Base Architectures for NLP

Tom Mahieu, Stefan Raeymaekers et al.

Department of Computer Science
K.U.Leuven

Abstract

Our goal is to develop an object-oriented framework for redtianguage processing (NLP).
With this framework it should be possible to create a var@tgpplications ranging from

simple spelling checkers to complex translation systeuss iy plugging different compo-

nents (e.g. a morphological lookup component, chart paxs@ponent, etc) in the frame-
work.

This paper compares two base architectures that can formatteeof such an NLP
system. The first one considers NLP from a processing poirieaf (a text gets processed),
the second one from a text point of view (a text processel)itse

Some important considerations are made on how configurabl®gen the system is.
Considerations to make the system concurrent and distdidotobtain better performance
are also discussed.

1 Introduction

Natural language processing (NLP) systems encompasserkange of applica-
tions ranging from simple spelling checkers over grammaickhrs to complex
translation systems. As all these applications have theeddb context, they

contain several similarities. Despite these similarjtegsplication programmers
have not made any effort to build their systems modular ehdaugrder to reuse
certain parts of one system in another system. The resufti@Bpproach leads
to very monolithic systems that are hard to extend and miainfdso, the devel-

opment of new systems is a very costly process since eveticapipn has to be

written from scratch again.

The preferred way to build new systems nowadays is to creatpan and flex-
ible system that presents base functionality to the apgdicgprogrammer. This
base system is created in such a way that its default behesiobe changed in a
uniform way. The application programmer has to write aggian specific code,
or in the best case reuse an already existing componentahdte plugged in the
base system. In this way, the programmer can create a fafmigfaied products.
Using this approach, reuse is driven to the maximum; the bgstem is always
reused, and existing components can also be reused wheedlesi

Our first goal is to obtain a flexible NLP system by creating bject-oriented
(O0) framework that presents the base system. The applicatbgrammer gets
the necessary information on how to build components that fitis system. The
object-oriented way of doing this is to provide the applimatprogrammer the

2 Tom Mahieu, Stefan Raeymaekers et al.

necessary interfaces to which the component must compgo allibrary of off-

the-shelf components the application programmer can ugdutpinto the base
system can be provided. We will focus on text processingesyst Our second
goal is enabling the system to run in a concurrent and diggi environment.
This will also be beneficial since NLP systems can perforny wermputational
intensive tasks.

This paper will present two core architectures that can led as a base for an
NLP system. We also discuss what the possibilities of caeouay and distribu-
tion could be when applied to the two core architecturesti®@e® presents the
two main ideas concerning a base system: NLP from a progepsimt of view
(section 2.2) and NLP from a text point of view (section 23gction 3 discusses
the openness and flexibility of both systems. Section 4 wiljmle more infor-
mation concerning the concurrency and distribution issWéss conclude with the
future plans we make.

2 Base Architectures for NLP

In this section we will present two core architectures ttzat form the base for a
NLP system, for text processing systems more specificallyp important things

in an NLP system are the representation of the text and threseptation of the
algorithms that will process that text. These two factoesthe driving force of the
two core architectures presented here. They originate fwandifferent points of

view:

e A processing point of view: the process is the driving forae.process
accepts a text and processes it.

e A text point of view: the text is the driving force. A text isqaressed by
taking a process and applying it to itself

Since the two points of view use the same basic model of attégttext model
is presented first. Section 2.2 and Section 2.3 will thenarhe two approaches.
Each point of view consists of two parts: first the concepsaplained, then these
ideas are supported by more formal UML diagrams. Note thdtnmwledge of
UML is required to understand the concepts explained inghjger. The UML
models in this paper just show a more formal approach to tbegmted concepts.

2.1 The Text Model

The text model we present in this section is used by both paifitiew. First the
conceptual text model we have in mind is explained, then we am example of a
UML diagram of a text model.

Base Architectures for NLP 3

Figure 1: The text model with some TDV'’s

2.1.1 Concept

Since it is our intention to develop a framework for natueadduage processing,
the text model should not impose any limitations to the gissapplications that
will be instantiated from our framework. The text model we wll thus often
contain more information than we will need in one applicati&.g. layout infor-
mation can be included which will not be relevant for a spelichecker.

