 0.263 DGP-50-20-1†
50-20-5 10.1984† 11.6156 14.1767 9.7563† ± 0.186 9.4971 ± 0.115 10.2975 ± 0.725 9.7492† ± 0.147 DGP-50-20-1
80-20-5 10.3294† 11.8376 14.8517 10.0823 ± 0.238 9.8231 ± 0.163 10.6135 ± 0.729 10.0442† ± 0.196 DGP-50-20-1
20-35-5 10.9671† 14.0976† 15.5557 11.0832 ± 0.184 11.2894 ± 0.188 11.9385 ± 0.660 11.2773† ± 0.220 COP†
50-35-5 8.6771† 11.3266 14.4437 8.8842† ± 0.203 8.9733† ± 0.246 9.7185 ± 0.674 9.0574 ± 0.201 COP†
80-35-5 8.8771 11.2066 14.8177 9.0992 ± 0.247 9.2514 ± 0.220 9.9225 ± 0.614 9.2473† ± 0.202 COP
20-5-10 17.5874 17.9295† 18.9266† 20.1667 ± 7.779 17.1563† ± 2.665 15.8581† ± 0.142 15.9292 ± 0.313 DGP-80-5-1†
50-5-10 15.6815† 14.5884 17.5177 16.8286† ± 6.557 13.9173 ± 1.828 12.8352 ± 0.181 12.8281† ± 0.328 DGP-mixed†
80-5-10 15.8985† 14.4464 17.7837 16.5186† ± 5.572 14.1003† ± 1.828 12.8951† ± 0.160 12.9352 ± 0.373 DGP-80-5-1†

20-20-10 11.5885 13.3206† 15.0437 10.7581† ± 0.221 10.7762 ± 0.116 11.5544† ± 0.717 10.9393 ± 0.198 DGP-20-35-1†
50-20-10 9.3294† 10.6496 14.2607 8.7992† ± 0.247 8.5851 ± 0.067 9.4785 ± 0.808 8.7993 ± 0.149 DGP-50-20-1
80-20-10 9.1674† 10.4696 14.1497 8.7102† ± 0.253 8.4891 ± 0.114 9.3475 ± 0.763 8.7273 ± 0.136 DGP-50-20-1
20-35-10 9.7874† 11.9906† 13.9837 9.1581 ± 0.186 9.4373† ± 0.313 10.0695 ± 0.641 9.4052† ± 0.234 DGP-20-35-1
50-35-10 7.8271† 10.0536 14.0047 7.8382 ± 0.203 8.0604 ± 0.409 8.7445 ± 0.695 8.0443† ± 0.212 COP†
80-35-10 7.8702† 9.8796 14.0787 7.7671† ± 0.187 7.9844 ± 0.389 8.5825 ± 0.683 7.9133† ± 0.196 DGP-20-35-1†

Avg. rank 2.7 5.74 6.56 3.81 2.74 3.74 2.7
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The differences between DGP-mixed and DOP and between DGP-80-5-1 and
DOP are always significant, even for large scale scenarios. This is interesting
because the heuristics were never trained on large scale scenarios. It appears that
the evolved heuristic has no problem scaling up to large problem instances. To
investigate whether the heuristic’s scalability can be explained by its supposed
computational efficiency, we have measured the computational runtimes within
a single simulation of both the DOP as well as the DGP-50-20-1 on a scenario
with class 50-20-10 (Figure 5.9). The big gap between DGP-50-20-1 and DOP
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Figure 5.9: Average bid computation times for both the DGP-50-20-1 and DOP on a single
scenario of class 50-20-10. The error bars indicate the 95% confidence interval. There are no
values for route length 0 and 1 for DOP because it is unnecessary to let the OptaPlanner
solver compute an insertion in this case. Note that up until route length 7, the average
computation time for DGP-50-20-1 is below 1 ms.

is caused by the unimproved time parameter of the OptaPlanner solver. This
parameter determines the period the solver keeps searching while it has not
found an improving solution. In Chapter 4, unimproved time is set to 20 ms,
which explains why the fastest computation time of DOP is always higher
than 20 ms. Additionally, Figure 5.9 shows that the DGP heuristic is fast and
growing at a low rate (averages range from 0.074 to 5.827 milliseconds between
route length 0 and 15).

