Frequent query discovery: a unifying
ILP approach to association rule mining

Luc Dehaspe and Hannu Towonen

Report CW 258, March 2, 1998

Katholieke Universiteit Leuven
Department of Computer Science

Celestijnenlaan 200A — B-3001 Heverlee (Belgium)




Frequent query discovery: a unifying
ILP approach to association rule mining

Luc Dehaspe* and Hannu Toiwonent

Report CW 258, March 2, 1998

Department of Computer Science, K.U.Leuven

Abstract

Discovery of frequent patterns has been studied in a variety of data mining
(DM) settings. In its simplest form, known from association rule mining, the
task is to find all frequent itemsets, i.e., to list all combinations of items that
are found in a sufficient number of examples. A similar task in spirit, but at the
opposite end of the complexity scale, is the Inductive Logic Programming (ILP)
approach where the goal is to discover queries in first order logic that succeed
with respect to a sufficient number of examples.

We discuss the relationship of ILP to frequent pattern discovery. On one
hand, our goal is to relate data mining problems to ILP. On another hand, we
want to demonstrate how ILP can be used to solve both existing and new data
mining problems.

The fundamental task of association rule and frequent set discovery has been
extended in various directions, allowing more useful patterns to be discovered.
From an ILP viewpoint, however, it can be argued that these settings are all
well-controlled subtasks of the full ILP counterpart of the problem. We try
to restore the blurred picture by describing the existing approaches using a
unified database representation. With the representation, we relate also the DM
settings to each other and propose some interesting new areas to be explored. We
analyse some aspects of the gradual change in the trade-off between expressivity
and efficiency, as one moves from the frequent set problem towards ILP.

Keywords : frequent pattern discovery, inductive logic programming, data
mining.

*Department of Computer Science, Katholieke Universiteit Leuven
tDepartment of Computer Science, University of Helsinki



1 Introduction

Discovery of frequent patterns has been studied in a variety of data mining (DM)
settings. In its simplest form, known from association rule mining [2], the task
is to find all frequent itemsets, i.e., to list all combinations of items that are
found in a sufficient number of examples. A prototypical application example is
in market basket analysis: find out which products tend to be sold together.

A similar task in spirit, but at the opposite end of the complexity scale, is
the Inductive Logic Programming (ILP) approach [12, 5, 34], where the goal is to
discover queries in first order logic that succeed with respect to a sufficient number
of examples [20]. In the application area of market basket analysis, such queries
could express relationships between the properties of customers, their market
baskets as a whole, and the individual products bought — not just connections
between item types bought.

In this paper, we discuss the relationship of this ILP approach to frequent
pattern discovery. On one hand, our goal is to relate data mining problems to
ILP. On another hand, we want to demonstrate how ILP can be used to solve
both existing and new data mining problems.

The fundamental task of association rule and frequent set discovery has been
extended in various directions, allowing more useful patterns to be discovered.
Alternative problem settings include the use of item type hierarchies [26, 28, 53],
the discovery of episodes in event sequences [37, 39], and the search of sequen-
tial patterns from series of transactions [4, 55]. These different approaches have
been mostly described as parallel extensions to the elementary task, each with
their own notational conventions. General considerations of this problem area are
few [25, 38], and they have been concerned with concepts, algorithms, and com-
plexity rather than with the issues of expressive power or the exact relationship
between different settings.

From an ILP viewpoint it can be argued that these settings are all well-
controlled subtasks of the full ILP counterpart of the problem. The use of, e.g.,
DATALOG allows a clear and uniform formulation of the problems, and a suitable
presentation shows connections and differences between the various DM tasks.

We start in Section 2 by describing the general data mining task of discover-
ing frequent first order clauses, and then define the particular DM problems as
specializations of that task. Using the common representation, we relate the DM
settings to each other and propose some interesting new areas to be explored.
In Section 3 we consider algorithms for solving the problems, and analyse some
aspects of the gradual change in the trade-off between expressivity and efficiency,
as one moves from the frequent itemset problem towards ILP. Some of the new
instances of frequent pattern discovery are addressed in Section 4. In Section 5 we
demonstrate the potential role of ILP as a benchmark technique for specialized
data mining algorithms. We present experimental results in the area of telecom-
munication alarm sequence analysis. We show how ILP methods can be used to



solve problems attacked before, and also consider useful extensions. Finally, in
Sections 6 and 7, we touch upon related and future work, and conclude.

2 Description of the data mining task

We use DATALOG [58] to represent data and patterns. There is a straightforward
and well-defined correspondence between DATALOG and both relational databases
and first order clausal logic. The use of DATALOG allows us to describe a number
of data mining tasks in the area of frequent pattern discovery in a clear and
uniform manner.

Relational algebra, the theoretical framework of relational databases, has the
same expressive power as DATALOG without recursion. For instance, the recur-
sive concept ancestor can be defined in DATALOG but not in relational algebra.
DATALOG, in turn, is a subset of clausal logic (and PROLOG) that is restricted
to function-free definite clauses.

We briefly review the DATALOG concepts used in this paper. These concepts
are then used to describe the data mining task of discovering frequent patterns
or, in DATALOG terminology, frequent queries. We then show how some existing
frequent pattern discovery settings can be derived from this task. To conclude this
section on representational issues, we situate the discussed settings for frequent
pattern discovery in a multi-dimensional space.

2.1 Background: DATALOG concepts

In DATALOG a term is defined as a constant symbol or a variable. To distinguish
between them, we will write variables with an initial upper-case letter. An atom
is an m-ary predicate symbol followed by a bracketed m-tuple of terms. A definite
clause is a universally quantified formula of the form B—A44, ..., 4, (n > 0),
where B and the A, are atoms. This formula can be read as “B if A; and ... and
A,”. If n = 0 a definite clause is also called a fact. Ground clauses are clauses
that contain only constants as terms, no variables.

A deductive DATALOG database is a set of definite clauses. Often a distinc-
tion is made between the extensional part of a DATALOG database, with ground
clauses, and the remaining intensional part. The presence of intensional non-
ground definitions distinguishes deductive DATALOG databases from relational
databases.

A formula <« A44, ..., A, without a conclusion part is called a denial. Such
a formula can also be viewed as a query ?- Ay, ..., A,: (the resolution based
derivation of) the answer to a given query with variables (Xi,...,X,,) binds
these variables to terms (aq,...,am), such that the clause is true if each X;
is replaced by a;. This binding is denoted by (Xi/a1,...,Xm/am). Due to

the nondeterministic nature of the computation of answers, a single query @



may result in many bindings. We will refer to the set of bindings obtained by
submitting query @ to a DATALOG database D as answerset(Q, D).

As already pointed out, if recursion is not allowed, these concepts correspond
directly to relational database terminology. Predicates map to relations, facts to
tuples of a relation, and a query such as

?- transaction( Transaction_id, Itemtype), is_a(ltemtype, beverage)

can be written in SQL as

SELECT TRANSACTION transactionid, TRANSACTION.itemtype
FROM TRANSACTION, IS_A

WHERE TRANSACTION.itemtype=IS_A.itemtype

AND IS_A.ancestor="beverage’

An overview of strategies to make the relationship between DATALOG and rela-
tional databases operational can be found in [58].

2.2 Frequent query discovery

Mannila and Toivonen [38] describe the following generic problem of finding all
potentially interesting sentences. Given are a database r, a class £ of sentences
(patterns), and a selection predicate ¢ which is used for evaluating whether a
sentence ) € L defines a potentially interesting pattern in r. The task is to
find the theory of r with respect to £ and g, i.e., the set Th(L,r,q) = {@ €
L] g(r,Q) is true}. In terms of their framework, we consider the following data
mining task.

Definition 1 (frequent query discovery) Assume
o 1 is a DATALOG database,
o L is a set of DATALOG queries, and

o g(r,Q) is true if and only if the frequency of query Q € L with respect to r
s at least equal to the frequency threshold specified by the user.

The task is to find the set Th(L,r,q) of frequent queries.

In this general form, the task would be to discover arbitrary queries that are
frequent. In this section we consider the relationship of £, as defined above,
to the languages used in well-known data mining tasks. We next define what
frequency exactly means in this setting.

Definition 2 (frequency of query @ with respect to database r)
Assume



o 1 is a DATALOG database and @) is a query,
e keypred s a predicate name not used in @) or r, and

o KeyVars is a tuple of user specified key variables of ().
Then the (absolute) frequency of query @ w.r.t. r is
lanswerset(?- keypred(KeyVars), r U {keypred(KeyVars) — Q})|,
i.e., the number of bindings of the key variables with which the query Q) is true.

Once more, we establish the link with relational database terminology. In
SQL syntax the frequency of ¢) can be obtained with the following query, inspired
by [35, 7]:

SELECT count(distinct *)

FROM SELECT fields that correspond to KeyVars
FROM relations in @)
WHERE conditions expressed in )

We next show how restrictions on the DATALOG database r and the language
L of DATALOG queries lead to some of the existing frequent pattern discovery
settings.

