
The Well-founded Semantics

Is

the Principle of Inductive De�nition

Marc Denecker

Department of Computer Science, K.U.Leuven,

Celestijnenlaan 200A, B-3001 Heverlee, Belgium.

Phone: +32 16 327544 | Fax: +32 16 327996

email: marcd@cs.kuleuven.ac.be

Abstract. Existing formalisations of (trans�nite) inductive de�nitions

in constructive mathematics are reviewed and strong correspondences

with LP under least model and perfect model semantics become appar-

ent. I point to fundamental restrictions of these existing formalisations

and argue that the well-founded semantics (wfs) overcomes these prob-

lems and hence, provides a superior formalisation of the principle of

inductive de�nition. The contribution of this study for LP is that it (re-

)introduces the knowledge theoretic interpretation of LP as a logic for

representing de�nitional knowledge. I point to fundamental di�erences

between this knowledge theoretic interpretation of LP and the more com-

monly known interpretations of LP as default theories or auto-epistemic

theories. The relevance is that di�erences in knowledge theoretic inter-

pretation have strong impact on knowledge representation methodology

and on extensions of the LP formalism, for example for representing

uncertainty.

Keywords: Inductive De�nitions, Logic Programming.

1 Introduction

With the completion semantics [5], Clark aimed at formalising the meaning of

a logic program as a set of de�nitions. To that aim, he maps a logic program

to a set of First Order Logic (FOL) equivalences. Motivated by the research in

Nonmonotonic Reasoning, logic programming is currently often seen as a default

logic or auto-epistemic logic. In [11], Gelfond proposes a semantics for strati�ed

logic programs based on an auto-epistemic interpretation of the formalism. In

[12], Gelfond and Lifschitz motivate the stable semantics for logic programs from

the perspective of logic programs as default and auto-epistemic theories.

To compare these readings, consider the program P

0

with unique rule:

dead not alive

P

0

is propositional and hierarchical; all common semantics of LP (completion /

perfect [3, 21] / stable [12] / wfs [28]) agree; for the above example, the unique

model is fdeadg.

In the interpretation of this program as an auto-epistemic theory, P

0

corre-

sponds to the auto-epistemic theory (AEL):

AEL(P

0

) = fdead :Kaliveg

which reads as: one is dead if it is not believed that one is alive. On the other

hand, under completion semantics the meaning of this program is given by the

FOL theory:

comp(P

0

) = f:alive , dead$:aliveg

These readings show important di�erences. The completion reading of P

0

states

that alive is false while the auto-epistemic reading of P

0

gives no information

about alive; hence alive is not known. The completion reading maps implica-

tion to equivalence and negation to classical objective negation, while the auto-

epistemic reading map negation to a modal operator (:K) and preserves the

implication.

How to explain that, despite this intuitive di�erence, the stable model -which

formalises the default/auto-epistemic reading- corresponds to the model of the

completion? The reason is that models in stable semantics and in classical logic

play a di�erent role. A stable model is a belief set: the set of atoms which

are believed, while the model of the completion, as a model of a FOL theory,

represents a possible state of the world. Because models in both semantics play

a di�erent role, a simple comparison between them does not reveal the di�erent

meanings of both semantics.

Actually, a clear and correct model theoretic comparison of the meaning

of the auto-epistemic reading and of the completion is possible if done on the

basis of the possible world model of the auto-epistemic theory and of the set

of models of the completion. Both are sets of models; in both sets the role of

models is identical: they represent possible states of the world. Such a comparison

con�rms the intuitive di�erences between the two readings. The possible world

model of the AEL theory fdead :Kaliveg is ffdeadg; falive; deadgg. This

set of models re
ects indeed the intuitive meaning of AEL(P

0

): alive can be

true or false, hence nothing is known on alive; (therefore) dead is always true.

Note that the belief set, i.e. the stable model, is the intersection of these possible

states. In contrast, the set of models of the completion is the singleton ffdeadgg.

Interpreted as a possible world model, it represents that dead is known to be

true, alive known to be false.

This observation motivates a closer investigation of the relation between logic

programming and inductive de�nitions. An inductive de�nition is a form of con-

structive knowledge. Constructive information de�nes a relation (or a collection

of relations) through a constructive process of iterating a recursive recipe. This

recipe de�nes new instances of the relation in terms of the presence (and some-

times the absence) of other tuples of the relation. A broad class of human knowl-

edges in many areas of human expertise, ranging from common sense knowledge

situations to mathematics, is of constructive nature. One example is Reiter's

formalisation of situation calculus [23]; in this approach, a situation calculus

can be understood as an inductive de�nition on the well-founded poset of sit-

uations. Another example is in [26], where we argue that causality information

in the context of the rami�cation problem is a form of constructive information.

Causes, e�ects and forces propagate in a dynamic system through a constructive

process; consequently, the semantics of causality rules is de�ned by an inductive

de�nition which, by its constructive nature, mirrors the physical process of the

e�ect propagation.

