
Base Architectures for NLP

Tom Mahieu, Stefan Raeymaekers et al.

Department of Computer Science
K.U.Leuven

Abstract

Our goal is to develop an object-oriented framework for natural language processing (NLP).
With this framework it should be possible to create a varietyof applications ranging from
simple spelling checkers to complex translation systems, just by plugging different compo-
nents (e.g. a morphological lookup component, chart parsercomponent, etc) in the frame-
work.

This paper compares two base architectures that can form thecore of such an NLP
system. The first one considers NLP from a processing point ofview (a text gets processed),
the second one from a text point of view (a text processes itself).

Some important considerations are made on how configurable and open the system is.
Considerations to make the system concurrent and distributed to obtain better performance
are also discussed.

1 Introduction

Natural language processing (NLP) systems encompass a large range of applica-
tions ranging from simple spelling checkers over grammar checkers to complex
translation systems. As all these applications have the same NLP context, they
contain several similarities. Despite these similarities, application programmers
have not made any effort to build their systems modular enough in order to reuse
certain parts of one system in another system. The result of this approach leads
to very monolithic systems that are hard to extend and maintain. Also, the devel-
opment of new systems is a very costly process since every application has to be
written from scratch again.

The preferred way to build new systems nowadays is to create an open and flex-
ible system that presents base functionality to the application programmer. This
base system is created in such a way that its default behaviorcan be changed in a
uniform way. The application programmer has to write application specific code,
or in the best case reuse an already existing component, thatcan be plugged in the
base system. In this way, the programmer can create a family of related products.
Using this approach, reuse is driven to the maximum; the basesystem is always
reused, and existing components can also be reused when desired.

Our first goal is to obtain a flexible NLP system by creating an object-oriented
(OO) framework that presents the base system. The application programmer gets
the necessary information on how to build components that fitin this system. The
object-oriented way of doing this is to provide the application programmer the

2 Tom Mahieu, Stefan Raeymaekers et al.

necessary interfaces to which the component must comply. Also a library of off-
the-shelf components the application programmer can use toplug into the base
system can be provided. We will focus on text processing systems. Our second
goal is enabling the system to run in a concurrent and distributed environment.
This will also be beneficial since NLP systems can perform very computational
intensive tasks.

This paper will present two core architectures that can be used as a base for an
NLP system. We also discuss what the possibilities of concurrency and distribu-
tion could be when applied to the two core architectures. Section 2 presents the
two main ideas concerning a base system: NLP from a processing point of view
(section 2.2) and NLP from a text point of view (section 2.3).Section 3 discusses
the openness and flexibility of both systems. Section 4 will provide more infor-
mation concerning the concurrency and distribution issues. We conclude with the
future plans we make.

2 Base Architectures for NLP

In this section we will present two core architectures that can form the base for a
NLP system, for text processing systems more specifically. Two important things
in an NLP system are the representation of the text and the representation of the
algorithms that will process that text. These two factors are the driving force of the
two core architectures presented here. They originate fromtwo different points of
view:

� A processing point of view: the process is the driving force.A process
accepts a text and processes it.

� A text point of view: the text is the driving force. A text is processed by
taking a process and applying it to itself

Since the two points of view use the same basic model of a text,this text model
is presented first. Section 2.2 and Section 2.3 will then explain the two approaches.
Each point of view consists of two parts: first the concepts are explained, then these
ideas are supported by more formal UML diagrams. Note that noknowledge of
UML is required to understand the concepts explained in thispaper. The UML
models in this paper just show a more formal approach to the presented concepts.

2.1 The Text Model

The text model we present in this section is used by both points of view. First the
conceptual text model we have in mind is explained, then we give an example of a
UML diagram of a text model.

Base Architectures for NLP 3

Sentence

Sentence

Sentence

Sentence

Chapter

Paragraph Paragraph

Sentence Sentence

Text

Chapter

+

b i m

u f t

t

...

...
...

... ...

...

Figure 1: The text model with some TDV’s

2.1.1 Concept

Since it is our intention to develop a framework for natural language processing,
the text model should not impose any limitations to the possible applications that
will be instantiated from our framework. The text model we use will thus often
contain more information than we will need in one application. E.g. layout infor-
mation can be included which will not be relevant for a spelling checker.

