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Abstract

The focused information criterion for model selection is constructed to select the model that best

estimates a particular quantity of interest, the focus, in terms of mean squared error. We extend

this focused selection process to the high-dimensional regression setting with potentially a larger

number of parameters than the size of the sample. We distinguish two cases: (i) the case where the

considered submodel is of low-dimension and (ii) the case where it is of high-dimension. In the former

case, we obtain an alternative expression of the low-dimensional focused information criterion that

can directly be applied. In the latter case we use a desparsified estimator that allows us to derive the

mean squared error of the focus estimator. We illustrate the performance of the high-dimensional

focused information criterion with a numerical study and a real dataset.

Keywords: Desparsified estimator; Focused information criterion; High-dimensional data; Variable

selection.

Running headline: A high-dimensional FIC

1 Introduction

We extend the theory of the focused information criterion (FIC) for variable selection in parametric

models to allow a diverging dimension of the parameter, permitting us to apply the method on high-

dimensional data where the number of parameters may exceed the sample size. To do so, we extend

the desparsified estimator of van de Geer et al. (2014) to the local misspecification framework. The FIC

philosophy puts less emphasis on which variables are in the model but rather on the accuracy of the

estimator of a focus, which is a differentiable function of the model parameters. The accuracy of the

estimation is assessed via the mean squared error (MSE).

For example in the context of prediction with linear models, the FIC permits to use different variables to

make predictions for different new observations of the covariate vector. We illustrate this on a real data

set containing 4088 variables and 71 observations that we split in a training set of size 50 and a testing

set of size 21. Whereas the usual approach consists in using the same penalized estimator and thus the

same covariates to obtain the 21 predictions, the FIC allows us to use different covariates for each of the

21 different predictions. In our example, the mean squared prediction error is improved from 0.235 with

a penalized estimator approach to 0.180 with the FIC approach.

The FIC has been introduced by Claeskens and Hjort (2003) for low-dimensional likelihood models, see
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also Claeskens and Hjort (2008b, Ch. 6). This approach of focused selection has further been extended to

several application areas including panel count data (Wang et al., 2015), graphical models (Pircalabelu

et al., 2015) and personalized medicine (Yang et al., 2015). Focused selection for quantile regression has

been studied by (Behl et al., 2014), and for weighted composite quantile regression by Xu et al. (2014).

Focused selection for causal inference has been obtained by (Vansteelandt et al., 2012). Other model

classes where focused selection has been studied include time series models (Rohan and Ramanathan,

2011; Claeskens et al., 2007), partially linear models (Zhang and Liang, 2011) and survival data (Hjort

and Claeskens, 2006), without being complete in this overview.

Variable selection and estimation for high-dimensional data is most often performed simultaneously by

using penalization methods; for an overview, see Fan and Lv (2010). The use of lasso-type estimators

(Tibshirani, 1996) and its variations is currently well known. For theoretical results, see Bühlmann and

van de Geer (2011). However, one should realize that also such methods, as do most other variable

selection procedures, aim at selecting one ‘best’ model that one hence is supposed to use to estimate all

quantities of interest related to that dataset. In contrast, the focused information criterion (FIC) may

select different models for different quantities interest, which we call the focuses.

The introduction of the FIC for a diverging number of parameters is important and has a large application

area. Claeskens (2012) gave a FIC formula for penalized estimators but required the dimension of

the parameters to be fixed. Thus the small n (sample size) – large p (number of parameters) case

is asymptotically not covered by that work. That form of FIC for penalized estimators with a fixed

dimension is used by Pircalabelu et al. (2016) for high-dimensional graphical models.

Besides penalization procedures, several other variable selection procedures have been developed for high-

dimensional data. In particular, Luo and Chen (2013) establish the consistency of the extended Bayesian

information criterion (EBIC) with a diverging number of relevant features but need to restrict to low-

dimensional submodels. Kim et al. (2012) obtain the consistency of the generalized information criterion

(GIC) and Wang et al. (2009) propose a modified BIC (mBIC) whose consistency is shown for a number

of parameters that diverges slower than the sample size.

The paper is organized as follows. In Section 2, we define the general framework and recall the classical

FIC formula for fixed dimensions. In Section 3, we introduce the FIC for high-dimensional data when

the considered submodel is of low dimension. This also provides an alternative formula in the classical

FIC setting. In Section 4 we consider the high-dimensional submodel case in which p + |S|> n and

restrict to linear models. In that case the maximum likelihood estimator is not available because the

Fisher information (sub)matrix is not invertible. To tackle this problem we use a desparsifying estimator,

following the idea of van de Geer et al. (2014), Javanmard and Montanari (2014) and Zhang and Zhang

(2014). In Section 5, we give some practical considerations for the computation of the FIC, including

information over the estimation of δδ⊤ and in Section 6 we give numerical results. In Section 7, we

illustrate the FIC procedure on the real data set riboflavin from package hdi and compare it to a regular

penalization approach. Section 8 provides some insights over the extension of results of Section 4 to the

generalized linear models. All proofs are given in Section 9.
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2 Model, notations and limitations of the current FIC literature

2.1 Notation and framework

Let Y1, . . . , Yn be independent response values with concomitant covariates x1, . . . , xn, such that Yi has a

density f(y|xi, θ0, γn). The vector γn contains all the parameters on which we want to perform variable

selection and has length qn that is allowed to grow with n. The parameter vector θ0 is of fixed length p

and contains all the parameters that we want to include in every considered model. These parameters

are protected. For example, for a linear model Yi = β0 + x⊤
i β + σǫi with ǫi ∼ N (0, 1), it is quite

common to include the parameters σ and β0 in every considered submodel. Thus a natural choice would

be θ0 = (σ, β0). It might also be relevant in some cases to include some of the components of β in the

protected set (e.g. some variables that are known beforehand to be important). The covariate xi is of

diverging length rn. Very often rn and qn are of the same order but it is not necessary the case. We

present two simple examples that illustrate the link between p, qn and rn.

First assume that we want to fit a linear model for (Yi, xi), i = 1, . . . , n and that we want to include

the first three components of xi in every considered model. These three components might for instance

be the age, the weight and the height of an individual while all other components might consist of

blood information or gene expressions. The full model, the largest model under consideration, is then

Yi = β0 +
∑3

j=1 xi,jβj +
∑rn

j=4 xi,jβj + σǫi and we have θ0 = (σ, β0, β1, β2, β3) and γn = (β4, . . . , βrn).

Thus p = 5 and qn = rn − 3.

In a second example, assume that we still want to fit a linear model for (Yi, xi) but that none of the

components of xi should be protected. Furthermore assume that we want to consider interaction terms as

well as first and second order terms in the possible models. Then p = 2 (for the error standard deviation

level and the intercept) and qn = rn + rn(rn + 1)/2.

As in the earlier studies about FIC (e.g. Claeskens and Hjort, 2003; Claeskens, 2012) we consider the

local misspecification framework where γn = γ0 + δ/
√

n, with the major difference that the length qn

of δ is diverging. Each component of δ is O(1). This framework allows us to study the mean squared

error (MSE) of the estimator of the further-defined focus, with a balance between the squared bias and

the variance, without having the bias or the variance dominating the mean squared error expression. We

refer to Claeskens and Hjort (2008b, Sec. 5.5) for more details regarding the local misspecification setting.

Taking γn = γ0, a known value, corresponds to working with the simplest model, often called the narrow

model. In the two examples given hereabove, it is natural to choose γ0,j = 0 for each j: the simplest

model consists in not including the unprotected variables. In other cases, γ0,j might be nonzero, see

for instance example 5.4 in Claeskens and Hjort (2008b) in which the skewing logistic regression model

pi = H(x⊤
i β + z⊤

i α)κ is considered. In that example, κ is an unprotected parameter that takes value 1

in the narrow model.

We denote by S0,n = {j : δj 6= 0} the active set of coefficients where we emphasize in the notation the

fact that the length of δ is growing with n and we write sn = |S0,n|, the number of elements of S0,n. We
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consider subsets S of {1, . . . , qn} and denote by (sub)model S the model containing θ and those parameters

γj with j belonging to S. This model corresponds to working with a density f(y|x, θ, γS , γ0,Sc) with Sc

the complementary set of S. The slight abuse of notation groups the components of γ by whether their

index is present or absent in S. When fitting a model with the p protected parameters in θ, and |S| added

parameters, in total p + |S| parameters need to be estimated. Let us denote by (θ̂S , γ̂S) an estimator of

(θ0, γn,S). See Sections 3 and 4 for more details.

2.2 The focused information criterion

Following the FIC philosophy, we are interested in estimating as accurately as possible (in terms of MSE)

a particular quantity of interest µtrue = µ(θ0, γn), called the focus. A model that is best in terms of MSE

for one focus µ, might not be the best for another focus. This leads to a tailored model choice where

one first specifies the focus and then searches for the best model for that particular goal. In this sense it

should be clear that the FIC is not constructed to aim for selection consistency.

We make the assumption that µ is differentiable with respect to θ and γ such that ‖[( ∂µ
∂θ )

⊤
, ( ∂µ

∂γS
)
⊤

]‖∞ =

K = O(1) in a neighborhood of θ0, γ0. Several examples of such quantities of interest are given in

Claeskens and Hjort (2008b). The focus might for example be the prediction for a particular subgroup of

the population, the estimation of the impact of one particular covariate on the response or a particular

quantile for a specific value of the covariates. The goal is to find the submodel S whose corresponding

estimator µ̂S = µ(θ̂S , γ̂S , γ0,Sc) of the focus is the best in terms of mean squared error. For a submodel

S we are thus interested in the limiting distribution ΛS of
√

n(µ̂S − µtrue). The focused information

criterion estimates the corresponding limiting mean squared error. Thus,

FIC(S) = Ê(ΛS)2 + ̂Var(ΛS).

Different models, say indexed by S and S′, might have different values for the bias and variance of the

submodel-based estimator of µ, thus ΛS might be different from ΛS′ . Hence, models can be ranked based

on their FIC value. The model S with the smallest FIC(S) value amongst all considered models, is

selected as the best one for the purpose of estimating the focus µ.

In the low-dimensional framework with γn and δ of fixed dimensions q × 1, Claeskens and Hjort (2003)

show that if (θ̂S , γ̂S) is the maximum likelihood estimator, the limiting MSE of ΛS is

MSE(S) = ω⊤(Iq − GS)δδ⊤(Iq − GS)⊤ω +

(
∂µ

∂θ

)⊤
J−1

00

∂µ

∂θ
+ ω⊤GSQSG⊤

S ω, (1)

with the (p + q) × (p + q) Fisher information matrix J and its inverse matrix denoted by

J =

(
J00 J01

J10 J11

)
, J−1 =

(
J00 J01

J10 J11

)
,

where Q = J11, GS = π⊤
S QSπSQ−1, QS = J11,S , ω = J10J−1

00
∂µ
∂θ − ∂µ

∂γ and πS ∈ RS×q the projection

matrix related to S, obtained by extracting the rows of the q×q identity matrix for which the row number

is in S. Claeskens and Hjort (2008b, Sec. 6.7) show that for linear models the limiting MSE is in fact
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the exact MSE when the focus takes the form µ = x⊤β + z⊤γ. For a vector-valued focus one could use

a one-dimensional summary of the corresponding mean squared error matrix to be minimized over the

different models, such as the matrix’ trace, determinant, a matrix norm, etc.

The current FIC formula (1) can not be applied in our framework for two reasons. First, and most

importantly, the theory assumes that the dimension of γn is fixed. A diverging number of parameters

is not supported by the theory. In this paper, we allow the dimension qn of γn to grow with n and we

make the sparsity assumption sn = o(n1/4). Secondly, the current version of the FIC formula is in many

cases not available for high-dimensional data, even for low-dimensional submodels. Indeed, it requires to

invert the Fisher information matrix J that is in many cases not invertible. For example, for a normal

linear model, the Fisher information matrix J = σ−2diag{2, n−1X⊤X}. When qn > n the matrix J is

by construction not invertible so that the expression (1) is not defined. These considerations motivate us

to develop the FIC theory for a diverging number of parameters.

We distinguish two cases in the model selection search: (i) the submodel is low-dimensional such that

regular least squares or maximum likelihood estimators can be computed, and (ii) the submodel is high-

dimensional, requiring a regularized estimator. In both cases, an adjustment of the existing focused

selection approach is needed. These two cases are studied in the next two sections.

We now give some notations. For two random variables A and B, the notation A =̇d B means that

A − B
p→ 0. Furthermore, we write ftrue(y|x) = f(y|x, θ0, γ0 + δ/

√
n) the true density function,

f0(y|x) = f(y|x, θ0, γ0) the density function in the narrow model and U(y|x) = ∂
∂θ log f(y|x, θ, γ)|(θ0,γ0)

and V (y|x) = ∂
∂γ log f(y|x, θ, γ)|(θ0,γ0) the derivatives of the log-density evaluated in the narrow model.

We define in the regression model’s context

J(x) =

∫
f0(y|x)

(
U(y|x)

V (y|x)

)(
U(y|x)

V (y|x)

)⊤

dy, Jn =
1

n

n∑

i=1

J(xi) =

(
Jn,00 Jn,01

Jn,10 Jn,11

)
,

the latter matrix is the empirical Fisher information matrix. For a fixed subset S of {1, . . . , qn}, we

denote by πS the |S|×qn projection matrix related to S that, when multiplied to a matrix or row vector

consisting of qn rows, selects those rows corresponding to the elements in S. Further, define

π∗
S =

(
Ip 0p×qn

0|S|×p πS

)
, JS(x) = π∗

SJ(x)π∗⊤
S =

∫
f0(y|x)

(
U(y|x)

VS(y|x)

)(
U(y|x)

VS(y|x)

)⊤

dy

and write Jn,S = 1
n

∑n
i=1 JS(xi) the empirical Fisher matrix in model S and JS = limn→∞ Jn,S . Note

that Jn,S is of fixed dimension (p + |S|) × (p + |S|) while Jn is of diverging dimension (p + qn) × (p + qn).

As a consequence, for an unbounded sequence {qn, n → ∞}, Jn does not converge to a fixed quantity J .

3 FIC for a low-dimensional submodel

We consider the local misspecification framework of Section 2. Let S be a fixed subset of {1, . . . , qn} such

that the number of parameters p + |S| to estimate in the submodel S is smaller than the sample size n.
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Let us consider the maximum likelihood estimator for (θ0, γn,S)

(θ̂S , γ̂S) = arg max
θ∈RpγS∈R|S|

1

n

n∑

i=1

log f(yi|xi, θ, γS , γ0,Sc) (2)

and define the estimator of the focus in this model by

µ̂S = µ(θ̂S , γ̂S , γ0,Sc). (3)

Before presenting our theoretical result for the limiting distribution of
√

n(µ̂S − µtrue) we give the corre-

sponding conditions. A Taylor expansion of ftrue(y|x) gives

ftrue(y|x) = f0(y|x)
{

1 + V (y|x)⊤δ/
√

n + R(y|x, δ/
√

n)
}

. (4)

We make the following conditions, that are similar to Hjort and Claeskens (2003), phrased here for the

regression setting.

(C1) The two integrals
∫

f0(y|x)U(y|x)R(y, t)dy and
∫

f0(y|x)V (y|x)R(y, t)dy are both O(‖t‖2
1), with R

defined in (4).

(C2) The variables |Ul(y|x)2Vk(y|x)| and |Vj(y|x)2Vk(y|x)| have finite mean under f0(y|x) for each 1 ≤
l ≤ p and j, k ∈ S.

(C3) The two integrals
∫

f0(y|x) ‖U(y|x)‖2
R(y, t)dy and

∫
f0(y|x) ‖VS(y|x)‖2

R(y, t)dy are both o(1).

(C4) The log density has three continuous derivatives w.r.t the p+ |S| parameters (θ, γS) in a neighbour-

hood around (θ0, γ0), and they are dominated by functions with finite means under f0.

(C5) sn = o(n1/4).

Conditions (C1) to (C4) are similar to those of Hjort and Claeskens (2003) in the low-dimensional case,

while condition (C5) is a sparsity condition to deal with high-dimensional vectors.

Lemma 1. Under (C1), (C2), (C3) and (C5), we have

( √
nŪn√
nV̄n,S

)
−
(

Jn,01δ

πSJn,11δ

)
d−→ Np+|S|(0, JS)

with Ūn = 1
n

∑n
i=1 U(yi|xi), V̄n,S = 1

n

∑n
i=1 VS(yi|xi).

Lemma 2. Under (C1), (C2), (C3), (C4) and (C5), we have

( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)
− J−1

S

(
Jn,01δ

πSJn,11δ

)
d−→ Np+|S|(0, J−1

S ).

The following theoretical result is an extension of Theorem 6.1 of Claeskens and Hjort (2008b) to the

diverging number of parameters case. It covers the important p + q > n case and can thus be applied on

high-dimensional data. A proof is given in Section 9.
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Theorem 1. Under conditions (C1) to (C5) it holds for the estimator (3) of the focus in model S that

√
n(µ̂S − µtrue) =̇d Λn,S

with

Λn,S =
(

∂µ
∂θ

)⊤
CS +

(
∂µ

∂γS

)⊤
DS −

(
∂µ
∂γ

)⊤
δ (5)

=

(
∂µ
∂θ
∂µ
∂γ

)⊤(
BSδ + π∗⊤

S J−1
S

(
U

VS

))
(6)

where the partial derivatives are evaluated at the null point (θ0, γ0) and where
(

CS

DS

)
= J−1

S

(
Jn,01δ + U

πSJn,11δ + VS

)
with

(
U

VS

)
∼ Np+|S|(0, JS),

and

BS = π∗⊤
S J−1

S

(
Jn,01

πSJn,11

)
−
(

0p×qn

Iqn

)
.

The sparsity condition sn = o(n1/4) is crucial in this high-dimensional framework. Note that Λn,S

depends on n through ∂µ
∂γ , BS and δ. While (5) leads to the original FIC formula, (6) turns out to be

more useful in the high-dimensional case. From Theorem 1, for a model S, the limiting distribution of
√

n(µ̂S − µtrue) is the same as the one of Λn,S which is normally distributed with mean and variance

given by

E(Λn,S) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

BSδ and Var(Λn,S) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S J−1

S π∗
S

(
∂µ
∂θ
∂µ
∂γ

)
.

We thus have

MSE(S, δ) =

(
∂µ
∂θ
∂µ
∂γ

)⊤
(
BSδδ⊤B⊤

S + π∗⊤
S J−1

S π∗
S

)
(

∂µ
∂θ
∂µ
∂γ

)
, (7)

and FIC(S, δ) = ̂MSE(S, δ) which defines the FIC in the high-dimensional setting for a low-dimensional

submodel S. Interestingly, this formulation does not require the inverse of the Fisher matrix in the full

model but only in the submodel S. Thus this expression may be used in the high-dimensional setting

with p + qn > n if the considered submodel S is of low dimension, that is if p + |S|≤ n.

