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Abstract

Variable selection is fundamental in high-dimensional statistical modeling, including

non- and semiparametric regression. However little work has been done for variable

selection in a partially linear model. We propose and study a unified approach via

double penalized least squares, retaining good features of both variable selection and

model estimation in the framework of partially linear models. The proposed method is

distinguished from others in that the penalty functions combine the `1 penalty coming

from wavelet thresholding in the nonparametric component with the `1 penalty from

the lasso in the parametric component. Simulations are used to investigate the per-

formance of the proposed estimator in various settings, illustrating its effectiveness for

simultaneous variable selection as well as estimation.

Keywords: Lasso, `1 penalty, Partially linear model, Variable selection, Wavelet

estimation.
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1 Introduction

We propose and study a unified approach for simultaneous variable selection and model

estimation in partially linear models. Consider the following regression model:

Yi = xt
iβ + f(ti) + εi, i = 1, 2, . . . , N (1)

where {Yi} is the response variable, {xi} are known design points and each is a fixed p-

dimensional vector with corresponding parameter vector β of length p, {ti} are values of an

extra univariate variable such as, for example, the time at which the observation is made, f(·)
is an unknown function that is potentially non-smooth, εi are random errors assumed to be

independent and identically distributed as N(0, σ2). Without loss of generality, we assume

t ∈ [0, 1]. The goal is to estimate both the nonparametric function f(·) and the parameter

vector β. Our estimation method will allow for the selection of important variables in the

parametric part of the model by using a `1 lasso penalty on the regression coefficients. For

the nonparametric part we use wavelet estimators which allow the true function to be non-

smooth.

The partially linear model (PLM) in (1), with parametric component xT β and nonpara-

metric component f(t), enjoys the flexibility of the nonparametric models, while maintain-

ing the easy interpretation of parametric models. Various estimation procedures and their

asymptotic properties have been established by Heckman (1986), Rice (1986), Speckman

(1988), Hamilton and Truong (1997), amongst others. For more details and references, see

Härdle et al. (2000).

In this paper, we use the wavelet nonparametric regression procedure for the PLM.

The main reason for adopting wavelets is to avoid the smoothness assumption on f(·),
that is used by most of the existing approaches such as kernel, local polynomial or spline

estimators. Wavelet smoothing makes less restrictive assumptions about the smoothness of

the underlying function, allowing for possible sharp transitions, jumps, and sharp peaks. At
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the same time, wavelets lead to a sparse representation that can be easily compressed or

denoised using thresholds for wavelet coefficients, see Donoho and Johnstone (1994), and

Donoho et al. (1995).

Chang and Qu (2004) proposed a wavelet-soft thresholding estimator for the PLM and

developed an efficient descent algorithm with an exact line search. A regularized estimator

was introduced by Fadili and Bullmore (2004), which can be efficiently estimated by choosing

an appropriate penalty function for which the hard and soft thresholding estimators are

particular cases. Fadili (2005) extended modeling the nonparametric component in PLMs

from orthogonal bases (complete) to redundant (overcomplete) expansions in the wavelet

domain. For the estimation of the nonparametric part of the PLM, we will apply an iterative

backfitting-like algorithm as well as soft thresholding.

The main novel part of this paper is the inclusion of variable selection for the parametric

part of the model. Identifying significant predictors will enhance the prediction performance

of the fitted model. While there is a vast amount of work on variable selection for linear

models, little work has been done for variable selection in partially linear models, however,

see Simonoff and Tsai (1999), and Li and Liang (2008) for methods using local likelihood

estimators for the nonparametric part of the model. The lasso, short for “least absolute

shrinkage and selection operator”, proposed by Tibshirani (1996), achieves the goal of si-

multaneous estimation and variable selection by introducing an `1 penalty on the regression

coefficients in linear models. The resulting lasso estimate of β can contain some exact

zero coefficients, which is equivalent to excluding the corresponding variables from the final

model. Theoretical properties of the lasso estimator have been obtained by Knight and Fu

(2000) and Zhao and Yu (2006), amongst others. Zou (2006) proposed the adaptive lasso in

which adaptive weights are used for penalizing different coefficients in the `1 penalty.

In this paper, we use the adaptive lasso to select relevant variables in parametric com-

ponent of the model. Together with the soft-thresholded wavelet estimation method for
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the nonparametric part of the model, this leads to a double penalized estimator, using `1

penalties for both model parts.