We hierarchically decompose a text in chapters, paragraphs, sentences and so
long. Since it is not likely that this hierarchical model will always be used, we
provide the possibility to create user defined text data views. It is possible to
create a text data view (TDV) that contains only the information we need for a
certain text processing routine. Figure 1 shows our conceptual text model with
some possible TDV’s. In the figure, the text is also seen as a list of sentences and
a letter tree containing all the words in our text.

The way we intend to work with TDV’s is the following. A TDV gives us
access to a particular subset of our text. During the processing this subset can be
changed. This change will be propagated to the actual complete text when it is
desired. This is necessary because some processing routines will use the normal,
hierarchical text model, and others will access the text model through a TDV. It
should be possible to propagate changes made using a TDV to the hierarchical text
model. In this way the latter routines can always cooperate with the former.

2.1.2 UML

A UML model of a text model for a translation system can be found in figure
2. The Text class contains one (and only one) obligatory hierarchical text model.
This hierarchical text model is a Composite pattern (Gamma,Helm, Johnson and
Vlissides 1995). In this model the basic components are sentences. The other
components such as chapters, sections, paragraphs etc. areimplemented as a Hier-

4 Tom Mahieu, Stefan Raeymaekers et al.

NotToTranslateSentence HierarchicalComponent

Text

+ getSentences()
TextComponent
<<Interface>>

**11

TextView
<<Interface>>

1

0..*0..*

0..*

0..*

1 1

0..*
1

0..*

Figure 2: The UML text model

archical Components. Components that are not interesting for translations such as
pictures are encapsulated in NotToTranslate objects. The basic components don’t
have to be sentences. They can also be words, depending on theproblem domain
you are dealing with.

A text can have several TDV’s (TextView class) which can be related to the hi-
erarchical text model. The TextView class is an abstract class because the behavior
of every single TDV will be different from another one.

2.2 The Processing Point of View

2.2.1 Concept

A Pipeline and Dynamic Behavior This point of view originates from the tra-
ditional way of procedural thinking. A text undergoes several processing steps to
obtain the desired result. This way of working can be seen as sending a text through
a pipeline of processing steps. A pipeline is modeled using different pipeline pro-
cesses that can be connected to each other according to a specific configuration.
An example of a pipeline is depicted in Figure 3. The example represents a se-
quence of possible processing steps in a translation system. A text is submitted
to the first processing step. When the step is finished the textis sent to the next
processing step. When the last step exits, the result is returned to the caller of the
pipeline.

This way of working always leaves us with fixed pipelines: allprocessing steps
will be taken when a text is submitted to the pipeline. For a framework this model
is not flexible enough. Often another pipeline setup will be needed when certain
conditions are met. These conditions can be static and can sometimes even change

Base Architectures for NLP 5

Text Translated Text

Morphological
Lookup

Parsing Transfer Generation

Submit

Figure 3: A simplified translation pipeline

dynamically (during processing). To be able to change the pipeline, we introduce a
pipeline monitor. When a text needs to be processed it is submitted to the pipeline
through the pipeline monitor.

The application programmer encapsulates all the pipeline knowledge into this
pipeline monitor(PM): what steps are needed to obtain the desired result (static
conditions) and what alternatives are possible that can only be determined at run-
time (dynamic conditions), such as characteristics of the text, whether some TDV
is present, whether the text has already been processed etc.

Figure 4 shows the way the PM interacts with the actual pipeline. The PM first
selects a first step in the pipeline and sends the text to this step. The particular
processing step accepts the text, handles it and then returns the resulting text back
to the PM. The PM then selects the following processing step,submits the text,
etc. When certain conditions are met the PM can change the pipeline by inserting
processing steps or taking alternative processing steps ascan be seen on the figure.

Nested Pipelines Often the entire detailed text structure is not needed when we
want to process a text. We do not want to write a spelling checker algorithm that
has to know the entire text structure. We just want it to accept a word, check if it
is written correctly, and report when a misspelled word is encountered.

We solve this problem by making it possible to nest pipelines. The pipelines
can be nested in any way, but they will mostly be nested according to the text struc-
ture. First, we make a distinction between iteration processes and implemented
processes. An iteration pipeline process knows only about (a part of) the text
structure andnested pipelines. An implemented pipeline process also knows how
to process(a part of) the text structure. An iteration process can onlystructurally
decompose the text and delegate the substructures to a nested pipeline where an
implemented process also implements a part of the actual text processing.