In fact, the formula (7) could also be used to compute the FIC in the classical fixed low dimensional case.

Indeed, it is possible to show that for fixed q with p + q < n the expressions (1) and (7) are equal, with

Jn,01 and Jn,11 replaced by their limiting versions J01 and J11, this is that

ω⊤(Iq − GS)δδ⊤(Iq − GS)⊤ω +

(
∂µ

∂θ

)⊤
J−1

00

∂µ

∂θ
+ ω⊤GSQSG⊤

S ω

is equal to (
∂µ
∂θ
∂µ
∂γ

)⊤
(
BSδδ⊤B⊤

S + π∗⊤
S J−1

S π∗
S

)
(

∂µ
∂θ
∂µ
∂γ

)
.
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This can be obtained using Q−1 = J11 − J10J−1
00 J01 and GSQSG⊤

S = π⊤
S QSπS . The main novel con-

tribution of the low-dimensional submodel case, though, is that the theory takes the presence of the

high-dimensional vector δ into account.

To conclude this section, we note that if we wish to not protect any variable in the model selection

procedure, our theory is still valid. In that case the Fisher information matrix is a qn × qn matrix

and Theorem 1 and expression (7) are still valid with slight adjustments. The partial derivative ∂µ
∂θ

disappears, BS becomes π⊤
S JSπSJn − Iq and π∗

S becomes πS . This remark also holds for the high-

dimensional submodel case in the next section.

4 FIC for a high-dimensional submodel of a linear model

Let S be a subset of {1, . . . , qn} of size larger than n − p. The maximum likelihood estimator (or least-

squares estimator) is not available anymore and the results from Section 3 are not applicable. We propose

to first use a ℓ1-penalized estimator and then to desparsify it to obtain an estimator of (θ0, γn,S) whose

distribution can be tracked. The idea to desparsify a penalized estimator has been introduced by several

authors, including van de Geer et al. (2014), Javanmard and Montanari (2014) and Zhang and Zhang

(2014). In this section, we restrict to linear models but extensions to generalized linear models and convex

loss functions are expected to be feasible.

The desparsification is needed because the ℓ1-based penalties have the property of setting some of the

coefficients exactly equal to zero, one can show asymptotic consistency of such selection under some

conditions. The remaining non-zero coefficients are estimated by an estimator which can asymptotically

be normally distributed. This is the case for the adaptive Lasso (see Zou, 2006) and the SCAD (see

Fan and Li, 2001). Since the focus might be a function of both types of coefficients, those that will

be estimated by zero and those that will not, the asymptotic distribution of the focus estimator is not

tractable due to this mixture containing a point-mass at zero.

Let us assume that for i = 1, . . . , n, the response Yi is generated by a linear model

Yi = x⊤
β,iβ0 + x⊤

γ,iγn + σǫi (8)

with ǫi ∼ N (0, 1), where β0 ∈ Rp corresponds to the protected variables, xβ,i is a p×1 vector of protected

covariates, γn ∈ Rqn corresponds to the unprotected parameters with corresponding covariate vector xγ,i

on which variable selection is performed.

As in most of the high-dimensional literature, we assume that the noise variance σ2 is known. Reid

et al. (2016) describe strategies for estimating σ2 and their empirical comparison suggests that using

the estimator based on the residual sum of squares of cross-validated Lasso solution might yield a good

estimator. For theoretical properties we refer to this paper. With σ2 assumed to be known, the protected

parameter θ0 is thus β0 and we note that for a linear model, γ0 = 0qn so that we have γn = δ/
√

n in this
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section. We write

Xβ =




x⊤
β,1

...

x⊤
β,n


 ∈ R

n×p, Xγ =




x⊤
γ,1

...

x⊤
γ,n


 ∈ R

n×qn , Xγ,S = Xγπ⊤
S and X∗

S = [Xβ , Xγ,S] ∈ R
n×(p+|S|).

The matrix X∗
S corresponds to the design matrix in the submodel S. Denoting by Y the vector of

responses and ǫ the vector of the errors, we have Y = Xββ0 + Xγγn + ǫ.

This section proceeds as follows. First, in section 4.1, we derive a desparsified estimator that can be

interpreted as a generalization of the ordinary least-sqaures estimator. In section 4.2, we describe how

to construct a relaxed inverse of the sample covariance matrix. Next, in section 4.3, we consider the case

that a submodel S contains the true active set and derive theoretical results. In section 4.4, we derive a

FIC formula for a general submodel S.

4.1 Desparsified estimator

Let us consider the following Lasso estimator (Tibshirani, 1996) where we do not penalize the intercept

parameter (or take a model without intercept by centering the variables),

(β̂Lasso
S , γ̂Lasso

S ) = arg min
β∈Rp,γS∈R|S|

1

2n

∥∥∥Y − X∗
S

(
β

γS

)∥∥∥
2

2
+ λ
∥∥∥
(

β

γS

)∥∥∥
1
. (9)

We describe how to construct a desparsified estimator. The derivation presented herebelow is based on

van de Geer et al. (2014). We write the Karush-Kuhn-Tucker condition

1

n
X∗⊤

S

(
Y − X∗

S

(
β̂Lasso

S

γ̂Lasso
S

))
= λκ̂S ; with κ̂S,j = sign



(

β̂Lasso
S

γ̂Lasso
S

)

j


 if

(
β̂Lasso

S

γ̂Lasso
S

)

j

6= 0, (10)

where ‖κ̂S‖∞ ≤ 1.

The matrix JS = 1
nσ2 X∗⊤

S X∗
S is by construction not invertible because p+ |S|> n. We construct a relaxed

inverse MS of JS by using the Lasso nodewise regression technique, as presented in van de Geer et al.

(2014) and in section 4.2, and we define the following desparsified estimator:

(
β̂desp

S

γ̂desp
S

)
=

(
β̂Lasso

S

γ̂Lasso
S

)
+ MS

1
nσ2 X∗⊤

S

(
Y − X∗

S

(
β̂Lasso

S

γ̂Lasso
S

))

= MS
1

nσ2 X∗⊤
S Y +

(
Ip+|S| − MSJS

)
(

β̂Lasso
S

γ̂Lasso
S

)
.

(11)

We now give some intuition of the desparsfying estimator defined in (11). It can be seen as a bias-

corrected version of the Lasso (first line) or as what we could call a pseudo-least-squares estimator in

a high-dimensional framework (second line). We focus on the second interpretation. Since JS is not

invertible and MS is used as a relaxed inverse, we could use the estimator MS
1

nσ2 X∗⊤
S Y . This estimator
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has mean MSJS(β⊤
0 , γ⊤

0,S + δ⊤
S /

√
n)⊤ and variance 1

n MSJSM⊤
S . We aim to correct this bias by adding

(Ip+|S| − MSJS)(β̂⊤, γ̂⊤
S )⊤ using a reasonable estimator of the parameter vector. Here and in several

referenced papers, the lasso estimator is taken.

By plugging Y = Xββ0 + Xγδ/
√

n into (11), we obtain the following equalities.
(√

n(β̂desp
S − β0)

√
n(γ̂desp

S − γ0)

)
= MS

(
J01δ

πSJ11δ

)
+
(
Ip+|S| − MSJS

)
(

0p

δS

)

+ MS
1√
nσ2 X∗⊤

S ǫ − √
n
(
Ip+|S| − MSJS

)
(

β̂Lasso
S − β0

γ̂Lasso
S − δS√

n

)

=

(
0p

δS

)
+ MS

1
nσ2 X∗⊤

S Xγ,ScδSc

+ MS
1√
nσ2 X∗⊤

S ǫ − √
n
(
Ip+|S| − MSJS

)
(

β̂Lasso
S − β0

γ̂Lasso
S − δS√

n

)
.

(12)

The right hand side of the second line of equation (12) has a very clear interpretation. It consists of a

sum of four elements. The first two are related to the local misspecification, the third one is a variance

term and the fourth one is a bias term that is shown in Theorem 2 to be op(1) if S0,n ⊆ S. Before stating

our theoretical results and defining the FIC, we describe how to construct the relaxed inverse MS.

4.2 Nodewise regression

Before stating our theoretical result we briefly describe how we construct the matrix MS which acts as a

relaxed inverse of JS . We follow the methodology of van de Geer et al. (2014). For each j ∈ {1, . . . , p + |S|}
we compute

η̂j = arg min
η∈Rp+|S|−1

1

2n

∥∥X∗
S,j − X∗

S,−jη
∥∥2

2
+ λj ‖η‖1 ,

where X∗
S,j is the j-th column of X∗

S and X∗
S,−j ∈ Rn×(p+|S|−1) is X∗

S without its j-th column, and we

form

ÂS =




1 −η̂1,2 . . . η̂1,p+|S|

−η̂2,1 1 . . . η̂2,p+|S|
...

...
. . .

...

−η̂p+|S|,1 −η̂p+|S|,2 . . . η̂p+|S|,p+|S|




with components of η̂j indexed by k ∈ {1, . . . , j − 1, j + 1, . . . , p + |S|}. We define

MS = T̂ −2
S ÂS

with T̂ 2
S = diag(τ̂2

1 , . . . , τ̂2
p+|S|) and τ̂2

j = 1
n

∥∥X∗
S,j − X∗

S,−j η̂j

∥∥2

2
+ λj ‖η̂j‖1.

4.3 Submodel containing the true active set: theoretical results

In this section, we assume that the submodel S contains the true active S0,n of γn. We state the following

conditions.
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(A1) For the true active set {1, . . . , p} ∪ {p + j : j ∈ S0,n}, the compatibility condition holds for

Σ̂S = 1
n X∗⊤

S X∗
S with compatibility constant φ2

0 > 0, this is for all β and γ satisfying ‖γSc
0,n

‖1≤

3(‖β‖1+‖γS0,n‖1), it holds that (‖β‖1+‖γS0,n‖1)2 ≤
(

β

γS

)⊤

Σ̂S

(
β

γS

)
(p + sn)/φ2

0. Furthermore,

maxj Σ̂S,j,j ≤ N2 for some 0 < N < ∞.

(A2) For each j we take λj = O(
√

log(p + |S|)/n in the nodewise regression procedure and we have

τ̂j ≥ C > 0.

(A3) sn = o(n1/4).

Assumption (A1) is common in the high-dimensional literature, see for example Bühlmann and van de

Geer (2011), and assumption (A2) corresponds to (B1) in Bühlmann and van de Geer (2015). (A3) is a

sparsity condition, which is the same as assumption (C5).

The following lemma follows from Theorem 2.1 of van de Geer et al. (2014) applied to the model Y =

Xββ0 +Xγ,Sγn,S +ǫ (which holds if S0,n ⊆ S) under the local misspecification framework γn = γ0 +δ/
√

n.

Lemma 3. Let us consider the linear model (8). Let S be a subset of {1, . . . , qn} such that S0,n ⊆ S and

let t > 0 be arbitrary. Under conditions (A1), if λ ≥ 2Nσ
√

2(t2 + log(p + |S|))/n we have:

(√
n(β̂desp

S − β0)
√

nγ̂desp
S

)
.
=d

(
CS

DS

)
+ ∆1, (13)

with (
CS

DS

)
∼ Np+|S|

((
0p

δS

)
, MSJSM⊤

S

)

and

P

[
‖∆1‖∞ ≥ 8

√
n

(
max

j

λj

τ̂2
j

)
λ(p + sn)

φ2
0

]
≤ 2 exp(−t2),

with λj and τ̂2
j being the tuning parameter and the residual sum of squares of the regression of X∗

S,j on

X∗
S,−j in the nodewise regression procedure.

Using Lemma 3, we can obtain the distribution of the focus estimator.

Theorem 2. Let consider the linear model (8). Let S be a subset of {1, . . . , q} such that S0,n ⊆ S and

let t > 0 be arbitrary. Under conditions (A1), (A2) and (A3), if λ ≥ 2Nσ
√

2(t2 + log(p + |S|))/n we

have for µ̂S = µ(β̂desp
S , γ̂desp

S , 0⊤
|Sc|) and µtrue = µ(β0, γn)

√
n(µ̂S − µtrue)

.
=d ΛS + ∆2,

where

ΛS =
(

∂µ
∂θ

)⊤
CS +

(
∂µ

∂γS

)⊤
DS −

(
∂µ
∂γ

)⊤
δ =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S MS

(
U

VS

)

with (U⊤, V ⊤
S ) ∼ Np+|S| (0, JS)
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and

P

[
∆2 ≥ 8K(p + |S|)√n

(
max

j

λj

τ̂2
j

)
λ(p + sn)

φ2
0

]
≤ 2 exp(−t2).

Using a regularization parameter λ of order
√

log(p + |S|)/n and under assumption (A2), ∆2 can be

neglected if sn = o(
√

n/{(p + |S|) log(p + |S|)}) which holds thanks to (A3) and the fact that p and S

are fixed.

For a model S, under conditions of Theorem 2 and with adequate tuning parameters and sparsity as-

sumption, the limiting distribution ΛS of
√

n(µ̂S − µtrue) is normal with mean E(ΛS) = 0 and variance

Var(ΛS) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S MSJSM⊤

S π∗
S

(
∂µ
∂θ
∂µ
∂γ

)
.

It is logical to observe a null bias because we make the assumption that the true active set is included in

the considered submodel. The limiting mean squared error is thus

MSE(S, δ) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S MSJSM⊤

S π∗
S

(
∂µ
∂θ
∂µ
∂γ

)

and the FIC is defined as FIC(S, δ) = ̂MSE(S, δ).

4.4 Arbitrary submodel

For an arbitrary submodel indexed by S, Lemma 3 does not necessarily hold because we cannot guarantee

that all active variables are in the chosen submodel. For the purpose of model selection, an estimator of

the mean squared error of the focus is needed. We propose to use the approximations

E

[√
n(β̂desp

S − β0)
√

nγ̂desp
S

]
≈
(

0p

δS

)
+ MS

1

nσ2
X∗⊤

S Xγ,ScδSc ; Var

[√
n(β̂desp

S − β0)
√

nγ̂desp
S

]
≈ MSJSM⊤

S ,

based on (12). This leads to the following definition of a high-dimensional FIC for a general submodel S:

FIC(S) = M̂SE(S)

with

MSE(S) =

(
∂µ
∂θ
∂µ
∂γ

)⊤
(
B′

Sδδ⊤B′t
S + π∗⊤

S MSJSM⊤
S π∗

S

)
(

∂µ
∂θ
∂µ
∂γ

)

and

B′
S =

(
π∗⊤

S MS

(
J01

πSJ11

)
−
(

0p×qn

Iqn

))
(
Iq − π⊤

S πS

)
.

This formula corresponds to (7) if MS = J−1
S .

Note that this corresponds to approximate the distribution of

(
β̂desp

S

γ̂desp
S

)
by the one of

(
β̂desp

S

γ̂desp
S

)
−
(
Ip+|S| − MSJS

)
(

β̂Lasso
S

γ̂Lasso
S

)
= MS

1

nσ2
X∗⊤

S Y +
(
Ip+|S| − MSJS

)
(

β0

δ/
√

n

)
,
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which can be seen as an oracle desparsified estimator.

5 Practical considerations

The results of last two sections for linear models are summarized in Table 1. We observe that the

expressions giving the limiting variance of µ̂S are very similar. In the high-dimensional submodel case,

J−1
S is not available and is thus replaced by MSJSMS . Regarding the bias, it is possible to show in both

cases that if S0,n ⊂ S then the bias expression reduces to 0.

In practice, when computing the squared bias, we need to estimate δδ⊤. There are several possibilities

to do it but none of them produces a consistent estimator. We list here four possibilities. A first natural

choice is to use the Lasso estimator δ̂Lasso =
√

nγ̂Lasso where

(β̂Lasso, γ̂Lasso) = arg min
β,γ

1

2n

∥∥∥∥∥Y − X∗
(

β

γ

)∥∥∥∥∥

2

2

+ λ ‖β‖1 + λ ‖γ‖1 . (14)

A second possibility is to use the more sophisticated adaptive Lasso δ̂adap =
√

nγ̂adap (see Zou, 2006)

where

(β̂adap, γ̂adap) = arg min
β,γ

1

2n

∥∥∥∥∥Y − X∗
(

β

γ

)∥∥∥∥∥

2

2

+ λ

p∑

j=1

wjβj + λ

p+q∑

j=p+1

wjγj . (15)

with wj =





1
n−1/2+|β̂Lasso

j
| for 1 ≤ j ≤ p

1
n−1/2+|γ̂Lasso

j
| for p + 1 ≤ j ≤ p + qn.

This can provide a better estimator of δ in view of

asymptotic results of Zou (2006). A third possibility is to use the desparsified estimator of the full model

δ̂desp =
√

nγ̂desp defined as

(
β̂desp

γ̂desp

)
=

(
β̂Lasso

γ̂Lasso

)
+ M

1

nσ2
X∗⊤

(
Y − Xt

(
β̂Lasso

γ̂Lasso

))
,

where M is a relaxed inverse of the Fisher information matrix J = 1
nσ2 X∗⊤X∗ obtained by the nodewise

regression technique. The fourth possibility follows from Lemma 3 applied to S = (1, . . . , qn). Under

suitable conditions we have δ̂desp .
=d Nq(δ, Ω̂) + oP (1) where Ω̂ = (MJM)−p,−p is obtained by deleting

the first p rows and the first p columns of MJM . Thus δdespδdesp,⊤ has mean δδ⊤ + Ω̂. This leads to a

fourth possibility for estimating δδ⊤: to use δ̂despδ̂desp,t − Ω̂. In case this quantity would be negative, it

can be truncated to zero. To summarize, we propose the four following ways to estimate δδ⊤ in the FIC

formula: (1) δ̂Lasso(δ̂Lasso)⊤, (2) δ̂adap(δ̂adap)⊤, (3) δ̂desp(δ̂desp)⊤, (4) δ̂desp(δ̂desp)⊤ − Ω̂.

6 Simulation study

We perform a simulation study to illustrate the benefits of the high-dimensional FIC. We consider the

linear model Yi = Xiγn + σǫǫi with ǫi ∼ N (0, 1) for i = 1, . . . , n. We consider sample sizes n = 100 and
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Low-dimensional submodel High-dimensional submodel

Estimator of (β0, γn,S)

least-squares estimator:(
β̂LS

S

γ̂LS
S

)
= (X∗⊤

S X∗
S)−1X∗⊤

S Y

desparsified estimator:(
β̂desp

S

γ̂desp
S

)
=

(
β̂Lasso

S

γ̂Lasso
S

)
+ MS

1
nσ2 X∗⊤

S

(
Y − X∗

S

(
β̂Lasso

S

γ̂Lasso
S

))

Estimator µ̂S of µtrue µ(β̂LS
S , γ̂LS

S , 0|Sc) µ(β̂desp
S , γ̂desp

S , 0|Sc)

Bias of
√

nµ̂S

(
∂µ

∂(β,γ)

)⊤
(

π∗⊤
S J−1

S

(
J01

πSJ11

)
−
[

0p×q

Iq

])
δ

(
∂µ

∂(β,γ)

)⊤
(

π∗⊤
S MS

(
J01

πSJ11

)
−
[

0p×q

Iq

])
(
Iq − π⊤

S πS

)
δ

Variance of
√

nµ̂S

(
∂µ

∂(β,γ)

)⊤
π∗⊤

S J−1
S π∗

S

(
∂µ

∂(β,γ)

) (
∂µ

∂(β,γ)

)⊤
π∗⊤

S MSJSM⊤
S π∗

S

(
∂µ

∂(β,γ)

)

Table 1: Estimator µ̂S of the focus and its bias and variance for a low-dimensional and a high-dimensional

submodel in the context of a linear model.

n = 200 and two different possibilities for the dimension q of the paramater γn: q = 80 and q = 200.