We hierarchically decompose a text in chapters, paragragnéences and so
long. Since it is not likely that this hierarchical model Malways be used, we
provide the possibility to create user defined text data sieW is possible to
create a text data view (TDV) that contains only the infolioratve need for a
certain text processing routine. Figure 1 shows our conedpext model with
some possible TDV's. In the figure, the text is also seen ast aflisentences and
a letter tree containing all the words in our text.

The way we intend to work with TDV's is the following. A TDV gés us
access to a particular subset of our text. During the praug#sis subset can be
changed. This change will be propagated to the actual cdenf@&t when it is
desired. This is necessary because some processing wilhase the normal,
hierarchical text model, and others will access the textehtdough a TDV. It
should be possible to propagate changes made using a TD¥ togfarchical text
model. In this way the latter routines can always cooperétetive former.

2.1.2 UML

A UML model of a text model for a translation system can be fbim figure

2. The Text class contains one (and only one) obligatoryahidical text model.
This hierarchical text model is a Composite pattern (Gantedm, Johnson and
Vlissides 1995). In this model the basic components areesent. The other
components such as chapters, sections, paragraphs etoptemented as a Hier-

4 Tom Mahieu, Stefan Raeymaekers et al.

<<Interface>>
TextView

0.*
0.*
I

Text

<<Interface>>

TextComponent
+ getSentences() 1 1 .

-

Sentence NotToTranslate HierarchicalComponent

Figure 2: The UML text model

archical Components. Components that are not interestirtganslations such as
pictures are encapsulated in NotToTranslate objects. &kie lsomponents don’t
have to be sentences. They can also be words, depending protiiem domain
you are dealing with.

A text can have several TDV’s (TextView class) which can batesl to the hi-
erarchical text model. The TextView class is an abstrastsdieecause the behavior
of every single TDV will be different from another one.

2.2 The Processing Point of View
2.2.1 Concept

A Pipeline and Dynamic Behavior This point of view originates from the tra-
ditional way of procedural thinking. A text undergoes sev@rocessing steps to
obtain the desired result. This way of working can be seearadisg a text through
a pipeline of processing steps. A pipeline is modeled usifigrdnt pipeline pro-
cesses that can be connected to each other according toificspaafiguration.
An example of a pipeline is depicted in Figure 3. The exampfgeasents a se-
quence of possible processing steps in a translation sysfetaxt is submitted
to the first processing step. When the step is finished thadesdnt to the next
processing step. When the last step exits, the result iedito the caller of the
pipeline.

This way of working always leaves us with fixed pipelinespaticessing steps
will be taken when a text is submitted to the pipeline. Foraarfework this model
is not flexible enough. Often another pipeline setup will leaed when certain
conditions are met. These conditions can be static and caatsoes even change

Base Architectures for NLP 5

Text { Translated Text}
Submit
Morphological Parsing Transfer Generation
Lookup

Figure 3: A simplified translation pipeline

dynamically (during processing). To be able to change theljpie, we introduce a
pipeline monitor. When a text needs to be processed it is #tdzhto the pipeline
through the pipeline monitor.

The application programmer encapsulates all the pipelmeviedge into this
pipeline monitor(PM): what steps are needed to obtain tteérekd result (static
conditions) and what alternatives are possible that caylomddetermined at run-
time (dynamic conditions), such as characteristics of éhg tvhether some TDV
is present, whether the text has already been processed etc.

Figure 4 shows the way the PM interacts with the actual pigellhe PM first
selects a first step in the pipeline and sends the text to tys SThe particular
processing step accepts the text, handles it and then sehemesulting text back
to the PM. The PM then selects the following processing stapmits the text,
etc. When certain conditions are met the PM can change tadimgdoy inserting
processing steps or taking alternative processing stegmdse seen on the figure.

Nested Pipelines Often the entire detailed text structure is not needed when w
want to process a text. We do not want to write a spelling ceealgorithm that
has to know the entire text structure. We just want it to ateepord, check if it

is written correctly, and report when a misspelled word isoemtered.

We solve this problem by making it possible to nest pipelinBHse pipelines
can be nested in any way, but they will mostly be nested adogtd the text struc-
ture. First, we make a distinction between iteration preessaind implemented
processes. An iteration pipeline process knows only ab@aytaft of) the text
structure andhested pipelinesAn implemented pipeline process also knows how
to procesga part of) the text structure. An iteration process can siiycturally
decompose the text and delegate the substructures to a pésédine where an
implemented process also implements a part of the actugbtezessing.