The rest of the paper is organized as follows. In Section 2, we introduce our new double-

penalty estimation procedure for partially linear models. Section 3 contains details about

the practical implementation using an iterative algorithm, which iterates between fitting a

nonparametric wavelet regression model and minimizing a penalized least squares objective

function. In Section 4 we discuss how to adaptively select the tuning parameters. A simple

yet effective stagewise tuning procedure is presented. Monte Carlo studies and an application

involving real data are shown in Section 5. Some discussion is given in Section 6.

2 A double penalized estimation method

We introduce our estimation method where the penalty functions combine an `1 penalty

coming from wavelet thresholding in the nonparametric part (see Section 2.1) with a second

`1 penalty from the adaptive lasso in the parametric part (see Section 2.2). Thus we achieve

simultaneously the objectives of variable selection and model estimation in the partially

linear model.

2.1 Wavelet smoothing in the partially linear model

We are working with a wavelet basis that is generated through a mother wavelet function ψ(·)
and father scaling function φ(·). Defining the normalized functions ψjk(t) = 2j/2ψ(2jt − k)

and φjk(t) = 2j/2φ(2jt− k) for j ≥ j0 = 0 (the resolution level) and k = 0, . . . , 2j − 1, gives

an orthonormal basis of L2[0, 1], the square integrable functions on [0, 1]. The nonparametric

part of the PLM (1) can then be represented by the wavelet series expansion

f(t) =
2j0−1∑

k=0

cj0,kφj0,k(t) +
J−1∑
j=j0

2j−1∑

k=0

γj,kψj,k(t), (2)
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where the sample size N = 2J . In practice, the coefficients in this expansion follow from a

discrete wavelet transformation (DWT), leading to empirical scale and wavelet coefficients

ĉj0,k and γ̂j,k. Denoting W t the inverse DWT matrix containing the scaling and wavelet

functions in its columns, which has dimension N ×N and δ = (c, γ) the vector of all scaling

and wavelet coefficients, the PLM in (1) can be written in matrix form as

Y = Xβ + W tδ + ε.

For identifiability, we here consider that the vector 1N is not spanned by the vectors of X,

i.e., the mean of the vector Y is explained by W tδ.

Wavelet estimation has the important advantage of creating a sparse signal, meaning

that most of the wavelet coefficients are zero or close to zero, while important features of

the signal are captured by large wavelet coefficients. This allows thresholding procedures to

be used. Hard thresholding removes small wavelet coefficients and leaves other coefficients

untouched. In contrast, soft thresholding works as a shrinkage method that shrinks large

wavelet coefficients towards zero by the threshold value, and removes the small ones that

do not exceed the threshold. A particular aspect of this method is that soft thresholding

corresponds to placing an `1 penalty on the wavelet coefficients, while leaving the scaling

coefficients unpenalized. In detail, this leads to the first penalty term in the objective

function of the double penalized estimation method (3) where λ1 is the threshold value.

2.2 Lasso as a variable selection method

The lasso method as proposed by Tibshirani (1996) for linear regression models of the type

Y = Xβ + ε, puts a `1 penalty on the regression coefficients. The lasso estimator β̂ is the

minimizer over β of the penalized least squares criterion

‖Y −Xβ‖2 + λ2

p∑
j=2

|βj|,
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where p denotes the number of regression variables. Note that the intercept, which is in

the parametric model included in the design matrix X, is not bounded by the constraint.

A particular useful aspect of the properties of an `1 penalty is that it not only shrinks the

coefficients towards zero, but also allows some of the coefficients to be identically zero. This

aspect makes that the lasso can be used as a variable selection method.

While the lasso applies the same penalty to all of the regression coefficients, the adaptive

lasso (Zou, 2006) has different weights τj for each coefficient. This leads to a minimization

problem of a penalized least squares criterion of the form

‖Y −Xβ‖2 + λ2

p∑
j=2

τj|βj|.

As a result, large amounts of shrinkage can be used for insignificant variables, while small

amounts of shrinkage can be used for significant variables. Zou (2006) showed that for certain

data-dependent values for the weights τi, the adaptive lasso has oracle properties in the sense

of performing equally well as if the true model were known.

2.3 The double penalty estimation approach

We propose to minimize the following double penalized least-squares criterion to estimate β

and γ:

min
β∈Rp,δ∈RN

l(β, δ) = min
β∈Rp,γ∈RN

{‖Y −Xβ −W tδ‖2 + λ1

J−1∑
j=j0

2j−1∑

k=0

|γj,k|+ λ2

p∑
i=1

τi|βi|
}
. (3)

The threshold value λ1 controls the sparsity of nonparametric estimates, while for the purpose

of variable selection we impose the weighted `1 penalty on the linear coefficients β and thus

use λ2 to control the sparsity of the parametric part of the model. We will give more details

about the choice of the regularization parameters λ1 and λ2 in Section 4.

