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Abstract

This thesis is a study of the mechanisms that enable privacy-intrusive online
tracking practices. The tracking mechanisms we focus on are resilient to removal,
less transparent and hard to control.

We first give a brief historical background of online tracking ecosystem and
frame it as whack-a-mole game which led to the rise of browser fingerprinting
and evercookies, two prominent examples of advanced tracking mechanisms we
study.

To contribute to the understanding of real-world practices that involve browser
fingerprinting, we report on the design, implementation and deployment of
FPDetective, a framework for the detection and analysis of fingerprinting with a
focus on font-based fingerprinting. Using FPDetective, we conduct a large scale
analysis of the million most popular websites, and discover that the adoption of
fingerprinting is much higher than previous studies had estimated. We study
the countermeasures against font-based fingerprinting and find a vulnerability
in Tor Browser’s defenses, which we help to fix.

Turning to more advanced forms of fingerprinting, we present the results of
previously unreported canvas fingerprinting scripts as found on the top 100,000
Alexa sites. Our results show that 5% of the top 100,000 websites employ
canvas fingerprinting making it the most common fingerprinting method ever
studied. Analyzing the real-world canvas fingerprinting scripts we find them to
be more advanced than the original method presented by the academic research
community.

We report on the first automated study of evercookies and respawning and
the discovery of a new evercookie vector, IndexedDB. We found that 10 of the
200 globally most popular websites use Flash Local Shared Objects to respawn
HTTP cookies deleted by the user.

Our investigation also indicates that cookie syncing, the practice of sharing
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iv ABSTRACT

pseudonymous identifiers between domains, amplifies the reach of respawned
identifiers.

We analyze the recently introduced Battery Status API to demonstrate how
seemingly innocuous information can serve as a tracking identifier when exposed
to web scripts with high precision. Our study shows that the capacity of
users’ batteries can be discovered by exploiting the high precision level readings
provided by Firefox on Linux. The capacity and the level of the battery expose
a fingerprintable surface that can be used to track web users in short time
intervals.

Turning to mobile platforms, we quantify the extent to which mobile applications
enable surveillance at scale by sending unique identifiers over unencrypted
connections. To this end, we develop a framework for data collection which
downloads and executes mobile applications, captures their network traffic
and detects identifiers that are sent unencrypted. Analyzing 1260 Android
applications we find that, on average, 57% of a user’s unencrypted mobile traffic
can be linked together by a global adversary. We also show how a passive
network adversary can use TCP timestamps to improve his ability to target
mobile users’ traffic.

Finally, we present our study on the information online retail stores share with
the payment providers, specifically PayPal. Our study finds that 52% of the
881 stores we analyzed shared product names, item numbers and descriptions
with the payment provider, allowing it to build extensive consumption profiles
about its clients across websites.

Advanced online tracking enables surreptitious profiling of individuals’ online
activities and is a significant privacy concern. We hope that our research will
provide ground for a more informed public and policy debate about otherwise
stealthy tracking technologies.



Beknopte samenvatting

Deze thesis bestudeert technische werkwijzen die online tracking van gebruikers
mogelijk maken, hetgeen een schending van hun privacy vormt. De
trackingmechanismen waar wij ons op concentreren zijn bestand tegen
verwijdering, minder transparant en moeilijk onder controle te houden.

Eerst geven we een kort historisch overzicht van het online tracking ecosysteem,
dat we kunnen zien als een whack-a-mole spel dat heeft geleid tot de opkomst
van browser fingerprinting en evercookies, twee belangrijke voorbeelden van
geavanceerde trackingmechanismen die we bestuderen.

Met het oog op een beter begrip van praktische toepassingen die gebruik maken
van browser fingerprinting beschrijven we het ontwerp, de implementatie en de
uitrol van FPDetective. Dit is een raamwerk voor het blootleggen en analyseren
van fingerprinting, met een focus op lettertypegebaseerde fingerprinting. Met
behulp van FPDetective voeren we een analyse uit van de één miljoen populairste
websites waarbij we ontdekken dat fingerprinting veel wijdver breider is dan de
schattingen uit vorige studies. We bestuderen ook de verdedigingsmaatregelen
tegen lettertypegebaseerde fingerprinting en vinden een zwakte in de verdediging
van de Tor browser die we helpen oplossen.

Wat betreft meer geavanceerde vormen van fingerprinting stellen we de resultaten
voor van tot op heden ongerapporteeerde canvas fingerprintingscripts die werden
gevonden in de top 100 000 Alexa sites. Onze resultaten tonen aan dat 5%
van de top 100 000 websites canvas fingerprinting gebruikt, dit is bijgevolg
de meest voorkomende fingerprintingmethode ooit bestudeerd. Als we canvas
fingerprintingscripts uit de echte wereld analyseren, ontdekken we dat ze meer
geavanceerd zijn dan de originele methodes voorgesteld door academici.

We rapporteren ook over de eerste geautomatiseerde studie over evercookies en
respawning, en over de ontdekking van een nieuwe evercookie vector, IndexedDB.
We ontdekten dat 10 van de 200 wereldwijd populairste websites Flash Local
Shared Objects gebruiken om HTTP cookies te respawnen nadat ze verwijderd
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zijn door de gebruiker.

Ons onderzoek toont verder aan dat cookie synchronisatie, het delen
van pseudonieme identifiers tussen verschillende domeinen, het bereik van
gerespawnede identifiers vergroot.

We analyseren de recent geïntroduceerde batterijstatus API om aan te tonen hoe
informatie die onschuldig lijkt, kan dienen als een tracking identifier wanneer
ze met grote nauwkeurigheid geopenbaard wordt aan web scripts. Onze studie
toont dat de capaciteit van de batterij ontdekt kan worden door de nauwkeurige
niveaulezing te benutten die in Linux door Firefox verstrekt wordt. De capaciteit
en het niveau van de batterij vormen een fingerprintbaar oppervlak dat gebruikt
kan worden om webgebruikers zeer frequent te tracken.

Wat betreft mobiele platformen, meten we de mate waarin mobiele toepassingen
surveillance op grote schaal mogelijk maken door unieke identifiers te versturen
over ongeëncrypteerde verbindingen. Hiervoor ontwikkelen we een raamwerk
voor dataverzameling. Dit raamwerk downloadt mobiele toepassingen en voert
ze uit, het registreert alle netwerkverkeer dat hierbij plaatsvindt en detecteert
identifiers die ongeëncrypteerd verstuurd worden. We analyseren 1260 Android
toepassingen en achterhalen dat een globale tegenstander gemiddeld 57% van
het ongeëncrypteerd mobiel verkeer van een gebruiker aan elkaar kan linken.
We tonen ook hoe een passieve netwerktegenstander TCP timestamps kan
gebruiken om zijn nauwkeurigheid nog te verhogen.

Ten slotte presenteren we onze studie over de informatie die online winkels
delen met betaalproviders, meerbepaald PayPal. Onze studie toont aan dat
52% van de 881 winkels die we analyseerden productnamen, artikelnummers
en beschrijvingen meedelen aan de betaalprovider, waardoor deze laatste
uitgebreide consumptieprofielen kan opstellen van zijn klanten over verschillende
websites heen.

Geavanceerde online tracking maakt verdoken profiling van de online activiteiten
van individuen mogelijk en vormt een significant privacy-probleem. We hopen
dat ons onderzoek de basis zal leggen voor een beter geïnformeerd publiek debat
en beleidsdebat over anderszins verdoken trackingtechnologieën.
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Chapter 1

Introduction

The World Wide Web, which was originally imagined as a “web” of hyperlinked
documents for scientific publishing, has evolved into a powerful and ubiquitous
platform. The omnipresence of the web in diverse application domains, along
with technologies that allow websites to identify users have given rise to privacy
problems that did not exist before. One such problem is online tracking,
monitoring individuals’ browsing behavior across websites.

Online tracking enables surreptitious surveillance of individuals’ activities
and may lead to revealing information about users’ religious beliefs, medical
conditions, sexual orientations or political affiliations. Detailed behavioral
profiles can be used to target more relevant ads, nudge users to buy certain
products, entice them to install unwanted apps [103] or influence voters during
electoral process [16,86].

The main goal of this thesis is to advance the understanding of online tracking
by providing an in-depth technical analysis of tracking technologies and their
deployment. We focus on advanced, resilient and elusive forms of tracking such
as browser fingerprinting, evercookies and cookie syncing.

Online tracking have many different uses. Most prominently, online behavioral
advertising leverage tracking to target users with ads based on their profiles,
interests, emotions [92,113] and moments [53]. Several data broker companies
augment these online profiles by merging them with information about users’
offline activities including shopping at retail stores, voter registrations and
criminal records [94]. Yet, there may be other reasons for tracking such as
analytics, fraud detection and account protection.

3
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A primary concern with online tracking is the lack of user consent and awareness
about the constant collection of user activities. Studies suggest that users are
concerned about how their online activities are monitored and shared with other
parties [66,68,106,108] and they have little awareness about the technologies that
enable it [66]. Although there are mechanisms provided by the ad industry such
as opt-out pages, users find them to be very confusing and unusable [31, 61, 66].
Exhibiting a lack of faith in the organizations [63], millions of users turn to
privacy enhancing technologies such as ad blockers [84,93].

Tracking may also be used by governments who piggyback on the commercial
tracking infrastructure. Documents revealed by the former NSA contractor
Edward Snowden show that intelligence agencies use advertising identifiers sent
over the network to identify the traffic and location of individuals [5, 102].

Price steering and discrimination are two other practices that can utilize
behavioral profiles compiled with online tracking. Price steering refers to the
practice of reordering search results to place more expensive items at the top [49].
Price discrimination, on the other hand, refers to the practice of showing different
prices to different users for the same product [49]. Researchers found evidence
of price steering and discrimination based on users’ click and purchase history,
their location and device they use to access the service, among others [49,70,109].
Although price discrimination is a common practice in the offline world, online
tracking may enable more personal and targeted forms of discrimination that can
be based on sensitive attributes of users’ profiles [76]. Motivated by the evidence
of price discrimination practices, European Commission recently started an
investigation on price discrimination by e-commerce sites [28].

Targeted political advertising is another privacy issue that received a lot of
attention lately. Tim Berners-Lee, the inventor of the web, is among those who
raised concerns about the questionable practices such as voter suppression [48,72]
and targeting different, possibly conflicting messages to different groups [23].

Privacy risks of online tracking and behavioral advertising are recognized by
the law and policy makers around the world. In the European Union data
protection regime, explicit user consent needs to be taken before collecting
browser fingerprint or storing cookies — unless certain exceptions apply [85]. In
the US, the Federal Trade Commission (FTC) is tasked to protect consumers
against unfair or deceptive practices. The FTC has taken several enforcement
actions against technology companies including Google, Facebook and online
advertising networks that failed to honor opt outs [29].

Finally, by requiring websites to load and run scripts from untrusted third parties,
advertising and tracking enables drive-by attacks that can compromise users’
computers [36, 117]. Researchers found that even highly popular and reputable
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websites such as New York Times and BBC served ransomware to their visitors
through the advertising networks they embed on their site [96]. Researchers
found that malware authors use browser fingerprinting to check whether a device
is vulnerable [46] or belongs to a security researcher or honeypot [97].

1.1 Contributions of the Thesis

The overarching contribution of this thesis is to advance the understanding of
online tracking. Our studies have motivated several follow up projects, and
had significant real-world impact which includes improvement of web standards,
identification of vulnerabilities in countermeasures as well as increased attention
to the topic in public and regulatory debate.

Pioneering studies of real-world fingerprinting practices. First, we
report on the design and implementation of FPDetective, a framework for the
detection and analysis of browser fingerprinting with a focus on font-based
fingerprinting. Using FPDetective, we analyze the most popular one million
websites and discover that the adoption of fingerprinting is much higher than
previous studies had estimated. We evaluate countermeasures designed to
defend against fingerprinting and find weaknesses in them that can be exploited
to bypass their protection. The study helped fix the vulnerabilities in the
countermeasures, raise awareness about browser fingerprinting and its different
uses.

Canvas fingerprinting is another type of browser fingerprinting that was first
suggested by researchers in 2012 [74]. We present the results of previously
unreported canvas fingerprinting scripts as found on the top 100,000 Alexa sites.
We find canvas fingerprinting to be the most common fingerprinting method
ever studied, with more than 5% prevalence. Analysis of the real-world scripts
revealed that they went beyond the techniques suggested by the academic
research community.

Automated analysis of cookie syncing, evercookies and respawning.
We develop a method for the automated detection of cookie syncing, evercookies
and cookie respawning. We use the strace debugging tool for low-level monitoring
of the browser and the Flash plugin player. We find respawning by Flash cookies
on 10 of the 200 most popular sites. We uncover a new evercookie vector,
IndexedDB which is a new storage Application Programming Interface (API)
in the browser. We find respawned identifiers used in cookie syncing, which
amplifies the effect of reinstantiating by passing reinstantiated identifiers to
other domains.
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A new device fingerprinting vector based on the Battery Status API.
Analyzing a new browser API that exposes battery information to web scripts
we show how seemingly innocuous information provided by the API can
serve as a tracking identifier when implemented incorrectly. We show that
Firefox’s implementation of the Battery Status API allows the discovery of a
battery’s capacity, provides short-term identifiers that facilitate tracking and
can potentially be used for reinstantiating identifiers (respawning).

We propose a solution that reduces the Battery Status API’s fingerprintable
surface by rounding the level readings provided by the API. Our fix does not
cause any loss in the effective functionality of the API. We filed a bug report for
Mozilla Firefox to communicate the problem and the proposed solution. The
fix was quickly implemented and deployed by Mozilla engineers shortly after
our bug report.

After the publication of our study, the editors of the World Wide Web
Consortium (W3C) Battery Status API standard recognized the privacy risks
presented in our study and updated the standard to mention the potential
privacy threats [58]. After a follow-up study discovered the use of the API
seemingly for tracking purposes [38], several manufacturers including Mozilla
removed the Battery Status API from the browsers and underlying rendering
engines [2, 10,89].

Large-scale, automated study on surveillance implications of mobile
apps. We present an automated analysis of 1260 Android apps from 42 app
categories and show how mobile apps enable third party surveillance by sending
unique identifiers over unencrypted connections.

We show how a network adversary can improve his ability to target mobile
users’ traffic by using TCP timestamps for passive network fingerprinting. The
analysis framework we develop for the study is able to download and run mobile
applications, capture their network traffic and automatically detect identifiers
that are sent unencrypted.

We evaluate two mobile ad-blocking tools: Adblock Plus for Android [6] and
Disconnect Malvertising [7]. Our analysis reveals that these tools have a limited
effect preventing mobile apps from leaking identifiers.

Investigate the tracking capabilities of online payment providers. We
conduct the first industry-wide, empirical survey that quantifies the flows of
customer data from 881 merchants to PayPal. We investigate which items of
personal data and which transaction details merchants are sharing with PayPal
as customers complete their checkout. We quantify the prevalence of data flows
towards PayPal and measure the amount of data shared above pure order totals.
Our survey of the ecosystem also looks for per-sector differences in data sharing
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with payment providers or whether more popular websites leak more or less
personal details.

1.2 Structure of the Thesis

The thesis consists of two parts. In Part I, we present an introduction to the
thesis by stating its objectives, contributions and the motivations behind it. In
Chapter II, titled ‘Online Tracking Mechanisms,” we present the state-of-the-art
in online tracking studies to contextualize the thesis. We conclude Part I by
presenting the conclusion and potential future work for our thesis.

Part II consists of six publications included in the thesis:

1. A brief historical background of online tracking ecosystem and raison
d’être of advanced tracking techniques like browser fingerprinting and
evercookies [77].

2. Analysis and survey of font-based browser fingerprinting [19].

3. Study of advanced online tracking, including canvas fingerprinting,
evercookies and cookie syncing [18].

4. Privacy analysis of the Battery Status API [81].

5. Analysis of surveillance implications of mobile application tracking [111].

6. Study of information leakage by online payment platforms [90].





Chapter 2

Online Tracking Mechanisms

In this chapter, we provide an overview of the different online tracking
mechanisms that we have studied. For each topic, we state our contributions
and notable research conducted since then.

Online tracking is virtually invisible to users who have little to no control over
the processing and further dissemination of their personal information. Even
website publishers who embed resources from third-parties may be unaware of
the exact purpose and behavior of the third-party scripts that they embed on
their websites. Thus, transparency of tracking technologies should be improved
to have an informed public and regulatory debate.

Increasing the transparency of the online tracking ecosystem requires a thorough
technical analysis of web technologies and protocols, particularly due to the
elusive nature of advanced tracking mechanisms.

We first provide an overview of cookie-based tracking, which is the traditional
form of online tracking that has been in use since the mid-nineties [62]. The
tracking enabled by cookies is well understood and modern browsers provide
interfaces that enable users to express their cookie preferences as well as block,
inspect and clear cookies.

In contrast, more persistent forms of online tracking have the potential to
circumvent users’ tracking preferences, are hard to discover and resilient to
removal. Our studies focus on three main advanced tracking techniques:
evercookies, cookie syncing and browser fingerprinting.

We then discuss the privacy risks of mobile applications that send cookies or
other identifiers in unencrypted channels. We conclude with an overview of

9
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countermeasures available against online tracking.

2.1 Tracking with HTTP Cookies

Cookies were invented in 1994 at Netscape to address a fundamental limitation
of the Hypertext Transfer Protocol (HTTP) protocol. The protocol did not
provide support to keep state or memory. Thus, it was not possible to remember
shopping cart content, store language preferences or manage login state.

Some of the proposals to address this limitation involved adding unique
identifiers to each browser. Disgruntled by the privacy invasive proposals,
Netscape engineer Lou Montulli came up with the idea of cookies [71]. Cookies
are small pieces of text-based data that are stored in the browser and contain
identifiers, preferences or other strings. They are domain-specific rather than
global and isolated per domain, which prevents linkability across multiple
contexts. The Same Origin Policy (SOP) [112] is the primary web security
mechanism to enforce the isolation between origins 1. SOP prevents domains
reading each other’s cookies or, for instance, a malicious script hijacking an
online banking session by stealing authentication cookies.

The domain isolation property of cookies was undermined by the introduction
of third-parties that are present on multiple websites. Whenever a user visits a
site where a third-party is present, the third-party will receive the user’s cookie.
The unique identifier in the cookie enables the third-party to link together the
user’s visits across different websites.

The process is illustrated in Figure 2.1, where an imaginary third-party called
advertising.com is present on two websites. First, advertising.com places
a new cookie with a unique identifier using the Set-Cookie HTTP response
header. Whenever the user visits either of the websites, the browser will send
any existing cookies to their respective domains in the Cookie HTTP header 2.
Hence, advertising.com will receive the cookie it previously stored. The
unique identifier in the cookie makes it trivial to match the visits across the
two sites.

Today, cookies are the most prevalent mechanism for third-party tracking [65,95].
According to a recent survey of the most visited 1 million sites, there are over
81, 000 third-parties present on at least two websites. Of those, a handful of

1Origin is defined by the tuple: <scheme, host, port> e.g., http://example.com:80
or https://example.com:443

2Cookie attributes such as path and secure flag also play a role determining when the
cookie will be sent.
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Figure 2.1: Cookie-based third-party tracking

giant technology companies including Google, Facebook and Twitter are present
on more than 10% of sites [38].

Our contributions. Cookies can be used for many different purposes,
such as storing language preferences or session-based tokens that enable
authentication. To be useful for tracking cookies need to be long-lived and
contain a unique identifier. In [18] we developed a method for detecting
unique and persistent identifiers stored in cookies. Our method uses the
Ratcliff-Obershelp algorithm [24]. Detecting identifiers allowed us to study the
interaction between HTTP cookies and Flash cookies (or Local Shared Objects
(LSOs)).

Follow-up work. In a recent longitudinal study of third-party tracking, Lerner
et al. used Internet Archive to investigate the evolution of third-party tracking
from 1996 to 2016. Using the archived version of websites, the researchers
presented a unique view of the increase in prevalence and complexity of third-
party tracking in the last three decades [62].

2.2 Evercookies

Evercookies (also known as zombie cookies or supercookies) take advantage of
the lack of an interface for managing certain in-browser storage mechanisms to
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be more resilient against removal by the user. This includes, for example, Flash
cookies, localStorage and cache Entity Tag (ETag).

In 2010, Soltani et al. found that Flash cookies are used to regenerate previously
removed HTTP cookies, a technique referred to as “respawning” [101]. They
found that 54 of the 100 most popular sites stored Flash cookies, 41 of which
contained matching content with the HTTP cookies. The matching content is
interpreted as an indication of redundant storage to enable respawning.

In 2010, Samy Kamkar presented the “Evercookie,” a resilient tracking library
that uses multiple storage mechanism including Flash cookies, localStorage,
sessionStorage and cache ETags [54]. Kamkar used a set of novel techniques,
such as storing identifier strings in a canvas image that is then force-cached and
read from the cached image on subsequent visits. Instead of just respawning
HTTP cookies by Flash cookies, the Evercookie script checks the cleared vectors
in the background and respawns all the missing identifiers from any copy that
persists. This makes Evercookie extremely resilient against removal by users.

In 2011, Ayenson et al. found the first use of cache ETags and localStorage for
respawning cleared cookies [22]. This was the first study that found browser
cache and HTML5 localStorage mechanisms used as evercookies.

In 2011, McDonald and Cranor analyzed the home pages of the top 100 sites and
500 other randomly selected websites. They found only two cases of respawning
on the top 100 websites and no respawning in the other 500 sites [67].

Respawning cookies cleared by users can be seen as a way to circumvent users’
privacy preferences and is thus controversial. The relative low prevalence of
respawning found by McDonald and Cranor may be due to the high profile
settlement that was triggered by previous results [100].

Our contributions. In [18] we described an automated detection method
for evercookies and cookie respawning. Applying this method, we detected
respawning by Flash cookies on 10 of the 200 most popular sites and found 33
different Flash cookies were used to respawn over 175 HTTP cookies on 107 of
the top 10,000 sites. We also uncovered a new evercookie vector, IndexedDB
that had not been reported before.

Follow up work. In 2015, independent researcher Yan Zhu demonstrated
a way to abuse the HTTP Public Key Pinning (HPKP) as an evercookie
vector [118]. HPKP is a recently introduced security mechanism against
fraudulent certificates. HPKP works as follows: in the first visit to a site,
browsers store the hash (called “pin”) of the subjectPublicKeyInfo field of the
site’s certificate [3, 14,27]. In subsequent visits, the browser rejects certificates
without a valid pin and optionally reports the validation failures to an endpoint
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designated by the server [14]. This validation mechanism protects against
fraudulent sites with fake certificates. HPKP also allows websites to designate
a backup pin, which can be used when the original certificate expires or needs
to be revoked. The evercookie technique by Zhu re-purposes the HPKP backup
pin to store a unique identifier for each user. To retrieve these unique identifiers,
the server includes a resource from a subdomain with an invalid pin. This
triggers the HPKP reporting mechanism to send the pins, including the backup
pin with the unique ID, to the reporting endpoint, thus enabling identification.

2.3 Cookie Syncing

As explained in Section 2.1, SOP is a security mechanism that prevents origins
from accessing cookies of other origins, effectively isolating cookies per domain.
This implies that domains know users by different identifiers, which are typically
stored in cookies. When two domains want to carry out a joint transaction
about a user, they need to map the identifiers by which they know this user.
Real Time Bidding (RTB), where different parties compete to show an ad to
a user, is an example of a joint transaction. In cookie syncing (also known
as cookie matching), two parties exchange the identifiers associated with a
given user. This allows domains to learn the identifiers assigned by other
domains, effectively bypassing SOP. Further, cookie syncing enables back-end
server-to-server data merges hidden from public view.

In 2013, Olejnik et al. studied cookie syncing and found that it can significantly
improve the tracking and profiling capabilities of online trackers. Their study
analyzed the browsing histories of 100 volunteers. They found, on average, 60
cookies are synced when a user visits 40 sites [82]. Further, results showed that
Facebook ( facebook.com) and AppNexus ( adnxs.com) synced their cookies
for 91% of the volunteers.

Our contributions. In [18], we conduct a survey of cookie syncing practices.
In comparison to [82], our study is large-scale, covering the top 3, 000 Alexa
sites and it is based on crawling rather than crowd-sourcing. Further, we study
how cookie syncing amplifies the privacy harms of respawning by disseminating
the regenerated identifiers to multiple parties.

To detect cookie syncing, we look for unique identifiers in the HTTP traffic and
cookie contents. In particular, we search identifiers that are known by multiple
domains, which is an indication of cookie syncing.

Our study finds that 435 identifiers are synced while crawling 3, 000 sites. We
also count the number of identifiers known by each party and find that the
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top two parties, gemius.pl and doubleclick.net, know 33 and 32 different
identifiers respectively. When we measure the number of parties sharing a
particular identifier, we find that, in our dataset, one of the identifiers is known
to as many as 43 parties. On average, a party knows 2.0 identifiers and an
identifier is shared by 3.4 parties.

With respect to the interaction between cookie syncing and respawning, our
study finds that cookie syncing amplifies the effect of respawning. Considering
users who clear their cookies, respawning followed by syncing can be used to
distribute the regenerated identifiers to several domains. This may enable, for
example, linking users’ browsing history before cookie clearing to their history
after cookie clearing. We quantify this effect by measuring the extent to which
a user’s browsing history can be linked by respawning identifiers. We find that
considering cookie syncing increases the linkability of a user’s browsing history
from 1.4% to 11%.

Follow-up work. Following a methodology similar to ours, a 2016 study of
cookie syncing on the top 100, 000 sites found that 45 of the most prevalent
50 third-parties sync cookies with at least one other party [38]. Their study
found doubleclick.net as the most prolific cookie syncing party, sharing 108
different cookies with 118 other parties.

2.4 Browser Fingerprinting

The idea of combining different characteristics of browsers to obtain a unique
identifier was first proposed in 2009 by Mayer [64]. The study was based
on an experiment where the researcher collected the fingerprints of 1328
web clients. By hashing the concatenated contents of the device proper-
ties navigator, screen, navigator.plugins and navigator.mimeTypes, he
found that more than 96% of the browsers had a unique fingerprint.

A year later, Eckersley conducted a study called Panopticlick, where he collected
the fingerprints of nearly half a million browsers. Panopticlick used an extended
set of fingerprint features that include system fonts, timezone and HTTP Accept
headers. The study showed that 94.2% of browsers with Flash or Java had a
unique fingerprint [35].

The Panopticlick study showed that stateless tracking is feasible, i.e., websites
can track users without storing any cookies or identifiers in their browsers. This
has grave implications for online privacy because it allows websites to silently
circumvent preferences expressed in privacy settings and invalidate practices
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Figure 2.2: Browser fingerprint as collected by Panopticlick project.
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such as clearing cookies or using private browsing mode. Stateless tracking is
even stealthier than evercookies since it does not leave any trace in the browser.

Eckersley also presented a mathematical treatment of browser fingerprinting.
He used Shannon entropy [99] to quantify how identifying particular browser
features are. Given a browser feature with values {x1, ..., xn} and probability
mass function P (x), one can compute the entropy of the fingerprint distribution
as follows:

H(X) = −
n∑

i=1
P(xi) log2 P(xi) (2.1)

The entropy can be calculated for either the combination of all available
browser features or for just a subset such as fonts or plugins. Ranking different
components by their entropy, Eckersley measured plugins and system fonts as
the two most identifying features with 15.4 and 13.9 bits of entropy, respectively.
The study also found that the combination of all fingerprint features amounts
to 18.1 bits of entropy. This means that, on average, a browser will share its
fingerprint with only one in 286,777 (218.1) other browsers [35].

The entropy measurements from [35] are reproduced in Table 2.1.

Shannon entropy had been previously used to measure anonymity [33,98]. One
limitation of using Shannon entropy is that it is an average measure that does
not take worst cases into account. In browser fingerprinting context, this means
that many browsers can be unique while others have relatively large anonymity
sets.

Nikiforakis et al. [78] analyzed the techniques and adoption of three fingerprinting
companies, two of which had been identified in a 2012 survey paper on web
tracking [65]. While Nikiforakis et al. studied the practices of these three
companies, they did not attempt to discover other, unknown fingerprinters.

Other researchers have proposed the use of additional features that are not
considered in Panopticlick. These include running performance benchmarks to
differentiate between JavaScript engines [73] or distinguishing by the errors in
web standard test suites [75].

Predating browser fingerprinting, researchers have devised ways to detect
operating systems of Internet hosts based on their network behavior [4, 116].
Kohno et al.’s influential study was the first attempt to distinguish individual
devices instead of a device class or operating system. Using passive network
fingerprinting, the researchers could remotely fingerprint devices by their clock
skew [55].
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Table 2.1: Entropy measurement for each browser feature in the Panopticlick
dataset. Table is reproduced from [35]

Browser feature Entropy (bits)

Browser Plugins 15.4
System fonts 13.9
User agent 10.0
HTTP Accept headers 6.09
Screen 4.83
Timezone 3.04
Supercookies 2.12
Cookies enabled 0.353

The following sections present an overview of different browser fingerprinting
techniques that we have studied during our doctoral research.

2.4.1 Font-based Fingerprinting

A robust detection methodology with low false positive rate is needed to survey
the fingerprinting practices on the web.

Based on prior studies [35,78] and our review of the code of known fingerprinters,
we consider “font detection” to be a good indicator of fingerprinting. The reasons
for this choice are three-fold: (1) as Table 2.1 shows, fonts and plugins are the
two most identifying features according to the Panopticlick study [35], (2) sites
can query plugins for many reasons that are not related to tracking, while there
are fewer such cases for querying the list of system fonts, (3) unlike browser
plugins, fonts depend on the Operating System (OS) and can be used to link a
user across different browsers running on the same device [25].

Although plugins such as Flash and Java can enumerate the installed fonts,
web scripts cannot query the fonts directly. However, when Flash and Java are
disabled, scripts can use a side-channel inference method to check if a given
font is installed [78]. The technique works by printing the same string with
different fonts and comparing the dimensions of the rendered string against
dimensions measured with the fallback font. When the probed font does not
exist, a fallback font is used to display the string. This allows scripts to infer
whether or not the font is installed in the system.
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Figure 2.3: Javascript-based font probing uses a side-channel based on string
dimensions.

Figure 2.3 shows the dimensions of the same string when printed with different
fonts. The fist row shows the string printed with the fallback font, which is
Monospace in this case. The font displayed in the second row is not installed in
the system and thus the string is printed using the fallback font. The fonts in
the remaining rows are installed, and lead to different string dimensions than
the fallback font. Thus, the dimensions reveal whether or not the fonts are
installed in the system.

Our contributions. In [19], we develop the FPDetective3 framework to identify
and analyze web-based device fingerprinting. Figure 2.4 outlines FPDetective’s
components and workflow. The crawler is the main component of FPDetective
and it consists of automation libraries (Selenium [9] and CasperJS [87]) and two
instrumented browsers, PhantomJS [50] and Chromium [15]. We modify the
source code of the browsers to log events that might be related to fingerprinting
such as loading an abnormal number of fonts, or accessing specific browser
properties. To facilitate analysis, logs from the browsers are parsed and inserted
into a database.

Instrumenting the browsers does not help with the analysis of Flash objects,
since these objects are interpreted and executed by the Adobe Flash player
library. Thus, to detect Flash-based fingerprinting, we analyze the ActionScript
source code of the Flash objects. To extract the Flash source code, we use
mitmproxy [30], an SSL-capable intercepting HTTP proxy to capture all the
HTTP(S) traffic. We then process network captures to extract Flash objects

3Available on: http://homes.esat.kuleuven.be/~gacar/fpdetective/

http://homes.esat.kuleuven.be/~gacar/fpdetective/
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Figure 2.4: FPDetective Framework

that we identify by Flash-specific “magic numbers”. Finally, we decompile Flash
objects to get their source code.

We run crawls using several machines, but use a central database to combine
and analyze the results. The stored data include JavaScript function calls,
ActionScript API calls, HTTP requests and responses, and the list of loaded or
requested fonts.

We use FPDetective to conduct a large-scale study of browser fingerprinting
on the top million Alexa sites. Our study identifies 16 new fingerprinting
providers and Flash objects (including commercial fingerprinting as well as
in-house solutions), some of which are active in the top 500 websites.

We uncover previously unreported fingerprinting practices, such as attempting
to evade detection by removing the fingerprinting script once it has executed,
and collecting fingerprints through third-party widgets. Our findings highlight
the rising popularity of fingerprinting and the need for more transparency,
awareness and countermeasures with respect to these practices.

We evaluate existing countermeasures against fingerprinting: Tor Browser
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Figure 2.5: Canvas fingerprinting basic flow of operations

and Firegloves. We discover vulnerabilities in both tools that would allow a
fingerprinter to bypass their protections. We also analyze the effect of the
Do-Not-Track (DNT) header and find that it is ignored by the fingerprinting
scripts studied in our paper.

Follow-up work. Following our study, Fifield and Egelman developed a novel
fingerprinting technique that exploits the differences in the onscreen dimensions
of font glyphs [41]. Unlike font-probing methods, where the fingerprinter
compiles the list of system fonts, Fifield and Egelman’s approach captures
additional characteristics that also affect the dimensions of the rendered string.
These include, for example, anti-aliasing, kerning settings, and the version of
the installed font.

2.4.2 Canvas Fingerprinting

Canvas fingerprinting is a type of browser fingerprinting technique that was
first presented by Mowery and Shacham in 2012 [74]. The authors showed that
scripts can use the HTML5 Canvas API to exploit differences in the rendering
of the same image.

Canvas fingerprinting works by drawing an invisible image onto the canvas and
reading the rendered image data back. The exact rendering of the image depends
on the operating system, installed fonts, font library, graphics card, graphics
driver and the browser. When the drawn image contains text, differences in font
rasterization such as anti-aliasing, hinting or sub-pixel smoothing may affect
the exact rendering as well [74].
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Figure 2.5 shows an overview of the basic steps of canvas fingerprinting. The
script first draws text with the font and size of its choice and adds background
colors (1). Then the script calls the Canvas API’s ToDataURL method to
get the pixel data in Base64 encoded form (2). Finally, the script takes the
hash of the text-encoded pixel data, which serves as the fingerprint (3). This
fingerprint may be combined with other high-entropy browser properties to
increase identifiability [35]. Note that hashing in the last step is optional, and
a fingerprinter may want to collect the raw pixel data. Also, the fingerprinter
may try drawing different shapes, apply image effects or use text crafted to
maximize the distinguishing power of the canvas fingerprint.

The entropy of canvas fingerprints has not been measured in a large-scale
experiment like Panopticlick [35]. Mowery and Shacham collected data from 294
Mechanical Turk users and found that the distribution of canvas fingerprints in
their dataset contains 5.73 bits of entropy. Since their experiment was too small
for accurately measuring entropy, the authors had a further estimate of at least
10 bits, meaning that, on average, a browser will share its canvas fingerprint
with one in 1,000 (210) other browsers.

Our contributions. Our study [18] surveys the use of canvas fingerprinting
scripts in the top 100,000 Alexa sites. We modified the open source Firefox
browser to log all the function calls that might be used for canvas fingerprinting.
Specifically we logged fillText, ToDataURL, strokeText, MozFetchAsStream,
getImageData and ExtractData methods of the Canvas API.

Using Firefox’s nsContentUtils::GetCurrentJSContext and nsJSUtils::
GetCallingLocation methods, we logged the URL of the calling script and the
line number of the calling (initiator) code. This allows us to precisely attribute
the fingerprinting attempts to correct scripts.

Crawling the homepages of the most popular 100,000 Alexa sites, we find canvas
fingerprinting to be the most common fingerprinting method ever studied, with
more than 5% prevalence.

Although the overwhelming majority (95%) of the scripts belong to a single
provider (addthis.com), we discovered a total of 20 canvas fingerprinting provider
domains, active on 5542 of the top 100,000 sites.

Analysis of the real-world scripts revealed that they went beyond the techniques
suggested by the academic research community. For instance, AddThis’s
script checks support for drawing Unicode characters by printing the character
U+1F603 (a smiling face with an open mouth). Further, it checks for
canvas globalCompositeOperation support and uses the perfect pangram “Cwm
fjordbank glyphs vext quiz” as the text string.
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2.4.3 Battery Status API

Battery Status API is a W3C standard that enables web scripts to access the
battery state of a mobile device or a laptop [58]. The API exposes the current
battery level and predicted time to charge or discharge [58]. A potential use
case for the API is that web applications can limit their energy consumption
when the battery level is low.