6 Tom Mahieu, Stefan Raeymaekers et al.

Pipeline Monitor

Processed TextText submit result

Possible alternative pipeline steps

Monitor/Pipeline Step interaction

Normal pipeline step ordering

Figure 4: The pipeline monitor enables dynamic pipelines

Iteration processes are always related to a nested pipeline. Figure 5 is an ex-
ample of a translation system that is implemented using a nested pipeline. First
the text is submitted to a text pipeline. First a morphological lookup is done (ML),
after which the actual processing is started. However, if weonly translate on a
sentence by sentence basis, our translation step (TL) can bemodeled as an iter-
ation process. The process decomposes our text in sentences(by using a TDV
or by really decomposing the text) and submits those sentences one by one to a
sentence translation pipeline. The Sentence Pipeline Monitor then does the actual
translation of each sentence (Parsing (PA) and Transfer (TR)). When the sentence
is translated, the result is passed to the caller of the pipeline, which is the TL pro-
cess. After TL iterated over all the sentences, the text is translated and the next
text processing step in our text pipeline can be called (Generation (GE)).

This nesting can go as deep as desired. E.g. The sentence pipeline can consist
of an iteration process that splits the sentence up in words,which can then be sent
to a word pipeline.

2.2.2 UML

A UML class model of the process point of view is depicted in figure 6. Every
pipeline monitor is aware of several processes that can process the data structure
the monitor is responsible for. These processes are dividedbetween Implemented
Processes and Iteration Processes. Iteration Processes can delegate substructures
to pipelines that can process the substructures.

Base Architectures for NLP 7

Text

Sentence Pipeline Monitor

Text Pipeline Monitor

Text Text Text

Sentence Sentence

Sentences

ML TL GE

PA TR

Figure 5: A nested translation pipeline

ImplementedProcess

TextProcess

+ handle(thetext : Text, targettext : Text)

TextPipelineMonitor

+ pipeIt(thetext : Text, targetext : Text)

*

1

*

1

SentenceProcess

+ handle(thesentence : Sentence, targetsentence : Sentence)

SentencePipelineMonitor

+ pipeIt(thesentence : Sentence, targetsentence : Sentence)

*

*

*

*

IterationProcess

1

*

1

*

Sentence
(from TheText)

Text

+ getSentences()

(from TheText)

Figure 6: A UML model of a nested pipeline

8 Tom Mahieu, Stefan Raeymaekers et al.

The figure is not complete and is only a part of a complete pipeline. Iteration
processes can be related to every type of pipeline as long as it is a pipeline that
can handle a substructure of the structure the iteration process can handle. The
example in the figure shows us only a subset of the entire situation: an iteration
process from a text pipeline related with a sentence pipeline monitor.

Pipeline monitors have nothing in common with each other. Indeed, they ac-
cept text (sub)structures. We could have made one general pipeline monitor that
handles text component classes. The pipeline monitor couldthen be connected to
a general text component process. However, we would have to insert reflection
code, which enables us to obtain precise type information onthe classes we work
with, to check if we make correct pipelines. We could easily build pipelines where
a sentence pipeline has a text pipeline nested in it, if we don’t do the necessary
checks.

In our model everything is made specific. Which means we have alot more
classes. Instead of one general monitor with one general text component it can
handle, we have made pipeline monitors and related processes for every type of
text component. Disadvantage is that we have an explosion ofclasses when we
have a very fine grained text model. In that case, working witha general pipeline
monitor and processes would be more feasible.

2.3 The Text Point of View

2.3.1 Concept

The text point of view originates from a more object orientedbackground. Instead
of having an algorithm that processes a text, the text will process itself. This
means that next to the data representation, the text encapsulates information on
how to process itself.

The biggest problem that arises is the reusability of the system. Since all the
information will be placed in the text data structure, the data structure will need to
be changed when we want to write another text processing application. Since this
is not the desired situation for a text processing framework, we decouple the text
and the processing algorithm from each other. The text modelwe use is the same
as presented in section 2.1. The processing components are encapsulated intext
visitors.