In the context of mathematics, constructive information appears by excel-

lence in inductive de�nitions. For example, as suggested by the name, the tran-

sitive closure of a binary relation is naturally perceived as the relation obtained

through the construction process of closing the relation under the transitivity

rule. Not a coincidence, inductive de�nitions have been studied in constructive

mathematics and intuitionistic logic, in particular in the sub-areas of Induc-

tive and De�nition logics, Iterated Inductive De�nition logics and Fixpoint log-

ics. The main goal of this paper is to review some of this work and to show

how inductive de�nitions are formalised in these areas; this immediately reveals

strong relationships with least model and perfect model semantics of logic pro-

gramming (section 2). I point to fundamental knowledge theoretic problems in

these formalisms (section 3) and argue that the logic program formalism under

well-founded semantics provides a superior formalisation (section 4). Section 5

considers some implications.

2 Inductive De�nitions in mathematics

One can distinguish between positive inductive de�nitions and de�nitions by

induction on a well-founded set. A prototypical example of a de�nition by (posi-

tive) induction is the one of the transitive closure T

R

of a graph R. T

R

is de�ned

inductively as follows. T

R

contains an arc from x to y if

{ R contains an arc from x to y;

{ R contains an arc from x to z, and T

R

contains an arc from z to y.

It could be formally represented by the rules:

D

trans

=

�

tr(X;Y) graph(X;Y)

tr(X;Y) graph(X;Z); tr(Z; Y)

The intended interpretation of this de�nition is that the transitive closure is the

least graph satisfying the implications rather than any graph satisfying the above

implications. Alternatively, the transitive closure can be obtained in a construc-

tive way by applying these implications in a bottom up way until saturation. It is

commonly known that inductive de�nitions such as the one of transitive closure

cannot be expressed in FOL, and a fortiori, not in the completion semantics

1

.

Typical for the above sort of inductive de�nition is that the induction is

positive: i.e. the de�ned concept depends positively on itself, and hence a unique

least relation exists. In de�nitions by (possibly trans�nite) induction on a well-

founded poset, this is not necessarily the case. In de�nitions of this kind, a

concept is de�ned for a domain element in terms of strictly smaller elements.

An example is the de�nition of the ordinal powers of a monotonic operator. A

simple �rst order example of such a de�nition is the de�nition of even numbers

in the well-founded poset IN;�. One de�nes that a natural number n is even by

induction on �:

{ n = 0 is even;

{ if n is not even then n+ 1 is even; otherwise n + 1 is not even.

A formal representation of the de�nition in the form of implications is:

D

1

even

=

�

even(0)

even(s(X)) :even(X)

Now the de�ned predicate even occurs negatively in the body of the rule. Verify

that in the natural numbers, this theory has in�nitely many minimal models

2

.

Its semantics can be described by a constructive process and is also expressed

well by the Clark completed de�nition of the above implications:

8X:even(X) $ X = 0 _ 9Y:X = s(Y) ^ :even(X)

A more complex example showing the elements of trans�nite induction in

a richer context is the concept of depth of an element in a well-founded poset

P;�. De�ne the depth of an element x of P by trans�nite induction as the least

ordinal which is a strict upper-bound of the depths of elements y 2 P such that

y < x.

1

A simple counterexample: verify that the unintended interpretation with domain

fa; bg and I(graph) = f(a; a)g and I(tr) = f(a; a); (a; b)g satis�es the completion of

the implications.

2

E.g. feven(0); even(2); ::g but also feven(0); even(1); even(3); even(5); ::g.

Formally, let F [X;D] mean that D is a larger ordinal than the depths of all

elements Y < X: F [X;D] �

8Y;D

Y

:(Y < X ^ depth(Y;D

Y

)! D

Y

< D)

Then, depth is represented by the singleton de�nition D

depth

:

depth(X;D

X

) F [X;D

X

]^

[8D:F [X;D]! D

X

� D]

Construction or Clark completion gives the semantics of this de�nition. The

de�ned predicate depth occurs negatively in the body of the rule, and as a

consequence, multiple unintended minimal models may exist

3

.

One application of this de�nition is the de�nition of depth of a tree. Here

the well-founded poset is the set of trees (with values from a given domain D)

without in�nite branches in a domain; the partial order is the subtree relation.

For �nitely branching trees, the depth is always a natural number; for in�nitely

branching trees, the depth may be an in�nite ordinal. E.g. the tree with branches

(0; 1; 2); (0; 2;3;4); (0; 3;4;5;6); ::; (0; n; ::; 2n); :: is a tree with depth 1.

The above two types of inductive de�nitions require a di�erent sort of seman-

tics. This raises the question whether a uniform principle of inductive de�nition

can be proposed which is correct for all inductive de�nitions and hence gener-

alises and integrates completion and minimisation.The �rst attempt to formalise

such a principle was in the context of Iterated Inductive De�nitions.

The study of inductive de�nitions in mathematics has started with Post [19],

Spector [24] and Kreisel [15]. Important work in this area includes [9,16, 18, 2,

4]. An o�spring of this research is �xpoint logic, currently used in databases

[1]. Below is an overview of ideas proposed in the area of Inductive, Iterated

Inductive De�nitions (IID) and �xpoint logics. The overview is an attempt to

give a faithful and comprehensive presentation of the essential ideas in these

areas, while I have taken the freedom to reformulate syntax or semantics in

order to increase uniformity and comprehensibility.