Battery Status API does not require any permission to access the battery
information. The API also does not require browsers to display a notification
when it is used. This allows website and third-party scripts to access the battery
information without user awareness.

Our contributions. In our study we observe that the battery level is reported
by the Firefox browser on GNU/Linux with double precision, while just two
significant digits are used on other platforms. Our study finds that it is possible
to find the battery’s capacity by exploiting high precision battery level readouts.
The battery capacity, as well as its level, can function as short-term identifiers
that facilitate tracking and can potentially be used for respawning [81].

We analyze the UPower source code to understand how it computes the battery
level from the capacity, voltage and current charge. The resulting equations
cannot be directly solved. However, the high precision readings, in combination
with floating point representation errors, provide additional constraints. This
allows us to brute-force candidate values for the battery’s voltage and capacity.

To counter this fingerprinting vector, we propose a solution that reduces the
Battery Status API’s fingerprintable surface by rounding the level readings.
This fix does not diminish the effective functionality of the API, since high
precision readings are not required.

We filed a bug report for Mozilla Firefox to communicate the problem [80]. The
fix was quickly implemented and deployed by Mozilla engineers in response to
our report.

Further, our study triggered the update of the W3C recommendation that
standardizes the Battery Status API. The recommendation was updated to
mention the privacy risks we pointed out in our study.

The privacy concerns raised in our study and follow-up work [38] caused the
browser manufacturers to remove the Battery Status API from the browsers
and underlying rendering engines [2, 10,89].

Follow-up work. In 2016, Englehardt and Narayanan conducted an online
tracking survey covering the top 1 million sites. Their study found two scripts



MOBILE TRACKING 23

seemingly using the Battery Status API for tracking purposes [38]. Spooren
et al. investigated the potential of battery level measurements to augment
active authentication [105]. Using battery charge probability histograms, they
computed the likelihood of getting a particular battery level reading given an
earlier reading. This enabled them to detect unexpected battery readings and
flag suspicious authentication attempts.

2.4.4 Other Uses of Browser Fingerprinting

Although browser fingerprinting is generally associated with questionable
tracking practices, researchers have also explored its potential to augment
web authentication and security [20,26,83,91,104,105,107,110].

In an online authentication setting, browser fingerprints may serve as an
additional factor by indicating that users have the device that they used
to login previously. This can help prevent account hijacking attempts where
the user’s password is stolen or guessed.

Fingerprinting can also help defend against session hijacking, where an attacker
steals the authentication cookies of a victim to impersonate her. Spooren et al.
note that in an effort to limit the burden of authentication, popular services
such as Facebook and LinkedIn utilize long-lived sessions that may last several
weeks [104]. This increases the vulnerability to an adversary who uses cross-site
scripting or similar attacks to hijack an authenticated session.

For mobile devices, where browser fingerprinting is less likely to yield a unique
fingerprint due to limited customization, fingerprints can be used for negative
authentication, i.e., detecting potentially compromised sessions [104].

In contrast to these security use cases, fingerprinting can also be used by web-
based malware to identify vulnerable browsers. Kolbitsch et al. note that
modern web-based malware often targets specific browser configurations [56].
Analyzing real-world attack campaigns, malware researchers found examples of
browser fingerprinting scripts that check whether the device is vulnerable [46]
and whether it might be a honeypot [97].

2.5 Mobile tracking

Several studies have investigated the privacy implications of mobile apps, which
have become ubiquitous in the last decade. An influential study by Enck et al.
presented TaintDroid, a system-wide taint analysis system that allows tracking
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Figure 2.6: Our data collection setup consists of a Controller PC, two Android
phones and two VPN servers for capturing the network traffic.

of sensitive information flows [37]. Analyzing the network traffic generated by
the mobile apps, Xia et al. have shown that an adversary can attribute up to
50% of the app traffic to the real names of users [115].

Our contributions. The prior work mobile tracking have mainly focused on
the sensitive information that is collected and transmitted to remote servers [37,
47,51]. In contrast, our study quantifies the tracking capabilities of a passive
network adversary who monitors the mobile app network traffic [111]. In
particular, we present an automated analysis of 1260 Android apps and show how
mobile apps enable surveillance by sending unique identifiers over unencrypted
connections. Our study is motivated by Snowden documents, which revealed
that the tracking identifiers sent over unencrypted channels are being used for
surveillance purposes [8].

We follow the methodology of Englehardt et al. who have shown that third-
party cookies sent over unencrypted connections can be used to link together
62-73% of a user’s web browsing history [39]. We extend their work by showing
how passive network fingerprinting based on TCP timestamps can be used to
improve the linking of users’ traffic. Following Englehardt et al., we measure the
success of the adversary by the ratio of the network traffic he can link together
for a given user.

We analyze 1260 Android applications from 42 app categories using the data
collection framework shown in Figure 2.6. The framework includes a controller
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PC, two Android smartphones and two Virtual Private Network (VPN) servers
to capture the network traffic. The framework downloads and runs mobile
applications, captures their network traffic and automatically detects identifiers
that are sent in the clear.

Our results show that 57% of a user’s unencrypted mobile traffic can be linked
by a global adversary [111]. We also analyze Adblock Plus for Android [6]
and Disconnect Malvertising [7], two tracking countermeasures available to
privacy aware mobile users. Our analysis finds their effectiveness to be very
limited against identifier leakage. Adblock Plus reduces the ratio of linkable
traffic from 57% to 50%. Disconnect Malvertising performs better, reducing the
linkable traffic to 38% from 57%.

Using HTTPS for the mobile app traffic can effectively protect against passive
network adversaries. Further, a system-wide proxy or VPN app similar to
HTTPS Everywhere browser extension can be developed to redirect insecure
HTTP requests to HTTPS endpoints where possible.

2.6 Technical countermeasures against online track-
ing

In this section we present countermeasures available to users to defend against
online tracking. Legal or regulatory countermeasures such as European Data
Protection regime and consumer protection efforts by the FTC are left our as
they are beyond the scope of our studies.

Do Not Track HTTP header. The Do-Not-Track (DNT) allows users to
signal their preferences about tracking to websites. Do Not Track (DNT) is
modeled after “Do Not Call Registry,” which allow people to opt-out from
receiving unsolicited telemarketing calls. DNT preference is conveyed in two
ways: first, as an HTTP header field, and second as a JavaScript property in
the navigator object.

DNT is standardized by the W3C under the name “Tracking Preference
Expression” and it has already been adopted by most modern browsers [40].

Since DNT needs to be respected on the server-side, by the very companies
who may profit from tracking, its effectiveness is called into question [60,88].

Our contributions. The findings of our study on font-based browser
fingerprinting suggest that DNT preferences are ignored by the fingerprinters
in our dataset [19].
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Browser settings. All modern browsers provide an option to disable cookies
or disable only the third-party cookies. Comparing different browser settings
such as disabling JavaScript, cookies and third-party cookies, Krishnamurthy
et al. found that disabling third-party cookies may have significant privacy
benefits without causing severe usability problems [59]. The same study found
that although disabling JavaScript or cookies provide better tracking protection,
their negative impact on the usability is also higher, potentially leading to
refusal of service.

Krishnamurthy et al. studied the leakage of sensitive and identifying information
to third parties on 120 websites. They found that 56% of the sites leaked private
informations such as name, zip code or email to at least one third party [60].
Evaluating the effectiveness of existing online tracking countermeasures such as
blocking cookies, disabling JavaScript and sending Do-Not-Track HTTP header,
they found severe shortcomings of those protections. The limitations of the
countermeasures ranged from not being able protect against certain forms of
tracking to negative usability consequences.

In their study of the top million websites, Englehardt and Narayanan found
Firefox’s third-party cookie blocking feature very effective, as it reduced the
average number of third parties per site from 17.7 to 12.6 [38].

Browser extensions. Ad-blocker extensions have been used since the late
nineties [42]. According to PageFair, the number of devices that block ads
reached 615 million by the end of 2016 [84].

Browser extensions use a combination of techniques to counter online tracking.
They block HTTP requests based on blacklists of tracking, analytics or
advertising domains. They also hide advertisement elements based on Cascaded
Style Sheets (CSS) rules. Unlike other blacklist-based extensions, Privacy
Badger detects trackers based on their behavior [43].

By comparing the effectiveness of several anti-tracking extensions, Ikram et al.
found that NoScript and Ghostery block the most trackers within a labeled
dataset of tracking scripts, 78% and 65% respectively. Privacy Badger blocked
only the 37% of the scripts labeled as tracking [52].

As a response to the rise of ad blocking software, certain online websites
started to use anti-adblocking scripts to deny access to visitors with adblockers.
Nithyanand et al. found that 6.7% of websites in the Alexa Top 5000 use
anti-adblocking scripts. News, blogs, and entertainment websites are found to
be the categories that are more likely to include anti-adblocking scripts [79].

Firefox’s Tracking Protection. In principle, Firefox’s Tracking Protection
is very similar to adblocking extensions [57]. It uses a blacklist to block requests
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to tracking domains. However, Tracking Protection benefits from a better
integration with the underlying browser. Testing Firefox’s Tracking Protection
on Alexa top 200 news sites, Kontaxis and Chew measured 67.5% reduction in
the number of HTTP cookies and 44% median reduction in page load time [57].

Tor Browser. Tor is the most popular anonymous communications network
with more than two million daily users [17]. Tor routes users’ traffic through
three relays to hide users’ IP address from the websites or other communication
endpoint [34]. Tor uses onion routing [45], in combination with encryption in
layers to prevent any single Tor relay from linking the source and destination of
a connection.

The overarching defense strategy of Tor Browser is to eliminate fingerprintable
differences to make all Tor users look like the same. At the implementation level,
Tor Browser uses a combination of defenses that include Private Browsing mode,
disk write avoidance, value spoofing, feature removal, API reimplementation or
virtualization [69].

Since the Tor Browser has a limited user base, even a partial fingerprint can be
enough to identify Tor users to their non-Tor identities, breaching the anonymity
provided by the network. Moreover, very complex nature of the browser code
base makes it very hard to maintain the integrity and comprehensiveness of the
defenses in the presence of constant code updates and the introduction of new
browser APIs.

Font-based fingerprinting is a particularly important threat for Tor Browser,
since the fonts depends on the operating system and can be used to link Tor
users to their non-Tor identities. As a countermeasure, Tor Browser used to
limit the number of fonts that can be queried or loaded in a document.

Our contributions. In [19], we discovered a vulnerability that allowed us to
circumvent the Tor Browser’s font limits to load an unlimited number of fonts.
The Tor Browser developers swiftly fixed the problem prior to the publication
of our study [19].

Follow-up work. Following the publication of our study [19], we found
and reported another attack that circumvents Tor Browser’s font limits by
using multiple frames within a document [44]. Moreover, Fifield and Egelman
published a font-based fingerprinting technique that use the differences in the
onscreen dimensions of font glyphs [41]. Their fingerprinting technique was
effective against Tor Browser. To address these weaknesses, the Tor Project
started to ship a fixed set of fonts with the Tor Browser Bundle [1].

Although using the same set of fonts alleviates the problems associated with
font-probing, the dimensions of a text can still be affected by the font rendering



28 ONLINE TRACKING MECHANISMS

settings such as hinting [21]. Research needs to be done to check whether these
rendering differences can serve as an effective fingerprint for Tor users.



Chapter 3

Conclusion and Future Work

3.1 Conclusion

Our research has shown that advanced tracking mechanisms such as browser
fingerprinting, evercookies and cookie syncing are actively used by third-party
trackers on thousands of websites. We address the difficulty of detecting and
analyzing advanced online tracking and enable similar line of work that relies
on browser instrumentation.

Certain countermeasures are available against advanced tracking methods but
they all suffer from limitations and weaknesses. Our line of research is critical
in finding those weaknesses and help the developers to address them.

Our analysis of the Battery Status API has shown that seemingly innocuous
battery information can serve as a tracking identifier. The W3C has updated
the API standard to address the privacy risks as a response to our study.

We have presented a survey of leakage of personal information and shopping
habits from online retail shops to payment providers. Our analysis has shown
that 52% of the 881 retail sites shared product names, item numbers and
descriptions with PayPal.

Finally, we have studied the extent of mass surveillance enabled by mobile
application tracking. We have analyzed the network traffic of 1260 Android
applications using a mobile app automation framework that we have developed,
and found that 57% of a user’s unencrypted mobile traffic can be linked together
by a global adversary.

29



30 CONCLUSION AND FUTURE WORK

Advanced online tracking is a significant privacy issue that enables surreptitious
profiling of individuals’ online activities. We contribute to making the web a
more transparent and privacy respecting space by conducting large scale studies
of the online tracking technologies. We hope our findings will help having a
more informed public and policy debate about otherwise stealthy technologies.

3.2 Future Work

The following future work can address the existing research gap and enable new
lines of web privacy research.

Reproducible web measurement studies: The dynamic nature of the web
makes it impossible to reproduce other researchers’ work as the analyzed pages
almost constantly change. A potential direction for future work can be to
develop infrastructure and tools for reproducible analysis of online tracking.
Chromium Project’s Web Page Replay [13] and mitmproxy’s server-side replay
feature [12] can be used to this end.
Record-and-replay capabilities of web traffic and sessions can be useful for multi-
execution based analysis of web-based malware [56]. Similarly, information-flow
security studies based on secure multi-execution such as FlowFox [32] can benefit
from such capability.
Finally, longitudinal tracking studies similar to recently published [62] can
reproduce the tracking practices more realistically using replayable web archives.

Using browser instrumentation for web security studies: The native-
code level browser instrumentation such as the one accomplished in our work [19]
can be adapted for the analysis of web based malware. The existing JavaScript
malware analysis tools such as JSDetox [11] have limitations when it comes to
emulating a real browser. Web-based malware with fingerprinting capabilities
can easily bypass their protections. Using full-fledged instrumented browsers
with low-level instrumentation can be used to overcome this problem.

Studying new web-enabled devices and IoT: New connected devices such
as smart TVs and IoT devices can enable different set of tracking mechanisms
that is worth studying. Although web tracking studies may offer methodological
support in detecting long-term and unique identifiers, data collection and
automation can be challenging for this line of research. A possible extension of
this study could be to investigate cross-device tracking involving smart TVs.

Detecting Code Injection by Tor Exit Nodes: Winter et al.’s “Spoiled
Onions” study has shown different ways Tor exit nodes may interfere with
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the network traffic. They find several malicious or misconfigured exit nodes,
that attempt to strip SSL connections or steal email credentials [114]. Although
their study mentions a case where HTML code is injected by a malicious exit,
it does not presents a decisive analysis due to limited data. To address this
research gap, the nature and extent of privacy violating code injections by Tor
exit nodes can be investigated. This study can contribute to Tor Project by
flagging malicious exits who tamper with web pages.
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On the 5th of July, 1993, the magazine “The New Yorker” published a cartoon
made by Peter Steiner which depicts two dogs sitting in front of a computer
with the caption: “On the Internet, nobody knows you’re a dog.” This comic
was understood to highlight the anonymity inherent on the Internet and how
this anonymity could assist even canines, in keep their identities private.

Fast-forward 20 years, and now this is unfortunately no longer the case. Given
the tracking technologies in use today, interested parties do not only know that
you are a dog, but they also know the color of your fur, how often you visit
the vet, and what is your favorite dog treat. Advertising agencies collaborate
with websites and gather your browsing data, creating effectively a browsing
profile for every user. These browsing profiles can be so specific, that they allow
advertisers to target populations such as “young mothers with teenage children”,
“Acculturated Latinos with income more than 50K” or those interested in buying
“allergy relief” products.

When this is combined with our volunteered self-revelation on social media,
or offline purchases or whereabouts as recent plans by Facebook and Google
suggest, the amount of information that other people have about us becomes
too close for comfort.

In this article, we examine the history of tracking on the web and its evolution,
paying particular attention to fingerprinting, a new type of tracking which does
not require the, now widely recognized, cookies.

Origins of web tracking

Browser cookies were first introduced in Netscape Navigator in 1994 and quickly
adopted by all other browsers, available at the time. Cookies are small pieces
of text that is stored in user’s browser by the visited websites. They are then
made available to the website in subsequent visits, which allow websites to
recognize returning visitors or keep a state about a visitor, such as the items in
the shopping cart. Cookies can also be used to store login credentials. Sites
like facebook.com can remember logged-in users, without requiring them to
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provide their passwords with every new interaction.

Unfortunately, the stateful nature of cookies was quickly abused to allow
companies to track users across sites. This can be better explained through an
example. Suppose that a user browses to travel.com, whose homepage includes
an advertising banner located on the web servers of advertiser.com. Therefore,
as part of the process of rendering travel.com’s homepage, the user’s browser
will request the banner from advertiser.com. The web server of advertiser.com,
uses this opportunity to not only send the banner but also to set a cookie on the
user’s machine. Later, when the user browses to other websites affiliated with
advertiser.com, e.g., rental.com, the tracking website receives its previously-set
cookies, recognizes the user, and creates a profile of the user’s browsing habits.
These third-party cookies and their implications started receiving attention
from various media outlets and privacy organizations starting from mid-nineties.
Over the years, people realized that the set of websites they visit, reveals much
information about themselves, ranging from their gender and age, to their
political affiliations and health status. The possession of such knowledge by
advertising networks and other interested third parties, comes with potentially
dire privacy consequences, given that users had no control and transparency
over the processing and sharing of their data.

Reactions to Tracking

Cookies may be one of the most disputed technologies when it comes to privacy.
Beginning from the mid-nineties, one can see news articles about cookies
with headlines containing catchy expressions like “death of privacy” and many
variations of big brother metaphor. For example a New York Times article
from 1999 describes cookies as “comprehensive privacy invaders.” Some of them
also include reflections of the idea that privacy maybe an obstacle to online
businesses. A Times article titled “Invasion Of Privacy” from 1997 quotes a
government bureaucrat saying: “The future is in electronic commerce,” all that’s
holding it up is “this privacy thing.”

Even technical standardization efforts got their share of these discussions. A
1997 coalition letter to browser manufacturers signed by privacy organizations,
expressed their support for the first cookie standard (RFC 2109), which states
that third-party cookies should be blocked “to prevent possible security or
privacy violations.” But advertising companies pushed back harder, and finally
none of the two popular browsers of that time followed the specification and
allowed third-party cookies. While modern browsers give the ability to users
to reject third-party cookies, even today, most of them come with this feature
turned off by default (Safari being a notable exception).

In a 2012 study on Online Behavioral Advertising, the majority of participants
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opposed it, describing it as both smart and creepy. While the majority of
non-technical people still do not understand the exact workings of third-party
tracking, the last years have witnessed a surge of more advanced self-help
tools which, the somewhat knowledgeable user, can use to defend against web
tracking.

In 2005, browsers started adding the “Private Browsing” mode in their browsers,
to give users the option of visiting websites without leaving long-term cookies
on their machines. Next to the efforts from the browser vendors, independent
developers started producing privacy-preserving tools that users could install
in their browsers. Today, the most popular Mozilla extension is AdBlock Plus
which blocks ads and the third-party cookies that trackers use. Moreover, recent
tools like Ghostery and Mozilla’s Lightbeam allow the user to get a glimpse
of the number of trackers on each website and how these trackers collaborate
between seemingly unrelated websites. Finally, recent studies have shown that
a large percentage of users delete their cookies on a regular basis, a fact that
points to at least some understanding of cookies and their implications.

Recently opt-out websites have appeared, which users can visit and opt-out from
tracking from a selection of parties, some of which are operated by advertising
organizations and given as examples of industry self-regulation. Studies, however,
have found that these sites have confusing interfaces and major usability flaws,
which prevent users from correctly opting out. Moreover, even if the user
succeeds in opting out, half of the companies kept their existing cookies and
continued tracking, Stanford researchers found in 2011.

Adaptation of trackers

When users started deleting their cookies, the various tracking parties had to
develop new ways of identifying these users. Most methods that came out of
this process had one thing in common; they tried to hide the same tracking
information that they used to place in cookies, in some other “corner” of the
browser. One popular technique was the use of Flash cookies. Flash cookies
are conceptually similar to normal cookies, but they are specific to the Flash
plugin. In the past, a website could hide information in Flash cookies, that
would survive the clearing of cookies. Moreover, Flash cookies were used to
re-spawn other deleted cookies, by copying the information from Flash cookies
back into normal cookies. Companies were able to use this practice for a number
of years before researchers started publicizing their practices in 2008. Today,
modern browsers give users the ability to delete all cookies from within the
browser menus.

While most tracking techniques, today, still rely on the concept of “stuffing”
information in a user’s browser, there is one emerging family of techniques that
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does not require storing information, namely web-based device fingerprinting.
Web-based device fingerprinting is the process of collecting information about
unique characteristics of the devices that users utilize to browse the web. Under
the assumption that each user owns and operates her own device, identifying a
device is equivalent to identifying the user behind it. Prior research by Peter
Eckersley in 2010, showed that combining several benign browser attributes can
lead to an almost “perfect” fingerprint, i.e., more than 94% of user devices have
unique fingerprints. These attributes include the dimensions of a user’s screen,
her timezone, and the lists of browser plugins and system fonts.

Discovering the State of Practice

In our work, we studied the current fingerprinting ecosystem in order to, among
others, identify the current providers of commercial fingerprinting products
and services, how commercial solutions differ from Eckersley’s fingerprinting
methodology, and which websites fingerprint their users. It is important to
identify the current big players in the fingerprinting ecosystem, because of their
correlating power. More specifically, a user’s fingerprint is usually stored in
a database of “known devices” with contextual information and can be used
instead of cookies, as a mean to identify the user in the future. Since these
companies are used by multiple websites, they can correlate their data across
sites, and thus provide insights about a user to a website, gathered by the rest of
their clients, even if the former has never “seen” that user before. Insights can
take the form of demographics, as well as a “threat score” which purportedly
can alert the website of a malicious user.

We started our analysis by first identifying and studying the fingerprinting
code of three popular fingerprinting providers. Through this process, we were
able to create a taxonomy which we used to compare each company to the
rest as well as to Eckersley’s methodology. There, we discovered that not only
commercial fingerprinting solutions are up to date with academic findings, but
that they also include novel methods of their own. For instance, we discovered
that one company was using a novel method of identifying the installed fonts on
a user machine, without relying on the machine volunteering this information as
Eckersley did. This finding is very interesting since it shows that fingerprinters
adopt to the changing browser environment so that they can still obtain user-
specific information. In addition to this novel font-probing technique, we also
discovered the use of Flash as a way of identifying whether a users are using
other networked computers to hide their original IP address, as well as the
presence of intrusive fingerprinting plugins that are installed silently on a user’s
machine, by being bundled with certain applications that a user downloads and
installs.

Using the information gathered from these three companies, we then designed
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and implemented a program that autonomously browses the web and “senses”
when a website is trying to fingerprint it. The purpose of this experiment
was to identify more players in the fingerprinting ecosystem, that may be
less popular than the originally-studied companies, but still collect device
identifying information. Using our tool, we discovered 16 new instances of
device fingerprinting, some of which were in-house solutions, and the rest offered
by commercial companies as a product. Our results showed that web-based
device fingerprinting is offered by many more companies than originally thought
and is adopted by many popular websites, i.e, 145 of top ten thousand websites.
We also found that more than 400 websites of the Internet’s most popular one
million have been using JavaScript-only fingerprinting to work with Flash-less
devices such as iPhone or iPad. Moreover, our experiment revealed that, at this
point in time, users keep on being fingerprinted even if they use have enabled
the “Do Not Track” preference, in their browser.

Limitations of Current Defenses

At this point it should be evident that fingerprinting is not only actively
practiced on the modern web, but also that it can have a negative effect on a
user’s privacy. The question that thus naturally arises is what are people doing
about it.

As part of our research at KU Leuven, we examined various available tools
which, among others, claim to beat fingerprinting. One popular way is installing
browser extensions that allow users to change a series of values, customarily used
to identify each browser. Using these extensions, Firefox users on Linux, can
pretend to be Internet Explorer users on Microsoft Windows. Other extensions
go further, reporting false dimensions for a user’s screen size and limiting the
probing of fonts.

Through our analysis of these extensions, we discovered that they were all
trivially bypassable by any determined party. This is because modern browsers
are huge pieces of software each with its own intricacies. These intricacies are
discoverable and can thus give away the true nature of a browser, regardless of
what the browser may claim to be.

These intricacies not only void the effects of these extensions but also bring the
user to a position worse than his original one. Since each extension is slightly
different than others, a tracker, after determining the true nature of a user’s
browser, may also be able to determine which extension the user is utilizing.
If he succeeds, then the user, instead of, say, one in 10 million Firefox users,
becomes one in 3,000 Firefox users with that particular extension installed. An
analogous real-life example would be trying to change the make and model
of your car, by replacing the stickers. Not only what you did is obvious for
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someone looking beyond stickers, but now, in terms of anonymity, you are worse
than when you begun, since the majority of people leave their stickers intact.

Future Directions

Our findings highlight the difficulty of pretending to be someone you are not, at
least in the context of browsing environments, and show that easy solutions are
no match for determined trackers. Researchers, including ourselves, are currently
actively studying the problem trying to come-up with effective solutions.

A straightforward way to combat fingerprinting today is to stop the scripts from
loading in the browser, similar to advertising blockers that many users currently
utilize. By maintaining a blacklist of fingerprinting scripts, an anti-fingerprinting
plugin could detect their loading and prohibit their execution. One issue that
arises from this technique is that the blacklist must be constantly updated to
keep up with new URLs and evasion techniques from the trackers. Another
issue, is that we currently do not know whether the loading of fingerprinting
scripts is necessary for the functionality of any single website. It is definitely
possible for a website operator to refuse the loading of their site unless the
fingerprinting scripts are present and operational.

Another, more systematic way of approaching the problem of fingerprinting,
would be to create a setup in which many users share the same fingerprint. For
instance, one can envision a browsing environment located on the cloud, where
the user’s browser simply becomes a terminal for communicating with this cloud
browser. In this setup, many users with diverse browsing environments, will be
hidden behind a single cloud- based, browsing environment. Granted, a tracker
can determine that a cloud-based setup is being utilized, however, given a wide
adoption of this service, any user of the service will be indiscernible from any
other user.

Conclusion

Given that ads are the number one industry of the web, and that tracking
is a crucial component of ads, we believe that web tracking in general and
fingerprinting in specific are here to stay. Right now, as a community, we are
still discovering the nature and magnitude of this privacy problem and only
after we understand it, we can hope to properly address it.
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Abstract. In the modern web, the browser has emerged as the
vehicle of choice, which users are to trust, customize, and use,
to access a wealth of information and online services. However,
recent studies show that the browser can also be used to invisibly
fingerprint the user: a practice that may have serious privacy and
security implications.
In this paper, we report on the design, implementation and
deployment of FPDetective, a framework for the detection and
analysis of web-based fingerprinters. Instead of relying on informa-
tion about known fingerprinters or third-party-tracking blacklists,
FPDetective focuses on the detection of the fingerprinting itself.
By applying our framework with a focus on font detection practices,
we were able to conduct a large scale analysis of the million
most popular websites of the Internet, and discovered that the
adoption of fingerprinting is much higher than previous studies had
estimated. Moreover, we analyze two countermeasures that have
been proposed to defend against fingerprinting and find weaknesses
in them that might be exploited to bypass their protection. Finally,
based on our findings, we discuss the current understanding of
fingerprinting and how it is related to Personally Identifiable
Information, showing that there needs to be a change in the way
users, companies and legislators engage with fingerprinting.
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1 Introduction

In 2010, Eckersley demonstrated that benign characteristics of a browser’s
environment, like the screen dimensions and list of installed fonts, could be
combined to create a unique device-specific fingerprint [7]. Of the half million
users who participated in Eckersley’s experiment, 94.2% of those using Flash or
Java had a unique device fingerprint, and could thus be identified and tracked
without the need for stateful client-side technologies, such as browser or Flash
cookies.

Fingerprinting user devices through the browser is an increasingly common
practice used of advertising and anti-fraud companies. Stateless user tracking
allows advertising companies to sidestep the limitations imposed by regulation
on cookies in Europe and the United States. Moreover, with the advent of
smartphones and tablets, fingerprinting allows advertisers to augment previously
gathered user-data and track the user across devices. Anti-fraud companies
advertise fingerprinting as a means to protect users and web applications against
malevolent actors, for instance, by detecting the use of stolen credentials and
identifying Sybil attacks [6]. Most of the time, these services are based on
massive device reputation databases where device fingerprints are stored along
with the device owners’ web history and “reputation scores.”

Device fingerprinting raises serious privacy concerns for everyday users. Its
stateless nature makes it hard to detect (no cookies to inspect and delete)
and even harder to opt-out. Moreover, fingerprinting works just as well in
the “private-mode” of modern browsers, which cookie-conscious users may be
utilizing to perform privacy-sensitive operations. In recent research, Nikiforakis
et al. [18] analyzed the techniques and adoption of three fingerprinting companies,
two of which had been identified by Mayer and Mitchell in a 2012 survey paper
on web-tracking [13]. While the authors studied the practices of these three
companies, they did not attempt to discover other fingerprinters and explore
the methods adopted by these.

This paper aims to shed light on current device fingerprinting practices through
three main contributions. The first is the design and implementation of
FPDetective,5 a framework for identifying and analyzing web-based device
fingerprinting without relying on a list of known fingerprinters.

Second, we use FPDetective to conduct a large-scale study of web-based device
fingerprinting in the top million Alexa sites. Using FPDetective, we were able to
identify 16 new fingerprinting scripts and Flash objects (including commercial

5The FPDetective framework is available here: http://homes.esat.kuleuven.be/~gacar/
fpdetective/

http://homes.esat.kuleuven.be/~gacar/fpdetective/
http://homes.esat.kuleuven.be/~gacar/fpdetective/
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fingerprinting as well as in-house solutions), some of which are active in the top
500 websites, showing that fingerprinting is much more prevalent than previous
studies estimated. Further, we uncovered previously unreported fingerprinting
practices, such as attempting to evade detection by removing the fingerprinting
script once the device has been fingerprinted, and collecting fingerprints through
third-party widgets. Our findings highlight the rising prevalence of fingerprinting
and, in turn, the need for more transparency, awareness and counter-measures
with respect to these practices.

Finally, we evaluate the Tor Browser and Firegloves, two privacy-enhancing
tools that have “fingerprinting-resistance” as a design goal. We discovered
vulnerabilities in both tools that would allow a fingerprinter to identify users.
This illustrates the difficulty of protecting against device fingerprinting. We
also tested whether enabling the Do-Not-Track (DNT) header had any impact
on the behavior of fingerprinting scripts, and found that it does not.

The rest of the paper is organized as follows. Section 2 reviews the state-of-the-
art in device fingerprinting methods. The FPDetective framework is described
in Section 3. Section 4 motivates the use of font detection to identify potential
fingerprinters, and explains our data analysis methodology. Section 5 presents
the experimental results of our study of the top million Alexa websites. We
evaluate in Section 6 the Tor browser, Firegloves, and DNT as countermeasures
to fingerprinting. We discuss in Section 7 the uses of fingerprinting and its
relationship to privacy concerns. Finally, we offer our conclusions in Section 8.

2 Device Fingerprinting

A device fingerprint is a set of system attributes that, for each device, take a
combination of values that is, with high likelihood, unique, and can thus function
as a device identifier. These attributes include, for example, the device’s screen
size, the versions of installed software, and the list of installed fonts. Attributes
that take more diverse values (e.g., the list of fonts) are more identifying than
values shared by many devices (e.g., version of the operating system). Similarly,
attributes with values that are more stable over time (i.e., that change only
infrequently or very gradually) facilitate identification compared to those that
change often and unpredictably.

Web-based device fingerprinting is the process of collecting sufficient information
through the browser to perform stateless device identification. These fingerprints
may then be used as identifiers for tracking the device in the web. By tracking,
we refer to the linking of visits to (one or multiple) web pages as made by the
same device.
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There are many reasons why web applications may need device-related
information, e.g., to correctly render content or to serve device compatible
media. Thus, there are many APIs that enable applications to query these
attributes. At the same time, these APIs can be used to learn enough attribute
values to obtain a device fingerprint that is, for practical purposes, unique.
When a user browses to a webpage that includes fingerprinting software, her
device fingerprint may be collected and compared to a database of known
devices. Using such techniques, known devices can be matched, and previously
unknown devices can be added to the database. Depending on the use case, the
database entry for each device is augmented with contextual and behavioral
information with each visit of the user to a monitored webpage.

In this section we briefly introduce device fingerprinting methods. Some of
the discussed methods have already been encountered in real-life fingerprinting
code, while others have been shown to work but are not yet known to have been
adopted by fingerprinters [18].

2.1 JavaScript-based

From its original inception in 1995 all the way to today, JavaScript has
emerged as the de-facto client-side, programming language of the web. The
expressiveness of JavaScript, combined with its “forgiving” nature when it comes
to programming errors (such as missing semicolons) and, most importantly, its
ubiquitous availability in modern browsers, has made it an indispensable tool of
modern web sites. Virtually all non-static web pages use JavaScript and a 2010
study by Yahoo showed that only 1% of actual human visitors have JavaScript
disabled [24].

JavaScript is used by programmers mainly to dynamically manipulate a page’s
DOM, enrich user experience through asynchronous requests and responses,
and offload non-critical, server functionality to the client. Its privileged position
inside the browser, however, also makes it a strong fingerprinting tool. The
JavaScript-accessible browser resources that have, historically, been probed the
most, are the following:

• navigator: The navigator object contains information about the browser
vendor and specific browser version, the supported plugins and MIME
types, as well as relatively coarse-grained information about the operating
system and architecture on which the browser is executing.

• screen: The screen object contains information about the resolution of
the user’s monitor (height and width) and the color and pixel depth.
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Mayer, in 2009, reported on an experiment where he fingerprinted 1328 web
clients [12]. By hashing the concatenated contents of the navigator, screen,
navigator.plugins and navigator.mimeTypes, Mayer was able to uniquely
identify more than 96% of the browsers. A year later Eckersley, through
the Panopticlick project6, fingerprinted nearly half a million browsers and by
extending the set of fingerprinted features with fonts, timezones and a browser’s
ACCEPT headers, was able to uniquely identify 94.2% of the visitors’ browsing
environments [7]. Eckersley also showed that the list of installed fonts is one
of the most identifying features of a system. This list can be obtained either
through JavaScript by measuring and then comparing the dimensions of text
rendered with different fonts [18], or through browser plugins.

Other researchers have proposed the use of performance benchmarks for
differentiating between JavaScript engines [15], errors in standard test-
suites [17] and differences in the appearance of canvas elements created through
JavaScript [16]. Furthermore, a user’s browsing history, which can be recovered
exploiting JavaScript’s visited-link color feature [9], has also been shown to
uniquely identify users [19]. In general, while these methods have not yet been
encountered in deployed fingerprinting products [18], they could potentially be
used to increase the accuracy of the gathered fingerprints.

2.2 Plugin-based

The latest version of HTML, HTML5, together with the advanced capabilities
of JavaScript and Cascading Style Sheets, give web developers today the ability
to create feature-rich web applications. This, however, was not the case with
older versions of HTML, as their abilities to deliver interactive rich Internet
applications, like games, video and music were limited. Third-party companies,
like Adobe, developed plugins and platforms to create, deliver and render
interactive multimedia content. The clear winner of this “plugin-war” was
Adobe Flash, with Java being a distant second.

As with JavaScript, the adoption of popular third-party plugins gives
fingerprinters the ability to extract numerous features. Eckersley used Java and
Flash to obtain the list of fonts installed in a device [7], since font-enumeration
API calls are made available by the Flash and Java plugins. In addition to
font extraction, commercial fingerprinting companies use Flash to circumvent
HTTP proxies set up by the user and get more fine-grained information about
the device, such as the specific operating system kernel version, or the presence
of multiple-monitor setups [18].

6https://panopticlick.eff.org/

https://panopticlick.eff.org/
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2.3 Extension-based

The modular nature of modern browsers has allowed developers to create
extensions that add new functionality, remove undesired features, and modify
others. Unlike plugins, extensions are not enumerable through JavaScript
and thus can only be detected by their possible side-effects. For instance,
Mowery et al. [15] showed that it is possible to deduce custom whitelists from
the popular NoScript plugin, simply by requesting scripts from domains and
later inspecting whether the scripts successfully executed, by searching for
predetermined JavaScript objects in the global address space. The deduced
whitelists can be used as an extra fingerprint feature. Nikiforakis et al. [18]
showed that user-agent-spoofing extensions can also be discovered due to
inconsistencies in the reported browsing environment when each extension
is active.