2.3 Item sets

In the context of association rule mining [2], the task is to list all frequent com-
binations of items. For instance, in market basket analysis one wants to find
out which products tend to be sold in the same transaction. Several equivalent
database representations are possible for such transaction data. They can all be
mapped to the case where a single transaction is represented as a set of facts
tr(tid,itemtype; ), where tid is the identifier of the transaction and ttemtype; is
the name of a product sold in that transaction. Given this form, we can formulate
the setting as follows.

Definition 3 (itemset discovery) Discovery of frequent itemsets is a special
case of frequent query discovery where

e the database r consists of one or more facts tr(tid,itemtype;)« per trans-
action tid,

e the queries in L only contain atoms of the form tr(Tid,itemtype;), and
o KeyVars equals the transaction identifier Thd.
For instance, given a DATALOG database
{tr(1, beer) «;tr(1, chips) «;tr(2, beer) «;tr(2, pampers) «;tr(2, chips) <},

the frequency of 7- tr(Tid,pampers)is one, and the frequency of ?- tr(Tid,beer),
tr(Tid,chips) is two.



2.4 Item hierarchies

In market basket analysis, it is useful to consider hierarchies of item types and to
analyze basket contents on various concept levels. Whether a customer bought
budweiser or heineken does not necessarily matter, and in such cases the higher
level concept of beer is more useful. On the other hand, it might turn out that
customers buying hoegaarden beer are original and show distinctive shopping
patterns. The problem of discovering generalized itemsets on multiple levels of
an item type hierarchy has been considered, e.g., in [26, 28, 53]. In our DATA-
LOG representation, item hierarchies can be specified with facts is_a(itemtype;,
ancestory, J«—which hold for all transactions.

Definition 4 (itemset discovery with item hierarchies) Discovery of fre-
quent itemset with item hierarchies is a special case of frequent query discovery,
where

e database r contains one or more facts tr(tid, itemtype;)« per transaction
tid, as before, but also facts of the form is_a(itemtype;, ancestory )«

e the queries in L contain atoms of the form tr(Tid, itemtype;), as before,
but also atom pairs (tr(Tid, I), is_a(I, ancestorg)),

o KeyVars equals the transaction identifier Thd.

In the original formulations of the problem there is the following extra restric-
tion: all itemtype variables [in a query are different, i.e., redundancies concerning
an item and its own ancestors are pruned. For simplicity, we ignore this.

2.5 Sequential patterns

Consider the case in market basket analysis where the sequence of transactions
of each individual customer can be tracked. It is interesting to look for frequent
patterns over such sequences of transactions. Sequential patterns [4, 55] are a
generalization of frequent itemsets to frequent sequences of itemsets.

To describe the data, we use facts customer(cust, tid)«— that associate each
transaction tid to the customer cust that made it. The order of transactions is
represented by a set of clausal definitions for predicate order/2.

Definition 5 (sequential pattern discovery) Discovery of frequent sequen-
tial patterns is a special case of frequent query discovery where

o database r contains one or more facts tr(tid, itemtype)« per transaction
tid, as before, but also one or more facts customer(cust, tid)« per customer
cust, and a set of clauses for predicate order/2,



o the queries in L contain series of atoms of the forms
customer(Cust,Tid;),tr(Tid;,itemtypesq),tr(Tidy,itemtypers), . ..
customer(Cust,Tid,),tr(Tids,itemtypes; ),tr(Tids,itemtypess), . ..

and customer(Cust,Tid1), customer(Cust,Tid2), order(Tid1,Tid2),

o KeyVars equals the customer identifier Cust.

Again, the original formulation is in some ways more restricted than this
definition. Each transaction Tid in a query is required to have at least one item
(i.e., to occur in the first atom type mentioned above) and to have a unique
position with respect to the other transactions (e.g., to occur in the latter atom
type with all other transactions). On the other hand, the original settings present
some extensions not covered here.

2.6 Episodes

Consider now a case where the input consists of a long sequence of items such
that remote items in the sequence are not related. Such sequences could arise,
for instance, in life-long customer relationships of pharmacies: drugs purchased
within weeks may be related, but drugs purchased years or decades apart are
related only in special cases. A better motivated problem is perhaps in the
analysis of alarms from a telecommunication network [31]. There the task is
discover combinations of related alarms that are received from a number of devices
in a large network.

Episodes [39] are such patterns. Given a long sequence of items and a win-
dow width, one looks at the sequence by sliding a window of the given width,
and analyzes the combinations of items visible in the window. We discuss two
variants of episodes. The first variant, parallel episodes, is a simple adaptation of
frequent itemsets to such sequential cases with windowing. The second variant,
general episodes is a pattern type with a number of ILP like elements and with
a substantially increased expressive power.

2.6.1 Parallel episodes

For the definition of the episode discovery task, we use facts window(wid, tid)—
as a means to represent that window wid contains transaction #id. In the case
of episodes, each transaction consists of exactly one item. In the alarm domain,
transactions or items have a number of properties in addition to the item type,
such as the urgency or the sender of the alarm. These are all given in facts tr(tid,

itemtype;, as, ..., G )—.

Definition 6 (discovery of parallel episodes) Discovery of frequent parallel
episodes is a special case of frequent query discovery where



e database r contains per time window wid (1) both one or more facts win-
dow(wid, tid)«, and, (2) per transaction tid in the window, one fact tr(tid,
itemtype,, as, ..., an ),

o the queries in L consist of one or more atom series of the form
window(Wid,Tid,), tr(Tids,Vy,...,V,), V,=constant,
window(Wid,Tidy), tr(Tid2,Vy,...,V,), V;=constant,

o KeyVars equals the window identifier Wad.

Parallel episodes could be defined as itemsets by a simple transformation of
the representation. However, the present way of describing episodes is more
appropriate for further analysis of the problem field.

2.6.2 General episodes

Our final example of data mining tasks in the area of frequent patterns are general
episodes. The formulation here imitates the ones given in [37, 39]. Unlike the
examples discussed above, this one has not been implemented in a full scale
before.

The setting for general episodes we consider here has the following differ-
ences from parallel episodes. Properties of item types and properties of trans-
actions/items are represented as a set of facts unary;(a;)<; and finally, binary
relations on transactions/items as a third set of facts binary, (a;, ax)«. Clauses
order(tid1, tid2)«— for representing a partial ordering on transactions are a spe-
cial case of binary relations and thus unnecessary for the specification of the
problem: they can be defined, for instance in terms of a binary relation on the
time attribute a; associated with transactions.

Definition 7 (discovery of general episodes) Discovery of frequent general
episodes is a special case of frequent query discovery where

e database r contains per time window wid, as before, (1) one or more facts
window(wid, tid)« and (2) per transaction tid in the window, one fact
tr(tid, itemtypej, as, ..., an ), and
sets of facts unary;(a;)«, and binary,(a;, ax)—,

o the queries in L contain one or more atom series of the form
window(Wid, Tid), tr(Tid, I, ..., V,,), unary;(I), and
window(Wid, Tid), tr(Tid, Vi, ..., V,), unary,(V;), and
window(Wid, Tidl), tr(Tidl, Vi1, ..., Via),
window(Wid, Tid2), tr(Tid2, Vo, ..., Vo), ...
binary,;(V;, Vi)

o KeyVars equals the window identifier Wad.



| |IS|IH | SP | PE | GE | DQ |

Many items per transaction + | 4+ | + +
Item type properties + | + + + +
Many (ordered) transactions per example + + + +
Ttem or transaction attributes + + +
Binary item properties + +

Table 1: Dimensions of frequent pattern types. Legend: IS = itemsets, IH =
itemsets with item hierarchies, SP = sequential patterns, PE = parallel episodes,
GE = general episodes, DQ = (full) DATALOG queries.

2.7 Dimensions of the pattern discovery task

As a summary and a conclusion of the task review above, consider Table 1. The
table lists five of the properties where the tasks differ; these properties are directly
reflected by the existence of different types of atoms in the language £. A cell
contains a plus if the pattern type can deal or can easily be extended to deal
with the given feature. Note that the table is coarse: “item type properties”
means a concept hierarchy for most of the cases, and only some can handle other
properties associated with item types.

According to Table 1, the most obvious gaps to fill are to either extend sequen-
tial patterns to include item and transaction attributes and binary properties, or
to extend episodes to the case where a transaction can contain a number of items.
Recall that general episodes have not been implemented in full, but the column
GE rather lists a proposed setting for data mining. There exists a number of
interesting gaps also within the filled rows.

In the following section we look at the problems and their algorithmic solutions
in more detail, and in the next section we discuss some of the gaps invisible in

Table 1.