The case q = 200 corresponds to high-dimensional data for which the classical FIC can not be used. We

generate the true model according to four scenarios:

• Case 1: γn = 10c(1, −1, 1, −1, 1, 0, . . . , 0)/
√

n and Xi from Nq(0, Iq) for i = 1, . . . , n.

• Case 2: γn as in case 1 and Xi from Nq(0, Σ) for i = 1, . . . , n with Σjj = 1 and Σjk = 0.5 for j 6= k.

• Case 3: γn = 10c(1, − 1
2 , 1

3 , − 1
4 , . . . , ± 1

q )/
√

n and Xi as in case 1

• Case 4: γn as in case 3 and Xi as in case 2.

Cases 1 and 2 correspond to sparse models and cases 2 and 4 correspond to models with correlation

between variables. The parameter c controls the amplitude of the components of γn. We consider three

different focuses. The first focus is the prediction µ1(γn) = X0γn for a new value X0 of the covariate vector

with the components of X0 randomly generated from U[−1, 1]. The second focus is the first coefficient

of γn, that is µ2(γn) = γn,1 and the third focus is the last coefficient of γn, that is µ3(γn) = γn,q. Note

that the true value of the last focus is 0 for the sparse settings (cases 1 and 2).

We compare predictions of the focus µj for two types of methods: (i) we compute a penalized estimator

of γn in the full model and make prediction based on this parameter estimate and (ii) we use the high-

dimensional FIC as described in Sections 3 and 4. We consider two penalized estimators, the Lasso

and the adaptive Lasso, with the tuning paramaters chosen by 10-fold cross-validation. Other tuning

parameter choices are possible too. These two penalized estimators are also used to estimate δ in the

FIC procedure. We thus obtain four different predictions of µj . For the estimation of σ2
ǫ , we follow

the recommendation of Reid et al. (2016) and use σ̂2
ǫ = RSS/(n − d̂f) with d̂f the number of non-zero

coefficients of the penalized estimator of γn.

Because the number of covariates is large, it is computationally impossible to obtain the FIC of every

possible submodel. Instead, we propose to use a backward-forward stepwise procedure with two possible

starting sets: the empty set and the set {j : δ̂j 6= 0} of active components of the estimator of δ. The
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two procedures usually converge to two different subsets S1 and S2 and we keep the one that gives the

smallest FIC value. More refined procedures can be used to improve the selection search. It is for example

possible to do some pseudo-exhaustive search by computing the FIC of all submodels upto a certain size

d.

In Tables 2 to 4, we report the averaged squared errors of the estimators for the three different focuses

over 1000 simulated datasets for different settings. In Table 2 we consider settings with 80 covariates and

in Table 3 we increase the number of covariates to 200, obtaining high-dimensional data for which the

traditional FIC could not be used. Results for these two tables are similar. We observe that all methods

perform well for the third focus µ3 = γq. Regarding focuses 1 and 2 we observe that the FIC procedures

outperform the penalized estimators for the sparse settings (cases 1 and 2), the ones that are supported

by the theory. For non-sparse settings (cases 3 and 4), the different methods are equally competitive.

The presence of correlation makes things slightly more complicated.

In Table 4, we compare the sensitivity of the different methods to the standard noise level σǫ. We observe

that in the sparse cases, the FIC takes much more advantage of the decrease of the noise level. For

σǫ = 0.25 the FIC largely outperforms the penalized methods while for σǫ = 1 the methods are equally

competitive.

We conclude this simulation study by a remark on the size of the models selected by the FIC. We observed

in our simulations that the models selected by the FIC procedure are very often of size smaller than 5.

It turns out that it is often possible to find a small submodel S whose FIC is smaller than the FIC of

Strue, the active set of the model having generated the data. On Figure 1, we illustrate this by giving the

scatter plot of FIC(S) versus µ̂S for every possible submodel of size smaller or equal to 3. The setting is

chosen to have many true non-zero coefficients (20) so that we expect the bias to be large for models of

size only 3. We also choose a small value of the standard noise (σǫ = 0.1) to increase the weight of the

squared bias in the FIC expression. We see on the left figure that many of the submodels exhibit large

values of FIC but more importantly we also notice on the right figure that for some of the small models

(about 3% of them), the FIC value is smaller than the FIC of the true model. For such submodels, the

estimator µ̂S is very close to the true value (the grey horizontal line). This should be considered one of

the strong features of the FIC.

7 Real data example: the riboflavin data

We apply the high-dimensional FIC procedure on the riboflavin data that can be found in the R package

hdi (Meier et al., 2014). The data contains 71 observations, 4088 predictors (gene expressions) and a

response variable measuring the riboflavin production of the Bacillus subtilis bacteria. This dataset has

been used by many authors in the high-dimensional literature including van de Geer et al. (2014) and

Javanmard and Montanari (2014). We center the response variable and randomly split the data into

a training set (Xtrain, Ytrain) of size 50 and a testing set (Xtest, Ytest) of size 21. We then consider the

linear model Ytrain = Xtrainβ + ǫ with ǫ ∼ N(0, σ2
ǫ ) and the 21 focuses µj = Xj

testβ for j = 1, . . . , 21.



G
u
eu

n
in

g
a
n
d

C
la

esk
en

s
1
6

n = 100, q = 80 n = 200, q = 80

c = 1 c = 2 c = 1 c = 2

Focus: µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

Case 1: sparsity and no correlation

Lasso 0.023 0.016 0.000 0.125 0.087 0.000 0.003 0.002 0.000 0.021 0.015 0.000

Adap. Lasso 0.022 0.015 0.000 0.132 0.088 0.000 0.002 0.001 0.000 0.020 0.015 0.000

FIC Lasso 0.003 0.001 0.000 0.006 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

FIC Adap. Lasso 0.003 0.001 0.000 0.009 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

Case 2: sparsity and correlation

Lasso 0.026 0.013 0.000 0.150 0.074 0.000 0.005 0.002 0.000 0.019 0.010 0.000

Adap. Lasso 0.021 0.010 0.000 0.150 0.072 0.000 0.002 0.001 0.000 0.017 0.010 0.000

FIC Lasso 0.008 0.003 0.000 0.028 0.013 0.000 0.003 0.001 0.000 0.004 0.002 0.000

FIC Adap. Lasso 0.007 0.003 0.000 0.030 0.017 0.000 0.002 0.001 0.000 0.003 0.002 0.000

Case 3: no sparsity and no correlation

Lasso 0.028 0.003 0.000 0.091 0.010 0.001 0.009 0.001 0.000 0.017 0.001 0.000

Adap. Lasso 0.028 0.002 0.000 0.089 0.003 0.001 0.009 0.000 0.000 0.017 0.001 0.000

FIC Lasso 0.026 0.002 0.001 0.080 0.004 0.001 0.009 0.000 0.000 0.016 0.001 0.000

FIC Adap. Lasso 0.028 0.002 0.000 0.088 0.003 0.001 0.010 0.000 0.000 0.017 0.001 0.000

Case 4: no sparsity and correlation

Lasso 0.038 0.005 0.001 0.114 0.013 0.001 0.015 0.001 0.000 0.024 0.001 0.001

Adap. Lasso 0.039 0.003 0.001 0.112 0.005 0.001 0.015 0.001 0.000 0.025 0.001 0.000

FIC Lasso 0.037 0.003 0.001 0.105 0.005 0.001 0.015 0.001 0.000 0.024 0.001 0.001

FIC Adap. Lasso 0.039 0.002 0.001 0.111 0.005 0.001 0.015 0.001 0.000 0.025 0.001 0.001

Table 2: Averaged squared errors of the estimators for the three different focuses over 1000 simulated datasets and for different settings. µ1 is

a random new observation, µ2 = γ1 and µ3 = γq. The number of covariates is q = 80, the standard noise is σǫ = 0.25 and c is a parameter

controlling the amplitude of the components of γn.
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n = 100, q = 200 n = 200, q = 200

c = 1 c = 2 c = 1 c = 2

Focus: µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

Case 1: sparsity and no correlation

Lasso 0.026 0.016 0.000 0.141 0.088 0.000 0.004 0.002 0.000 0.022 0.015 0.000

Adap. Lasso 0.024 0.016 0.000 0.141 0.091 0.000 0.002 0.001 0.000 0.022 0.015 0.000

FIC Lasso 0.003 0.001 0.000 0.006 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

FIC Adap. Lasso 0.003 0.001 0.000 0.010 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

Case 2: sparsity and correlation

Lasso 0.031 0.014 0.000 0.161 0.074 0.000 0.006 0.003 0.000 0.021 0.011 0.000

Adap. Lasso 0.023 0.011 0.000 0.159 0.074 0.000 0.002 0.001 0.000 0.020 0.010 0.000

FIC Lasso 0.009 0.004 0.000 0.027 0.014 0.000 0.003 0.001 0.000 0.004 0.002 0.000

FIC Adap. Lasso 0.006 0.003 0.000 0.033 0.016 0.000 0.001 0.001 0.000 0.003 0.002 0.000

Case 3: no sparsity and no correlation

Lasso 0.050 0.006 0.000 0.150 0.018 0.000 0.017 0.001 0.000 0.035 0.002 0.000

Adap. Lasso 0.048 0.003 0.000 0.193 0.008 0.000 0.020 0.001 0.000 0.086 0.002 0.000

FIC Lasso 0.047 0.003 0.000 0.137 0.008 0.000 0.016 0.001 0.000 0.034 0.001 0.000

FIC Adap. Lasso 0.048 0.002 0.000 0.188 0.007 0.000 0.020 0.001 0.000 0.084 0.002 0.000

Case 4: no sparsity and correlation

Lasso 0.065 0.010 0.000 0.176 0.023 0.000 0.024 0.003 0.000 0.047 0.003 0.000

Adap. Lasso 0.063 0.004 0.000 0.252 0.010 0.000 0.028 0.001 0.000 0.115 0.003 0.000

FIC Lasso 0.062 0.005 0.000 0.162 0.011 0.000 0.023 0.001 0.000 0.046 0.002 0.000

FIC Adap. Lasso 0.062 0.004 0.000 0.242 0.010 0.000 0.028 0.001 0.000 0.111 0.003 0.000

Table 3: Averaged squared errors of the estimators for the three different focuses over 1000 simulated datasets and for different settings. µ1 is

a random new observation, µ2 = γ1 and µ3 = γq. The number of covariates is q = 200, the standard noise is σǫ = 0.25 and c is a parameter

controlling the amplitude of the components of γn.
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Focus: µ1 µ2 µ3

Standard noise: σǫ 1 0.5 0.25 1 0.5 0.25 1 0.5 0.25

Case 1: sparsity and no correlation

Lasso 0.086 0.024 0.023 0.036 0.013 0.016 0.001 0.000 0.000

Adap. Lasso 0.060 0.015 0.022 0.014 0.007 0.015 0.001 0.000 0.000

FIC Lasso 0.063 0.013 0.003 0.013 0.003 0.001 0.002 0.000 0.000

FIC Adap. Lasso 0.063 0.011 0.003 0.012 0.003 0.001 0.002 0.000 0.000

Case 2: sparsity and correlation

Lasso 0.166 0.042 0.026 0.066 0.018 0.013 0.002 0.000 0.000

Adap. Lasso 0.135 0.024 0.021 0.029 0.007 0.010 0.003 0.000 0.000

FIC Lasso 0.140 0.029 0.008 0.039 0.009 0.003 0.003 0.001 0.000

FIC Adap. Lasso 0.142 0.024 0.007 0.027 0.006 0.003 0.004 0.001 0.000

Case 3: no sparsity and no correlation

Lasso 0.125 0.056 0.028 0.040 0.009 0.003 0.001 0.001 0.000

Adap. Lasso 0.137 0.057 0.028 0.016 0.004 0.002 0.002 0.001 0.000

FIC Lasso 0.126 0.054 0.026 0.016 0.005 0.002 0.002 0.001 0.001

FIC Adap. Lasso 0.149 0.059 0.028 0.015 0.004 0.002 0.003 0.001 0.000

Case 4: no sparsity and correlation

Lasso 0.188 0.086 0.038 0.084 0.018 0.005 0.002 0.001 0.001

Adap. Lasso 0.204 0.088 0.039 0.035 0.008 0.003 0.003 0.001 0.001

FIC Lasso 0.195 0.085 0.037 0.045 0.011 0.003 0.003 0.001 0.001

FIC Adap. Lasso 0.223 0.091 0.039 0.034 0.008 0.002 0.005 0.002 0.001

Table 4: Averaged squared errors of the estimators for the three different focuses over 1000 simulated

datasets and for different settings. µ1 is a random new observation, µ2 = γ1 and µ3 = γq. Parameters are

q = 80, n = 100 and c = 1. Results are given for different values of the standard noise: σǫ = 1, 0.5, 0.25.

In a first step we compute a Lasso estimator β̂Lasso of β with the tuning paramaters chosen by 10-

fold cross-validation and we obtain estimators µ̂Lasso
j = Xj

testβ̂
Lasso of the 21 focuses. In a second step

we apply our FIC procedure. For each of the 21 focuses, we search for a submodel that provides a

small FIC value. As in the simulation study, we apply a backward-forward stepwise procedure with

two possible starting sets: the empty set and the set selected by the Lasso. We denote by Sj
1 and Sj

2

the sets obtained for the focus j with these two choices of starting sets. We then keep the best of

the two by defining Sj = arg minS∈{Sj
1

,Sj
2} FICj(S). We compute the corresponding estimator β̂Sj and

obtain an estimator µ̂FIC
j = Xj

testβ̂Sj of the focus µj . We then compute the mean squared prediction

errors 1/21
∑21

j=1(Y j
test − µ̂j)2 for µ̂j = µ̂Lasso

j and µ̂j = µ̂FIC
j . For comparison purpose, we also compute

estimators of the focuses with Sj
1 and Sj

2 . Note that each computation of the FIC takes about one

millisecond on a regular computer. Thus, each step of the stepwise procedure takes about four seconds.

The results are reported in Table 5. We observe that the three strategies for performing the FIC op-

timization are very competitive and all outperform the Lasso (0.180, 0.177 and 0.182 versus 0.235 for
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Figure 1: Parameters: n = 100, q = 80, p = 0, s0 = 20, σǫ = 0.1, c = 1, µ1. Scatterplots of µ̂(S) versus

FIC(S) for all the 85401 possible models of size smaller or equal to 3. The true δ and the true σǫ are

used in the FIC computations. The red triangle corresponds to the true model of size 20 and the blue

square corresponds to the model minimizing the FIC amongst the models of size smaller than 3. The

right figure is a zoom of the left figure.

the Lasso). We also observe that for two third of the focuses (14 out of 21), the set S1 was chosen,

corresponding to work with the empty set as starting set. In Table 6, we report information about the

variables selected by the different procedures. As expected, the set Sj
1 is generally smaller (4.7) than the

set Sj
2 (10.7). Furthermore, we note that only two variables are selected at least three times by FIC 1 and

none of them is also selected by the Lasso. Conversely, all the 10 variables selected at least three times

by FIC 2 are also selected by the Lasso. To conclude, we observe that the FIC uses for each prediction

much fewer variables than the Lasso (6.7 versus 27) but in total the number of different variables used

by the FIC for the 21 predictions is much larger than for the Lasso (120 versus 27). This is a key feature

of the FIC.
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Figure 2: (a) For different subset sizes, the number of times that the desparsified FIC of Section 4 is

smaller than the OLS FIC of Section 3 for 100 random subsets and for the first focus. (b) Scatterplot of

µ̂(S) versus FIC(S) for the desparsified FIC of Section 4 for models going from size 5 to 100.
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We end this section by numerically comparing the behaviour of the low-dimensional FIC (OLS) introduced

in Section 3 to the high-dimensional FIC (desparsified) presented in Section 4. Summary of the formulas

can be found back in Table 1. We refer to these two FIC as OLS FIC and desparsified FIC. We consider

the first focus µ1 = X1
testβ of the real data example and compute the two FIC values for different subsets.

Note that these two FIC aim at estimating the mean squared error of two different estimators (see Table

1). More concretely, we consider subsets of the 4088 covariates of size going from 5 to 49. Recall that

the training sample size is 50. For each of the considered sizes we consider 100 different subsets.

In Table 7 we give the two FIC values and the two predictions for the first considered subset of each size.

Note that the true value of the focus is unknown but we can expect it to be close to y1
test = −1.13. We

see that for small subsets the results are very close to each other. When |S| increases, MS gets further

away from J−1
S so that the estimators become more and more different. When |S| is close to the sample

size 50 the quality of the OLS estimator deteriorates and it is better to use the desparsified estimator.

In Figure 2(a) we count how many times out of 100 random choices of the subsets the desparsified FIC

is smaller than the OLS FIC. We observe that from size 20 the desparsified FIC tends to outperfom

the OLS FIC. This gets more and more pronounced when |S| gets closer to the sample size. In any

case for each S we can always compute both FIC and keep the smaller one. Recall that they refer to

different estimators. In Figure 2(b), we give the scatterplot of FIC(S) versus µ̂S for 2300 submodels

of size 5, 10, . . . , 40, 41, . . . , 49, 50, 60, . . . , 100 (100 submodels of each size). We observe that the FIC

obtained with the desparsified procedure behaves as it is supposed to: the FIC aims at estimating the

expected value of 50(µ̂S − µtrue)2 and we do observe a quadratic shape, which is slightly altered due to

the difficulty to estimate δ in this high-dimensional example.

8 Extensions and discussion

8.1 Focused selection for high-dimensional generalized linear models

The results of Section 4 can be extended to high-dimensional generalized linear models (GLM). Let us

consider observations Y1, . . . , Yn where Yi has density f(y, Xi, θ0, γ0 + δ/
√

n) for i = 1, . . . , n with f

from the exponential family of distributions. Consider a high-dimensional submodel S containing the

true active set S0,n Let us write βS =

(
θ

γS

)
and denote the loss function for an observation (y, x)

by ρβS (y, x) = − log f(y, x, θ, γS , γ0,Sc). We define the first an second partial derivatives of the loss

function as ρ̇βS = ∂
∂βS

ρβS and ρ̈βS = ∂2

∂βS∂β⊤
S

ρβS and use the following notation: for a function g we write

Png = 1
n

∑n
i=1 g(Yi, Xi). We use the penalized estimator

(
θ̂L

S

γ̂L
S

)
= β̂L

S = arg min
βS=(θ,γS)

PnρβS + λ ‖βS‖1 .