2.1 Positive Inductive De�nitions

Positive Inductive De�nitions have been formalised in various ways. In the style

of [9], an inductive de�nition on a given interpretation M is represented as a

formula:

p(X) F [X; p]

where F [X; p] is a First Order Logic (FOL) formula with only positive occur-

rences of the de�ned symbol p but arbitrary occurrences of symbols interpreted

in M . In �xpoint logic, the relation p would be denoted �

	

F [X;] (here p is

replaced by a predicate variable).

3

E.g. in the context of IN;�, an unintended minimal model is

fdepth(0; 0); depth(0; 1); depth(1; 2); ::;

depth(n;n + 1); ::g.

[2] studies inductive de�nitions in a abstract representation with an obvious

correspondence with de�nite logic programs. A de�nition on a domain D of

propositional symbols is represented as a possibly in�nite set D of rules p B

with p 2 D;B � D

4

.

[2] gives an overview of three equivalent mathematical principles for describ-

ing the semantics of a (Positive) inductive de�nition. They are equivalent with

the way the least model semantics of de�nite logic programs can be de�ned [27].

{ The model can be de�ned as the least model of the implications. E.g., in [9],

this minimal model semantics is expressed through a circumscription-like

axiom (expressing that p must be the least predicate rather than a minimal

one).

{ The model can be expressed constructively as the least �xpoint of a T

P

-like

operator associated with the de�nition. In the presentation of [2], inductive

de�nitions are dually de�ned as monotonic T

P

-like operators. This is the

common way in �xpoint logic (hence the name).

{ The model can be expressed also as the interpretation in which each atom

has a proof tree. Also this formalisation has been used in LP in [7]. Because it

is less commonly used in LP, I present it here for a slightly extended version

of the formalism of [2].

Let be given a symbol domainD, including a subset D

o

� D which includes

the truth values t; f, an interpretation M interpreting the symbols of D

o

such that M (t) = t;M (f) = f. The symbols of D

o

are called the open or

interpreted symbols. Also given is a de�nition D which is a set of rules p B

with head p 2 DnD

o

and body B consisting of atoms of DnD

o

and positive

or negative literals of D

o

5

. The set Defined(D) = D nD

o

is called the set of

de�ned symbols, the set of open symbols D

o

is often denoted Open(D). We

assume that each symbol p 2 Defined(D) has at least one rule p B 2 D

(it may be the rule p ffg). Also the body B of a rule is never empty (B

may be the singleton ftg).

A D-proof-tree T of p 2 D is a tree of literals of D with p as root such that:

� all leaves of T are positive or negative open literals; all non-leaves contain

de�ned atoms;

� for each non-leaf node p with set of immediate descendants B: p B 2

D;

� T is loop-free; i.e. contains no in�nite branches.

4

De�nitions represented in the other style can be represented in this abstract way.

Given the mathematical structure M and formula F [X;p], de�ne the domain D as

the set of atoms p(x) with x 2M

n

. De�ne D as the set of rules p(x) B for each

x and each set B of p-atoms such that M j= F [x;B]; meaning that F is true for x

in M when p is interpreted as the set B.

5

Allowing positive or negative open literals is an extension to the formalism of [2].

It does not introduce any complexity because the interpretation of these literals is

given. This extension will facilitate the leap to inductive de�nitions with recursion

over negation.

The modelM

D

of D givenM can be characterised as the set of atoms p 2 D

which occur in the root of a proof-tree T such that all leaves are true literals

in M . Note that interpreted literals have proof-trees consisting of one node;

as a consequence, M

D

extends M .

2.2 Iterated Inductive De�nitions

The logics of Iterated Inductive De�nitions are or can be seen as attempts to

formalise the mathematical principle of de�nition by (trans�nite) induction on

a well-founded order. Iterated Inductive de�nitions were �rst introduced in [15]

and later studied in [9] and [16]. [2] formulates the intuition of Iterated Inductive

De�nitions in the following way. Given a mathematical structure M �xing the

interpretation of the interpreted predicates and function symbols, a positive

inductive de�nition D prescribes the interpretation of the de�ned predicate(s).

Once the interpretation of the de�ned symbols p is �xed, M can be extended

with these interpretations, yielding a new interpretation M

D

. On top of this

structure, again new predicates may be de�ned in the similar way as before. The

de�nition of this new predicates may depend negatively on the de�ned predicates

p as these are interpreted in M

D

. This principle can be iterated in an arbitrary,

even trans�nite sequence of positive inductive de�nitions.

In [2], the abstract de�nition logic de�ned there is not explicitly extended

with this idea, but given the above intuition, the extension with negation is

straightforward. Given a domain D and mathematical structure M , an Iter-

ated Inductive De�nition (IID) would be a possibly trans�nite sequence D =

(D

�

)

�<�

D

of positive inductive de�nitions such that:

{ each de�ned symbol p is de�ned in a unique D

�

p

; we call �

p

the stratum of

p;

{ for each rule p B 2 D, for each de�ned atom q 2 B, �

q

� �

p

; for each

de�ned atom q such that :q 2 B, �

q

< �

p

.

The model M

D

of a de�nition can be obtained by trans�nitely iterating the

principle of positive inductive de�nition over the sequence (D

�

)

�<�

D

.

There is an obvious correspondence between Iterated Inductive De�nitions

(IID's) and strati�ed logic programs under perfect model semantics [3, 20, 21].