6 Tom Mahieu, Stefan Raeymaekers et al.

/fesu“/ Processed Text
Pipeline Monitor \

~— Monitor/Pipeline Step interaction
----= Normal pipeline step ordering
"""" = Possible alternative pipeline steps

Figure 4: The pipeline monitor enables dynamic pipelines

Iteration processes are always related to a nested pipédtigere 5 is an ex-
ample of a translation system that is implemented using tedgspeline. First
the text is submitted to a text pipeline. First a morpholadicokup is done (ML),
after which the actual processing is started. However, ifonly translate on a
sentence by sentence basis, our translation step (TL) camobdeled as an iter-
ation process. The process decomposes our text in sent@ncesing a TDV
or by really decomposing the text) and submits those seaseore by one to a
sentence translation pipeline. The Sentence Pipeline teiothien does the actual
translation of each sentence (Parsing (PA) and Transfey) (T¥hen the sentence
is translated, the result is passed to the caller of the ipipelvhich is the TL pro-
cess. After TL iterated over all the sentences, the texiaisstated and the next
text processing step in our text pipeline can be called (&eiom (GE)).

This nesting can go as deep as desired. E.g. The sententiegigan consist
of an iteration process that splits the sentence up in warkdigh can then be sent
to a word pipeline.

2.2.2 UML

A UML class model of the process point of view is depicted irufegy6. Every
pipeline monitor is aware of several processes that carepsoihe data structure
the monitor is responsible for. These processes are dilidedeen Implemented
Processes and Iteration Processes. Iteration Processdgslegate substructures
to pipelines that can process the substructures.

Base Architectures for NLP

Text Pipeline Monitor

Text Tex

Sentences
v

Sentence Pipeline Monitor

Sentenc

‘

Figure 5: A nested translation pipeline

\Sentence

Text

TextPipelineMonitor

(from TheText)

+ pipelt(thetext : Text, targetext : Text)

+ getSentences()

K. T
) S~ ~ *
TextProcess

+ handle(thetext : Text, targettext : Text)

SentencePipelineMonitor

+ pipelt(thesentence : Sentence, targetsentence : Sentence)

PN
1
N
AN
N
Sentence
(from TheText)
a
¥
* ///
SentenceProcess

ImplementedProcess IterationProcess

+ handle(thesentence : Sentence, targetsentence : Sentence)

Figure 6: A UML model of a nested pipeline

8 Tom Mahieu, Stefan Raeymaekers et al.

The figure is not complete and is only a part of a complete jipellteration
processes can be related to every type of pipeline as longiss ipipeline that
can handle a substructure of the structure the iterationgz®can handle. The
example in the figure shows us only a subset of the entiret&gituaan iteration
process from a text pipeline related with a sentence pipelionitor.

Pipeline monitors have nothing in common with each othetle&d, they ac-
cept text (sub)structures. We could have made one gen@eling monitor that
handles text component classes. The pipeline monitor dbeld be connected to
a general text component process. However, we would havwestatireflection
code, which enables us to obtain precise type informatiothertlasses we work
with, to check if we make correct pipelines. We could easilijpipelines where
a sentence pipeline has a text pipeline nested in it, if wétdfanthe necessary
checks.

In our model everything is made specific. Which means we hde¢ more
classes. Instead of one general monitor with one generatterponent it can
handle, we have made pipeline monitors and related proedéssevery type of
text component. Disadvantage is that we have an explosiatases when we
have a very fine grained text model. In that case, working wigfeneral pipeline
monitor and processes would be more feasible.

2.3 The Text Point of View
2.3.1 Concept

The text point of view originates from a more object orient@dkground. Instead
of having an algorithm that processes a text, the text witlcpss itself. This
means that next to the data representation, the text erasgsinformation on
how to process itself.

The biggest problem that arises is the reusability of théesys Since all the
information will be placed in the text data structure, theadatructure will need to
be changed when we want to write another text processingcagiph. Since this
is not the desired situation for a text processing frameywaekdecouple the text
and the processing algorithm from each other. The text modeaise is the same
as presented in section 2.1. The processing componentacapseilated irext
visitors

To enable easy configuration, we again have a supervisingaatied the pro-
cessor, that implements a text processing system usingasdegt visitors and
controls the entire processing statically as well as dynaltyi (by taking runtime
decisions). The processor selects several text visitagrime order, hands them to
the text and asks the text to process itself using these igkns. Bottom line is
that the processor knowghatneeds to be done, step by step. The text visitors are
the steps that knoWowto do it, as long as the processor sends them to the text in
the right order.