To investigate the influence of the bid computation time on the performance of
the DGP approach, we conducted an additional experiment where we artificially
delayed the computation of the heuristic. This experiment was carried out with
a single DGP-50-20-1 heuristic and on all ten scenarios in the 50-20-10 class.
Table 5.8 indicates that the computational efficiency of the DGP approach is
a contributing factor for its relatively good performance. With a delay of 100
milliseconds, DGP-50-20-1 still outperforms DOP. However, with a delay of
200 milliseconds, DGP-50-20-1 performs worse compared to DOP. Based on
this observation we conclude that the quality of cost estimations made by the
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Table 5.8: Average cost of DOP with a single heuristic from DGP-50-20-1 with and without
an artificial bid computation delay.

Class Algorithm Cost
50-20-10 DOP 10.649
50-20-10 DGP-50-20-1 no delay 8.634
50-20-10 DGP-50-20-1 100 ms delay 9.251
50-20-10 DGP-50-20-1 200 ms delay 11.102

evolved heuristics must be higher than the estimations made by DOP.

The second hypothesis states that DGP can outperform COP. This hypothesis
can be accepted since the evolved heuristics regularly outperform COP
(Table 5.9). However, COP still performs best in 11 of the 27 classes. The scale
and urgency of a problem seem to be good indicators of the relative performance
of the DGP approaches and COP. The more urgent and large scale a problem
is, the better the DGP approaches perform.

Table 5.9: Summary of relative performance of DGP variants to COP. Each number indicates
the number of classes on which the algorithm is (significantly) better or worse compared to
COP.

Algorithm sign. better better (not sign.) worse (not sign.) sign. worse
DIC 0 0 8 19
DGP-20-35-1 3 5 11 8
DGP-50-20-1 8 4 10 5
DGP-80-5-1 5 4 10 8
DGP-mixed 8 5 10 4

The third hypothesis states that the evolved heuristics perform especially well
in more urgent circumstances. Based on Table 5.7 it is clear that evolved
heuristics outperform COP in eight of the nine very urgent classes (urgency
of five minutes), we can therefore accept this hypothesis. The class where
COP is better than the evolved heuristics is 20-5-1. In this class, COP is not
significantly different from DGP-mixed (p ≈ .45), DGP-80-5-1 (p ≈ .34), and
DGP-50-20-1 (p ≈ .05). Additionally, we expect that the fact that the heuristics
have relatively short computation times is a stronger factor in more urgent
scenarios, because the available computation time is shorter.

Hypothesis four states that specialized heuristics outperform general heuristics
on scenarios for which they are specialized. DGP-20-35-1 outperforms
DGP-mixed on class 20-35-1 (but not significantly, p ≈ .54), however,
DGP-50-20-1 performs best of the evolved heuristics on this class. Surprisingly,
DGP-mixed outperforms DGP-50-20-1 on its training class, 50-20-1, although
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not significantly (p ≈ .76). A possible explanation for the good performance
of DGP-mixed in this case is that it is trained on all small scale scenarios
and 50-20-1 is an ‘average’ scenario, it has medium dynamism and medium
urgency. DGP-80-5-1 performs best on its training class 80-5-1, the difference
with DGP-mixed is significant (p ≈ .004). So, for all three classes on which was
trained explicitly, the specialized heuristic significantly outperforms the general
heuristic only once. The difference is not significant in two other cases, therefore
we reject the hypothesis. We conclude that in some situations a general heuristic
can perform comparably to a specialized heuristic. Our results seem to conform
to the ‘no free lunch theorem’ (Wolpert & Macready, 1997). The urgency on
which a heuristic was trained is a strong indicator of how well it will perform
on a scenario class. We created a summary of the relative performance of the
DGP variants, grouped by urgency (Table 5.10). The table shows that each

Table 5.10: Summary of relative performance of DGP variants per urgency level. Each number
indicates the number of classes on which the algorithm is the best DGP approach for that
urgency level.

Urgency DGP-20-35-1 DGP-50-20-1 DGP-80-5-1 DGP-mixed
5 0 0 7 2

20 1 7 0 1
35 7 2 0 0

specialized heuristic performs best on seven out of nine classes that have the
urgency level on which the heuristic was trained.

The fifth hypothesis states that generalized heuristics outperform specialized
heuristics on scenarios for which they are not specialized. Based on Table 5.10
we can reject this hypothesis. There are only three classes, 20-5-1, 50-20-1,
and 50-5-10, where DGP-mixed outperforms the other evolved heuristics. This
result is somewhat surprising, especially since the number of evaluations for
mixed is slightly more than for the specialized heuristics (54 vs 50 evaluations).
Nevertheless, the DGP-mixed method produces heuristics of good quality as is
demonstrated by its average rank of 2.7 which is the best average rank shared
by COP. However, when computing the average ranks of only the four DGP
heuristics, DGP-50-20-1 has the same rank as DGP-mixed (average rank 2.19).