Similarly to van de Geer et al. (2014), we define Σ̂S = Pnρ̈β̂L
S

and M̂S as a relaxed inverse of Σ̂S obtained

by the Lasso nodewise regression. Note that Σ̂S corresponds to the empirical Fisher matrix estimated in
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(θ̂L
S , γ̂L

S , γ0,Sc). We define the following desparsified estimator
(

θ̂desp
S

γ̂desp
S

)
=

(
θ̂L

S

γ̂L
S

)
− M̂SPnρ̇θ̂L

S
,γ̂L

S
. (16)

Using results from van de Geer et al. (2014), we can show that
(

θ̂desp
S − θ0

γ̂desp
S − γ0,S

)
=

(
0

δS

)
− M̂SPnρ̇β̂true

S
+ oP (n−1/2) (17)

and that M̂SPnρ̇β̂L
S

ρ̇⊤
β̂L

S

M̂⊤
S is a consistent estimator of the variance of

√
n(θ̂desp,t

S − θ⊤
0 , γ̂desp,t

S − γ⊤
0,S)⊤.

This leads to a result similar to Theorem 2 where MSJSMS is replaced by M̂SPnρ̇β̂L
S

ρ̇⊤
β̂L

S

M̂⊤
S .

8.2 Model averaging in high-dimensional models

Averaging estimators across several good models is another interesting route, also in the high-dimensional

setting. Since estimators in a selected model can be written as model averaged estimators assigning weight

one to the estimator in the selected model, and weight zero to all other models, the tool of model averaging

is important to study proper post-selection inference.

Let the weighted estimator be obtained in the following way

µ̂avg =
∑

S∈A
wS(δ̂)µ̂S ,

where µ̂S = µ(θ̂S , γ̂S , γ0,Sc) and A is the set of models under consideration for averaging, this does not

need to be the set of all possible submodels of the largest available model. The weight for each S, may

be deterministic, e.g., assigning equal weight to each of the models, or a predetermined weight that is

not data-dependent, or the weights may be data-driven, e.g., wS(δ̂) = I{S = arg minS′∈A FIC(S′, δ̂)} in

the FIC selection case.

Using Lemma 3, or equation (17) in the GLM case, we obtain that the desparsified estimator δ̂desp .
=d

δ̃ ∼ Nq(δ, Ω). Using the joint convergence of the random weights wS(δ̂) and
√

n(µ̂S − µtrue) for S ∈ A to

their respective limits, we obtain the following Corollary to Theorem 2.

Corollary 1. Assume the local misspecification setting. Under the assumptions of Theorem 2, for a set

of weights such that
∑

S∈A wS(d) = 1 for all d and with at most a countable number of discontinuities,

√
n

{
∑

S∈A
wS(δ̂)µ̂S − µtrue

}
→d Λavg =

∑

S∈A
wS(δ̃)ΛS .

The limiting variable is in case of deterministic weights again normal. For random weights the limit

distribution is a sum of products of the random weights and the normal limits ΛS , which is in general

not longer normally distributed. The mean of the limit random variable depends on the random weights

wS(δ̃) and its correlation with the random variables CS , DS,

E(Λavg) = −
(

∂µ

∂γ

)⊤
δ +

∑

S∈A
E

[
wS(δ̃)

{(
∂µ

∂θ

)⊤
CS +

(
∂µ

∂γS

)⊤
DS

}]
.
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See also Claeskens et al. (2016) for a calculation of the first two moments of weighted forecasts under

weak assumptions avoiding normality.

The use of the proper limiting distribution for model averaged estimators and for post-selection estimators

in general, to obtain inference on the averaged estimator is a worthwhile topic of further research, as is

the determination of the choice of the weights in the high-dimensional setting.

8.3 Other extensions

Since in high-dimensional models the desparsification is crucial to work with the asymptotic distribution

of the focus estimator, which may depend on parameters that are finally set to zero as well as on

parameters that are estimated non-zero, extensions to other types of models require first a study of the

asymptotic distribution of a desparsified estimator. Gueuning and Claeskens (2016) obtained such a

result for partially linear single-index models of the form Y = η(z⊤α) + x⊤β + ε. In such model both

model parts may contain high-dimensional variables, though for theoretical reasons only the dimension

of the vector x is allowed to grow with the sample size. An extension of the FIC to such models with

focuses that depend on the model parameters α, β, will go along the same lines. In the setting of weighted

composite quantile estimation, this would be a generalization of the work on focused selection and model

averaging by Xu et al. (2014) to the high-dimensional case.

The present paper also paves the way for extensions of some variations of the FIC to the high-dimensional

framework. For example, the weighted FIC introduced by Claeskens and Hjort (2008a) aims at selecting a

model that performs well for handling a range of similar tasks. Rather than minimizing a mean squared

error we could consider selecting a model that minimizes another expected loss function, such as the

expected value of a weighted version of the squared error loss,
∫

n{µ̂S(x) − µtrue(x)}2dν(x),

where the dependence of the focus on, say, a covariate vector x is explicitly introduced in the notation.

The choice of the weight function ν allows to specify a domain in the covariate space for which a good

estimator of µtrue is sought. Another use could be to downweight certain regions in order to obtain a

more outlier resistant estimator. An estimator of the limit version of this expected weighted loss version

leads to the average-focused information criterion for the high-dimensional setting.

To conclude, this paper is the first one to obtain the focused information criterion for high-dimensional

data where the parameter length is allowed to grow and even exceed the sample size. Due to the use of

a desparsified estimator, the criterion is able to deal with high-dimensional submodels. In addition, we

have obtained an alternative formula for FIC in the low-dimensional case that not only deals with the

high-dimensionality of the model, but that also is of interest in low-dimensional models by its avoidance

to invert the information matrix in a largest model. This paper may pave the way for other applications,

estimation methods and models where there is a high-dimensional parameter and where focused selection

could bring its benefits of better, targeted, estimators.
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9 Proofs

9.1 Proofs for Theorem 1

The proof requires adjustments of the proofs of Lemmas 1, 2 and 3 of Hjort and Claeskens (2003).

Proof of Lemma 1. We use the univariate Lindeberg-Feller theorem (see Serfling (1980) section 1.9)

for independant but not i.i.d. random variables and the Cramér-Wold device to obtain the appropriate

multivariate normality. To ease the notations, we define the following p + |S|−dimensional vectors:

Wi =

(
U(yi|xi)

VS(yi|xi)

)
for i = 1, . . . , n,

W̄n =
1

n

n∑

i=1

Wi,

Ti = Wi −
(

J01(xi)δ/
√

n

πSJ11(xi)δ/
√

n

)
for i = 1, . . . , n,

T̄n =
1

n

n∑

i=1

Ti = W̄n −
(

Jn,01δ/
√

n

πSJn,11δ/
√

n

)
.

We want to prove that
√

nT̄n
d−→ T = Np+|S|(0, JS). (18)

Let j ∈ {1, . . . , p + |S|} and let us show first that it holds that

√
nT̄ j

n
d−→ T j = N(0, (JS)j,j) (19)

with T̄ j
n the j-th component of T̄n.

We have

E[W j
i ] =

∫
W j

i f0(y|xi)
{

1 + V (y|xi)
⊤δ/

√
n + R(y|xi, δ/

√
n)
}

dy

= 0 + e⊤
j

(
J01(xi)δ/

√
n

πSJ11(xi)δ/
√

n

)
+

∫
W j

i f0(y|xi)R(y|xi, δ/
√

n)dy.

By conditions (C1) and (C5), the last term is o(n−1/2) so that E[T j
i ] = o(n−1/2).

Furthermore

E[(W j
i )2] =

∫
(W j

i )2f0(y|xi)
{

1 + V (y|xi)
⊤δ/

√
n + R(y|xi, δ/

√
n)
}

dy

= JS(xi)j,j +

∫
(W j

i )2f0(y|xi)V (y|xi)
⊤δn/

√
n dy +

∫
(W j

i )2f0(y|xi)R(y|xi, δ/
√

n) dy

= JS(xi)j,j + o(1)
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where the last equality comes from (C2), (C3) and (C5). This implies that Var(T j
i ) = JS(xi)j,j + o(1).

Now, applying the Lindeberg-Feller theorem to {T j
i }i we have

T̄ j
n − 1

n

∑n
i=1 E[T j

i ]√
1

n2

∑n
i=1 Var(T j

i )

d−→ N (0, 1)

which is equivalent to √
nT̄ j

n√
(Jn,S)j,j

d−→ N (0, 1)

and because (Jn,S)j,j converges to (JS)j,j this is also equivalent to (19). The Lindeberg condition for

applying the Lindeberg-Feller theorem requires

1

n

n∑

i=1

1

B2
n/n

∫

|t−E(T j
i

)|>ǫBn

{
t − E(T j

i )
}2

dFi(t) → 0 for each ǫ > 0

with B2
n =

∑n
i=1 Var(T j

i ) and Fi(t) the distribution function of T j
i . This is satisfied if

∫

|T j
i

|>ǫ
√

n

(T j
i )2ftrue(y|xi)dy → 0 for each ǫ > 0

which holds thanks to conditions (C2) and (C3). Thus, (19) is proven.

We now apply the Cramér-Wold device that states that

√
n T̄n

d−→ T if and only if
√

n a⊤T̄n
d−→ a⊤T ∀a ∈ R

p+|S|.

Let consider an arbitrary a ∈ Rp+|S|. Using (19), it is clear that
√

na⊤T̄n =
∑p+|S|

j=1

√
naj T̄ j

n tends to a

normal distribution with mean 0 and variance given by
∑p+|S|

j,k=1 ajak(JS)j,k = a⊤JSa. Indeed,

Var(
√

na⊤T̄n) =

p+|S|∑

j,k=1

n ajakCov(T̄ j
n, T̄ k

n )

=

p+|S|∑

j,k=1

1

n

n∑

i=1

ajakCov(T j
i , T k

i ) =

p+|S|∑

j,k=1

ajak(Jn,S)j,k = a⊤(Jn,S)a

which tends to a⊤JSa. This implies that
√

n a⊤T̄n
d−→ a⊤T so that (18) holds.

Proof of Lemma 2. By Lemma 1, it suffices to show that
( √

n(θ̂S − θ0)
√

n(γ̂S − γ0,S)

)
=̇d J−1

S

( √
nŪn√
nV̄n,S

)
,

which can be done by using traditional arguments for maximum likelihood estimators (see for example

Serfling (1980) section 4.2.2). We give here the explicit derivations.

Writing β̂ = (θ̂S , γ̂S) and β0 = (θ0, γ0,S), a Taylor expansion of 1
n

∑n
i=1

∂
∂β log f(yi|xi, β̂) around β0 gives

0 =

(
Ūn

V̄n,S

)
+

1

n

n∑

i=1

∂2

∂β∂β⊤ log f(yi|xi, β0)(β̂−β0)+
1

2

p+|S|∑

j=1

(β̂−β0)⊤ 1

n

n∑

i=1

∂3

∂βj∂β∂β⊤ log f(yi|xi, β̃)(β̂−β0)

(20)
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with β̃ between β0 and β̂. By condition (C4), there exists a function H(x) with finite mean such that∣∣∣ ∂3

∂βj∂βk∂βl
log f(y|x, β)

∣∣∣ ≤ H(x) for each 1 ≤ j, k, l ≤ p + |S| in a neighbourhood of β0. Furthermore,

because β̃ lies between β0 and β̂, we can write ∂3

∂βj∂βk∂βl
log f(y|x, β) = H(xi)ξ

i
jkl with |ξi

jkl |≤ 1. Denoting

by ξi
j the (p + |S|) × (p + |S|) matrix whose element (k, l) is ξi

jkl, the last term of (20) can be expressed as

1

2
(β̂ − β0)⊤ 1

n

n∑

i=1

p+|S|∑

j=1

H(xi)ξ
i
j(β̂ − β0).

We now define Cn = 1
n

∑n
i=1 H(xi) and ξ∗ = 1

Cn

1
n

∑n
i=1

∑p+|S|
j=1 H(xi)ξ

i
j and see that this last term is

also equal to 1
2 (β̂ − β0)⊤Cnξ∗(β̂ − β0). Note that each component of the matrix ξ∗ is smaller than p + |S|

in absolute value. Defining Bn = 1
n

∑n
i=1

∂2

∂β∂β⊤ log f(yi|xi, β0), the equation (20) can now be rewritten

as

0 =

(
Ūn

V̄n,S

)
+ Bn(β̂ − β0) +

1

2
(β̂ − β0)⊤Cnξ∗(β̂ − β0)

or equivalently as (
Ūn

V̄n,S

)
= −(Bn +

1

2
(β̂ − β0)⊤Cnξ∗) (β̂ − β0).

We observe that Bn converges to JS , that Cn converges to E[H(X)] which is finite by (C4), that all the

elements of ξ∗ are bounded by p + |S| (which is finite) and that β̂ tends to β0. All of this implies that

−(Bn + 1
2 (β̂ − β0)⊤Cnξ∗) tends to JS , which ends the proof of Lemma 2.

Proof of Theorem 1. Taylor expansions of µ̂S and µtrue around µ0 = µ(θ0, γ0) give

√
n(µ̂S − µtrue) =

(
∂µ

∂(θ, γS)

)⊤( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)
−
(

∂µ

∂γ

)⊤
δ + R1 − R2

with

R1 =
1

2
n−1/2δ⊤ ∂2µ

∂γ∂γ⊤
|(θ0,γ̃1)

δ

and

R2 =
1

2
n−1/2

( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)⊤
∂2µ

∂(θ, γS)∂(θ, γS)⊤
|(θ̃,γ̃S)

( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)

with γ̃1 between γ0 and γ0 + δ/
√

n and (θ̃, γ̃S) between (θ0, γ0) and (θ̂S , γ̂S , γ0,Sc). By (C5) and Lemma

1 2, R1 = o(1) and R2 = oP (1) which implies that

√
n(µ̂S − µtrue)

.
=d

(
∂µ

∂(θ, γS)

)⊤( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)
−
(

∂µ

∂γ

)⊤
δ.

Lemma 2 and algebraic manipulations end the proof.
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9.2 Proofs for Theorem 2

Proof of Lemma 3. Because S0,n ⊆ S, it holds that Y = Xββ0 + Xγ,Sγn,S + ǫ with γn,S = δS/
√

n. As

conditions of Theorem 2.1 of van de Geer et al. (2014) hold for this linear model we have

( √
n(β̂desp

S − β0)
√

n(γ̂desp
S − δS/

√
n)

)
.
=d W + ∆1,

with

W ∼ Np+|S|

((
0p

0|S|

)
, MSJSM⊤

S

)

and

P

[
‖∆1‖∞ ≥ 8

√
n

(
max

j

λj

τ̂2
j

)
λ(p + sn)

φ2
0

]
≤ 2 exp(−t2)

which ends the proof of Lemma 3.

Proof of Theorem 2. The proof is straightforward using Lemma 3 and the same reasoning as for Theorem 1.
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Squared prediction errors FIC values

Focus number Lasso Best FIC FIC 1 FIC 2 Value FIC 1 Value FIC 2

1 0.189 0.057 0.057 0.076 1.138 1.248

2 0.102 0.304 0.324 0.304 1.312 1.271

3 0.380 0.241 0.241 0.326 0.479 1.983

4 0.036 0.047 0.047 0.035 0.368 0.907

5 0.017 0.039 0.039 0.031 0.475 1.308

6 0.288 0.118 0.118 0.107 0.916 1.008

7 0.003 0.182 0.101 0.182 3.064 2.899

8 0.816 0.733 0.733 0.639 0.305 0.594

9 0.061 0.047 0.047 0.050 0.271 0.525

10 1.706 0.951 0.915 0.951 2.643 1.989

11 0.011 0.003 0.003 0.000 0.344 0.454

12 0.044 0.001 0.001 0.001 1.191 1.117

13 0.635 0.370 0.399 0.370 1.230 0.806

14 0.081 0.009 0.009 0.009 1.224 1.358

15 0.188 0.130 0.130 0.114 0.357 0.500

16 0.049 0.001 0.000 0.001 1.558 0.863

17 0.045 0.034 0.034 0.045 0.220 0.715

18 0.003 0.002 0.005 0.002 0.670 0.666

19 0.021 0.016 0.016 0.028 0.011 0.358

20 0.002 0.000 0.000 0.001 0.354 0.394

21 0.254 0.502 0.502 0.549 1.229 1.470

Average 0.235 0.180 0.177 0.182 0.922 1.068

Table 5: Squared prediction errors and FIC values for the 21 focuses of the riboflavin data. The FIC

search is done trough a stepwise procedure with as starting set the empty set for FIC 1 and the active

set of the Lasso for FIC 2. Best FIC consists is obtain by keeping the submodel that gives the smallest

of the two FIC values.

Lasso Best FIC FIC 1 FIC 2

Average number of selected variables 27 6.7 4.6 10.7

Number of variables selected at least once 27 120 77 177

Number of variables selected at least 3 times 27 5 2 10

Table 6: Information on the variables selected for the 21 focuses of the riboflavin data. The FIC search

is done trough a stepwise procedure with as starting set the empty set for FIC 1 and the active set of the

Lasso for FIC 2. Best FIC consists is obtained by keeping the submodel that gives the smallest of the

two FIC values.
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|S| FIC OLS FIC desp. Pred. OLS Pred. desp.

5 12.46 12.56 -0.42 -0.42

10 45.39 45.01 0.10 0.10

15 26.23 26.21 -0.22 -0.21

20 39.33 39.18 -0.18 -0.18

25 21.43 21.63 -0.44 -0.43

30 17.14 15.47 -0.73 -0.75

35 21.81 22.67 -0.67 -0.65

40 31.90 38.50 -0.32 -0.33

41 32.10 39.29 -0.32 -0.45

42 32.85 37.50 -0.29 -0.39

43 67.16 58.84 0.42 0.09

44 55.61 46.93 0.22 -0.43

45 92.91 130.30 0.57 0.70

46 114.14 85.71 0.83 0.46

47 121.62 98.36 0.47 0.52

48 416.60 119.20 1.44 0.77

49 924.01 114.23 4.51 0.73

50 n/a 89.99 n/a 0.55

60 n/a 79.35 n/a 0.15

70 n/a 66.49 n/a -0.26

80 n/a 133.70 n/a 0.73

90 n/a 66.53 n/a 0.02

100 n/a 98.10 n/a -0.43

Table 7: OLS FIC of Section 3 and desparsified FIC of Section 4 and their corresponding predictions for

one random subset for each considered size. The focus is µ1 = X1
testβ whose true value is unknown but

should be close to y1
test = −1.13.
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Abstract

The focused information criterion for model selection is constructed to select the model that best

estimates a particular quantity of interest, the focus, in terms of mean squared error. We extend

this focused selection process to the high-dimensional regression setting with potentially a larger

number of parameters than the size of the sample. We distinguish two cases: (i) the case where the

considered submodel is of low-dimension and (ii) the case where it is of high-dimension. In the former

case, we obtain an alternative expression of the low-dimensional focused information criterion that

can directly be applied. In the latter case we use a desparsified estimator that allows us to derive the

mean squared error of the focus estimator. We illustrate the performance of the high-dimensional

focused information criterion with a numerical study and a real dataset.