The text visitor (TV) reflects the hierarchical structuretioé text. For every

Base Architectures for NLP 9

Morphological Lookup
handleText()
handleChapter()
handleParagraph()
handleSentence()

handle

Figure 7: The text point of view

subcomponent of the text, the TV contains a handler that tkeé visitor how to

process that type of subcomponent. For every possible TRYetkhould be a
separate text visitor. The processor can instantiate gt iV when a TDV is

present and send it to the text.

Figure 7 clarifies this approach with an example. We are implging the
translation process we already presented in section 2Frdt we want to look
up word information in our dictionary. Our processor cha@aanorphological
lookup (ML) component and asks the text to accept the compopon accep-
tance, the text starts processing itself by callinghbadleText(method.handle-
Text()takes the title of the text, which can be retrieved from tha text compo-
nent of the text structure, and starts looking up the wordmfthe title. When
handleText(¥inishes looking up the word$iandleText(starts iterating over the
subcomponents of the Text object (chapters) by sending thecdfnponent to
these subcomponents. The chapter objects also acceptjbtittehandleChap-
ter() is called. The words in the title of the chapter are lookedamy therhan-
dleChapter()iterates again over the paragraphs in the text. This coesirnuntil
the leaves in our text structure are looked up. The ML compbfigishes and the
processor can select the following component, e.g. a claasep (PA). The chart
parser is sent over the text structure in the same way, gattsintext title, chapter
title and so lond. Subsequently a Transfer (TR) TV and a Generation (GE) TV
(in that order) complete the processing of the text.

INote that because of the structural processing of the teistpossible to plug in different grammars
for different sentence types. A chapter title will probahlyt be a grammatically correct sentence, but
can be an incomplete sentence. To obtain a correct parsthgsé constructions, a modified grammar
can be used for different structural text components, sechchapter or a sentence.

10 Tom Mahieu, Stefan Raeymaekers et al.

<<Interface>> PR <<Interface>>

Processor TextView TextViewVisitor

+execute()

+ accept(vp : TextViewVisitor) |~~~ |+ visitTextView(: TextView, target : TextView)

1 0 0.

<<Interface>>
VisitorProcess

+ icalComponent(hc : HierarchicalComponent t, target
-+ visitSentence(s : Sentence, target : Sentence)
-+ visitNotToTranslate(nt : NotToTranslate, target : NotToTranslate)

1 1

Text Sy 0.*

<<Interface>>
+ setProcessor(c : Processor) TextComponent
+addTextView(key : Integer, v : TextView) K>—
+ getTextView(key) : TextView 11
+ getTheText() : TextComponent

+accept(vp : VisitorProcess, target : TextComponent)

+ process() 4
[sentence | HierarchicalComponent |
I —

NotToTranslate

Figure 8: A UML model of the text point of view

2.3.2 UML

The implementation of this system can be reduced to two destterns(Gamma
et al. 1995): A Composite pattern for the text representadind a Visitor pattern
to implement the Text Visitors. A model of the system can henfbin figure 8.

The text model used here is exactly the same as the one iro8&cti.2. The
model is enriched with a Visitor that can handle the posstblecrete Compos-
ite classes Sentence, NotToTranslate and Hierarchicgi@oent. For each con-
crete class in the text model, an operation should be présehe visitor. For
TextViews, another Visitor class is present, since it wilt ose the standard text
model, but the specific TDV structure.

The usage of this architecture is the following. First the tdass is configured
with a Processor through tlsetProcessor(inember function. Then tharocess()
function is called which starts the processing of the teitgithe Processor. There
is also the possibility to add text views and requestingeftest views to the Text
class.

The TextComponent class contains artept()operation which is the entry
point for the Visitor. The Visitor class is accepted throublis accept call. Every
concrete text component then implements this method inrd@edeall the correct
visitor method, which will then do the actual processing.s®hote that each
text component will also have to provide an interface so tomponent specific
information can be retrieved. This is not an easy task, dineénterfaces should
provide information for all the possible text processinglagations.