As expected, DIC is on average the worst performing algorithm. There are,
however, several cases where DGP-20-35-1 performs worse compared to DIC.
The data in Table 5.7 shows that DGP-20-35-1 performs among the worst in
the most urgent scenarios. This is expected considering that it was trained on
the least urgent scenarios. The results of this heuristic are made even worse by
one instance that performs especially bad (as can be seen by the larger than
usual standard deviations). When removing this badly performing heuristic
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from the analysis, the ranks for the DGP-20-35-1 are still among the worst for
the very urgent classes, but the values are much closer to that of DIC. This
indicates that the bad performance is not just explained by this one outlier.

5.5.4 Reproducibility

Following the policy in (van Lon & Holvoet, 2013) we open-sourced all software
that was written for the research described in this chapter and made it available
online. The scripts for running each experiment described in this chapter can
be found in (van Lon, 2017c). All resulting data, including the scripts that we
used for the analysis, as well as visualizations of all heuristics, are available
in (van Lon, 2017d). This code depends on several other open source projects
that we developed. For all simulations we used RinSim version 4.3.0 (van Lon,
2016d). The code for the OptaPlanner based algorithms is part of RinLog
version 3.2.0 (van Lon, 2016c), the evolutionary algorithms related code can be
found in (van Lon, 2017b,e). The scenario files that we generated for training
were generated using our dataset generator (van Lon, 2016b).

5.6 Conclusion

Agents in a multi-agent system typically compute decisions using traditional
optimization algorithms. We have investigated an alternative approach based
on hyper-heuristics. The present chapter is the first to evaluate the performance
of an agent-based hyper-heuristic approach on a real-time logistics problem
that systematically varies the dynamism, urgency, and scale of the problem.
The results show that our hyper-heuristic outperforms a reference algorithm,
based on the OptaPlanner optimization library, in all scenarios. In addition,
the decentralized hyper-heuristic approach even outperforms the centralized
reference algorithm in most situations. The hyper-heuristic approach performs
relatively better on more urgent and larger scale problems. The hyper-heuristic
approach has the additional advantage that it can specialize on certain problem
characteristics, increasing its performance even further.

We see three interesting directions for future work. The first direction is to
make the logistics simulator even more realistic. Examples that will improve
realism are, using a road layout of a city, using real-world customer data, having
a heterogeneous fleet of vehicles, or, imposing fuel constraints. The goal of
increasing realism is to evaluate whether the hyper-heuristic agent approach can
outperform traditional algorithms in real-world conditions, hopefully leading
to their eventual deployment. The second research direction is to investigate
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different team compositions and level of selection in the evolutionary process.
The work done by Waibel et al. (2009) seems to be applicable to evolutionary
designing multi-agent systems for logistics problems. A possible hypothesis in
a heterogeneous setup could be the emergence of agent specializations. For
example, agents could optimize towards pickup and deliveries in a specific
geographical area, such as inner city versus rural areas. Thirdly, in the current
hyper-heuristic setup, the parts of agents that are subject to evolution are
relatively small. The agent behavior as well as the contract-net coordination
protocol are predetermined. A very interesting line of work would be to give
evolution more freedom. A challenge would be to determine a set of basic
coordination or communication building blocks. Using these building blocks,
evolution could start exploring in the space of possible coordination mechanisms.
It would be interesting to see if evolution would create novel coordination
mechanisms or if it would reinvent existing coordination mechanisms. Since
we made all our algorithms and results freely available, we believe that the
present chapter provides an ideal starting point for any of these future research
directions.





Chapter 6

Conclusion

A widely held belief in multi-agent systems literature is that MAS’s are
advantageous in operational research problems that are very dynamic and/or
large scale. However, such claims were never supported by evidence based on
a systematic empirical study. This dissertation is the first to systematically
investigate and quantify the influence of dynamism, urgency, and scale on the
performance of both MAS’s and centralized algorithms. In the remainder of
this chapter we summarize the contributions in more detail (Section 6.1), we
reflect on the lessons learned (Section 6.2), and we look forward to interesting
directions for future work (Section 6.3).

6.1 Summary of contributions

The five main contributions of this dissertation and their conclusions are
discussed in this section.