3 Frequent pattern discovery algorithms

Design of algorithms for frequent pattern discovery has, indeed, turned out to be
a popular topic in data mining (for a sample of algorithms, see [2, 3, 36, 51, 57]).
Practically all algorithms are on some level based on the same idea of levelwise
search, known from the APRIORI algorithm [3]. We first review the generic lev-
elwise search method and its central properties, and recall how this method fits
in the two-phased discovery of frequent and confident rules. Next, we introduce
the algorithm WARMR [20] for finding frequent queries. Following the structure
of the previous section we then look at algorithms that solve restricted variants.



Each time we show how WARMR can be tuned to simulate these algorithms and
explain how and why the specialised algorithms can do a lot better than WARMR
in terms of efficiency.

3.1 Background: the common elements
3.1.1 The levelwise algorithm

The levelwise algorithm [38] is based on a breadth-first search in the lattice
spanned by a specialization relation < between patterns, cf. [40], where pl=<p2
denotes pattern “pl is more general than pattern p2”, or “p2 is more specific than
pattern pl”.

The method looks at a level of the lattice at a time, starting from the most
general patterns. The method iterates between candidate generation and can-
didate evaluation phases: in candidate generation, the lattice structure is used
for pruning non-frequent patterns from the next level; in the candidate evalua-
tion phase, frequencies of candidates are computed with respect to the database.
Pruning is based on monotonicity of < with respect to frequency: if a pattern
is not frequent then none of its specialisations are frequent. So while gener-
ating candidates for the next level, all the patterns that are specialisations of
infrequent patterns can be pruned. For instance, in the APRIORI algorithm for
frequent itemsets, candidates are generated such that all their subsets (i.e., gen-
eralizations) are frequent.

The levelwise approach has two crucial useful properties [38]:

e The database is scanned at most k+ 1 times, where k is the maximum level
(size) of a frequent pattern. All candidates of a level are tested in single
database pass. This is an important factor when mining large databases.

e The time complexity is in practice linear in the size of the result, and the
number of examples.

3.1.2 Two-phased discovery of frequent and confident rules

Frequent patterns are commonly not considered useful for presentation to the
user as such. Their popularity is mainly based on the fact that they can be
efficiently post-processed into rules that exceed given confidence and frequency
threshold values. The best known example of this two-phased strategy is the
discovery of association rules [2], and closely related patterns include episodes [39]
and sequential patterns [4]. For all these patterns, the threshold values offer a
natural way of pruning weak and rare rules.

In terms of the DATALOG concepts introduced in Section 2, an association
rule R is an expression of the form A;,..., Ay = Ags1,..., A, where A; are
atoms. This formula should be read as “if query ?- Ai,...,Ar succeeds then



query 7- Ai,...,A, succeeds also”. The confidence of association rule R can
be computed as the ratio of the frequencies of queries ?- A4,,...,4, and 7-
A1,...,Ax. The frequency (or support) of association rule R is the frequency of
query ?- Ai,...,A,.

As observed in [2], confident and frequent rules can be found effectively in two
steps. In the first step one determines the set of all frequent queries 7- 44,...,4,,
and in the second produces rules Aq,..., Ay = Agy1,..., A, whose confidence
exceeds the given threshold. If all frequent queries and their frequencies are
known as a result of the first step, then this easy second step is guaranteed to
output all frequent and confident rules.

3.2 Query discovery with WARMR
3.2.1 Specialisation relation

The subset specialization relation used in most frequent pattern discovery set-
tings is not appropriate for structuring a space of DATALOG queries. For in-
stance, not every atom of query 7- parent(X,Y) occurs as such in query ?- par-
ent(tom,M),female(M) while we still would like to consider the former a general-
ization of the latter. Therefore, we need a strictly stronger variant of the subset
relation coined #-subsumption by Plotkin [48]. Queryl #-subsumes a Query?2 if
and only if there exists a (possibly empty) binding of the variables of Queryl,
such that every atom of the resulting query occurs in Query2. In the example,
the binding (X/tom,Y/M) has the desired effect.

In theory, testing 8-subsumption is NP-complete, but in some practical cases,
as discussed in [29], §-subsumption can be tested efficiently.

3.2.2 Language bias

With association rules the definition of language £ is straightforward: £ is sim-
ply 2!, where I is the set of items. Srikant, Vu, and Agrawal [56] describe a
technique to impose (and exploit) user-defined constraints on combinations of
items, but otherwise the definition of £ has received little attention in the fre-
quent pattern discovery literature. In ILP on the other hand this issue has been
studied extensively in the subfield of declarative language bias. This is moti-
vated by huge, often infinite, search spaces, that require a tight specification of
interesting patterns. Several formalisms have been proposed for adding language
bias information in a declarative manner to the search process (for an overview,
see [1, 45]). The WARMR algorithm [20] for finding frequent queries accepts
specifications of the form rmode(n : (Ai,...,A,)), where the A; are atoms'.
Typically, n = 1 and the specification will be of the form rmode(n : atom). This

! Alternatively, WARMR’s language bias can be specified in DLAB format [19] as in CLAU-
DIEN [16] and ICL [18].

10



format, originally proposed for PROGOL [42] and later adapted to TILDE [8],
indicates which atoms can be added to a query, the maximal number of times
the atom can be added (n > 0), and the modes and types of the variables in
it. A variable V in input mode, denoted with +V, has to occur somewhere to
the left in the query, whereas a variable in output mode, denoted with plain V,
should not occur to the left. Typing of variables can be used to constrain the
occurrence of input variables, such that for instance atom beer(X) will not be

added to ?- customer(X),buys(X,Y) but atom beer(Y") will.

3.2.3 Candidate generation

To generate candidates, WARMR employs a classical specialisation operator under
g-subsumption [48, 44]. A specialisation operator p maps queries € L onto sets
of queries € 2, such that for any Queryl and V Query2 € p(Queryl), Queryl
0-subsumes Query2. The operator used in WARMR essentially adds conjunctions
to the query as allowed by rmodes and type specifications.

Mode declarations on variables, may cause an atom to be added for the first
time only deep down the lattice. This, and the fact that conjunctions of several
atoms can be added in a single refinement step, complicates pruning significantly.
We can no longer require that all subsets of a candidate are frequent as some of
the subsets might simply not be in £. Instead, WARMR requires candidates not
to 8-subsume any infrequent query.

As an (expensive) option we can also require that candidates are mutually
inequivalent under §-subsumption, or that candidates do not #-subsume any of a
set of user defined uninteresting queries (e.g. previous search results).

3.2.4 Candidate evaluation

In the candidate evaluation phase the frequencies of a set of queries are computed
in a single database pass. Therefore, Definition 2 of frequency of a single query is
not directly applicable, as it would require one pass per candidate. The WARMR
algorithm rather considers one tuple K of key values at a time and for each
candidate Q; runs the query ?- keypred(K) in database r U {keypred(K) < Q;},
where 8 C r only contains clauses that are “linked” to key K. If query Q;
succeeds, an associated counter g; is incremented. One strategy to make the
selection of r¥ operational, is to make sure key K is explicitly added to each
clause in the database, such that the relation same_key defines a partition on r.

For most practical cases, r¥ is very small compared to r, and can be loaded
in main memory even if r cannot. This has the crucial advantage that evaluation
of candidates @; can be done (relatively) efficiently.

The composition and the loading of r¥ can be optimized in two steps. First,
if a fixed portion r® reoccurs as a subset of many r¥’s, we can load the com-

mon r? once, and iteratively load only the specific r&\ r?. In ILP jargon, r®

11



corresponds to background knowledge. For instance, in market basket analysis,
background knowledge r® might consist of: (1) ground facts about commodities,
suppliers, and the supermarket’s floor plan, and (2) clausal rules that capture
general marketing principles, economic laws and so forth.

Second, in cases where the repeated composition of r¥ is still too costly, e.g.
if many clauses have to selected from many different predicates, a preprocessing
step can be considered where all the r®’s are composed once and written to a
(set of) flat file(s), see [9] for an experimental evaluation.

In addition, the evaluation of candidates itself can be optimized by organiz-
ing and rewriting the candidates in such a way that backtracking is minimized.
For instance, when the atom t¢r(7T'id, beer) in query ?- tr(Tid,I), is_a(l toy),
tr(Tid,beer) fails, there is no point in looking for alternative bindings for 7. In
PROLOG notation, the cut operator should be inserted to suppress backtracking:
?- tr(Tid,I), is_a(Ltoy), !, tr(Tid, beer).

In general, all work in ILP faces the theoretical result that evaluation of a
query is an NP complete problem. However, queries with up to k atoms, where
each atom contains with at most j terms, can be evaluated in polynomial-time
with respect to a relational database, cf. [17].

We now look at the different settings for frequent pattern discovery from
three angles. In the language bias paragraph we show how WARMR can be tuned
to simulate the restricted setting. In the candidate generation and evaluation
paragraphs we review the basic ideas and principles underlying the much faster
algorithms that have been proposed within the restricted settings.