Keywords: Desparsified estimator; Focused information criterion; High-dimensional data; Variable

selection.

Running headline: A high-dimensional FIC

1 Introduction

We extend the theory of the focused information criterion (FIC) for variable selection in parametric

models to allow a diverging dimension of the parameter, permitting us to apply the method on high-

dimensional data where the number of parameters may exceed the sample size. To do so, we extend

the desparsified estimator of van de Geer et al. (2014) to the local misspecification framework. The FIC

philosophy puts less emphasis on which variables are in the model but rather on the accuracy of the

estimator of a focus, which is a differentiable function of the model parameters. The accuracy of the

estimation is assessed via the mean squared error (MSE).

For example in the context of prediction with linear models, the FIC permits to use different variables to

make predictions for different new observations of the covariate vector. We illustrate this on a real data

set containing 4088 variables and 71 observations that we split in a training set of size 50 and a testing

set of size 21. Whereas the usual approach consists in using the same penalized estimator and thus the

same covariates to obtain the 21 predictions, the FIC allows us to use different covariates for each of the

21 different predictions. In our example, the mean squared prediction error is improved from 0.235 with

a penalized estimator approach to 0.180 with the FIC approach.

The FIC has been introduced by Claeskens and Hjort (2003) for low-dimensional likelihood models, see

1
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also Claeskens and Hjort (2008b, Ch. 6). This approach of focused selection has further been extended to

several application areas including panel count data (Wang et al., 2015), graphical models (Pircalabelu

et al., 2015) and personalized medicine (Yang et al., 2015). Focused selection for quantile regression has

been studied by (Behl et al., 2014), and for weighted composite quantile regression by Xu et al. (2014).

Focused selection for causal inference has been obtained by (Vansteelandt et al., 2012). Other model

classes where focused selection has been studied include time series models (Rohan and Ramanathan,

2011; Claeskens et al., 2007), partially linear models (Zhang and Liang, 2011) and survival data (Hjort

and Claeskens, 2006), without being complete in this overview.

Variable selection and estimation for high-dimensional data is most often performed simultaneously by

using penalization methods; for an overview, see Fan and Lv (2010). The use of lasso-type estimators

(Tibshirani, 1996) and its variations is currently well known. For theoretical results, see Bühlmann and

van de Geer (2011). However, one should realize that also such methods, as do most other variable

selection procedures, aim at selecting one ‘best’ model that one hence is supposed to use to estimate all

quantities of interest related to that dataset. In contrast, the focused information criterion (FIC) may

select different models for different quantities interest, which we call the focuses.

The introduction of the FIC for a diverging number of parameters is important and has a large application

area. Claeskens (2012) gave a FIC formula for penalized estimators but required the dimension of

the parameters to be fixed. Thus the small n (sample size) – large p (number of parameters) case

is asymptotically not covered by that work. That form of FIC for penalized estimators with a fixed

dimension is used by Pircalabelu et al. (2016) for high-dimensional graphical models.

Besides penalization procedures, several other variable selection procedures have been developed for high-

dimensional data. In particular, Luo and Chen (2013) establish the consistency of the extended Bayesian

information criterion (EBIC) with a diverging number of relevant features but need to restrict to low-

dimensional submodels. Kim et al. (2012) obtain the consistency of the generalized information criterion

(GIC) and Wang et al. (2009) propose a modified BIC (mBIC) whose consistency is shown for a number

of parameters that diverges slower than the sample size.

The paper is organized as follows. In Section 2, we define the general framework and recall the classical

FIC formula for fixed dimensions. In Section 3, we introduce the FIC for high-dimensional data when

the considered submodel is of low dimension. This also provides an alternative formula in the classical

FIC setting. In Section 4 we consider the high-dimensional submodel case in which p + |S|> n and

restrict to linear models. In that case the maximum likelihood estimator is not available because the

Fisher information (sub)matrix is not invertible. To tackle this problem we use a desparsifying estimator,

following the idea of van de Geer et al. (2014), Javanmard and Montanari (2014) and Zhang and Zhang

(2014). In Section 5, we give some practical considerations for the computation of the FIC, including

information over the estimation of δδ⊤ and in Section 6 we give numerical results. In Section 7, we

illustrate the FIC procedure on the real data set riboflavin from package hdi and compare it to a regular

penalization approach. Section 8 provides some insights over the extension of results of Section 4 to the

generalized linear models. All proofs are given in Section 9.
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2 Model, notations and limitations of the current FIC literature

2.1 Notation and framework

Let Y1, . . . , Yn be independent response values with concomitant covariates x1, . . . , xn, such that Yi has a

density f(y|xi, θ0, γn). The vector γn contains all the parameters on which we want to perform variable

selection and has length qn that is allowed to grow with n. The parameter vector θ0 is of fixed length p

and contains all the parameters that we want to include in every considered model. These parameters

are protected. For example, for a linear model Yi = β0 + x⊤
i β + σǫi with ǫi ∼ N (0, 1), it is quite

common to include the parameters σ and β0 in every considered submodel. Thus a natural choice would

be θ0 = (σ, β0). It might also be relevant in some cases to include some of the components of β in the

protected set (e.g. some variables that are known beforehand to be important). The covariate xi is of

diverging length rn. Very often rn and qn are of the same order but it is not necessary the case. We

present two simple examples that illustrate the link between p, qn and rn.

First assume that we want to fit a linear model for (Yi, xi), i = 1, . . . , n and that we want to include

the first three components of xi in every considered model. These three components might for instance

be the age, the weight and the height of an individual while all other components might consist of

blood information or gene expressions. The full model, the largest model under consideration, is then

Yi = β0 +
∑3

j=1 xi,jβj +
∑rn

j=4 xi,jβj + σǫi and we have θ0 = (σ, β0, β1, β2, β3) and γn = (β4, . . . , βrn).

Thus p = 5 and qn = rn − 3.

In a second example, assume that we still want to fit a linear model for (Yi, xi) but that none of the

components of xi should be protected. Furthermore assume that we want to consider interaction terms as

well as first and second order terms in the possible models. Then p = 2 (for the error standard deviation

level and the intercept) and qn = rn + rn(rn + 1)/2.

As in the earlier studies about FIC (e.g. Claeskens and Hjort, 2003; Claeskens, 2012) we consider the

local misspecification framework where γn = γ0 + δ/
√

n, with the major difference that the length qn

of δ is diverging. Each component of δ is O(1). This framework allows us to study the mean squared

error (MSE) of the estimator of the further-defined focus, with a balance between the squared bias and

the variance, without having the bias or the variance dominating the mean squared error expression. We

refer to Claeskens and Hjort (2008b, Sec. 5.5) for more details regarding the local misspecification setting.

Taking γn = γ0, a known value, corresponds to working with the simplest model, often called the narrow

model. In the two examples given hereabove, it is natural to choose γ0,j = 0 for each j: the simplest

model consists in not including the unprotected variables. In other cases, γ0,j might be nonzero, see

for instance example 5.4 in Claeskens and Hjort (2008b) in which the skewing logistic regression model

pi = H(x⊤
i β + z⊤

i α)κ is considered. In that example, κ is an unprotected parameter that takes value 1

in the narrow model.

We denote by S0,n = {j : δj 6= 0} the active set of coefficients where we emphasize in the notation the

fact that the length of δ is growing with n and we write sn = |S0,n|, the number of elements of S0,n. We
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consider subsets S of {1, . . . , qn} and denote by (sub)model S the model containing θ and those parameters

γj with j belonging to S. This model corresponds to working with a density f(y|x, θ, γS , γ0,Sc) with Sc

the complementary set of S. The slight abuse of notation groups the components of γ by whether their

index is present or absent in S. When fitting a model with the p protected parameters in θ, and |S| added

parameters, in total p + |S| parameters need to be estimated. Let us denote by (θ̂S , γ̂S) an estimator of

(θ0, γn,S). See Sections 3 and 4 for more details.

2.2 The focused information criterion

Following the FIC philosophy, we are interested in estimating as accurately as possible (in terms of MSE)

a particular quantity of interest µtrue = µ(θ0, γn), called the focus. A model that is best in terms of MSE

for one focus µ, might not be the best for another focus. This leads to a tailored model choice where

one first specifies the focus and then searches for the best model for that particular goal. In this sense it

should be clear that the FIC is not constructed to aim for selection consistency.

We make the assumption that µ is differentiable with respect to θ and γ such that ‖[( ∂µ
∂θ )

⊤
, ( ∂µ

∂γS
)
⊤

]‖∞ =

K = O(1) in a neighborhood of θ0, γ0. Several examples of such quantities of interest are given in

Claeskens and Hjort (2008b). The focus might for example be the prediction for a particular subgroup of

the population, the estimation of the impact of one particular covariate on the response or a particular

quantile for a specific value of the covariates. The goal is to find the submodel S whose corresponding

estimator µ̂S = µ(θ̂S , γ̂S , γ0,Sc) of the focus is the best in terms of mean squared error. For a submodel

S we are thus interested in the limiting distribution ΛS of
√

n(µ̂S − µtrue). The focused information

criterion estimates the corresponding limiting mean squared error. Thus,

FIC(S) = Ê(ΛS)2 + ̂Var(ΛS).

Different models, say indexed by S and S′, might have different values for the bias and variance of the

submodel-based estimator of µ, thus ΛS might be different from ΛS′ . Hence, models can be ranked based

on their FIC value. The model S with the smallest FIC(S) value amongst all considered models, is

selected as the best one for the purpose of estimating the focus µ.

In the low-dimensional framework with γn and δ of fixed dimensions q × 1, Claeskens and Hjort (2003)

show that if (θ̂S , γ̂S) is the maximum likelihood estimator, the limiting MSE of ΛS is

MSE(S) = ω⊤(Iq − GS)δδ⊤(Iq − GS)⊤ω +

(
∂µ

∂θ

)⊤
J−1

00

∂µ

∂θ
+ ω⊤GSQSG⊤

S ω, (1)

with the (p + q) × (p + q) Fisher information matrix J and its inverse matrix denoted by

J =

(
J00 J01

J10 J11

)
, J−1 =

(
J00 J01

J10 J11

)
,

where Q = J11, GS = π⊤
S QSπSQ−1, QS = J11,S , ω = J10J−1

00
∂µ
∂θ − ∂µ

∂γ and πS ∈ RS×q the projection

matrix related to S, obtained by extracting the rows of the q×q identity matrix for which the row number

is in S. Claeskens and Hjort (2008b, Sec. 6.7) show that for linear models the limiting MSE is in fact
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the exact MSE when the focus takes the form µ = x⊤β + z⊤γ. For a vector-valued focus one could use

a one-dimensional summary of the corresponding mean squared error matrix to be minimized over the

different models, such as the matrix’ trace, determinant, a matrix norm, etc.

The current FIC formula (1) can not be applied in our framework for two reasons. First, and most

importantly, the theory assumes that the dimension of γn is fixed. A diverging number of parameters

is not supported by the theory. In this paper, we allow the dimension qn of γn to grow with n and we

make the sparsity assumption sn = o(n1/4). Secondly, the current version of the FIC formula is in many

cases not available for high-dimensional data, even for low-dimensional submodels. Indeed, it requires to

invert the Fisher information matrix J that is in many cases not invertible. For example, for a normal

linear model, the Fisher information matrix J = σ−2diag{2, n−1X⊤X}. When qn > n the matrix J is

by construction not invertible so that the expression (1) is not defined. These considerations motivate us

to develop the FIC theory for a diverging number of parameters.

We distinguish two cases in the model selection search: (i) the submodel is low-dimensional such that

regular least squares or maximum likelihood estimators can be computed, and (ii) the submodel is high-

dimensional, requiring a regularized estimator. In both cases, an adjustment of the existing focused

selection approach is needed. These two cases are studied in the next two sections.

We now give some notations. For two random variables A and B, the notation A =̇d B means that

A − B
p→ 0. Furthermore, we write ftrue(y|x) = f(y|x, θ0, γ0 + δ/

√
n) the true density function,

f0(y|x) = f(y|x, θ0, γ0) the density function in the narrow model and U(y|x) = ∂
∂θ log f(y|x, θ, γ)|(θ0,γ0)

and V (y|x) = ∂
∂γ log f(y|x, θ, γ)|(θ0,γ0) the derivatives of the log-density evaluated in the narrow model.

We define in the regression model’s context

J(x) =

∫
f0(y|x)

(
U(y|x)

V (y|x)

)(
U(y|x)

V (y|x)

)⊤

dy, Jn =
1

n

n∑

i=1

J(xi) =

(
Jn,00 Jn,01

Jn,10 Jn,11

)
,

the latter matrix is the empirical Fisher information matrix. For a fixed subset S of {1, . . . , qn}, we

denote by πS the |S|×qn projection matrix related to S that, when multiplied to a matrix or row vector

consisting of qn rows, selects those rows corresponding to the elements in S. Further, define

π∗
S =

(
Ip 0p×qn

0|S|×p πS

)
, JS(x) = π∗

SJ(x)π∗⊤
S =

∫
f0(y|x)

(
U(y|x)

VS(y|x)

)(
U(y|x)

VS(y|x)

)⊤

dy

and write Jn,S = 1
n

∑n
i=1 JS(xi) the empirical Fisher matrix in model S and JS = limn→∞ Jn,S . Note

that Jn,S is of fixed dimension (p + |S|) × (p + |S|) while Jn is of diverging dimension (p + qn) × (p + qn).

As a consequence, for an unbounded sequence {qn, n → ∞}, Jn does not converge to a fixed quantity J .

3 FIC for a low-dimensional submodel

We consider the local misspecification framework of Section 2. Let S be a fixed subset of {1, . . . , qn} such

that the number of parameters p + |S| to estimate in the submodel S is smaller than the sample size n.
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Let us consider the maximum likelihood estimator for (θ0, γn,S)

(θ̂S , γ̂S) = arg max
θ∈RpγS∈R|S|

1

n

n∑

i=1

log f(yi|xi, θ, γS , γ0,Sc) (2)

and define the estimator of the focus in this model by

µ̂S = µ(θ̂S , γ̂S , γ0,Sc). (3)

Before presenting our theoretical result for the limiting distribution of
√

n(µ̂S − µtrue) we give the corre-

sponding conditions. A Taylor expansion of ftrue(y|x) gives

ftrue(y|x) = f0(y|x)
{

1 + V (y|x)⊤δ/
√

n + R(y|x, δ/
√

n)
}

. (4)

We make the following conditions, that are similar to Hjort and Claeskens (2003), phrased here for the

regression setting.

(C1) The two integrals
∫

f0(y|x)U(y|x)R(y, t)dy and
∫

f0(y|x)V (y|x)R(y, t)dy are both O(‖t‖2
1), with R

defined in (4).

(C2) The variables |Ul(y|x)2Vk(y|x)| and |Vj(y|x)2Vk(y|x)| have finite mean under f0(y|x) for each 1 ≤
l ≤ p and j, k ∈ S.

(C3) The two integrals
∫

f0(y|x) ‖U(y|x)‖2
R(y, t)dy and

∫
f0(y|x) ‖VS(y|x)‖2

R(y, t)dy are both o(1).

(C4) The log density has three continuous derivatives w.r.t the p+ |S| parameters (θ, γS) in a neighbour-

hood around (θ0, γ0), and they are dominated by functions with finite means under f0.

(C5) sn = o(n1/4).

Conditions (C1) to (C4) are similar to those of Hjort and Claeskens (2003) in the low-dimensional case,

while condition (C5) is a sparsity condition to deal with high-dimensional vectors.

Lemma 1. Under (C1), (C2), (C3) and (C5), we have

( √
nŪn√
nV̄n,S

)
−
(

Jn,01δ

πSJn,11δ

)
d−→ Np+|S|(0, JS)

with Ūn = 1
n

∑n
i=1 U(yi|xi), V̄n,S = 1

n

∑n
i=1 VS(yi|xi).

Lemma 2. Under (C1), (C2), (C3), (C4) and (C5), we have

( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)
− J−1

S

(
Jn,01δ

πSJn,11δ

)
d−→ Np+|S|(0, J−1

S ).

The following theoretical result is an extension of Theorem 6.1 of Claeskens and Hjort (2008b) to the

diverging number of parameters case. It covers the important p + q > n case and can thus be applied on

high-dimensional data. A proof is given in Section 9.



Gueuning and Claeskens 7

Theorem 1. Under conditions (C1) to (C5) it holds for the estimator (3) of the focus in model S that

√
n(µ̂S − µtrue) =̇d Λn,S

with

Λn,S =
(

∂µ
∂θ

)⊤
CS +

(
∂µ

∂γS

)⊤
DS −

(
∂µ
∂γ

)⊤
δ (5)

=

(
∂µ
∂θ
∂µ
∂γ

)⊤(
BSδ + π∗⊤

S J−1
S

(
U

VS

))
(6)

where the partial derivatives are evaluated at the null point (θ0, γ0) and where
(

CS

DS

)
= J−1

S

(
Jn,01δ + U

πSJn,11δ + VS

)
with

(
U

VS

)
∼ Np+|S|(0, JS),

and

BS = π∗⊤
S J−1

S

(
Jn,01

πSJn,11

)
−
(

0p×qn

Iqn

)
.

The sparsity condition sn = o(n1/4) is crucial in this high-dimensional framework. Note that Λn,S

depends on n through ∂µ
∂γ , BS and δ. While (5) leads to the original FIC formula, (6) turns out to be

more useful in the high-dimensional case. From Theorem 1, for a model S, the limiting distribution of
√

n(µ̂S − µtrue) is the same as the one of Λn,S which is normally distributed with mean and variance

given by

E(Λn,S) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

BSδ and Var(Λn,S) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S J−1

S π∗
S

(
∂µ
∂θ
∂µ
∂γ

)
.

We thus have

MSE(S, δ) =

(
∂µ
∂θ
∂µ
∂γ

)⊤
(
BSδδ⊤B⊤

S + π∗⊤
S J−1

S π∗
S

)
(

∂µ
∂θ
∂µ
∂γ

)
, (7)

and FIC(S, δ) = ̂MSE(S, δ) which defines the FIC in the high-dimensional setting for a low-dimensional

submodel S. Interestingly, this formulation does not require the inverse of the Fisher matrix in the full

model but only in the submodel S. Thus this expression may be used in the high-dimensional setting

with p + qn > n if the considered submodel S is of low dimension, that is if p + |S|≤ n.

In fact, the formula (7) could also be used to compute the FIC in the classical fixed low dimensional case.

