
Frequent query discovery: a unifyingILP approach to association rule miningLuc Dehaspe and Hannu ToivonenReport CW258, March 2, 1998

n Katholieke Universiteit LeuvenDepartment of Computer ScienceCelestijnenlaan 200A { B-3001 Heverlee (Belgium)

Frequent query discovery: a unifyingILP approach to association rule miningLuc Dehaspe� and Hannu ToivonenyReport CW258, March 2, 1998Department of Computer Science, K.U.LeuvenAbstractDiscovery of frequent patterns has been studied in a variety of data mining(DM) settings. In its simplest form, known from association rule mining, thetask is to �nd all frequent itemsets, i.e., to list all combinations of items thatare found in a su�cient number of examples. A similar task in spirit, but at theopposite end of the complexity scale, is the Inductive Logic Programming (ILP)approach where the goal is to discover queries in �rst order logic that succeedwith respect to a su�cient number of examples.We discuss the relationship of ILP to frequent pattern discovery. On onehand, our goal is to relate data mining problems to ILP. On another hand, wewant to demonstrate how ILP can be used to solve both existing and new datamining problems.The fundamental task of association rule and frequent set discovery has beenextended in various directions, allowing more useful patterns to be discovered.From an ILP viewpoint, however, it can be argued that these settings are allwell-controlled subtasks of the full ILP counterpart of the problem. We tryto restore the blurred picture by describing the existing approaches using auni�ed database representation. With the representation, we relate also the DMsettings to each other and propose some interesting new areas to be explored. Weanalyse some aspects of the gradual change in the trade-o� between expressivityand e�ciency, as one moves from the frequent set problem towards ILP.Keywords : frequent pattern discovery, inductive logic programming, datamining.�Department of Computer Science, Katholieke Universiteit LeuvenyDepartment of Computer Science, University of Helsinki

1 IntroductionDiscovery of frequent patterns has been studied in a variety of data mining (DM)settings. In its simplest form, known from association rule mining [2], the taskis to �nd all frequent itemsets, i.e., to list all combinations of items that arefound in a su�cient number of examples. A prototypical application example isin market basket analysis: �nd out which products tend to be sold together.A similar task in spirit, but at the opposite end of the complexity scale, isthe Inductive Logic Programming (ILP) approach [12, 5, 34], where the goal is todiscover queries in �rst order logic that succeed with respect to a su�cient numberof examples [20]. In the application area of market basket analysis, such queriescould express relationships between the properties of customers, their marketbaskets as a whole, and the individual products bought | not just connectionsbetween item types bought.In this paper, we discuss the relationship of this ILP approach to frequentpattern discovery. On one hand, our goal is to relate data mining problems toILP. On another hand, we want to demonstrate how ILP can be used to solveboth existing and new data mining problems.The fundamental task of association rule and frequent set discovery has beenextended in various directions, allowing more useful patterns to be discovered.Alternative problem settings include the use of item type hierarchies [26, 28, 53],the discovery of episodes in event sequences [37, 39], and the search of sequen-tial patterns from series of transactions [4, 55]. These di�erent approaches havebeen mostly described as parallel extensions to the elementary task, each withtheir own notational conventions. General considerations of this problem area arefew [25, 38], and they have been concerned with concepts, algorithms, and com-plexity rather than with the issues of expressive power or the exact relationshipbetween di�erent settings.From an ILP viewpoint it can be argued that these settings are all well-controlled subtasks of the full ILP counterpart of the problem. The use of, e.g.,Datalog allows a clear and uniform formulation of the problems, and a suitablepresentation shows connections and di�erences between the various DM tasks.We start in Section 2 by describing the general data mining task of discover-ing frequent �rst order clauses, and then de�ne the particular DM problems asspecializations of that task. Using the common representation, we relate the DMsettings to each other and propose some interesting new areas to be explored.In Section 3 we consider algorithms for solving the problems, and analyse someaspects of the gradual change in the trade-o� between expressivity and e�ciency,as one moves from the frequent itemset problem towards ILP. Some of the newinstances of frequent pattern discovery are addressed in Section 4. In Section 5 wedemonstrate the potential role of ILP as a benchmark technique for specializeddata mining algorithms. We present experimental results in the area of telecom-munication alarm sequence analysis. We show how ILP methods can be used to1

solve problems attacked before, and also consider useful extensions. Finally, inSections 6 and 7, we touch upon related and future work, and conclude.2 Description of the data mining taskWe use Datalog [58] to represent data and patterns. There is a straightforwardand well-de�ned correspondence betweenDatalog and both relational databasesand �rst order clausal logic. The use of Datalog allows us to describe a numberof data mining tasks in the area of frequent pattern discovery in a clear anduniform manner.Relational algebra, the theoretical framework of relational databases, has thesame expressive power as Datalog without recursion. For instance, the recur-sive concept ancestor can be de�ned in Datalog but not in relational algebra.Datalog, in turn, is a subset of clausal logic (and Prolog) that is restrictedto function-free de�nite clauses.We brie
y review the Datalog concepts used in this paper. These conceptsare then used to describe the data mining task of discovering frequent patternsor, in Datalog terminology, frequent queries. We then show how some existingfrequent pattern discovery settings can be derived from this task. To conclude thissection on representational issues, we situate the discussed settings for frequentpattern discovery in a multi-dimensional space.2.1 Background: Datalog conceptsIn Datalog a term is de�ned as a constant symbol or a variable. To distinguishbetween them, we will write variables with an initial upper-case letter. An atomis an m-ary predicate symbol followed by a bracketedm-tuple of terms. A de�niteclause is a universally quanti�ed formula of the form B A1, . . . , An (n � 0),where B and the Ai are atoms. This formula can be read as \B if A1 and : : : andAn". If n = 0 a de�nite clause is also called a fact. Ground clauses are clausesthat contain only constants as terms, no variables.A deductive Datalog database is a set of de�nite clauses. Often a distinc-tion is made between the extensional part of a Datalog database, with groundclauses, and the remaining intensional part. The presence of intensional non-ground de�nitions distinguishes deductive Datalog databases from relationaldatabases.A formula A1, . . . , An without a conclusion part is called a denial. Sucha formula can also be viewed as a query ?- A1, . . . , An: (the resolution basedderivation of) the answer to a given query with variables (X1; : : : ;Xm) bindsthese variables to terms (a1; : : : ; am), such that the clause is true if each Xiis replaced by ai. This binding is denoted by (X1=a1; : : : ;Xm=am). Due tothe nondeterministic nature of the computation of answers, a single query Q2

may result in many bindings. We will refer to the set of bindings obtained bysubmitting query Q to a Datalog database D as answerset(Q;D).As already pointed out, if recursion is not allowed, these concepts corresponddirectly to relational database terminology. Predicates map to relations, facts totuples of a relation, and a query such as?- transaction(Transaction id, Itemtype), is a(Itemtype, beverage)can be written in SQL asSELECT TRANSACTION.transaction id, TRANSACTION.itemtypeFROM TRANSACTION, IS AWHERE TRANSACTION.itemtype=IS A.itemtypeAND IS A.ancestor='beverage'An overview of strategies to make the relationship between Datalog and rela-tional databases operational can be found in [58].2.2 Frequent query discoveryMannila and Toivonen [38] describe the following generic problem of �nding allpotentially interesting sentences. Given are a database r, a class L of sentences(patterns), and a selection predicate q which is used for evaluating whether asentence Q 2 L de�nes a potentially interesting pattern in r. The task is to�nd the theory of r with respect to L and q, i.e., the set Th(L; r; q) = fQ 2L j q(r; Q) is trueg: In terms of their framework, we consider the following datamining task.De�nition 1 (frequent query discovery) Assume� r is a Datalog database,� L is a set of Datalog queries, and� q(r; Q) is true if and only if the frequency of query Q 2 L with respect to ris at least equal to the frequency threshold speci�ed by the user.The task is to �nd the set Th(L; r; q) of frequent queries.In this general form, the task would be to discover arbitrary queries that arefrequent. In this section we consider the relationship of L, as de�ned above,to the languages used in well-known data mining tasks. We next de�ne whatfrequency exactly means in this setting.De�nition 2 (frequency of query Q with respect to database r)Assume 3