3.3 Item set discovery with APRIORI
Language bias. With language bias specifications

rmode(l : rmode(1 : tr_1d(Td)),
rmode(l : rmode(l : tr(+T%d, 1temtype;)), rmode(l : tr(+Td, ttemtypes)), . ..

WARMR simulates the APRIORI algorithm [3] for finding frequent itemsets.
Remember the +sign indicates the T%d’s in predicate ¢r/2 should be input vari-
ables, i.e. occur before in the query.

Unlike WARMR, APRIORI exploits the fact that queries that only contain
atoms tr(T'id, itemtype) can be mapped to sets of itemtypes, and that for item-
sets, f-subsumption is equivalent to the subset relation.

Candidate generation for frequent itemsets is efficient: it only involves subset
search and testing, and the time used can be neglected in practice.

Candidate evaluation of itemsets can also be implemented efficiently. There

is no need for backtracking at all, which allows an extreme form of query re-
organisation, cf. the hash-trees described in [3]. The composition and loading

12



step is typically optimized by preprocessing r such that every transaction r¥

corresponds to one line in a flat file.

3.4 Item hierarchies

Language bias. To simulate item hierarchies with WARMR the language bias
has to contain specifications of the form

rmode(l : rmode(1 : tr_1d(Td)),

rmode(l : rmode(l : tr(+T%d, 1temtype;)), rmode(l : tr(+Td, ttemtypes)), . ..
rmode(oo : rmode(l : tr(+1d, 1)),

(00 : rmode(l : 1s_a(+1, ancestory)),
(

rmode(oo : rmode(l : 1s_a(+1, ancestory)), . ..

rmode

The item hierarchy can be encoded with atom constraints. As before, this setting
can be expressed in terms of itemsets, and eflicient algorithms rely on the subset
relation rather than §-subsumption.

Candidate generation. An item hierarchy imposes extra structure on the
search space of itemsets. Frequency of items is monotone in the item hierar-
chy: a more general item is at least as frequent as a more specific one. Two
basic techniques have been considered for dealing with item hierarchies. In the
straightforward bottom-up approach [28, 53], candidate generation is the same
as with itemsets, but counts are propagated up in the hierarchy. In the top-down
approach [26], candidate generation takes the new specialization relation into
account: more specific items are only added if a general item is already there.
An interesting point here is that although the top-down approach is better
capable of limiting the search space, it may be less efficient in practice. The
bottom-up approach probably is faster, since the extra work (if compared to
the basic setting) can probably be performed by consuming only CPU and main
memory. The top-down approach, in turn, may consider a smaller total number
of candidate sets, but it more easily leads to a larger number of database passes.

Candidate evaluation is the same as with itemsets, except that, in the pre-
processing step, every transaction r¥ is computed as the union of the item types
and their ancestor item types.

3.5 Sequential pattern discovery

Language bias. With basically the following language bias, WARMR discovers
sequential patterns:

13



rmode(l : customer 1d(Cust)), rmode(co : (customer(+Cust, Tid)),
rmode(oo : rmode(l : tr(+Td, ttemtype;)), rmode(co : tr(+Tid, itemtypes)),. . .
rmode(oo : order(+T1dl, +T:d2)))

Candidate generation. Although the patterns are more general than simple
itemsets, and the subset relation is not appropriate for structuring the space of
sequential patterns, a similar and efficiently computable specialization relation
still exists [53].

Candidate evaluation in the GSP algorithm for mining sequential patterns [55]
adapts the hash-tree structure of [3] to efficiently reduce the number of candidates
that have to be checked in a sequence of itemsets. However, in the check-phase
itself, backtracking over transactions in the sequence cannot be avoided, cf. the

“backward phase” in GSP.

In the loading phase, one sequence of transactions r¥

is read at a time.

3.6 Episode discovery

As argued in Section 2.6.1, parallel episodes can be transformed efficiently to
simple itemsets in a preprocessing step. Therefore the observations made in
Section 3.3 also hold here. As described in [39], additional efficiency is obtained
via an incremental candidate evaluation technique. This technique is based on the
observation that subsequent windows (or transactions, in itemset terminology)
are similar to each other. We now consider the case of general episodes.
Language bias. To have WARMR discover general episodes as defined in Defi-
nition 7, the following rmode specifications have to be provided (recall a + sign
denotes an input variable):

rmode(l : window_1d(W1id)),
rmode(oo : window(+Wid, Tid)), rmode(oo : unary;(+V;)),
rmode(oo : tr(+Td, I, Vi,...,V,.)), rmode(co : binary,(+V;, +W;))

Candidate generation. The task of discovering episodes can for a large part
be transformed to finding frequent sets, plus taking the order into account. The
specialization relation between totally or trivially ordered patterns is easy to com-
pute, and almost exactly same candidate generation methods can be used as for
frequent sets [39, Algorithm 3|. For general episodes however the task is more

difficult.

Candidate evaluation. In the candidate testing for episodes, advantage can be
taken from the overlapping contents of successive window positions. Additionally,
the queue structure of the window contents can also be utilized. The idea is to
store full and partial bindings of variables so that minimal updates are necessary

14



| | IS |IH | SP | PE | GE | WARMR |

Incremental candidate evaluation + +

Subset relation between item types only || + +

All backtracking suppressed + | + +

Bindings can be stored + | + | + + +
Levelwise search + | + | + + + +

Table 2: Dimensions of pattern discovery algorithms. Legend: IS = itemsets,
IH = itemsets with item hierarchies, SP = sequential patterns, PE = parallel
episodes, GE = general episodes.

when the window slides. For the simple cases of one item per transaction and
no attributes there are very efficient special solutions [11, 39], where an explicit
representation of bindings is not necessary. The methods can be extended for
the binary predicates, but the growth in the number of different atoms prob-
ably means that (1) less efficient indexing techniques have to be used and that
(2) there is less shared information between candidate patterns to take advantage
of. For relations with multiple item variables or shared variables, partial binding
combinations may need to be stored — and this can require too much space and
time to be useful.

Loading r¥ is done incrementally as the window slides: the transactions leav-
ing the window to the left are retracted from r¥, and those entering the window

to the right are added to r¥.

3.7 Dimensions of the pattern discovery algorithms

We conclude, as we did with the section on task descriptions, with a summary
in Table 2 of dimensions that characterize and relate the different pattern discov-
ery algorithms. A plus in a cell here denotes the specialised algorithm exploits
or uses the feature in the first column.

The relevant — though not very surprising — observation here is that Table 2
is roughly complementary with Table 1: settings with many plusses in one table
tend have few plusses in the other. Thus, the combination of these two tables
provides a fairly balanced picture of the well known trade-off between expressivity
and efficiency in the context of association rule mining. It also demonstrates there
is no dichotomy item sets - queries (APRIORI-WARMR), but rather a gradual
change in the trade-off between expressivity and efficiency, with a number of
“intermediate” problems that have received considerable attention. Finally, the
two tables provide a blueprint for a single integrated system that uses Table 1
to determine the minimal level of expressivity required and Table 2 to fire the
maximally efficient algorithm available within that setting. In such a system,
WARMR would be the “catch-all” method.

15



In the next section we point at some unexplored settings for frequent pattern
discovery and propose WARMR as a first, but not necessarily ultimate approach.

4 New instances of frequent query discovery

We first present two instances of frequent query discovery that have not been
addressed before: one obvious “gap” in Table 1, and one more complex setting
which requires an extra row in that table. For both settings we show how they
can be handled with WARMR. To conclude, we propose the ILP approach as a
benchmark method for these and other unexplored variants of frequent pattern
discovery.

4.1 Many items per transaction, with properties

Reconsider Table 1, and notice both the features “many items per transaction”
and “item or transaction attributes” have been addressed in isolation, but never
in combination. In fact, settings where these features are addressed in isolation
can be mapped: a set of facts {¢r(tid,s; )—;. .. ;tr(tid,i, )<} maps to a singleton
{tr(tid,4,...,4, )J—}. However, when a database combines both features, a map-
ping to one of the existing problems does not seem to be possible without loss of
information.

Imagine, for instance, a database with facts tr(tid,itemtype,size,promoted )—
that denote for each item in the transaction: the size of the package, and whether
or not the item is in promotion. A sample of such a database is shown below 2.

tr(1,beer,sizpack,no )— tr(2,beer, crate,yes )«—
tr(1,chips, familysize,yes)«—  tr(2,chips,box,no)—

Let us now look at two possible strategies for transforming this setting to item-
sets. First, one could blow up the number of itemtypes and introduce an item
itemtype_size_promoted for all combinations that occur. A first objection to this
solution is that, especially with a high number of (many-valued) properties, this
transformation will result in an exponential number of infrequent items. More-
over, even if this transformation is practicable, it would disallow the discovery of
frequent combinations of the original item types.