To enable easy configuration, we again have a supervising unit, called the pro-
cessor, that implements a text processing system using several text visitors and
controls the entire processing statically as well as dynamically (by taking runtime
decisions). The processor selects several text visitors insome order, hands them to
the text and asks the text to process itself using these text visitors. Bottom line is
that the processor knowswhatneeds to be done, step by step. The text visitors are
the steps that knowhowto do it, as long as the processor sends them to the text in
the right order.

The text visitor (TV) reflects the hierarchical structure ofthe text. For every

Base Architectures for NLP 9

handleText()

handleParagraph()

handleSentence()

handleChapter()

text

chapter chapter

paragraph paragraph

sentence sentence

chooses
accept

handle

Processor

Morphological Lookup

Figure 7: The text point of view

subcomponent of the text, the TV contains a handler that tells the visitor how to
process that type of subcomponent. For every possible TDV there should be a
separate text visitor. The processor can instantiate the right TV when a TDV is
present and send it to the text.

Figure 7 clarifies this approach with an example. We are implementing the
translation process we already presented in section 2.2.1.First we want to look
up word information in our dictionary. Our processor chooses a morphological
lookup (ML) component and asks the text to accept the component. Upon accep-
tance, the text starts processing itself by calling thehandleText()method.handle-
Text()takes the title of the text, which can be retrieved from the root text compo-
nent of the text structure, and starts looking up the words from the title. When
handleText()finishes looking up the words,handleText()starts iterating over the
subcomponents of the Text object (chapters) by sending the ML component to
these subcomponents. The chapter objects also accept, but this timehandleChap-
ter() is called. The words in the title of the chapter are looked up,and thenhan-
dleChapter()iterates again over the paragraphs in the text. This continues until
the leaves in our text structure are looked up. The ML component finishes and the
processor can select the following component, e.g. a chart parser (PA). The chart
parser is sent over the text structure in the same way, parsing the text title, chapter
title and so long1. Subsequently a Transfer (TR) TV and a Generation (GE) TV
(in that order) complete the processing of the text.

1Note that because of the structural processing of the text, it is possible to plug in different grammars
for different sentence types. A chapter title will probablynot be a grammatically correct sentence, but
can be an incomplete sentence. To obtain a correct parsing ofthese constructions, a modified grammar
can be used for different structural text components, such as a chapter or a sentence.

10 Tom Mahieu, Stefan Raeymaekers et al.

Sentence

NotToTranslate

VisitorProcess

+ visitHierarchicalComponent(hc : HierarchicalComponent, target : HierarchicalComponent)
+ visitSentence(s : Sentence, target : Sentence)
+ visitNotToTranslate(nt : NotToTranslate, target : NotToTranslate)

<<Interface>>

Processor

+ execute()

HierarchicalComponent

Text

+ setProcessor(c : Processor)
+ addTextView(key : Integer, v : TextView)
+ getTextView(key) : TextView
+ getTheText() : TextComponent
+ process()

1

1

1

1

TextComponent

+ accept(vp : VisitorProcess, target : TextComponent)

<<Interface>>

1 11 1

1

*

1

*

TextView

+ accept(vp : TextViewVisitor)

<<Interface>>

1

0..*

1

0..*

0..*

0..*

0..*

0..*

TextViewVisitor

+ visitTextView(tv : TextView, target : TextView)

<<Interface>>

Figure 8: A UML model of the text point of view

2.3.2 UML

The implementation of this system can be reduced to two design patterns(Gamma
et al. 1995): A Composite pattern for the text representation and a Visitor pattern
to implement the Text Visitors. A model of the system can be found in figure 8.

The text model used here is exactly the same as the one in Section 2.1.2. The
model is enriched with a Visitor that can handle the possibleconcrete Compos-
ite classes Sentence, NotToTranslate and HierarchicalComponent. For each con-
crete class in the text model, an operation should be presentin the visitor. For
TextViews, another Visitor class is present, since it will not use the standard text
model, but the specific TDV structure.

The usage of this architecture is the following. First the text class is configured
with a Processor through thesetProcessor()member function. Then theprocess()
function is called which starts the processing of the text using the Processor. There
is also the possibility to add text views and requesting those text views to the Text
class.