2.4 Header-based & Server-side

Yen et al. [23] performed a fingerprinting study, similar to Eckersley’s, by
analyzing month-long logs of Bing and Hotmail. The authors found that IP
addresses and user-agent headers may help in tracking users with high precision
and recall.

Predating fingerprinting at the browser-level, researchers had shown that it is
possible to not only remotely learn the operating system of a particular host
on the Internet [1, 25], but also to fingerprint multiple physical devices hidden
behind NATs through their clockskew, by analyzing the TCP timestamps of
network packets [11].

While these techniques may be less accurate compared to the aforementioned
in-browser fingerprinting methods, their pure server-side nature makes their
detection very difficult, if not impossible.

3 FPDetective Framework

In this section we describe FPDetective, a framework for detecting web-
based device fingerprinting. FPDetective is designed as a flexible, general
purpose framework that can be used to conduct further web privacy
studies. FPDetective is freely available and can be downloaded from http:
//homes.esat.kuleuven.be/~gacar/fpdetective.

http://homes.esat.kuleuven.be/~gacar/fpdetective
http://homes.esat.kuleuven.be/~gacar/fpdetective
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Figure 1 outlines FPDetective’s components and workflow. The main component
of FPDetective is a crawler, whose purpose is to visit websites and collect data
about events that might be related to fingerprinting, such as the loading of fonts,
or accessing specific browser properties. These logs are parsed and committed
to a central database in a relational structure. In order to detect Flash-based
fingerprinting, all browser traffic is directed through an intercepting proxy that
logs all the HTTP(S) traffic between the browser and the web server. These
network dumps are parsed to extract Flash objects, that are then decompiled
using a free, third-party decompiler and stored in the database.

In our analysis of the data collected by FPDetective we focus on font detection.
We would like to emphasize that this choice was made in order to facilitate the
analysis of the data, and the data gathered by FPDetective can be analyzed
differently, based on other fingerprinting classification criteria. Further, the
FPDetective framework can easily be adapted for use in Web privacy studies
unrelated to fingerprinting. The framework is developed with modularity in
mind using Python, C++, JavaScript and MySQL programming/scripting
languages. Researchers can customize the framework to carry out different
experiments by replacing the script that FPDetective executes when it visits
the sites. We warmly welcome other researchers to provide their comments,
contribute to the project, or fork their own software out of FPDetective.

The remainder of this section describes each component of FPDetective in more
detail.

3.1 Components

Crawler: The crawler features two instrumented browsers, PhantomJS7 and
Chromium8. We chose PhantomJS to collect data related to JavaScript-based
fingerprinting for its minimal use of resources. We used Chromium to investigate
Flash-based fingerprinting, since PhantomJS does not have plugin support and
thus cannot run Flash objects. CasperJS9 and Selenium10 were used to drive
the browsers to websites and navigate through the pages.
To build instrumented versions of the browsers, we modified parts of the
WebKit source code, which is the rendering engine used by both Chromium and
PhantomJS. It should be noted, however, that during the course of our study,
Chromium Project announced that they leave WebKit for a new rendering
engine called Blink, which is again based on WebKit [2]. We preferred to work

7http://phantomjs.org/
8http://www.chromium.org/
9http://casperjs.org/

10http://docs.seleniumhq.org/

http://phantomjs.org/
http://www.chromium.org/
http://casperjs.org/
http://docs.seleniumhq.org/
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Figure 1: FPDetective Framework

at the native code level instead of developing browser extensions or JavaScript
patches for several reasons: to detect events that are not JavaScript-based
(especially those related to fonts); to detect the origin of events more precisely;
and to defend against JavaScript attacks that block or circumvent extensions
and getter methods11.
The modifications allow the crawler to intercept and log accesses to the following
browser and device properties, which could be used for fingerprinting:

• access to the following navigator properties and methods: userAgent,
appCodeName, product, productSub, vendor, vendorSub, onLine,
appVersion, language, plugins, mimeTypes, cookieEnabled(),
javaEnabled()

• access to navigator.plugins: name, filename, description, length

• access to navigator.mimeTypes: enabledPlugin, description,
suffixes, type

11http://code.google.com/p/chromium/issues/detail?id=55084

http://code.google.com/p/chromium/issues/detail?id=55084
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• access to window.screen properties: horizontalDPI, verticalDPI,
height, width, colorDepth, pixelDepth, availLeft, availTop,
availHeight, availWidth

• access to offsetWidth and offsetHeight properties and getBoundingRect
method of HTML elements.

• font load attempts by intercepting calls to CSSFontFace::getFontData
and CSSFontSelector::getFontData methods

Parser: The parser is used to extract relevant data from the logs generated by
the crawler, and to store them in the database. It also tags sites with a label if
a known fingerprinting script is found in the HTTP requests made for this visit.

Intercepting Proxy: In order to obtain Flash files for static analysis, we
redirected traffic through mitmproxy [4], an SSL-capable intercepting proxy.
We used the mitmdump module to log all the HTTP traffic passing through
the proxy, and the libmproxy library to parse and extract Flash files based on
content sniffing. More specifically, we detected Flash files through Flash-specific
“magic numbers” appearing the first bytes of content since the Content-Type
HTTP header is not always reliable.

Decompiler: We used the JPEXS Free Flash Decompiler12 to decompile
Flash files and obtain the ActionScript source code. The source code is then
searched for fingerprinting related function calls (e.g. enumerateFonts and
getFontList) to obtain a binary occurrence vector. The complete list of
methods and properties searched in the decompiled source code is available in
Appendix A.2.

Central Database: We ran crawls using several machines, but used a central
database to store, combine, and analyze the results of different crawls with
minimal effort. The stored data include the set of JavaScript function calls, the
list of HTTP requests and responses, and the list of loaded or requested fonts.
For the Flash experiments, we also stored a binary vector that represents the
existence of ActionScript API calls that might be related to fingerprinting.

3.2 Performance

By using the Dromaeo JavaScript performance test suite13 we compared our
modified Chromium browser against the Chromium browser available from
Ubuntu’s repositories. Although the versions of Chromium and WebKit were
different for the two browsers (Chromium 25 vs 28 and WebKit 537.22 vs

12http://www.free-decompiler.com/flash/
13http://dromaeo.com/

http://www.free-decompiler.com/flash/
http://dromaeo.com/
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537.36) we still believe that the results can provide a rough approximation
of the performance of our tool. The resulting scores from the Dromaeo test
suites were 3,148.63 runs/s for original Chromium and 3,025.86 runs/s for our
modified browser. The difference between their aggregate performance is about
4%, where error intervals were measured as 1.24% and 1.98%.

The most crucial differences were between the getHeight and getWidth methods
of the Prototype JavaScript library14 (9.76 runs/s vs 214.1 runs/s and 9.79
runs/s vs 244.3 runs/s) which is probably due to the fact that we log accesses
to offsetHeight and offsetWidth properties. But within JQuery’s15 height
and width methods, differences were quite low (0.84 runs/s vs 2.27 runs/s and
0.97 runs/s vs 2.27 runs/s) hinting that this might also be due to the libraries’
implementation details16.

We were able to run 200 parallel PhantomJS instances on a customer grade
computer with quad core CPU and 8GB of RAM. With these settings we were
able to complete a homepage crawl of the Alexa top million sites in a period of
four days.

For the experiments with the Chromium browser, we could run approximately
20 crawlers in parallel, since each crawler was running an instance of Chromium
and mitmproxy, as well as was using the Flash decompiler whenever a Flash
object was received. Crawling the top 20,000 Alexa sites required about one
day using a single computer with the characteristics given above.

4 Font-based analysis of fingerprinting

In order to carry out a large scale study of fingerprinting, we combined automated
and manual analysis in our experiments. In the automated step we use font
probing and font enumeration as a criteria for identifying candidate sites that
possibly include a fingerprinting script or object. This approach is motivated
in Section 4.1 and explained in more detail in Section 4.2. We then examine
manually the candidates to refine the classification using additional criteria and
establish whether the pages contain fingerprinting code.

14http://prototypejs.org/
15https://jquery.org/
16The full comparison of the performance results can be seen here: http://

dromaeo.com/?id=197597,197598.

http://prototypejs.org/
https://jquery.org/
http://dromaeo.com/?id=197597,197598
http://dromaeo.com/?id=197597,197598
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4.1 Motivation

By inspecting the code of known fingerprinters, and taking into account
the findings of previous studies [7, 18], we distill “font detection” through
enumeration or probing as a necessary ingredient of device fingerprinting.
Furthermore, we consider font detection to be a good indicator of fingerprinting,
as getting the list of system fonts has fewer use cases than requesting information
needed for browser feature detection.

The use of font detection for fingerprinting also offers the following advantages:

• according to Panopticlick study, fonts are the second most identifying
attribute of a device, having 17.1 bits of entropy when unsorted;

• although the list of installed browser plugins has slightly more entropy,
fonts are OS-dependent and thus enable linking different browsers running
on the same device;

• the Tor Browser, which is the most widely used tool with counter-
fingerprinting features, is shipped with a fixed browser configuration
in which plugins are disabled. Fonts are thus the most identifying feature
in this context, and the best candidate to successfully identify and track
anonymous Tor users.

4.2 Methodology

We follow a two-step analysis. The first step consists of an automated analysis
of font detection and the second of a manual analysis of scripts and decompiled
Flash source code. Font detection plays a central role in our analysis of the
dataset collected by FPDetective: it is used to identify likely fingerprinting
candidates in an automated fashion. We consider as likely candidates the
websites that request an abnormally large number of fonts, or that have font
enumeration calls in the decompiled ActionScript source code. In our analysis
we classified as candidates pages that include scripts that load more than 30
fonts, or Flash files that contain font enumeration calls.

Our analysis methodology is different for the identification of Flash and
JavaScript-based fingerprinters, given that font detection can be carried out by
direct enumeration through Flash, and by indirect probing through JavaScript.

In the case of Flash, a dynamic analysis of font enumeration is hard due to
the proprietary nature of the Flash plugin player and the use of internal font
caches. At the same time, because of the byte-code nature of Flash objects, they
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can be straightforwardly decompiled to their original ActionScript source code.
We thus decompiled the Flash objects into their corresponding ActionScript
source code, selected the ones that had font enumeration calls, and manually
analyzed them to understand what they do with the list of system fonts they
collect. We counted a Flash object as a fingerprinter when it enumerates system
fonts, collects information about the device capabilities and sends the collected
fingerprint back to a remote server either by opening a socket connection or
using JavaScript asynchronous calls. Furthermore we eliminated many false
positives by checking Flash file URLs and domains with WHOIS lookups. For
example, multimedia players that include font enumeration to be used on screen
displays were eliminated by using background information.

On the other hand, due to the increased use of code obfuscation and code
minimization techniques, it is, in general, very challenging to accurately perform
a static analysis of JavaScript source code. We thus opted for a dynamic analysis
approach, in which we intercept and record JavaScript font-probing events with
the FPDetective’s instrumented browsers.

As mentioned earlier, next to font-probing events, FPDetective also collects
data related to other events that might be associated with fingerprinting, such
as browser plugin enumeration and screen-size detection. The second part of
our JavaScript-based fingerprinting analysis consisted of manually studying
the identified candidates, taking into account this additional information.
Specifically we checked for evidence of browser feature enumeration, including
iterating over name, filename, description and length properties of browser
plugins, the enabledPlugin, description, suffixes, and type properties of
mimeType objects, and navigator properties such as userAgent, appCodeName,
product, and productSub; screen object properties such as dimensions, color
and pixel depth information; and properties that reveal installed toolbars such
as availTop and availLeft. We classify a JavaScript file as a fingerprinter
when it loads more than 30 system fonts, enumerates plugins or mimeTypes,
detects screen and navigator properties, and sends the collected data back to
a remote server. As we do for the Flash objects, we incorporated background
information about JavaScript domain names to eliminate false positives.

We verified the correct functioning of the framework by crawling test pages that
request a known set of fonts and checking them against the ones returned by
FPDetective.
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5 Experiments and Results

In the following experiments we used the FPDetective framework to crawl the top
Alexa websites while searching for instances of web-based device fingerprinting.
Our experiments were separated into the ones geared towards the discovery of
JavaScript-based fingerprinting attempts and the remaining ones towards the
discovery of Flash-based fingerprinting.

For each type of experiment, we first automatically searched for font-detection
attempts and used that for selecting candidates for manual analysis. In the
JavaScript experiments, we tried to find JavaScript-based font probing attempts,
for which we used the number of requested fonts as a measure. In order to filter
out websites that load high numbers of fonts, but do not use them for probing,
we checked if websites measure the width and height of displayed text by using
the number of calls to the offsetWidth and offsetHeight properties of the
corresponding HTML elements.

For the Flash experiments we crawled the sites with Chromium and intercepted
Flash objects with mitmproxy. We then decompiled the discovered Flash files
and searched for a list of ActionScript API calls (see Appendix A.2 for the full
list) that might be relevant to fingerprinting. Subsequently, we generated a
binary vector that represents the occurrence of each function call in the Flash
object and used that to select objects for manual analysis.

5.1 JavaScript-Based Font probing

In this set of experiments, we crawled the top Alexa websites with FPDetective to
find out the extent of the JavaScript-based font probing. In the first experiment
we visited the homepages of the top Alexa 1 million websites where we waited
for 10 seconds, in order to allow for the loading of remote content. In the second
experiment, we visited 100,000 websites and clicked 25 homepage links from
the same domain. We waited 5 seconds after each click and 10 seconds after
each page load to allow for resources to load.

By analyzing the sites that are sorted by FPDetective as likely candidates of
fingerprinting, we found 13 instances of JavaScript-based font-probing scripts, on
a total of 404 websites. In order to ensure the accuracy of our classification, we
augmented the automated, dynamic analysis with manual analysis of the source
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Number of sites using
JS-based fingerprinting
1M 100K

Fingerprinting
Provider

Num
Fonts

Top
Rank

In
homepage

In
homepage

In
inner
pages

BlueCava 231/167/62 1,390 250 24 24
Perferencement 153 49,979 51 6 6
CoinBase 206 497 28 4 4
MaxMind 94 498 24 5 5
Inside graph 355 98,786 18 1 1
SiteBlackBox 389 1,687 14 10 10
Analytics-engine 98 36,161 6 - -
Myfreecams 71 422 3 1 1
Mindshare Tech. 487 109,798 3 - -
Cdn.net 297 501,583 3 - -
AFK Media 503 199,319 2 - -
Anonymizer 80 118,504 1 - -
Analyticsengine 93 522,447 1 - -

404 51 51

Table 1: Prevalence of Fingerprinting with JavaScript Based Font Probing on
Top 1M Alexa sites

code and background information on the companies that own the domains
from where scripts are served. Specifically, we checked whether the script
(or another script served from the same domain) collects other high-entropy
browser properties such as plugins or mimeTypes and if the company is involved
in products and services that might be related to fingerprinting, e.g., device
identification, analytics and anti-fraud.

Table 1 shows the results of these experiments in detail. The discovered scripts
probed as many as 503 fonts and, popularity-wise, there were three websites in
the top 500 Alexa sites that made use of a font-probing script.

BlueCava was discovered on the homepages of 250 Alexa websites, making it,
by far, the most popular font-probing script. Moreover, it is the only one of the
discovered font-probing scripts that queries different sets of fonts based on the
device’s operating system: 231 fonts for Microsoft Windows, 167 for Mac OS
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and 62 for other operating systems.

While analyzing the candidate scripts, we came across some interesting practices,
such as a script that first dynamically injects itself into the page and then, after
collecting the device fingerprint, removes itself from the page. This was one of
the cases that motivated us to develop our tools for dynamic analysis and is
discussed in more detail in Section 7.2.

Most of, but not all, the scripts that we found are served from a domain
registered for an analytics and/or anti-fraud company. An intriguing case
is that of Anonymizer17, a paid anonymization service that fingerprints
every visitor accessing their homepage and has a set of fingerprinting scripts
that include function names such as submitDnsInfoViaAjax, getClockSkew,
getJsFontList and connectViaSocket.
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Figure 2: JavaScript-based font probing scripts on homepages of Top 1 Million
Alexa sites

We also found that including third party scripts is not the only form of
distribution, e.g., the font probing script from CoinBase is found as an embedded
button that visitors might click to donate BitCoins to site owner.

We compared the sites that fingerprint users on the homepage, to sites that
only fingerprint users on the inner pages. We did not observe any differences
between these two, as evidenced by the two last columns of Table 1. This could
mean that either we could not crawl the inner pages that include fingerprinting

17https://www.anonymizer.com/

https://www.anonymizer.com/
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Table 2: Flash Fingerprinting objects found on Top 10K Alexa websites

Fingerprinting
Provider

No.
of
Sites

Top
Rank

Flash
Cook-
ies

Proxy
De-
tec-
tion

HW and
OS Pro-
filing

Interaction
with JS

BB Elements 69 903 X X

Piano Media 12 3,532 X X X

Bluecava 6 1,390 X X

ThreatMetrix 6 2,793 X X

Alipay 1 83 X X X

meb.gov.tr (Turk-
ish Ministry of
Education)

1 2,206 X X X

scripts not present in the homepage, or sites prefer to fingerprint users on their
homepages.

The histogram in Figure 2 represents the distribution of sites using JavaScript-
based font probing among the Top 1 Million Alexa sites. The histogram is
divided in intervals of 100,000 sites (according to their Alexa rank) which are
further divided into two bins. The darker bin refers to the total number of sites
in that popularity range that served a fingerprinting script. These scripts are
counted by matching previously discovered script URLs or regular expressions
to URLs of HTTP requests made while visiting the site. Since we found that not
all scripts probe a large number of fonts every time they are loaded, we included
a second (lighter) bin to represent sites that both served a fingerprinting script
and probed for fonts.

5.2 Flash Based Font Enumeration

The main objective of this experiment is to investigate the extent of Flash based
fingerprinting techniques on the Web. We crawled the top 10 thousand Alexa
websites using FPDetective and, for each site, we visited the homepage and
waited for 10 seconds to allow for resources to load completely.

We automatically decompiled all the Flash files caught by the intercepting proxy
and checked the presence of functions that might be used for fingerprinting.
We manually analyzed the files that include functions for known Flash-based
fingerprinting techniques [18], such as querying the Capabilities class to
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collect information about the operating system and device, or opening a socket
(by using XMLSocket) to bypass system wide proxy settings.

We also checked for the presence of function calls that might be used to send
the collected information to a remote server (e.g., sendAndLoad or URLLoader)
or use of ExternalInterface.Call or addCallback functions for opening
JavaScript interfaces to either call JavaScript functions from the Flash file or
allow page scripts to access Flash functions.

Finally, we took into account whether the collected information is sent to a
remote server or used internally, by the Flash object. This helped us to filter
out potential false positives, such as Flash video players that enumerate system
fonts, in order to check if a font is available for use in player’s on-screen display.

Table 2 shows our results for Flash-based fingerprinting. Being found on 69
sites, BB Elements, which offers tools for managing ad campaigns, is the most
prevalent Flash-based fingerprinter. Piano Media is mostly found on newspaper
sites and claims to employ fingerprinting for paywall enforcement. Paywalls,
in this case, are used to ensure that users do not access paid content, such
as newspaper or magazine articles, without subscription or payment. Usually,
paywalls are combined with a limited number of free accesses, e.g., an online
newspaper can offer ten free articles per user per day.

The website of the Turkish Ministry of Education (MEB) is unique in both
being the only .gov website that employs web-based device fingerprinting and in
the wealth of collected attributes from the device’s hardware components. The
Flash file served from this site extracts and sends detailed information about
system mouse, keyboard, accelerometer, multi-touch capability, microphone,
camera as well as system fonts. It should be noted that this site serves an
e-School system to manage grades and other records of millions of students in
Turkey. ThreatMetrix is the only discovered company which uses proxy-piercing
to reveal a user’s original IP address and whether she uses a proxy.

In Table 2 we can see the fingerprinters that have been discovered along with
some of the functions that were called from the Flash files. We only included in
the table the Flash files that have functions for font enumeration. That does
not include, for instance, 50 Flash objects from one of the companies previously
studied [18].

Given that we discovered several previously unknown fingerprinting scripts by
extending our crawl space to 1 million for the JavaScript experiment, we plan
to make a similar study for the Flash based fingerprinters.
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5.3 Testing FPDetective with Fontconfig

Fontconfig is a Linux library that configures and manages the access to system
fonts. In this experiment we used debugging functionality of fontconfig to test
our framework’s accuracy.

We crawled the Alexa Top 10,000 sites and compared the set of font requests
made by each web site to ensure that FPDetective is not missing or overcounting
font events. The comparison of the two measurements indicated that we neither
miss nor overcount the font load events.

5.4 Prevalence of Fingerprinting

With FPDetective we found 404 sites in the Alexa top million pages that
fingerprint visitors on their homepages using JavaScript-based font probing.
These scripts are served by 13 different fingerprinting providers, of which only
a few had been identified in prior research.

Although 404 out of 1,000,000 can be thought of as a very low frequency, we
would like to note that the results presented here should be taken as lower
bounds, as our crawlers cannot reach pages that are placed after forms including
CAPTCHAs or similar obstacles. Moreover, Flash-based fingerprinting was
present on the homepages of 95 out of the top 10,000 sites, indicating that
Flash-based fingerprinting is more prevalent. This is possibly because of its
extended capabilities for font enumeration, proxy detection and its widespread
browser support.

6 Evaluation of Fingerprinting Countermeasures

In this section we briefly analyze two tools that can be employed to counter
fingerprinting: the Tor Browser and the FireGloves Firefox extension. We also
evaluate whether the Do Not Track header is being respected by fingerprinters.

6.1 Tor Browser

The Tor Browser is part of the software bundle that is used to access the Tor
anonymity network [5], a popular service that is currently used daily by more
than 800,000 people to anonymously browse the web. Tor relays communications
over three routers located in different parts of the world. The communications
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are encrypted in layers (onion routing [8]) to prevent any single Tor router from
linking the source and destination of a data stream.

The Tor Browser incorporates strong defenses to counter the fingerprinting
techniques described by the Panopticlick study, as its design goals include
enabling user anonymity and preventing the linkability of browsing sessions.
Given that the Tor Browser has a limited user base compared to web users in
general, even a partial fingerprint might be enough to uniquely distinguish a
Tor user. Thus, there is a need to eliminate fingerprintable differences among
Tor Browsers, so that Tor users remain indistinguishable from each other. In
fact, cross-origin fingerprinting unlinkability is listed as a privacy requirement
for the Tor Browser18. For this reason the Tor Browser is shipped with fixed
settings that provide almost no browser properties that could be exploited to
extract distinguishing features.

As described in Section 4, fonts are operating-system-dependent, and thus a
good candidate attribute for distinguishing and recognizing users. To limit
font-based fingerprinting, the Tor Browser caps the number of fonts that a page
can request and load. However, for usability reasons, @font-face rules are
exempted from these limits. Upon inspection of the Tor Browser source code,
we discovered that the local fonts loaded by @font-face CSS rules are also
exempted from the Tor Browser’s font-per-document cap, and that it is possible
to load an unlimited number of system fonts using the local() value of the
@font-face rule’s src descriptor.

Furthermore, if a font is not installed locally, it may be requested from the
src/url property of the font-face rule. This is effectively communicating the
lack of this font to the server without using JavaScript. Note also that one local
font-face rule can be used to report the status(not-found) of more than one
font by chaining font-face local() properties, for example:

@font-face { font-family: Font1;
src: local("Font2"), local("Font3"),

url("Font1-2-3-NotFound.ttf");
}

We immediately communicated the vulnerability to the Tor Bug Tracker and
the issue is fixed in the upcoming (2.4) version with a patch that disables the
use of the local() property19.

18https://www.torproject.org/projects/torbrowser/design/#fingerprinting-
linkability

19https://trac.torproject.org/projects/tor/ticket/8455#comment:3

https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://www.torproject.org/projects/torbrowser/design/#fingerprinting-linkability
https://trac.torproject.org/projects/tor/ticket/8455#comment:3
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6.2 Firegloves

Firegloves [3] is a proof-of-concept browser extension for Mozilla Firefox that
was created for research purposes. In order to confuse fingerprinting scripts,
Firegloves returns randomized values when queried for certain attributes, like
the screen resolution, the platform on which the browser is running and the
browser’s vendor and version. Additionally, Firegloves limits the number of
fonts that a single browser tab can load and reports false dimension values for
the offsetWidth and offsetHeight properties of HTML elements to evade
JavaScript-based font detection.

We evaluated the effectiveness of Firegloves’ as a countermeasure to fingerprint-
ing, and discovered several shortcomings. For instance, instead of relying on
offsetWidth and offsetHeight values, we could easily use the width and the
height of the rectangle object returned by getBoundingClientRect method,
which returns the text’s dimensions, even more precisely than the original
methods20. This enabled us to detect the same list of fonts as we would without
the Firegloves extension installed. Surprisingly, our probe for fonts was not
limited by the claimed cap on the number of fonts per tab. This might be due to
a bug, or to changes in the Firefox extension system that have been introduced
after FireGloves, which is not currently being maintained, was first developed.

Although Firegloves spoofs the browser’s user-agent and platform to pretend
to be a Mozilla Firefox version 6 running on a Windows operating system, the
navigator.oscpu is left unmodified, revealing the true platform. Moreover,
Firegloves did not remove any of the new methods introduced in later
versions of Mozilla Firefox and available in the navigator object, such as
navigator.mozCameras and navigator.doNotTrack. Finally, since Firegloves
cannot change the APIs available to Flash, a Flash application can still discover
the real operating system and the real screen resolution.

Overall, while Firegloves is trying to protect users from fingerprinting, its
detectable presence on the users’ browsing environments may actually make
them more uniquely identifiable: since Firegloves is installed by only 1, 750
users, its successful detection makes the user much more unique than if it was
not present at all.

Our findings are in line with prior results showing that user-agent-spoofing
extensions can be straightforwardly discovered and bypassed [18]. These findings
illustrate the difficulty of effectively protecting users against fingerprinting, and
indicate that counter-measures short of perfect may result in a net loss of privacy
for their adopters – as their devices become more easily fingerprintable through

20https://developer.mozilla.org/en-US/docs/DOM/element.offsetWidth

https://developer.mozilla.org/en-US/docs/DOM/element.offsetWidth
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these.

6.3 Do Not Track

The Do Not Track (DNT) HTTP header field allows users to signal their tracking
preferences to websites. DNT is currently being standardized by the W3C under
the name “Tracking Preference Expression” and it has already been adopted by
most modern browsers21.

We set the DNT header to 1 in the PhantomJS browser and visited the websites
identified as performing fingerprinting in our previous experiments. For all of
these pages, we obtained the same results with respect to the number of fonts
probed and other browser properties accessed, suggesting that DNT preferences
are ignored by fingerprinters.

7 Discussion

7.1 Uses of Fingerprinting

Using FPDetective, we were able to identify companies that are engaging in
what we call web based device fingerprinting. While it is not possible to infer
the purposes for which fingerprinting is being put to use by these companies,
we take a moment to reflect on their fingerprinting related practices.

The majority of the companies serving the fingerprinting scripts explicitly state
on their websites, in press releases, and in various social media channels that
they are successfully deploying (device) fingerprinting. In contrast, the websites
that employ the services of these companies rarely disclose in their privacy
policies that they are fingerprinting their users’ devices, let alone mention
that they are gathering the information that FPDetective revealed them to be
collecting. In some cases, we detected fingerprinting scripts that were embedded
in ad banners. It is unclear whether first parties serving these ad banners are
aware of the existence of these embedded fingerprinting scripts.

Companies express that they deploy device fingerprinting in the context of a
variety of web services. The spectrum of use cases include fraud detection,
protection against account hijacking, anti-bot and anti-scraping services,
enterprise security management, protection against DDOS attacks, real-time
targeted marketing, campaign measurement, reaching customers across devices,

21http://www.w3.org/TR/2013/WD-tracking-dnt-20130430/

http://www.w3.org/TR/2013/WD-tracking-dnt-20130430/
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and limiting number of access to services. While most companies will specialize
either in ‘fraud detection and web security’ or ‘marketing applications’, MaxMind
is an example of a company that uses their data collection to provide services
for both uses. MaxMind also stands out with their very explicit documentation
of their personal and non-personal data collection, their processing activities
and their commitment to make their practices transparent.

Further material from companies describing the use cases suggest that the data
models in the databases also vary. Fraud detection companies often speak of
“device reputation databases” with profiles for “billions” of devices that are rich
enough to provide “intelligence” to companies about the security risks of these
devices. The variety in mentioned uses ranging from “adjusting security policies
based on the device a person is using” to “identifying and blocking botnets
that easily switch IP addresses” suggests that these are rich device-centered
databases. On the other hand, marketing companies express that they are able
to identify user-behavior across websites and devices, suggesting that they feed
fingerprinting data into “customer”-centered database systems that are heavy
on analytics, and can link different devices to a single user across websites.

In-house applications seem to be mainly concerned with whether the same user
is using multiple devices to access the same service, or limiting the number
of times a specific service is accessed, e.g., when filling out surveys. Such
applications seem to limit data collection using fingerprinting to the given
website and are less concerned with analytics and intelligence applications.

A perplexing case among in-house applications is that of Anonymizer Inc., a
company that presents itself as “the global leader in online privacy, anonymity,
and identity protection solutions for over 17 years.”22 The script is served from
the domain privacytool.org (owned by Anonymizer Inc.), a site where users
can test whether they are anonymous online. The privacytool.org site clearly
explains that to perform the test a Java applet will run on the user’s computer,
describes the information that will be gathered, and explicitly states that “Data
obtained from the browser like lists of plug-ins or fonts can be used to identify
your computer.”23 Users must click a link placed below this information in
order to run the applet.

We found, however, that fingerprinting scripts from privacytool.org are also
present in the homepage of anonymizer.com, another site owned by Anonymizer
Inc. that, paradoxically, offers anonymity as a service. The anonymizer.com
privacy policy states: “When you navigate our Web site, Anonymizer will
gather certain information such as your Internet Protocol address, browser type,
browser language, and the date and time of your visit. We may place a cookie

22https://www.anonymizer.com/company/
23http://privacytool.org/AnonymityChecker/index.jsp

https://www.anonymizer.com/company/
http://privacytool.org/AnonymityChecker/index.jsp
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on your computer [. . . ]” The policy includes further information about cookies
but, in contrast to the privacytool.org notice, it does not mention at any point
the execution of fingerprinting scripts, or that it collects information such as
the list of installed fonts, DNS server information, or the real IP address if
the user is connected through a proxy. Finally, note that while privacytool.org
offers informed choice to its users, who may voluntarily execute the script, the
fingerprinting scripts that run in the anonymizer.com homepage are invisible to
users and run by default.

7.2 Visibility of Fingerprinting

The majority of web users have difficulties in grasping what cookies are, whether
they are enabled, their threats to their privacy and how to manage them [14].
This situation is worse in the case of third-party and covert cookies, which have
been found to essentially be invisible to end-users. Arguably, user perception
of web based device fingerprinting is comparably, if not more, invisible to the
users.

In all the cases we encountered, there were no visible effects of fingerprinting,
and the users were not informed that they were being fingerprinted. Thus, the
only way for users to discover that their devices are being fingerprinted is to
manually examine the source of the page and all the embedded JavaScript and
Flash objects.

In one distinct case, while verifying the results of FPDetective, we discovered
that a company which sells fingerprinting products for anti-bot and anti-scraping
services, was deleting the fingerprinting script from the page’s DOM after the
script had executed and collected the fingerprint. Thus, the only way to
identify this fingerprinter is to breakpoint through the execution of JavaScript
code and witness the loading and unloading of the fingerprinting code. This
requires an in-depth understanding of how JavaScript is executed and the
principles of debugging programs, which the vast majority of users are not
likely to possess. Moreover, this anti-debugging technique is reminiscent of the
techniques employed by JavaScript malware when trying to evade detection by
analysts and high-interaction honeypots [10].

7.3 Is fingerprinting a matter of privacy?

Our findings suggest that this issue may require further technical and legal
attention with respect to privacy. Yet, most of the companies whose
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fingerprinting activities were detected by FPDetective expressly distance their
practices from any consequences they might have for people’s privacy.

A number of companies argue that they do not collect PII (Personally Identifiable
Information) in the process of distinguishing “the good, the bad and the ugly”
on the web. While fingerprinting may not require PII, the use cases described
by fingerprinting companies on their webpages suggest that they use device
information to track, profile, and shape the future web experience of the tracked
users (as well as bots). For example, MaxMind offers online retailers a service
to check on their customers’ fraud scores based on 31 “non-PII” attributes,
including IP address, shipping address, non-salted hashes of email addresses and
passwords, and credit card BIN number. The computation of the customers’
score is based on things like the ‘riskiness of the country of origin’, ‘proxy
use’, ‘free webmail use’, and ‘bank checks’. These are matters closely related to
privacy concerns expressed by users about uninformed monitoring of web usage,
constraints on informational self-determination, and discrimination [21].

Further, by focusing on “device” identification and, especially in fraud detection
cases, claiming that they are concerned only about “bots”, companies express
that tracking “persons” is not the object of their interest. In this worldview,
fingerprinting is nothing more than (security) scripts collecting data based
on socially invisible interactions that are irrelevant to individual privacy.
Further, especially in the case of fraud detection, companies often argue that
fingerprinting is implemented for the protection of the end-users’ quality of
service. These two framings, i.e., “fingerprinting is all about devices” and “we
track these devices for user convenience”, make it very difficult to demand
a response to the privacy issues that may be raised with respect to device
fingerprinting and the use of the databases populated using fingerprinting. As
such fingerprinting practices proliferate, device IDs may come to “represent”
users in databases, instead of PII. Hence, classical conceptions of PII may not
be sufficient to grasp the social and ethical concerns associated fingerprinting
and related databases. We hope that this paper, by virtue of making web based
fingerprinting more visible, will contribute to better understanding what privacy
issues may be at stake and to challenging the framing of web based device
fingerprints as non-PII.

In the context of the US, it may be worth discussing whether a static list of
attributes that count as PII is sufficient to draw a reasonable boundary on which
“personal data” should be subject to protection. Device fingerprinting underlines
that data is identifiable based on context; in other words, identifiability may
result from processing seemingly non-identifiable information [22]. If we accept
this argument, then attention needs to be paid to risks associated with: linking
of the reputation and device fingerprint databases to individuals; undesirable
and unacceptable uses of these datasets for determining “the good, the bad,
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and the ugly” of the web; the security of these datasets; and the opacity of
fingerprinting practices to the general public, as well as to individual device
owners.

It is also currently unclear whether there is a responsibility to inform the owners
that their devices are being fingerprinted, and if so, who has the responsibility
to inform the users. For example, the privacy policy of articlesbase.com
explicitly indicates all the “non-personal information” that the site collects.
However, in this rather detailed and readable list, the site does not state that
they are fingerprinting the user’s device or that they are probing fonts. One
could argue, since the font probing scripts are not served by articlesbase.com
but by siteblackbox.com, that it is the responsibility of the latter to inform
the users. However, in their documentation of the articlesbase case [20], no
references are made to fingerprinting of users and we were unable to locate a
privacy policy on the website. Similar issues are likely to arise when it comes
to honoring DNT preferences.

8 Conclusion

User tracking is becoming pervasive as advertisers and tracking companies
seek to refine their targeting, detect fraud, or offer new services. While most
of today’s tracking is done through third-party cookies, prior research has
shown that browser and system attributes can be used to uniquely identify
devices through fingerprints. Even though these fingerprints are less accurate
than stateful identifiers such as cookies, their main advantage is that device
fingerprinting is harder to detect and to defend against.

In this paper we presented FPDetective, a fingerprinting-detection framework
that identifies web based fingerprinters. Using FPDetective, we performed a
large-scale crawl of the Internet’s most popular websites, and showed that the
adoption of fingerprinting is significantly higher than what previous research
estimated. Among others, we identified large commercial companies involved in
fingerprinting, a complete disregard towards the DNT header, and the use of
anti-debugging techniques, most commonly associated with JavaScript malware.
Moreover, we showed that dedicated fingerprinters can bypass existing privacy-
protecting technologies.

Overall, our findings demonstrate that web fingerprinting is a real and growing
issue, deserving the attention of both policymakers and the research community.
We hope that our framework, which is freely available to other researchers and
can easily be extended to conduct further studies, will contribute to addressing

articlesbase.com
articlesbase.com
siteblackbox.com
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this issue by providing a means to shed light on web fingerprinting practices
and techniques.
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A Appendices

A.1 List of Fingerprinting URLs

Table 3 shows the location of each fingerprinting script discovered, separated
by the respective fingerprinting companies.