As as second attempt we could add the individual properties as extra item-
types, as is done with item hierarchies and in [31]. This, indeed, allows the
discovery of patterns such as

?- tr(Tid,sizpack),tr(Tid,promoted),tr(Tid,chips),

ZNotice this setting has some similarity with the “multiple-instance problem” known from
attribute-value learning [21].

16



“sixpacks, promoted things and chips”. However, we lose the facility to discover
something about combinations of properties, such as “promoted things in six-
packs”: properties sizpack and promoted are tested independently and cannot
be linked to the same itemtype.

To summarize the problem, we would like itemtypes and their properties to
occur both in isolation, and in any combination, e.g.

?- tr(Tid, beer,sizpack,yes ), tr( Tid,chips,familysize, P),tr( Tid,pampers,S, Q),

“promoted beer in a six pack, chips in a family sized package, and pampers”.
With WARMR similar rules could be discovered by choosing the language bias
essentially as follows:

rmode(l : tr2d(Td)), rmode(oc : tr(+T1d, I, S, P)),

rmode(oo : eq(+1, beer)), rmode(co : eq(+1, chips)), . ..
rmode(oo : eq(+S, stzpack)), rmode(oo : eq(+S, familysize)), . ..
rmode(oo : eq(+P,yes)), rmode(oo : eq(+P,no))

where eq is an equality test. This bias could be easily extended to handle the case
where a transaction as a whole may have properties in addition to the properties
of items. In the supermarket domain, the properties of transaction may contain
information about the context of shopping — such as the time or the location
— about the customer, or aggregate information about the basket — such as the
total value or the number of items in the basket. The task is to find frequent
patterns of item and transaction properties, such as

?- tr(Tid,cigarettes),paid_with( Tid,cash),
“baskets containing cigarettes and paid in cash”, or
?- cust_age(Tid,senior),tr(Tid, I, S, promoted),

“senior customers going for bargains”. To find these two rules with WARMR, we
only have to add

rmode(oo : paid_with(+T%d, cash)), rmode(oo : paid_with(+Td, credit_card)), . ..

rmode(oo : cust_age(+Td, junior)), rmode( o : cust_age(+T1d, senior)), . ..

to the language bias.

4.2 Related item properties and background knowledge

We also consider a case which can no longer be described as a combination of
dimensions of Table 1. This setting is characterised by the presence of arbitrary
relations between item properties and arbitrary background knowledge.

For an example, we can slightly modify one of the patterns shown in the
previous paragraph:

17



?- tr(Tid,beer,sizpack,yes), tr(Tid, chips,S, P ), tr( Tid, pampers, S, Q),

“promoted beer in a six pack, and chips and pampers in the same type of pack-
age”. Notice the S variable shared between the chips and the pampers items.
And finally, an example with arbitrary background knowledge:

?- tr(Tid,beer),customer(Tid, C),employee(Tid, E),sister(E,C)

“beer bought by a sister of one of the employees present at that time in the shop”.
The first rule can be found if WARMR’s bias is extended with:

rmode(oo : tr(+T1d, I,+S, P)),

the second rule can be found with

rmode(1 : tr_1d(Td)),

rmode(oo : tr(+T1d, beer), rmode(oco : tr(+Td, chips), . ..
rmode(oo : customer(+T1id, N)), rmode(oo : employee(+Td, N)),
rmode(oo : stster(+N1,+N2),rmode(co : uncle(+N1,+N2)),...

as language bias specifications.

4.3 ILP as a benchmark approach

It is not inconceivable that for the two settings above, and for any other setting
addressed with WARMR, specialised algorithms can be developed that will out-
perform WARMR by several orders of magnitude, as is the case with the existing
algorithms we discussed in Section 3. However, a generic tool such as WARMR
could be complementary with these specialised algorithms and would offer several
advantages both to users and developers.

To the users WARMR offers mainly two types of flexibility. First, the user can
jump from one setting to another with just minor changes to the language bias.
Individual pattern types that turn out to be of particular interest can then be
mined in a second stage with specialised algorithms. An additional danger with
using a specialised algorithm as a first approach is that any information which
cannot be used within this method is bound to be ignored or even cut away in a
preprocessing step, as illustrated in Section 4.1.

A second type of flexibility comes with the possibility to add background
knowledge. Background knowledge has at least two functions in the process of
knowledge discovery in databases: it can be used to (1) add information in the
form of general rules, but also (2) to change with minor effort the view on the
data, without going through the typically laborious preprocessing of the raw
data themselves. Again, once the experiments converge on some specific setting,
efficiency can be cranked up by reorganisation of the data into some very specific
format.

18



On the other hand, for the developers of specialised algorithms WARMR can
function as a benchmark, and as a verification/validation method: the special al-
gorithm should run significantly faster, and produce the same output. In the next
section on experiments, we present some preliminary indications of WARMR’s
performance.

5 Experiments: alarm analysis with WARMR

In this section we present experimental results with WARMR in the task of fre-
quent query discovery. We explore some cases where previous data mining tools
are not expressive enough, and consider the use of ILP as an exploration and
benchmark technique for the possible development of specialized data mining
tools.

For the experiments we run a prototypical implementation of WARMR, writ-
ten in MASTERSPROLOG, on a Sun Ultra 2 m1170. In general, the subsequent
databases r® are loaded from an Oracle7’™™ database. MASTERSPROLOG has
been connected to this relational database to obtain full DATALOG facilities.
In [20], for instance, an experiment is discussed where the database contains a
3-million word tagged corpus of Wall Street Journal news paper articles, and
subsequent sentences are loaded, and parsed, one by one. For the current experi-
ments with alarm analysis however, the whole database fits in main memory and
is loaded once from a flat file.

5.1 Example application

The experimental data originates from a fault management database of a mobile
communication network. The problem of discovering recurrent combinations of
alarms from such databases has been considered in [24, 27, 31, 39]. Closely related
data mining problems have been considered, e.g., in [6, 22, 41, 46, 50, 55, 47, 59].

The dataset consists of a sequence of 46662 alarms omitted by the network
elements such as base stations and transmission devices during a period of one
month. The time granularity of the data is one second. The average frequency of
alarms is approximately 1500 alarms/day, or 1 alarm/minute, but since alarms
tend to occur in bursts, the busiest second contains 50 alarms.

There are 180 different alarm types, which can be further classified into 10
overlapping classes. Each instance of an alarm has one of 4 urgency levels. The
alarms in the dataset have been received from 2012 network management objects
of 9 different types. These objects represent units of different granularities, and
they form a containment hierarchy. This hierarchy gives essential information
about the nature of the relationships of the objects.

The discovery task we consider is to find those combinations of alarms that are
frequent. This problem is the one considered in episode discovery, but here, to the

19



best of our knowledge, we implement a much more expressive variation than has
been done before. We consider alarms with different combinations of properties,
and we also consider cases where the alarms are connected, e.g., in the object
hierarchy or in some other way. We cannot see any way of transforming this task
to episode or sequential pattern discovery task without losing information.

5.2 WARMR inputs

Database and background knowledge. Following are some of the most im-
portant predicates used to represent the alarm data. The most obvious ones, such
as alarmtype(alarm, alarmtype)«—, relate each alarm to an occurrence time, an
alarm type, several alarm classes, etc. A background clause with the head pre-
cedes(alarml, alarm2) allows temporal order tests between alarms alarm! and
alarm2. Some new clauses are defined in the background knowledge based on the
occurrence time, to add potentially useful information such as officehour(alarm).

In a similar manner, the database contains clauses sender(alarm, object)—
that indicate the sender of each alarm; background knowledge includes clauses
that derive predicates such as ancestor(object, ancestor), sibling(object1, object2),
and same_object(objecttype, alarmi, alarm2). The last one tells whether alarms
alarm1 and alarm2 were sent from within a same object of type objecttype.

Finally, to represent and define windowing, we specified in the background
knowledge a clause that derives in_window(alarmi, interval, alarm?2) if alarm?2
occurs within time interval from alarmi. In the experiments we considered win-
dows of width 120 seconds that start from an alarm.

Language bias. The most extensive language bias used in the experiments
looks essentially as follows (we only show rmodes, not the typing information,
and lookahead and constraint specifications):

rmode(1 : window(W)),
rmode(oo : tn_window(+W, 120, A)), rmode( oo : precedes(+A, +B),

(
rmode(oo : officehour(+A)), rmode(oco : weekend(+A)),
rmode( oo : weekday(+A, mon)), rmode(co : weekday(+ A, tue)), . ..
rmode(oo : urgency(+A4, 1)), rmode(co : urgency(+4,2)), ...
rmode(oo : alarm_type(+ A, 1001)), rmode(co : alarm_type(+A4,2270)), ...
rmode(oo : alarm_class(+ A, switch)), rmode(oo : alarm_class(+ A, trans)), . ..
rmode(oo : sender_element(+A, 95)), rmode(co : sender_element(+A4,96)), ...
rmode(oo : same_alarmtype(+A, +B)),rmode(oco : same_class(+A, +B)),
rmode(oo : same_sender(+A, +B)), rmode(oo : same_urgency(+A, +B)),
rmode(oo : sender(+A, Obj)), rmode(oo : same_objecttype(+0bjl, +0b52)),
rmode( oo : object type(+0bjy, bef)), rmode( oo : object type(+0bj, trz)),. ..
rmode(oo : ancestor(+0bjl, +0b32)), rmode( o : stbling(+0bj1,+0b52)),. ..