The TextComponent class contains anaccept()operation which is the entry
point for the Visitor. The Visitor class is accepted throughthis accept call. Every
concrete text component then implements this method in order to call the correct
visitor method, which will then do the actual processing. Also note that each
text component will also have to provide an interface so thatcomponent specific
information can be retrieved. This is not an easy task, sincethe interfaces should
provide information for all the possible text processing applications.

Base Architectures for NLP 11

2.4 Discussion

The two approaches can be seen as opposite point of views. Theprocess point of
view boils down to sending a text through several processes to obtain a result. The
text point of view is sending several processes through a text.

Although the two models can be seen as opposites, they have a lot in common
too. They share the same text model. They both offer the possibility to take run-
time processing decisions based on text characteristics. This is obtained by using
pipeline monitors in the process point of view and processors in the text point of
view.

Also note the following: since a text visitor has an operation to handle every
text substructure, the application programmer is forced toobey the text structure.
A handling routine needs to be written for every substructure. There is no other
way to visit the entire text structure otherwise. In the process point of view this is
not the case. You can handle the entire text in one routine if you want that.

In the process point of view, pipelines get nested accordingto text structure.
Since in the text point of view, text processing always happens according to text
structure, there is no nesting of text visitors necessary.

3 Some Non-Functional Considerations

The previous section discussed two ways of how to process text. In this section,
some considerations are made on how feasible these two ways of working are to
form the base of a framework. We discuss how the base system can be configured
into different text processing applications. We also make some reusability consid-
eration concerning the systems. Also important is how flexible the systems are in
creating applications.

3.1 Configurability

A framework should offer some base functionality that can beconfigured into a
complete, working application. Both our systems introducea pattern the applica-
tion programmer must work with. In the process point of view,we need to build
a pipeline to create a text processing system. In the text point of view we have to
send a sequence of text visitors to the text to create a text processing system.

In the processing point of view, an application can be made bymaking a
pipeline monitor, provided that all the pipeline steps are available. The situation is
similar for the text point of view, where a processor encapsulates all of the applica-
tion’s logic. In both approaches, the actual application logic is centralized in one
object and with both approaches, creating a new system boilsdown to choosing
the right pipeline processing steps or text visitors and putting them in the correct
order.

12 Tom Mahieu, Stefan Raeymaekers et al.

3.2 Reusability

The goal of a framework is to drive reusability to the maximum. When we want
to create a new application, we should be able to do this with aminimal effort.
The ideal situation is to build component based systems: a new application is
built by taking several relatively independent componentsand bringing them to-
gether. The cooperative behavior of the components (morphological lookup sys-
tem, chart parser, text formatter, word counter, etc) results in a very specific appli-
cation (translations system, spelling checker, text categorization system, etc.).

The two systems encourage you to work component oriented, but none of them
really enforces you to build relatively independent components. In the pipeline
model, every pipeline step can be programmed to be an independent processing
step. However, there is nothing to stop you from passing other information, other
than the information stored in the text, to other pipeline processes. By doing this,
you create perhaps unwanted dependencies between pipelineprocesses.

The same problem occurs in the text point of view. Text visitors are the reusable
components, but they can be related to each other by passing data structures to each
other, instead of just relying on the information present inthe text structure.

This may sound bad, but usually there is always some kind of dependency be-
tween several components. A grammar checker will not work ifthere is no gram-
matical information about the words present in the text. In that way the grammar
checker will depend on a word lookup system. But the word lookup system can
for instance also be used in a translation system.

The dependencies we want to avoid are the following. E.g. Some pipeline
process can pass information, other than information that is directly related to the
text, by means of a TDV to another process, which is further down the pipeline.
This creates a dependency between the two pipeline processes. The latter process
will never be able to work if the first process did not create the TDV.

3.3 Flexibility

Now that we have a, to some extent, configurable and reusable system, it is also
interesting to know how easy it is to create a new text processing system. Since we
try to work component oriented, it will be pretty easy to create a new applications
when all the necessary components are available. We only need to create a new
Pipeline monitor (process p.o.v.) or Processor (text p.o.v.) which instantiates the
correct components.

It will not always be easy though. Since it can not always be anticipated what
application we will have to write using the framework, it is possible that changes
need to be made to the framework. Some changes can have a largeimpact on our
system.