6.1.1 Measures of dynamic pickup-and-delivery problems

We argue that urgency and dynamism are conceptually different and we
propose separate measures for both concepts. In support of this conceptual
separation, the experimental results show that the degree of dynamism and
urgency have a different influence on the solution quality in dynamic logistic
problems. Interestingly, the degree of dynamism is negatively correlated with
operating costs while more urgent scenarios are correlated with significantly
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higher operating costs. Additionally, we define scale as a multiplier applied to
the number of vehicles and orders in a problem. These three formal definitions
allow to design experiments that investigate the influence of one property in
isolation of the others. The effect of variations of a problem property on
algorithm performance can therefore be quantified independently, enabling
insight into algorithm performance.

6.1.2 Dataset

Based on the formal definitions of dynamism, urgency, and scale, a benchmark
dataset and problem instance generator were presented. To avoid any
interactions between the variables, the dataset generator is constructed
meticulously. The generated benchmark dataset allows systematic comparison
of algorithms. By open sourcing the dataset generator, other researchers are
enabled to create their own datasets and conduct new investigations.

6.1.3 A realistic simulation platform

The real-time logistics simulator, RinSim, is a technical contribution. The
simulator has support for both decentralized MAS’s as well as centralized
algorithms and supports the dataset with different levels of dynamism, urgency,
and scale. Both the centralized as well as the decentralized interface of
RinSim provide the same software limitations and hardware constraints, thereby
providing a fair environment for comparing performance. We have demonstrated
that fluctuations caused by the real-time nature of the simulator have a
minimal impact on the end result. RinSim is entirely open-source to support
reproducibility of all experiments and to allow extensibility of all components.

6.1.4 Systematic evaluation of centralized algorithms and
decentralized multi-agent systems

A MAS based on CNET and a centralized tabu search algorithm, based on
the OptaPlanner optimization library, are implemented. Using the measures,
dataset, and RinSim, a systematic evaluation of these two implementations is
conducted. This evaluation experiment is the first of its kind to compare the
influence of dynamism, urgency, and scale on the performance of two classes
of algorithms in such a systematic, thorough, and fair manner. The results of
the comparison show that the solutions found by the centralized algorithm cost,
on average, only 94.2% of the cost of the solutions found by the MAS. This
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indicates that the centralized algorithm generally performs better compared
to the multi-agent system. However, for scenarios that are medium to very
dynamic, very urgent, and medium to large scale, the average relative cost of
the centralized algorithm is 112.3%, indicating that under these circumstances,
the multi-agent system performs better compared to the centralized algorithm.
When assessing the performance of the algorithms individually per scenario
property, there is not one algorithm that generally outperforms the other on
that dimension. The code of the algorithms as well as the experiment results
data are published to allow complete reproducibility of the evaluation. Because
all components are completely open source, this evaluation provides a baseline
of performance comparisons between centralized and decentralized algorithms.

6.1.5 Genetic programming of multi-agent systems

Based on the evaluation of centralized and decentralized algorithms, an
investigation on optimizing MAS was conducted. The main hypothesis is
that hyper-heuristics, more specifically GP, can be used to improve agents
decentrally coordinated via CNET. The heuristic that is evolved by GP is used
as agent bid function in the auction process of CNET. The results show that our
hyper-heuristic outperforms a reference algorithm, based on the OptaPlanner
optimization library, in all scenarios. In addition, the decentralized hyper-
heuristic approach even outperforms the centralized reference algorithm in
most situations. The hyper-heuristic approach performs relatively better on
more urgent and larger scale problems. The hyper-heuristic approach has the
additional advantage that it can specialize on certain problem characteristics,
increasing its performance even further. This contribution, the combination of
hyper-heuristics and MAS, provides a first step towards the automatic design
of MAS’s.

6.2 Lessons learned and discussion

Conducting an empirical study for comparing distinct algorithms is a tedious
task. We have formally defined the pickup-and-delivery problem, including the
scenario properties: dynamism, urgency, and scale. For the algorithms we used
OptaPlanner, a well known satisfaction solver library. A tuning experiment was
conducted to find the best performing OptaPlanner algorithm for this problem.
The best algorithm was incorporated in an online centralized algorithm and
a multi-agent system based on the dynamic contract-net protocol. In order
to perform a fair empirical study it is imperative to use a real-time simulator
that assigns the same processing power to the approaches. For this reason
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we have extended the RinSim logistics simulator and have demonstrated that
fluctuations caused by the real-time nature of the simulator have a minimal
impact on the end result.