20



5.3 Results and discussion

Quality of queries The first criterion for success in data mining is that some-
thing useful is found. The frequent queries that were discovered show patterns
that are more informative than the ones discovered with episodes, and episodes
have been found useful in the alarm analysis task [31]. We thus expect the new
queries to be even more useful; this will be confirmed by an expert evaluation of
the patterns.

A specific task we considered was to describe the windows following alarms
of a specific alarm type. Problems reported by this alarm are difficult to track;
here the goal is to discover patterns of alarms from related objects that might
help in explaining the important alarms. We present one of the patterns, in a
more informative association rule format:

window(A ),in_window(A,120,B),alarm_class(B,bsc_message)
= (£:0.15,¢:0.77)
in_window(A,120,C),alarm_class(C,trans),same_urgency(A,C),same_urgency(C,B)

i.e. with 77% confidence, and 15% frequency: “if a window contains an alarm of
class bsc-message then it will also contain an alarm of class trans such that all
alarms referred to will have the same urgency”.

In a more general setting, where the window could start on alarms of any
type, the following pattern was discovered:

window(A ),in_window(A,B),sender(B,0),objecttype(O,bcf ),
ancestor(O,P),objecttype(P,bsc),
in_window(A,D),alarm_class(D,bst_message)

= (£:0.27,c:0.68)
precedes(B,D),urgency(B,2),alarm_class(B,bst_message)

i.e. with 68%confidence, and 27% frequency: “if there is in the window an alarm
sent by an object of type becf, and an ancestor of that object is of type bsc, and
there is also an alarm of class bst_message, then the window will also contain two
alarms of that kind where the first (the one with the bsc ancestor) precedes the
second (the one with the bst_message) and moreover where the first has urgency
2 and class bst_message”.

Performance In order to make the role and complexity of the task clear, con-
sider the following increasingly complex cases. Table 3 contains the results of
some first experiments with WARMR on the full dataset, for cases 1, 2, and 4.

e case 1 Data: just single items with attributes. Patterns: frequent sets
of attribute-values pairs. This task can be transformed to the discovery of
frequent sets (each attribute-value pair is an item).

21



case 1 (F=0.1) case 2 (F=0.25) case 4 (F=0.25)

CGT CET NOC NOFS|CGT CET NOC NOFS|CGT CET NOC NOFS
1 50 215 22 1 156 249 13 1 167 267 18

14 63 190 19 180 7828 1543 19 24 1433 238 38
6 390 1190 18 15 112 6113 170 67
1 420 399 8 7 336 16897 233 114
0 235 349 1 1 904 103221 286 159
0 34 0 0 0 1983 90162 271 225

S O W N |
=
©
=
o))
0
©

Table 3: Results of three runs with WARMR on alarm analysis. Legend: F =
frequency threshold, L = level, CGT = candidate generation time (CPUs), CET
= candidate evaluation time (CPUs), NOC = number of candidates, NOFS =
number of frequent sets.

e case 2 Data: several items (or events or transactions) each with attributes.
Patterns: frequent collections of sets of attribute-value pairs. This task can
be transformed to the discovery of sequential patterns.

e case 3 Data: as above. Patterns: as above, but with binary predicates
connecting several items. This case cannot be transformed to any sensible
form without losing information. This task can lead to a combinatorial
explosion (except when the binary predicates only set a total order on the
items, which can be handled efficiently).

e case 4 Data: as above, but several transactions each with several items.
Patterns: as above, but also connecting items to transactions and transac-
tions to each other. Another explosion is possible.

Discussion. There is an increase in complexity from case 3 onwards in case
there are many alarms in a window, as can be seen in ther results for case 4 Ta-
ble 3: evaluation of candidates at level 5 takes 103221 CPUs (28h). At that level
queries are evaluated with up to twelve atoms, of which up to three in_window/3
atoms, and two precedes/2 atoms. Evaluation of such queries can take a lot of
time, due to backtracking over all alarms in the window in case the query does
not succeed immediately. Windows with few alarms are still processed efficiently,
but in windows with bursts of several hundreds of alarms, evaluation can take
up 10 mins and more. This is an example of the combinatorial explosion when
there are relations with several alarm (item) variables or shared variables between
alarms. Some clever incremental method for processing the windows could help,
at least in specific situations such as a total order.

The problem could also be alleviated by reorganizing and rewriting the
queries such that fruitless backtracking is prevented (as already suggested in

22



Section 3.2.4). In the current version of WARMR all queries are tested in a serial
fashion, addition of query optimization techniques is planned for the near future.

6 Discussion and Related work

We here touch upon some related work. We restrict ourselves to research not
explicitly addressed elsewhere in the paper. For an overview of ILP work in the
context of knowledge discovery in databases, we refer to [23].

6.1 Logical paradigm: learning from interpretations

The definition of frequent query discovery and the (relatively) efficient candidate
evaluation in WARMR is rooted in the learning from interpretations paradigm,
introduced by De Raedt and Dzeroski [17] and related to other inductive logic
programming settings in [13]. Indeed, the r¥’s, described in Section 3.2.4 as
partitions of the database, can be formalized in first order logic as Herbrand
interpretations. Every r¥ in which a query succeeds is then a Herbrand model of
that query.

The learning from interpretations paradigm has proven to be particularly
suitable for the design of upgrades to popular attribute-value learning techniques.
In that respect, APRIORI - WARMR is only one of the more recent additions to
a sequence of similar upgrades [15]: (EXPLORA [32])-CLAUDIEN [16], CN2 [10]-
ICL [18], C4.5 [49]-TiLDE [8], and [33]-C0.5 [14].

6.2 Clausal discovery

Association rules Ay A... ANAg = Agi AL A A,, as introduced in Section 3.1.2,
can easily be confused with a clauses Ay A ... A Ay — Ags1 V...V A, both
are interpreted as if-then rules with atoms A;. We first clarify the relation be-
tween both formats, and then relate WARMR to clausal discovery engines. For
the first part we will take the example of CLAUDIEN [16], because (1) it is the
only algorithm to discover also non-definite clauses, and (2) its notions of confi-
dence and frequency are close to our definitions of these concepts for association
rules. In both formats we will refer to Ay, ..., Ax as the body of the rule and to
Aga1,..., A, as the head.

Let us start from a clause ¢. To test whether clause ¢ is true w.r.t. a database
rX we can submit a query ?- body(c),not(head(c)) to r¥. Roughly speaking,
if the query fails, the clause is true and is said to hold in r, otherwise, if the
query succeeds, the clause is false and does not hold. We can then define the
confidence of ¢ as the conditional probability that the whole clause is true, given
that body(c) is true, cf. global accuracy in [16].

23



Let us also consider an association rule a. The confidence of this rule is defined
as conditional probability that body(a)Ahead(a)is true given that body(a) is true.

If we write both conditional probabilities as ratio’s, we have in both cases the
the probability that the body is true in the denominator. Now let us assume
body(a) = body(c) = body, focus on the nominator, and write quantification
explicitly. In the case of clauses, we have joint probability p(Jbody AV(head(c) «—
body))). In the case of association rules, we have joint probability p(Jbody A
J(body A head(a))). Since Jbody is a generalisation of 3(body A head(a)), we can
reduce the latter probability to p(3(body A head(a))).

Let us finally verify under which circumstances

p(Fbody A V(head(c) < body)) = p(Fbody A head(a))

holds. Under these circumstances the confidence of a and c is identical and we can
safely confuse them. We can reformulate the equation above as an equivalence

dbody A V(head(c) « body) < J(body A head(a))

and first look at the case where head(c) and head(a) contain the same atoms.
An immediate observation is that the equivalence cannot hold if the heads con-
tain more than one atom. Recall head(c) is defined as a disjunction of atoms,
whereas head(a) is a conjunction of atoms. So let us now consider the case where
head(c) = head(a) = head_atom. Notice the equivalence relation then holds if
body can succeed at most once, i.e. is deterministic. This is the case for instance if
body is a purely propositional formula. With a deterministic body, we can switch
between universal quantification and existential quantification in the equivalence
above, and rewrite it as:

dbody A J(head_atom «— body) < I(body A head_atom)

which holds.
There is however a more general, indirect way to map the confidence of clauses
and association rules. Assume head(a) = —head(c), so that we have

dbody A V(head(c) « body)
J(body A —head(c))

These two formulae are both false if body fails, but otherwise they are contradic-
tory. From this, and from our definitions of confidence conf, we can derive that
conf (¢) = 1 — conf (a).