Indeed, it is possible to show that for fixed q with p + q < n the expressions (1) and (7) are equal, with

Jn,01 and Jn,11 replaced by their limiting versions J01 and J11, this is that

ω⊤(Iq − GS)δδ⊤(Iq − GS)⊤ω +

(
∂µ

∂θ

)⊤
J−1

00

∂µ

∂θ
+ ω⊤GSQSG⊤

S ω

is equal to (
∂µ
∂θ
∂µ
∂γ

)⊤
(
BSδδ⊤B⊤

S + π∗⊤
S J−1

S π∗
S

)
(

∂µ
∂θ
∂µ
∂γ

)
.
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This can be obtained using Q−1 = J11 − J10J−1
00 J01 and GSQSG⊤

S = π⊤
S QSπS . The main novel con-

tribution of the low-dimensional submodel case, though, is that the theory takes the presence of the

high-dimensional vector δ into account.

To conclude this section, we note that if we wish to not protect any variable in the model selection

procedure, our theory is still valid. In that case the Fisher information matrix is a qn × qn matrix

and Theorem 1 and expression (7) are still valid with slight adjustments. The partial derivative ∂µ
∂θ

disappears, BS becomes π⊤
S JSπSJn − Iq and π∗

S becomes πS . This remark also holds for the high-

dimensional submodel case in the next section.

4 FIC for a high-dimensional submodel of a linear model

Let S be a subset of {1, . . . , qn} of size larger than n − p. The maximum likelihood estimator (or least-

squares estimator) is not available anymore and the results from Section 3 are not applicable. We propose

to first use a ℓ1-penalized estimator and then to desparsify it to obtain an estimator of (θ0, γn,S) whose

distribution can be tracked. The idea to desparsify a penalized estimator has been introduced by several

authors, including van de Geer et al. (2014), Javanmard and Montanari (2014) and Zhang and Zhang

(2014). In this section, we restrict to linear models but extensions to generalized linear models and convex

loss functions are expected to be feasible.

The desparsification is needed because the ℓ1-based penalties have the property of setting some of the

coefficients exactly equal to zero, one can show asymptotic consistency of such selection under some

conditions. The remaining non-zero coefficients are estimated by an estimator which can asymptotically

be normally distributed. This is the case for the adaptive Lasso (see Zou, 2006) and the SCAD (see

Fan and Li, 2001). Since the focus might be a function of both types of coefficients, those that will

be estimated by zero and those that will not, the asymptotic distribution of the focus estimator is not

tractable due to this mixture containing a point-mass at zero.

Let us assume that for i = 1, . . . , n, the response Yi is generated by a linear model

Yi = x⊤
β,iβ0 + x⊤

γ,iγn + σǫi (8)

with ǫi ∼ N (0, 1), where β0 ∈ Rp corresponds to the protected variables, xβ,i is a p×1 vector of protected

covariates, γn ∈ Rqn corresponds to the unprotected parameters with corresponding covariate vector xγ,i

on which variable selection is performed.

As in most of the high-dimensional literature, we assume that the noise variance σ2 is known. Reid

et al. (2016) describe strategies for estimating σ2 and their empirical comparison suggests that using

the estimator based on the residual sum of squares of cross-validated Lasso solution might yield a good

estimator. For theoretical properties we refer to this paper. With σ2 assumed to be known, the protected

parameter θ0 is thus β0 and we note that for a linear model, γ0 = 0qn so that we have γn = δ/
√

n in this
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section. We write

Xβ =




x⊤
β,1

...

x⊤
β,n


 ∈ R

n×p, Xγ =




x⊤
γ,1

...

x⊤
γ,n


 ∈ R

n×qn , Xγ,S = Xγπ⊤
S and X∗

S = [Xβ , Xγ,S] ∈ R
n×(p+|S|).

The matrix X∗
S corresponds to the design matrix in the submodel S. Denoting by Y the vector of

responses and ǫ the vector of the errors, we have Y = Xββ0 + Xγγn + ǫ.

This section proceeds as follows. First, in section 4.1, we derive a desparsified estimator that can be

interpreted as a generalization of the ordinary least-sqaures estimator. In section 4.2, we describe how

to construct a relaxed inverse of the sample covariance matrix. Next, in section 4.3, we consider the case

that a submodel S contains the true active set and derive theoretical results. In section 4.4, we derive a

FIC formula for a general submodel S.

4.1 Desparsified estimator

Let us consider the following Lasso estimator (Tibshirani, 1996) where we do not penalize the intercept

parameter (or take a model without intercept by centering the variables),

(β̂Lasso
S , γ̂Lasso

S ) = arg min
β∈Rp,γS∈R|S|

1

2n

∥∥∥Y − X∗
S

(
β

γS

)∥∥∥
2

2
+ λ
∥∥∥
(

β

γS

)∥∥∥
1
. (9)

We describe how to construct a desparsified estimator. The derivation presented herebelow is based on

van de Geer et al. (2014). We write the Karush-Kuhn-Tucker condition

1

n
X∗⊤

S

(
Y − X∗

S

(
β̂Lasso

S

γ̂Lasso
S

))
= λκ̂S ; with κ̂S,j = sign



(

β̂Lasso
S

γ̂Lasso
S

)

j


 if

(
β̂Lasso

S

γ̂Lasso
S

)

j

6= 0, (10)

where ‖κ̂S‖∞ ≤ 1.

The matrix JS = 1
nσ2 X∗⊤

S X∗
S is by construction not invertible because p+ |S|> n. We construct a relaxed

inverse MS of JS by using the Lasso nodewise regression technique, as presented in van de Geer et al.

(2014) and in section 4.2, and we define the following desparsified estimator:

(
β̂desp

S

γ̂desp
S

)
=

(
β̂Lasso

S

γ̂Lasso
S

)
+ MS

1
nσ2 X∗⊤

S

(
Y − X∗

S

(
β̂Lasso

S

γ̂Lasso
S

))

= MS
1

nσ2 X∗⊤
S Y +

(
Ip+|S| − MSJS

)
(

β̂Lasso
S

γ̂Lasso
S

)
.

(11)

We now give some intuition of the desparsfying estimator defined in (11). It can be seen as a bias-

corrected version of the Lasso (first line) or as what we could call a pseudo-least-squares estimator in

a high-dimensional framework (second line). We focus on the second interpretation. Since JS is not

invertible and MS is used as a relaxed inverse, we could use the estimator MS
1

nσ2 X∗⊤
S Y . This estimator
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has mean MSJS(β⊤
0 , γ⊤

0,S + δ⊤
S /

√
n)⊤ and variance 1

n MSJSM⊤
S . We aim to correct this bias by adding

(Ip+|S| − MSJS)(β̂⊤, γ̂⊤
S )⊤ using a reasonable estimator of the parameter vector. Here and in several

referenced papers, the lasso estimator is taken.

By plugging Y = Xββ0 + Xγδ/
√

n into (11), we obtain the following equalities.
(√

n(β̂desp
S − β0)

√
n(γ̂desp

S − γ0)

)
= MS

(
J01δ

πSJ11δ

)
+
(
Ip+|S| − MSJS

)
(

0p

δS

)

+ MS
1√
nσ2 X∗⊤

S ǫ − √
n
(
Ip+|S| − MSJS

)
(

β̂Lasso
S − β0

γ̂Lasso
S − δS√

n

)

=

(
0p

δS

)
+ MS

1
nσ2 X∗⊤

S Xγ,ScδSc

+ MS
1√
nσ2 X∗⊤

S ǫ − √
n
(
Ip+|S| − MSJS

)
(

β̂Lasso
S − β0

γ̂Lasso
S − δS√

n

)
.

(12)

The right hand side of the second line of equation (12) has a very clear interpretation. It consists of a

sum of four elements. The first two are related to the local misspecification, the third one is a variance

term and the fourth one is a bias term that is shown in Theorem 2 to be op(1) if S0,n ⊆ S. Before stating

our theoretical results and defining the FIC, we describe how to construct the relaxed inverse MS.

4.2 Nodewise regression

Before stating our theoretical result we briefly describe how we construct the matrix MS which acts as a

relaxed inverse of JS . We follow the methodology of van de Geer et al. (2014). For each j ∈ {1, . . . , p + |S|}
we compute

η̂j = arg min
η∈Rp+|S|−1

1

2n

∥∥X∗
S,j − X∗

S,−jη
∥∥2

2
+ λj ‖η‖1 ,

where X∗
S,j is the j-th column of X∗

S and X∗
S,−j ∈ Rn×(p+|S|−1) is X∗

S without its j-th column, and we

form

ÂS =




1 −η̂1,2 . . . η̂1,p+|S|

−η̂2,1 1 . . . η̂2,p+|S|
...

...
. . .

...

−η̂p+|S|,1 −η̂p+|S|,2 . . . η̂p+|S|,p+|S|




with components of η̂j indexed by k ∈ {1, . . . , j − 1, j + 1, . . . , p + |S|}. We define

MS = T̂ −2
S ÂS

with T̂ 2
S = diag(τ̂2

1 , . . . , τ̂2
p+|S|) and τ̂2

j = 1
n

∥∥X∗
S,j − X∗

S,−j η̂j

∥∥2

2
+ λj ‖η̂j‖1.

4.3 Submodel containing the true active set: theoretical results

In this section, we assume that the submodel S contains the true active S0,n of γn. We state the following

conditions.
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(A1) For the true active set {1, . . . , p} ∪ {p + j : j ∈ S0,n}, the compatibility condition holds for

Σ̂S = 1
n X∗⊤

S X∗
S with compatibility constant φ2

0 > 0, this is for all β and γ satisfying ‖γSc
0,n

‖1≤

3(‖β‖1+‖γS0,n‖1), it holds that (‖β‖1+‖γS0,n‖1)2 ≤
(

β

γS

)⊤

Σ̂S

(
β

γS

)
(p + sn)/φ2

0. Furthermore,

maxj Σ̂S,j,j ≤ N2 for some 0 < N < ∞.

(A2) For each j we take λj = O(
√

log(p + |S|)/n in the nodewise regression procedure and we have

τ̂j ≥ C > 0.

(A3) sn = o(n1/4).

Assumption (A1) is common in the high-dimensional literature, see for example Bühlmann and van de

Geer (2011), and assumption (A2) corresponds to (B1) in Bühlmann and van de Geer (2015). (A3) is a

sparsity condition, which is the same as assumption (C5).

The following lemma follows from Theorem 2.1 of van de Geer et al. (2014) applied to the model Y =

Xββ0 +Xγ,Sγn,S +ǫ (which holds if S0,n ⊆ S) under the local misspecification framework γn = γ0 +δ/
√

n.

Lemma 3. Let us consider the linear model (8). Let S be a subset of {1, . . . , qn} such that S0,n ⊆ S and

let t > 0 be arbitrary. Under conditions (A1), if λ ≥ 2Nσ
√

2(t2 + log(p + |S|))/n we have:

(√
n(β̂desp

S − β0)
√

nγ̂desp
S

)
.
=d

(
CS

DS

)
+ ∆1, (13)

with (
CS

DS

)
∼ Np+|S|

((
0p

δS

)
, MSJSM⊤

S

)

and

P

[
‖∆1‖∞ ≥ 8

√
n

(
max

j

λj

τ̂2
j

)
λ(p + sn)

φ2
0

]
≤ 2 exp(−t2),

with λj and τ̂2
j being the tuning parameter and the residual sum of squares of the regression of X∗

S,j on

X∗
S,−j in the nodewise regression procedure.

Using Lemma 3, we can obtain the distribution of the focus estimator.

Theorem 2. Let consider the linear model (8). Let S be a subset of {1, . . . , q} such that S0,n ⊆ S and

let t > 0 be arbitrary. Under conditions (A1), (A2) and (A3), if λ ≥ 2Nσ
√

2(t2 + log(p + |S|))/n we

have for µ̂S = µ(β̂desp
S , γ̂desp

S , 0⊤
|Sc|) and µtrue = µ(β0, γn)

√
n(µ̂S − µtrue)

.
=d ΛS + ∆2,

where

ΛS =
(

∂µ
∂θ

)⊤
CS +

(
∂µ

∂γS

)⊤
DS −

(
∂µ
∂γ

)⊤
δ =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S MS

(
U

VS

)

with (U⊤, V ⊤
S ) ∼ Np+|S| (0, JS)
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and

P

[
∆2 ≥ 8K(p + |S|)√n

(
max

j

λj

τ̂2
j

)
λ(p + sn)

φ2
0

]
≤ 2 exp(−t2).

Using a regularization parameter λ of order
√

log(p + |S|)/n and under assumption (A2), ∆2 can be

neglected if sn = o(
√

n/{(p + |S|) log(p + |S|)}) which holds thanks to (A3) and the fact that p and S

are fixed.

For a model S, under conditions of Theorem 2 and with adequate tuning parameters and sparsity as-

sumption, the limiting distribution ΛS of
√

n(µ̂S − µtrue) is normal with mean E(ΛS) = 0 and variance

Var(ΛS) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S MSJSM⊤

S π∗
S

(
∂µ
∂θ
∂µ
∂γ

)
.

It is logical to observe a null bias because we make the assumption that the true active set is included in

the considered submodel. The limiting mean squared error is thus

MSE(S, δ) =

(
∂µ
∂θ
∂µ
∂γ

)⊤

π∗⊤
S MSJSM⊤

S π∗
S

(
∂µ
∂θ
∂µ
∂γ

)

and the FIC is defined as FIC(S, δ) = ̂MSE(S, δ).

4.4 Arbitrary submodel

For an arbitrary submodel indexed by S, Lemma 3 does not necessarily hold because we cannot guarantee

that all active variables are in the chosen submodel. For the purpose of model selection, an estimator of

the mean squared error of the focus is needed. We propose to use the approximations

E

[√
n(β̂desp

S − β0)
√

nγ̂desp
S

]
≈
(

0p

δS

)
+ MS

1

nσ2
X∗⊤

S Xγ,ScδSc ; Var

[√
n(β̂desp

S − β0)
√

nγ̂desp
S

]
≈ MSJSM⊤

S ,

based on (12). This leads to the following definition of a high-dimensional FIC for a general submodel S:

FIC(S) = M̂SE(S)

with

MSE(S) =

(
∂µ
∂θ
∂µ
∂γ

)⊤
(
B′

Sδδ⊤B′t
S + π∗⊤

S MSJSM⊤
S π∗

S

)
(

∂µ
∂θ
∂µ
∂γ

)

and

B′
S =

(
π∗⊤

S MS

(
J01

πSJ11

)
−
(

0p×qn

Iqn

))
(
Iq − π⊤

S πS

)
.

This formula corresponds to (7) if MS = J−1
S .

Note that this corresponds to approximate the distribution of

(
β̂desp

S

γ̂desp
S

)
by the one of

(
β̂desp

S

γ̂desp
S

)
−
(
Ip+|S| − MSJS

)
(

β̂Lasso
S

γ̂Lasso
S

)
= MS

1

nσ2
X∗⊤

S Y +
(
Ip+|S| − MSJS

)
(

β0

δ/
√

n

)
,
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which can be seen as an oracle desparsified estimator.

5 Practical considerations

The results of last two sections for linear models are summarized in Table 1. We observe that the

expressions giving the limiting variance of µ̂S are very similar. In the high-dimensional submodel case,

J−1
S is not available and is thus replaced by MSJSMS . Regarding the bias, it is possible to show in both

cases that if S0,n ⊂ S then the bias expression reduces to 0.

In practice, when computing the squared bias, we need to estimate δδ⊤. There are several possibilities

to do it but none of them produces a consistent estimator. We list here four possibilities. A first natural

choice is to use the Lasso estimator δ̂Lasso =
√

nγ̂Lasso where

(β̂Lasso, γ̂Lasso) = arg min
β,γ

1

2n

∥∥∥∥∥Y − X∗
(

β

γ

)∥∥∥∥∥

2

2

+ λ ‖β‖1 + λ ‖γ‖1 . (14)

A second possibility is to use the more sophisticated adaptive Lasso δ̂adap =
√

nγ̂adap (see Zou, 2006)

where

(β̂adap, γ̂adap) = arg min
β,γ

1

2n

∥∥∥∥∥Y − X∗
(

β

γ

)∥∥∥∥∥

2

2

+ λ

p∑

j=1

wjβj + λ

p+q∑

j=p+1

wjγj . (15)

with wj =





1
n−1/2+|β̂Lasso

j
| for 1 ≤ j ≤ p

1
n−1/2+|γ̂Lasso

j
| for p + 1 ≤ j ≤ p + qn.

This can provide a better estimator of δ in view of

asymptotic results of Zou (2006). A third possibility is to use the desparsified estimator of the full model

δ̂desp =
√

nγ̂desp defined as

(
β̂desp

γ̂desp

)
=

(
β̂Lasso

γ̂Lasso

)
+ M

1

nσ2
X∗⊤

(
Y − Xt

(
β̂Lasso

γ̂Lasso

))
,

where M is a relaxed inverse of the Fisher information matrix J = 1
nσ2 X∗⊤X∗ obtained by the nodewise

regression technique. The fourth possibility follows from Lemma 3 applied to S = (1, . . . , qn). Under

suitable conditions we have δ̂desp .
=d Nq(δ, Ω̂) + oP (1) where Ω̂ = (MJM)−p,−p is obtained by deleting

the first p rows and the first p columns of MJM . Thus δdespδdesp,⊤ has mean δδ⊤ + Ω̂. This leads to a

fourth possibility for estimating δδ⊤: to use δ̂despδ̂desp,t − Ω̂. In case this quantity would be negative, it

can be truncated to zero. To summarize, we propose the four following ways to estimate δδ⊤ in the FIC

formula: (1) δ̂Lasso(δ̂Lasso)⊤, (2) δ̂adap(δ̂adap)⊤, (3) δ̂desp(δ̂desp)⊤, (4) δ̂desp(δ̂desp)⊤ − Ω̂.

6 Simulation study

We perform a simulation study to illustrate the benefits of the high-dimensional FIC. We consider the

linear model Yi = Xiγn + σǫǫi with ǫi ∼ N (0, 1) for i = 1, . . . , n. We consider sample sizes n = 100 and
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Low-dimensional submodel High-dimensional submodel

Estimator of (β0, γn,S)

least-squares estimator:(
β̂LS

S

γ̂LS
S

)
= (X∗⊤

S X∗
S)−1X∗⊤

S Y

desparsified estimator:(
β̂desp

S

γ̂desp
S

)
=

(
β̂Lasso

S

γ̂Lasso
S

)
+ MS

1
nσ2 X∗⊤

S

(
Y − X∗

S

(
β̂Lasso

S

γ̂Lasso
S

))

Estimator µ̂S of µtrue µ(β̂LS
S , γ̂LS

S , 0|Sc) µ(β̂desp
S , γ̂desp

S , 0|Sc)

Bias of
√

nµ̂S

(
∂µ

∂(β,γ)

)⊤
(

π∗⊤
S J−1

S

(
J01

πSJ11

)
−
[

0p×q

Iq

])
δ

(
∂µ

∂(β,γ)

)⊤
(

π∗⊤
S MS

(
J01

πSJ11

)
−
[

0p×q

Iq

])
(
Iq − π⊤

S πS

)
δ

Variance of
√

nµ̂S

(
∂µ

∂(β,γ)

)⊤
π∗⊤

S J−1
S π∗

S

(
∂µ

∂(β,γ)

) (
∂µ

∂(β,γ)

)⊤
π∗⊤

S MSJSM⊤
S π∗

S

(
∂µ

∂(β,γ)

)

Table 1: Estimator µ̂S of the focus and its bias and variance for a low-dimensional and a high-dimensional

submodel in the context of a linear model.

n = 200 and two different possibilities for the dimension q of the paramater γn: q = 80 and q = 200.