Reproducibility is one of the main principles of the scientific method.
Unfortunately, this principle is not yet the default practice among researchers
in multi-agent systems and operational research. The work described in
this dissertation would have greatly benefited from an existing benchmark
of a dynamic logistic problem that could be targeted by both centralized as
well as decentralized algorithms. Unfortunately such a benchmark did not
exist. Additionally, attempts at reusing algorithms based on existing papers
was not successful due to their lack of reproducibility. Although facilitating
reproducibility can be tedious, it would become much less so were this the default
practice. Due to the focus on reproducibility, we believe that this dissertation
provides many points of extensibility and is therefore an ideal starting point for
researchers interested in dynamic logistics, empirical evaluation, multi-agent
systems, or genetic programming.

In practice, a multi-agent system can be deployed in various ways. A natural
deployment of a CNET MAS is to let customers and vehicle drivers use
local hardware (such as a mobile phone) for running their agents. Using
a decentralized communication middleware it is then possible to create a
decentralized and distributed system. An alternative deployment is to use
a centralized computer which simulates the agents and controls all vehicles
remotely. A disadvantage of this approach is that it has a single point of failure
(the centralized computer), when this server goes down, the entire system would
fail. This is contrary to a distributed deployment which is more robust to
hardware failures. It would be interesting to study the effect of deployment on
centralized and decentralized algorithms.

Because of the real-time nature of the experiments described in this dissertation,
the results are influenced by the speed of the hardware. The results indicate
that the CNET MAS performs better when there is little time for computations
(urgent problems) and the amount of computations that need to be done is
large (larger scale problems). It seems likely that when hardware capabilities
increase over time, the relative performance of the CNET MAS will decrease
when compared to the centralized OptaPlanner algorithm. When the available
computing power increases, the absolute performance of the algorithms is likely
to converge to the optimum, reducing the performance difference between the
algorithms.
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6.3 Future work

While working on the research described in this dissertation, new ideas for
interesting follow-up research emerged. In this section we describe the most
promising directions for future work.

• The research described in this dissertation constitutes an important step
towards more realistic experiments with multi-agent systems in logistics.
There is, however, still room for improvement. There are several ways in
which RinSim can be made even more realistic, e.g.: using a road layout
of a city, using real-world customer data, having a heterogeneous fleet
of vehicles, imposing cargo constraints, imposing fuel constraints, and
simulating realistic deployment scenarios. Such a realistic evaluation would
provide evidence necessary for a deployment by a commercial company.

• Many other MAS coordination protocols exist, such as Delegate MAS and
Gradient Field, that can be evaluated and compared to the algorithms
used in the present dissertation. Similarly, there are many more centralized
algorithms and libraries that implement them. This dissertation provides a
benchmark, an ideal starting point for further research into more advanced
algorithms.

• In the experiments described in this dissertation, it is assumed that all
vehicles are part of a single transportation company. Therefore, all agents
have an incentive to cooperate. In a setup with multiple competing
companies, agents might make selfish choices that are detrimental to the
interests of all agents. Creating a MAS for the dynamic PDPTW in a
competitive setup requires a game-theoretic approach that ensures that
agents have incentives for cooperation.

• The work done by Waibel et al. (2009) on team composition and level of
selection in the evolutionary process seems to be relevant in the context
of MAS for logistics. In a heterogeneous setup, agents in a MAS can have
different control programs, a possible hypothesis could be the emergence of
agent specializations. For example, agents could optimize towards pickup
and deliveries in a specific geographical area, such as inner city versus
rural areas.

• The experiments in Chapter 5 show that the agent-based hyper-heuristic
approach outperforms the agent-based OptaPlanner approach and also
often outperforms the centralized OptaPlanner approach. It would be
interesting to investigate whether a centralized hyper-heuristic approach
(or other machine learning approach) could be devised and if that
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could perform even better. A simple strategy would be to execute the
decentralized approach centrally. The expected performance of such a
system is equivalent to the decentralized hyper-heuristic approach. This
approach could then be used as a baseline to further improve the centralized
hyper-heuristic algorithm.

• In the current hyper-heuristic setup, the parts of agents that are subject
to evolution is relatively small. The agent behavior as well as the contract-
net coordination protocol are predetermined. A very interesting line of
work would be to give evolution more freedom. A challenge would be
to determine a set of basic coordination and communication building
blocks. Using these building blocks, evolution could start exploring in the
space of possible coordination mechanisms. It would be interesting to see
if evolution would create novel coordination mechanisms or if it would
reinvent existing coordination mechanisms.
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