� r is a Datalog database and Q is a query,� keypred is a predicate name not used in Q or r, and� KeyVars is a tuple of user speci�ed key variables of Q.Then the (absolute) frequency of query Q w.r.t. r isjanswerset(?- keypred(KeyVars); r [fkeypred(KeyVars) Qg)j;i.e., the number of bindings of the key variables with which the query Q is true.Once more, we establish the link with relational database terminology. InSQL syntax the frequency of Q can be obtained with the following query, inspiredby [35, 7]:SELECT count(distinct *)FROM SELECT �elds that correspond to KeyVarsFROM relations in QWHERE conditions expressed in QWe next show how restrictions on the Datalog database r and the languageL of Datalog queries lead to some of the existing frequent pattern discoverysettings.2.3 Item setsIn the context of association rule mining [2], the task is to list all frequent com-binations of items. For instance, in market basket analysis one wants to �ndout which products tend to be sold in the same transaction. Several equivalentdatabase representations are possible for such transaction data. They can all bemapped to the case where a single transaction is represented as a set of factstr(tid,itemtypej) , where tid is the identi�er of the transaction and itemtypej isthe name of a product sold in that transaction. Given this form, we can formulatethe setting as follows.De�nition 3 (itemset discovery) Discovery of frequent itemsets is a specialcase of frequent query discovery where� the database r consists of one or more facts tr(tid,itemtypej) per trans-action tid,� the queries in L only contain atoms of the form tr(Tid,itemtypej), and� KeyVars equals the transaction identi�er T id.For instance, given a Datalog databaseftr(1; beer) ; tr(1; chips) ; tr(2; beer) ; tr(2; pampers) ; tr(2; chips) g;the frequency of ?- tr(Tid,pampers) is one, and the frequency of ?- tr(Tid,beer),tr(Tid,chips) is two. 4

2.4 Item hierarchiesIn market basket analysis, it is useful to consider hierarchies of item types and toanalyze basket contents on various concept levels. Whether a customer boughtbudweiser or heineken does not necessarily matter, and in such cases the higherlevel concept of beer is more useful. On the other hand, it might turn out thatcustomers buying hoegaarden beer are original and show distinctive shoppingpatterns. The problem of discovering generalized itemsets on multiple levels ofan item type hierarchy has been considered, e.g., in [26, 28, 53]. In our Data-log representation, item hierarchies can be speci�ed with facts is a(itemtypej,ancestork) which hold for all transactions.De�nition 4 (itemset discovery with item hierarchies) Discovery of fre-quent itemset with item hierarchies is a special case of frequent query discovery,where� database r contains one or more facts tr(tid, itemtypej) per transactiontid, as before, but also facts of the form is a(itemtypej, ancestork) � the queries in L contain atoms of the form tr(Tid, itemtypej), as before,but also atom pairs (tr(Tid, I), is a(I, ancestork)),� KeyVars equals the transaction identi�er T id.In the original formulations of the problem there is the following extra restric-tion: all itemtype variables I in a query are di�erent, i.e., redundancies concerningan item and its own ancestors are pruned. For simplicity, we ignore this.2.5 Sequential patternsConsider the case in market basket analysis where the sequence of transactionsof each individual customer can be tracked. It is interesting to look for frequentpatterns over such sequences of transactions. Sequential patterns [4, 55] are ageneralization of frequent itemsets to frequent sequences of itemsets.To describe the data, we use facts customer(cust, tid) that associate eachtransaction tid to the customer cust that made it. The order of transactions isrepresented by a set of clausal de�nitions for predicate order/2.De�nition 5 (sequential pattern discovery) Discovery of frequent sequen-tial patterns is a special case of frequent query discovery where� database r contains one or more facts tr(tid, itemtype) per transactiontid, as before, but also one or more facts customer(cust, tid) per customercust, and a set of clauses for predicate order/2,5

� the queries in L contain series of atoms of the formscustomer(Cust,Tid1),tr(Tid1,itemtype11),tr(Tid1,itemtype12), . . .customer(Cust,Tid2),tr(Tid2,itemtype21),tr(Tid2,itemtype22),and customer(Cust,Tid1), customer(Cust,Tid2), order(Tid1,Tid2),� KeyVars equals the customer identi�er Cust.Again, the original formulation is in some ways more restricted than thisde�nition. Each transaction Tid in a query is required to have at least one item(i.e., to occur in the �rst atom type mentioned above) and to have a uniqueposition with respect to the other transactions (e.g., to occur in the latter atomtype with all other transactions). On the other hand, the original settings presentsome extensions not covered here.2.6 EpisodesConsider now a case where the input consists of a long sequence of items suchthat remote items in the sequence are not related. Such sequences could arise,for instance, in life-long customer relationships of pharmacies: drugs purchasedwithin weeks may be related, but drugs purchased years or decades apart arerelated only in special cases. A better motivated problem is perhaps in theanalysis of alarms from a telecommunication network [31]. There the task isdiscover combinations of related alarms that are received from a number of devicesin a large network.Episodes [39] are such patterns. Given a long sequence of items and a win-dow width, one looks at the sequence by sliding a window of the given width,and analyzes the combinations of items visible in the window. We discuss twovariants of episodes. The �rst variant, parallel episodes, is a simple adaptation offrequent itemsets to such sequential cases with windowing. The second variant,general episodes is a pattern type with a number of ILP like elements and witha substantially increased expressive power.2.6.1 Parallel episodesFor the de�nition of the episode discovery task, we use facts window(wid, tid) as a means to represent that window wid contains transaction tid. In the caseof episodes, each transaction consists of exactly one item. In the alarm domain,transactions or items have a number of properties in addition to the item type,such as the urgency or the sender of the alarm. These are all given in facts tr(tid,itemtypej, a2, . . . , an) .De�nition 6 (discovery of parallel episodes) Discovery of frequent parallelepisodes is a special case of frequent query discovery where6

� database r contains per time window wid (1) both one or more facts win-dow(wid, tid) , and, (2) per transaction tid in the window, one fact tr(tid,itemtypej, a2, . . . , an) ,� the queries in L consist of one or more atom series of the formwindow(Wid,Tid1), tr(Tid1,V1,. . . ,Vn), Vi=constant,window(Wid,Tid2), tr(Tid2,V1,. . . ,Vn), Vj=constant,� KeyVars equals the window identi�er Wid.Parallel episodes could be de�ned as itemsets by a simple transformation ofthe representation. However, the present way of describing episodes is moreappropriate for further analysis of the problem �eld.2.6.2 General episodesOur �nal example of data mining tasks in the area of frequent patterns are generalepisodes. The formulation here imitates the ones given in [37, 39]. Unlike theexamples discussed above, this one has not been implemented in a full scalebefore.The setting for general episodes we consider here has the following di�er-ences from parallel episodes. Properties of item types and properties of trans-actions/items are represented as a set of facts unaryi(aj) ; and �nally, binaryrelations on transactions/items as a third set of facts binaryi(aj, ak) . Clausesorder(tid1, tid2) for representing a partial ordering on transactions are a spe-cial case of binary relations and thus unnecessary for the speci�cation of theproblem: they can be de�ned, for instance in terms of a binary relation on thetime attribute at associated with transactions.De�nition 7 (discovery of general episodes) Discovery of frequent generalepisodes is a special case of frequent query discovery where� database r contains per time window wid, as before, (1) one or more factswindow(wid, tid) and (2) per transaction tid in the window, one facttr(tid, itemtypej, a2, . . . , an) , andsets of facts unaryi(aj) , and binaryj(aj, ak) ,� the queries in L contain one or more atom series of the formwindow(Wid, Tid), tr(Tid, I, . . . , Vn), unaryi(I), andwindow(Wid, Tid), tr(Tid, V1, . . . , Vn), unaryi(Vj), andwindow(Wid, Tid1), tr(Tid1, V11, . . . , V1n),window(Wid, Tid2), tr(Tid2, V21, . . . , V2n), . . .binaryi(Vj, Vk)� KeyVars equals the window identi�er Wid.7

IS IH SP PE GE DQMany items per transaction + + + +Item type properties + + + + +Many (ordered) transactions per example + + + +Item or transaction attributes + + +Binary item properties + +Table 1: Dimensions of frequent pattern types. Legend: IS = itemsets, IH =itemsets with item hierarchies, SP = sequential patterns, PE = parallel episodes,GE = general episodes, DQ = (full) Datalog queries.2.7 Dimensions of the pattern discovery taskAs a summary and a conclusion of the task review above, consider Table 1. Thetable lists �ve of the properties where the tasks di�er; these properties are directlyre
ected by the existence of di�erent types of atoms in the language L. A cellcontains a plus if the pattern type can deal or can easily be extended to dealwith the given feature. Note that the table is coarse: \item type properties"means a concept hierarchy for most of the cases, and only some can handle otherproperties associated with item types.According to Table 1, the most obvious gaps to �ll are to either extend sequen-tial patterns to include item and transaction attributes and binary properties, orto extend episodes to the case where a transaction can contain a number of items.Recall that general episodes have not been implemented in full, but the columnGE rather lists a proposed setting for data mining. There exists a number ofinteresting gaps also within the �lled rows.In the following section we look at the problems and their algorithmic solutionsin more detail, and in the next section we discuss some of the gaps invisible inTable 1.3 Frequent pattern discovery algorithmsDesign of algorithms for frequent pattern discovery has, indeed, turned out to bea popular topic in data mining (for a sample of algorithms, see [2, 3, 36, 51, 57]).Practically all algorithms are on some level based on the same idea of levelwisesearch, known from the Apriori algorithm [3]. We �rst review the generic lev-elwise search method and its central properties, and recall how this method �tsin the two-phased discovery of frequent and con�dent rules. Next, we introducethe algorithm Warmr [20] for �nding frequent queries. Following the structureof the previous section we then look at algorithms that solve restricted variants.8