A.2 ActionScript Calls

The following list enumerates the ActionScript calls that FPDetective searches
for in the decompiled Flash files.

• enumerateFonts (only with argument true)
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FingerPrinter Script URL

BlueCava http://ds.bluecava.com/v50/AC/BCAC5.js

Perferencement http://tags.master-perf-tools.com/V20test/tagv22.pkmin.js

CoinBase https://coinbase.com/assets/application-773afba0b6ee06b45ba4363a99637610.js

MaxMind http://device.maxmind.com/js/device.js

Inside graph http://inside-graph.com/ig.js

SiteBlackBox (No fixed URL)
Analytics-engine http://sl4.analytics-engine.net/detector/fp.js

Myfreecams http://www.myfreecams.com/mfc2/lib/o-mfccore.js

Mindshare Tech. pomegranate.js (No fixed domain)
Cdn.net http://cdn-net.com/cc.js

AFK Media http://gmyze.com/0.4.1.1/js/fingerprint.js

Anonymizer https://www.privacytool.org/AnonymityChecker/js/fontdetect.js

Analyticsengine http://dpp750yjcl65g.cloudfront.net/analyticsengine/util/fingerprint.compiled.js

BBelements http://go.eu.bbelements.com/flash/bbnaut.swf

Piano Media http://mp.pianomedia.eu/bucket/novosense.swf

Bluecava http://lookup.bluecava.com/flash/guids[2|3].swf

ThreatMetrix https://h.online-metrix.net/fp/fp.swf?org_id=...&session_id=... *
Alipay http://img.alipay.com/common/um/lsa.swf

MEB http://meb.gov.tr/KZneA1akxW/502758.swf

Table 3: URLs of Fingerprinting JavaScript and Flash Files
*: Also served from other domains.

• getFontList

• all Capabilities class properties and methods, including

– version

– manufacturer

– serverString

– language

• screenDPI

• screenResolutionX

• screenResolutionY

• getTimezoneOffset

• getLocal

• XMLSocket

• Math.min, Math.max

http://ds.bluecava.com/v50/AC/BCAC5.js
http://tags.master-perf-tools.com/V20test/tagv22.pkmin.js
https://coinbase.com/assets/application-773afba0b6ee06b45ba4363a99637610.js
http://device.maxmind.com/js/device.js
http://inside-graph.com/ig.js
http://sl4.analytics-engine.net/detector/fp.js
http://www.myfreecams.com/mfc2/lib/o-mfccore.js
pomegranate.js
http://cdn-net.com/cc.js
http://gmyze.com/0.4.1.1/js/fingerprint.js
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http://dpp750yjcl65g.cloudfront.net/analyticsengine/util/fingerprint.compiled.js
http://go.eu.bbelements.com/flash/bbnaut.swf
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• ExternalInterface.call

• ExternalInterface.addCallback

• sendAndLoad

• URLLoader

• navigateToURL

• loadMovie

• createUID

• getUrl

• allowDomain

• allowInsecureDomain

• loadPolicyFile

• URLRequest

• LoadVars

• md5, sha256, sha384, sha512
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Abstract. We present the first large-scale studies of three
advanced web tracking mechanisms — canvas fingerprinting,
evercookies and use of “cookie syncing” in conjunction with
evercookies. Canvas fingerprinting, a recently developed form
of browser fingerprinting, has not previously been reported in
the wild; our results show that over 5% of the top 100,000
websites employ it. We then present the first automated study of
evercookies and respawning and the discovery of a new evercookie
vector, IndexedDB. Turning to cookie syncing, we present novel
techniques for detection and analysing ID flows and we quantify
the amplification of privacy-intrusive tracking practices due to
cookie syncing.
Our evaluation of the defensive techniques used by privacy-aware
users finds that there exist subtle pitfalls — such as failing to
clear state on multiple browsers at once — in which a single lapse
in judgement can shatter privacy defenses. This suggests that
even sophisticated users face great difficulties in evading tracking
techniques.

1 Introduction

A 1999 New York Times article called cookies comprehensive privacy invaders
and described them as “surveillance files that many marketers implant in the
personal computers of people.” Ten years later, the stealth and sophistication
of tracking techniques had advanced to the point that Edward Felten wrote “If
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You’re Going to Track Me, Please Use Cookies” [18]. Indeed, online tracking
has often been described as an “arms race” [47], and in this work we study the
latest advances in that race.

The tracking mechanisms we study are advanced in that they are hard to control,
hard to detect and resilient to blocking or removing. Canvas fingerprinting uses
the browser’s Canvas API to draw invisible images and extract a persistent,
long-term fingerprint without the user’s knowledge. There doesn’t appear to be
a way to automatically block canvas fingerprinting without false positives that
block legitimate functionality; even a partial fix requires a browser source-code
patch [40]. Evercookies actively circumvent users’ deliberate attempts to start
with a fresh profile by abusing different browser storage mechanisms to restore
removed cookies. Cookie syncing, a workaround to the Same-Origin Policy,
allows different trackers to share user identifiers with each other. Besides being
hard to detect, cookie syncing enables back-end server-to-server data merges
hidden from public view.

Our goal is to improve transparency of web tracking in general and advanced
tracking techniques in particular. We hope that our techniques and results will
lead to better defenses, increased accountability for companies deploying exotic
tracking techniques and an invigorated and informed public and regulatory
debate on increasingly persistent tracking techniques.

While conducting our measurements, we aimed to automate all possible data
collection and analysis steps. This improved the scalability of our crawlers and
allowed us to analyze 100,000 sites for fingerprinting experiments, as well as
significantly improve upon the scale and sophistication of the prior work on
respawning, evercookies and cookie syncing.

1.1 Contributions

First study of real-world canvas fingerprinting practices. We present
the results of previously unreported canvas fingerprinting scripts as found on the
top 100,000 Alexa sites. We find canvas fingerprinting to be the most common
fingerprinting method ever studied, with more than 5% prevalence. Analysis of
the real-world scripts revealed that they went beyond the techniques suggested
by the academic research community (Section 3).

Automated analysis of evercookies and respawning. We describe an
automated detection method for evercookies and cookie respawning. Applying
this analysis, we detected respawning by Flash cookies on 10 of the 200 most
popular sites and found 33 different Flash cookies were used to respawn over
175 HTTP cookies on 107 of the top 10,000 sites. We also uncover a new
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evercookie vector, IndexedDB, which was never found in the wild before (Section
4). Remarkably, respawning has already led to a lawsuit and a $500,000
settlement [14], and yet it is quite prevalent on the web.

Cookie syncing privacy analysis. We find instances of syncing of respawned
IDs in the wild, i.e., an ID respawned by one domain is passed to another domain.
Respawning enables trackers to link a user’s browsing logs before cookie clearing
to browsing logs after cookie clearing. In our measurements, approximately
1.4% of a user’s browser history can be linked this way in the wild. However,
the figure jumps to at least 11% when these respawned cookies are subsequently
synced. Cookie syncing also allows trackers to merge records on individual users,
although this merging cannot be observed via the browser. Our measurements
in Section 5 show that in the model of back-end merging we study, the number
of trackers that can obtain a sizable fraction (40%) of a user’s browsing history
increases from 0.3% to 22.1%.

Novel techniques. In performing the above experiments, we developed and
utilized novel analysis and data collection techniques that can be used in similar
web privacy studies.

• Using the strace debugging tool for low-level monitoring of the browser
and the Flash plugin player (Section 4.2).

• A set of criteria for distinguishing and extracting pseudonymous identifiers
from traditional storage vectors, such as cookies, as well as other vectors
such as Flash storage. By extracting known IDs, we can track them as
they spread to multiple domains through cookie syncing.

Making the code and the data public. We intend to publicly release all
the code we developed for our experiments and all collected data, including (i)
our crawling infrastructure, (ii) modules for analysing browser profile data and
(iii) crawl databases collected in the course of this study.

1.2 Implications

The thrust of our results is that the three advanced tracking mechanisms we
studied are present in the wild and some of them are rather prevalent. As we
elaborate on in Section 6.1, they are hard to block, especially without loss of
content or functionality, and once some tracking has happened, it is hard to
start from a truly clean profile. A frequent argument in online privacy debates
is that individuals should “take control” of their own privacy online. Our
results suggest that even sophisticated users may not be able to do so without
significant trade-offs.
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We show that cookie syncing can greatly amplify privacy breaches through
server-to-server communication. While web privacy measurement has helped
illuminate many privacy breaches online, server-to-server communication is not
directly observable. All of this argues that greater oversight over online tracking
is becoming ever more necessary.

Our results only apply to desktop browsing. Studying similar tracking mecha-
nisms on mobile platforms requires distinct methodologies and infrastructure
and is left to future work.

2 Background and Related Work

The tracking mechanisms studied in this paper can be differentiated from
their conventional counterparts by their potential to circumvent users’ tracking
preferences, being hard to discover and resilient to removal. We selected three
of the most prominent persistent tracking techniques — canvas fingerprinting,
evercookies and cookie syncing — based on the lack of adequate or comprehensive
empirical measurements of these mechanisms in the wild. We now give a brief
overview of these techniques.

Canvas fingerprinting: Canvas fingerprinting is a type of browser or device
fingerprinting technique that was first presented in a paper by Mowery and
Shacham in 2012 [32]. The authors found that by using the Canvas API of
modern browsers, an adversary can exploit subtle differences in the rendering
of the same text or WebGL scenes to extract a consistent fingerprint that can
easily be obtained in a fraction of a second without user’s awareness.
The same text can be rendered in different ways on different computers depending
on the operating system, font library, graphics card, graphics driver and the
browser. This may be due to the differences in font rasterization such as
anti-aliasing, hinting or sub-pixel smoothing, differences in system fonts, API
implementations or even the physical display [32]. In order to maximize the
diversity of outcomes, the adversary may draw as many different letters as
possible to the canvas. Mowery and Shacham, for instance, used the pangram
How quickly daft jumping zebras vex in their experiments.
The entropy available in canvas fingerprints has never been measured in a large-
scale published study like Panopticlick [16]. Mowery and Shacham collected
canvas fingerprints from 294 Mechanical Turk users and computed 5.73 bits of
entropy for their dataset. Since this experiment was significantly limited for
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Figure 1: Canvas fingerprinting basic flow of operations

measuring the canvas fingerprinting entropy, they had a further estimate of at
least 10 bits, meaning one in a thousand users share the same fingerprint [32].
Figure 1 shows the basic flow of operations to fingerprint canvas. When a user
visits a page, the fingerprinting script first draws text with the font and size of
its choice and adds background colors (1). Next, the script calls Canvas API’s
ToDataURL method to get the canvas pixel data in dataURL format (2), which
is basically a Base64 encoded representation of the binary pixel data. Finally,
the script takes the hash of the text-encoded pixel data (3), which serves as the
fingerprint and may be combined with other high-entropy browser properties
such as the list of plugins, the list of fonts, or the user agent string [16].

Evercookies and respawning: A 2009 study by Soltani et al. showed the
abuse of Flash cookies for regenerating previously removed HTTP cookies, a
technique referred to as “respawning” [43]. They found that 54 of the 100
most popular sites (rated by Quantcast) stored Flash cookies, of which 41
had matching content with regular cookies. Soltani et al. then analyzed
respawning and found that several sites, including aol.com, about.com and
hulu.com, regenerated previously removed HTTP cookies using Flash cookies.
A follow up study in 2011 found that sites use ETags and HTML5 localStorage
API to respawn cookies [7].
In 2010, Samy Kamkar demonstrated the “Evercookie,” a resilient tracking
mechanism that utilizes multiple storage vectors including Flash cookies,
localStorage, sessionStorage and ETags [21]. Kamkar employed a variety of
novel techniques, such as printing ID strings into a canvas image which is then
force-cached and read from the cached image on subsequent visits. Instead of
just respawning HTTP cookies by Flash cookies, his script would check the
cleared vectors in the background and respawn from any storage that persists.

aol.com
about.com
hulu.com
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Figure 2: Respawning HTTP cookies by Flash evercookies: (a) the webpage
stores an HTTP and a Flash cookie (LSO), (b) the user removes the HTTP
cookie, (c) the webpage respawns the HTTP cookie by copying the value from
the Flash cookie.

Figure 2 depicts the stages of respawning by Local Shared Objects (LSOs), also
known as Flash cookies. Whenever a user visits a site that uses evercookies, the
site issues an ID and stores it in multiple storage mechanisms, including cookies,
LSOs and localStorage. In Figure 2a, the value 123 is stored in both HTTP
and Flash cookies. When the user removes her HTTP cookie (Figure 2b), the
website places a cookie with the same value (123) by reading the ID value from
a Flash cookie that the user may fail to remove (Figure 2c).

Cookie syncing: Cookie synchronization or cookie syncing is the practice
of tracker domains passing pseudonymous IDs associated with a given user,
typically stored in cookies, amongst each other. Domain A, for instance, could
pass an ID to domain B by making a request to a URL hosted by domain B
which contains the ID as a parameter string. According to Google’s developer
guide to cookie syncing (which they call cookie matching), cookie syncing
provides a means for domains sharing cookie values, given the restriction that
sites can’t read each other cookies, in order to better facilitate targeting and
real-time bidding [4].
In general, we consider the domains involved in cookie syncing to be third
parties — that is, they appear on the first-party sites that a user explicitly
chooses to visit. Although some sites such as facebook.com appear both in a
first and third-party context, this distinction is usually quite clear.
The authors of [38] consider cookie synchronization both as a means of detecting
business relationships between different third-parties but also as a means of
determining to what degree user data may flow between parties, primarily
through real-time bidding. In the present work, we study the implications of
the fact that trackers that share an ID through syncing are in position to merge
their database entries corresponding to a particular user, thereby reconstructing
a larger fraction of the user’s browsing patterns.

facebook.com
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2.1 Related work

While HTTP cookies continue to be the most common method of third-party
online tracking [41], a variety of more intrusive tracking mechanisms have
been demonstrated, refined and deployed over the last few years. In response,
various defenses have been developed, and a number of studies have presented
measurements of the state of tracking. While advertising companies have
claimed that tracking is essential for the web economy to function [42], a line of
research papers have proposed and prototyped solutions to carry out behavioral
advertising without tracking.

Fingerprinting, novel mechanisms. Researchers have presented novel
browser fingerprinting mechanisms such as those based on performance
metrics [31], the JavaScript engine [33] , the rendering engine [50], clock skew [23],
WebGL and canvas fingerprinting [32]. Most of those studies followed the path
opened by the influential Panopticlick study [16], which demonstrated the
potentials of browser fingerprinting for online tracking.

Measurement studies. Web privacy measurement is a burgeoning field; an
influential early work is [25] and prominent recent work includes [29,41]. Mayer
and Mitchell made a comprehensive survey of tracking in combination with
the policy that surrounds it, and developed a tool for similar web privacy
measurement studies [29]. Roesner et al. analyzed different tracking methods
and suggested a taxonomy for third-party tracking [41].

Other papers have looked at various aspects of web privacy, including PII
leakage [26], mobile web tracking [17], JavaScript inclusions [35], targeted
advertisements [27], and the effectiveness of blocking tools [28].

Two studies measured the prevalence of different fingerprinting mechanisms
and evaluated existing countermeasures [6, 37]. Nikiforakis et al. studied three
previously known fingerprinting companies and found 40 such sites among the
top 10K sites employing practices such as font probing and the use of Flash
to circumvent proxy servers [37]. Acar et al. found that 404 sites in the top
million deployed JavaScript-based fingerprinting and 145 sites of the top 10,000
sites leveraged Flash-based fingerprinting [6].

In comparison to these studies, we focus on canvas fingerprinting, which, to the
best of our knowledge, has never been reported to be found in the wild and is
much harder to block.

Several studies have looked at the use of Flash cookies (LSOs) and, in particular,
the use of Flash cookies to respawn HTTP cookies [7, 30, 43]. Soltani et al.
uncovered the first use of respawning by Flash cookies [43], and in a follow-up
study, Ayenson et al. found the first use of cache ETags and localStorage
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for respawning [7]. McDonald and Cranor analyzed the landing pages of 100
popular websites, plus 500 randomly-selected websites, and found two cases
of respawning in the top 100 websites and no respawning in the randomly
selected 500 sites [30]. In a recent study, Sorensen analyzed the use of cache as
a persistent storage mechanism and found several instances of HTTP cookies
respawned from cached page content [44]. The main difference between our
study and the papers mentioned here is that we automated respawning detection
as explained in Section 4, and this allowed us to analyze orders of magnitude
more sites.

Olejnik et al. studied cookie syncing (which they call cookie matching) [38].
They found that over 100 cookie syncing events happen on the top 100 sites. In
comparison to their work, our study of cookie syncing (i) is large-scale, covering
3,000 sites, (ii) is based on crawling rather than crowd-sourcing, allowing easier
comparative measurements over time and (iii) presents a global view, in that we
go beyond detecting individual sync events and are able to capture and analyze
the propagation of IDs through the tracking ecosystem. Further, we study how
cookie syncing interacts with respawning, leading to more persistent tracking
and widening the effects of these two vulnerabilities taken individually.

Program analysis of JavaScript (i.e., static analysis and dynamic analysis) is a
common technique in web security [46]. A few studies have used such techniques
for blocking or measuring web trackers. Orr et al. use static analysis to detect
and block JavaScript-loaded ads [39]. Tran et al. use dynamic taint analysis
to detect various privacy-invasive behaviors [48]. Acar et al. use behavioral
analysis to detect fingerprinting scripts that employ font probing [6].

Defenses. Besson et al. [10] examined the theoretical boundaries of
fingerprinting defenses using Quantified Information Flow. Following a
more practical approach, Nikiforakis and others developed a defense called
PriVaricator to prevent linkability from fingerprinters by randomizing browser
features such as plugins [36]. Finally, Unger et al. [50], studied the potentials
of browser fingerprinting as a defense mechanism against HTTP(S) session
hijacking.

In Section 6.1 we discuss how existing privacy tools defend against the advanced
tracking mechanisms we study.

Behavioral targeting without tracking. Several papers have addressed
the question of whether all this tracking is in fact necessary — they proposed
ways to achieve the purported goals of third-party tracking, primarily targeted
advertising, without server-side profiles. In Adnostic, the browser continually
updates a behavioral profile of the user based on browsing activity, and targeting
is done locally [14]. PrivAd has a similar model, but includes a trusted party
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that attempts to anonymize the client [20]. RePriv has the more general goal of
enabling personalization via interest profiling in the browser [19]. Bilenko et
al. propose a model in which the user’s profile and recent browsing history is
stored in a cookie [11]. Other work on similar lines includes [8, 34,49].

3 Canvas Fingerprinting

Canvas fingerprinting works by drawing text onto canvas and reading the
rendered image data back. In the following experiments we used an instrumented
Firefox browser that we built by modifying the source code and logged all the
function calls that might be used for canvas fingerprinting.

3.1 Methodology and Data collection

Our methodology can be divided into two main steps. In the first, we identified
the ways we can detect canvas fingerprinting, developed a crawler based on
an instrumented browser and ran exploratory crawls. This stage allowed us to
develop a formal and automated method based on the early findings. In the
second step, we applied the analysis method we distilled from the early findings
and nearly fully automated the detection of canvas fingerprinting.

Mowery and Shacham used fillText and ToDataURL methods to draw text
and read image data respectively [32]. We logged the return value of ToDataURL
and, in order to find out the strings drawn onto the canvas, we logged the
arguments of fillText and strokeText methods3.

We logged the URL of the caller script and the line number of the calling
(initiator) code using Firefox’s nsContentUtils::GetCurrentJSContext and
nsJSUtils::GetCallingLocation methods. This allowed us to precisely
attribute the fingerprinting attempt to the responsible script and the code
segment. All function call logs were parsed and combined in a SQLite database
that allowed us to efficiently analyze the crawl data. For each visit, we also added
cookies, localStorage items, cache metadata, HTTP request/response headers
and request bodies to the SQLite database. We used mitmproxy 4 to capture

3In addition to these three methods we intercepted calls to MozFetchAsStream,
getImageData and ExtractData methods which can be used to extract canvas image data.
But we did not put effort into recording the extracted image data for three reasons: they
were not used in the original canvas fingerprinting paper [32], they are less convenient for
fingerprinting (requires extra steps), and we did not find any script that uses these methods
and fingerprints other browser properties in the initial experiments.

4http://mitmproxy.org/

http://mitmproxy.org/
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HTTP data and parsed data accumulated in the profile folder for other data
such as cookies, localStorage and cache data. The aggregated data were used
in the early stage analysis for canvas fingerprinting and evercookie detection,
which is explained in Section 4.2. Our browser modifications for Firefox consist
of mere 33 lines of code, spread across four files and the performance overhead
of the modifications is minimal.

We crawled the home pages of the top 100,000 Alexa sites with the instrumented
Firefox browser between 1-5 May 2014. We used Selenium [5] to drive browsers
to sites and ran multiple Firefox instances in parallel to reduce the crawl time.
Implementing some basic optimizations and a naive load limiting check, we
were able to run up to 30 browsers in parallel on a 4-core 8GB desktop machine
running GNU/Linux operating system. The modified browsers were run in a
chroot jail to limit the effects of the host operating system.

False positive removal The Canvas API is used by many benign scripts to
draw images, create animations or store content for games. During our crawls
we found interesting use cases, such as generating dynamic favicons, creating
tag clouds, and checking font smoothing support. By examining the distinctive
features of false positives and the fingerprinting scripts found in the initial
experiments, we distilled the following conditions for filtering out false positives:

• There should be both ToDataURL and fillText (or strokeText) method
calls and both calls should come from the same URL.

• The canvas image(s) read by the script should contain more than one
color and its(their) aggregate size should be greater than 16x16 pixels.

• The image should not be requested in a lossy compression format such as
JPEG.

Checking the origin of the script for both read and write access helped us to
remove scripts that use canvas for only generating images but not reading them
or vice versa. Although it is possible that two scripts from the same domain
can divide the work to circumvent our detection method, we accepted that as a
limitation.

Enforcing a 16x16 pixel size limit allowed us to filter out scripts that read too
few pixels to efficiently extract the canvas fingerprint. Although there are 28192

possible color combinations for a 16x16 pixel image5, operating systems or font

52colordepth
w×h

, 23216×16 = 28192 for the RGBA color space, which uses 24 bits for the
colors (RGB) and 8 bits for the alpha channel. See, http://www.whatwg.org/specs/web-apps/
current-work/multipage/the-canvas-element.html#pixel-manipulation

http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#pixel-manipulation
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html#pixel-manipulation
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Fingerprinting script
No. of

including
sites

Text drawn into the canvas

ct1.addthis.com/static/r07/core130.js 5282 Cwm fjordbank glyphs vext
quiz,

Charbase
A visual unicode database

Search

U+1F603: SMILING FACE WITH OPEN MOUTH

← U+1F602 FACE WITH TEARS OF JOY U+1F604 SMILING FACE WITH OPEN MOUTH AND
SMILING EYES →

0   Tweet 0

Your Browser ὠ�
Index U+1F603 (128515)
Class Other Symbol (So)
Block Emoticons

Java Escape "\ud83d\ude03"
Javascript Escape "\ud83d\ude03"
Python Escape u'\U0001f603'
HTML Escapes &#128515; &#x1f603;
URL Encoded q=%F0%9F%98%83

UTF8 f0 9f 98 83
UTF16 d83d de03

Contact Us

i.ligatus.com/script/fingerprint.min.js 115 http://valve.github.io
src.kitcode.net/fp2.js 68 http://valve.github.io
admicro1.vcmedia.vn/fingerprint/figp.js 31 http://admicro.vn/
amazonaws.com/af-bdaz/bquery.js 26 Centillion
*.shorte.st/js/packed/smeadvert-* 14 http://valve.github.io
stat.ringier.cz/js/fingerprint.min.js 4 http://valve.github.io
cya2.net/js/STAT/89946.js 3 ABCDEFGHIJKLMNOPQRS

TUVWXYZ abcdefghijklmnop
qrstuvwxyz0123456789+/

*.revtrax.com/RevTrax/js/fp/fp.min.jsp 3 http://valve.github.io
pof.com 2 http://www.plentyoffish.com
*.rackcdn.com/mongoose.fp.js 2 http://api.gonorthleads.com
9 others* 9 (Various)

TOTAL 5559
(5542

unique1)
-

Table 1: Canvas fingerprinting domains found on
Top Alexa 100K sites.

*: Some URLs are truncated or omitted for brevity.
See Appendix for the complete list of URLs.

1: Some sites include canvas fingerprinting scripts
from more than one domain.
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libraries only apply anti-aliasing (which is an important source of diversity for
canvas fingerprinting) to text larger than a minimum font size.6

The final check was to filter out cases where canvas image data is requested in
a lossy compression format. Under a lossy compression scheme, the returned
image may lose the subtle differences that are essential for fingerprinting.

Applying these checks, we reduced the false positive ratio to zero for the 100,000
crawl, upon which we perform our primary analysis. We used static analysis to
make sure the scripts we flagged as canvas fingerprinting were also collecting
other high-entropy browser properties such as plugins, navigator features and
screen dimensions. It should be noted that in other pilot crawls (beyond 100K),
we witnessed some false positives that our conditions failed to remove. Also,
we believe that a determined tracker may potentially circumvent our detection
steps using more advanced but less reliable attacks such as pixel stealing using
SVG filters [45] or CSS shaders [24].

3.2 Results

Table 1 shows the prevalence of the canvas fingerprinting scripts found during
the home page crawl of the Top Alexa 100,000 sites. We found that more than
5.5% of crawled sites actively ran canvas fingerprinting scripts on their home
pages. Although the overwhelming majority (95%) of the scripts belong to a
single provider (addthis.com), we discovered a total of 20 canvas fingerprinting
provider domains, active on 5542 of the top 100,000 sites7. Of these, 11 provider
domains, encompassing 5532 sites, are third parties. Based on these providers’
websites, they appear to be companies that deploy fingerprinting as part of
some other service rather than offering fingerprinting directly as a service to
first parties. We found that the other nine provider domains (active on 10 sites)
are in-house fingerprinting scripts deployed by first parties. Note that our crawl
in this paper was limited to home pages. A deeper crawl covering internal pages
of the crawled sites could find a higher percentage of fingerprinting.

The 5.5% prevalence is much higher than what other fingerprinting measurement
studies had previously found (0.4% [37], 0.4%, 1.5% [6]), although these studies
may not be directly comparable due to the differences in methodology and
data collection. Also note that canvas fingerprinting was first used by AddThis

6https://wiki.ubuntu.com/Fonts#Font_Smoothing
7We discarded some cases where the canvas fingerprinting script is served from a content

delivery network (CDN) and additional analysis was needed to distinguish between different
providers serving from the same (CDN) domain. Including these cases would only change the
number of unique sites with canvas fingerprinting to 5552 (from 5542).

https://wiki.ubuntu.com/Fonts#Font_Smoothing
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Figure 3: Frequency of canvas fingerprinting scripts on the home pages of Top
Alexa 100K sites.

Rank interval % of sites with canvas
fingerprinting scripts

[1, 1K) 1.80
[1K, 10K) 4.93
[10K, 100K] 5.73

Table 2: Percentage of sites that include canvas fingerprinting scripts on the
homepage, found in top 100K Alexa sites divided in intervals of variable length.
Websites in the 1 to 1K rank interval are 2.5 times less likely to embed a canvas
fingerprinting script than a site within 1K-10K interval.

between January 15 to February 1st, 2014, 8 which was after all the mentioned
studies.

Below rank 10,000, the prevalence of canvas fingerprinting is close to uniform.
However, we found that the top 1,000 sites are 2.5 times less likely to have
included canvas fingerprinting scripts than the ones within the 1,000-10,000
range.

Note that the URL http://valve.github.io, printed by many scripts onto the
canvas, belongs to the developer of an open source fingerprinting library9.
Furthermore, all scripts except one use the same colors for the text and
background shape. This similarity is possibly due to the use of the publicly
available open source fingerprinting library fingerprintjs [51]. Figure 4 shows

8The date was determined using http://httparchive.org/
9See, https://github.com/Valve/fingerprintjs/blob/v0.5.3/fingerprint.js#L250

http://httparchive.org/
https://github.com/Valve/fingerprintjs/blob/v0.5.3/fingerprint.js#L250
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five different canvas images used by different canvas fingerprinting scripts. The
images are generated by intercepting the canvas pixel data extracted by the
scripts listed in Table 1.

Figure 4: Different images printed to canvas by fingerprinting scripts. Note
that the phrase “Cwm fjordbank glyphs vext quiz” in the top image is a perfect
pangram, that is, it contains all the letters of the English alphabet only once to
maximize diversity of the outcomes with the shortest possible string.

Manually analyzing AddThis’s script, we found that it goes beyond the ideas
previously discussed by researchers and adds new tests to extract more entropy
from the canvas image. Specifically, we found that in addition to the techniques
outlined in Mowery and Shacham’s canvas fingerprinting paper [32] AddThis
scripts perform the following tests:

• Drawing the text twice with different colors and the default fallback font
by using a fake font name, starting with “no-real-font-”.

• Using the perfect pangram10 “Cwm fjordbank glyphs vext quiz” as the text
string

• Checking support for drawing Unicode by printing the character U+1F603
a smiling face with an open mouth.

• Checking for canvas globalCompositeOperation support.

• Drawing two rectangles and checking if a specific point is in the path by
the isPointInPath method.

By requesting a non-existent font, the first test tries to employ the browser’s
default fallback font. This may be used to distinguish between different browsers

10http://en.wikipedia.org/wiki/List_of_pangrams#Perfect_pangrams_in_English_.2826_letters.29

http://en.wikipedia.org/wiki/List_of_pangrams#Perfect_pangrams_in_English_.2826_letters.29


EVERCOOKIES 107

and operating systems. Using a perfect pangram, which includes a single instance
of each letter of the English alphabet, the script enumerates all the possible
letter forms using the shortest string. The last three tests may be trying to
uncover the browser’s support for the canvas features that are not equally
supported. For instance, we found that the Opera browser cannot draw the
requested Unicode character, U+1F603.

Another interesting canvas fingerprinting sample was the script served from the
admicro.vcmedia.vn domain. By inspecting the source code, we found that the
script checks the existence of 1126 fonts using JavaScript font probing.

Overall, it is interesting to see that commercial tracking companies are advancing
the fingerprinting technology beyond the privacy/security literature. By
collecting fingerprints from millions of users and correlating this with cookie
based identification, the popular third party trackers such as AddThis are in
the best position to both measure how identifying browser features are and
develop methods for monitoring and matching changing fingerprints. Note that
according to a recent ComScore report, AddThis “solutions” reaches 97.2% of
the total Internet population in the United States and get 103 billion monthly
page views.11

4 Evercookies

Evercookies are designed to overcome the “shortcomings” of the traditional
tracking mechanisms. By utilizing multiple storage vectors that are less
transparent to users and may be more difficult to clear, evercookies provide
an extremely resilient tracking mechanism, and have been found to be used
by many popular sites to circumvent deliberate user actions [7, 14,43]. In this
section, we first provide a set of criteria that we used to automatically detect
identifier strings, present detailed results of an automated analysis of respawning
by Flash evercookies, and show the existence of respawning by both HTTP
cookies and IndexedDB.

4.1 Detecting User IDs

Given that not all instances of the various potential storage vectors are used to
track users, detecting evercookies hinges on determining whether a given string

11http://www.businesswire.com/news/home/20131113005901/en/comScore-Ranks-
AddThis-1-Distributed-Content-United

http://www.businesswire.com/news/home/20131113005901/en/comScore-Ranks-AddThis-1-Distributed-Content-United
http://www.businesswire.com/news/home/20131113005901/en/comScore-Ranks-AddThis-1-Distributed-Content-United
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can serve as a user ID. In order to detect persistent IDs in a given storage vector,
we leveraged data from two simultaneous crawls on separate machines and
applied the following set rule set for determining which elements are identifying.
We present the rules with respect to HTTP cookies but note that they are
applicable to other storage locations of a similar format.

• Eliminate cookies that expire within a month of being placed. These are
too transient to track a user over time.

• Parse cookie value strings using common delimiters (e.g. : and &). This
extracts potentially identifying strings from non-essential data.

• Eliminate parsed fields which don’t remain constant throughout an
individual crawl. Identifiers are likely to be unchanging.

• Compare instances of matching parsed cookie fields (for cookies with
the same domain and name) between two unrelated crawls on different
machines.

– Eliminate fields which are not the same length.
– Eliminate fields which are more than 33% similar according to the

Ratcliff-Obershelp algorithm [12]. These are unlikely to contain
sufficient entropy.

The presented method provides a strict and conservative detection of identifiers
that we believe (through manual inspection) to have a very low false positive
rate. We anticipate several sources of false negatives, for example ID strings that
are obfuscated or embedded in longer strings using non-standard delimiters or
ID strings that happen to have a high similarity. Similarly, an adversarial tracker
could continually change an identifier or cookie sync short-lived identifiers, but
keep a mapping on the back end to enable long-term tracking. Therefore, the
results of this analysis provide a lower bound on the presence of evercookie
storage vectors and on the level of cookie syncing.

4.2 Flash cookies respawning HTTP cookies

Although there are many “exotic” storage vectors that can be used to store
tracking identifiers, Flash cookies have a clear advantage of being shared between
different browsers that make use of the Adobe Flash plugin12. We developed a
procedure to automate the detection of respawning by Flash cookies employing

12iOS based devices and Chrome/Chromium bundled with the Pepper API are exceptions
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the method discussed in Section 4.1 to detect IDs and using GNU/Linux’s
strace [22] debugging tool to log access to Flash cookies.

Compared to earlier respawning studies [7, 30, 43], the method employed in
this paper is different in terms of automation and scale. In prior studies, most
of the work, including the matching of HTTP and Flash cookie identifiers
was carried out manually. By automating the analysis and parallelizing the
crawls, we were able to analyze 10,000 websites, which is substantially more
than the previous studies (100 sites, 700 sites). Note that, similar to [30], we
only visited the home pages, whereas [7, 43] visited 10 internal links on each
website. Another methodological difference is that we maintained the Flash
cookies when visiting different websites, whereas [7, 43] used a virtual machine
to prevent contamination. Last, [30] also used the moving and contrasting Flash
cookies from different computers to determine ID and non-ID strings, which is
one of the main ideas of the analysis described below.

For this analysis we used data from four different crawls. First, we sequentially
crawled the Alexa top 10,000 sites and saved the accumulated HTTP and Flash
cookies (Crawl1). We then made three 10,000 site crawls, two of which were
run with the Flash cookies loaded from the sequential crawl (Crawl2,3). The
third crawler ran on a different machine, without any data loaded from the
previous crawl (Crawl4). Note that, except for the sequential crawl (Crawl1),
we ran multiple browsers in parallel to extend the reach of the study at the
cost of not keeping a profile state (cookies, localStorage) between visits. During
each visit, we ran an strace instance that logs all open, read and write system
calls of Firefox and all of its child processes. Trace logs were parsed to get a list
of Flash cookies accessed during the visit, which are then parsed and inserted
into a crawl database.

For the analysis, we first split the Flash cookie contents from the three crawls
(Crawl2,3,4) by using a common set of separators (e.g. "=:&;). We then took
the common strings between crawls made with the same LSOs (Crawl2,3) and
subtracted the strings found in LSO contents from the unrelated crawl (Crawl4).
We then checked the cookie contents from the original profile (Crawl1) and
cookies collected during the visits made with the same LSO set (Crawl2,3).
Finally, we subtracted strings that are found in an unrelated visit’s cookies
(Crawl4) to minimize the false positives. Note that, in order to further eliminate
false positives, one can use cookies and LSOs from other unrelated crawls since
an ID-string cannot be present in unrelated crawls. We used the 100K crawl
described in the canvas fingerprinting experiments for this purpose.

For clarity, we express a simplified form of the operation in set notation:
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MaxRank⋃
i=1

((((F2i
∩ F3i

) \ F4) ∩ C2i
∩ C3i

) \ C4),

where Fni denotes Flash cookies from Crawln for the site with the Alexa rank
i, Cni denotes Cookies from Crawln for the site with the Alexa rank i and F4,
and C4 denotes all Flash cookies and HTTP cookies collected during Crawl4.