Already in 84, [14] de�nes a semantics for strati�ed logic programs based on

the Iterated Inductive De�nition (IID) logic de�ned in [16]. To my knowledge,

this was really the �rst time that the perfect model semantics for strati�ed logic

programs was de�ned. Apparently this work stayed largely unnoticed, perhaps

because, like the semantics in [16], it is based on sequent calculus, which to some

extend increases the mathematical complexity and obscures the simple intuitions

underlying this semantics.

Though the intuition of IID's as formulated in [2] is straightforward, it is not

easy to see how this idea is implemented in IID logics such as those of [9], [4] and

also in [16]. The reason for this seems as follows. The goal of this research was

to investigate theoretical expressivity of trans�nite forms of IID's. As explained

in [4], a de�nability study makes only sense in a �nitely represented logic, while

trans�nite IID's in the abstract setting above are per de�nition in�nite objects.

[9] investigates IID's encoded in an IID-form, a single FOL formula of the form

F [N;X;P], and expresses its semantics in a circumscription-like second order

formula. The problem is that this encoding is extremely tedious and this blurs

the simple intuitions behind this work and the similarities with the perfect model

semantics.

Nevertheless, it is interesting -if only from historical perspective- to see how

trans�nite de�nitions can be encoded �nitely as an IID-form and how a perfect

model-like semantics can be expressed in such a notation. Consider the following

de�nition D

2

even

, constructed for the sole purpose of illustrating the encoding:

D

2

even

=

8

>

>

>

>

<

>

>

>

>

:

(0) even(0) t

(n + 1) even(n + 1) :even(n)

(n) even(n) even(n)

(1) sw even(n); even(n + 1)

(1+ 1) ok :sw

The symbol sw (which abbreviates something wrong) represents that two subse-

quent numbers are even, and ok is its negation. This de�nition can be strati�ed

(the strata of the de�ned predicates are given). The model obtained after 1+2

iterations is fok; even(2n)jn 2 INg.

To encode such an abstract IID, a binary meta-predicate h (of holds) is used:

h(�; p) means that the stratum of p is � and that p is de�ned true. The �rst

step in encoding such an abstract IID (D

�

) yields a possibly in�nite disjunction

F [N;X;P]. For any rule p f::; q; r;:s; ::g with �

q

= �

p

; �

r

< �

p

; �

s

< �

p

,

add one disjunct:

N = �

p

^X = p ^ ::^ P (q) ^ h(�

r

; r) ^ :h(�

s

; s) ^ ::

This disjunct is obtained as a conjunction of N = �

p

^ X = p, corresponding

to the head p, a conjunct P (q) for any atom q of the same stratum as the head,

and a literal h(�

r

; r) and :h(�

s

; s) for the other literals r;:s 2 B de�ned in

lower strata

6

.

The result is an in�nitary formula F [N;X;P]. Here, N ranges over the ordi-

nals � < �

D

, X over atoms and P over sets of atoms. The formula corresponding

6

In [9], literals h(�

q

; q) are replaced by open formulas h(�

q

; q) ^ �

q

< N . This open

formula represents the restriction of h to strata < N (atoms q at higher strata are

false in h(�

q

; q) ^ �

q

< N). The resulting, more complex axioms can be seen to be

equivalent with our axioms for IID-forms obtained from a strati�ed abstract IID D.

The reason for this choice seems to be that the strati�cation condition, which can

be de�ned nicely for abstract IID's, cannot easily be formulated directly for IID-

forms. The more complex axioms determine a unique h predicate even if F [N;X;P]

encodes a nonstrati�able or incorrectly strati�ed de�nition (but the semantics may

be unnatural then); in that case, our simpler axioms do not determine a unique

h-predicate due to mutual dependencies between predicates de�ned at lower and at

higher level.

to D

2

even

is the following in�nitary disjunction with disjuncts for each 0 � n:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

N = 0 ^X = even(0)_

N = n+ 1 ^X = even(n + 1) ^ :h(n; even(n)) _ :::

N = n ^X = even(n) ^ P (even(n)) _ :::

N =1^X = sw ^ h(n; even(n))^

h(n + 1; even(n + 1)) _ :::

N =1+ 1 ^X = ok ^ :h(1; p)

There is only one step more to go to reduce this formula to an equivalent

�nite IID-form. But �rst, we show how to express the semantics of the IID. Two

axioms express essentially that at each stratum �, the set h(�; :) � fpjh(�; p) is

trueg satis�es the de�nition D

�

. These axioms express the principle of positive

inductive de�nition: that this set must satisfy the implications of D

�

and that it

must be contained in each set satisfying the implications.Below, F [P (�)=h(N; �)]

denotes the formulas obtained by replacing each expression P (�) for arbitrary

term � by h(N; �).

The �rst axiom expresses that for each ordinal � and given h for lower strata,

h(�; :) satis�es the implications in D

�

:

8N;X:fh(N;X) F [P (�)=h(N; �)]g

One can verify that if one assigns the values �

p

to N and p to X and elimi-

nates false disjuncts, then this complex formula reduces to:

h(�

p

; p)

8

<

:

::

::^ h(�

q

; q) ^ :h(�

r

; r) ^ :: _

::

with a disjunct for each p f::; q;:r; ::g 2 D.