Each time we show how Warmr can be tuned to simulate these algorithms andexplain how and why the specialised algorithms can do a lot better thanWarmrin terms of e�ciency.3.1 Background: the common elements3.1.1 The levelwise algorithmThe levelwise algorithm [38] is based on a breadth-�rst search in the latticespanned by a specialization relation � between patterns, cf. [40], where p1�p2denotes pattern \p1 is more general than pattern p2", or \p2 is more speci�c thanpattern p1".The method looks at a level of the lattice at a time, starting from the mostgeneral patterns. The method iterates between candidate generation and can-didate evaluation phases: in candidate generation, the lattice structure is usedfor pruning non-frequent patterns from the next level; in the candidate evalua-tion phase, frequencies of candidates are computed with respect to the database.Pruning is based on monotonicity of � with respect to frequency: if a patternis not frequent then none of its specialisations are frequent. So while gener-ating candidates for the next level, all the patterns that are specialisations ofinfrequent patterns can be pruned. For instance, in the Apriori algorithm forfrequent itemsets, candidates are generated such that all their subsets (i.e., gen-eralizations) are frequent.The levelwise approach has two crucial useful properties [38]:� The database is scanned at most k+1 times, where k is the maximum level(size) of a frequent pattern. All candidates of a level are tested in singledatabase pass. This is an important factor when mining large databases.� The time complexity is in practice linear in the size of the result, and thenumber of examples.3.1.2 Two-phased discovery of frequent and con�dent rulesFrequent patterns are commonly not considered useful for presentation to theuser as such. Their popularity is mainly based on the fact that they can bee�ciently post-processed into rules that exceed given con�dence and frequencythreshold values. The best known example of this two-phased strategy is thediscovery of association rules [2], and closely related patterns include episodes [39]and sequential patterns [4]. For all these patterns, the threshold values o�er anatural way of pruning weak and rare rules.In terms of the Datalog concepts introduced in Section 2, an associationrule R is an expression of the form A1; : : : ; Ak) Ak+1; : : : ; An, where Ai areatoms. This formula should be read as \if query ?- A1,. . . ,Ak succeeds then9

query ?- A1,. . . ,An succeeds also". The con�dence of association rule R canbe computed as the ratio of the frequencies of queries ?- A1,. . . ,An and ?-A1,. . . ,Ak . The frequency (or support) of association rule R is the frequency ofquery ?- A1,. . . ,An.As observed in [2], con�dent and frequent rules can be found e�ectively in twosteps. In the �rst step one determines the set of all frequent queries ?- A1,. . . ,An,and in the second produces rules A1; : : : ; Ak) Ak+1; : : : ; An whose con�denceexceeds the given threshold. If all frequent queries and their frequencies areknown as a result of the �rst step, then this easy second step is guaranteed tooutput all frequent and con�dent rules.3.2 Query discovery with Warmr3.2.1 Specialisation relationThe subset specialization relation used in most frequent pattern discovery set-tings is not appropriate for structuring a space of Datalog queries. For in-stance, not every atom of query ?- parent(X,Y) occurs as such in query ?- par-ent(tom,M),female(M) while we still would like to consider the former a general-ization of the latter. Therefore, we need a strictly stronger variant of the subsetrelation coined �-subsumption by Plotkin [48]. Query1 �-subsumes a Query2 ifand only if there exists a (possibly empty) binding of the variables of Query1,such that every atom of the resulting query occurs in Query2. In the example,the binding (X=tom; Y=M) has the desired e�ect.In theory, testing �-subsumption is NP-complete, but in some practical cases,as discussed in [29], �-subsumption can be tested e�ciently.3.2.2 Language biasWith association rules the de�nition of language L is straightforward: L is sim-ply 2I , where I is the set of items. Srikant, Vu, and Agrawal [56] describe atechnique to impose (and exploit) user-de�ned constraints on combinations ofitems, but otherwise the de�nition of L has received little attention in the fre-quent pattern discovery literature. In ILP on the other hand this issue has beenstudied extensively in the sub�eld of declarative language bias. This is moti-vated by huge, often in�nite, search spaces, that require a tight speci�cation ofinteresting patterns. Several formalisms have been proposed for adding languagebias information in a declarative manner to the search process (for an overview,see [1, 45]). The Warmr algorithm [20] for �nding frequent queries acceptsspeci�cations of the form rmode(n : (A1; : : : ; An)), where the Ai are atoms1.Typically, n = 1 and the speci�cation will be of the form rmode(n : atom). This1Alternatively, Warmr's language bias can be speci�ed in Dlab format [19] as in Clau-dien [16] and ICL [18]. 10

format, originally proposed for Progol [42] and later adapted to Tilde [8],indicates which atoms can be added to a query, the maximal number of timesthe atom can be added (n > 0), and the modes and types of the variables init. A variable V in input mode, denoted with +V , has to occur somewhere tothe left in the query, whereas a variable in output mode, denoted with plain V ,should not occur to the left. Typing of variables can be used to constrain theoccurrence of input variables, such that for instance atom beer(X) will not beadded to ?- customer(X),buys(X,Y) but atom beer(Y) will.3.2.3 Candidate generationTo generate candidates,Warmr employs a classical specialisation operator under�-subsumption [48, 44]. A specialisation operator � maps queries 2 L onto setsof queries 2 2L, such that for any Query1 and 8Query2 2 �(Query1), Query1�-subsumes Query2. The operator used inWarmr essentially adds conjunctionsto the query as allowed by rmodes and type speci�cations.Mode declarations on variables, may cause an atom to be added for the �rsttime only deep down the lattice. This, and the fact that conjunctions of severalatoms can be added in a single re�nement step, complicates pruning signi�cantly.We can no longer require that all subsets of a candidate are frequent as some ofthe subsets might simply not be in L. Instead, Warmr requires candidates notto �-subsume any infrequent query.As an (expensive) option we can also require that candidates are mutuallyinequivalent under �-subsumption, or that candidates do not �-subsume any of aset of user de�ned uninteresting queries (e.g. previous search results).3.2.4 Candidate evaluationIn the candidate evaluation phase the frequencies of a set of queries are computedin a single database pass. Therefore, De�nition 2 of frequency of a single query isnot directly applicable, as it would require one pass per candidate. TheWarmralgorithm rather considers one tuple K of key values at a time and for eachcandidate Qi runs the query ?- keypred(K) in database rK [fkeypred(K) Qig,where rK � r only contains clauses that are \linked" to key K. If query Qisucceeds, an associated counter qi is incremented. One strategy to make theselection of rK operational, is to make sure key K is explicitly added to eachclause in the database, such that the relation same key de�nes a partition on r.For most practical cases, rK is very small compared to r, and can be loadedin main memory even if r cannot. This has the crucial advantage that evaluationof candidates Qi can be done (relatively) e�ciently.The composition and the loading of rK can be optimized in two steps. First,if a �xed portion rB reoccurs as a subset of many rK 's, we can load the com-mon rB once, and iteratively load only the speci�c rKn rB. In ILP jargon, rB11