Writing components will not impose any problems. We can easily create differ-
ent implementations for a component. The real problems occur when we change

Base Architectures for NLP 13

the text model. If we decide to use a modified text model, or change the interfaces
to retrieve information from the text components, chances exist that none of our
components will still work, because all components rely on the structure. An ex-
ample: suppose we introduce an extra structural component in our text: a text can
first be split up in parts before it gets split up in chapters. None of our text visitors
will work, because there is nohandlePart()method available to do the right thing.
Also, thehandleText()method will need to be changed too, becausehandleText()
might iterate over its subcomponents, which are now parts instead of chapters. The
same problem can happen in the pipeline model.

We can conclude that both systems are flexible with a fixed textmodel. When
the text model changes, our entire repository of off-the-shelf components breaks.
This is obvious because the text will always be the center of our applications. A
careful design of the text model is therefore a must.

4 Concurrent and Distributed Systems

4.1 Concurrency and Distribution possibilities in the models

Text processing systems perform very computational intensive tasks. Hence they
would benefit from a concurrent and distributed environment. Concurrency intro-
duces the notion of simultaneity. A concurrent system can e.g. run on a multi-
processor computer system, spreading its tasks over the available processors,
which then execute these tasks simultaneously. A distributed system runs on multi-
ple computers in a network. These computers can share tasks in order to distribute
the workload over several computers in the network. Above all, network envi-
ronments are usually a lot cheaper than multi-processor systems. Distributed and
concurrent systems usually benefit from a performance increase because of the in-
creased computing power that is available, but also introduce network failure and
synchronization problems.

The two points of view presented in this paper can easily be mapped on such
environments. The processing point of view can for instancebe mapped on several
computers in a network, by putting every pipeline step as well as the pipeline
monitor on a different computer. Coordination between the steps and the monitor
happens by using the network. One pipeline step can even be distributed over
several computers when necessary.

Concurrent behavior can occur within one pipeline step by making a chart
parser parse several sentences at the same time. It can also occur between sev-
eral pipeline steps. In a translation system, when the wordsfor the first sentence
are looked up, the sentence can already be submitted to the parsing step, while the
lookup component continues looking up words for the second sentence. When the
lookup component is a lot faster than the parse component, wecan distribute our
sentences to several parse components that are scattered over our network and let
our pipeline monitor distribute the load over the differentparse components. The
number of possibilities is endless.

14 Tom Mahieu, Stefan Raeymaekers et al.

Chapter

Paragraph Paragraph

Sentence Sentence

Text

Chapter

network

Figure 9: A text distributed over several computers

Mapping the text point of view to a distributed system can be done in a similar
way by sending the text to several hosts, each presenting a different text visitor to
the text. The processor decides the order in which the text issent to the several
computers. Mapping the text point of view can also be done in another way. We
can spread the text structure over different computers. A simple example of this
approach can be seen in figure 9. Note that this division of thetext over several
computers is out of balance, but is only meant as an example. The text is then
scattered in several parts over our network. On each computer, text visitors can
then handle the text, eventually in a concurrent way. While,for example, a text
visitor is doing a morphological lookup on the text and chapter subcomponents,
another morphological lookup text visitor can do the same onthe paragraph and
sentence components that are located on another host.

This concurrent processing can be pretty easy by just instantiating several vis-
itor that are independent of each other. In other cases the visitors will have to be
synchronized with each other. E.g. in a text formatting system, it will be difficult
to format a sentence when the paragraph has not been formatted yet.

4.2 Orthogonal Implementation

Writing NLP systems is already a difficult task and it does notget easier when
the system should offer possibilities for concurrent and distributed development.
Techniques like multithreading, network programming through sockets, remote
method invocation (RMI) and object request brokers (ORB’s)make it possible
to think about such systems at a higher level. We will not discuss these tech-
niques in detail here. A good introduction to multithreading (in Java) can be found
in (Lea 1996). (Eckel 1998) is also good reading when alreadyacquainted with
Java. Information on ORB’s seen from a component point of view can be found in
(Szyperski 1998).