An iterative algorithm will be used to solve the above estimation problem (3) with any

fixed λ1 and λ2. The main idea is to successively minimize the objective function l(β,γ)

6



with respect to β while holding γ fixed, and next minimize l(β, γ) with respect to γ while

holding β fixed. All the computational details are presented in Section 3.

Before minimizing the objective function (3), the adaptive weights τi should be defined.

We propose to take τ̂ = 1/|β̃|, where β̃ is the estimate for β in the PLM model (1) without

putting a penalty on the parametric part of the model. To obtain our initial estimators (β̃, γ̃)

that are used in the iterative procedure as well as in the weights of the adaptive lasso, we

apply the wavelet estimation method for the partially linear model by Fadili and Bullmore

(2004) and Fadili (2005), which only includes an `1 penalty on the wavelet coefficients and

leaves all other coefficients unpenalized. Using the orthogonality of the DWT matrix W ,

the initial estimators are obtained by minimizing over (β, δ), the penalized function

‖WY −WXβ − δ‖2 + λ
J−1∑
j=j0

2j−1∑

k=0

|γj,k|,

where the penalty takes action only on the wavelet coefficients, not on the scaling coefficients,

nor on the coefficients of the parametric part of the model.

The idea of double-penalized least squares has been used in other contexts. Tibshirani

and Saunders (2005) proposed the ‘fused lasso’, which penalizes the `1 norm of both the

coefficients and their successive differences. This corresponds to expressing sparsity in the

coefficients as well as in their differences. Wang et al. (2007) also used double `1 penalties

for a linear regression model with autoregressive errors. One penalty is for the regression

coefficients, the other for the autoregression coefficients. Our double-penalized least squares

criterion in the partially linear model is new. The penalty functions combine the `1 penalty

coming from wavelet thresholding in the nonparametric part with the `1 penalty from the

adaptive lasso in the parametric part. Thus we achieve the objectives of variable selection

and model estimation simultaneously.

7



3 Algorithm

Now we propose an iterative algorithm to minimize the double penalized least squares cri-

terion function (3) for any fixed choice of regularization parameters λ1 and λ2. We use

a backfitting type of algorithm which iterates between minimizing the following adaptive

lasso-type criterion ( β-step) and a wavelet-type objective function (δ-step):

β-step : min
β
{‖Y −Xβ −W tδ‖2 + λ2

p∑
i=1

τi|βi|} with a fixed δ (4)

δ-step : min
δ
{‖Y −Xβ −W tδ‖2 + λ1

J−1∑
j=j0

2j−1∑

k=0

|γj,k|} with a fixed β. (5)

In a similar spirit, Wang et al. (2007) used such an algorithm for their double `1 penalty

approach.

To obtain the initial estimators, according to Theorem 1 of Fadili and Bullmore (2004),

the backfitting algorithm can be used to estimate the parametric and the non-parametric

part of the PLM, including soft thresholding for the wavelet estimator.

Algorithm 1. The (single) penalized PLM wavelet estimator

1. Calculate the columnwise DWT of Y and X. Set l = 0, γ(0) = 0.

2. For l = 0, 1, 2, . . . until convergence

(a) β(l+1) = (X tX)−1X tW t(WY −δ(l)), i.e. least squares fit on WY −δ(l).

(b) Wavelet fit on Y −Xβ(l+1), no penalty on the scaling coefficients and

soft-thresholding for the wavelet coefficients, leading to

c
(l+1)
j0,k = (WY −WXβ(l+1))k if k < 2j0 + 1

γ
(l+1)
j,k = sgn(r

(l+1)
j,k ) max{|r(l+1)

j,k | − λ, 0},

where r(l+1) = WY −WXβ(l+1).
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For the adaptive, or weighted lasso, several well developed procedures can be used to find

the minimizers of the lasso-type (β-step) problem. Examples include quadratic programming

(Tibshirani, 1996), the shooting algorithm (Fu, 1998), a local quadratic approximation (Fan

and Li, 2001), and more recently the least angle regression method (Efron et al., 2004).