The second axiom expresses that for each ordinal �, h(�; :) is contained in

each set 	 which satis�es the implications of D

�

. It is a second order axiom,

using a set variable 	 which ranges over sets of atoms and it is a variant of a

circumscription axiom:

8N:8	:[8X:	 (X) F [P (�)=	 (�)]]! [8X:h(N;X)! 	 (X)]

Finally, the in�nitary IID-form F should be further encoded by a �nite for-

mula. This involves:

{ encoding ordinals by a (primitive recursive) well-ordering on natural num-

bers. E.g. the total order 2 � 3 � :: � 0 � 1 is a well-ordering encoding the

ordinals 0; 1; ::;1;1+ 1.

{ encoding atoms by natural numbers: an obvious proposal here is to encode

each atom by the natural number encoding the stratum of the atom; i.e.

even(n) by n+ 2, sw by 0 and ok by 1.

{ encoding tuples of natural numbers by natural numbers. Details of this are

tedious and irrelevant for this paper; we omit them.

In this encoding, an in�nite number of disjuncts can be represented in a

�nite formula using quanti�cation in the natural numbers. The di�erent sets of

disjuncts are encoded as follows:

fN = 0^X = even(0)g

�! N = 2 ^X = 2

fN = n + 1 ^X = even(n + 1) ^ :h(n; even(n)) j n 2 INg

�! 9M:N = M + 1 ^ 2 � M ^X = N ^:h(M;M)

fN = n ^X = even(n) ^ P (even(n)) j n 2 INg

�! 2 � N ^X = N ^ P (N)

fN =1^X = sw ^ h(n; even(n)) ^ h(n+ 1; even(n + 1)) j n 2 INg

�! N = 0 ^X = 0 ^ 9M:[2 �M ^ h(M;M) ^ h(M + 1;M + 1)]

fN =1+ 1 ^X = ok ^ :h(1; p)g

�! N = 1 ^X = 1 ^ :h(0; 0)

The resulting �nite IID-form is:

8

>

>

>

>

<

>

>

>

>

:

N = 2 ^X = 2_

9M:[N = M + 1 ^ 2 �M ^X = N ^ :h(M;M)]_

2 � N ^X = N ^ P (N)_

N = 0 ^X = 0 ^ 9M:[2 � M ^ h(M;M) ^ h(M + 1;M + 1)] _

N = 1 ^X = 1 ^ :h(0; 0)

2.3 In
ationary Fixed-point Logic

[2] proposes another extension of positive inductive de�nitions with negation.

With an arbitrary formula F [X;P] with negative occurrences of P allowed, the

resulting T

P

-like operator T

F [X;P]

is not monotonic and may not have a least

�xpoint. However, the operator T

i

F [X;P]

(I) = I[T

F [X;P]

(I) is increasing (though

not monotonic) and therefore a �xpoint can be constructed. This idea has been

used in �xpoint logic with in
ationary semantics [1].

In
ationary �xpoint logic is known to be expressive; however, it is not a nat-

ural formalisation of inductive de�nitions over a well-founded set, and therefore,

this extension is not relevant in the context of this paper. For example, if we

construct a formula F

even

[X; even] for D

1

even

in the same way as for positive

inductive de�nitions, we obtain: X = 0 _ 9Y:X = s(Y) ^ :even(Y).

After one application of the in
ationary �xpoint operator, the unintended �x-

point feven(n)jn 2 INg is obtained.

3 A critique on Iterated Inductive De�nitions

The strati�ed IID formalisms provide a correct treatment of inductive de�nitions

with negation. The IID-forms as de�ned in e.g. [9] was not intended for use for

Knowledge Representation and is absolutely unsuitable for such purpose. But

any strati�ed formalism for inductive de�nitions with negation will pose certain

fundamental problems.

(1) A strati�cation of a de�nition does not provide any information about the

de�ned relations. This can be seen from the fact that choosing another strati�ca-

tion for a de�nition has no impact on its semantics; moreover, there exists ways

to construct the semantics of an IID without recurring to a prede�ned syntacti-

cal strati�cation. It is undesirable that in IID's, a strati�cation must be chosen

and this choice is explicitly re
ected in the representation of the de�nition.

(II) The strati�cation of an Iterated Inductive De�nition is based on a syntactical

criterion. As a consequence, a rule set formulated for one alphabet may be strat-

i�able whereas the corresponding rule set in a linguistic variant of the alphabet

may be non-strati�able. The following variant of the de�nition D

1

even

illustrates

this. Assume that we use the alphabet: feven(n); successor(n;m)jn;m 2 INg

with a predicate representation of the concept of successor. In this alphabet, the

natural representation of the inductive de�nition of even is the set with for each

n;m 2 IN the following rules:

D

4

even

=

8

<

:

successor(n + 1; n)

even(0)

even(n) successor(n;m);:even(m)

This variant de�nition cannot be strati�ed due to the presence of rules even(m)

successor(m;m);:even(m). A good formalisation should not be as dependent

of intuitively innocent linguistic variance.

(III) As a formalisation of inductive de�nitions on well-founded posets, the re-

quirement of strati�ed IID's of an explicit strati�cation is problematic in general.

A de�nition of a concept (like evenness or depth) for x in terms of all y < x is

mathematically well-constructed; yet a strati�cation for such a de�nition may be

in general unknown. As an example, consider the inductive de�nition of depth

of an element in a well-founded order or the depth of a tree. The need of an

explicit strati�cation is unnecessary and unnatural.