We applied the method described above to four crawls run in May 2014 and
found that 33 different Flash cookies from 30 different domains respawned a
total of 355 cookies on 107 first party domains during the two crawls (Crawl2,3).
Table 3 shows that on six of the top 100 sites, Flash cookies are used to
respawn HTTP cookies. Nine of top ten sites on which we observed respawning
belong to Chinese companies (one from Hong Kong) whereas the other site
belongs to the top Russian search engine Yandex. The Flash cookie that
respawned the most cookies (69 cookies on 24 websites) was bbcookie.sol from
the bbcdn-bbnaut.ibillboard.com domain which belongs to a company that
is found to use Flash based fingerprinting [6]. Note that this Flash cookie
respawned almost three HTTP cookies per site which belong to different third
party domains (bbelements.com, .ibillboard.com and the first-party domain).
The domain with the second highest number of respawns was kiks.yandex.ru
which restored 11 cookies on 11 sites in each crawl (Crawl2,3).

IndexedDB as Evercookie While running crawls for canvas fingerprinting
experiments, we looked for sites that store data in the IndexedDB storage
vector. Specifically, we checked the storage/persistent directory of the Firefox
profile. A very small number of sites, only 20 out of 100K, were found to use the
IndexedDB storage vector. Analyzing the IndexedDB file from the respawning
crawl (Crawl2) described above, we found that a script from the weibo.com
domain stored an item in the IndexedDB that exactly matched the content
of the Flash cookie named simg.sinajs.cn/stonecc_suppercookie.sol. This
Flash cookie was used to respawn HTTP cookies on Chinese microblogging
site weibo.com and its associated web portal sina.com.cn. To the best of our
knowledge, this is the first report of IndexedDB as an evercookie vector. A
more thorough study of respawning based on IndexedDB is left for future study.

4.3 HTTP cookies respawning Flash cookies

We ran a sequential crawl of the Top 3,000 Alexa sites and saved the accumulated
HTTP and Flash cookies. We extracted IDs from this crawl’s HTTP cookies
using the method described in Section 4.1. We then made an additional

bbcdn-bbnaut.ibillboard.com
bbelements.com
.ibillboard.com
kiks.yandex.ru
weibo.com
simg.sinajs.cn/stonecc_suppercookie.sol
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Global
rank

Site CC Respawning
(Flash) domain

1st/3rd
Party

16 sina.com.cn CN simg.sinajs.cn 3rd*
17 yandex.ru RU kiks.yandex.ru 1st
27 weibo.com CN simg.sinajs.cn 3rd*
41 hao123.com CN ar.hao123.com 1st
52 sohu.com CN tv.sohu.com 1st
64 ifeng.com HK y3.ifengimg.com 3rd*
69 youku.com CN irs01.net 3rd
178 56.com CN irs01.net 3rd
196 letv.com CN irs01.net 3rd
197 tudou.com CN irs01.net 3rd

Table 3: Top-ranked websites found to include respawning based on Flash
cookies. CC: ISO 3166-1 code of the country where the website is based. 3rd*:
The domains that are different from the first-party but registered for the same
company in the WHOIS database.

sequential crawl of the Top 3,000 Alexa sites on a separate machine loading
only the HTTP cookies from the initial crawl.

Our method of detecting HTTP respawning from Flash cookies is as follows: (i)
take the intersection of the initial crawl’s flash objects with the final crawl’s flash
objects (ii) subtract common strings from the intersection using an unrelated
crawl’s flash objects and (iii) search the resulting strings for the first crawl’s
extracted HTTP cookie IDs as described in Section 4.1. This enables us to
ensure that the IDs are indeed found in the Flash objects of both crawls, aren’t
common to unrelated crawls, and exist as IDs on the original machine. Using
this method, we detected 11 different unique IDs common between the three
storage locations.

These 11 IDs correspond to 14 first-party domains, a summary of which is
provided by Table 8 in the Appendix. We primarily observe respawning
from JavaScript originating from two third-parties: www.iovation.com, a
fraud detection company that is specialized in device fingerprinting, and
www.postaffiliatepro.com, creators of affiliate tracking software (that runs in
the first-party context). We also observe three instances of what appears to be
in-house respawning scripts from three brands: Twitch Interactive (twitch.tv
and justin.tv), casino.com, and xlovecam.com.

sina.com.cn
simg.sinajs.cn
yandex.ru
kiks.yandex.ru
weibo.com
simg.sinajs.cn
hao123.com
ar.hao123.com
sohu.com
tv.sohu.com
ifeng.com
y3.ifengimg.com
youku.com
irs01.net
56.com
irs01.net
letv.com
irs01.net
tudou.com
irs01.net
www.iovation.com
www.postaffiliatepro.com
twitch.tv
justin.tv
casino.com
xlovecam.com
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5 Cookie Syncing

Cookie synchronization — the practice of third-party domains sharing
pseudonymous user IDs typically stored in cookies — provides the potential
for more effective tracking, especially when coupled with technologies such
as evercookies. First, pairs of domains who both know the same IDs via
synchronization can use these IDs to merge their tracking databases on the
back end. Second, respawned cookies may contain IDs that are widely shared
due to prior sync events, enabling trackers to link a user’s browsing histories
from before and after clearing browsing state.

In this section, we present our method for detecting syncs, present an overview
of the synchronization landscape and examine the threats of back-end database
merges and history-linking for users who clear state.

5.1 Detecting cookie synchronization

Using the techniques outlined in Section 4.1, we identified cookies containing
values likely to be user IDs. In order to learn which domains know a given ID
through synchronization, we examined cookie value strings and HTTP traffic.

If a domain owns a cookie containing an ID, clearly the domain knows that
ID. In fact, a telltale sign of cookie syncing is multiple domains owning cookies
containing the same ID. Likewise, if an ID appears anywhere in a domain’s
URL string (e.g. in the URL parameters), then that domain also knows the
ID. Note that a given tracker may simply ignore an ID received during a sync,
but as we will demonstrate in Section 5.3, trackers opting to store IDs have the
ability to gain user data through history merging.

The domains involved in HTTP traffic can be divided into (referrer, requested
URL, location) tuples in which the location domain is non-empty only for HTTP
response redirects. The rules for ID passing are as follows:

• If an ID appears in a requested URL, the requested domain learns the ID.

• If an ID appears in the referrer URL, the requested domain and location
domain (if it exists) learn the ID.

• If an ID appears in the location URL, the requested domain learns the
ID.
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We cannot assume that the referrer learns a synced ID appearing in the requested
URL or location URL string [38]. In particular, third-party JavaScript executing
a sync on a first-party site will cause the first-party to show up as the referrer,
even though it may not even be aware of the ID sync. Although we can
determine the directionality of ID syncs in the cases of redirects, the fraction
of flows in which we could determine both the sender and receiver was small.
Hence, when examining cookie synchronization, we focused on which domains
knew a given ID, rather than attempting to reconstruct the paths of ID flows.

5.2 Basic results

Before examining the privacy threats that can stem from cookie synchronization,
we first provide an overview of cookie syncing activities that occur when browsing
under different privacy settings. We ran multiple crawls of the top 3,000 Alexa
domains on Amazon EC213 instances using three different Firefox privacy
settings: allowing all cookies (i.e. no privacy-protective measures), allowing all
cookies but enabling Do Not Track, and blocking third-party cookies. With
all cookies allowed, the impact of Do Not Track on the aggregate statistics we
measure was negligible. In particular, enabling Do Not Track only reduced the
number of domains involved in synchronization by 2.9% and the number of IDs
being synced by 2.6%. This finding is consistent with studies such as Balebako
et al. [9] — they find that, due to lack of industry enforcement, Do Not Track
provides little practical protection against trackers. We therefore omit further
measurement and analysis of the effect of Do Not Track in this section.

Table 4 shows high-level statistics for illustrative crawls under the two third-
party cookie settings. We say that an ID is involved in synchronization if
it is known by at least two domains. Cookies and domains are involved in
synchronization if they contain or know such an ID, respectively. The statistics
displayed aggregate both third-party and first-party data, as many domains
(e.g. doubleclick.com, facebook.com) exist in both the Alexa Top 3000 and
as third-parties on other sites.

Appendix A.2 shows a summary of the top 10 parties involved in cookie
synchronization under both cookie policies. Observe that although some parties
are involved in less syncing under the stricter cookie policy, many of the top
parties receive the same number of IDs. Overall, disabling third-party cookies
reduces the number of synced IDs and parties involved in syncing by nearly a
factor of two. While this reduction appears promising from a privacy standpoint,
in the next section we will see that even with this much sparser amount of data,

13http://aws.amazon.com/ec2/

doubleclick.com
facebook.com
http://aws.amazon.com/ec2/
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Statistic
Third party cookie policy
Allow Block

# IDs 1308 938
# ID cookies 1482 953
# IDs in sync 435 347
# ID cookies in sync 596 353
# (First*) Parties in sync (407) 730 (321) 450
# IDs known per party 1/2.0/1/33 1/1.8/1/36
# Parties knowing an ID 2/3.4/2/43 2/2.3/2/22

Table 4: Comparison of high-level cookie syncing statistics when allowing and
disallowing third-party cookies (top 3,000 Alexa domains). The format of the
bottom two rows is minimum/mean/median/maximum. *Here we define a
first-party as a site which was visited in the first-party context at any point in
the crawl.

database merges could enable domains to reconstruct a large portion of a user’s
browsing history.

Included in Appendix A.3 is a summary of the top 10 most shared IDs under
both cookie policies. For a specific example, consider the most shared ID which
all third party cookies are allowed, which was originally created by turn.com.
This ID is created and placed in a cookie on the first page visit that includes
Turn as a third-party. On the next page visit, Turn makes GET requests
to 25 unique hostnames with a referrer of the form http://cdn.turn.com/
server/ddc.htm?uid=<unique_id>... that contains its ID. These 25 parties
gain knowledge of Turn’s ID, as well as their own tracking cookies, in the process.
Similar sharing occurs as the user continues to browse, eventually leading to
43 total domains. With third-party cookies disabled, the top shared IDs come
from a disjoint set of parties, largely composed of syncs which share a first party
cookie with several third-party sites.

5.3 Back-end database synchronization

We now turn to quantifying how much trackers can learn about users’
browsing histories by merging databases on the back-end based on synced
IDs. Cookie syncing allows trackers to associate a given user both with their
own pseudonymous ID and with IDs received through syncs, facilitating later
back-end merges. We cannot observe these merges directly, so we do not know
if such merges occur with any frequency. That said, there is a natural incentive

turn.com
http://cdn.turn.com/server/ddc.htm?uid=<unique_id>...
http://cdn.turn.com/server/ddc.htm?uid=<unique_id>...
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in the tracking ecosystem to aggregate data in order to learn a much larger
fraction of a user’s history.

First, assuming no collaboration among third-party trackers, only a handful of
trackers are in position to track a sizeable fraction of an individual’s browsing
history. As per Olejnik et al [38], if a visited first party appears as the referrer
in a request to another domain, we assume the second domain knows about
this visit. For a crawl of 3,000 sites when allowing all cookies, only two of the
730 trackers could recover more than 40% of a user’s history and only 11 could
recover more than 10%. When disabling third-party cookies, the corresponding
numbers are two and six, respectively. These results are consistent with earlier
findings in Roesner et al [41].

We consider the following model of back-end database merges: a domain can
merge its records with a single other domain that mutually knows some ID. We
assume that when two domains merge their records for a particular user, they
will share their full records. Our model assumes some collaboration within the
tracking ecosystem — among domains already known to share IDs — but is
much weaker than assuming full cooperation.

Figure 5 shows the proportion of a user’s 3,000-site browsing history a domain
can recover, in decreasing sorted order, if a user enables all cookies. The figure
when blocking third-party cookies (also Figure 5) takes a identical shape but is
steeper because it only includes roughly 60% as many parties.

Observe that after introducing the ability for a site to merge records directly
with one other tracker, the known proportion of a user’s 3,000-site history
dramatically increased for a large number of sites. When third-party cookies
are allowed, 101 domains can reconstruct over 50% of a user’s history and 161
could recover over 40%. Even when these cookies are blocked, 44 domains could
recover over 40% of a user’s history.

Not much is known about how prevalent back-end database merges are. In
terms of incentives, a pair of trackers may enter into a mutually beneficial
arrangement to increase their respective coverage of users’ browsing histories,
or a large tracker may act as a data broker and sell user histories for a fee.
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Figure 5: Proportions of user history known when allowing and blocking third
party cookies under the two different merging schemes. Note that since the
x-axis is sorted by the proportion of a user’s history that a domain can recover,
the domains may appear in different orders for the different models.
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5.4 Respawning and syncing

At a given point in time, cookie synchronization provides a mechanism for
trackers to link a user’s history together. Represented as a graph, sites in an
individual’s history can be represented as nodes with edges between sites if a
user tagged with some pseudonymous ID visited both sites. When a user clears
his cookies and restarts browsing, the third parties will place and sync a new
set of IDs and eventually reconstruct a new history graph.

Since these history graphs correspond to browsing periods with completely
different tracking IDs, they will be disjoint — in other words, trackers can not
associate the individual’s history before and after clearing cookies. However,
if one of the trackers respawns a particular cookie, parts of the two history
graphs can be connected by an edge, thereby linking an individual’s history
over time. This inference becomes stronger if this respawned ID is synced to a
party present on a large number of the sites that a user visits.

To test this possibility, we ran two 3,000 site crawls on two EC2 instances, A
and B. We cleared the cookies, Flash storage, cache, and local storage from
machine B and loaded the Flash files from A to seed respawning from Flash.
Finally, we ran another 3,000 site crawl on site B.

We discovered a total of 26 domains that respawned IDs between the two crawls
on machine B either through Flash or through other means14. Three of these
IDs were later observed in sync flows. After conducting manual analysis, we
were unable to determine the exact mechanism through which 18 of these IDs
were respawned since we cleared all the storage vectors previously discussed, nor
did we detect JavaScript-based browser fingerprinting. We conjecture that these
IDs were respawned through some form of passive, server-side fingerprinting15.

One of these IDs provides a useful case study. After respawning this ID, its owner,
merchenta.com, passed it to adnxs.com through an HTTP redirect sync call.
Now, merchenta.com by itself is not in a position to observe a large fraction of
a user’s history — it only appears on a single first party domain (casino.com).
In fact, the largest observed percentage of a user’s history observable by a
cookie-respawning domain acting alone was 1.4%. However, by passing its ID to
adnxs.com, merchenta.com enabled a much larger proportion of a user’s history
to be linked across state clears.

14The exact method here is not important, as we are concerned with the fact that an ID
which has been respawned is later involved in sync.

15Note that a document from one of these respawning domains, merchenta.com mentions
tracking by fingerprinting: “Merchenta’s unique fingerprint tracking enables consumers
to be engaged playfully, over an extended period of time, long after solely cookie-based
tracking loses its effectiveness”, http://www.merchenta.com/wp-content/files/Merchenta%
20Case%20Study%20-%20Virgin.pdf.

merchenta.com
adnxs.com
merchenta.com
casino.com
adnxs.com
merchenta.com
merchenta.com
http://www.merchenta.com/wp-content/files/Merchenta%20Case%20Study%20-%20Virgin.pdf
http://www.merchenta.com/wp-content/files/Merchenta%20Case%20Study%20-%20Virgin.pdf
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In particular, we observed adnxs.com on approximately 11% of first party sites
across the two crawls. Thus adnxs.com now has the ability to merge its records
for a particular user before and after an attempt to clear cookies, although of
course we have no insight into whether or not they actually do so. This scenario
enables at least 11% of a user’s history to be tracked over time.

Our measurements in this section illustrate the potential for cookie respawning
and syncing event on a single site by a small tracker to enable a large proportion
of a user’s history to be tracked by more prolific third parties.

6 Discussion

After presenting an evaluation of advanced tracking techniques, we now discuss
the potential defenses against these methods and the implications of our study
for privacy-conscious users.

6.1 Mitigation

A blunt way to defend against tracking is to simply block third-party content.
This is the approach taken by tools such as AdBlock Plus16 and Ghostery.17 The
user may also disable evercookie storage vectors such as Flash cookies [3], but
to the best of our knowledge, tracking vectors such as localStorage, IndexedDB
and canvas cannot be disabled, often due to the fact that doing so would break
core functionality.

Canvas fingerprinting: The initial canvas fingerprinting study discusses
possible countermeasures such as adding noise to the pixel data or trying
to produce same pixel results for every system. Finding some barriers to all
these options, the paper concludes that asking user permission for each canvas
read attempt may be the only effective solution. Indeed, this is precisely the
technique adopted in the Tor Browser, the only software that we found to
successfully protect against canvas fingerprinting. Specifically, the Tor Browser
returns an empty image from all the canvas functions that can be used to read
image data [13]. The user is then shown a dialog where she may permit trusted
sites to access the canvas. We confirmed the validity of this approach when
visiting a site we built which performs browser fingerprinting.
As for more traditional fingerprinting techniques, the Tor browser again appears
to be the only effective tool. With the exception of a recent Mozilla effort to

16https://adblockplus.org
17http://www.ghostery.com

adnxs.com
adnxs.com
https://adblockplus.org
http://www.ghostery.com
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Figure 6: The Tor Browser’s notification dialog for canvas read attempts. The
empty image is returned to thwart canvas fingerprinting.

limit plugin enumeration [2], browser manufacturers have not attempted to
build in defenses against fingerprinting. We note that they are in a position to
facilitate such defenses by providing APIs or settings or tools that can be used
to develop countermeasures.
Finally, academic studies on mitigating browser fingerprinting are promising
but still far from providing practically implementable and comprehensive
countermeasures that address all the attack possibilities [10,36].

Evercookies: The straightforward way to defend against evercookies is to
clear all possible storage locations. The long list of items removed by the Tor
Browser when a user switches to a new identity provides a hint of what can
be stored in unexpected corners of the browser: “searchbox and findbox text,
HTTP auth, SSL state, OCSP state, site-specific content preferences (including
HSTS state), content and image cache, offline cache, Cookies, DOM storage,
DOM local storage, the safe browsing key, and the Google wifi geolocation
token. . . ” [40].
The user interfaces provided by popular browsers for managing browsing
information are often fragmented, incomplete, or esoteric. For instance, Firefox’s
Clear Recent History interface does not clear localStorage if the user doesn’t
select “Everything” as the time range of removal18and there is no unified
interface for checking what is stored in localStorage and IndexedDB. Similarly,
Offline Website Data (AppCache and Cache) can only be checked by visiting a
separate about:cache page.
Even if the user manages to clear all storage vectors, the fact that Flash storage
is not isolated19 between browsers which use the Adobe Flash plugin (e.g.
Firefox, Chromium, and Internet Explorer) still creates an opportunity for
respawning. Consider the common scenario of a multi-user environment where

18Bug 527667 https://bugzilla.mozilla.org/show_bug.cgi?id=527667
19Confirmed through manual analysis

https://bugzilla.mozilla.org/show_bug.cgi?id=527667
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Alice uses browser A and Bob uses browser B, without any OS-level separation
of user accounts. Assume that Alice is privacy-conscious and clears browser
state frequently, but Bob does not. Consider an ID on Browser A is shared
between Browser A’s Flash Cookies and HTTP Cookies. When Bob browses,
X may be respawned as an HTTP cookie in browser B. In Section 4.2, we
showed that this behavior occurs in the wild. Now when Alice completely clears
the state of Browser A, the ID X will be removed from common flash storage
and Browser A’s HTTP storage. Crucially, however, when Bob browses again,
it could be respawned from B’s HTTP storage to common flash storage and
later when Alice browses again, back to A’s HTTP storage. We showed in
Section 4.3 that HTTP-to-Flash respawning occurs in the wild as well. Thus
the only way to defend against this attack in a multi-browser environment is to
clear state on all browsers simultaneously. As a proof-of-concept, we manually
tested the first-party domains on which we observe HTTP-to-Flash respawning
(Appendix Table 8) and we found this exact scenario occurs on both casino.com
and xlovecam.com.

Cookie syncing: We’re not aware of any tools that specifically block cookie
syncing. The bluntest approach, of course, is to simply block third-party cookie
placement and HTTP traffic. EFF’s newly released tool Privacy Badger20 uses
heuristics to block third-party cookies with the goal of preventing third-party
tracking, erring on the side of false positives (i.e., blocking too many cookies).
The Tor Browser Bundle (TBB) prevents cross-site cookie tracking by disabling
all third-party cookies, and not storing any persistent data such as cookies,
cache or localStorage. A more targeted solution would be to block third-party
traffic containing strings that are cookie values, but this approach will likely
suffer from false negatives. However, even a perfect blocking tool is flawed if it
is not used immediately from a completely fresh browsing state. For instance, if
a user browses for a short amount of time before installing such a tool, trackers
may have already placed and synced cookies — enabling them to merge data in
the back-end. If these IDs are maintained through a hard-to-block technique
such as canvas fingerprinting, the trackers can still follow a user as he browses
and link their records through these previously-established syncing relationships
even if all future syncs are blocked.

6.2 The effect of opt-out

In order to study the effect of ad-industry opt-out tools on the tracking
mechanisms we study, we opted-out from all the listed companies on the Network
Advertising Initiative (NAI)21 and European Interactive Digital Advertising

20https://www.eff.org/privacybadger
21http://www.networkadvertising.org/choices/

casino.com
xlovecam.com
https://www.eff.org/privacybadger
http://www.networkadvertising.org/choices/
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Alliance (EDAA)22 opt-out pages.

Canvas fingerprinting: For each canvas fingerprinting script we visited two
sites that included this script. We did not observe any website that stopped
collecting canvas fingerprint due to opt-out.23 This was despite the fact that
AddThis was listed on the NAI opt-out page and Ligatus (second most popular
canvas fingerprinter) was listed on EDAA’s page.
We also tried opting-out by on AddThis’ own Data Collection Opt-Out website24,
which again, did not stop AddThis’s script collecting the canvas fingerprint.

Respawning: We did not observe any change in cookie respawning from HTTP
to Flash cookies. This is expected as the parties involved are not participants
in the advertising opt-out initiatives.

Cookie syncing: The use of opt-out cookies reduces the number of IDs
involved in cookie synchronization by 30%. However, we see only a 5%
reduction in the number of parties involved in synchronization. This reduction
is comparatively smaller than the reduction seen when the browser is set to
block third-party cookies. The composition of the top parties involved in
synchronization is nearly the same as in the first-party cookie only case seen in
Appendix A.2. In Section 5.3 we show how, even under the larger reduction
in sync activity afforded by blocking all third-party cookies, it is possible to
recover a large portion of a user’s browsing history using just a small number
of the parties involved.
Note that most companies offering or honoring the opt-outs we evaluated do not
promise to stop tracking when a user opts out, but only behavioral advertising.
While we observed tiny or nonexistent reductions in various forms of tracking due
to opt-out, we make no claims about how opt-outs affect behavioral advertising.

6.3 Implications

Let us consider the level of user effort and sophistication required for effective
mitigation. First, users must be very careful in their use of existing tools, such
as clearing state on all browsers at once or installing blocking tools before
cookie syncing has occurred. Second, users must accept usability drawbacks
such as the prompt for Canvas API access. Third, there are also trade-offs
in functionality and content availability. Finally, the rapid pace at which

22http://www.youronlinechoices.com/uk/your-ad-choices
23We observed that two of the 20 fingerprinting scripts (revtrax.com and vcmedia.vn) were

missing on the sites we found them before, though we checked to ensure that this was not
related to opt-out.

24http://www.addthis.com/privacy/opt-out

http://www.youronlinechoices.com/uk/your-ad-choices
http://www.addthis.com/privacy/opt-out
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new tracking techniques are developed and deployed implies that users must
constantly install and update new defensive tools. It is doubtful that even
privacy-conscious and technologically-savvy users can adopt and maintain the
necessary privacy tools without ever experiencing a single misstep.

Evercookies were at the center of fierce debates when Soltani et al. reported
their findings [43] a few years ago. Although this resulted in a lawsuit and
a $500,000 settlement [14], we find an increasing number of websites using
these tracking technologies as well as significant advances in the technologies
themselves.

The World Wide Web Consortium (W3C) standards documents that describe
three new storage APIs (localStorage, IndexedDB and WebStorage APIs) have
the same boilerplate warning about the tracking potentials of these mechanisms25

and mention the necessity of an interface to communicate the evercookie risk.
Perhaps a fruitful future direction for standards bodies is to consider privacy
issues at the design stage, acknowledging that without such a proactive effort,
tracking techniques are likely to have the upper hand over defenses. W3C’s
draft specification “Fingerprinting Guidance for Web Specification Authors” is
a notable effort in this direction, for providing a guideline to Web specification
authors about privacy risks of browser fingerprinting [15].

6.4 A Path Forward

Blocking tools are currently the primary solution to third-party tracking for
the informed user. We believe that these tools can be greatly improved by
a back-end consisting of regular web-scale crawls. Crawlers can incorporate
sophisticated rules to detect unwanted tracking, as we have shown, whereas it
would be difficult to deploy these directly into browser tools. Accordingly, we
plan to further scale our crawling infrastructure, while continuing to release
results in a machine-readable format.

Crawler-supported blocking tools could also benefit from machine learning and
crowd-sourcing (instead of rules hand-coded by experts) for minimizing false
positives and negatives. For example, we have produced an initial classification
of canvas fingerprinting scripts on 100,000 sites, but there are surely many more
such scripts in the web’s long tail, which suggests that a semi-supervised
learning approach could be effective. The resulting classifier would label
scripts that access the canvas API as canvas fingerprinters or non-canvas-

25http://www.w3.org/TR/webstorage/#user-tracking, http://www.w3.org/TR/
IndexedDB/#user-tracking, http://www.w3.org/TR/webdatabase/#user-tracking

http://www.w3.org/TR/webstorage/#user-tracking
http://www.w3.org/TR/IndexedDB/#user-tracking
http://www.w3.org/TR/IndexedDB/#user-tracking
http://www.w3.org/TR/webdatabase/#user-tracking
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fingerprinters. Turning to crowdsourcing, a browser tool could default to
blocking all canvas write/read attempts, but slowly incorporate user feedback
about broken functionality to train a model for identifying true fingerprinting
attempts. Of course, these two approaches can be combined.

Finally, publishers have little insight into the types of tracking occurring on
their own sites. The tools that we and others have built can be re-purposed to
provide transparency not just to end-users but also allow publishers an in-depth
look into how trackers collect data from their sites, where the data flows, and
how it is used. This will allow them to discriminate between advertising or
analytics providers on the basis of privacy practices.26 If combined with public
pressure to hold first parties accountable for online tracking and not just third
parties, it can move online tracking in a more transparent and privacy-friendly
direction.

7 Conclusion

We present a large-scale study of tracking mechanisms that misuse browser
features to circumvent users’ tracking preferences. We employed innovative
measurement methods to reveal their prevalence and sophistication in the wild.
Current options for users to mitigate these threats are limited, in part due to the
difficulty of distinguishing unwanted tracking from benign behavior. In the long
run, a viable approach to online privacy must go beyond add-ons and browser
extensions. These technical efforts can be buttressed by regulatory oversight.
In addition, privacy-friendly browser vendors who have hitherto attempted to
take a neutral stance should consider integrating defenses more deeply into the
browser.
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A Appendices

A.1 Flash cookies with the most respawns

Flash domain # respawned cookies
Pass 1 Pass 2

bbcdn-bbnaut.ibillboard.com 63 69
irs01.net 21 18
embed.wistia.com 14 13
source.mmi.bemobile.ua 13 14
kiks.yandex.ru 11 11
static.baifendian.com 10 10
tv.sohu.com 7 7
ar.hao123.com 3 2
embed-ssl.wistia.com 3 3
img5.uloz.to 3 3

Table 5: The Flash cookies that respawn most cookies on Alexa top 10,000
sites. The rightmost two columns represent the number of cookies respawned

in two crawls made with the same set of Flash cookies (Crawl2,3).
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A.2 Top parties involved in Cookie Sync

All Cookies Allowed No 3P Cookies
Domain # IDs Domain # IDs
gemius.pl 33 gemius.pl 36

doubleclick.net 32 2o7.net 27
2o7.net 27 omtrdc.net 27

rubiconproject.com 25 cbsi.com 26
omtrdc.net 24 parsely.com 16
cbsi.com 24 marinsm.com 14
adnxs.com 22 gravity.com 14
openx.net 19 cxense.com 13

cloudfront.net 18 cloudfront.net 10
rlcdn.com 17 doubleclick.net 10

Table 6: Number of IDs known by the Top 10 parties involved in cookie sync
under both the policy of allowing all cookies and blocking third-party cookies.
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A.3 Top IDs involved in Cookie Sync

All Cookies Allowed No 3P Cookies
ID Creator # D. ID Creator # D.
turn.com 43 sociomantic.com 22
adsrvr.org 30 mybuys.com 11

mookie1.com 29 mybuys.com 11
Unknown* 24 mercadolibre.com 9

media6degrees.com 23 shinobi.jp 7
parsely.com 22 newsanalytics.com.au 6
Unknown* 19 microsoft.com 6
titaltv.com 18 mercadolibre.cl 5

crwdcntrl.net 18 mercadolibre.com.ar 5
uservoice.com 15 rackspace.com 5

Table 7: Number of domains which have knowledge of unique IDs created by
each listed domain. ID creator determined manually by first placement of

cookie (* the relationship was unclear from HTTP/cookie logs).
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A.4 List of HTTP Respawning Scripts

First-Party
Domains

Source of
Respawn

Script Source

accountonline.com
(citi.com),
fling.com*,
flirt4free.com,
zoosk.com

Third-party:
Iovation
Fraud
Detection

https://mpsnare.iesnare.com/snare.js
https://mpsnare.iesnare.com/stmgwb2.swf

seoprofiler.com,
seobook.com,
bigrock.in, im-
periaonline.org,
mediatemple.net,
resellerclub.com

First-party:
Post Affiliate
Pro Software

http://seobook.com/aff/scripts/trackjs.js

twitch.tv,
justin.tv

Third-party:
Shared CDN

http://www-cdn.jtvnw.net/assets/global-
6e555e3e646ba25fd387852cd97c19e1.js

casino.com First-party:
Unknown/In-
house

http://www.casino.com/shared/js/mts.tracker.js

xlovecam.com First-party:
Unknown/In-
house

http://www.xlovecam.com/colormaker.js

Table 8: Summary of HTTP respawning. “Source of Respawn” describes
whether or not the tracking occurs in the first-party or third-party
context and lists the entity responsible for writing the script. *

Interestingly fling.com has the ID passed from the third-party context
and saved in the first-party context
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A.5 List of Canvas Fingerprinting Scripts

Domain URL of the Fingerprinting Script

addthis.com
http://ct1.addthis.com/static/r07/core130.js,
http://ct1.addthis.com/static/r07/sh157.html#

and 16 others

ligatus.com http://i.ligatus.com//script/fingerprint.min.js

kitcode.net http://src.kitcode.net/fp2.js

vcmedia.vn http://admicro1.vcmedia.vn/fingerprint/figp.js

amazonaws.com1 https://s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js

shorte.st http://static.shorte.st/js/packed/smeadvert-intermediate...

ringier.cz http://stat.ringier.cz/js/fingerprint.min.js

cya2.net http://cya2.net/js/STAT/89946.js?ver=adl&cid=T. . .
revtrax.com http://images.revtrax.com/RevTrax/js/fp/fp.min.jsp

pof.com http://www.pof.com/

rackcdn.com2 https://c44ed9b5e....ssl.cf2.rackcdn.com/mongoose.fp.js

hediyera.com http://www.hediyera.com/js/dota/dota.js

meinkauf.at http://www.meinkauf.at/assets/application-....js

freevoipdeal.com http://www.freevoipdeal.com/en/asset/js/...

voipbuster.com http://www.voipbuster.com/en/asset/js/...

nonoh.net http://www.nonoh.net/asset/js/e4cf90bfdfa29f5fd61050d14a11f0a1

49winners.com http://49winners.com/js/49w3/fingerprint.js?v=1.1

freecall.com http://www.freecall.com/asset/js/f4ccb1cb0e4128b6d4b08f9eb2c8deb4

domainsigma.com http://static.domainsigma.com/static/public/js/common.9b6f343c.js

insnw.net3 http://dollarshaveclub-002.insnw.net/assets/dsc/dsc.fingerprint...

Table 9: URLs of Canvas Fingerprinting JavaScript. The URL parts snipped
for brevity are denoted by . . .

1: s3-ap-southeast-1.amazonaws.com (sends the collected fingerprint to
adsfactor.net domain).

2: 44ed9b5ebea0e0739cdcbf3c0901f34702b963a7ca35c5bc1c.ssl.cf2.rackcdn.com
(sends the collected fingerprint to api.gonorthleads.com).

3:dollarshaveclub002.insnw.net

http://ct1.addthis.com/static/r07/core130.js
http://ct1.addthis.com/static/r07/sh157.html#
http://i.ligatus.com//script/fingerprint.min.js
http://src.kitcode.net/fp2.js
 http://admicro1.vcmedia.vn/fingerprint/figp.js
 https://s3-ap-southeast-1.amazonaws.com/af-bdaz/bquery.js
http://static.shorte.st/js/packed/smeadvert-intermediate...
http://stat.ringier.cz/js/fingerprint.min.js
http://cya2.net/js/STAT/89946.js?ver=adl&cid=T
http://images.revtrax.com/RevTrax/js/fp/fp.min.jsp
http://www.pof.com/
https://c44ed9b5e....ssl.cf2.rackcdn.com/mongoose.fp.js
http://www.hediyera.com/js/dota/dota.js
http://www.meinkauf.at/assets/application-....js
http://www.freevoipdeal.com/en/asset/js/...
http://www.voipbuster.com/en/asset/js/...
http://www.nonoh.net/asset/js/e4cf90bfdfa29f5fd61050d14a11f0a1
http://49winners.com/js/49w3/fingerprint.js?v=1.1
http://www.freecall.com/asset/js/f4ccb1cb0e4128b6d4b08f9eb2c8deb4
http://static.domainsigma.com/static/public/js/common.9b6f343c.js
http://dollarshaveclub-002.insnw.net/assets/dsc/dsc.fingerprint...
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Abstract. We highlight privacy risks associated with the HTML5
Battery Status API. We put special focus on its implementation in
the Firefox browser. Our study shows that websites can discover
the capacity of users’ batteries by exploiting the high precision
readouts provided by Firefox on Linux. The capacity of the battery,
as well as its level, expose a fingerprintable surface that can be
used to track web users in short time intervals.
Our analysis shows that the risk is much higher for old or used
batteries with reduced capacities, as the battery capacity may
potentially serve as a tracking identifier. The fingerprintable
surface of the API could be drastically reduced without any loss in
the API’s functionality by reducing the precision of the readings.
We propose minor modifications to Battery Status API and its
implementation in the Firefox browser to address the privacy issues
presented in the study. Our bug report for Firefox was accepted
and a fix is deployed.

1 Introduction

HTML5 Battery Status API enables websites to access the battery state of
a mobile device or a laptop. Using the API, websites can check the battery
level of a device and use this information to switch between energy-saving or
high-performance modes. All the information exposed by the Battery Status
API is available without users’ permission or awareness.

The “Security and privacy considerations” section of the W3C specification
that describes the Battery Status API, states the following: “The information
disclosed has minimal impact on privacy or fingerprinting, and therefore is
exposed without permission grants” [14]. Our findings, however, show that

137



138 THE LEAKING BATTERY: A PRIVACY ANALYSIS OF THE HTML5 BATTERY STATUS API

the API, as implemented by the Firefox browser on GNU/Linux operating
system, enables fingerprinting and tracking of devices with batteries in short
time intervals.

As of June 2015, Firefox, Chrome and Opera are the only three browsers that
supported the Battery Status API [3]. Although the potential privacy problems
of the Battery Status API were discussed by Mozilla and Tor Browser developers
as early as in 2012 [1,2, 22], neither the API, nor the Firefox implementation,
has undergone a major revision. We hope to draw attention to this privacy issue
by demonstrating the ways to abuse the API for fingerprinting and tracking.

We present an analysis of Battery Status API as implemented by Firefox
on GNU/Linux. Our analysis indicate that seemingly innocuous information
provided by the Battery Status API can serve as a tracking identifier when
implemented incorrectly.

The core contributions of this work are:

1. We present a new device fingerprinting vector based on the Battery Status
API. We show that the Firefox’s implementation of the Battery Status API
allows the discovery of battery’s capacity, provides short-term identifiers
that facilitates tracking and potentially can be used for reinstantiating
identifiers (respawning).

2. We propose a solution that reduces the Battery Status API’s fingerprintable
surface by rounding the level readings provided by the API. Our fix does
not cause any loss in the effective functionality of the API. We filed a bug
report for Mozilla Firefox to communicate the problem and the proposed
solution [20]. The fix was quickly implemented and deployed by Mozilla
engineers in response to our bug report.