The shooting algorithm for the lasso was developed based on the theoretical results of the

structure of the bridge estimators by (Fu, 1998). Particularly, it has a simple closed form

and leads to fast convergence. These properties make it computationally attractive. We will

use the slightly modified shooting algorithm, see Zhang and Lu (2007). The wavelet-type

problem (δ-step), with β fixed at its current value is a standard wavelet smoothing problem,

and the solution is a soft-thresholding rule, which is in line with the solution for the non-

parametric part of the PLM model. The algorithm is presented below.

Algorithm 2. The double penalized PLM wavelet estimator

1. Obtain the single penalized PLM wavelet estimator, denote the solution as

(β̃, δ̃). Set β(0) = β̃, δ(0) = δ̃.

2. Let k = k + 1. Minimize (4) with respect to β with δ(k−1) fixed at its current

value. Denote the solution by β(k).

3. Minimize (5) with respect to δ with β(k) fixed at its current value. Denote the

solution by δ(k).

4. Go to step 2 until convergence.

In practice, only a small number of iterations is usually needed to achieve convergence.

This is partially due to the fact that the penalized PLM wavelet estimator resulting from

application of algorithm 1, can provide a good initial estimate.
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4 Choice of regularization parameters

To implement the methods described in the previous sections, it is desirable to obtain the

tuning parameters λ1 and λ2 in a data-driven way. To choose the regularization parameters

(λ1, λ2) jointly by minimizing some performance criterion is computationally expensive in

practice, since it involves a two-dimensional search. We propose a two-stage tuning pro-

cedure. We first select λ1 at step 1 of the computational algorithm by GCV and at the

successive steps, we fix the choice of λ1. We select the data-driven λ2 value through a grid

search method. At each grid value of λ2, when the algorithm has converged, we re-calculate

the optimal λ1 based on the converged estimate of the parametric parameters β. Then we

select λ2 through a model fit criterion (see below).

There are several approaches in the literature for the choice of the λ1 in the context of

wavelet regression. These methods include the traditional universal threshold value λ =

σ
√

2logN , Stein’s unbiased risk estimator SURE (Donoho and Johnstone, 1995) and cross

validation (Nason, 1996). The threshold can easily be made level-dependent in case of

correlated noise or non-orthogonal transforms, provided that all levels are sufficiently sparse

for accurate estimation of the level-dependent standard deviation. The threshold adopted

here is the generalized cross validation (GCV), see Jansen et al. (1997).

Various criteria have been proposed for the choice of λ2. The well-known criteria include

Mallow’s Cp (1973), AIC (Akaike, 1973), BIC (Schwarz, 1978), cross-validation (CV) and the

generalized cross-validation (GCV) as suggested by Tibshirani (1996) for the lasso. While

the AIC has the efficiency property, BIC is consistent in the sense that it almost surely

identifies the true sparse model provided that the true model is in the candidate list. Due

to the overfitting property of AIC, which is a known result in linear regression, AIC lasso

shrinkage might include more non-zero predictors than necessary. For that reason Zou et al.

(2007) suggested using BIC as the model selection criterion when the sparsity of the model
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is of primary concern. They proposed BIC for the lasso as

BIC(λ2) =
‖Y −Xβ̂ − f̂‖

nσ2
+

log(N)

N
d̂f(λ2)

where df(λ2) stands for the degree of freedom of the lasso, which is the number of nonzero

coefficients of β̂. In the semiparametric regression models, we use the consistent estimate for

the residual variance, i.e., σ̂2 = 1/N
∑N

i=1 ε̂2
i , and ε̂i = yi − xT

i β̂ − f̂(ti), see Cheng (2005).

By the connection between AIC and BIC, the AIC is equivalently defined as

AIC(λ2) =
‖Y −Xβ̂ − f̂‖

Nσ2
+

2

N
d̂f(λ2).

To select the parameter λ2, we can also use the generalized cross-validation (GCV) method

Craven and Wahba (1979), as suggested by Fu (1998) for the lasso model,

GCV =
RSS

N(1− p(λ)/N)2

where p(λ) is the effective number of parameters of the model and it can be computed as

p(λ) = trace(X(X tX + λZ−)−1X t)− n0

where Z− is the generalized inverse of Z = diag(2|β̂| · |β̃|), and it has an extra compensation

term n0, i.e., the number of zero coefficients as compared to the one in Tibshirani (1996).

We compare the three methods in a simulation study.