3.1 WFS: An improved Principle of Inductive De�nition

In this section, I argue that the mathematics of (a variant of) the well-founded

semantics of logic programming [28] provides an improved formalisation of the

principle of inductive de�nition.

Just like the perfect model, the model M

D

of a strati�ed Iterated Induc-

tive De�nition D is obtained by iterating the positive induction principle and

constructing a sequence (M

�

)

�<�

D

of interpretations of increasing sub-domains

which starts with M and gives gradually better approximations of the model

M

D

. Each M

�

de�nes the truth value of all symbols of the sub-alphabet �

�

and leaves atoms de�ned at later levels unde�ned. The role of the strati�cation

in this process is to delay the use of some part of the de�nition until enough

information is available to safely apply the positive induction principle on that

part of the de�nition.

The same ideas can be implemented in a di�erent way, without relying on an

explicit syntactical partitioning of the de�nition. Instead of using 2-valued inter-

pretations of sub-alphabets, partial interpretations can be used. Here, a partial

interpretation is a partial function from the set of atoms D to ft; fg. Equiva-

lently, we use the classical formalisation as a total function from the set of atoms

D to ft;u; fg

7

. The positive induction principle can be conservatively extended

for de�nitions with negation. For a de�nition D, we de�ne the Positive Induc-

tion Operator PI

D

which takes as input a partial interpretation I representing

well-de�ned truth values for a subset of atoms, and derives an extended partial

interpretation de�ning the truth values of other atoms that can be derived by

positive induction. De�nition of truth values of atoms for which not enough in-

formation is available is delayed. The model of a de�nition is obtained then by

a �xpoint construction.

From a knowledge theoretic point of view, the key problem in the above

enterprise is the de�nition of the principle of positive induction in the context

of de�nitions with negation. A formalisation based on proof-trees shows most

clearly the structural similarities between positive induction for PID's and for

inductive de�nitions with negation.

We formalise the above ideas for a formalismwhich is the natural extension of

the abstract de�nitions of [2] with negation; at the same time, it is an in�nitary

version of the propositional LP-formalism. Given is a domainD of propositional

symbols. In the new, more general setting, a de�nitionD consists of rules in which

positive and negative open or de�ned literals may appear in the (nonempty)

body. As before, the set of de�ned symbols that appear in the head of a rule

is denoted Defined(D); the set of open or interpreted symbols is denoted as

Open(D). Also given is an interpretation M of the open symbols Open(D).

The de�nition of a D-proof-tree T as de�ned in section 2.1 hardly needs to

be altered: it is a tree of literals of D such that:

� leaves contain open literals or negative de�ned literals; non-leaves contain

de�ned atoms p 2 Defined(D);

� each non-leaf p has a set of direct descendants B such that p B 2 D;

� no in�nite branches.

Hence, leaves contain interpreted literals and negations of de�ned atoms. Note

that interpreted atoms have proof-trees consisting of one root node.

De�nition 1. The Positive Induction Operator PI

D

maps partial interpreta-

tions I to I

0

such that 8p 2 D:

{ I

0

(p) = t if p has a proof-tree with all leaves true in I.

{ I

0

(p) = f if each proof-tree of p has a false leaf in I;

{ I

0

(p) = u otherwise, i.e. no proof-tree of p has only true leaves but there

exists at least one without false leaves.

7

This formalisation is mathematically equivalent with the previous one, is more com-

mon and leads to more elegant mathematics. Note that in this view, u plays a similar

role as null-values in databases: just as a null value, u is not a real truth value, it is

a place holder for an (as yet) unde�ned truth value. Below, I return to the issue of

interpretation of u.

The Positive Induction Operator is a monotonic operator w.r.t. the precision

order �

p

, the point-wise extension of u �

p

f;u �

p

t. Monotonic operators w.r.t.

�

p

have a least �xpoint [10]. Hence, each interpretation M of the non-de�ned

symbols can be extended to a unique least �xpoint PI

D

" (M).

De�nition 2. PI

D

" (M) is the model M

D

of D.

The structural resemblance between positive induction in PID's and in PI

D

is apparent. There are some important properties. The �rst relates this semantics

to WFS semantics of logic programs.

Proposition 1. PI

D

and the 3-valued stable model operator [22] are identical.

The well-founded model of D is the model M

D

of D.

Second, this semantics provides a conservative extension of the IID-style

semantics, as the WFS is known to generalise least model semantics and perfect

model semantics of strati�ed logic programs.

Third, certain de�nitions may have partial models (e.g. fp :pg. Note here

the changing role of u during the �xpoint computation and in the �xpoint. When

the truth value of an atom is u at some stage of the �xpoint computation, it

means that the truth value of the atom is yet undetermined at this stage. If its

truth value is still u in the �xpoint, it means D does not allow to constructively

de�ne the truth value of p. Hence, unde�ned atoms in the �xpoint point to

ambiguities in the de�nition.

There seem to be two sensible treatments of ambiguous de�nitions. They

could be considered as inconsistent, in a similar sense as in classical logic: am-

biguous de�nitions have no models. In this strict view, De�nition 2 is to be

re�ned as:

De�nition 3. If PI

D

" (M) is 2-valued, then it is the model M

D

of D; other-

wise, D has no model.