corresponds to background knowledge. For instance, in market basket analysis,background knowledge rB might consist of: (1) ground facts about commodities,suppliers, and the supermarket's
oor plan, and (2) clausal rules that capturegeneral marketing principles, economic laws and so forth.Second, in cases where the repeated composition of rK is still too costly, e.g.if many clauses have to selected from many di�erent predicates, a preprocessingstep can be considered where all the rK's are composed once and written to a(set of)
at �le(s), see [9] for an experimental evaluation.In addition, the evaluation of candidates itself can be optimized by organiz-ing and rewriting the candidates in such a way that backtracking is minimized.For instance, when the atom tr(T id; beer) in query ?- tr(Tid,I), is a(I,toy),tr(Tid,beer) fails, there is no point in looking for alternative bindings for I. InProlog notation, the cut operator should be inserted to suppress backtracking:?- tr(Tid,I), is a(I,toy), !, tr(Tid,beer).In general, all work in ILP faces the theoretical result that evaluation of aquery is an NP complete problem. However, queries with up to k atoms, whereeach atom contains with at most j terms, can be evaluated in polynomial-timewith respect to a relational database, cf. [17].We now look at the di�erent settings for frequent pattern discovery fromthree angles. In the language bias paragraph we show howWarmr can be tunedto simulate the restricted setting. In the candidate generation and evaluationparagraphs we review the basic ideas and principles underlying the much fasteralgorithms that have been proposed within the restricted settings.3.3 Item set discovery with AprioriLanguage bias. With language bias speci�cationsrmode(1 : rmode(1 : tr id(T id)),rmode(1 : rmode(1 : tr(+T id; itemtype1)); rmode(1 : tr(+T id; itemtype2)); : : :Warmr simulates the Apriori algorithm [3] for �nding frequent itemsets.Remember the +sign indicates the T id's in predicate tr=2 should be input vari-ables, i.e. occur before in the query.Unlike Warmr, Apriori exploits the fact that queries that only containatoms tr(T id; itemtype) can be mapped to sets of itemtypes, and that for item-sets, �-subsumption is equivalent to the subset relation.Candidate generation for frequent itemsets is e�cient: it only involves subsetsearch and testing, and the time used can be neglected in practice.Candidate evaluation of itemsets can also be implemented e�ciently. Thereis no need for backtracking at all, which allows an extreme form of query re-organisation, cf. the hash-trees described in [3]. The composition and loading12

step is typically optimized by preprocessing r such that every transaction rKcorresponds to one line in a
at �le.3.4 Item hierarchiesLanguage bias. To simulate item hierarchies with Warmr the language biashas to contain speci�cations of the formrmode(1 : rmode(1 : tr id(T id)),rmode(1 : rmode(1 : tr(+T id; itemtype1)); rmode(1 : tr(+T id; itemtype2)); : : :rmode(1 : rmode(1 : tr(+T id; I)),rmode(1 : rmode(1 : is a(+I; ancestor1));rmode(1 : rmode(1 : is a(+I; ancestor2)); : : :The item hierarchy can be encoded with atom constraints. As before, this settingcan be expressed in terms of itemsets, and e�cient algorithms rely on the subsetrelation rather than �-subsumption.Candidate generation. An item hierarchy imposes extra structure on thesearch space of itemsets. Frequency of items is monotone in the item hierar-chy: a more general item is at least as frequent as a more speci�c one. Twobasic techniques have been considered for dealing with item hierarchies. In thestraightforward bottom-up approach [28, 53], candidate generation is the sameas with itemsets, but counts are propagated up in the hierarchy. In the top-downapproach [26], candidate generation takes the new specialization relation intoaccount: more speci�c items are only added if a general item is already there.An interesting point here is that although the top-down approach is bettercapable of limiting the search space, it may be less e�cient in practice. Thebottom-up approach probably is faster, since the extra work (if compared tothe basic setting) can probably be performed by consuming only CPU and mainmemory. The top-down approach, in turn, may consider a smaller total numberof candidate sets, but it more easily leads to a larger number of database passes.Candidate evaluation is the same as with itemsets, except that, in the pre-processing step, every transaction rK is computed as the union of the item typesand their ancestor item types.3.5 Sequential pattern discoveryLanguage bias. With basically the following language bias, Warmr discoverssequential patterns: 13

rmode(1 : customer id(Cust)); rmode(1 : (customer(+Cust; T id));rmode(1 : rmode(1 : tr(+T id; itemtype1)); rmode(1 : tr(+T id; itemtype2));. . .rmode(1 : order(+T id1;+T id2)))Candidate generation. Although the patterns are more general than simpleitemsets, and the subset relation is not appropriate for structuring the space ofsequential patterns, a similar and e�ciently computable specialization relationstill exists [53].Candidate evaluation in the GSP algorithm for mining sequential patterns [55]adapts the hash-tree structure of [3] to e�ciently reduce the number of candidatesthat have to be checked in a sequence of itemsets. However, in the check-phaseitself, backtracking over transactions in the sequence cannot be avoided, cf. the\backward phase" in GSP.In the loading phase, one sequence of transactions rK is read at a time.3.6 Episode discoveryAs argued in Section 2.6.1, parallel episodes can be transformed e�ciently tosimple itemsets in a preprocessing step. Therefore the observations made inSection 3.3 also hold here. As described in [39], additional e�ciency is obtainedvia an incremental candidate evaluation technique. This technique is based on theobservation that subsequent windows (or transactions, in itemset terminology)are similar to each other. We now consider the case of general episodes.Language bias. To have Warmr discover general episodes as de�ned in De�-nition 7, the following rmode speci�cations have to be provided (recall a + signdenotes an input variable):rmode(1 : window id(Wid)),rmode(1 : window(+Wid; T id)); rmode(1 : unaryi(+Vj)),rmode(1 : tr(+T id; I; V1; : : : ; Vn)); rmode(1 : binaryi(+Vj ;+Wj))Candidate generation. The task of discovering episodes can for a large partbe transformed to �nding frequent sets, plus taking the order into account. Thespecialization relation between totally or trivially ordered patterns is easy to com-pute, and almost exactly same candidate generation methods can be used as forfrequent sets [39, Algorithm 3]. For general episodes however the task is moredi�cult.Candidate evaluation. In the candidate testing for episodes, advantage can betaken from the overlapping contents of successive window positions. Additionally,the queue structure of the window contents can also be utilized. The idea is tostore full and partial bindings of variables so that minimal updates are necessary14

IS IH SP PE GE WarmrIncremental candidate evaluation + +Subset relation between item types only + +All backtracking suppressed + + +Bindings can be stored + + + + +Levelwise search + + + + + +Table 2: Dimensions of pattern discovery algorithms. Legend: IS = itemsets,IH = itemsets with item hierarchies, SP = sequential patterns, PE = parallelepisodes, GE = general episodes.when the window slides. For the simple cases of one item per transaction andno attributes there are very e�cient special solutions [11, 39], where an explicitrepresentation of bindings is not necessary. The methods can be extended forthe binary predicates, but the growth in the number of di�erent atoms prob-ably means that (1) less e�cient indexing techniques have to be used and that(2) there is less shared information between candidate patterns to take advantageof. For relations with multiple item variables or shared variables, partial bindingcombinations may need to be stored | and this can require too much space andtime to be useful.Loading rK is done incrementally as the window slides: the transactions leav-ing the window to the left are retracted from rK , and those entering the windowto the right are added to rK.3.7 Dimensions of the pattern discovery algorithmsWe conclude, as we did with the section on task descriptions, with a summaryin Table 2 of dimensions that characterize and relate the di�erent pattern discov-ery algorithms. A plus in a cell here denotes the specialised algorithm exploitsor uses the feature in the �rst column.The relevant { though not very surprising { observation here is that Table 2is roughly complementary with Table 1: settings with many plusses in one tabletend have few plusses in the other. Thus, the combination of these two tablesprovides a fairly balanced picture of the well known trade-o� between expressivityand e�ciency in the context of association rule mining. It also demonstrates thereis no dichotomy item sets - queries (Apriori-Warmr), but rather a gradualchange in the trade-o� between expressivity and e�ciency, with a number of\intermediate" problems that have received considerable attention. Finally, thetwo tables provide a blueprint for a single integrated system that uses Table 1to determine the minimal level of expressivity required and Table 2 to �re themaximally e�cient algorithm available within that setting. In such a system,Warmr would be the \catch-all" method.15

In the next section we point at some unexplored settings for frequent patterndiscovery and proposeWarmr as a �rst, but not necessarily ultimate approach.4 New instances of frequent query discoveryWe �rst present two instances of frequent query discovery that have not beenaddressed before: one obvious \gap" in Table 1, and one more complex settingwhich requires an extra row in that table. For both settings we show how theycan be handled with Warmr. To conclude, we propose the ILP approach as abenchmark method for these and other unexplored variants of frequent patterndiscovery.4.1 Many items per transaction, with propertiesReconsider Table 1, and notice both the features \many items per transaction"and \item or transaction attributes" have been addressed in isolation, but neverin combination. In fact, settings where these features are addressed in isolationcan be mapped: a set of facts ftr(tid,i1) ;. . . ;tr(tid,in) g maps to a singletonftr(tid,i1,. . . ,in) g. However, when a database combines both features, a map-ping to one of the existing problems does not seem to be possible without loss ofinformation.Imagine, for instance, a database with facts tr(tid,itemtype,size,promoted) that denote for each item in the transaction: the size of the package, and whetheror not the item is in promotion. A sample of such a database is shown below 2.tr(1,beer,sixpack,no) tr(2,beer,crate,yes) tr(1,chips,familysize,yes) tr(2,chips,box,no)Let us now look at two possible strategies for transforming this setting to item-sets. First, one could blow up the number of itemtypes and introduce an itemitemtype size promoted for all combinations that occur. A �rst objection to thissolution is that, especially with a high number of (many-valued) properties, thistransformation will result in an exponential number of infrequent items. More-over, even if this transformation is practicable, it would disallow the discovery offrequent combinations of the original item types.As as second attempt we could add the individual properties as extra item-types, as is done with item hierarchies and in [31]. This, indeed, allows thediscovery of patterns such as?- tr(Tid,sixpack),tr(Tid,promoted),tr(Tid,chips),2Notice this setting has some similarity with the \multiple-instance problem" known fromattribute-value learning [21]. 16