5 Numerical studies

In this section we summarize our simulation studies carried out to evaluate the finite-sample

performance of the lasso and adaptive lasso estimators via the proposed double penalized

least square procedure. For comparison purposes, the performance of the lasso and adaptive

lasso estimators based on BIC, AIC and GCV criteria are evaluated in terms of mean squared

error (MSE). We also include the “oracle model” fit, which is given by the single penalized

PLM wavelet estimator when assuming that the true model is known. The oracle results are

used for easy comparison but they are generally not available for real data.
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5.1 Simulation models

We generated data from the semiparametric model Yi = xt
iβ+f(ti)+εi, where ε ∼ N(0, σ2)

with σ = 1. Specifically, we set p = 20, and β = (1.5, 2, 2.5, 3, 0, . . . , 0)t. In other words,

the first 4 regression variables are significant, but the rest are not. In addition, the covariate

vectors (X1, . . . , X20)
t were independently generated from the 20-dimensional multivariate

normal distribution with mean 020×1, variance 1, and the pairwise correlation coefficient is

chosen to be ρ = 0.4. We generate the nonparametric component in two different cases, see

Figure 1.

• Case I. f1 given in Nason (1996), is a piecewise polynomial with discontinuity;

f1(t) =





4t2(3− 4t) if 0 ≤ t ≤ 0.5

4
3
t(4t2 − 10t + 7)− 1.5 if 0.5 < t ≤ 0.75

16
3
t(t− 1)2 if 0.75 < t ≤ 1

• Case II. f2 given in Donoho and Johnstone (1994), is a function with many bumps.

f2(t) = ‘Bumps’.

For the DWT, we used the Daubechies filter with 8 vanishing moments. We choose

f(t) = 9f1 and f(t) = 3f2 in different settings to have a reasonable signal-to-noise ratios of

the nonparametric and parametric component. The sample sizes used are N = 128 and 256.

We use the proposed algorithm to estimate the true β. In our algorithm, the GCV was used

to choose λ1 and λ2 was chosen by BIC, AIC and GCV respectively. We will compare the

performance of traditional lasso and the adaptive lasso (Alasso) based on different smoothing

parameter selection criteria in the simulation study.
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Figure 1: Plot of the nonparametric functions f1(t), which is piecewise polynomial, and f2(t),

the bumps function.

5.2 Performance of semiparametric estimators

5.2.1 Performance of β̂

We assess the performance of an underlying parametric estimator β̂ via its mean squared

error (MSE), E‖β̂ − β‖2. To evaluate the MSE, we conducted K replicates of Monte Carlo

simulations and the MSE is estimated by

1

K

K∑

k=1

‖β̂k − β‖2.

In our simulations, K = 1000. The results are summarized in Tables 1 and 2 for both cases

I and II.

As concerns the selection of predictors, four scenarios can occur. The best scenario would

be to select exactly the set of 4 relevant predictors, namely correctly fitted. Another possi-

bility is underfitted, i.e., all selected predictors are relevant, but not all relevant predictors

are selected. Overfitting means that all relevant predictors are selected as well as some re-

dundant predictors. The remaining scenario is the selection of a model including some, but

not all, relevant and some redundant predictors. The last scenario does not occur in our
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simulation study.

As can be seen from table 1, for sample size N = 128, the adaptive lasso estimator

outperforms lasso estimator in terms of percentage of correctly selected predictors, average

number of correctly estimated zero coefficients and MSE in most situations. When choosing

the smoothing parameter λ2 based on AIC or BIC, the lasso method chooses the correct

sets with probability around 45% – 55%, however the adaptive lasso chooses the correct

sets with much higher probability around 65% – 75%. The MSE of β obtained by the

adaptive lasso estimator is only about half of that obtained by the lasso estimator. The

average number of zero coefficients by the lasso estimator is about 14.5, while this number

increases to 15 if estimated by the adaptive lasso method. The tuning methods BIC and AIC

demonstrate comparable prediction accuracy in terms of MSE. However, as expected from

the consistency property, the BIC gives a higher average number of zero coefficients. The

tuning method GCV gives the smallest MSE in the simulation study, but performs slightly

less in the selection of variables.

For the bigger sample size N = 256, similar conclusion can be drawn. The performance

of both the lasso and adaptive lasso are improved in terms of both the MSE and the standard

deviation of each parameter. The MSE of β is around one third of that obtained from the

smaller sample size. The same conclusions can be drawn from table 2.

5.2.2 Performance of f̂(t)

The performance of f̂(t) is assessed by the square root of average squared errors (RASE),

RASE2 = N−1

N∑
i=1

{f̂(ti)− f(ti)}2,

where {ti, i = 1, . . . , N} are the observed data points at which the function f(t) is estimated.