A requirement when creating distributed and concurrent systems is the orthog-

Base Architectures for NLP 15

onality between the functional aspects of the application,being the processing of
text, and the non-functional aspects of the application, being the concurrency and
distribution. The application programmer of the text processing system should not
(or as little as possible) be bothered with the distributionaspects of the framework.
For example, When you are building a pipeline architecture,you don’t want to
be bothered with the deployment characteristics of this architecture: you are not
interested in whether every pipeline step will be on one computer or not, whether
you will use two parser pipeline steps to concurrently parseyour sentences or just
one parser step, etc. State of the art techniques to decouplefunctional aspects
from non functional aspects this are Meta level programmingor Aspect Oriented
programming. (Introductions in (Zimmerman 1996), (Kickzales, Lamping, Mend-
hekar, Maeda, Lopes, Loingtier and Irwin 1997), (Mens, Lopes, Tekinerdogan and
Kiczales 1997))

5 Conclusion and Future Work

In this paper we present two base architectures for text processing systems. A
requirement for these architectures is that they are flexible in usage and improve
component reusability. The first architecture processes text from a process point
of view and the second from the text point of view. The processpoint of view is
a pipeline architecture which allows nesting of pipelines to allow more structural
processing of texts. The text point of view is based on the Visitor design pattern
(Gamma et al. 1995) and therefore inherently enforces structural text processing.

Computational intensive applications can benefit from a concurrent and dis-
tributed environment. This has been illustrated and some techniques to enable the
two core architectures for such environments have been mentioned.

We are currently designing a framework for an NLP translation system, which
is being developed in a project in cooperation with LANT nv. We intend to use
one of the two core architectures presented in this paper. Before the actual design
of the framework, we will first evaluate the two systems. The approach we take is
as follows: a small application (a word by word translator) will be programmed in
Java using both base systems. The text point of view has already been programmed
and works properly. The pipeline approach still needs to be programmed.

After both approaches have been evaluated, the actual framework using one of
the approaches will be designed by modeling a more realistictext model and inte-
grating this text structure in the system. Next step is integrating a morphological
lookup component (Stefan Raeymaekers) in the system. Aftersuccessfully com-
pleting this step, a translation system will be incrementally (i.e. componentwise)
be designed and implemented to the framework architecture.

Next to the creation of the framework, research will be done on the orthogo-
nal mapping of the framework on a concurrent and distributedsystem, using the
techniques mentioned in section 4.2.

16 Tom Mahieu, Stefan Raeymaekers et al.

References

Eckel, B.(1998),Thinking in Java, Prentice Hall, chapter 14–15, pp. 519–716.
Gamma, E., Helm, R., Johnson, R. and Vlissides, J.(1995),Design Patterns: Ele-

ments of Reusable Object Oriented Software, Addison-Wesley.
Kickzales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-

M. and Irwin, J.(1997), Aspect-oriented programming,in M. Aksit and
S. Matsuoka (eds),Ecoop’97 Proceedings - Object-Oriented Programming,
Springer-Verlag, pp. 220–242.

Lea, D.(1996),Concurrent Programming in Java, The Java Series, Addison-
Wesley.

Mens, K., Lopes, C., Tekinerdogan, B. and Kiczales, G.(1997), Aspect-oriented
programming workshop report,in J. Bosch and S. Mitchell (eds),Ecoop’97
Proceedings - Object-Oriented Technology, Workhop Reader, Springer-
Verlag, pp. 483–496.

Quatrani, T.(1998),Visual Modeling with Rational Rose and UML, Object Tech-
nology Series, Addison-Wesley.

Szyperski, C.(1998),Component Software, Addison-Wesley, chapter 12–19.
Zimmerman, C. (ed.)(1996),Advances in Object-Oriented Metalevel Architectures

and Reflection, CRC Press.

A UML

This appendix contains a short reference to the UML notation. For a more com-
plete but short explanation of the UML we refer to (Quatrani 1998).

attribute

operation()

ClassName

UML Class

<<StereoType>>

ClassName Stereotyped Class

*1

An association relationship that has
left multiplicity oneand right mul-
tiplicity many. An object of the
left hand side class can be associ-
ated withmanyobject of the right
hand side class. An object of the
right hand side class can be associ-
ated withoneobject of the left hand
side class.

Base Architectures for NLP 17

An aggregation relationship. An
object of the left hand side class
of the relationship contains a num-
ber of objects of the right hand side
class

A generalization, specialization re-
lationship. An object of the left
hand side class is a generalization
of an object of the right hand side
class

A dependency or instantiates rela-
tionship. An object of the left hand
side class depends on or instantiates
an object of the right hand side class