2 Related work

The Panopticlick [9] study by Eckersley demonstrated the feasibility of browser
fingerprinting for online tracking by measuring the entropy present in the
browser properties such as screen size, list of system fonts and browser plugins.
Other researchers demonstrated the many ways browsers can be fingerprinted
using different properties, such as clock skew [13], font metrics [10], network
protocol characteristics [7], JavaScript engine performance [16], WebGL and
canvas rendering [17].

Recently, studies measured the prevalence of the browser fingerprinting on the
Web [4,5,19], suggesting that questionable practices such as proxy circumvention
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or stealthy techniques to exercise browser fingerprinting are commonly used by
the websites.

In a similar vein, researchers studied zombie cookie (or evercookie) which is
another tracking mechanism that can be used to reconstruct tracking identifiers
- even if the user decides to clear her history [12] - with the use of Flash
cookies [21], ETags [6] and other vectors.

A recent work, independent from ours, includes a very short note about the
possible use of Battery API as a potential privacy risk vector [18]. The problem
is not further described or analyzed, and the authors only mention potential
risks due to monitoring of charging and discharging rates. In essence, our
analysis is more extensive and detailed. Moreover, we describe a clear risk in
relation to Firefox browser and study it in detail.

3 Background

3.1 Battery Status API

World Wide Web Consortium’s (W3C) Battery Status API allows the reading
of battery status data. Among the offered information are the current battery
level and predicted time to charge or discharge. The respective properties
level, chargingTime and dischargingTime can be accessed in JavaScript by
first calling the navigator.getBattery() method 3 to get a BatteryManager
object which then exposes these properties.

The API does not require user permission to read the battery information, any
website or third-party scripts included on them, can use the API. The API
also does not require browsers to notify users when the battery information
is accessed. That allows website and third-party scripts to access the battery
information transparently - without users’ awareness.

The Battery Status API also provides JavaScript event handlers that allow the
monitoring of updates to battery status. The API defines the level property
as a double-precision floating-point number, taking values between 0 (depleted)
and 1.0 (full) [14].

3Firefox does not implement navigator.getBattery() method, instead, it exposes a
navigator.battery object.



140 THE LEAKING BATTERY: A PRIVACY ANALYSIS OF THE HTML5 BATTERY STATUS API

3.2 Power information under Linux

In our exploratory survey of the Battery Status API implementations, we
observed that the battery level reported by the Firefox browser on GNU/Linux
was presented to Web scripts with double precision. An example battery
level value observed in our study was 0.9301929625425652. We found that on
Windows, Mac OS X and Android, the battery level reported by Firefox has
just two significant digits (e.g. 0.32).

Analyzing the Firefox source code, we found out that the battery level is read
from UPower, a Linux tool allowing the access to the UPower daemon [11].
The UPower daemon provides access to comprehensive power-management data
about the device. Specifically, it enables the access to detailed information
about the battery status such as capacity, level, voltage and provides estimates
about the discharge and charge times.

Analyzing the UPower source code (linux/up-device-supply.c) to under-
stand how it computes the battery level, we compiled the following equations:

BatteryLevel = 0.01× Percentage (1a)

Percentage = 100.0× Energy

EnergyFull
(1b)

Energy = ChargeNow

1, 000, 000 ×DesignV oltage (1c)

EnergyFull = ChargeFull

1, 000, 000 ×DesignV oltage (1d)

The Energy is the current amount of energy present in the battery and measured
in watt-hours. EnergyFull is also measured in watt-hours and represents the
maximum possible amount of energy that can be stored in the battery. The
ChargeNow and ChargeFull are measured in µAh and represent the current and
maximum charge capacities of the battery respectively. Note that, due to the
aging of the battery, EnergyFull tend to be lower than the design capacity of
the battery, moreover, it can also change after a discharge, followed by a full
charge – possibly for calibration purposes. Although many batteries share the
same design capacities (e.g. 48.84 Wh or 62.16 Wh), as they age in time, their
capacities may be reduced in different amounts, resulting in a diverse number of
possible EnergyFull values, which are internally stored with four decimal places
(e.g. 42.1678).
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Since Firefox browser under Linux is accessing the UPower-provided data, it
reads the Percentage value in 64 bit double precision floating point format and
multiplies it by 0.01 to obtain the battery level as shown in 1(a). The level
value is then exposed to website scripts through the Battery Status API in
double precision.

As noted above, the EnergyFull value may change, as the battery capacity
degrades. The UPower daemon updates the current capacity by comparing the
EnergyFull to the latest value stored when the battery is fully charged.

4 Tracking with the Battery Status API

We measure the extent to which it is possible to link (and track) a device with
battery using the battery level and charge/discharge time readouts. We observe
how it could be leveraged for fingerprinting and tracking across sites. Moreover,
we present a method to recover the battery’s effective capacity (EnergyFull)
using the precise battery level readouts provided by Firefox on Linux.

4.1 Tracking across sites

In this section, we discuss several potential fingerprinting and tracking scenarios.
A third-party script that is present across multiple websites can link users’
visits in a short time interval by exploiting the battery information provided
to Web scripts. In order to do that, scripts can use the values of battery level,
dischargingTime and chargingTime. The readings will be consistent on each
of the sites, because of the fact that the update intervals (and their times)
are identical. This could enable the third-party script to link these concurrent
visits. Moreover, in case the user leaves these sites but then, shortly afterwards,
visits another site with the same third-party script, the readings would likely
be utilized to help in linking the current visit with the preceding ones.

Below we analyze more specific cases.

Frequency of battery status changes

We analyzed the update rates under different computing loads (such as watching
a movie, simply browsing the Web, etc).

We tested the rate of these changes by setting up a simple page and registering
JavaScript event handlers for battery status changes; we monitored JavaScript
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readouts of level and dischargingTime, as well as the timestamps of these
events. We analyzed the collected data for relative time differences between
level, chargeTime and dischargeTime changes. The results indicated that for
about 30 s, battery status may serve as a static identifier, allowing (e.g.) a
third-party script to link visits from the same computer in short time intervals.

Number of possible identifiers

In our test setting, the lowest indication of dischargeTime we observed was 355
(in seconds), and highest 40277 s. Assuming all the values spanning a range
(355, 40277) are possible, this gives 39922 numbers. We can also assume that
users seeing a near-drained battery generally connect their notebooks to AC
power. Assuming users start to charge their devices when the battery level
is 0.1, this leaves 90 available battery level states (0.11 to 1.0). The number
of potential levels denoted by a tuple (level, dischargeT ime) would then be a
simple multiplication 90×39922 and the final number of possible states would be
3592980, which only accounts for the discharging state. Using the information
about the battery charge (chargingTime) could effectively double the number of
possible states. The probability of a (level, dischargeT ime) collision (between
different users, and assuming a uniform distribution) is therefore low and for a
short time frame this would effectively be a unique identifier.

However, we emphasize that the dischargeTime levels can be subject to frequent
changes, in response to change in the users’ computer use patterns. This means
that, in practice, the risk of long-term tracking with this information may
be negligible. Moreover, depending on the battery level, some chargeTime or
dischargeTime values may not be observed in practice 4. Yet, the available
combinations could be used to distinguish users behind a NAT (Network Address
Translation). In such a setting, the computers may have similar fingerprints [9]
and often identical public IP addresses. The readouts from the battery may
allow distinguishing these users.

Reconstructing user identifiers in short-time intervals

Users who try to re-visit a website with a new identity may use browsers’
private mode or clear cookies and other client side identifiers. When consecutive
visits are made within a short interval, the website can link users’ new and old
identities by exploiting battery level and charge/discharge times. The website
can then reinstantiate users’ cookies and other client side identifiers, a method

4For instance, 355 s dischargeTime may be too short for a full battery or, 40277 s
dischargeTime may be too long for a battery with level 0.1.
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known as respawning [21]. Note that, although this method of exploiting battery
data as a linking identifier would only work for short time intervals, it may be
used against power users who can not only clear their cookies but can go to
great lenghts to clear their evercookies.

5 Detecting battery capacity

In addition to using battery level and charge/discharge times for linking visits in
short time intervals, Battery Status API can be used to infer the current battery
capacity (EnergyFull) of a device if it allows high precision level readouts. In
this section, we analyze the possibility of fingerprinting a device by exploiting
high precision battery level readouts provided by the Firefox on Linux operating
system.

We found that using the 64-bit double precision floating point battery level
readouts from Firefox on Linux, it is possible to discover the value of EnergyFull,
which signifies the actual battery capacity. We emphasize that our method only
works for UPower and Firefox on Linux, and during our study we encountered
some computers for which we cannot recover the capacity with our method.
This can be due to the differences in how processors handle floating point
calculations 5 or measurement errors in UPower.

The attack works by using the equations 1a-1d by reading the battery level
and finding candidate Energy, EnergyFull and Voltage levels which may give
this floating point number reading. In order to do this, attacker may either
brute-force the candidate values by testing all possible values or precompute a
lookup table.

5.1 Test method

Assuming a uniform space of EnergyFull values (X,Y ), we tested all the
hypothetical level readouts to detect the possible identifiers. It is obvious
that, for a given level reading, several possibilities for EnergyFull level may
exist. However, if the attacker has access to multiple battery level readouts, the
number of collisions becomes significantly smaller. We analyzed the number of
potential EnergyFull candidates as a function of the battery level readouts.

In other words, we computed the number of collisions for one battery level
readout, State1. For each such possible readout level, we simulated another

5See, for example, [8, 15] on the “floating-point determinism problem.”
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different readout level (different than the one in preceding state), State2
(battery levels in State1 and State2 are different). We compared the candidate
EnergyFull values in State1 and State2 and intersecting the sets of possible
EnergyFull levels, we effectively decreased the number of candidate EnergyFull
values. The number of EnergyFull candidates for a total of 1559 battery level
readings are displayed on Figure 1. Figure 2, on the other hand, shows the
reduction of EnergyFull candidates when a script is able read the battery level
multiple times from the same device. The figure is based on 1559 battery level
readings collected from a laptop running Ubuntu 12.04 operating system. We
highlight that such analysis is made possible due to the fixed space a floating-
point value can represent, and relatively limited capacities of batteries used in
practice 6.

Figure 1: Distribution of number of candidate battery EnergyFull values for a
total of 1559 battery level readings (runs). In 5% of the cases the attacker can
detect the battery capacity with just one reading.

6 Defense

In the following subsections we outline possible defenses against the exploitation
of the Battery Status API for fingerprinting and tracking.

6Observe that, possible capacities in this calculations include the reduced battery capacities
(e.g. not limited to battery capacities on the market). Still, we could find the candidate
capacities on a off-the-shelf computer without a significant computation overhead. We believe,
an adversary with moderate storage resources can easily build a lookup table to further reduce
the computation time.
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Figure 2: Average number of candidate battery EnergyFull values as a function
of consecutive battery level readings. Attacker can significantly reduce the
number of candidate battery capacities if he can read the battery level multiple
times.

6.1 Limiting the precision of level readouts

In order to limit the tracking and fingerprinting potential of the Battery Status
API, the implementations should avoid providing high-precision values. By
simply rounding the level value of the battery, the threat would be minimized,
without losing any functionality of the API. This comment especially applies to
platforms where the OS provides high-precision read-outs about the battery.

We filed an appropriate bug report to Firefox implementation, pointing out
the inconsistency of level reporting across different platforms [20]. The fix was
implemented and deployed as of June 2015.

Moreover, we believe the Battery Status API could mention the risk of exposing
high precision readouts in the “Security and privacy considerations” section of
the standard. We plan to communicate the results of the study to the editors
of the API.
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6.2 Asking for user permission to access the Battery Status
API

We also discussed potential scenarios where even the reduced precision of the
level readout and charge/discharge times could constitute a tracking identifier
in short time intervals. In these scenarios, the exposed battery information may
allow an attacker to reinstantiate tracking identifiers in a manner similar to
evercookies.

In order to prevent this, browser vendors might require user permissions for
accesing the Battery Status API. Although this has been suggested by some
concerned Mozilla developers [2], final decision was to make the API available
without permissions. We believe, as a minimum, users should be able to choose
to be asked for battery access by Web scripts. As an alternative, browsers can
enforce the user permission requirement in their private browsing modes.

To the best of our knowledge, the only browser that has a strong defense
against fingerprinting by the Battery Status API is Tor Browser. Tor Browser
completely disables the API [22] to thwart possible fingerprinting attempts.

Finally, the information on the API use could be made available to the user
to aid transparency. We are advocating for streamlining the information to
users, either directly via the browser’s user interfaces, or at least by allowing to
read the respective information by custom-made browser extensions. In this
way, software could allow the users to learn and be aware about the use of the
battery information on devices they own.

7 Conclusion

We analyzed the privacy implications of the Battery Status API, with a focus on
its implementation in Firefox for Linux operating system. Our analysis shows
that the high precision battery level readings provided by Firefox can lead to
an unexpected fingerprinting surface: the detection of battery capacity.

In short time intervals, Battery Status API can be used to reinstantiate tracking
identifiers of users, similar to evercookies. Moreover, battery information can be
used in cases where a user can go to great lenghts to clear her evercookies. In a
corporate setting, where devices share similar characteristics and IP addresses,
the battery information can be used to distinguish devices behind a NAT, of
traditional tracking mechanisms do not work.

The analysis of Web standards, APIs and their implementations can reveal
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unexpected Web privacy problems by studying the information exposed to Web
pages. The complex and sizable nature of the new Web APIs and their deeper
integration with devices make it hard to defend against such threats. Privacy
researchers and engineers can help addressing the risks imposed by these APIs
by analysing the standards and their implementations for their effect on Web
privacy and tracking. This may not only provide an actionable feedback to API
designers and browser manufactureres, but can also improve the transparency
around these new technologies.
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Abstract. Over the last decade, mobile devices and mobile
applications have become pervasive in their usage. Although
many privacy risks associated with mobile applications have been
investigated, prior work mainly focuses on the collection of user
information by application developers and advertisers. Inspired by
the Snowden revelations, we study the ways mobile applications
enable mass surveillance by sending unique identifiers over
unencrypted connections. Applying passive network fingerprinting,
we show how a passive network adversary can improve his ability
to target mobile users’ traffic.
Our results are based on a large-scale automated study of mobile
application network traffic. The framework we developed for this
study downloads and runs mobile applications, captures their
network traffic and automatically detects identifiers that are sent
in the clear. Our findings show that a global adversary can
link 57% of a user’s unencrypted mobile traffic. Evaluating two
countermeasures available to privacy aware mobile users, we find
their effectiveness to be very limited against identifier leakage.

1 Introduction

Documents that have been revealed by the former NSA contractor Edward
Snowden shed light on the massive surveillance capabilities of the USA
and UK intelligence agencies. One particular document released by the
German newspaper Der Spiegel describes the ways in which traffic of mobile
applications (apps) is exploited for surveillance [16]. The document, which reads
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“Exploring and Exploiting Leaky Mobile Apps With BADASS,” provides a unique
opportunity to understand the capabilities of powerful network adversaries.
Furthermore, the document reveals that identifiers sent over unencrypted
channels are being used to distinguish the traffic of individual mobile users with
the help of so-called selectors. Similar revelations about the use of Google cookies
to target individuals imply that BADASS is not an isolated incident [12,34].

While it is known that a substantial amount of mobile app traffic is unencrypted
and contains sensitive information such as users’ location or real identities [24,
35, 43], the opportunities that mobile traffic offers to surveillance agencies may
still be greatly underestimated. Identifiers that are being sent in the clear,
may allow the adversary to link app sessions of users and thus to learn more
information about the surveilled users than he could without. The purpose
of this study is to evaluate this risk and to quantify the extent to that it is
possible to track mobile app users based on unencrypted app traffic.

To this end we present a novel framework to quantify the threat that a
surveillance adversary poses to smartphone users. The framework automates
the collection and analysis of mobile app traffic: it downloads and installs
Android apps, runs them using Android’s The Monkey [18] tool, captures the
network traffic on cloud-based VPN servers, and finally analyzes the traffic
to detect unique and persistent identifiers. Our framework allows large-scale
evaluation of mobile apps in an automated fashion, which is demonstrated by
the evaluation of 1260 apps. We choose the apps among all possible categories
of the Google Play store and of different popularity levels.

Our study is inspired by a recent work by Englehardt et al. [26]. They studied the
surveillance implications of cookie-based tracking by combining web and network
measurements. The evaluation method they use boils down to measuring the
success of the adversary by the ratio of user traffic he can cluster together.
We take a similar approach for automated identifier detection but we extend
their work to capture non-cookie-based tracking methods that are suitable for
user tracking. Moreover, we show how TCP timestamp-based passive network
fingerprinting can be used to improve the clustering of the traffic and may allow
to detect the boot time of Android devices.

1.1 Contributions

Large-scale, automated study on surveillance implications of mobile
apps. We present an automated analysis of 1260 Android apps from 42 app
categories and show how mobile apps enable third party surveillance by sending
unique identifiers over unencrypted connections.



BACKGROUND AND RELATED WORK 155

Table 1: Unique smartphone identifiers present on Android, an overview.

Name Persistence Permission

Android ID until a factory reset None
MAC Address lifetime of the device ACCESS_WIFI_STATE
IMEI lifetime of the device READ_PHONE_STATE
IMSI lifetime of the SIM card READ_PHONE_STATE
Serial number lifetime of the device None [41]
SIM serial number lifetime of the SIM card READ_PHONE_STATE
Phone number lifetime of the SIM card READ_PHONE_STATE
Google Advertising ID until reset by the user ACCESS_NETWORK_STATE,

INTERNET

Applying passive network fingerprinting for mobile app traffic
exploitation. We show how a passive network adversary can use TCP
timestamps to significantly improve the amount of traffic he can cluster. This
allows us to present a more realistic assessment of the threat imposed by a
passive adversary. Further, we show how an adversary can guess the boot time
of an Android device and link users’ traffic even if they switch from WiFi to
3G or vice versa.

Evaluation of the available defenses for privacy aware users. We
analyze the efficacy of two mobile ad-blocking tools: Adblock Plus for
Android [13] and Disconnect Malvertising [14]. Our analysis shows that these
tools have a limited effect preventing mobile apps from leaking identifiers.

2 Background and Related Work

Android apps and identifiers. Android apps and third-parties can access
common identifiers present on the smartphone, such as MAC address, Google
Advertising ID or IMEI number. We call these identifiers smartphone IDs. An
overview of the Android smartphone IDs can be found in Table 1. Developers
may also choose to assign IDs to users (instead of using smartphone IDs), for
identifying individual app installations or simply to avoid asking for additional
permissions [11]. We refer to such identifiers as app assigned IDs.

Privacy implications of mobile apps. Although privacy implications of
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Android apps have been extensively studied in the literature [25,28,29], prior
work has mainly focused on the sensitive information that is collected and
transmitted to remote servers. Xia et al. showed that up to 50% of the
traffic can be attributed to the real names of users [43]. Enck et al. developed
TaintDroid [25], a system-wide taint analysis system that allows runtime analysis
and tracking of sensitive information flows. While it would be possible to use
TaintDroid in our study, we opted to keep the phone modifications minimal and
collect data at external VPN servers. This allows us to have a more realistic
assessment of application behavior and adversary capabilities.

Our work differs from these studies, by quantifying the threat posed by a passive
network adversary who exploits mobile app traffic for surveillance purposes. We
also show how the adversary can automatically discover user identifiers and use
passive network fingerprinting techniques to improve his attack.

Passive network monitoring and surveillance. Englehardt et al. [26] show
how third-party cookies sent over unencrypted connections can be used to cluster
the traffic of individual users for surveillance. They found that reconstructing
62-73% of the user browsing history is possible by passively observing network
traffic.

In addition to using identifiers to track smartphones, an eavesdropping adversary
can use passive network fingerprinting techniques to distinguish traffic from
different physical devices. Prior work showed that clock skew [31,33,44], TCP
timestamps [23, 42] and IP ID fields [21] can be used to remotely identify hosts
or count hosts behind a NAT. In this study, we use TCP timestamps to improve
the linking of users’ mobile traffic in short time intervals. We assume the
adversary to exploit TCP timestamps to distinguish traffic of users who are
behind a NAT. Moreover, we demonstrate how an adversary can discover the
boot time of an Android device by exploiting TCP timestamps.

3 Threat Model

In this paper we consider passive network adversaries whose goal is to link app
traffic of smartphone users. The adversaries observe unique identifiers that are
being transmitted from mobile apps in the clear and apply network fingerprinting
techniques. We consider that the adversaries cannot break cryptography or
launch MITM attacks such as SSLstrip [32].

We distinguish between two types of passive adversaries: A global passive
adversary, who can intercept all Internet traffic at all time; and a restricted
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passive adversary who can only observe a limited part of the network traffic.
Both adversaries have the capability to collect bulk data. This may be achieved
in various ways, such as tapping into undersea fiber-optic cables; hacking routers
or switches; intercepting traffic at major Internet Service Providers (ISP) or
Internet Exchange Points (IXP) 3.

There can be several models in which an adversary may have limited access
to the user’s traffic. In this study we evaluate adversaries whose limitation
is either host-based or packet-based. The host-based adversary is only able to
see traffic bound to certain hosts; for example, because the adversary is only
able to obtain warrants for intercepting traffic within its own jurisdiction. The
packet-based adversary may only have access to a certain point in the Internet
backbone and thus miss traffic that is being sent along other routes. For both
adversaries, we evaluate the success based on different levels of network coverage
(Section 7.2). We simulate partial network coverage by randomly selecting
hosts or packets to be analyzed depending on the model. For instance, for the
host-based model with 0.25 network coverage, we randomly pick one-fourth of
the hosts and exclude the traffic bound to remaining hosts from the analysis.

4 Data Collection Methodology

4.1 Experimental Setup

We present the experimental setup4 that is used for this paper in Fig. 1. It
includes a controller PC, two smartphones and two VPN servers for traffic
capture. The main building blocks of our framework are as follows:

Controller PC. The Controller PC runs the software that orchestrates the
experiments and the analysis. It has three main tasks: 1) installing apps on the
smartphones and ensuring that the experiment runs smoothly, e.g. checking the
phone’s WiFi and VPN connections, 2) sending SSH commands to the remote
VPN servers to start, stop and download the traffic capture, 3) analyzing the
collected data.

Smartphones. We conducted our experiments with two Samsung Galaxy SIII
Mini smartphones running Android version 4.1.2. We rooted the phones to

3All these methods are feasible, as illustrated by the Snowden revelations [6, 8].
4The source code of the framework, as well as the collected data will be made available to

researchers upon request.



158 LEAKY BIRDS: EXPLOITING MOBILE APPLICATION TRAFFIC FOR SURVEILLANCE

INTERNET

Ads &
Analytics

App 
Backend

adb

VPN

Controller PC

VPN Servers

Figure 1: Our setup in this study consists of a Controller PC that manages the
experiments, two Android phones that run apps, and two VPN servers that
capture the network traffic.

address issues such as storage and uninstallation problems. Although we
considered using the Android emulator as in other works [24, 36, 38], our
preliminary tests [39] showed that the number of transmitted identifiers is
significantly less in the emulator compared to the same setting with a real
smartphone and the emulator lacks certain identifiers, such as the WiFi MAC
address. We also chose not to intercept system API calls or instrument the
operating system, such as in [25, 27], since we preferred a simpler and more
portable solution.

The Monkey. We use The Monkey [18] tool to automate the experiments
and simulate the user interaction at large scale. The Monkey generates a
pseudo-random event stream that includes touch, motion and keyboard events.

Traffic Capture. The network traffic is captured by two remote VPN servers,
using the dumpcap [5] command line tool. Using VPN servers, we could capture
all the network traffic and not only HTTP traffic, which would be the case
with an HTTP proxy. Also, since we record the traffic on remote machines,
we ensure that there is no packet drop due to lack of buffer space on resource
constrained devices [15]. However, we captured traffic locally on the phone
during the evaluation of ad-blockers for Android. These tools use a proxy
or VPN themselves to block ads. Since Android does not allow simultaneous
VPN connections, we captured the traffic locally by running tcpdump on the
smartphones. To ensure comparability, we exclude all the captures where we
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observed packet drops from the analysis (20% of the cases, 171 apps in two
experiments).

Traffic parser. For parsing the captured network traffic, we developed a
Python script based on the dpkt [3] packet parsing library. The script allows
us to decode IPv4 and IPv6 datagrams, reassemble TCP streams, decompress
compressed HTTP bodies and to parse GRE and PPTP encapsulation used
by the VPN. We extract HTTP headers and bodies, packet timestamps, IP
addresses and port numbers from the packets for later use. Since it is outside of
the scope of this study, we did not decrypt SSL/TLS records. However, for the
TCP timestamp analysis described in Section 6 it is beneficial, yet not necessary,
to extract TCP timestamps from all TCP packets, including the ones from
encrypted HTTPS traffic. Note that this is within our adversary model, because
TCP headers are sent in the clear and thus available to a passive adversary.

Having described the main building blocks of the experimental setup, now we
outline the different modes and steps of the experiments:

Experiment modes. We run experiments in two different modes to evaluate
the difference in identifier transmission; i) if the app is simply opened and ii) if
the user actually interacts with the app. We refer to the former as startscreen
experiment and to the latter as interactive experiment. The Monkey is used to
simulate user interaction in the interactive experiments.

Evaluation of ad-blocker apps. We evaluate the effect of apps that block
ads and trackers. While those apps are not specifically designed to prevent
identifier leakage, they may still reduce the number of identifiers being sent
in the clear. Specifically, we repeated the experiment of the top-popularity
apps after we installed and activated the ad-blocker apps Adblock Plus for
Android [13] and Disconnect Malvertising [14].

Steps of the experiment. Our framework executes the steps of the
experiments in an entirely automated fashion. The Controller PC connects the
smartphone to the VPN server by running a Python based AndroidViewClient [4]
script that emulates the touch events necessary to start the VPN connection
on the smartphone. Since installing all the apps at once is not possible due to
storage constraints, our framework conducts the experiment in cycles. In each
cycle we install 20 apps and then run them sequentially5. The apps for each
cycle are randomly chosen from the entire set of apps, with the condition that
each app is only picked once. Before running an app, the Controller PC kills the
process of the previous app. This way we are able to prevent the traffic of the
previously tested app mistakenly being recorded for the subsequent app. After

5We chose 20 since this was the maximum number of apps that can be installed on an
Android emulator at once, which we used in the preliminary stages of the study.
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finished running the 20 apps, the Controller PC runs all 20 apps a second time
in the same order. Running each app twice enables the automated detection
of identifiers outlined in Section 5.1. Finally, the Controller PC completes the
current cycle by uninstalling all 20 apps.

4.2 Obtaining Android Applications

To obtain the Android apps, we developed scripts for crawling the Google Play
store and, subsequently, to download APK files. Our scripts are based on
the Python Selenium [17] library, the APK downloader browser extension and
webpages [1]. Using this software, we crawled the entire Play Store and obtained
information on 1, 003, 701 different Android apps. For every app we collected
information such as number of downloads, rating scores and app category. This
allows us to rank the apps of every category according to their popularity.

For every app category we choose 10 apps from three different popularity
levels: top-popularity, mid-popularity and low-popularity. While we use the most
popular apps for the top-popularity category, we sample the mid-popularity
and low-popularity apps from the 25th and 50th percentiles from each category.
At the time we conducted the crawl, there were 42 different app categories and
we therefore obtained a total of 1260 (42× 10× 3) apps. The average time for
evaluating one app is 64 seconds.

5 Analysis Methodology

In the following we show how an adversary is able to extract identifiers from
network traffic and then use these identifiers to cluster data streams, i.e. linking
data streams as belonging to the same user. This is the same that an adversary
with the goal of surveilling Internet traffic would do, i.e. extracting and applying
a set of selectors that match unique and persistent mobile app identifiers.
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5.1 Identifier Detection

Suitable identifiers for tracking need to be persistent and unique, i.e. the
same ID cannot appear on different phones and IDs need to be observable over
multiple sessions. Our framework automatically detects such unique identifiers
in unencrypted mobile app traffic. While the overall approach is similar to the
one in [19,26] we extend the cookie-based identifier detection technique to cover
mobile app traffic. We assume that the smartphone IDs (such as Android ID
or MAC address) are not known a priori to the adversary. The adversary has
to extract IDs based on the traffic traces only. Yet, we use smartphone IDs as
the ground truth to improve our automated ID detection method by tuning its
parameters.

For finding identifiers, we process HTTP request headers, bodies and URL
parameters. Specifically, the steps of the unique identifier detection are as
follows:

• Split URLs, headers, cookie contents and message bodies using common
delimiters, such as “=”, “&”, “:”, to extract key-value pairs. Decode
JSON encoded strings in HTTP message bodies.

• Filter out cookies with expiry times shorter than three months. A tracking
cookie is expected to have a longer expiry period [26].

• For each key-value pair, we construct an identifying rule set and add it to
the potential identifier list. This is the tuple (host, position, key), where
host is extracted from the HTTP message and position indicates whether
the key was extracted from a cookie, header or URL.

• Compare values of the same key between runs of two smartphones.

– Eliminate values if they are not the same length.
– Eliminate values that are not observed in two runs of the same app on

the same smartphone.
– Eliminate values that are shorter than 10 or longer than 100 characters.
– Eliminate values that are more than 70% similar according to the

Ratcliff-Obershelp similarity measure [22].

• Add (host, position, key) to the rule set.

We tuned similarity (70%) and length limits (10, 100) according to two criteria:
minimizing false positives and detecting all the smartphone identifiers (Table 1)
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with the extracted rule set. We experimented with different limit values and
picked the values that gave us the best results based on these criteria. A more
thorough evaluation of these limits is omitted due to space constraints, but
interested readers can refer to [19,26] for the main principles of the methodology.

5.2 Clustering of App Traffic

While the ultimate goal of the adversary is to link different app sessions of the
same user by exploiting unique identifiers transmitted in app traffic, the first
challenge of the adversary is to identify the traffic of one app. An app may open
multiple TCP connections to different servers and linking these connections can
be challenging. The user’s public IP address is not a good identifier: several
users may share the same public IP via a NAT. Moreover, IP addresses of
mobile phones are known to change frequently [20].

In this work we consider two different clustering strategies. In the TCP stream
based linking, the attacker can only link IP packets based on their TCP stream.
The adversary can simply monitor creation and tear down of TCP streams and
ensure that the packets being sent within one stream are originating from the
same phone. The second, more sophisticated strategy employs passive network
fingerprinting techniques to link IP packets of the same app session. We will
refer this technique as app session based linking and outline it in Section 6.

Following Englehardt et al. [26] we present linking of the user traffic as a graph
building process. We use the term node to refer to a list of packets that the
adversary is certain that they belong to the same user. As explained above,
this is either a TCP stream or an app session. For every node the adversary
extracts the identifying rule set (host, position, key) as described in Section 5.1.
Starting from these nodes, the adversary inspects the content of the traffic and
then tries to link nodes together to so-called components.

Therefore, the attacker will try to match a node’s identifiers to the identifiers of
the existing components. We account for the fact that some developers do not
use the smartphone ID right away as identifier, but derive an identifier from it
by hashing or encoding. Thus the clustering algorithm will also try to match
the SHA-1, SHA-256, MD5 and murmur3 hashes and base64 encoded form of
the identifiers. For every node, there exist three possibilities when comparing
the node’s identifiers to a existing component’s identifiers:

1. The node’s value (or its derivative) matches the identifiers of
an existing component: The node will be added to the component and
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the respective identifiers are being merged, i.e. the newly added node may
include identifiers not yet included in the component.

2. None of the node’s identifiers or their derivatives can be
matched to an existing component: The node creates its own
component which is disconnected from all other components.

3. The node shares identifiers with multiple components: These
components are merged together and the node is added to this component.

For the remainder of this paper, we refer to the component that contains
the highest number of nodes as the Giant Connected Component (GCC).
Furthermore, we define the ratio of number of nodes in GCC to the number
of nodes in the whole graph as the GCC ratio. The GCC ratio serves as a
metric for measuring the adversary’s success for linking users’ traffic based on
the amount of traffic he observes.

5.3 Background Traffic Detection

The Android operating system itself also generates network traffic, for example
to check updates or sync user accounts. Although we find in our experiments
that the Android OS does not send any identifiers in the clear, we still take
measures to avoid that this traffic pollutes our experiment data. Particularly,
we captured the network traffic of two smartphones for several hours multiple
times without running any app. A complete overview of all HTTP queries made
during such captures can be found in [40]. We excluded all the HTTP requests
to these domains during the analysis stage. Although we excluded background
traffic from our analysis, the adversary may try to exploit the background traffic
in a real-world attack.

6 Linking Mobile App Traffic with TCP Times-
tamps

In this section we elaborate on the adversary’s ability to employ passive
fingerprinting techniques to link different IP packets originating from the same
smartphone. As mentioned in Section 5.2, this gives a significant advantage to
the adversary when clustering the user traffic. In particular, the adversary is
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able to analyze TCP timestamps for this task as they are commonly allowed by
the firewalls [33].

TCP timestamps are an optional field in TCP packets that include a
32-bit monotonically increasing counter. They are used to improve the
protocol performance and protect against old segments that may corrupt
TCP connections [30]. While the exact usage of TCP timestamps is platform
dependent, our inspection of the Android source code and capture files from
our experiments revealed that Android initializes the TCP timestamp to a
fixed value after boot and uses 100Hz as the timestamp increment frequency [2].
Thus, at any time t, TCP timestamp of a previously observed device can be
estimated as follows: TSt = TSprev + 100 × (t − tprev), where TSprev is the
timestamp observed at tprev and (t− tprev) is the elapsed time. The adversary
can therefore link different visits from the same device by comparing the observed
TCP timestamps to his estimate. Prior studies have shown that distinguishing
devices behind a NAT using TCP timestamps can be done in an efficient and
scalable manner [23,37,42].

Figure 2: TCP timestamp vs. capture time plot of Angry Birds Space app
follows a line with a slope of 100, which is the timestamp resolution used by
Android. Different TCP sessions, indicated by different colors, can be linked
together by exploiting the linearity of the TCP timestamp values.

Fig. 2 demonstrates the linear increase of the TCP timestamps of a phone
running the “Angry Bird Space” app. To demonstrate the linkability of TCP
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streams, every point in Fig. 2 is colored based on its TCP source and destination
port. The straight line shows that the adversary can easily link different TCP
streams of the same device by exploiting the linearity of the timestamps. The
adversary is also able to consider TCP timestamps of encrypted communications,
because TCP timestamps are sent unencrypted in the packet headers. This
allows adversaries within our threat model to further increase the success of
the linking. Furthermore, TCP timestamps can be used to link traffic even
if the user switches from WiFi to mobile data connection or vice versa [40].
Finally, the linking is still feasible even if the adversary misses some packets,
for instance, due to partial coverage of the network.

Limitations. During the background traffic detection experiments, we observed
cases in which TCP timestamps are not incremented linearly. Consulting the
Android System Clock Documentation, we determined that the CPU and certain
system timers stop when the device enters the deep sleep state [10]. This power
saving mechanism is triggered only when the screen is off and the device is not
connected to the power outlet or USB port. Therefore, the phone will never go
into deep sleep when a user is interacting with an app and the TCP timestamps
will be incremented in a predictable way, allowing the linking of the traffic by
app sessions.

Implications for traffic linking. We will assume the adversary can use TCP
timestamps to cluster packets generated during the use of an app (app session),
as the phone never enters deep sleep mode when it is in active use. As mentioned
in Section 5.2, we will refer to this as app session based linking.

Android boot time detection. In addition to linking packets from different
TCP streams, TCP timestamps can also be used to guess the boot time of
remote devices [7]. Among other things, boot time can be used to determine if
the device is patched with critical updates that require a reboot. Since it is not
directly related to traffic linking attack considered in the study, we explain the
boot time detection methodology in the unabridged version of this paper [40].

7 Results

7.1 Identifier Detection Rules

We present in Table 2 an overview of the identifying rule set that we detected
by the methodology explained in Section 5.1. Recall that identifying rules
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Table 2: The extracted ID detection rules and corresponding smartphone IDs.
SID: Smartphone ID, AAID: App Assigned ID.
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Interactive top 165 111 63 29 16 193 577
Startscreen top 115 56 45 19 11 91 337
Interactive mid 56 28 20 6 5 60 175
Startscreen mid 48 28 16 5 4 40 141
Interactive low 73 61 22 15 8 53 232
Startscreen low 47 24 16 7 8 33 135

Total 504 308 182 81 52 470 1597

correspond to “selectors” in the surveillance jargon, which allow an adversary
to target a user’s network traffic. In total we found 1597 rules with our method,
of which 1127 (71%) correspond to a smartphone ID or its derivative. Our
results show that the Android ID and Google Advertising ID are the most
frequently transmitted smartphone IDs, accounting for 72% (812/1127) of the
total. We group the least commonly transmitted smartphone IDs under the
Other Smartphone IDs column, which include the following: device serial number,
IMSI, SIM serial number and registered Google account email. Furthermore,
we found 29% of the extracted rules to be app-assigned IDs.