The result is a 2-valued logic. This is a simple strategy because it avoids potential

problems with 3-valued models but it has the disadvantage that no sensible

information can be extracted from an ambiguous de�nition since such a de�nition

entails every formula. This situation is analogous to classical logic.

The more permissive treatment is to allow de�nitions with partial models.

The result is a sort of paraconsistent de�nition logic, i.e. a logic in which def-

initions with local inconsistencies or local ambiguities do not not entail every

formula.

4 Concluding remarks

This paper is a study of the concept of (trans�nite) inductive de�nition. The pa-

per investigates how this concept has been formalised in the past in the ID and

IID areas; drawbacks of these formalisations were pointed at and an improved

formalisation, inspired by logic programming semantics, is proposed. Strong con-

nections between the formalisations in ID and IID and perfect model semantics

but also circumscription semantics have been exposed.

This study is not only relevant as a study of inductive de�nitions but improves

also our understanding of the use of LP for knowledge representation and hence,

of the role of LP in Arti�cial Intelligence. The reading of logic programs as auto-

epistemic or default theories on the one hand, and as de�nitions on the other

hand, give essentially di�erent perspectives on the meaning of logic programs,

on the nature of the negation symbol and the implication symbol in LP.

In general, a knowledge theoretic study as the one in this paper is relevant

for developing a knowledge representation methodology. It is (or once was) a

widespread view that the advantage of declarative logic for \encoding" knowl-

edge is in its intuitive linguistic reading; in the case of this paper: the reading

of a set of rules as an inductive de�nition. This reading of the logic provides

the methodological basis for knowledge representation; the tight connection be-

tween formal syntax and semantics and a clear intuitive reading facilitates the

explicitation of the expert knowledge. Formulas of the theory can be understood

by the experts through the linguistic interpretation, without the need of explic-

itly constructing the formal semantics. Knowledge theoretic studies like the one

in this paper, are important to build natural and systematic methodologies for

knowledge representation. One aim of this study was to clarify how logic pro-

grams can be used for knowledge representation and what sort of knowledge can

be represented in it.

A simple illustration of the impact of the linguistic interpretation on knowl-

edge methodology is as follows. The de�nition that dead means not alive, is

naturally expressed in LP under the de�nition reading by the singleton de�ni-

tion:

fdead :aliveg

On the other hand, in Extended Logic Programming [13], which is based on the

default and AEL view, a correct representation would be:

dead :alive

:dead alive

A knowledge theoretic study is also relevant for the design or extension of a

logic. This is also well-illustrated in the case of LP. With respect to knowledge

representation, a major problem of LP under the default or auto-epistemic view

is that no de�nite negative information can be represented. This led Gelfond

and Lifschitz in [13] to extend the formalism and re-introduce a form of classical

negation in Extended Logic Programming.

In the de�nition view, a logic program entails plenty of de�nite negative infor-

mation. As a matter of fact, the problem with standard LP is the strength of its

closure mechanism: an atom is assumed false unless it can be proven to be true.

As a consequence, representing uncertainty is a serious problem; this problem

has received a lot of attention in recent years. In the de�nition view on standard

LP, the problem is because all predicates are de�ned, have a (possibly empty)

de�nition. Hence, the natural idea is to extend the logic with open predicates

which have arbitrary interpretation. In [6], this idea was elaborated in an exten-

sion of LP, called Open Logic Programming (OLP). I argued there that OLP

provides a knowledge theoretic interpretation of Abductive Logic Programming

as a de�nition logic and that abductive solvers (e.g. SLDNFA [8]) designed for

this formalism can be seen as special purpose reasoners on de�nitions for abduc-

tion and deduction

8

. A problem of this work is that it is based on completion

semantics; completion is not a good formalisation of induction. To extend this

study for the semantics de�ned in this paper is future work.

The knowledge theoretic interpretation of LP as inductive de�nitions gives

also insight on the relationship with a class of logics outside the area of NMR:

de�nition logics. This class includes �xpoint logics and description logics. In [25],

Van Belleghem et al. showed a strong correspondence between OLP-FOL and

description logics. To large extend, description logic can be considered as a non-

recursive subformalism of OLP-FOL. There is correspondence on the intuitive

and semantical level; the di�erences on the syntactic level are syntactic sugar.

The speci�c syntactic restrictions of description logics have allowed to develop

highly e�cient reasoning techniques.

Also subject for future work is to substantiate the claim in the introduction,

that a broad class of human knowledges in many areas of human expertise, rang-

ing from common sense knowledge situations to mathematics, is of constructive

nature, in the sense that (part of) the knowledge is present in the form of a

recursive recipe, to be interpreted as de�ned in this paper. The prominent roles

of completion and circumscriptive techniques in NMR and knowledge represen-

tation hint at this.

5 Acknowledgements

I thank all colleagues that have commented on this or earlier versions of this

paper, in particular Danny De Schreye and Kristof Van Belleghem.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addusin-Wesley

Publishing Company, 1995.

2. P. Aczel. An Introduction to Inductive De�nitions. In J. Barwise, editor, Handbook

of Mathematical Logic, pages 739{782. North-Holland Publishing Company, 1977.