So we can conclude that, with the global accuracy confidence measure of
CLAUDIEN, association rules a can be mapped to clauses c if

1. they have the same deterministic body and an identical single atom in the
head: in that case conf (a) = conf (c)

24



2. they have the same body, and the head of the one equals the negation of
the head of the other: in that case conf (a) = 1 — conf (c).

The discovery of clauses is handled for instance by KNOWLEDGE MINER [52],
CLAUDIEN [16], Mipos [61], RDT [30], MoBAL [35], OCD [60], and PrOGOL
in learning from positives only mode [43]. We now consider the key differences
between these algorithms and WARMR. First, WARMR is the first ILP system
to employ the efficient levelwise search method, and mine frequent queries. For
levelwise search, a quality criterion is required that is monotone with respect to
the specialisation relation, cf. [38]. WARMR searches a space of queries, where
frequency is such a monotone quality criterion. Traditional clausal discovery
engines such as CLAUDIEN search a space of clauses, where neither confidence
nor frequency has the desired properties. However, these engines mostly have an
any-time character, and incorporate heuristics to direct the search immediately
to regions where highly confident, and frequent rules can be expected. In that
sense clausal discovery engines are complimentary to WARMR, which performs
an exhaustive search for frequent queries, and only in a post-processing step can
discover rules that meet both the frequency and the confidence standards set by
the user.

An additional advantage with frequent query discovery is that efficient sam-
pling methods for mining association rules, such as those described in [57], are
likely to carry over directly to the ILP setting.

6.3 Association rules with numerical intervals

Some extra complexity arises if items or transactions have numerical properties,
and queries in £ contain atoms that test numerical intervals. Solutions to some of
the problems have been proposed, in the context of association rules, in [54, 62].
Both concentrate on heuristics for finding suitable intervals ([54]) or 2D areas
([62]) of numerical attributes for association rules.

6.4 Future work

We briefly summarize some directions to pursue the research on frequent query
discovery. First, an efficient general method should be developed for query re-
organisation to minimize backtracking. Second, based on Table 1 and Table 2,
a user-friendly generic system could be developed that automatically selects the
most efficient algorithm available. This could be done on the basis of an analysis
of the user inputs, i.e. the database and the language bias. Fourth, Table 1
uncovers a number of “gaps” that could be filled with some very useful special-
ized algorithms. Fifth, many optimizations and techniques for mining and post-
processing frequent patterns and association rules have been proposed. Some

25



of these, such as the sampling techniques described in [57], could probably be
plugged into WARMR without much effort.

7 Conclusions

We have presented a unifying ILP approach to frequent pattern discovery and,
by extension, to association rule discovery. The new task of frequent query dis-
covery has been defined and some of the popular frequent pattern tasks have
been reformulated as instantiations of frequent query discovery. In doing that, a
number of dimensions of the practice of frequent pattern discovery have emerged,
cf. Table 1.

In a second part, we have introduced the frequent query discovery engine
WARMR and repeated the exercise of the first part on the level of algorithms.
This has resulted in a second table with algorithmic dimensions, cf. Table 2,
that, together with the first table, sheds some new light on the expressivity-for-
efficiency trade off.

In the remaining sections, we have considered the application of WARMR to
some new frequent pattern discovery tasks, and to the “real-world” problem of
telecommunication alarm sequence analysis. The main motivation behind these
sections was to position WARMR as a flexible “catch-all” tool that can be used
both by users and developers as a first approach to a new task. In that spirit,
a stand alone version of WARMR is freely available for academic purposes upon
request to Luc Dehaspe.

Acknowledgements

The authors of this paper are listed in alphabetic order. Luc Dehaspe is supported
by ESPRIT Long Term Research Project No 20237, ILP?. Hannu Toivonen is
supported by the Academy of Finland. This paper was conceived while Hannu
Toivonen was visiting the Department of Computer Science, Katholieke Univer-
siteit Leuven.

The authors are grateful to Luc De Raedt for comments on the paper, and
for many fundamental ideas and discussions, to Hendrik Blockeel, Bart Demoen,
and Wim Van Laer for their share in the implementation of WARMR. Data for
the telecommunication alarm sequence analysis experiments is provided by Juka
Leino from Nokia Telecommunications.

References

[1] H. Adé, L. De Raedt, and M. Bruynooghe. Declarative Bias for Specific-To-
General ILP Systems. Machine Learning, 1995. To appear.

26



2]

[12]

R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In P. Buneman and S. Jajodia, editors,
Proceedings of ACM SIGMOD Conference on Management of Data (SIG-
MOD’93), pages 207 — 216, Washington, D.C., USA, May 1993. ACM.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast
discovery of association rules. In U. M. Fayyad, G. Piatetsky-Shapiro,

P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery
and Data Mining, pages 307 — 328. AAAT Press, Menlo Park, CA, 1996.

R. Agrawal and R. Srikant. Mining sequential patterns. In Proceedings
of the Eleventh International Conference on Data Engineering (ICDE’95),
pages 3 — 14, Taipei, Taiwan, Mar. 1995.

F. Bergadano and D. Gunetti, editors. ‘Inductive Logic Programming: from
Machine Learning to Software Engineering. The MIT Press, 1995.

C. Bettini, X. S. Wang, and S. Jajodia. Testing complex temporal relation-
ships involving multiple granularities and its application to data mining. In
Proceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’96), pages 68 — 78, Montreal,
Canada, June 1996.

H. Blockeel and L. De Raedt. Relational knowledge discovery in databases.
In Proceedings of the 6th International Workshop on Inductive Logic Pro-
gramming, volume 1314 of Lecture Notes in Artificial Intelligence, pages

199-212. Springer-Verlag, 1996.

H. Blockeel and L. De Raedt. Top-down induction of logical decision trees. In
Proceedings of the Ninth Dutch Conference on Artificial Intelligence (NAIC-
97), 1997.

H. Blockeel, L. De Raedt, N. Jacobs, and B. Demoen. Scaling up inductive
logic programming. Submitted, 1998.

P. Clark and T. Niblett. The CN2 algorithm. Machine Learning, 3(4):261-
284, 1989.

G. Das, R. Fleischer, L. Gasieniec, D. Gunopulos, and J. Karkkainen.
Episode matching. In Proceedings of the 8th Annual Symposium on Com-
binatorial Pattern Matching (CPM ’97), pages 12 — 27, Aarhus, Denmark,
June 1997.

L. De Raedt, editor. Advances in Inductive Logic Programming, volume 32
of Frontiers in Artificial Intelligence and Applications. 10S Press, 1996.

27



[13]

[14]

[21]

[22]

L. De Raedt. Induction in logic. In R. Michalski and W. J., editors, Pro-
ceedings of the 3rd International Workshop on Multistrategy Learning, pages
29-38, 1996.

L. De Raedt and H. Blockeel. Using logical decision trees for clustering. In
Proceedings of the Tth International Workshop on Inductive Logic Program-
ming, volume 1297 of Lecture Notes in Artificial Intelligence, pages 133-141.
Springer-Verlag, 1997.

L. De Raedt, H. Blockeel, L. Dehaspe, and W. Van Laer. Three companions
for first order data mining. In N. Lavra¢ and S. Dzeroski, editors, Inductive
Logic Programming for Knowledge Discovery in Databases, Lecture Notes in
Artificial Intelligence. Springer-Verlag, 1998. To appear.

L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99-
146, 1997.

L. De Raedt and S. Dzeroski. First order jk-clausal theories are PAC-
learnable. Artificial Intelligence, 70:375-392, 1994.

L. De Raedt and W. Van Laer. Inductive constraint logic. In Proceedings of
the 5th Workshop on Algorithmic Learning Theory, volume 997 of Lecture
Notes in Artificial Intelligence. Springer-Verlag, 1995.

L. Dehaspe and L. De Raedt. DLAB: A declarative language bias formal-
ism. In Proceedings of the International Symposium on Methodologies for
Intelligent Systems (ISMI1S96), volume 1079 of Lecture Notes in Artificial
Intelligence, pages 613-622. Springer-Verlag, 1996.

L. Dehaspe and L. De Raedt. Mining association rules in multiple rela-
tions. In Proceedings of the 7th International Workshop on Inductive Logic
Programming, volume 1297 of Lecture Notes in Artificial Intelligence, pages

125-132. Springer-Verlag, 1997.

T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. Solving the multiple-
instance problem with axis-parallel rectangles. Artificial Intelligence, 89(1-

2):31-71, 1997.

C. Dousson, P. Gaborit, and M. Ghallab. Situation recognition: Represen-
tation and algorithms. In Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence (IJCAI-93), pages 166 — 172, Cham-
bery, France, Aug. 1993.