Alternatively, a grid could be used. In our simulation N = 128 or 256. Figure 2 depicts

the estimated curves of f(t) for two different nonparametric cases based on the BIC and

16



Table 3: Median of RASE values for the simulation study for the non-parametric component

of the PLM, for functions f = 9f1 and f = 3f2.

f = 9f1 N=128 N=256

BIC AIC GCV BIC AIC GCV

lasso 0.433 0.422 0.337 0.272 0.270 0.226

Alasso 0.405 0.405 0.337 0.262 0.264 0.226

f = 3f2 N=128 N=256

BIC AIC GCV BIC AIC GCV

lasso 1.185 1.162 1.155 0.803 0.797 0.748

Alasso 0.968 0.966 1.055 0.786 0.786 0.754

for sample size 128. Table 3 summarizes the RASE for all different situations. It is shown

that for the piecewise polynomial function f1, for the estimation of nonparametric compo-

nent, the lasso method performs as well as the adaptive lasso in terms of RASE. For the

more challenging bumps function f2, the adaptive lasso gives better RASE values over the

simulation runs, with the difference becoming smaller for larger sample sizes.

5.3 Real example

We consider one of the case studies by Ruppert et al. (2003) about ragweed pollen. The data

were collected during the 1993 ragweed season in Kalamazoo, Michigan (USA). The develop-

ment of accurate forecasting models for daily pollen levels is important for the treatment of

pollen-related allergies. We consider the first 64 observations in the data set. The response

ragweed is the ragweed level for that day (grains/m3). There are four explanatory variables.

x1 = rain: indicator of significant rain for following day (1 = at least 3 hours of steady or

brief but intense rain, 0 = otherwise),

17
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Figure 2: Estimated nonlinear function for f = 9f1 and f = 3f2.

x2 = temperature: temperature of the next day (oF ),

x3 = wind : wind speed forecast for the next day,

x4 = day.in.seas : day number in the current ragweed pollen season.

The response ragweed is quite skewed, so we work with its square-root as Ruppert et al.

(2003) suggested. The marginal relationships between the response and the other variables

are shown in figure 3.

Since the day number in the current ragweed pollen season suggests a non-linear re-

lationship with the level of ragweed pollen, we construct a partially linear model with a

nonparametric component f(day.in.seas). It is also of interest to investigate whether the

response variable has linear relationship with higher order effects of the variables wind and

temperature as well as the interaction term rain×wind. Thus the partially linear model that
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√

ragweed and each possible predictor.

we fit for these data is

Y = β1x1 + β2x2 + β3x3 + β4x
2
2 + β5x

2
3 + β6x1x3 + f(day.in.seas) + ε.

We apply the proposed method to the data. The adaptive lasso with tuning parameters

λ1 = 5.4996 and λ2 = 56.7 as determined by AIC, selected variables wind, and the square of

temperature, with estimated coefficients 0.6454 and 2.3899, respectively. Both have positive

coefficients, which indicates that the ragweed pollen level increases as the covariate increases.

The other variables were not selected. The estimated nonparametric function f̂(day.in.seas)

is depicted in Figure 4.
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Figure 4: The estimated nonlinear function f̂(day.in.seas) for the ragweed pollen data.

6 Discussion

In this paper, a flexible double penalized least squares estimator using sparse representations

was proposed for partially linear modeling. The unified approach retains good features for

simultaneous variable selection and model estimation. The sparse representation wavelet-

based approach is able to estimate a broad class of functions, including functions that are

nonsmooth.

We showed how to construct flexible regression models for a single continuous predictor

modeled as a non-linear function, and all the other predictors entering the model linearly.

However, in reality many regression problems involve several continuous covariates that

may have non-linear relationships with the response. Our method can be readily extended

through a backfitting approach to allow for additive nonparametric effects. That is, a model

of the form

Yi = xt
iβ + f1(t1i) + . . . + fd(tdi

) + εi.
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The iterative estimation method for the nonparametric part of the model would keep all but

one component fixed to estimate the remaining functions, and then iterate until convergence.

For future research one could derive the asymptotic distribution of the double penalized

estimator, such that we can make inference about the linear coefficients as well as investigate

the asymptotic behavior of the nonparametric part. It is expected that techniques combining

the properties of thresholded wavelet fitting and the (adaptive) lasso estimator, will lead to

such results. The rate of convergence of these estimators is another important issue that

could be investigated.
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