The case q = 200 corresponds to high-dimensional data for which the classical FIC can not be used. We

generate the true model according to four scenarios:

• Case 1: γn = 10c(1, −1, 1, −1, 1, 0, . . . , 0)/
√

n and Xi from Nq(0, Iq) for i = 1, . . . , n.

• Case 2: γn as in case 1 and Xi from Nq(0, Σ) for i = 1, . . . , n with Σjj = 1 and Σjk = 0.5 for j 6= k.

• Case 3: γn = 10c(1, − 1
2 , 1

3 , − 1
4 , . . . , ± 1

q )/
√

n and Xi as in case 1

• Case 4: γn as in case 3 and Xi as in case 2.

Cases 1 and 2 correspond to sparse models and cases 2 and 4 correspond to models with correlation

between variables. The parameter c controls the amplitude of the components of γn. We consider three

different focuses. The first focus is the prediction µ1(γn) = X0γn for a new value X0 of the covariate vector

with the components of X0 randomly generated from U[−1, 1]. The second focus is the first coefficient

of γn, that is µ2(γn) = γn,1 and the third focus is the last coefficient of γn, that is µ3(γn) = γn,q. Note

that the true value of the last focus is 0 for the sparse settings (cases 1 and 2).

We compare predictions of the focus µj for two types of methods: (i) we compute a penalized estimator

of γn in the full model and make prediction based on this parameter estimate and (ii) we use the high-

dimensional FIC as described in Sections 3 and 4. We consider two penalized estimators, the Lasso

and the adaptive Lasso, with the tuning paramaters chosen by 10-fold cross-validation. Other tuning

parameter choices are possible too. These two penalized estimators are also used to estimate δ in the

FIC procedure. We thus obtain four different predictions of µj . For the estimation of σ2
ǫ , we follow

the recommendation of Reid et al. (2016) and use σ̂2
ǫ = RSS/(n − d̂f) with d̂f the number of non-zero

coefficients of the penalized estimator of γn.

Because the number of covariates is large, it is computationally impossible to obtain the FIC of every

possible submodel. Instead, we propose to use a backward-forward stepwise procedure with two possible

starting sets: the empty set and the set {j : δ̂j 6= 0} of active components of the estimator of δ. The
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two procedures usually converge to two different subsets S1 and S2 and we keep the one that gives the

smallest FIC value. More refined procedures can be used to improve the selection search. It is for example

possible to do some pseudo-exhaustive search by computing the FIC of all submodels upto a certain size

d.

In Tables 2 to 4, we report the averaged squared errors of the estimators for the three different focuses

over 1000 simulated datasets for different settings. In Table 2 we consider settings with 80 covariates and

in Table 3 we increase the number of covariates to 200, obtaining high-dimensional data for which the

traditional FIC could not be used. Results for these two tables are similar. We observe that all methods

perform well for the third focus µ3 = γq. Regarding focuses 1 and 2 we observe that the FIC procedures

outperform the penalized estimators for the sparse settings (cases 1 and 2), the ones that are supported

by the theory. For non-sparse settings (cases 3 and 4), the different methods are equally competitive.

The presence of correlation makes things slightly more complicated.

In Table 4, we compare the sensitivity of the different methods to the standard noise level σǫ. We observe

that in the sparse cases, the FIC takes much more advantage of the decrease of the noise level. For

σǫ = 0.25 the FIC largely outperforms the penalized methods while for σǫ = 1 the methods are equally

competitive.

We conclude this simulation study by a remark on the size of the models selected by the FIC. We observed

in our simulations that the models selected by the FIC procedure are very often of size smaller than 5.

It turns out that it is often possible to find a small submodel S whose FIC is smaller than the FIC of

Strue, the active set of the model having generated the data. On Figure 1, we illustrate this by giving the

scatter plot of FIC(S) versus µ̂S for every possible submodel of size smaller or equal to 3. The setting is

chosen to have many true non-zero coefficients (20) so that we expect the bias to be large for models of

size only 3. We also choose a small value of the standard noise (σǫ = 0.1) to increase the weight of the

squared bias in the FIC expression. We see on the left figure that many of the submodels exhibit large

values of FIC but more importantly we also notice on the right figure that for some of the small models

(about 3% of them), the FIC value is smaller than the FIC of the true model. For such submodels, the

estimator µ̂S is very close to the true value (the grey horizontal line). This should be considered one of

the strong features of the FIC.

7 Real data example: the riboflavin data

We apply the high-dimensional FIC procedure on the riboflavin data that can be found in the R package

hdi (Meier et al., 2014). The data contains 71 observations, 4088 predictors (gene expressions) and a

response variable measuring the riboflavin production of the Bacillus subtilis bacteria. This dataset has

been used by many authors in the high-dimensional literature including van de Geer et al. (2014) and

Javanmard and Montanari (2014). We center the response variable and randomly split the data into

a training set (Xtrain, Ytrain) of size 50 and a testing set (Xtest, Ytest) of size 21. We then consider the

linear model Ytrain = Xtrainβ + ǫ with ǫ ∼ N(0, σ2
ǫ ) and the 21 focuses µj = Xj

testβ for j = 1, . . . , 21.
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n = 100, q = 80 n = 200, q = 80

c = 1 c = 2 c = 1 c = 2

Focus: µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

Case 1: sparsity and no correlation

Lasso 0.023 0.016 0.000 0.125 0.087 0.000 0.003 0.002 0.000 0.021 0.015 0.000

Adap. Lasso 0.022 0.015 0.000 0.132 0.088 0.000 0.002 0.001 0.000 0.020 0.015 0.000

FIC Lasso 0.003 0.001 0.000 0.006 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

FIC Adap. Lasso 0.003 0.001 0.000 0.009 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

Case 2: sparsity and correlation

Lasso 0.026 0.013 0.000 0.150 0.074 0.000 0.005 0.002 0.000 0.019 0.010 0.000

Adap. Lasso 0.021 0.010 0.000 0.150 0.072 0.000 0.002 0.001 0.000 0.017 0.010 0.000

FIC Lasso 0.008 0.003 0.000 0.028 0.013 0.000 0.003 0.001 0.000 0.004 0.002 0.000

FIC Adap. Lasso 0.007 0.003 0.000 0.030 0.017 0.000 0.002 0.001 0.000 0.003 0.002 0.000

Case 3: no sparsity and no correlation

Lasso 0.028 0.003 0.000 0.091 0.010 0.001 0.009 0.001 0.000 0.017 0.001 0.000

Adap. Lasso 0.028 0.002 0.000 0.089 0.003 0.001 0.009 0.000 0.000 0.017 0.001 0.000

FIC Lasso 0.026 0.002 0.001 0.080 0.004 0.001 0.009 0.000 0.000 0.016 0.001 0.000

FIC Adap. Lasso 0.028 0.002 0.000 0.088 0.003 0.001 0.010 0.000 0.000 0.017 0.001 0.000

Case 4: no sparsity and correlation

Lasso 0.038 0.005 0.001 0.114 0.013 0.001 0.015 0.001 0.000 0.024 0.001 0.001

Adap. Lasso 0.039 0.003 0.001 0.112 0.005 0.001 0.015 0.001 0.000 0.025 0.001 0.000

FIC Lasso 0.037 0.003 0.001 0.105 0.005 0.001 0.015 0.001 0.000 0.024 0.001 0.001

FIC Adap. Lasso 0.039 0.002 0.001 0.111 0.005 0.001 0.015 0.001 0.000 0.025 0.001 0.001

Table 2: Averaged squared errors of the estimators for the three different focuses over 1000 simulated datasets and for different settings. µ1 is

a random new observation, µ2 = γ1 and µ3 = γq. The number of covariates is q = 80, the standard noise is σǫ = 0.25 and c is a parameter

controlling the amplitude of the components of γn.
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n = 100, q = 200 n = 200, q = 200

c = 1 c = 2 c = 1 c = 2

Focus: µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

Case 1: sparsity and no correlation

Lasso 0.026 0.016 0.000 0.141 0.088 0.000 0.004 0.002 0.000 0.022 0.015 0.000

Adap. Lasso 0.024 0.016 0.000 0.141 0.091 0.000 0.002 0.001 0.000 0.022 0.015 0.000

FIC Lasso 0.003 0.001 0.000 0.006 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

FIC Adap. Lasso 0.003 0.001 0.000 0.010 0.001 0.000 0.001 0.000 0.000 0.001 0.000 0.000

Case 2: sparsity and correlation

Lasso 0.031 0.014 0.000 0.161 0.074 0.000 0.006 0.003 0.000 0.021 0.011 0.000

Adap. Lasso 0.023 0.011 0.000 0.159 0.074 0.000 0.002 0.001 0.000 0.020 0.010 0.000

FIC Lasso 0.009 0.004 0.000 0.027 0.014 0.000 0.003 0.001 0.000 0.004 0.002 0.000

FIC Adap. Lasso 0.006 0.003 0.000 0.033 0.016 0.000 0.001 0.001 0.000 0.003 0.002 0.000

Case 3: no sparsity and no correlation

Lasso 0.050 0.006 0.000 0.150 0.018 0.000 0.017 0.001 0.000 0.035 0.002 0.000

Adap. Lasso 0.048 0.003 0.000 0.193 0.008 0.000 0.020 0.001 0.000 0.086 0.002 0.000

FIC Lasso 0.047 0.003 0.000 0.137 0.008 0.000 0.016 0.001 0.000 0.034 0.001 0.000

FIC Adap. Lasso 0.048 0.002 0.000 0.188 0.007 0.000 0.020 0.001 0.000 0.084 0.002 0.000

Case 4: no sparsity and correlation

Lasso 0.065 0.010 0.000 0.176 0.023 0.000 0.024 0.003 0.000 0.047 0.003 0.000

Adap. Lasso 0.063 0.004 0.000 0.252 0.010 0.000 0.028 0.001 0.000 0.115 0.003 0.000

FIC Lasso 0.062 0.005 0.000 0.162 0.011 0.000 0.023 0.001 0.000 0.046 0.002 0.000

FIC Adap. Lasso 0.062 0.004 0.000 0.242 0.010 0.000 0.028 0.001 0.000 0.111 0.003 0.000

Table 3: Averaged squared errors of the estimators for the three different focuses over 1000 simulated datasets and for different settings. µ1 is

a random new observation, µ2 = γ1 and µ3 = γq. The number of covariates is q = 200, the standard noise is σǫ = 0.25 and c is a parameter

controlling the amplitude of the components of γn.
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Focus: µ1 µ2 µ3

Standard noise: σǫ 1 0.5 0.25 1 0.5 0.25 1 0.5 0.25

Case 1: sparsity and no correlation

Lasso 0.086 0.024 0.023 0.036 0.013 0.016 0.001 0.000 0.000

Adap. Lasso 0.060 0.015 0.022 0.014 0.007 0.015 0.001 0.000 0.000

FIC Lasso 0.063 0.013 0.003 0.013 0.003 0.001 0.002 0.000 0.000

FIC Adap. Lasso 0.063 0.011 0.003 0.012 0.003 0.001 0.002 0.000 0.000

Case 2: sparsity and correlation

Lasso 0.166 0.042 0.026 0.066 0.018 0.013 0.002 0.000 0.000

Adap. Lasso 0.135 0.024 0.021 0.029 0.007 0.010 0.003 0.000 0.000

FIC Lasso 0.140 0.029 0.008 0.039 0.009 0.003 0.003 0.001 0.000

FIC Adap. Lasso 0.142 0.024 0.007 0.027 0.006 0.003 0.004 0.001 0.000

Case 3: no sparsity and no correlation

Lasso 0.125 0.056 0.028 0.040 0.009 0.003 0.001 0.001 0.000

Adap. Lasso 0.137 0.057 0.028 0.016 0.004 0.002 0.002 0.001 0.000

FIC Lasso 0.126 0.054 0.026 0.016 0.005 0.002 0.002 0.001 0.001

FIC Adap. Lasso 0.149 0.059 0.028 0.015 0.004 0.002 0.003 0.001 0.000

Case 4: no sparsity and correlation

Lasso 0.188 0.086 0.038 0.084 0.018 0.005 0.002 0.001 0.001

Adap. Lasso 0.204 0.088 0.039 0.035 0.008 0.003 0.003 0.001 0.001

FIC Lasso 0.195 0.085 0.037 0.045 0.011 0.003 0.003 0.001 0.001

FIC Adap. Lasso 0.223 0.091 0.039 0.034 0.008 0.002 0.005 0.002 0.001

Table 4: Averaged squared errors of the estimators for the three different focuses over 1000 simulated

datasets and for different settings. µ1 is a random new observation, µ2 = γ1 and µ3 = γq. Parameters are

q = 80, n = 100 and c = 1. Results are given for different values of the standard noise: σǫ = 1, 0.5, 0.25.

In a first step we compute a Lasso estimator β̂Lasso of β with the tuning paramaters chosen by 10-

fold cross-validation and we obtain estimators µ̂Lasso
j = Xj

testβ̂
Lasso of the 21 focuses. In a second step

we apply our FIC procedure. For each of the 21 focuses, we search for a submodel that provides a

small FIC value. As in the simulation study, we apply a backward-forward stepwise procedure with

two possible starting sets: the empty set and the set selected by the Lasso. We denote by Sj
1 and Sj

2

the sets obtained for the focus j with these two choices of starting sets. We then keep the best of

the two by defining Sj = arg minS∈{Sj
1

,Sj
2} FICj(S). We compute the corresponding estimator β̂Sj and

obtain an estimator µ̂FIC
j = Xj

testβ̂Sj of the focus µj . We then compute the mean squared prediction

errors 1/21
∑21

j=1(Y j
test − µ̂j)2 for µ̂j = µ̂Lasso

j and µ̂j = µ̂FIC
j . For comparison purpose, we also compute

estimators of the focuses with Sj
1 and Sj

2 . Note that each computation of the FIC takes about one

millisecond on a regular computer. Thus, each step of the stepwise procedure takes about four seconds.

The results are reported in Table 5. We observe that the three strategies for performing the FIC op-

timization are very competitive and all outperform the Lasso (0.180, 0.177 and 0.182 versus 0.235 for
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Figure 1: Parameters: n = 100, q = 80, p = 0, s0 = 20, σǫ = 0.1, c = 1, µ1. Scatterplots of µ̂(S) versus

FIC(S) for all the 85401 possible models of size smaller or equal to 3. The true δ and the true σǫ are

used in the FIC computations. The red triangle corresponds to the true model of size 20 and the blue

square corresponds to the model minimizing the FIC amongst the models of size smaller than 3. The

right figure is a zoom of the left figure.

the Lasso). We also observe that for two third of the focuses (14 out of 21), the set S1 was chosen,

corresponding to work with the empty set as starting set. In Table 6, we report information about the

variables selected by the different procedures. As expected, the set Sj
1 is generally smaller (4.7) than the

set Sj
2 (10.7). Furthermore, we note that only two variables are selected at least three times by FIC 1 and

none of them is also selected by the Lasso. Conversely, all the 10 variables selected at least three times

by FIC 2 are also selected by the Lasso. To conclude, we observe that the FIC uses for each prediction

much fewer variables than the Lasso (6.7 versus 27) but in total the number of different variables used

by the FIC for the 21 predictions is much larger than for the Lasso (120 versus 27). This is a key feature

of the FIC.
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Figure 2: (a) For different subset sizes, the number of times that the desparsified FIC of Section 4 is

smaller than the OLS FIC of Section 3 for 100 random subsets and for the first focus. (b) Scatterplot of

µ̂(S) versus FIC(S) for the desparsified FIC of Section 4 for models going from size 5 to 100.
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We end this section by numerically comparing the behaviour of the low-dimensional FIC (OLS) introduced

in Section 3 to the high-dimensional FIC (desparsified) presented in Section 4. Summary of the formulas

can be found back in Table 1. We refer to these two FIC as OLS FIC and desparsified FIC. We consider

the first focus µ1 = X1
testβ of the real data example and compute the two FIC values for different subsets.

Note that these two FIC aim at estimating the mean squared error of two different estimators (see Table

1). More concretely, we consider subsets of the 4088 covariates of size going from 5 to 49. Recall that

the training sample size is 50. For each of the considered sizes we consider 100 different subsets.

In Table 7 we give the two FIC values and the two predictions for the first considered subset of each size.

Note that the true value of the focus is unknown but we can expect it to be close to y1
test = −1.13. We

see that for small subsets the results are very close to each other. When |S| increases, MS gets further

away from J−1
S so that the estimators become more and more different. When |S| is close to the sample

size 50 the quality of the OLS estimator deteriorates and it is better to use the desparsified estimator.

In Figure 2(a) we count how many times out of 100 random choices of the subsets the desparsified FIC

is smaller than the OLS FIC. We observe that from size 20 the desparsified FIC tends to outperfom

the OLS FIC. This gets more and more pronounced when |S| gets closer to the sample size. In any

case for each S we can always compute both FIC and keep the smaller one. Recall that they refer to

different estimators. In Figure 2(b), we give the scatterplot of FIC(S) versus µ̂S for 2300 submodels

of size 5, 10, . . . , 40, 41, . . . , 49, 50, 60, . . . , 100 (100 submodels of each size). We observe that the FIC

obtained with the desparsified procedure behaves as it is supposed to: the FIC aims at estimating the

expected value of 50(µ̂S − µtrue)2 and we do observe a quadratic shape, which is slightly altered due to

the difficulty to estimate δ in this high-dimensional example.

8 Extensions and discussion

8.1 Focused selection for high-dimensional generalized linear models

The results of Section 4 can be extended to high-dimensional generalized linear models (GLM). Let us

consider observations Y1, . . . , Yn where Yi has density f(y, Xi, θ0, γ0 + δ/
√

n) for i = 1, . . . , n with f

from the exponential family of distributions. Consider a high-dimensional submodel S containing the

true active set S0,n Let us write βS =

(
θ

γS

)
and denote the loss function for an observation (y, x)

by ρβS (y, x) = − log f(y, x, θ, γS , γ0,Sc). We define the first an second partial derivatives of the loss

function as ρ̇βS = ∂
∂βS

ρβS and ρ̈βS = ∂2

∂βS∂β⊤
S

ρβS and use the following notation: for a function g we write

Png = 1
n

∑n
i=1 g(Yi, Xi). We use the penalized estimator

(
θ̂L

S

γ̂L
S

)
= β̂L

S = arg min
βS=(θ,γS)

PnρβS + λ ‖βS‖1 .