\sixpacks, promoted things and chips". However, we lose the facility to discoversomething about combinations of properties, such as \promoted things in six-packs": properties sixpack and promoted are tested independently and cannotbe linked to the same itemtype.To summarize the problem, we would like itemtypes and their properties tooccur both in isolation, and in any combination, e.g.?- tr(Tid,beer,sixpack,yes),tr(Tid,chips,familysize,P),tr(Tid,pampers,S,Q),\promoted beer in a six pack, chips in a family sized package, and pampers".WithWarmr similar rules could be discovered by choosing the language biasessentially as follows:rmode(1 : tr id(T id)); rmode(1 : tr(+T id; I; S; P));rmode(1 : eq(+I; beer)); rmode(1 : eq(+I; chips)); : : :rmode(1 : eq(+S; sixpack)); rmode(1 : eq(+S; familysize)); : : :rmode(1 : eq(+P; yes)); rmode(1 : eq(+P; no))where eq is an equality test. This bias could be easily extended to handle the casewhere a transaction as a whole may have properties in addition to the propertiesof items. In the supermarket domain, the properties of transaction may containinformation about the context of shopping | such as the time or the location| about the customer, or aggregate information about the basket | such as thetotal value or the number of items in the basket. The task is to �nd frequentpatterns of item and transaction properties, such as?- tr(Tid,cigarettes),paid with(Tid,cash),\baskets containing cigarettes and paid in cash", or?- cust age(Tid,senior),tr(Tid, I, S, promoted),\senior customers going for bargains". To �nd these two rules with Warmr, weonly have to addrmode(1 : paid with(+T id; cash)); rmode(1 : paid with(+T id; credit card)); : : :rmode(1 : cust age(+T id; junior)); rmode(1 : cust age(+T id; senior)); : : :to the language bias.4.2 Related item properties and background knowledgeWe also consider a case which can no longer be described as a combination ofdimensions of Table 1. This setting is characterised by the presence of arbitraryrelations between item properties and arbitrary background knowledge.For an example, we can slightly modify one of the patterns shown in theprevious paragraph: 17

?- tr(Tid,beer,sixpack,yes),tr(Tid,chips,S,P),tr(Tid,pampers,S,Q),\promoted beer in a six pack, and chips and pampers in the same type of pack-age". Notice the S variable shared between the chips and the pampers items.And �nally, an example with arbitrary background knowledge:?- tr(Tid,beer),customer(Tid,C),employee(Tid,E),sister(E,C)\beer bought by a sister of one of the employees present at that time in the shop".The �rst rule can be found if Warmr's bias is extended with:rmode(1 : tr(+T id; I;+S; P));the second rule can be found withrmode(1 : tr id(T id)),rmode(1 : tr(+T id; beer); rmode(1 : tr(+T id; chips); : : :rmode(1 : customer(+T id;N)); rmode(1 : employee(+T id;N));rmode(1 : sister(+N1;+N2); rmode(1 : uncle(+N1;+N2)); : : :as language bias speci�cations.4.3 ILP as a benchmark approachIt is not inconceivable that for the two settings above, and for any other settingaddressed with Warmr, specialised algorithms can be developed that will out-performWarmr by several orders of magnitude, as is the case with the existingalgorithms we discussed in Section 3. However, a generic tool such as Warmrcould be complementary with these specialised algorithms and would o�er severaladvantages both to users and developers.To the usersWarmr o�ers mainly two types of
exibility. First, the user canjump from one setting to another with just minor changes to the language bias.Individual pattern types that turn out to be of particular interest can then bemined in a second stage with specialised algorithms. An additional danger withusing a specialised algorithm as a �rst approach is that any information whichcannot be used within this method is bound to be ignored or even cut away in apreprocessing step, as illustrated in Section 4.1.A second type of
exibility comes with the possibility to add backgroundknowledge. Background knowledge has at least two functions in the process ofknowledge discovery in databases: it can be used to (1) add information in theform of general rules, but also (2) to change with minor e�ort the view on thedata, without going through the typically laborious preprocessing of the rawdata themselves. Again, once the experiments converge on some speci�c setting,e�ciency can be cranked up by reorganisation of the data into some very speci�cformat. 18

On the other hand, for the developers of specialised algorithms Warmr canfunction as a benchmark, and as a veri�cation/validation method: the special al-gorithm should run signi�cantly faster, and produce the same output. In the nextsection on experiments, we present some preliminary indications of Warmr'sperformance.5 Experiments: alarm analysis with WarmrIn this section we present experimental results with Warmr in the task of fre-quent query discovery. We explore some cases where previous data mining toolsare not expressive enough, and consider the use of ILP as an exploration andbenchmark technique for the possible development of specialized data miningtools.For the experiments we run a prototypical implementation of Warmr, writ-ten in MastersProLog, on a Sun Ultra 2 m1170. In general, the subsequentdatabases rk are loaded from an Oracle7TM database. MastersProLog hasbeen connected to this relational database to obtain full Datalog facilities.In [20], for instance, an experiment is discussed where the database contains a3-million word tagged corpus of Wall Street Journal news paper articles, andsubsequent sentences are loaded, and parsed, one by one. For the current experi-ments with alarm analysis however, the whole database �ts in main memory andis loaded once from a
at �le.5.1 Example applicationThe experimental data originates from a fault management database of a mobilecommunication network. The problem of discovering recurrent combinations ofalarms from such databases has been considered in [24, 27, 31, 39]. Closely relateddata mining problems have been considered, e.g., in [6, 22, 41, 46, 50, 55, 47, 59].The dataset consists of a sequence of 46662 alarms omitted by the networkelements such as base stations and transmission devices during a period of onemonth. The time granularity of the data is one second. The average frequency ofalarms is approximately 1500 alarms/day, or 1 alarm/minute, but since alarmstend to occur in bursts, the busiest second contains 50 alarms.There are 180 di�erent alarm types, which can be further classi�ed into 10overlapping classes. Each instance of an alarm has one of 4 urgency levels. Thealarms in the dataset have been received from 2012 network management objectsof 9 di�erent types. These objects represent units of di�erent granularities, andthey form a containment hierarchy. This hierarchy gives essential informationabout the nature of the relationships of the objects.The discovery task we consider is to �nd those combinations of alarms that arefrequent. This problem is the one considered in episode discovery, but here, to the19

best of our knowledge, we implement a much more expressive variation than hasbeen done before. We consider alarms with di�erent combinations of properties,and we also consider cases where the alarms are connected, e.g., in the objecthierarchy or in some other way. We cannot see any way of transforming this taskto episode or sequential pattern discovery task without losing information.5.2 Warmr inputsDatabase and background knowledge. Following are some of the most im-portant predicates used to represent the alarm data. The most obvious ones, suchas alarmtype(alarm, alarmtype) , relate each alarm to an occurrence time, analarm type, several alarm classes, etc. A background clause with the head pre-cedes(alarm1, alarm2) allows temporal order tests between alarms alarm1 andalarm2. Some new clauses are de�ned in the background knowledge based on theoccurrence time, to add potentially useful information such as o�cehour(alarm).In a similar manner, the database contains clauses sender(alarm, object) that indicate the sender of each alarm; background knowledge includes clausesthat derive predicates such as ancestor(object, ancestor), sibling(object1, object2),and same object(objecttype, alarm1, alarm2). The last one tells whether alarmsalarm1 and alarm2 were sent from within a same object of type objecttype.Finally, to represent and de�ne windowing, we speci�ed in the backgroundknowledge a clause that derives in window(alarm1, interval, alarm2) if alarm2occurs within time interval from alarm1. In the experiments we considered win-dows of width 120 seconds that start from an alarm.Language bias. The most extensive language bias used in the experimentslooks essentially as follows (we only show rmodes, not the typing information,and lookahead and constraint speci�cations):rmode(1 : window(W));rmode(1 : in window(+W; 120; A)); rmode(1 : precedes(+A;+B);rmode(1 : o�cehour(+A)); rmode(1 : weekend(+A));rmode(1 : weekday(+A;mon)); rmode(1 : weekday(+A; tue)); : : :rmode(1 : urgency(+A; 1)); rmode(1 : urgency(+A; 2)); : : :rmode(1 : alarm type(+A; 1001)); rmode(1 : alarm type(+A; 2270)); : : :rmode(1 : alarm class(+A; switch)); rmode(1 : alarm class(+A; trans)); : : :rmode(1 : sender element(+A; 95)); rmode(1 : sender element(+A;96)); : : :rmode(1 : same alarmtype(+A;+B)); rmode(1 : same class(+A;+B));rmode(1 : same sender(+A;+B)); rmode(1 : same urgency(+A;+B));rmode(1 : sender(+A;Obj)); rmode(1 : same objecttype(+Obj1;+Obj2));rmode(1 : object type(+Obj; bcf)); rmode(1 : object type(+Obj; trx)); : : :rmode(1 : ancestor(+Obj1;+Obj2)); rmode(1 : sibling(+Obj1;+Obj2)); : : :20