3. K.R. Apt, H.A. Blair, and A. Walker. Towards a theory of Declarative Knowledge.

In J. Minker, editor, Foundations of Deductive Databases and Logic Programming.

Morgan Kaufmann, 1988.

8

Note that LP and OLP as de�nition logics do not provide default negation; as I ar-

gued in [6], OLP is not a natural formalism to express some sorts of default reasoning

problems such as the well-known train crossing example [13] [17]. In order to rep-

resent this sort of domains, an autoepistemic modal operator or a default negation

operator should be added to de�nition logic.

4. W. Buchholz, S. Feferman, and W. Pohlers W. Sieg. Iterated Inductive De�nitions

and Subsystems of Analysis: Recent Proof-Theoretical Studies. Springer-Verlag,

Lecture Notes in Mathematics 897, 1981.

5. K.L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and

Databases, pages 293{322. Plenum Press, 1978.

6. M. Denecker. A Terminological Interpretation of (Abductive) Logic Programming.

In V.W. Marek, A. Nerode, and M. Truszczynski, editors, International Confer-

ence on Logic Programming and Nonmonotonic Reasoning, pages 15{29. Springer,

Lecture notes in Arti�cial Intelligence 928, 1995.

7. M. Denecker and D. De Schreye. Justi�cation semantics: a unifying framework for

the semantics of logic programs. Technical Report 157, Department of Computer

Science, K.U.Leuven, 1992.

8. M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for abductive

logic programs. Journal of Logic Programming, 34(2):111{167, 1997.

9. S. Feferman. Formal theories for trans�nite iterations of generalised inductive

de�nitions and some subsystems of analysis. In A. Kino, J. Myhill, and R.E. Vesley,

editors, Intuitionism and Proof theory, pages 303{326. North Holland, 1970.

10. M. Fitting. A Kripke-Kleene Semantics for Logic Programs. Journal of Logic

Programming, 2(4):295{312, 1985.

11. M. Gelfond. On Strati�ed Autoepistemic Theories. In Proc. of AAAI87, pages

207{211. Morgan Kaufman, 1987.

12. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In

Proc. of the International Joint Conference and Symposium on Logic Programming,

pages 1070{1080. IEEE, 1988.

13. M. Gelfond and V. Lifschitz. Logic Programs with Classical Negation. In D.H.D.

Warren and P. Szeredi, editors, Proc. of the 7th International Conference on Logic

Programming 90, page 579. MIT press, 1990.

14. M. Hagiya and T. Sakurai. Foundation of Logic Programming Based on Inductive

De�nition. New Generation Computing, 2:59{77, 1984.

15. G. Kreisel. Generalized inductive de�nitions. Technical report, Stanford University,

1963.

16. P. Martin-L�of. Hauptsatz for the intuitionistic theory of iterated inductive def-

initions. In J.e. Fenstad, editor, Proceedings of the Second Scandinavian Logic

Symposium, pages 179{216, 1971.

17. J. McCarthy. Applications of Circumscription to Formalizing Common-Sense

Knowledge. Arti�cal Intelligence, 28:89{116, 1980.

18. Y. N. Moschovakis. Elementary Induction on Abstract Structures. North-Holland

Publishing Company, Amsterdam- New York, 1974.

19. E. Post. Formal reduction of the general combinatorial decision problem. American

Journal of Mathematics, 65:197{215, 1943.

20. H. Przymusinska and T.C. Przymusinski. Weakly perfect model semantics for

logic programs. In R.A. Kowalski and K.A. Bowen, editors, Proc. of the �fth

international conference and symposium on logic programming, pages 1106{1120.

the MIT press, 1988.

21. T.C. Przymusinski. On the semantics of Strati�ed Databases. In J. Minker, editor,

Foundations of Deductive Databases and Logic Programming. Morgan Kaufman,

1988.

22. T.C. Przymusinski. Well founded semantics coincides with three valued Stable

Models. Fundamenta Informaticae, 13:445{463, 1990.

23. R. Reiter. The Frame Problem in the Situation Calculus: A simple Solution (Some-

times) and a Completeness Result for Goal Regression. In V. Lifschitz, editor, Ar-

ti�cial Intelligence and Mathematical Theory of Computation: Papers in Honour

of John McCarthy, pages 359{380. Academic Press, 1991.

24. C. Spector. Inductively de�ned sets of natural numbers. In In�nitistic Methods

(Proc. 1959 Symposium on Foundation of Mathematis in Warsaw), pages 97{102.

Pergamon Press, Oxford, 1961.

25. K. Van Belleghem, M. Denecker, and D. De Schreye. A strong correspondence

between description logics and open logic programming. In Lee Naish, editor,

Proc. of the International Conference on Logic Programming, 1997, pages 346{

360. MIT-press, 1997.

26. K. Van Belleghem, M. Denecker, and D. Theseider Dupr�e. Dependencies and

rami�cations in an event-based language. In Proc. of the Ninth Dutch Arti�cial

Intelligence Conference, 1997, 1997.

27. M. van Emden and R.A Kowalski. The semantics of Predicate Logic as a Program-

ming Language. Journal of the ACM, 4(4):733{742, 1976.

28. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The Well-Founded Semantics for

General Logic Programs. Journal of the ACM, 38(3):620{650, 1991.