Base Architectures for NLP 11

2.4 Discussion

The two approaches can be seen as opposite point of viewsrobess point of
view boils down to sending a text through several processebthin a result. The
text point of view is sending several processes throughta tex

Although the two models can be seen as opposites, they havénacbommon
too. They share the same text model. They both offer the IpiGigsto take run-
time processing decisions based on text characteristlts.ig obtained by using
pipeline monitors in the process point of view and processothe text point of
view.

Also note the following: since a text visitor has an operatio handle every
text substructure, the application programmer is forceabigy the text structure.
A handling routine needs to be written for every substruetarhere is no other
way to visit the entire text structure otherwise. In the gsscpoint of view this is
not the case. You can handle the entire text in one routinetfwant that.

In the process point of view, pipelines get nested accorttirtgxt structure.
Since in the text point of view, text processing always hagpeccording to text
structure, there is no nesting of text visitors necessary.

3 Some Non-Functional Considerations

The previous section discussed two ways of how to process liexhis section,
some considerations are made on how feasible these two Waysrking are to
form the base of a framework. We discuss how the base systeimeceonfigured
into different text processing applications. We also makaes reusability consid-
eration concerning the systems. Also important is how flexihe systems are in
creating applications.

3.1 Configurability

A framework should offer some base functionality that carcbefigured into a
complete, working application. Both our systems introdagettern the applica-
tion programmer must work with. In the process point of viewg, need to build
a pipeline to create a text processing system. In the text pbiview we have to
send a sequence of text visitors to the text to create a tegepsing system.

In the processing point of view, an application can be madenbking a
pipeline monitor, provided that all the pipeline steps as@lable. The situation is
similar for the text point of view, where a processor encéaies all of the applica-
tion’s logic. In both approaches, the actual applicatiayidas centralized in one
object and with both approaches, creating a new system thoils to choosing
the right pipeline processing steps or text visitors andimpgithem in the correct
order.

12 Tom Mahieu, Stefan Raeymaekers et al.
3.2 Reusability

The goal of a framework is to drive reusability to the maximwhihen we want
to create a new application, we should be able to do this witiramal effort.

The ideal situation is to build component based systems:waapplication is
built by taking several relatively independent componemts bringing them to-
gether. The cooperative behavior of the components (mdogloal lookup sys-
tem, chart parser, text formatter, word counter, etc) tesala very specific appli-
cation (translations system, spelling checker, text aategtion system, etc.).

The two systems encourage you to work component orientédgdmne of them
really enforces you to build relatively independent comgras. In the pipeline
model, every pipeline step can be programmed to be an indepéprocessing
step. However, there is nothing to stop you from passingrattiermation, other
than the information stored in the text, to other pipelineggsses. By doing this,
you create perhaps unwanted dependencies between pipaicesses.

The same problem occurs in the text point of view. Text visiire the reusable
components, but they can be related to each other by passiagtductures to each
other, instead of just relying on the information preserthimtext structure.

This may sound bad, but usually there is always some kind péidgency be-
tween several components. A grammar checker will not wotlkéfe is no gram-
matical information about the words present in the text.hlt tvay the grammar
checker will depend on a word lookup system. But the word lpo&ystem can
for instance also be used in a translation system.

The dependencies we want to avoid are the following. E.g.e&pipeline
process can pass information, other than information thdirectly related to the
text, by means of a TDV to another process, which is furthevrdthe pipeline.
This creates a dependency between the two pipeline preceRse latter process
will never be able to work if the first process did not creaeTIDV.

3.3 Flexibility

Now that we have a, to some extent, configurable and reusgftens, it is also
interesting to know how easy it is to create a new text prongsystem. Since we
try to work component oriented, it will be pretty easy to ¢es@ new applications
when all the necessary components are available. We only toeereate a new
Pipeline monitor (process p.o.v.) or Processor (text p.avhich instantiates the
correct components.

It will not always be easy though. Since it can not always ecgrated what
application we will have to write using the framework, it iggsible that changes
need to be made to the framework. Some changes can have éfgae on our
system.