Analyzing the extracted rules for the top-popularity, interactive experiments,
we found that 50% of the identifiers are sent in the URI of the HTTP requests
(291 rules). In 39% (225) of the rules, the IDs are sent in the HTTP request
body, using the POST method. Only 3% (18) of the cases, the identifier was
sent in a cookie. The average identifier length in our rule set is 26.4 characters.
A sample of identifying rules is given in Table 3.

After extracting identifier detection rules, we apply them to the traffic captured
during the experiments. Due to space constraints we present the detailed results
on the transmitted IDs in the unabridged version of this paper [40].

Moreover, analyzing the traffic captures of the top-popularity apps, we found
that certain apps send precise location information (29 apps), email address
(7 apps) and phone number (2 apps) in the clear. Together with the linking



RESULTS 167

Table 3: Examples rules found in the constructed identifying rule set. The
values are modified to prevent the disclosure of real identifiers of the phones
used in the study.

Host Position Key ID Value

data.flurry.com Body offset60 Android ID AND9f20d23388...

apps.ad-x.co.uk URI
custom_data /
meta_udid

Unknown 19E5B4CEE6F5...

apps.ad-x.co.uk URI macAddress WiFi MAC D0:C4:F7:58:6C:12
alog.umeng.com Body header / device_id IMEI 354917158514924

d.applovin.com Body device_info / idfa
Google
Ad ID

0e5f5a7d-a3e4-..

Table 4: The most common third-party hosts found to collect at least an
identifier over unencrypted connections. The listed hosts are contacted by
the highest number of apps (based on 420 top-popularity apps, interactive
experiment).

Host # Apps Collected IDs

data.flurry.com 43 Android ID
ads.mopub.com 32 Google advertising ID

apps.ad-x.co.uk 22
Google advertising ID, IMEI,
Serial number, Android ID

alog.umeng.com 16 IMEI
a.applovin.com 16 Google advertising ID

attack presented in this paper, this allows an adversary to link significantly
more traffic to real-life identities.

We found that 1076 different hosts were contacted over unencrypted connections
during the experiments for the top-popularity apps in the interactive mode.
The data.flurry.com domain is the most popular third-party domain collecting
Android ID from 43 different apps (Table 4). Note that data.flurry.com received
a notable mention in the slides of the BADASS program [16] for its identifier
leakage.

data.flurry.com
apps.ad-x.co.uk
apps.ad-x.co.uk
alog.umeng.com
d.applovin.com
data.flurry.com
ads.mopub.com
apps.ad-x.co.uk
alog.umeng.com
a.applovin.com
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(a) GCC ratio for the top-popularity apps,
shown for TCP stream and app session
based linking.

(b) GCC ratio for apps of different
popularity levels for interaction mode.

(c) GCC ratio for top-popularity apps,
shown for interaction and startscreen
mode.

(d) GCC ratio for the top-popularity
apps, shown while using different privacy
enhancing tools.

(e) GCC ratio for the top-popularity apps,
shown for different network coverage
levels of a host based restricted adversary.

(f) GCC ratio for the top-popularity apps,
shown for different network coverage
levels of a packet based restricted
adversary.

Figure 3: The success of the adversary under different experimental settings
and adversary models. The GCC ratio is the proportion of the unencrypted
app traffic that the adversary can link together. The results are shown for 100
different randomly selected combinations of 27 apps.



RESULTS 169

7.2 Traffic Clustering

Here we evaluate the adversary’s success in terms of unencrypted app traffic
ratio (GCC ratio) that he can link together in different settings. We follow the
analysis methodology explained in Section 5.2 and present clustering results
for 100 randomly selected combinations of 27 apps. We pick 27 apps since it is
the average number of apps used per month according to a recent survey [9].
Running 100 iterations with a different combination of (27) apps allowed us
to reduce the variance between different runs and account for all the studied
apps. We only consider apps that send at least one HTTP request and calculate
the GCC ratio based on the unencrypted traffic. For the top-popular apps in
interactive mode, these account for 69% of the apps. For simplicity, we will
present the clustering results for only one phone and a single run of each app.
The results from two phones did not have any significant difference.

Effect of using TCP timestamps for traffic linking. The left boxplot in
Fig. 3(a), shows that when the adversary does not take TCP timestamps into
account (TCP stream based linking), he can cluster 25% of users’ unencrypted
traffic. However, by exploiting TCP timestamps he can increase the GCC ratio
to 57%.

Effect of app popularity Fig. 3(b) shows that popularity has a significant
impact on the linking success of the adversary. The most popular apps allow
the adversary to cluster 57% of the unencrypted traffic, while the apps from
the mid-popular and low-popular level result in a GCC ratio of 32% and 28%,
respectively.

Due to space constraints, we will only present results for the apps from the
top-popularity level in the rest of this section.

Effect of user interaction. Fig. 3(c) shows the GCC ratio for two different
experiment modes, interaction and startscreen. Although the number of
identifiers sent in two modes are significantly different (577 vs. 337), the
graph shows a similar GCC ratio around 53% for two modes. A possible
explanation is that the identifiers that enable linking are already sent as soon
as the app is started.

Effect of countermeasures. Fig. 3(d) shows that both ad-blocking apps
provide a limited protection against linking of the app traffic. Using Adblock
Plus leads to an average linking of 50%. Disconnect Malvertising performs
better, with a GCC rate of 38%, reduced from 57%.

Restricted adversary. Fig. 3(e) shows that an adversary that can only
intercept traffic to 50% of the hosts can link up to 38% of the unencrypted
mobile app sessions. For the packet based restricted adversary model, we observe



170 LEAKY BIRDS: EXPLOITING MOBILE APPLICATION TRAFFIC FOR SURVEILLANCE

that an adversary with a limited coverage of 25% of the user’s packets can
still link 37% of all app sessions together (Fig. 3(f)). In both models restricted
adversary’s success grows almost linear with his network coverage. Note that
packet based restricted adversary can link significantly more traffic than the
host-based model for the same network coverage ratio. This may be due to
being able to observe packets from more hosts which will allow to link apps
across sessions.

8 Limitations

Some apps may not be fully discovered by The Monkey, leading to an incomplete
view of the network traffic. Also, apps that require user logins may not be
sufficiently analyzed by our automated methodology. For those reasons, our
results should be taken as lower bounds.

While we assume that the smartphones can be distinguished by their TCP
timestamps, some middleboxes may interfere with user traffic. Firewalls, proxies
or cache servers may terminate outgoing HTTP or TCP connections and open a
new connection to the outside servers. Furthermore, end-user NAT devices may
have various configurations and hence behave differently compared to enterprise
NATs. In such cases, the adversary’s ability to link traffic by TCP timestamps
may be reduced.

We used rooted Android phones in our experiments. Although rooting the
phones may introduce changes in the observed traffic, we assumed the changes
to be minimal.

9 Conclusion

The revealed slides of the BADASS program have shown that unencrypted
mobile app traffic is exploited for mass surveillance. Identifiers sent in the clear
by the mobile applications allow targeting mobile users, linking of their traffic
and building a database of their online activities.

In this study, we evaluated the surveillance threat posed by a passive network
adversary who exploits mobile app traffic for surveillance purposes. We presented
a novel framework that automates the analysis of mobile app network traffic.
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Our framework and methodology is designed to be flexible and can be used in
other mobile privacy studies with slight modifications.

Our results show that using TCP timestamps and unique identifiers sent in
the unencrypted HTTP traffic, a global adversary can cluster 57% of users’
unencrypted mobile app sessions. We demonstrated that a passive adversary
can automatically build a rule set that extracts unique identifiers in the observed
traffic, which serves as a “selector” list for targeting users.

Our results suggest that popular apps leak significantly more identifiers than
the less popular apps. Furthermore, while interacting with the app increases
the number of leaked identifiers, solely starting an app amounts to the same
attack effectiveness.

We evaluated two countermeasures designed to block mobile ads and found that
they provide a limited protection against linking of the user traffic. Encrypting
mobile app traffic can effectively protect against passive network adversaries.
Moreover, a countermeasure similar to HTTPS Everywhere browser extension
can be developed to replace insecure HTTP connections of mobile apps with
secure HTTPS connections on the fly.
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Abstract. We present a new form of online tracking: explicit, yet
unnecessary leakage of personal information and detailed shopping
habits from online merchants to payment providers. In contrast to
the widely debated tracking of Web browsing, online shops make it
impossible for their customers to avoid this dissemination of their
data. We record and analyse leakage patterns for the 881 most
popular US Web shops sampled from actual Web users’ online
purchase sessions. More than half of the sites we analysed shared
product names and details with PayPal, allowing the payment
provider to build up fine-grained and comprehensive consumption
profiles about its clients across the sites they buy from, subscribe to,
or donate to. In addition, PayPal forwards customers’ shopping
details to Omniture, a third-party data aggregator with even
larger tracking reach than PayPal itself. Leakage to PayPal
is commonplace across product categories and includes details
of medication or sex toys. We provide recommendations for
merchants.

1 Introduction

1.1 Online payment providers process rich transaction data

Online payment handling is a key enabler for electronic retailing and a growing
business opportunity as mobile commerce takes off. Contactless payments have

∗Preliminary results were presented as a short paper at the Financial Cryptography and
Data Security 2015 conference. This article contains the full analysis.
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been pioneered in successful yet isolated applications, such as public transport
(e.g., Oyster in London, touch& travel in Germany) or entertainment (e.g.,
Disneyland [62], Starbucks [21]). General-purpose digital wallets and near-field
payment capabilities are now integrated in all major mobile phone operating
systems [20,27,42] and promise wider adoption across verticals.

Payment providers are intermediaries between merchants and their customers
who buy and then pay for goods and services. As intermediaries, payment
providers necessarily gain insight into the transaction as they process personal
information, just like the delivery company will need the customer’s postal
address. The minimum data requirements for payment handling are the order
total, the receiving merchant and an authenticated payment instrument. This
corresponds to data items traditionally collected during credit card transactions.
However, a much richer set of data items becomes available for online, mobile
and in-app purchases, including an itemised statement of the goods purchased
or information about the buyer, allowing value-added services. Amongst credit
card issuers, these data are known as Level II and III but have been rarely
available for point-of-sale or transactions [28].

The move towards richer transaction details is driven and enabled by three
factors: first, the extended role of payment providers as shopping cart solutions,
so that itemised data availability becomes a necessity; second, technically enabled
by the lack of data length restrictions found in legacy payment processing; third,
the mining of detailed transaction data for fraud detection and prevention [32].
For instance, MasterCard reported acceptance by over 19 million merchants
worldwide back in 2001, but only 1% would be able to “capture and transmit
Level II and Level III data”. These include itemised product descriptions,
quantities and prices [39], but still fewer details than what new online payment
providers collect.

1.2 Potential benefits of data collection by payment providers

Fraud detection and prevention is the most-publicised benefit of collecting and
inspecting purchase details. The rise of riskier card-not-present transactions
over the Web or on mobile has mandated new efforts in fighting crime. Between
2002 and 2012, the most recent year for which data is available, the annual
fraud losses on UK-issued payment cards has decreased from £427 million to
£388 million. Whereas counterfeit, lost or stolen card fraud has decreased from
£257m to £97m (-62%) during that period, card-no-present fraud for electronic
commerce alone has quintupled from £28m to £140m and now accounts for
the majority of losses [9]. Despite continued e-commerce growth, fraud volumes
have been decreasing since their peak in 2008. The industry attributes these
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accomplishments to automated cardholder address verification and card security
codes, to initiatives like MasterCard’s SecureCode and Verified by Visa, and
to the “effectiveness and sophistication of customer-profiling neural networks
that can identify unusual spending patterns” [18]. The required collection of
details about buyers and their purchases is therefore attractive for payment
providers and merchants who can benefit from lower fees. As another example,
the payment provider Klarna allows customers to pay after order placement and
shipping. At the same time, it absorbs the credit risk for merchants and controls
losses through risk assessment based on diverse factors, including purchase
details [70].

Fighting payment fraud is only one of many more applications for purchase
information. Payment providers have a twofold incentive to collect details for
the transactions they process. One the one hand, they can use the additional
data for operational efficiency in a broad sense; on the other hand, they can
offer convenience features to consumers.

Operational efficiency. Payment providers operate in a highly regulated
environment and some obligations cannot be fulfilled efficiently unless purchase
details are known. They must comply with tax and legal requirements, such as
products prohibited in certain regions (e.g., gambling, alcohol sales) or money
laundering. They must also detect and prevent crime, such as fraud and policy
violations. As an example of transaction monitoring, PayPal has “hundreds
of highly trained specialists working around the clock to prevent fraudulent
activity and identify suspicious transactions” [58]. Details from past transactions
are also a shared secret between the provider and its customers, and can be
used for additional authentication or account recovery. Purchase details can
be monetised for product innovation, as market research, and through direct
marketing on an individualised basis. Insofar as payment providers provide
escrow services and help buyers who have been defrauded by the merchant,
transaction details can be used for risk screening. For instance, PayPal’s buyer
protection only covers certain physical goods. Whilst mainly in the self-interest
of the provider, operational efficiency enables payment services for consumers
and merchants at acceptable fees in the long run.

Convenience features. Buyers can enjoy peace of mind when their purchase
details are displayed back to them in the very moment when making the payment.
They can also inspect the transaction history in their account and get a detailed
statement of previous purchases. When payment providers collect purchase
details, they can offer sought-after spending reports and financial self-analysis.
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1.3 Privacy concerns

The large-scale collection and processing of personal details causes privacy
concerns. Concern is no longer limited to traditional items of personal
information like address or demographics, but increasingly about consumption
behaviour. Despite the quantified-self movement and although Web users
volunteer personal information with high prevalence (e.g., 55% knowingly
entered their weekly spending behaviour into a Web form where this item
was optional [38]), extended records of usage data are problematic. Widespread
tracking of browsing patterns by Websites and aggregators has raised attention
in mainstream media [75]. Browsing history leaked to advertisers [67], electricity
consumption recorded by smart meters [40], or mobility trajectories in pay-
as-you-drive insurance policies [64] have all been found to be associated with
elevated privacy concerns. Of particular interest is shopping data, whose value
is demonstrated through myriads of loyalty card schemes. Purchase tracking
now happens across merchants and channels (online / offline) and even if users
are not enrolled in a loyalty scheme [13,72].

Our research looks at the tracking capabilities of payment providers, namely
PayPal. An illustrative example is provided in Fig. 1 and Fig. 4.

Our research motivation is the ability of payment providers to collect purchase
details at scale. As in the domains of Web tracking and analytics, a small number
of providers cover multiple Websites (merchants) and can link transactions across
those. Compared to cookie-like tracking, the privacy issues are exacerbated:

• Embedded tracking code is—in principle—ancillary to the core functional-
ity of the Web page and can safely be filtered out (e.g., with ad-blockers or
Tracking Protection in Internet Explorer). Payment handling is however
essential to shopping, and users cannot complete the transaction without
interacting with the payment provider.

• Unlike browsing patterns linked to a cookie identifier, consumption
patterns linked to a payment method are not pseudonymous but
identifiable through offline details such as credit card numbers or bank
account details, which often include full name.

• Payment cards or account information serve as persistent identifiers,
allowing longitudinal linkage of multiple transactions even across different
logins or accounts with the payment provider.

• Consumers are typically unable to evade such data collection unless they
refrain from shopping with the given merchant. The collection of shoppers’
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details is a negative externality of the contract between the merchant and
the payment provider.

• Payment handling is universal across sellers and sectors. Consumer details
are collected and merged across transactions even for sensitive products
and merchants. This includes pharmacies or adult entertainment, for
instance, where shoppers deliberately moved out of the high street and
onto the Web in a pursuit of privacy.

Privacy threats arise from detailed purchase patterns when more than the
minimum data required are collected. The principle of data minimisation has
long been codified in national law and international privacy guidelines, such
as the “collection limitation principle” in the OECD privacy framework [44] or
the Madrid Privacy Declaration [74]. With the European Union’s upcoming
General Data Protection Regulation, data minimisation is now becoming an
enforceable principle [10].

1.4 Theoretical background: privacy and e-commerce pay-
ment intermediaries

The benefits of data collection by payment providers, but also the associated
privacy concerns discussed above, can be interpreted in the general framework
of e-commerce intermediaries and their roles.

Different streams of research, including information systems, have extensively
discussed the privacy aspects of payment intermediaries between retailers and
their customers since the advent of electronic commerce in the early 2000s.
Much less effort has been devoted to examining the technical reality and evolving
business practices of this tri-party relationship.

Intermediation is a technique to overcome a trust deficit that the seller may not
adequately secure the customer’s payment details. Using a payment provider
rather than processing card details directly thus leads to more conversions
for the potentially untrusted merchant [22]. An intermediary can overcome
security and privacy concerns that can inhibit online shopping [24]. Whilst the
trust boost is the payment providers’ most important consumer-facing role, it
only applies to sellers of inferior trust than the payment provider. Websites
with a longer history on the Internet develop their own brand and exhibit less
prominent use of trusted third parties [47]. Even then, merchants continue
to benefit from aggregation features and cost savings for set-up and ongoing
transactions offered by intermediaries [4, 6].
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The technical expertise required to interface with a payment provider, albeit
smaller than directly integrating with a credit card acquirer, still depends
on which services of the provider are used (Section “Background: PayPal
integration and information flows”). Smaller merchants with fewer resources are
often encouraged by the providers themselves to start with simple integration
methods. Efforts to ensure the security of customer accounts vary across online
industries [8], larger, more popular, and more mature Websites have significantly
better overall privacy protection [7].

Insofar as payment providers bridge trust gaps, they overcome consumers’
privacy concerns vis-à-vis the merchant. New privacy issues are introduced,
though, which have been explained above. On an institutional level,
intermediaries may be a threat to privacy when shaping the ability to transact
or adopt privacy-enhancing solutions: Examples include PayPal blocking
customers who use Tor, a privacy-enhancing technology to hide their IP
address [36]. PayPal has also withheld donated funds and prevented further
donations to WikiLeaks, an activist organisation concerned about transparency
and privacy [59]. Guidance issued by European data protection authorities
unanimously classifies payment providers as data controllers rather than data
processors, acknowledging the control they exercise in re-purposing customer
data [26,45].

1.5 Contribution and research questions

Ahead of tightening regulation regarding data minimisation, recognising that
online payment handling is a growing market, noting that information privacy
is becoming a positive competitive differentiator, we set out to explore the
tracking capabilities of online payment providers.

As the first kind of such investigation, the focus is on exploring and describing
current practices. We conducted the first industry-wide, empirical survey that
quantifies the flows of customer data from N=881 merchants to PayPal. We
describe current practices of data proliferation which can soon be deemed
privacy leaks.

PayPal is chosen as the most pervasive online payment provider, covering
Websites across strata of popularity [53]. We investigate which items of personal
data and which transaction details merchants are sharing with PayPal as
customers complete their checkout (Fig. 1 and Fig. 4). Our goal is to quantify
the prevalence of data flows towards PayPal and to measure the amount of
data shared above pure order totals. Our survey of the ecosystem also looks for
per-sector differences in data sharing with payment providers or whether more
popular Websites leak more or less personal details.
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Figure 1: The Web shop passes the product name and item number on to
PayPal.

2 Related Work

Our investigation complements and expands an existing body of literature that
has empirically examined privacy and tracking practices at large. Bonneau and
Preibusch studied privacy practices across the entire online social networking
ecosystem [7]. They found unsatisfactory privacy practices throughout the
industry, which were still better for more popular and mature sites. They also
investigated data protection practices among different industries [8] and found
that poor practices were commonplace regarding password security, although
merchant sites did better than newspaper sites. Specifically for Web shops,
more expensive shops were found to collect significantly more personal details
than their cheaper competitors [69].

A number of Web privacy surveys studied the private information leakage,
different tracking mechanisms and their prevalence on the Web. Krishnamurthy
and Wills show how personally identifiable information leaks via online social
networks, including the leakage by HTTP Referer header [34]. Roesner et
al. presented a taxonomy of third-party tracking and developed tools for
defending against tracking by social sharing buttons [63]. Multiple researchers
surveyed the use of more advanced and resilient tracking mechanisms such
as evercookies [1, 5, 41, 66], browser fingerprinting [1, 2, 14, 43] and cookie
syncing [1, 46], commonly reporting on questionable practices and unexpected
prevalence of such technologies.

Researchers studying tracking on mobile platforms found that many apps leak
private information to third-party servers including precise location, personal
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data and unique identifiers [15, 16, 19, 25]. A study intersecting the interface
used for embedding mobile ad libraries found that apps share highly sensitive
information such as ethnicity along with postal code, gender, age and income [9].
The same study found a positive correlation between app popularity and
the privacy leakage. More recently, by analysing the unprecedented amount
of 1.1 million Android apps, Viennot et al. showed how apps mishandling
of authentication tokens may lead to unauthorized access to user data and
resources on Amazon Web Services and Facebook [73].

Another line of research has looked into users’ reaction to online tracking and
behavioural advertising. A 2013 Pew Research study found, motivated by the
concerns about online tracking, that 86% of Internet users have tried to be
anonymous online and took some effort to avoid tracking [61]. Ur et al. found a
majority of users in their study were either fully or partially opposed to online
behavioural advertising, finding the idea smart but creepy [71]. Leon et al.
studied the factors affecting users’ willingness to share information with the
advertisers and found that perceived sensitivity of information, data-retention
policies and the scope of data use are the prominent factors [35].

Finally, researchers looked into consumers’ privacy choices in online shopping.
Buyers of sensitive products (vibrators) were found to pay a premium to shop
with a retailer whose privacy practices were labelled as superior by a product
search engine [68]. In the largest ever lab and field experiment in privacy
economics, almost one in three Web shoppers paid one euro extra for keeping
their mobile phone number private [31]. When privacy comes for free, more than
80% of consumers choose the company that collects less personal information
[31]. Earlier results indicated that price discounts override online shoppers’
privacy preferences [60].

3 Methodology

We conducted a blind field experiment with 1200 shopping Websites, by
observing their inbound and outbound data flows during checkout. The Websites
did not know they were subjected to data capture, which followed a strict
experimental protocol. The data collection setup fleshes out the integration with
PayPal, which is described first. We then provide details on the sampling, the
experimental protocol, and describe additional data sources for data enrichment.
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3.1 Background: PayPal integration and information flows

PayPal provides payment processing to merchants and has been a pioneer to
offer payment acceptance to electronic retailers, albeit its product range now
covers a plenitude of card and card-less payment and identity services for online,
offline, and mobile transactions. Similar to a cloud service, PayPal’s offerings
are characterised by their ease of set-up, pay per use, and self-service.

PayPal offers multiple ways to be embedded in the shopping workflow,
traditionally depending on the type of payment, for instance (e.g., donations,
recurring subscriptions, one-time checkouts) [50]. On a technical level, there are
two different integration routes depending on how the session data is transmitted
from the merchant to PayPal: (1) server-to-server integration, where SOAP Web
services or REST APIs are used to communicate transaction details from the
merchant to PayPal; (2) integration via the client, where transaction parameters
are passed exclusively through the query string (GET) by means of consumers’
browsers.

Integration via GET is simple and readily available for hosted Websites, as
no server-side communication is required. In PayPal parlance, this integration
method is called “buttons”. More sophisticated methods use server-to-server
communication between the application server and the payment provider: the
merchant creates a session with the payment provider when submitting all
relevant transaction data. This session is then referenced through a session
identifier or token (“EC token”), which is the only information that the
client needs to pass on [49]. This method requires more technical expertise,
but is less susceptible to manipulation by the client. However, server-
to-server communication cannot be observed in a study like ours, where
the client is instrumented. It would require server logs from PayPal or
the merchant (or broad-coverage network sniffing capabilities). Also, when
integrating with PayPal through payment buttons, merchants can still hide
submitted information and prevent tampering by encrypting the transaction
parameters [48].

A variant of server-to-server payment integration is the use of a further
intermediary that calls and processes the PayPal workflows on behalf of the
merchant. Such an intermediary is typically found for more complex integration,
to mediate between multiple payment methods.

Whereas encrypted buttons are encountered rarely, payment sessions referenced
via an EC token on the client side are very common (Table 3). The unobservable
flow of personal information between servers is a challenge for our research. We
therefore use personal data that PayPal displays back to the user to establish a
lower bound for the privacy invasion by the data that is transmitted; this method
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was confirmed to be accurate during data analysis (Section ’Data Analysis’).

The “Legal Agreements for PayPal Services” [55] outline a number of
requirements for merchants. All information submitted to the API must be “true,
correct, and complete” [51]. Whereas all fields containing personal information
are optional [56, 57], a “description field to identify the goods” and a URL
linking back to the original product page must be provided for the popular
Express Checkout method [57].

3.2 Sampling

We sample online shops that target US consumers and provide checkout in US
Dollar via PayPal. The US market is chosen for its size and for being the home
market of PayPal. We sample popular Web shops. Practices at these online
destinations matter most as they impact a large consumer population. Stores
are identified by their URL, as occurring before the PayPal checkout page in
browser sessions. Data is collected from a sample of Internet Explorer users
who opted in to share their browsing history.

Sampling originally yielded Website domains rather than product pages for each
potential shop. These domains were ordered and processed in decreasing order
of popularity and inspected manually as Websites may have ceased to offer
PayPal, may have shut down, may be unreachable or otherwise no longer qualify
by our sampling criteria. In particular, sampling by referrer produced false
positives, such as Webmail providers or search engines. These sites were noted
and excluded. All domains were inspected manually and if the site matched
the sampling criteria, a single product was selected to measure data leakage
during checkout. Product selection followed a simple protocol, choosing the first
available product in the first product category except sale or seasonal categories.

We excluded Websites offering business services (B2B such as email marketing
campaigns), banks and insurances, and restricted Websites which required a
prior customer relationship such as utility companies. Airline Websites were
often excluded for we were unable to complete the purchase according to our
data collection protocol. EBay, PayPal internal and duplicate Websites were
excluded (e.g., homedepot.ca as a duplicate of homedepot.com).

We deliberately included Websites selling non-material goods such as in-game
purchases for extras or virtual currencies, or online account top-ups. In line
with our research agenda, we also refrained from filtering out adult Websites.

Hosting sites (e.g., Yahoo! shops or Google Sites) were excluded and separated
from the sample for future analysis. Such sites host multiple shops with differing
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Figure 2: Steps of the data collection process; data collections are given in the
lower portion.

implementation practices under a single domain. A few representative sub-shops
were chosen for affiliate shops (e.g., spreadshirt.com) and shop-in-shop solutions
(e.g., atgstores.com).

3.3 Experimental protocol

Before the main data collection, we ran a pilot study with separate 40 Websites
sampled from the DMOZ / Open Directory Project in the (English) electronics
Web shops category. This seeding sample covers a broad range of lesser known
online retailers, which we inspected manually whether they offer checkout via
PayPal or not. Based on this pilot, we then established the following data
collection infrastructure and process.

For reliable results, a strict data collection protocol was followed during the
main data collection. The details of the experimental setup and procedures are
laid out in the Appendix. To avoid contamination of the results by residual
cookies or other re-identification methods, a virtual machine was used and reset
for every recording anew. Transaction data were recorded by navigating in
the Web shop and to PayPal to the point of checkout; browsing was done in
Firefox and all HTTP and HTTPS traffic was captured by mitmproxy [11] and
stored. This includes GET and POST requests and the parameters submitted
with them. Web forms were completed by using the same fictitious profile data
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on every site, a woman in her 40s living in a major US city. A unique email
address was used for each Website.

The entry point for each Website was the first available product in a product
category (’department’). We excluded volatile categories such as featured
items or sale promotions. Recording started at the product page identified
during sampling and finished with the PayPal checkout screen. An example
of this screen is given in Fig. 1. We captured and archived this PayPal
screen (screenshot image and page mark-up) and manually tallied the presence
of personal and product details displayed on the page. We later tested and
confirmed the accuracy of inferring data transfer from the screenshot (Section
’Data Analysis’).

Problems that we encountered during the data collection were recorded and
dealt with consistently. For broken or unavailable Websites, we progressed as
far into the purchase as possible. Unavailable items were substituted by the
next available product according to the product sampling procedure. Websites
that refused the existing profile data for any reason, were recorded but later
excluded from the dataset. Some Websites redirected to a non-US version of the
shop based on IP address geo-location, in which case we tried to navigate back
to the US store. When possible, we completed the checkout without registering
with the shops. Although data collection is tool-supported, there is always a
human in the loop.

After the full data analysis was completed, we reached out to a sub-sample of
online retailers to explain their point of view.

3.4 Data enrichment: adding metadata

To analyse privacy friendliness by industry, we manually and automatically
annotated the Websites in our sample with the kind of service they offer and the
products they sell. We also added metrics for popularity and technical quality.

Manual Categorisation of Web shops. We manually categorised the Websites
as specialised in retail, commercial services, donations, dating, events, airlines,
or other if they did not fit in any of these categories. The commercial services
Websites were further subcategorised as educational, software, Website, or other.

Retail Web shops that sell physical goods, while commercial services are selling
primarily nonphysical goods such as courses (educational), online-backups
(software), or access to a Website (Website). Donation Websites do not provide
anything in return for money, and technically need not even register the donor’s
name. Although small in number, the categories events and airlines were
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Table 1: Leaked data by clusters ranked from good to bad privacy practices. The
common leakage of product details is more worrying than the seeming absence
of customer data: PayPal collects identity details directly during payment.
Leaked by: �=some sites, �=all sites, blank=no sites in that cluster.
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item numbers, and
prices � � � � 1 3

C3 292 (33%) Leaks at least names,
item numbers, and
prices. � � � � 3 4

C4 155 (18%) Leaks at least most
product details and
always shipping costs. � � � � � 4 5

C5 9 (1%) Leaks name and address
in addition to product
details. � � � � � � � 6 7

included because they by nature will require more personal information than a
retail store.

Automated Categorisation of Web shops. For a more fine-grained, product-
driven categorisation of Web shops, we turned to the curated ontologies of
DMOZ and AWIS (Alexa Web Information Service). They both turned out
to only have data for the most popular Websites (35% coverage from AWIS
keywords, 48% from AWIS categories, 52% from DMOZ—53% when combining
DMOZ and AWIS), so we looked for an alternative solution.

Exploiting Amazon.com’s status as one of the biggest warehouses of the Internet,
we used the Amazon.com Product Advertising API [3] to obtain a better
classification. This is a novel approach which has been applied for the first
time in our investigation. For every URL in our dataset, we queried the API
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Table 2: Manual Website categorisation, including sub-types for commercial
services.

Type Site Count Subtype Site Count

Retail 764
Commercial services 66 → Website 20
Donations 25 Software 19
Dating 9 Educational 11
Events 8 Other 16
Airlines 6
Other 3

Table 3: Distribution of PayPal endpoints used by merchant sites.

PayPal endpoint URL Site count (with/
without token)

1 https://www.paypal.com/cgi-bin/webscr 847(731/116)
2 https://www.paypal.com/webscr 25(18/17)
3 https://www.paypal.com/cgibin/webscr 4(4/0)
4 https://www.paypal.com/checkoutnow 4(4/0)
5 https://www.paypal.com/bg/cgi-bin/webscr 1(1/0)

Total 881(758/133 :
86% with token)

with the HTML Meta keywords describing the merchant Website. This yielded
a list of up to ten matching products, for each of which one or more product
categories were listed. Amazon product categories are a graph structure, which
can be browsed like a tree, similar to DMOZ. We applied a voting algorithm
over the returned items for each Website; the items were sorted in descending
relevance by the Amazon API.

The API also assigns exactly one node of Amazon’s product type and product
group type ontologies to each product. However, not much useful information
could be extracted from these, and we largely discarded them from further
investigation.

Although the Amazon product ontology was used for describing Website
categories, we retained AWIS to assess popularity and technical quality, indicated
by the ’traffic rank’ and ’speed percentile’ respectively.
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3.5 Data sources

In summary, we use the following data sources for our analysis:

• A list of online retailers offering PayPal checkout, sampled from actually
visited Web shops in real browsing sessions, as per the method described
above.

• Website meta-data from external sources: (1) Website popularity, maturity
and audience demographics licensed from the Alexa Web Information
Service (AWIS) API; (2) manual and automated merchant categorisation
via Website keywords and Amazon Product API.

• From captured HTTP traffic to the server: a trace of all personal
information sent from the merchant to PayPal via query string or the
presence of a server-initiated transaction session, as detected by the
submission of a session token. Transcribed screen-shots of the PayPal
login page, showing personal data that PayPal displays back to the
customer, which was confirmed to equal data received from the merchant.

• From captured HTTP traffic from the server and from saved HTML pages:
data on third-party trackers (Omniture) deployed on PayPal’s checkout
pages.

• Written responses received from the merchants we asked for clarification
on their data sharing practices with PayPal.

4 Data Analysis

From an initial list of 1200 shopping domains, we successfully collected the data
for 881 merchant Websites: HTTP(S) traffic traces until reaching the PayPal
login page, and screenshot upon arrival. These parsed logs and transcribed
screenshots were confirmed to be accurate evidence of personal identifiable
information (PII) leakage.

First, we describe our data set in terms of PayPal API implementations and
predominant patterns of PII leakage. We also explain how we used machine
learning techniques to reduce the multitude of these patterns to a manageable
number. Second, we explain the data enrichment we performed. We looked
for predominant practices on the Internet by adding metadata to our data set,
allowing us to slice the data set by Website and product categories.



194 SHOPPING FOR PRIVACY: PURCHASE DETAILS LEAKED TO PAYPAL

4.1 Descriptive statistics and cluster analysis

Endpoints and Tokens. As described in the Background section, there are two
basic methods for a Web shop to communicate with PayPal: using a token or
using GET parameter transmission. For both methods, the logs indicate there
exist a number of different PayPal API endpoints for the Web shops to use.
Table 3 shows their distribution over our dataset.

The most predominant endpoint (1) is the only one that is currently mentioned
in the PayPal API help documents [54]. The second-most used endpoint
(2) appears to be an older endpoint; although we have no PayPal document
confirming this, there is exactly one mention in the online help. From the
context, it stands to reason that this was merely an oversight when updating the
documentation. Endpoint 3 seems to exist to catch typos; there is no mention
of it in any PayPal documents. Endpoint 4 has a more distinctive name, but
is likewise undocumented. Finally, endpoint 5 is a localized version. We see
multiple calls to such localized endpoints in the logs, but they generally forward
all data to endpoint 1. This Bulgarian endpoint did not, so we included it as a
special case.

Token usage is widespread: For endpoint 1, more than 84% of all Websites
employ one, and 86% across all endpoints. For such Websites, we have to rely
on the screenshots because PII leakage cannot be inferred from the HTTP GET
logs.

Data accuracy. The PayPal API accepts various parameters, a subset of which
is reserved for the customer PII. While some of this is readily displayed on
the PayPal login screen before payment, we also investigated whether any PII
was sent to PayPal by parsing the log files. Based on the PayPal API help
documents [54], we determined all relevant parameters and parsed the logs for
occurrences.

To verify our screenshot-based approach, we investigated whether the PayPal
login screen always displays all PII that the API receives over the GET query-
string. We were able to confirm that whenever customer or product data was
leaked via GET, it showed up on the PayPal login screen. The only exception
was for shipping costs of USD 0.00, which was forwarded but hidden in 36 cases.
This means the transcribed screenshots give an accurate account of transmitted
customer data.

Pure Leakage Patterns. After aggregating the screenshot and log data, three
pure leakage patterns emerge. These pure patterns account for a total of 805
URLs (91%). The remaining 76 URLs form a long tail of 25 patterns, none of
which occurs more than 13 times, and 15 patterns occur exactly once. With
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338 out of 881 sites, the predominant pure pattern leaks no data at all. The
other two both leak the item names, descriptions, numbers and the customer’s
name to PayPal, with the third also informing PayPal about the shipping costs.

Clustering of all Leakage Patterns. The leakage patterns form the backbone of
our work. In order to analyse the data more deeply, we shorten the long tail of
these patterns and reduce the number of distinct patterns by clustering all 881
URLs into only a few classes.