S. Dzeroski. Inductive logic programming and knowledge discovery in
databases. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors, Advances in Knowledge Discovery and Data Mining, pages

118-152. The MIT Press, 1996.

28



[24]

[25]

[26]

[27]

R. M. Goodman and H. Latin. Automated knowledge acquisition from net-
work management databases. In I. Krishnan and W. Zimmer, editors, Inte-
grated Network Management, II, pages 541 — 549. Elsevier Science Publishers
B.V (North-Holland), Amsterdam, The Netherlands, 1991.

D. Gunopulos, R. Khardon, H. Mannila, and H. Toivonen. Data mining, hy-
pergraph transversals, and machine learning. In Proceedings of the Sizteenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems (PODS’97), pages 209 — 216, Tucson, Arizona, 1997. ACM.

J. Han and Y. Fu. Discovery of multiple-level association rules from large
databases. In Proceedings of the 21st International Conference on Very Large

Data Bases (VLDB’95), pages 420 — 431, Zirich, Switzerland, 1995.

K. Hatonen, M. Klemettinen, H. Mannila, P. Ronkainen, and H. Toivo-
nen. Knowledge discovery from telecommunication network alarm databases.
In Proceedings of the 12th International Conference on Data Engineering
(ICDE’96), pages 115 — 122, New Orleans, Louisiana, Feb. 1996. IEEE Com-

puter Society Press.

M. Holsheimer, M. Kersten, H. Mannila, and H. Toivonen. A perspective on
databases and data mining. In Proceedings of the First International Confer-
ence on Knowledge Discovery and Data Mining (KDD’95), pages 150 — 155,
Montreal, Canada, Aug. 1995. AAAT Press.

J. Kietz and M. Liubbe. An efficient subsumption algorithm for inductive
logic programming. In Proceedings of the 11th International Conference on
Machine Learning. Morgan Kaufmann, 1994.

J.-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic
through syntactic and task-oriented models. In S. Muggleton, editor, Induc-
tive logic programming, pages 335-359. Academic Press, 1992.

M. Klemettinen, H. Mannila, and H. Toivonen. Rule discovery in telecom-
munication alarm data. Journal of Network and Systems Management,

June/July 1998.

W. Klosgen. Explora: A multipattern and multistrategy discovery assistant.
In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining. The MIT Press, 1996.

P. Langley. Elements of Machine Learning. Morgan Kaufmann, 1996.

N. Lavra¢ and S. Dzeroski. Inductive Logic Programming: Techniques and
Applications. Ellis Horwood, 1994.

29



[35]

[36]

[37]

38

[39]

[40]

[41]

[42]

[43]

[44]

[45]

G. Lindner and K. Morik. Coupling a relational learning algorithm with a
database system. In Y. Kodratoff, G. Nakhaeizadeh, and G. Taylor, editors,
Proceedings of the MLnet Familiarization Workshop on Statistics, Machine
Learning and Knowledge Discovery in Databases, Heraklion, Crete, Greece,

1995.

H. Lu, R. Setiono, and H. Liu. Neurorule: A connectionist approach to data
mining. In Proceedings of the 21st International Conference on Very Large

Data Bases (VLDB’95), pages 478 — 489, Zirich, Switzerland, 1995.

H. Mannila and H. Toivonen. Discovering generalized episodes using mini-
mal occurrences. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining (KDD’96), pages 146 — 151, Port-
land, Oregon, Aug. 1996. AAAT Press.

H. Mannila and H. Toivonen. Levelwise search and borders of theories in
knowledge discovery. Data Mining and Knowledge Discovery, 1(3):241 — 258,
1997.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent episodes
in event sequences. Data Mining and Knowledge Discovery, 1(3):259 — 289,
1997.

T. Mitchell. Generalization as search. Artificial Intelligence, 18:203-226,
1982.

R. A. Morris, L. Khatib, and G. Ligozat. Generating scenarios from specifi-
cations of repeating events. In Second International Workshop on Temporal
Representation and Reasoning (TIME-95), Melbourne Beach, Florida, Apr.
1995.

S. Muggleton. Inverse entailment and progol. New Generation Computing,

13, 1995.

S. Muggleton. Learning from positive data. In S. Muggleton, editor, Pro-
ceedings of the 6th International Workshop on Inductive Logic Programming,
pages 225-244. Stockholm University, Royal Institute of Technology, 1996.

S. Muggleton and L. De Raedt. Inductive logic programming : Theory and
methods. Journal of Logic Programming, 19,20:629-679, 1994.

C. Nédellec, H. Adé, F. Bergadano, and B. Tausend. Declarative bias in
ILP. In L. De Raedt, editor, Advances in Inductive Logic Programming,

volume 32 of Frontiers in Artificial Intelligence and Applications, pages 82—
103. IOS Press, 1996.

30



[46]

[47]

48]

[49]
[50]

[51]

[54]

[55]

T. Oates and P. R. Cohen. Searching for structure in multiple streams of
data. In Proceedings of the Thirteenth International Conference on Machine
Learning (ICML’96), pages 346 — 354, San Francisco, CA, July 1996. Morgan

Kaufmann.

B. Padmanabhan and A. Tuzhilin. Pattern discovery in temporal databases:
A temporal logic approach. In Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining (KDD’96), pages 351-354,
1996.

G. Plotkin. A note on inductive generalization. In Machine Intelligence,
volume 5, pages 153-163. Edinburgh University Press, 1970.

J. Quinlan. Induction of decision trees. Machine Learning, 1:81-106, 1986.

R. Sasisekharan, V. Seshadri, and S. M. Weiss. Data mining and forecasting
in large-scale telecommunication networks. IEFEE Fzpert, Intelligent Systems

& Their Applications, 11(1):37 — 43, 1996.

A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining
association rules in large databases. In Proceedings of the 21st International
Conference on Very Large Data Bases (VLDB’95), pages 432 — 444, Ziirich,
Switzerland, 1995.

W. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Metaqueries for data
mining. In U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,

editors, Advances in Knowledge Discovery and Data Mining, pages 375-398.
The MIT Press, 1996.

R. Srikant and R. Agrawal. Mining generalized association rules. In U. Dayal,
P. M. D. Gray, and S. Nishio, editors, Proceedings of the 21st International
Conference on Very Large Data Bases (VLDB’95), pages 407 — 419, Ziirich,
Switzerland, 1995. Morgan Kaufmann.

R. Srikant and R. Agrawal. Mining quantitative association rules in large
relational tables. In Proceedings of ACM SIGMOD Conference on Manage-
ment of Data (SIGMOD’96), pages 1 — 12, Montreal, Canada, 1996.

R. Srikant and R. Agrawal. Mining sequential patterns: Generalizations and
performance improvements. In Advances in Database Technology—5th Inter-
national Conference on Eztending Database Technology (EDBT’96), pages
3 — 17, Avignon, France, 1996.

R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item
constraints. In D. Heckerman, H. Mannila, D. Pregibon, and R. Uthurusamy,
editors, Proceedings of the Third International Conference on Knowledge

Discovery and Data Mining (KDD’97), pages 67 — 73. AAAT Press, 1997.

31



[57]

[58]

[59]

[60]

[61]

[62]

H. Toivonen. Sampling large databases for association rules. In Proceedings
of the 22nd International Conference on Very Large Data Bases (VLDB’96),
pages 134 — 145, Mumbay, India, Sept. 1996. Morgan Kaufmann.

J. D. Ullman. Principles of Database and Knowledge-Base Systems, vol-
ume I. Computer Science Press, Rockville, MD, 1988.

J. T.-L. Wang, G.-W. Chirn, T. G. Marr, B. Shapiro, D. Shasha, and
K. Zhang. Combinatorial pattern discovery for scientific data: Some pre-
liminary results. In R. Snodgrass and M. Winslett, editors, Proceedings of
ACM SIGMOD Conference on Management of Data (SIGMOD’94), pages
115 — 125, Minneapolis, MI, June 1994. ACM.

I. Weber. Discovery of first-order regularities in a relational database us-
ing offline candidate determination. In Proceedings of the 7th International
Workshop on Inductive Logic Programming, volume 1297 of Lecture Notes
in Artificial Intelligence, pages 288-295. Springer-Verlag, 1997.

S. Wrobel. An algorithm for multi-relational discovery of subgroups. In
J. Komorowski and J. Zytkow, editors, Proceedings of the First European
Symposium on Principles of Data Mining and Knowledge Discovery (PKDD
’97), pages 78 — 87. Springer-Verlag, 1997.

K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Com-
puting optimized rectilinear regions for association rules. In D. Heckerman,
H. Mannila, D. Pregibon, and R. Uthurusamy, editors, Proceedings of the
Third International Conference on Knowledge Discovery and Data Mining

(KDD’97), pages 96 — 103. AAAT Press, 1997.

32