Writing components will not impose any problems. We canlgaseate differ-
ent implementations for a component. The real problemsrogben we change

Base Architectures for NLP 13

the text model. If we decide to use a modified text model, ongkahe interfaces
to retrieve information from the text components, chancest ¢hat none of our
components will still work, because all components relytmndtructure. An ex-
ample: suppose we introduce an extra structural componeniritext: a text can
first be split up in parts before it gets split up in chaptersndlof our text visitors
will work, because there is nwandlePart()method available to do the right thing.
Also, thehandleText()nethod will need to be changed too, becaardleText()
might iterate over its subcomponents, which are now pastead of chapters. The
same problem can happen in the pipeline model.

We can conclude that both systems are flexible with a fixednedel. When
the text model changes, our entire repository of off-thefstomponents breaks.
This is obvious because the text will always be the centewuofapplications. A
careful design of the text model is therefore a must.

4 Concurrent and Distributed Systems
4.1 Concurrency and Distribution possibilities in the modés

Text processing systems perform very computational imtertasks. Hence they
would benefit from a concurrent and distributed environm&ancurrency intro-
duces the notion of simultaneity. A concurrent system cgnrein on a multi-
processor computer system, spreading its tasks over thatdeaprocessors,
which then execute these tasks simultaneously. A distibsystem runs on multi-
ple computers in a network. These computers can share taskdér to distribute
the workload over several computers in the network. Abolengtwork envi-
ronments are usually a lot cheaper than multi-processtemsgs Distributed and
concurrent systems usually benefit from a performanceaserbecause of the in-
creased computing power that is available, but also inttedhetwork failure and
synchronization problems.

The two points of view presented in this paper can easily bep®ad on such
environments. The processing point of view can for instdrecmapped on several
computers in a network, by putting every pipeline step ad aglthe pipeline
monitor on a different computer. Coordination between teesand the monitor
happens by using the network. One pipeline step can evensiébdied over
several computers when necessary.

Concurrent behavior can occur within one pipeline step bkintaa chart
parser parse several sentences at the same time. It cancalsob@tween sev-
eral pipeline steps. In a translation system, when the wiondthe first sentence
are looked up, the sentence can already be submitted to thiagatep, while the
lookup component continues looking up words for the secentenice. When the
lookup component is a lot faster than the parse componentawealistribute our
sentences to several parse components that are scattersabownetwork and let
our pipeline monitor distribute the load over the differpatse components. The
number of possibilities is endless.

14 Tom Mahieu, Stefan Raeymaekers et al.

EVANE %

_______________________________ network

@ Parag raph
m
<A
7 =

Figure 9: A text distributed over several computers

<l

Mapping the text point of view to a distributed system can deedin a similar
way by sending the text to several hosts, each presentirffpaetit text visitor to
the text. The processor decides the order in which the tesens to the several
computers. Mapping the text point of view can also be donenotler way. We
can spread the text structure over different computers.nfple example of this
approach can be seen in figure 9. Note that this division ofdkeover several
computers is out of balance, but is only meant as an examgie. tdxt is then
scattered in several parts over our network. On each compeake visitors can
then handle the text, eventually in a concurrent way. Wlide example, a text
visitor is doing a morphological lookup on the text and cleagubcomponents,
another morphological lookup text visitor can do the samehenparagraph and
sentence components that are located on another host.

This concurrent processing can be pretty easy by just itiatang several vis-
itor that are independent of each other. In other cases #itng will have to be
synchronized with each other. E.g. in a text formattingeystit will be difficult
to format a sentence when the paragraph has not been fodyatte

4.2 Orthogonal Implementation

Writing NLP systems is already a difficult task and it does get easier when
the system should offer possibilities for concurrent argiritiuted development.
Techniques like multithreading, network programming thglo sockets, remote
method invocation (RMI) and object request brokers (ORBiske it possible

to think about such systems at a higher level. We will not uiscthese tech-
niques in detail here. A good introduction to multithreag{m Java) can be found
in (Lea 1996). (Eckel 1998) is also good reading when alresdjyuainted with

Java. Information on ORB's seen from a component point af\gan be found in

(Szyperski 1998).