5.3 Results and discussionQuality of queries The �rst criterion for success in data mining is that some-thing useful is found. The frequent queries that were discovered show patternsthat are more informative than the ones discovered with episodes, and episodeshave been found useful in the alarm analysis task [31]. We thus expect the newqueries to be even more useful; this will be con�rmed by an expert evaluation ofthe patterns.A speci�c task we considered was to describe the windows following alarmsof a speci�c alarm type. Problems reported by this alarm are di�cult to track;here the goal is to discover patterns of alarms from related objects that mighthelp in explaining the important alarms. We present one of the patterns, in amore informative association rule format:window(A),in window(A,120,B),alarm class(B,bsc message)) (f:0.15,c:0.77)in window(A,120,C),alarm class(C,trans),same urgency(A,C),same urgency(C,B)i.e. with 77% con�dence, and 15% frequency: \if a window contains an alarm ofclass bsc-message then it will also contain an alarm of class trans such that allalarms referred to will have the same urgency".In a more general setting, where the window could start on alarms of anytype, the following pattern was discovered:window(A),in window(A,B),sender(B,O),objecttype(O,bcf),ancestor(O,P),objecttype(P,bsc),in window(A,D),alarm class(D,bst message)) (f:0.27,c:0.68)precedes(B,D),urgency(B,2),alarm class(B,bst message)i.e. with 68%con�dence, and 27% frequency: \if there is in the window an alarmsent by an object of type bcf, and an ancestor of that object is of type bsc, andthere is also an alarm of class bst message, then the window will also contain twoalarms of that kind where the �rst (the one with the bsc ancestor) precedes thesecond (the one with the bst message) and moreover where the �rst has urgency2 and class bst message".Performance In order to make the role and complexity of the task clear, con-sider the following increasingly complex cases. Table 3 contains the results ofsome �rst experiments with Warmr on the full dataset, for cases 1, 2, and 4.� case 1 Data: just single items with attributes. Patterns: frequent setsof attribute-values pairs. This task can be transformed to the discovery offrequent sets (each attribute-value pair is an item).21

case 1 (F=0.1) case 2 (F=0.25) case 4 (F=0.25)L CGT CET NOC NOFS CGT CET NOC NOFS CGT CET NOC NOFS1 1 50 215 22 1 156 249 13 1 167 267 182 14 63 190 19 180 7828 1543 19 24 1433 238 383 19 1689 8 6 390 1190 18 15 112 6113 170 674 4 502 1 1 420 399 8 7 336 16897 233 1145 0 0 0 0 235 349 1 1 904 103221 286 1596 0 0 0 0 34 0 0 0 1983 90162 271 225Table 3: Results of three runs with Warmr on alarm analysis. Legend: F =frequency threshold, L = level, CGT = candidate generation time (CPUs), CET= candidate evaluation time (CPUs), NOC = number of candidates, NOFS =number of frequent sets.� case 2 Data: several items (or events or transactions) each with attributes.Patterns: frequent collections of sets of attribute-value pairs. This task canbe transformed to the discovery of sequential patterns.� case 3 Data: as above. Patterns: as above, but with binary predicatesconnecting several items. This case cannot be transformed to any sensibleform without losing information. This task can lead to a combinatorialexplosion (except when the binary predicates only set a total order on theitems, which can be handled e�ciently).� case 4 Data: as above, but several transactions each with several items.Patterns: as above, but also connecting items to transactions and transac-tions to each other. Another explosion is possible.Discussion. There is an increase in complexity from case 3 onwards in casethere are many alarms in a window, as can be seen in ther results for case 4 Ta-ble 3: evaluation of candidates at level 5 takes 103221 CPUs (28h). At that levelqueries are evaluated with up to twelve atoms, of which up to three in window/3atoms, and two precedes/2 atoms. Evaluation of such queries can take a lot oftime, due to backtracking over all alarms in the window in case the query doesnot succeed immediately. Windows with few alarms are still processed e�ciently,but in windows with bursts of several hundreds of alarms, evaluation can takeup 10 mins and more. This is an example of the combinatorial explosion whenthere are relations with several alarm (item) variables or shared variables betweenalarms. Some clever incremental method for processing the windows could help,at least in speci�c situations such as a total order.The problem could also be alleviated by reorganizing and rewriting thequeries such that fruitless backtracking is prevented (as already suggested in22

Section 3.2.4). In the current version of Warmr all queries are tested in a serialfashion, addition of query optimization techniques is planned for the near future.6 Discussion and Related workWe here touch upon some related work. We restrict ourselves to research notexplicitly addressed elsewhere in the paper. For an overview of ILP work in thecontext of knowledge discovery in databases, we refer to [23].6.1 Logical paradigm: learning from interpretationsThe de�nition of frequent query discovery and the (relatively) e�cient candidateevaluation in Warmr is rooted in the learning from interpretations paradigm,introduced by De Raedt and D�zeroski [17] and related to other inductive logicprogramming settings in [13]. Indeed, the rK's, described in Section 3.2.4 aspartitions of the database, can be formalized in �rst order logic as Herbrandinterpretations. Every rK in which a query succeeds is then a Herbrand model ofthat query.The learning from interpretations paradigm has proven to be particularlysuitable for the design of upgrades to popular attribute-value learning techniques.In that respect, Apriori - Warmr is only one of the more recent additions toa sequence of similar upgrades [15]: (Explora [32])-Claudien [16], CN2 [10]-ICL [18], C4.5 [49]-Tilde [8], and [33]-C0.5 [14].6.2 Clausal discoveryAssociation rules A1^ : : :^Ak) Ak+1 ^ : : :^An, as introduced in Section 3.1.2,can easily be confused with a clauses A1 ^ : : : ^ Ak ! Ak+1 _ : : : _ An: bothare interpreted as if-then rules with atoms Ai. We �rst clarify the relation be-tween both formats, and then relate Warmr to clausal discovery engines. Forthe �rst part we will take the example of Claudien [16], because (1) it is theonly algorithm to discover also non-de�nite clauses, and (2) its notions of con�-dence and frequency are close to our de�nitions of these concepts for associationrules. In both formats we will refer to A1; : : : ; Ak as the body of the rule and toAk+1; : : : ; An as the head.Let us start from a clause c. To test whether clause c is true w.r.t. a databaserK, we can submit a query ?- body(c),not(head(c)) to rK. Roughly speaking,if the query fails, the clause is true and is said to hold in r, otherwise, if thequery succeeds, the clause is false and does not hold. We can then de�ne thecon�dence of c as the conditional probability that the whole clause is true, giventhat body(c) is true, cf. global accuracy in [16].23

Let us also consider an association rule a. The con�dence of this rule is de�nedas conditional probability that body(a)^head(a) is true given that body(a) is true.If we write both conditional probabilities as ratio's, we have in both cases thethe probability that the body is true in the denominator. Now let us assumebody(a) = body(c) = body, focus on the nominator, and write quanti�cationexplicitly. In the case of clauses, we have joint probability p(9body^8(head(c) body))). In the case of association rules, we have joint probability p(9body ^9(body ^ head(a))). Since 9body is a generalisation of 9(body ^ head(a)), we canreduce the latter probability to p(9(body ^ head(a))).Let us �nally verify under which circumstancesp(9body ^ 8(head(c) body)) = p(9body ^ head(a))holds. Under these circumstances the con�dence of a and c is identical and we cansafely confuse them. We can reformulate the equation above as an equivalence9body ^ 8(head(c) body), 9(body ^ head(a))and �rst look at the case where head(c) and head(a) contain the same atoms.An immediate observation is that the equivalence cannot hold if the heads con-tain more than one atom. Recall head(c) is de�ned as a disjunction of atoms,whereas head(a) is a conjunction of atoms. So let us now consider the case wherehead(c) = head(a) = head atom. Notice the equivalence relation then holds ifbody can succeed at most once, i.e. is deterministic. This is the case for instance ifbody is a purely propositional formula. With a deterministic body, we can switchbetween universal quanti�cation and existential quanti�cation in the equivalenceabove, and rewrite it as:9body ^ 9(head atom body), 9(body ^ head atom)which holds.There is however a more general, indirect way to map the con�dence of clausesand association rules. Assume head(a) = :head(c), so that we have9body ^ 8(head(c) body)9(body ^ :head(c))These two formulae are both false if body fails, but otherwise they are contradic-tory. From this, and from our de�nitions of con�dence conf, we can derive thatconf (c) = 1 � conf (a).So we can conclude that, with the global accuracy con�dence measure ofClaudien, association rules a can be mapped to clauses c if1. they have the same deterministic body and an identical single atom in thehead: in that case conf (a) = conf (c)24