Similarly to van de Geer et al. (2014), we define Σ̂S = Pnρ̈β̂L
S

and M̂S as a relaxed inverse of Σ̂S obtained

by the Lasso nodewise regression. Note that Σ̂S corresponds to the empirical Fisher matrix estimated in
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(θ̂L
S , γ̂L

S , γ0,Sc). We define the following desparsified estimator
(

θ̂desp
S

γ̂desp
S

)
=

(
θ̂L

S

γ̂L
S

)
− M̂SPnρ̇θ̂L

S
,γ̂L

S
. (16)

Using results from van de Geer et al. (2014), we can show that
(

θ̂desp
S − θ0

γ̂desp
S − γ0,S

)
=

(
0

δS

)
− M̂SPnρ̇β̂true

S
+ oP (n−1/2) (17)

and that M̂SPnρ̇β̂L
S

ρ̇⊤
β̂L

S

M̂⊤
S is a consistent estimator of the variance of

√
n(θ̂desp,t

S − θ⊤
0 , γ̂desp,t

S − γ⊤
0,S)⊤.

This leads to a result similar to Theorem 2 where MSJSMS is replaced by M̂SPnρ̇β̂L
S

ρ̇⊤
β̂L

S

M̂⊤
S .

8.2 Model averaging in high-dimensional models

Averaging estimators across several good models is another interesting route, also in the high-dimensional

setting. Since estimators in a selected model can be written as model averaged estimators assigning weight

one to the estimator in the selected model, and weight zero to all other models, the tool of model averaging

is important to study proper post-selection inference.

Let the weighted estimator be obtained in the following way

µ̂avg =
∑

S∈A
wS(δ̂)µ̂S ,

where µ̂S = µ(θ̂S , γ̂S , γ0,Sc) and A is the set of models under consideration for averaging, this does not

need to be the set of all possible submodels of the largest available model. The weight for each S, may

be deterministic, e.g., assigning equal weight to each of the models, or a predetermined weight that is

not data-dependent, or the weights may be data-driven, e.g., wS(δ̂) = I{S = arg minS′∈A FIC(S′, δ̂)} in

the FIC selection case.

Using Lemma 3, or equation (17) in the GLM case, we obtain that the desparsified estimator δ̂desp .
=d

δ̃ ∼ Nq(δ, Ω). Using the joint convergence of the random weights wS(δ̂) and
√

n(µ̂S − µtrue) for S ∈ A to

their respective limits, we obtain the following Corollary to Theorem 2.

Corollary 1. Assume the local misspecification setting. Under the assumptions of Theorem 2, for a set

of weights such that
∑

S∈A wS(d) = 1 for all d and with at most a countable number of discontinuities,

√
n

{
∑

S∈A
wS(δ̂)µ̂S − µtrue

}
→d Λavg =

∑

S∈A
wS(δ̃)ΛS .

The limiting variable is in case of deterministic weights again normal. For random weights the limit

distribution is a sum of products of the random weights and the normal limits ΛS , which is in general

not longer normally distributed. The mean of the limit random variable depends on the random weights

wS(δ̃) and its correlation with the random variables CS , DS,

E(Λavg) = −
(

∂µ

∂γ

)⊤
δ +

∑

S∈A
E

[
wS(δ̃)

{(
∂µ

∂θ

)⊤
CS +

(
∂µ

∂γS

)⊤
DS

}]
.
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See also Claeskens et al. (2016) for a calculation of the first two moments of weighted forecasts under

weak assumptions avoiding normality.

The use of the proper limiting distribution for model averaged estimators and for post-selection estimators

in general, to obtain inference on the averaged estimator is a worthwhile topic of further research, as is

the determination of the choice of the weights in the high-dimensional setting.

8.3 Other extensions

Since in high-dimensional models the desparsification is crucial to work with the asymptotic distribution

of the focus estimator, which may depend on parameters that are finally set to zero as well as on

parameters that are estimated non-zero, extensions to other types of models require first a study of the

asymptotic distribution of a desparsified estimator. Gueuning and Claeskens (2016) obtained such a

result for partially linear single-index models of the form Y = η(z⊤α) + x⊤β + ε. In such model both

model parts may contain high-dimensional variables, though for theoretical reasons only the dimension

of the vector x is allowed to grow with the sample size. An extension of the FIC to such models with

focuses that depend on the model parameters α, β, will go along the same lines. In the setting of weighted

composite quantile estimation, this would be a generalization of the work on focused selection and model

averaging by Xu et al. (2014) to the high-dimensional case.

The present paper also paves the way for extensions of some variations of the FIC to the high-dimensional

framework. For example, the weighted FIC introduced by Claeskens and Hjort (2008a) aims at selecting a

model that performs well for handling a range of similar tasks. Rather than minimizing a mean squared

error we could consider selecting a model that minimizes another expected loss function, such as the

expected value of a weighted version of the squared error loss,
∫

n{µ̂S(x) − µtrue(x)}2dν(x),

where the dependence of the focus on, say, a covariate vector x is explicitly introduced in the notation.

The choice of the weight function ν allows to specify a domain in the covariate space for which a good

estimator of µtrue is sought. Another use could be to downweight certain regions in order to obtain a

more outlier resistant estimator. An estimator of the limit version of this expected weighted loss version

leads to the average-focused information criterion for the high-dimensional setting.

To conclude, this paper is the first one to obtain the focused information criterion for high-dimensional

data where the parameter length is allowed to grow and even exceed the sample size. Due to the use of

a desparsified estimator, the criterion is able to deal with high-dimensional submodels. In addition, we

have obtained an alternative formula for FIC in the low-dimensional case that not only deals with the

high-dimensionality of the model, but that also is of interest in low-dimensional models by its avoidance

to invert the information matrix in a largest model. This paper may pave the way for other applications,

estimation methods and models where there is a high-dimensional parameter and where focused selection

could bring its benefits of better, targeted, estimators.
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9 Proofs

9.1 Proofs for Theorem 1

The proof requires adjustments of the proofs of Lemmas 1, 2 and 3 of Hjort and Claeskens (2003).

Proof of Lemma 1. We use the univariate Lindeberg-Feller theorem (see Serfling (1980) section 1.9)

for independant but not i.i.d. random variables and the Cramér-Wold device to obtain the appropriate

multivariate normality. To ease the notations, we define the following p + |S|−dimensional vectors:

Wi =

(
U(yi|xi)

VS(yi|xi)

)
for i = 1, . . . , n,

W̄n =
1

n

n∑

i=1

Wi,

Ti = Wi −
(

J01(xi)δ/
√

n

πSJ11(xi)δ/
√

n

)
for i = 1, . . . , n,

T̄n =
1

n

n∑

i=1

Ti = W̄n −
(

Jn,01δ/
√

n

πSJn,11δ/
√

n

)
.

We want to prove that
√

nT̄n
d−→ T = Np+|S|(0, JS). (18)

Let j ∈ {1, . . . , p + |S|} and let us show first that it holds that

√
nT̄ j

n
d−→ T j = N(0, (JS)j,j) (19)

with T̄ j
n the j-th component of T̄n.

We have

E[W j
i ] =

∫
W j

i f0(y|xi)
{

1 + V (y|xi)
⊤δ/

√
n + R(y|xi, δ/

√
n)
}

dy

= 0 + e⊤
j

(
J01(xi)δ/

√
n

πSJ11(xi)δ/
√

n

)
+

∫
W j

i f0(y|xi)R(y|xi, δ/
√

n)dy.

By conditions (C1) and (C5), the last term is o(n−1/2) so that E[T j
i ] = o(n−1/2).

Furthermore

E[(W j
i )2] =

∫
(W j

i )2f0(y|xi)
{

1 + V (y|xi)
⊤δ/

√
n + R(y|xi, δ/

√
n)
}

dy

= JS(xi)j,j +

∫
(W j

i )2f0(y|xi)V (y|xi)
⊤δn/

√
n dy +

∫
(W j

i )2f0(y|xi)R(y|xi, δ/
√

n) dy

= JS(xi)j,j + o(1)
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where the last equality comes from (C2), (C3) and (C5). This implies that Var(T j
i ) = JS(xi)j,j + o(1).

Now, applying the Lindeberg-Feller theorem to {T j
i }i we have

T̄ j
n − 1

n

∑n
i=1 E[T j

i ]√
1

n2

∑n
i=1 Var(T j

i )

d−→ N (0, 1)

which is equivalent to √
nT̄ j

n√
(Jn,S)j,j

d−→ N (0, 1)

and because (Jn,S)j,j converges to (JS)j,j this is also equivalent to (19). The Lindeberg condition for

applying the Lindeberg-Feller theorem requires

1

n

n∑

i=1

1

B2
n/n

∫

|t−E(T j
i

)|>ǫBn

{
t − E(T j

i )
}2

dFi(t) → 0 for each ǫ > 0

with B2
n =

∑n
i=1 Var(T j

i ) and Fi(t) the distribution function of T j
i . This is satisfied if

∫

|T j
i

|>ǫ
√

n

(T j
i )2ftrue(y|xi)dy → 0 for each ǫ > 0

which holds thanks to conditions (C2) and (C3). Thus, (19) is proven.

We now apply the Cramér-Wold device that states that

√
n T̄n

d−→ T if and only if
√

n a⊤T̄n
d−→ a⊤T ∀a ∈ R

p+|S|.

Let consider an arbitrary a ∈ Rp+|S|. Using (19), it is clear that
√

na⊤T̄n =
∑p+|S|

j=1

√
naj T̄ j

n tends to a

normal distribution with mean 0 and variance given by
∑p+|S|

j,k=1 ajak(JS)j,k = a⊤JSa. Indeed,

Var(
√

na⊤T̄n) =

p+|S|∑

j,k=1

n ajakCov(T̄ j
n, T̄ k

n )

=

p+|S|∑

j,k=1

1

n

n∑

i=1

ajakCov(T j
i , T k

i ) =

p+|S|∑

j,k=1

ajak(Jn,S)j,k = a⊤(Jn,S)a

which tends to a⊤JSa. This implies that
√

n a⊤T̄n
d−→ a⊤T so that (18) holds.

Proof of Lemma 2. By Lemma 1, it suffices to show that
( √

n(θ̂S − θ0)
√

n(γ̂S − γ0,S)

)
=̇d J−1

S

( √
nŪn√
nV̄n,S

)
,

which can be done by using traditional arguments for maximum likelihood estimators (see for example

Serfling (1980) section 4.2.2). We give here the explicit derivations.

Writing β̂ = (θ̂S , γ̂S) and β0 = (θ0, γ0,S), a Taylor expansion of 1
n

∑n
i=1

∂
∂β log f(yi|xi, β̂) around β0 gives

0 =

(
Ūn

V̄n,S

)
+

1

n

n∑

i=1

∂2

∂β∂β⊤ log f(yi|xi, β0)(β̂−β0)+
1

2

p+|S|∑

j=1

(β̂−β0)⊤ 1

n

n∑

i=1

∂3

∂βj∂β∂β⊤ log f(yi|xi, β̃)(β̂−β0)

(20)
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with β̃ between β0 and β̂. By condition (C4), there exists a function H(x) with finite mean such that∣∣∣ ∂3

∂βj∂βk∂βl
log f(y|x, β)

∣∣∣ ≤ H(x) for each 1 ≤ j, k, l ≤ p + |S| in a neighbourhood of β0. Furthermore,

because β̃ lies between β0 and β̂, we can write ∂3

∂βj∂βk∂βl
log f(y|x, β) = H(xi)ξ

i
jkl with |ξi

jkl |≤ 1. Denoting

by ξi
j the (p + |S|) × (p + |S|) matrix whose element (k, l) is ξi

jkl, the last term of (20) can be expressed as

1

2
(β̂ − β0)⊤ 1

n

n∑

i=1

p+|S|∑

j=1

H(xi)ξ
i
j(β̂ − β0).

We now define Cn = 1
n

∑n
i=1 H(xi) and ξ∗ = 1

Cn

1
n

∑n
i=1

∑p+|S|
j=1 H(xi)ξ

i
j and see that this last term is

also equal to 1
2 (β̂ − β0)⊤Cnξ∗(β̂ − β0). Note that each component of the matrix ξ∗ is smaller than p + |S|

in absolute value. Defining Bn = 1
n

∑n
i=1

∂2

∂β∂β⊤ log f(yi|xi, β0), the equation (20) can now be rewritten

as

0 =

(
Ūn

V̄n,S

)
+ Bn(β̂ − β0) +

1

2
(β̂ − β0)⊤Cnξ∗(β̂ − β0)

or equivalently as (
Ūn

V̄n,S

)
= −(Bn +

1

2
(β̂ − β0)⊤Cnξ∗) (β̂ − β0).

We observe that Bn converges to JS , that Cn converges to E[H(X)] which is finite by (C4), that all the

elements of ξ∗ are bounded by p + |S| (which is finite) and that β̂ tends to β0. All of this implies that

−(Bn + 1
2 (β̂ − β0)⊤Cnξ∗) tends to JS , which ends the proof of Lemma 2.

Proof of Theorem 1. Taylor expansions of µ̂S and µtrue around µ0 = µ(θ0, γ0) give

√
n(µ̂S − µtrue) =

(
∂µ

∂(θ, γS)

)⊤( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)
−
(

∂µ

∂γ

)⊤
δ + R1 − R2

with

R1 =
1

2
n−1/2δ⊤ ∂2µ

∂γ∂γ⊤
|(θ0,γ̃1)

δ

and

R2 =
1

2
n−1/2

( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)⊤
∂2µ

∂(θ, γS)∂(θ, γS)⊤
|(θ̃,γ̃S)

( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)

with γ̃1 between γ0 and γ0 + δ/
√

n and (θ̃, γ̃S) between (θ0, γ0) and (θ̂S , γ̂S , γ0,Sc). By (C5) and Lemma

1 2, R1 = o(1) and R2 = oP (1) which implies that

√
n(µ̂S − µtrue)

.
=d

(
∂µ

∂(θ, γS)

)⊤( √
n(θ̂S − θ0)

√
n(γ̂S − γ0,S)

)
−
(

∂µ

∂γ

)⊤
δ.

Lemma 2 and algebraic manipulations end the proof.
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9.2 Proofs for Theorem 2

Proof of Lemma 3. Because S0,n ⊆ S, it holds that Y = Xββ0 + Xγ,Sγn,S + ǫ with γn,S = δS/
√

n. As

conditions of Theorem 2.1 of van de Geer et al. (2014) hold for this linear model we have

( √
n(β̂desp

S − β0)
√

n(γ̂desp
S − δS/

√
n)

)
.
=d W + ∆1,

with

W ∼ Np+|S|

((
0p

0|S|

)
, MSJSM⊤

S

)

and

P

[
‖∆1‖∞ ≥ 8

√
n

(
max

j

λj

τ̂2
j

)
λ(p + sn)

φ2
0

]
≤ 2 exp(−t2)

which ends the proof of Lemma 3.

Proof of Theorem 2. The proof is straightforward using Lemma 3 and the same reasoning as for Theorem 1.
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Squared prediction errors FIC values

Focus number Lasso Best FIC FIC 1 FIC 2 Value FIC 1 Value FIC 2

1 0.189 0.057 0.057 0.076 1.138 1.248

2 0.102 0.304 0.324 0.304 1.312 1.271

3 0.380 0.241 0.241 0.326 0.479 1.983

4 0.036 0.047 0.047 0.035 0.368 0.907

5 0.017 0.039 0.039 0.031 0.475 1.308

6 0.288 0.118 0.118 0.107 0.916 1.008

7 0.003 0.182 0.101 0.182 3.064 2.899

8 0.816 0.733 0.733 0.639 0.305 0.594

9 0.061 0.047 0.047 0.050 0.271 0.525

10 1.706 0.951 0.915 0.951 2.643 1.989

11 0.011 0.003 0.003 0.000 0.344 0.454

12 0.044 0.001 0.001 0.001 1.191 1.117

13 0.635 0.370 0.399 0.370 1.230 0.806

14 0.081 0.009 0.009 0.009 1.224 1.358

15 0.188 0.130 0.130 0.114 0.357 0.500

16 0.049 0.001 0.000 0.001 1.558 0.863

17 0.045 0.034 0.034 0.045 0.220 0.715

18 0.003 0.002 0.005 0.002 0.670 0.666

19 0.021 0.016 0.016 0.028 0.011 0.358

20 0.002 0.000 0.000 0.001 0.354 0.394

21 0.254 0.502 0.502 0.549 1.229 1.470

Average 0.235 0.180 0.177 0.182 0.922 1.068

Table 5: Squared prediction errors and FIC values for the 21 focuses of the riboflavin data. The FIC

search is done trough a stepwise procedure with as starting set the empty set for FIC 1 and the active

set of the Lasso for FIC 2. Best FIC consists is obtain by keeping the submodel that gives the smallest

of the two FIC values.

Lasso Best FIC FIC 1 FIC 2

Average number of selected variables 27 6.7 4.6 10.7

Number of variables selected at least once 27 120 77 177

Number of variables selected at least 3 times 27 5 2 10

Table 6: Information on the variables selected for the 21 focuses of the riboflavin data. The FIC search

is done trough a stepwise procedure with as starting set the empty set for FIC 1 and the active set of the

Lasso for FIC 2. Best FIC consists is obtained by keeping the submodel that gives the smallest of the

two FIC values.
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|S| FIC OLS FIC desp. Pred. OLS Pred. desp.

5 12.46 12.56 -0.42 -0.42

10 45.39 45.01 0.10 0.10

15 26.23 26.21 -0.22 -0.21

20 39.33 39.18 -0.18 -0.18

25 21.43 21.63 -0.44 -0.43

30 17.14 15.47 -0.73 -0.75

35 21.81 22.67 -0.67 -0.65

40 31.90 38.50 -0.32 -0.33

41 32.10 39.29 -0.32 -0.45

42 32.85 37.50 -0.29 -0.39

43 67.16 58.84 0.42 0.09

44 55.61 46.93 0.22 -0.43

45 92.91 130.30 0.57 0.70

46 114.14 85.71 0.83 0.46

47 121.62 98.36 0.47 0.52

48 416.60 119.20 1.44 0.77

49 924.01 114.23 4.51 0.73

50 n/a 89.99 n/a 0.55

60 n/a 79.35 n/a 0.15

70 n/a 66.49 n/a -0.26

80 n/a 133.70 n/a 0.73

90 n/a 66.53 n/a 0.02

100 n/a 98.10 n/a -0.43

Table 7: OLS FIC of Section 3 and desparsified FIC of Section 4 and their corresponding predictions for

one random subset for each considered size. The focus is µ1 = X1
testβ whose true value is unknown but

should be close to y1
test = −1.13.
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