A requirement when creating distributed and concurreriesys is the orthog-

Base Architectures for NLP 15

onality between the functional aspects of the applicati@ing the processing of
text, and the non-functional aspects of the applicatiomdthe concurrency and
distribution. The application programmer of the text ps®iag system should not
(or as little as possible) be bothered with the distributiepects of the framework.
For example, When you are building a pipeline architectyoe; don’t want to
be bothered with the deployment characteristics of thikigecture: you are not
interested in whether every pipeline step will be on one aatepor not, whether
you will use two parser pipeline steps to concurrently pgise sentences or just
one parser step, etc. State of the art techniques to decbuptéonal aspects
from non functional aspects this are Meta level programmingspect Oriented
programming. (Introductions in (Zimmerman 1996), (Kickeza Lamping, Mend-
hekar, Maeda, Lopes, Loingtier and Irwin 1997), (Mens, Lgdekinerdogan and
Kiczales 1997))

5 Conclusion and Future Work

In this paper we present two base architectures for textgssing systems. A
requirement for these architectures is that they are flexiblisage and improve
component reusability. The first architecture processdditem a process point
of view and the second from the text point of view. The progassat of view is

a pipeline architecture which allows nesting of pipelinesilow more structural
processing of texts. The text point of view is based on thé&dfiglesign pattern
(Gamma et al. 1995) and therefore inherently enforceststraidext processing.

Computational intensive applications can benefit from acaoment and dis-
tributed environment. This has been illustrated and sogteigues to enable the
two core architectures for such environments have beeniomemut

We are currently designing a framework for an NLP transtatigstem, which
is being developed in a project in cooperation with LANT nve Witend to use
one of the two core architectures presented in this papdor8éhe actual design
of the framework, we will first evaluate the two systems. Thpraach we take is
as follows: a small application (a word by word translatoil) be programmed in
Java using both base systems. The text point of view hagigltessen programmed
and works properly. The pipeline approach still needs torbgnammed.

After both approaches have been evaluated, the actualfrarkeising one of
the approaches will be designed by modeling a more realesttanodel and inte-
grating this text structure in the system. Next step is irgt#gg a morphological
lookup component (Stefan Raeymaekers) in the system. sditeressfully com-
pleting this step, a translation system will be increméynt@le. componentwise)
be designed and implemented to the framework architecture.

Next to the creation of the framework, research will be done¢h® orthogo-
nal mapping of the framework on a concurrent and distribgiediem, using the
techniques mentioned in section 4.2.

16 Tom Mahieu, Stefan Raeymaekers et al.

References

Eckel, B.(1998)Thinking in JavaPrentice Hall, chapter 14-15, pp. 519-716.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.(199&gign Patterns: Ele-
ments of Reusable Object Oriented Softwamdison-Wesley.

Kickzales, G., Lamping, J., Mendhekar, A., Maeda, C., Loges Loingtier, J.-
M. and Irwin, J.(1997), Aspect-oriented programming,M. Aksit and
S. Matsuoka (edsEcoop’97 Proceedings - Object-Oriented Programming
Springer-Verlag, pp. 220-242.

Lea, D.(1996),Concurrent Programming in Jayarhe Java Series, Addison-
Wesley.

Mens, K., Lopes, C., Tekinerdogan, B. and Kiczales, G.()98Zpect-oriented
programming workshop repoit J. Bosch and S. Mitchell (ed€tcoop’97
Proceedings - Object-Oriented Technology, Workhop Rea8pringer-
Verlag, pp. 483-496.

Quatrani, T.(1998)Visual Modeling with Rational Rose and UMODbject Tech-
nology Series, Addison-Wesley.

Szyperski, C.(1998;omponent Softwaydddison-Wesley, chapter 12—-19.

Zimmerman, C. (ed.)(1996)\dvances in Object-Oriented Metalevel Architectures
and ReflectionCRC Press.

A UML

This appendix contains a short reference to the UML notatior a more com-
plete but short explanation of the UML we refer to (Quatr988).

ClassName
attribute UML Class
operation()
<<StereoType>>

ClassName Stereotyped Class

An association relationship that has
left multiplicity oneand right mul-
tiplicity many An object of the
left hand side class can be associ-

1 * ated withmanyobject of the right
hand side class. An object of the
right hand side class can be associ-
ated withoneobject of the left hand
side class.

Base Architectures for NLP

17

An aggregation relationship. An
object of the left hand side class
of the relationship contains a num-
ber of objects of the right hand side
class

A generalization, specialization re-
lationship. An object of the left
hand side class is a generalization
of an object of the right hand side
class

A dependency or instantiates rela-
tionship. An object of the left hand
side class depends on or instantiates
an object of the right hand side class