2. they have the same body, and the head of the one equals the negation ofthe head of the other: in that case conf (a) = 1� conf (c).The discovery of clauses is handled for instance by Knowledge Miner [52],Claudien [16], Midos [61], RDT [30], Mobal [35], OCD [60], and Progolin learning from positives only mode [43]. We now consider the key di�erencesbetween these algorithms and Warmr. First, Warmr is the �rst ILP systemto employ the e�cient levelwise search method, and mine frequent queries. Forlevelwise search, a quality criterion is required that is monotone with respect tothe specialisation relation, cf. [38]. Warmr searches a space of queries, wherefrequency is such a monotone quality criterion. Traditional clausal discoveryengines such as Claudien search a space of clauses, where neither con�dencenor frequency has the desired properties. However, these engines mostly have anany-time character, and incorporate heuristics to direct the search immediatelyto regions where highly con�dent, and frequent rules can be expected. In thatsense clausal discovery engines are complimentary to Warmr, which performsan exhaustive search for frequent queries, and only in a post-processing step candiscover rules that meet both the frequency and the con�dence standards set bythe user.An additional advantage with frequent query discovery is that e�cient sam-pling methods for mining association rules, such as those described in [57], arelikely to carry over directly to the ILP setting.6.3 Association rules with numerical intervalsSome extra complexity arises if items or transactions have numerical properties,and queries in L contain atoms that test numerical intervals. Solutions to some ofthe problems have been proposed, in the context of association rules, in [54, 62].Both concentrate on heuristics for �nding suitable intervals ([54]) or 2D areas([62]) of numerical attributes for association rules.6.4 Future workWe brie
y summarize some directions to pursue the research on frequent querydiscovery. First, an e�cient general method should be developed for query re-organisation to minimize backtracking. Second, based on Table 1 and Table 2,a user-friendly generic system could be developed that automatically selects themost e�cient algorithm available. This could be done on the basis of an analysisof the user inputs, i.e. the database and the language bias. Fourth, Table 1uncovers a number of \gaps" that could be �lled with some very useful special-ized algorithms. Fifth, many optimizations and techniques for mining and post-processing frequent patterns and association rules have been proposed. Some25

of these, such as the sampling techniques described in [57], could probably beplugged intoWarmr without much e�ort.7 ConclusionsWe have presented a unifying ILP approach to frequent pattern discovery and,by extension, to association rule discovery. The new task of frequent query dis-covery has been de�ned and some of the popular frequent pattern tasks havebeen reformulated as instantiations of frequent query discovery. In doing that, anumber of dimensions of the practice of frequent pattern discovery have emerged,cf. Table 1.In a second part, we have introduced the frequent query discovery engineWarmr and repeated the exercise of the �rst part on the level of algorithms.This has resulted in a second table with algorithmic dimensions, cf. Table 2,that, together with the �rst table, sheds some new light on the expressivity-for-e�ciency trade o�.In the remaining sections, we have considered the application of Warmr tosome new frequent pattern discovery tasks, and to the \real-world" problem oftelecommunication alarm sequence analysis. The main motivation behind thesesections was to position Warmr as a
exible \catch-all" tool that can be usedboth by users and developers as a �rst approach to a new task. In that spirit,a stand alone version of Warmr is freely available for academic purposes uponrequest to Luc Dehaspe.AcknowledgementsThe authors of this paper are listed in alphabetic order. Luc Dehaspe is supportedby ESPRIT Long Term Research Project No 20237, ILP2. Hannu Toivonen issupported by the Academy of Finland. This paper was conceived while HannuToivonen was visiting the Department of Computer Science, Katholieke Univer-siteit Leuven.The authors are grateful to Luc De Raedt for comments on the paper, andfor many fundamental ideas and discussions, to Hendrik Blockeel, Bart Demoen,and Wim Van Laer for their share in the implementation of Warmr. Data forthe telecommunication alarm sequence analysis experiments is provided by JukaLeino from Nokia Telecommunications.References[1] H. Ad�e, L. De Raedt, and M. Bruynooghe. Declarative Bias for Speci�c-To-General ILP Systems. Machine Learning, 1995. To appear.26

[2] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules betweensets of items in large databases. In P. Buneman and S. Jajodia, editors,Proceedings of ACM SIGMOD Conference on Management of Data (SIG-MOD'93), pages 207 { 216, Washington, D.C., USA, May 1993. ACM.[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fastdiscovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro,P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discoveryand Data Mining, pages 307 { 328. AAAI Press, Menlo Park, CA, 1996.[4] R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedingsof the Eleventh International Conference on Data Engineering (ICDE'95),pages 3 { 14, Taipei, Taiwan, Mar. 1995.[5] F. Bergadano and D. Gunetti, editors. `Inductive Logic Programming: fromMachine Learning to Software Engineering. The MIT Press, 1995.[6] C. Bettini, X. S. Wang, and S. Jajodia. Testing complex temporal relation-ships involving multiple granularities and its application to data mining. InProceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposiumon Principles of Database Systems (PODS'96), pages 68 { 78, Montreal,Canada, June 1996.[7] H. Blockeel and L. De Raedt. Relational knowledge discovery in databases.In Proceedings of the 6th International Workshop on Inductive Logic Pro-gramming, volume 1314 of Lecture Notes in Arti�cial Intelligence, pages199{212. Springer-Verlag, 1996.[8] H. Blockeel and L. De Raedt. Top-down induction of logical decision trees. InProceedings of the Ninth Dutch Conference on Arti�cial Intelligence (NAIC-97), 1997.[9] H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling up inductivelogic programming. Submitted, 1998.[10] P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261{284, 1989.[11] G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. K�arkk�ainen.Episode matching. In Proceedings of the 8th Annual Symposium on Com-binatorial Pattern Matching (CPM '97), pages 12 { 27, Aarhus, Denmark,June 1997.[12] L. De Raedt, editor. Advances in Inductive Logic Programming, volume 32of Frontiers in Arti�cial Intelligence and Applications. IOS Press, 1996.27

[13] L. De Raedt. Induction in logic. In R. Michalski and W. J., editors, Pro-ceedings of the 3rd International Workshop on Multistrategy Learning, pages29{38, 1996.[14] L. De Raedt and H. Blockeel. Using logical decision trees for clustering. InProceedings of the 7th International Workshop on Inductive Logic Program-ming, volume 1297 of Lecture Notes in Arti�cial Intelligence, pages 133{141.Springer-Verlag, 1997.[15] L. De Raedt, H. Blockeel, L. Dehaspe, and W. Van Laer. Three companionsfor �rst order data mining. In N. Lavra�c and S. D�zeroski, editors, InductiveLogic Programming for Knowledge Discovery in Databases, Lecture Notes inArti�cial Intelligence. Springer-Verlag, 1998. To appear.[16] L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99{146, 1997.[17] L. De Raedt and S. D�zeroski. First order jk-clausal theories are PAC-learnable. Arti�cial Intelligence, 70:375{392, 1994.[18] L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings ofthe 5th Workshop on Algorithmic Learning Theory, volume 997 of LectureNotes in Arti�cial Intelligence. Springer-Verlag, 1995.[19] L. Dehaspe and L. De Raedt. DLAB: A declarative language bias formal-ism. In Proceedings of the International Symposium on Methodologies forIntelligent Systems (ISMIS96), volume 1079 of Lecture Notes in Arti�cialIntelligence, pages 613{622. Springer-Verlag, 1996.[20] L. Dehaspe and L. De Raedt. Mining association rules in multiple rela-tions. In Proceedings of the 7th International Workshop on Inductive LogicProgramming, volume 1297 of Lecture Notes in Arti�cial Intelligence, pages125{132. Springer-Verlag, 1997.[21] T. G. Dietterich, R. H. Lathrop, and T. Lozano-P�erez. Solving the multiple-instance problem with axis-parallel rectangles. Arti�cial Intelligence, 89(1-2):31{71, 1997.[22] C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition: Represen-tation and algorithms. In Proceedings of the Thirteenth International JointConference on Arti�cial Intelligence (IJCAI-93), pages 166 { 172, Cham-bery, France, Aug. 1993.[23] S. D�zeroski. Inductive logic programming and knowledge discovery indatabases. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages118{152. The MIT Press, 1996. 28