While the three pure leakage patterns identified above have very intuitive
descriptions, a k-Means clustering [17] failed to identify similarly meaningful
patterns for any value of k. We thus resorted to EM clustering [12], which
automatically determines the appropriate number of clusters. The result is
shown in Table 1.

Integration Patterns by Cluster. A natural question is whether a particular
combination of endpoint and token usage enforces or prevents leakage. Analysing
the clusters, it becomes obvious that there is no such relationship: None of the
clusters are homogeneous with respect to endpoints and tokens, except for C2,
which does not contain any token implementations.

Privacy-friendly Websites tend to use a token more often: 98% of all Websites
in Cluster C1 were using a token, compared to 86% and 85% for C3 and C4,
respectively (p < 0.0001, two-tailed Fisher’s exact test).

We observe that no Websites leaking customer addresses rely on a token
implementation. With a sample size of nine this holds little statistical
significance, but we found no indication in the API documentation that this is
a requirement on PayPal’s side.

We used the association rule mining algorithm Apriori [23] to see whether the
cluster membership of a Web shop correlates with its implementation. Requiring
a confidence of at least 0.4, the resulting rules did not consistently link the usage
of a token or an endpoint to any degree of privacy-friendliness. We conclude
that PayPal’s available API methods do not bias Web shops to treat customers’
privacy in a specific way.

4.2 Leakage patterns by Website category

Table 2 shows a breakdown of the Website categories. The distribution of
Website categories per cluster largely reflects the overall distribution over the
data set. No clear trends can be identified, although a large majority of donation
sites sit unnecessarily in the privacy-unfriendly C3. Commercial services are
also mainly found in this cluster. While the leaked PII is necessary for this
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category of Websites, we do not see an immediate need to forward them to
PayPal.

Prediction from the category of the Website showed no promise. With the
exceptions outlined above, all clusters proved to be too mixed, and Apriori
failed to produce rules with a confidence of even 0.4. Hinting towards a variety
of attitudes towards privacy among Web shops, this is a positive result for
customers.

Figure 3: Cluster membership over the sites’ popularity (traffic ranks) found in
the sample.

Looking at the product categories associated with the Websites found in each
cluster, C3 contains categories from all over the category tree rather than
specialising. C5 and C2 generally have too few entries to make substantiated
claims, but books are clearly predominant. C1 and C4 both contain a lot of
clothing and related items. While C1 has some home appliances in it, C4 has a
tendency towards personal health products, including sports products.

Looking at Website popularity and quality, we found that technical implemen-
tation quality has no immediate bearing on cluster membership. Rather, we see
that the number of sites from a certain cluster scale with the overall number
of sites in the speed percentile. We further see that the distribution of sites
from the clusters over the percentile bins follow no specific pattern. It can
thus not be said that the speed of a Website has a positive correlation with its
privacy-friendliness.
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Less popular sites are found significantly more often in clusters that exhibit
more leakage. More popular sites tend to leak less. For illustrative purposes,
the average traffic rank is 0.4m for C1, 1.0m for C3 and 1.4m for C4. A Mann-
Whitney U test indicates a highly significant difference in the traffic ranks per
cluster (p = 0.001 for both pairwise comparisons). Sites in the worst leakage
C5 do not appear among the 50 highest ranked in our sample (Fig. 3).

4.3 Third-party tracking facilitated by PayPal

Analysis of the HTTP traffic observed during the experiments revealed the
use of Adobe’s Omniture tracking software on PayPal checkout pages. When
a user lands on the PayPal checkout page, two HTTP requests are sent to
paypal.d1.sc.omtrdc.net and paypal.112.2o7.net subdomains, both of which
belong to Adobe’s Omniture tracking software [29]. The requests contain
metadata about the payment to be made, such as currency and transaction
token, along with the user’s browser characteristics such as plugins, screen
dimensions and software versions [30]. Remarkably, PayPal also shares the
referrer URL of the checkout page, which reveals the URL of the Web shop, and
potentially the product to be purchased. This leakage enables Adobe to build a
better profile of 152 million PayPal users [53], by combining payment details
with other online activities recorded on more than 300,000 Omniture-tracked
Websites [37], which notably includes 50 of the Web shops analysed in this
study.

Note that the leakage described here is different from the indirect information
leakage via referrer headers as studied in [33], since the PayPal checkout page
actively collects and sends the referrer of the checkout page, which would not
be shared otherwise with the Omniture domains. Furthermore, by sending
high-entropy browser properties such as plugins and screen dimensions, PayPal
make it possible for Omniture to track users by their browser fingerprints even
if they block or delete their cookies [14].

According to its privacy policy, PayPal may share customers’ personal
information with third-party service providers [52] who are limited to use
PayPal customers’ information “in connection with the services they perform
for [PayPal].” Assuming the information shared with Omniture is subject to
a similar agreement, it is hard to make sure whether payment information,
product URL or browser characteristics are interpreted as personal information
or not, given the possible interpretations of the policy and lack of transparency
around PayPal’s contracts with third-parties.

As of September 14th, 2014, long after we finished with the experiments,
the PayPal checkout page no longer references a third-party tracker, though
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Omniture is still used on the PayPal homepage (see Appendix for reproduction).

4.4 Flash evercookies and browser fingerprinting for internal
tracking:

We also found the use of two questionable tracking mechanisms by PayPal
internally, namely, evercookies and browser fingerprinting. Upon registering
for a new account, PayPal places a Flash cookie named paypalLSO.sol, which
includes a 70 character long identifier string. On each visit to PayPal checkout
page, this Flash cookie is read by an invisible Flash object (mid.swf) and
appended to the payment form as a hidden element.

Evercookies (also known as supercookies or zombie cookies) make use of obscure
browser storage mechanisms to store tracking identifiers. Being a resilient
tracking technology, evercookies can be used to restore standard (HTTP) cookies
intentionally removed or blocked by users. In the past, use of such techniques
led to lawsuits and multi-million dollar settlements [65].

Browser fingerprinting is another advanced tracking mechanism employed by
PayPal. Through a field study, EFF’s Panopticlick study showed that combining
multiple browser properties, one can extract a fingerprinting that can be used
to track users without relying on the stored identifiers such as cookies [43].

When a user visits the PayPal checkout page, a script (pa.js) collects multiple
browser properties including browser plugins, screen dimensions and 36 different
Windows ActiveX components to get information about the installed software
and language packages. The Appendix lists the properties collected by
PayPal’s script. Unfortunately, PayPal’s privacy policy is not as explicit about
fingerprinting as it is for Flash cookies.

Despite using the same technology, the assessment of PayPal’s user re-
identification through persistent cookies has to be more favourable than third-
party online tracking. In a payment scenario, these advanced tracking techniques
can be used to prevent account hijacking or similar fraudulent activities.
PayPal’s privacy policy explains that “cookies, pixel tags, ’Flash cookies,’
or other local storage [...]” are used to “recognize you as a customer; customize
PayPal Services, content, and advertising; measure promotional effectiveness;
[...] mitigate risk and prevent fraud [...].” [52]. Nonetheless, for a company that
manages millions of payments each day, there are many improvements to make,
beginning from preventing information leakage to third parties, being more
transparent about in-house tracking mechanisms and strictly isolating the use
of advanced tracking tools to combat fraud.
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4.5 Responses received from the merchants

After the full data analysis was completed, we tried to contact a sample of
59 online retailers for which the proliferation of purchase details could be
particularly embarrassing, including adult entertainment, pest control, shape-
wear, vitamins and medication. We used the same text across all shops in our
request, and asked: “What data do you transfer to PayPal when a customer
of your shop decides to use that payment option for a purchase?” We clearly
mentioned “the context of a scientific study on online payment providers”.

Most retailers could be contacted by email (38 shops, 64%); for 17 shops (29%),
we had to use an online contact form. Four shops (7%) provided no means of
getting in touch. A single merchant replied the next day and explained that
they “transfer the absolute minimal data that is required by Paypal” (sic!),
which however was not consistent with our records. No other shops replied
to our enquiry within four weeks (or any time after for that matter); twelve
auto-replies were received but never followed by an actual response.

The overall lack of responsiveness from the retailers is bad news for consumers
who are left alone with their privacy concerns. Furthermore, the only retailer who
made an effort to reply seemed unaware of more far-reaching data proliferation.
This might suggest that merchants need tools to identify data flows, and better
guidance on how to implement a privacy-friendly checkout procedure. Our
article aims to help with both issues.

5 Limitations

As outlined above, our sampling strategy combined Web shop URLs from
different sources to cover both larger and smaller merchants. We expect our
dataset to contain an equal distribution over more and less professional Websites,
as well as more and less frequented ones. The Websites we analysed are sites
that are actually visited by Web users, as the sampling was guided by browsing
session logs.

This comes at the price of diversity of goods that are sold. It easily observed
that there are more Web shops selling physical goods than there are commercial
dating Websites, for instance, and our manual categorisation of Web shops
reiterates this. As a result, our categories are not evenly distributed over the
dataset at all. This makes statistically significant statements about privacy
practices hard, if not impossible. The non-existence of association rules with
high confidence is an immediate result of the skewed distribution of categories.
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Further breaking down the manually assigned categories into a more fine-grained
version was done in a semi-automated way. This is necessarily prone to errors,
stemming from incomplete or faulty inferences from the information provided
by the Amazon Product Advertising API. Naturally, this API can only deliver
information based on Amazon’s product range. Labelling our dataset using this
information will again be biased: Our method for assigning labels to Websites
discarded relatively infrequent labels. The biggest problem here is not primarily
that we may not have enough shops per label in our dataset, but rather that
the labels may be infrequent because Amazon has few goods from a certain
category. Again, under a skewed distribution, statistical significance is difficult
to obtain.

For obvious reasons, our data collection setup could not cover server-to-server
communication, which, according to PayPal documentation [54], can be used by
merchants to communicate with PayPal. Also, in our experiments we did not
go beyond the PayPal checkout page to complete the payments. As a result,
the data collected and leaked after the PayPal checkout page is not covered in
our analysis.

6 Conclusion and discussion

We presented a new species in the zoo of online tracking systems: explicit leakage
of personal information and detailed shopping habits from online merchants to
payment providers. In contrast to the widely debated tracking of Web browsing,
online shops make it impossible for their customers to avoid this proliferation
of their data.

By mediating online payments between merchants and buyers, payment
providers are in a position to access sensitive payment details that can be
used to build a detailed profile of shopping habits. Being the most popular
payment provider, PayPal learns how much money its 152 million customers are
spending and where. These customers are identified by name, email and postal
address and through their bank details. We have demonstrated that merchant
Websites are unnecessarily forwarding product details to PayPal that give a
detailed view on consumers’ purchases.

According to the 881 sites studied in our analysis, 52% of the most popular US
Web shops shared product names, item numbers and descriptions with PayPal.
Besides the negative privacy impact, consumers whose data are proliferating
could suffer from less favourable payment terms (e.g., unavailable payment
methods of higher interest rates on consumer loans based on their purchase
patterns). On the other hand, the remaining 388 sites did not share any purchase
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Figure 4: Also sites that sell sensitive products leak product details to PayPal.
Two examples of adult toys (finger rimmer, vibrator) and medication: 5-
HTP addresses depression, anxiety, sleep disorders, and MDMA hangover;
acetyl carnitine is used for many indications including Alzheimer’s disease and
depression.

details except the amount to be paid, confirming that sharing sensitive details
is not necessary for electronic retailers.

Further, we reported on the PayPal’s use of the tracking service Omniture,
which amplifies the privacy concerns by exposing transaction details to a widely
deployed third-party tracker. A third-party tracker that has access to general
Web tracking information, as well as to the details of successfully completed
transactions, is in a particularly privileged situation to monitor consumption
choices at large.

Web shops that use the technically more advanced token-based integration are
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often more privacy-friendly. Also, less popular sites are significantly more often
among those that leak more personal information. There are no systematic
differences across product categories, meaning that all kinds of shoppers are
exposed.

To the extent that PayPal, as an example of payment providers in general,
collects personal information at scale, it becomes a constituent part of the
online shopping experience: neither researchers nor enforcement authorities can
reduce its role to a passive intermediary when assessing the privacy impact of
e-commerce transactions.

By exploring the alternative privacy preserving practices that can be followed
by Web shops, we distilled the following suggestions for merchants: (1) apply
data minimization principle—do not leak information that is not required for
processing the transaction; (2) inform customers about the data sharing in your
privacy policy; (3) offer alternative, privacy-friendly payment methods, such as
direct debit or pre-payment; (4) use a payment gateway to prevent leakage of
product URL via referrer header.

Future research through qualitative interviews with decision-makers and
engineers at merchants should look at the drivers and motives behind PayPal
integration choices and their privacy consequences. On the technical side,
expanding the scope to mobile and in-app payments promises valuable for these
growing, yet opaque transactions. Better privacy practices for handling online
payments is not only desirable for end users, but also for the merchants and
payment providers whose bussinesses depend on the users’ trust.

At times when personal information is said to be new currency on the Web, it
seems unfair that consumers are charged twice during checkout.

References

[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. The Web never forgets: Persistent tracking
mechanisms in the wild. In 21st ACM Conference on Computer and
Communications Security (CCS), pages 674–689. ACM, 2014.

[2] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses,
Frank Piessens, and Bart Preneel. FPDetective: Dusting the Web for
fingerprinters. In 20th ACM Conference on Computer and Communications
Security (CCS), pages 1129–1140. ACM, 2013.



REFERENCES 203

[3] Inc. Amazon Web Services. Understanding browsenode results when drilling
down. http://docs.aws.amazon.com/AWSECommerceService/latest/DG/
UnderstandingBrowseNodeResultsWhenDrillingDown.html, 2013.

[4] Alapan Arnab and Andrew Hutchison. Using payment gateways to maintain
privacy in secure electronic transactions. In IFIP International Information
Security Conference, pages 277–288. Springer, 2007.

[5] M. Ayenson, D. J. Wambach, A. Soltani, and N. Good und C. J. Hoofnagle.
Flash Cookies and Privacy II: Now with HTML5 and ETag Respawning.
SSRN, 2011.

[6] Joseph P Bailey and Yannis Bakos. An exploratory study of the emerging
role of electronic intermediaries. International Journal of Electronic
Commerce, 1(3):7–20, 1997.

[7] Joseph Bonneau and Sören Preibusch. The privacy jungle: On the market
for data protection in social networks. In Eighth Workshop on the Economics
of Information Security (WEIS 2009), pages 121–167, 2009.

[8] Joseph Bonneau and Sören Preibusch. The password thicket: Technical and
market failures in human authentication on the web. In Ninth Workshop
on the Economics of Information Security (WEIS), 2010.

[9] Theodore Book and Dan S Wallach. A case of collusion: A study of
the interface between ad libraries and their apps. In Proceedings of the
Third ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM’13), 2013.

[10] European Commission. Proposal for a regulation of the european parliament
and of the council on the protection of individuals with regard to the
processing of personal data and on the free movement of such data (general
data protection regulation), 2012.

[11] Aldo Cortesi. mitmproxy: a man-in-the-middle proxy. http://
mitmproxy.org/.

[12] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum
likelihood from incomplete data via the em algorithm. Journal of the royal
statistical society. Series B (methodological), pages 1–38, 1977.

[13] Charles Duhigg. How companies learn your secrets. The New York Times,
2012.

[14] P. Eckersley. How unique is your web browser? In Proceedings of the 10th
international conference on Privacy enhancing technologies (PETS, 2010.

http://docs.aws.amazon.com/AWSECommerceService/latest/DG/UnderstandingBrowseNodeResultsWhenDrillingDown.html
http://docs.aws.amazon.com/AWSECommerceService/latest/DG/UnderstandingBrowseNodeResultsWhenDrillingDown.html
http://mitmproxy.org/
http://mitmproxy.org/


204 SHOPPING FOR PRIVACY: PURCHASE DETAILS LEAKED TO PAYPAL

[15] Manuel Egele, Christopher Kruegel, Engin Kirda, and Giovanni Vigna.
Pios: Detecting privacy leaks in ios applications. In NDSS, pages 177–183,
2011.

[16] W. Enck, P. Gilbert, B. g. Chun, L. P. Cox, J. Jung, and P. McDaniel und
A. N. Sheth. Taintdroid: an information flow tracking system for real-time
privacy monitoring on smartphones. Communications of the ACM, Bd.,
57:99–106, 2014.

[17] Vladimir Filkov and Steven Skiena. Integrating microarray data by
consensus clustering. International Journal on Artificial Intelligence Tools,
13(04):863–880, 2004.

[18] UK Financial Fraud Action. Fraud the facts 2013, 2013.

[19] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen.
Androidleaks: automatically detecting potential privacy leaks in android
applications on a large scale. In International Conference on Trust and
Trustworthy Computing, pages 291–307. Springer, 2012.

[20] Google. Google wallet - shop in stores. http://www.google.com/wallet/
shop-in-stores/, 2014.

[21] M. Hamblen. Starbucks invests Â£16m in us mobile payment venture.
http://www.computerworlduk.com/news/mobile-wireless/3374970/
starbucks-invests-25m-mobile-payment-venture-in-us/, August
2012.

[22] E van Heck and Peter Vervest. Web-based auctions: How should the
chief information officer deal with them. Communications of the ACM,
41(6):99–100, 1998.

[23] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algorithms
for association rule mining - a general survey and comparison. ACM
SIGKDD Explorations Newsletter, 2(1):58–64, 2000.

[24] Donna L Hoffman, Thomas P Novak, and Marcos Peralta. Building
consumer trust online. Communications of the ACM, 42(4):80–85, 1999.

[25] Peter Hornyack, Seungyeop Han, Jaeyeon Jung, Stuart Schechter, and
David Wetherall. These aren’t the droids you’re looking for: Retrofitting
Android to protect data from imperious applications. In Proceedings of the
18th ACM conference on Computer and communications security, pages
639–652. ACM, 2011.

http://www.google.com/wallet/shop-in-stores/
http://www.google.com/wallet/shop-in-stores/
http://www.computerworlduk.com/news/mobile-wireless/3374970/starbucks-invests-25m-mobile-payment-venture-in-us/
http://www.computerworlduk.com/news/mobile-wireless/3374970/starbucks-invests-25m-mobile-payment-venture-in-us/


REFERENCES 205

[26] Information Commissioner’s Office (ICO). Data controllers and data
processors: what the difference is and what the governance implications
are, 2014.

[27] Apple Inc. Apple - iphone 6 - apple pay. http://www.apple.com/iphone-
6/apple-pay/, 2014.

[28] Sage Software Inc. Level 3 processing data. enhanced credit card processing,
2014.

[29] Adobe Systems Incorporated. Digital marketing | Adobe Marketing Cloud.
http://www.adobe.com/solutions/digital-marketing.html, 2014.

[30] Adobe Systems Incorporated. SiteCatalyst variables and query string
parameters. http://helpx.adobe.com/analytics/using/digitalpulse-
debugger.html#id_1298, 2014.

[31] Nicola Jentzsch, Sören Preibusch, and Andreas Harasser. Study on
monetising privacy: An economic model for pricing personal information.
2012.

[32] Klarna. Klarna checkout. https://klarna.com/sell-klarna/our-
services/klarna-checkout, 2013.

[33] Balachander Krishnamurthy and Craig Wills. Privacy diffusion on the
Web: a longitudinal perspective. In International Conference on World
Wide Web, pages 541–550. ACM, 2009.

[34] Balachander Krishnamurthy and Craig EWills. On the leakage of personally
identifiable information via online social networks. In Proceedings of the
2nd ACM Workshop on Online social networks (WOSN), pages 7–12. ACM,
2009.

[35] Pedro Giovanni Leon, Blase Ur, Yang Wang, Manya Sleeper, Rebecca
Balebako, Richard Shay, Lujo Bauer, Mihai Christodorescu, and
Lorrie Faith Cranor. What matters to users?: factors that affect users’
willingness to share information with online advertisers. In Proceedings of
the Ninth Symposium on Usable Privacy and Security (SOUPS), page 7.
ACM, 2013.

[36] A. Lewman. The team of paypal is a band of pigs and
cads! https://lists.torproject.org/pipermail/tor-talk/2010-
August/002978.html, 2010.

[37] BuiltWith Pty Ltd. Websites using Omniture SiteCatalyst. http://
trends.builtwith.com/websitelist/Omniture-SiteCatalyst, 2014.

http://www.apple.com/iphone-6/apple-pay/
http://www.apple.com/iphone-6/apple-pay/
http://www.adobe.com/solutions/digital-marketing.html
http://helpx.adobe.com/analytics/using/digitalpulse-debugger.html#id_1298
http://helpx.adobe.com/analytics/using/digitalpulse-debugger.html#id_1298
https://klarna.com/sell-klarna/our-services/klarna-checkout
https://klarna.com/sell-klarna/our-services/klarna-checkout
https://lists.torproject.org/pipermail/tor-talk/2010-August/002978.html
https://lists.torproject.org/pipermail/tor-talk/2010-August/002978.html
http://trends.builtwith.com/websitelist/Omniture-SiteCatalyst
http://trends.builtwith.com/websitelist/Omniture-SiteCatalyst


206 SHOPPING FOR PRIVACY: PURCHASE DETAILS LEAKED TO PAYPAL

[38] Miguel Malheiros, Sören Preibusch, and M Angela Sasse. "fairly truthful":
The impact of perceived effort, fairness, relevance, and sensitivity on
personal data disclosure. In International Conference on Trust and
Trustworthy Computing, pages 250–266. Springer, 2013.

[39] MasterCard. Mastercard corporate purchasing card implementation guide,
2001.

[40] Patrick McDaniel and Stephen McLaughlin. Security and privacy challenges
in the smart grid. IEEE Security and Privacy, 7(3):75–77, 2009.

[41] Aleecia M McDonald and Lorrie Faith Cranor. Survey of the Use of Adobe
Flash Local Shared Objects to Respawn HTTP Cookies, A. ISJLP, 7:639,
2011.

[42] Microsoft. Wallet faq for windows phone | windows phone how-
to (united states). http://www.windowsphone.com/en-us/how-to/wp8/
apps/wallet-faq, 2014.

[43] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, and F. Piessens
und G. Vigna. Cookieless monster: Exploring the ecosystem of web-based
device fingerprinting. In IEEE Symposium on Security and Privacy (S&P),
2013.

[44] OECD. The OECD Privacy Framework, 2013.

[45] Isle of Man Information Commissioner. Data protection act - data controller
or data processor?, 2015.

[46] L. Olejnik and T. Minh-Dung und C. Castelluccia. Selling off privacy at
auction. in NDSS, 2014.

[47] Jonathan W Palmer, Joseph P Bailey, and Samer Faraj. The role of
intermediaries in the development of trust on the www: The use and
prominence of trusted third parties and privacy statements. Journal of
Computer-Mediated Communication, 5(3):0–0, 2000.

[48] PayPal. Encrypted website payments - technical overview.
https://www.paypal.com/us/cgi-bin/webscr?cmd=p/xcl/rec/ewp-
techview-outside, 2013.

[49] PayPal. Getting started with express checkout. https:
//developer.paypal.com/webapps/developer/docs/classic/express-
checkout/integration-guide/ECGettingStarted/, 2013.

[50] PayPal. How would you like to integrate with paypal? https://
developer.paypal.com/webapps/developer/docs/, 2013.

http://www.windowsphone.com/en-us/how-to/wp8/apps/wallet-faq
http://www.windowsphone.com/en-us/how-to/wp8/apps/wallet-faq
https://www.paypal.com/us/cgi-bin/webscr?cmd=p/xcl/rec/ewp-techview-outside
https://www.paypal.com/us/cgi-bin/webscr?cmd=p/xcl/rec/ewp-techview-outside
https://developer.paypal.com/webapps/developer/docs/classic/express-checkout/integration-guide/ECGettingStarted/
https://developer.paypal.com/webapps/developer/docs/classic/express-checkout/integration-guide/ECGettingStarted/
https://developer.paypal.com/webapps/developer/docs/classic/express-checkout/integration-guide/ECGettingStarted/
https://developer.paypal.com/webapps/developer/docs/
https://developer.paypal.com/webapps/developer/docs/


REFERENCES 207

[51] PayPal. Paypal developer agreement. https://www.paypal.com/us/
webapps/mpp/ua/xdeveloper-full, 2013.

[52] PayPal. Privacy policy. https://www.paypal.com/webapps/mpp/ua/
privacy-full, 2013.

[53] PayPal. About paypal. https://www.paypal-media.com/about, 2014.

[54] PayPal. How would you like to integrate with PayPal? https:
//developer.paypal.com/docs/, 2014.

[55] PayPal. Legal agreements for paypal services. https://www.paypal.com/
us/webapps/mpp/ua/legalhub-full, 2014.

[56] PayPal. REST API Reference - PayPal Developer. https://
developer.paypal.com/docs/api/, 2014.

[57] PayPal. SetExpressCheckout API Operation (NVP).
https://developer.paypal.com/docs/classic/api/merchant/
SetExpressCheckout_API_Operation_NVP/, 2014.

[58] PayPal. Purchase protection - how to stay safe and sound
with paypal. https://cms.paypal.com/cgi-bin/marketingweb?cmd=
_render-content&content_ID=security/buyer_protection, 2015.

[59] K. Poulsen. Paypal freezes wikileaks account. http://www.wired.com/
2010/12/paypal-wikileaks/, 2010.

[60] Sören Preibusch, Dorothea Kübler, and Alastair R Beresford. Price versus
privacy: an experiment into the competitive advantage of collecting less
personal information. Electronic Commerce Research, 13(4):423–455, 2013.

[61] Lee Rainie, Sara Kiesler, Ruogu Kang, Mary Madden, Maeve Duggan,
Stephanie Brown, and Laura Dabbish. Anonymity, privacy, and security
online. Pew Research Center, 5, 2013.

[62] Finextra Research. Disneyland paris to test contactless payments. http://
www.finextra.com/news/fullstory.aspx?newsitemid=20321, July 2009.

[63] F. Roesner and T. Kohno und D. Wetherall. Detecting and defending
against third-party tracking on the web. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation (NSDI, 2012.

[64] Leslie Scism. State farm is there: As you drive. Wall Street Journal, 2013.

[65] Ryan Singel. Online tracking firm settles suit over undeletable cookies.
http://www.wired.com/2010/12/zombie-cookie-settlement/, 2010.

https://www.paypal.com/us/webapps/mpp/ua/xdeveloper-full
https://www.paypal.com/us/webapps/mpp/ua/xdeveloper-full
https://www.paypal.com/webapps/mpp/ua/privacy-full
https://www.paypal.com/webapps/mpp/ua/privacy-full
https://www.paypal-media.com/about
https://developer.paypal.com/docs/
https://developer.paypal.com/docs/
https://www.paypal.com/us/webapps/mpp/ua/legalhub-full
https://www.paypal.com/us/webapps/mpp/ua/legalhub-full
https://developer.paypal.com/docs/api/
https://developer.paypal.com/docs/api/
https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/
https://developer.paypal.com/docs/classic/api/merchant/SetExpressCheckout_API_Operation_NVP/
https://cms.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=security/buyer_protection
https://cms.paypal.com/cgi-bin/marketingweb?cmd=_render-content&content_ID=security/buyer_protection
http://www.wired.com/2010/12/paypal-wikileaks/
http://www.wired.com/2010/12/paypal-wikileaks/
http://www.finextra.com/news/fullstory.aspx?newsitemid=20321
http://www.finextra.com/news/fullstory.aspx?newsitemid=20321
http://www.wired.com/2010/12/zombie-cookie-settlement/


208 SHOPPING FOR PRIVACY: PURCHASE DETAILS LEAKED TO PAYPAL

[66] A. Soltani, S. Canty, Q. Mayo, and L. Thomas und C. J. Hoofnagle. Flash
cookies and privacy. Technical report, in Intelligent Information Privacy
Management, Papers from the 2010 AAAI Spring Symposium, 2010.

[67] TRUSTe. Behavioral targeting: Not that bad?! truste survey shows decline
in concern for behavioral targeting. http://www.truste.com/about-
TRUSTe/press-room/news_truste_behavioral_targeting_survey,
2009.

[68] Janice Y Tsai, Serge Egelman, Lorrie Cranor, and Alessandro Acquisti.
The effect of online privacy information on purchasing behavior: An
experimental study. Information Systems Research, 22(2):254–268, 2011.

[69] S. Preibusch und J. Bonneau. The privacy landscape: product
differentiation on data collection. In Economics of Information Security
and Privacy III, pages 263–283. 2013.

[70] K. Gustafsson und N. Magnusson. Risk algorithm paves global expansion
for klarna payment system. http://www.bloomberg.com/news/articles/
2014-02-02/risk-algorithm-paves-global-expansion-for-klarna-
payment-system, February 2014.

[71] Blase Ur, Pedro Giovanni Leon, Lorrie Faith Cranor, Richard Shay, and
Yang Wang. Smart, useful, scary, creepy: perceptions of online behavioral
advertising. In Proceedings of the Eighth Symposium on Usable Privacy and
Security, SOUPS ’12, pages 4:1–4:15, New York, NY, USA, 2012. ACM.

[72] Jennifer Valentino-Devries and Jeremy Singer-Vine. They know what
you’re shopping for. The Wall Street Journal, 2012.

[73] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement study
of google play. In ACM SIGMETRICS Performance Evaluation Review,
volume 42, pages 221–233. ACM, 2014.

[74] The Public Voice. The madrid privacy declaration: Global privacy
standards for a global world. http://thepublicvoice.org/madrid-
declaration/, 2009.

[75] WSJ Online. What They Know - Wsj.com. http://online.wsj.com/
public/page/what-they-know-digital-privacy.html, 2013.

http://www.truste.com/about-TRUSTe/press-room/news_truste_behavioral_targeting_survey
http://www.truste.com/about-TRUSTe/press-room/news_truste_behavioral_targeting_survey
http://www.bloomberg.com/news/articles/2014-02-02/risk-algorithm-paves-global-expansion-for-klarna-payment-system
http://www.bloomberg.com/news/articles/2014-02-02/risk-algorithm-paves-global-expansion-for-klarna-payment-system
http://www.bloomberg.com/news/articles/2014-02-02/risk-algorithm-paves-global-expansion-for-klarna-payment-system
http://thepublicvoice.org/madrid-declaration/
http://thepublicvoice.org/madrid-declaration/
http://online.wsj.com/public/page/what-they-know-digital-privacy.html
http://online.wsj.com/public/page/what-they-know-digital-privacy.html


APPENDIX 209

A Appendix

A.1 A sample HTTP request collected during the experiments

a) Request URL

https://paypal.d1.sc.omtrdc.net/b/ss/paypal-global/1/H.25.3/s6844
9009894746?AQB=1&ndh=1[trimmed – see below]

b) Request parameters (URL decoded)

AQB: 1

ndh: 1

t: 16/5/2014 3:37:43 1
-120

fid: 09476854BACDB25F-
2A6965C4F340BABA

vmt: 51437A79

vmf: paypal.112.2o7.net

ce: UTF-8

ns: paypal

pageName: main:ec:::start

g: https://www.paypal.com
/cgi-bin/webscr?cmd=

_express-checkout&token=

EC-81F4649270038960T

r: https://www.poolparts

online.com/ShoppingCart

.aspx?add=true&ReturnUrl=/p-

59779-covers-umbrella
-furniture.aspx

cc: USD

ch: ec

server: main

products: ;ec

c1: xpt/Checkout/ec/Login

c5: 2P234932RV746033J

c7: none

v7: none:none:none

c8: none

c9: none

c17: Pay with a PayPal
account - PayPal

c19: main:ec:::start

v19: D=c7

c20: 1402882661

c21: EC-81F4649270038960T

c25: main:ec:::start:member:1:
v25: main:ec:::start:member:1:
v28: tnc-a-ecg-cntl

c30: glb

v31: main:ec:::start

c35: out

c36: paypal.com/cgi-bin/
webscr?cmd=_
express-checkout

v36: US

c37:member:1:

c39:D=pageName

c40:c97f8013a3fba

c47:D=pageName

c50:en_us

v50:0nehgENrmdgxT5WkliOJ
GPcyFf6%2bLQoeXAFWsgetQy
DTdJbVzxWcfz6BH%2bVCL
RtF1d9zERVjOXU%3d_146a25
299b6

c53:h.25.3|01.17.2013

c56:yes

c64:2294ec411f0df

c72:UTF-8

h1:main_ec__

s:1024x768

c:8
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j:1.8.5

v:N

k:Y

bw:1024

bh:613

p:Shockwave Flash;iTunes
Application Detector;
QuickTime Plug-in
7.6.6;VLC Multimedia
Plugin (compatible

Totem 3.0.1);Windows
Media Player Plug-in
10 (compatible;
Totem);DivX©Web Player;

AQE:1

Listing 1. The request parameters sent to Adobe’s Omniture tracking suite
domain (omtrdc.net) leaks the product name and ID as a part of the referrer
URL (parameter r). The plugin details, screen dimensions, browser window
size and software versions are collected and sent to the tracking endpoint.

A.2 Browser properties collected by the PayPal analytics
script pa.js

Script URL: https://www.paypalobjects.com/pa/js/pa.js

• User Agent string (navigator.userAgent)

• File name, description and version of installed browser plugins

• Browser plug-ins (navigator.plugins)

• All content types that the browser can handle (navigator.mimeTypes.type)

• Screen resolution and colour depth, browser window width & height

• JavaScript version

• Version numbers of 36 different Windows ActiveX components such as
Outlook Express, MSN Messenger Service and Microsoft virtual machine

A.3 Data collection setup

We used a consistent setup to capture the information that merchants share
with PayPal when their customers proceed to checkout.

Virtual machine: We used a clean virtual machine for each session in a best
effort to prevent profiling by cookies or other client side data.

Proxy: We used mitmproxy [64] for intercepting and recording Web traffic.
By adding mitmproxy’s certificates to the browser, we recorded all HTTP(S)
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requests and responses in decrypted form, including message bodies. We stored
the network dump (.dmp) generated by mitmproxy to enable playback of the
exact Web traffic. This helped us to ensure the reproducibility of our analysis.

Browser: We used a Firefox browser (version 25.0), configured to relay all
communications through the intercepting proxy. The browser configuration was
slightly modified from the default, as explained below; however, all privacy-
related settings were left unchanged, simulating a default user.

Browser add-ons: Data collection was supported by browser add-ons
for auto-filling forms and capturing the screen. ’Autofill Forms’ ( https:
//addons.mozilla.org/en-us/firefox/addon/autofill-forms/) helped us
by quickly providing various information we are expected to fill in to forms on
shopping sites. The use of the form-filler also ensured the same profile data
was used on every site. We used ’Screengrab’ (https://addons.mozilla.org/en-
US/firefox/addon/screengrab-fix-version/) to take the screen capture of the
PayPal page we were redirected to complete the payment.

Browser configuration: The browser configuration was kept closely to the
default to mimic the privacy exposure of a mainstream user. We therefore kept
all privacy-related settings unchanged and used the default non-private browsing
mode. We continued to allow popups, Flash, Silverlight and Java (if available)
and did not actively block script execution. We allowed and recorded requests
to phishing/malware databases, which are enabled by the original settings.

At the same time, the following options were turned off to prevent cluttering
of the recorded Web traffic: auto-update search engines, spell checking, crash
report, Firefox health report and OCSP certificate verification.

Proxifying script: We used a Python script to launch mitmproxy and the
browser with the product URL. The same script was used for parsing the
network dump captured by mitmproxy and for outputting the captured HTTP(S)
requests and responses for further analysis. The logs generated by the script
were fed to a parser script that mined the data in the Web traffic and detected
information flows.

A.4 Reproducing the original Omniture tracking on PayPal’s
checkout pages

Note that the PayPal checkout pages from the Internet Archive can be used to
validate our findings about Omniture tracking:
https://web.archive.org/web/20140228095312/https://www.paypal.com

/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Q

https://addons.mozilla.org/en-us/firefox/addon/autofill-forms/
https://addons.mozilla.org/en-us/firefox/addon/autofill-forms/
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
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m11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b60623
9e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d83
82cff5df9729c4c3c2b2

https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
https://web.archive.org/web/20140228095312/https://www.paypal.com/cgi-bin/webscr?cmd=_flow&SESSION=_4T7tr0uKMzmNjcRwv_KSFh0Dminf5Qm11xcKqg33aOA_Q80mcRJXTVjTxK&dispatch=50a222a57771920b6a3d7b606239e4d529b525e0b7e69bf0224adecfb0124e9b61f737ba21b0819827f0298a8d8382cff5df9729c4c3c2b2
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