[24] R. M. Goodman and H. Latin. Automated knowledge acquisition from net-work management databases. In I. Krishnan and W. Zimmer, editors, Inte-grated Network Management, II, pages 541 { 549. Elsevier Science PublishersB.V (North-Holland), Amsterdam, The Netherlands, 1991.[25] D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining, hy-pergraph transversals, and machine learning. In Proceedings of the SixteenthACM SIGACT-SIGMOD-SIGART Symposium on Principles of DatabaseSystems (PODS'97), pages 209 { 216, Tucson, Arizona, 1997. ACM.[26] J. Han and Y. Fu. Discovery of multiple-level association rules from largedatabases. In Proceedings of the 21st International Conference on Very LargeData Bases (VLDB'95), pages 420 { 431, Z�urich, Switzerland, 1995.[27] K. H�at�onen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivo-nen. Knowledge discovery from telecommunication network alarm databases.In Proceedings of the 12th International Conference on Data Engineering(ICDE'96), pages 115 { 122, New Orleans, Louisiana, Feb. 1996. IEEE Com-puter Society Press.[28] M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A perspective ondatabases and data mining. In Proceedings of the First International Confer-ence on Knowledge Discovery and Data Mining (KDD'95), pages 150 { 155,Montreal, Canada, Aug. 1995. AAAI Press.[29] J. Kietz and M. L�ubbe. An e�cient subsumption algorithm for inductivelogic programming. In Proceedings of the 11th International Conference onMachine Learning. Morgan Kaufmann, 1994.[30] J.-U. Kietz and S. Wrobel. Controlling the complexity of learning in logicthrough syntactic and task-oriented models. In S. Muggleton, editor, Induc-tive logic programming, pages 335{359. Academic Press, 1992.[31] M. Klemettinen, H. Mannila, and H. Toivonen. Rule discovery in telecom-munication alarm data. Journal of Network and Systems Management,June/July 1998.[32] W. Kl�osgen. Explora: A multipattern and multistrategy discovery assistant.In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,Advances in Knowledge Discovery and Data Mining. The MIT Press, 1996.[33] P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.[34] N. Lavra�c and S. D�zeroski. Inductive Logic Programming: Techniques andApplications. Ellis Horwood, 1994.29

[35] G. Lindner and K. Morik. Coupling a relational learning algorithm with adatabase system. In Y. Kodrato�, G. Nakhaeizadeh, and G. Taylor, editors,Proceedings of the MLnet Familiarization Workshop on Statistics, MachineLearning and Knowledge Discovery in Databases, Heraklion, Crete, Greece,1995.[36] H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach to datamining. In Proceedings of the 21st International Conference on Very LargeData Bases (VLDB'95), pages 478 { 489, Z�urich, Switzerland, 1995.[37] H. Mannila and H. Toivonen. Discovering generalized episodes using mini-mal occurrences. In Proceedings of the Second International Conference onKnowledge Discovery and Data Mining (KDD'96), pages 146 { 151, Port-land, Oregon, Aug. 1996. AAAI Press.[38] H. Mannila and H. Toivonen. Levelwise search and borders of theories inknowledge discovery. Data Mining and Knowledge Discovery, 1(3):241 { 258,1997.[39] H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodesin event sequences. Data Mining and Knowledge Discovery, 1(3):259 { 289,1997.[40] T. Mitchell. Generalization as search. Arti�cial Intelligence, 18:203{226,1982.[41] R. A. Morris, L. Khatib, and G. Ligozat. Generating scenarios from speci�-cations of repeating events. In Second International Workshop on TemporalRepresentation and Reasoning (TIME-95), Melbourne Beach, Florida, Apr.1995.[42] S. Muggleton. Inverse entailment and progol. New Generation Computing,13, 1995.[43] S. Muggleton. Learning from positive data. In S. Muggleton, editor, Pro-ceedings of the 6th International Workshop on Inductive Logic Programming,pages 225{244. Stockholm University, Royal Institute of Technology, 1996.[44] S. Muggleton and L. De Raedt. Inductive logic programming : Theory andmethods. Journal of Logic Programming, 19,20:629{679, 1994.[45] C. N�edellec, H. Ad�e, F. Bergadano, and B. Tausend. Declarative bias inILP. In L. De Raedt, editor, Advances in Inductive Logic Programming,volume 32 of Frontiers in Arti�cial Intelligence and Applications, pages 82{103. IOS Press, 1996. 30

[46] T. Oates and P. R. Cohen. Searching for structure in multiple streams ofdata. In Proceedings of the Thirteenth International Conference on MachineLearning (ICML'96), pages 346 { 354, San Francisco, CA, July 1996. MorganKaufmann.[47] B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases:A temporal logic approach. In Proceedings of the Second International Con-ference on Knowledge Discovery and Data Mining (KDD'96), pages 351{354,1996.[48] G. Plotkin. A note on inductive generalization. In Machine Intelligence,volume 5, pages 153{163. Edinburgh University Press, 1970.[49] J. Quinlan. Induction of decision trees. Machine Learning, 1:81{106, 1986.[50] R. Sasisekharan, V. Seshadri, and S. M. Weiss. Data mining and forecastingin large-scale telecommunication networks. IEEE Expert, Intelligent Systems& Their Applications, 11(1):37 { 43, 1996.[51] A. Savasere, E. Omiecinski, and S. Navathe. An e�cient algorithm for miningassociation rules in large databases. In Proceedings of the 21st InternationalConference on Very Large Data Bases (VLDB'95), pages 432 { 444, Z�urich,Switzerland, 1995.[52] W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for datamining. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,editors, Advances in Knowledge Discovery and Data Mining, pages 375{398.The MIT Press, 1996.[53] R. Srikant and R. Agrawal. Mining generalized association rules. In U. Dayal,P. M. D. Gray, and S. Nishio, editors, Proceedings of the 21st InternationalConference on Very Large Data Bases (VLDB'95), pages 407 { 419, Z�urich,Switzerland, 1995. Morgan Kaufmann.[54] R. Srikant and R. Agrawal. Mining quantitative association rules in largerelational tables. In Proceedings of ACM SIGMOD Conference on Manage-ment of Data (SIGMOD'96), pages 1 { 12, Montreal, Canada, 1996.[55] R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations andperformance improvements. In Advances in Database Technology|5th Inter-national Conference on Extending Database Technology (EDBT'96), pages3 { 17, Avignon, France, 1996.[56] R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with itemconstraints. In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy,editors, Proceedings of the Third International Conference on KnowledgeDiscovery and Data Mining (KDD'97), pages 67 { 73. AAAI Press, 1997.31

[57] H. Toivonen. Sampling large databases for association rules. In Proceedingsof the 22nd International Conference on Very Large Data Bases (VLDB'96),pages 134 { 145, Mumbay, India, Sept. 1996. Morgan Kaufmann.[58] J. D. Ullman. Principles of Database and Knowledge-Base Systems, vol-ume I. Computer Science Press, Rockville, MD, 1988.[59] J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, andK. Zhang. Combinatorial pattern discovery for scienti�c data: Some pre-liminary results. In R. Snodgrass and M. Winslett, editors, Proceedings ofACM SIGMOD Conference on Management of Data (SIGMOD'94), pages115 { 125, Minneapolis, MI, June 1994. ACM.[60] I. Weber. Discovery of �rst-order regularities in a relational database us-ing o�ine candidate determination. In Proceedings of the 7th InternationalWorkshop on Inductive Logic Programming, volume 1297 of Lecture Notesin Arti�cial Intelligence, pages 288{295. Springer-Verlag, 1997.[61] S. Wrobel. An algorithm for multi-relational discovery of subgroups. InJ. Komorowski and J. Zytkow, editors, Proceedings of the First EuropeanSymposium on Principles of Data Mining and Knowledge Discovery (PKDD'97), pages 78 { 87. Springer-Verlag, 1997.[62] K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Com-puting optimized rectilinear regions for association rules. In D. Heckerman,H. Mannila, D. Pregibon, and R. Uthurusamy, editors, Proceedings of theThird International Conference on Knowledge Discovery and Data Mining(KDD'97), pages 96 { 103. AAAI Press, 1997.
32

