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Abstract

This paper presents an experimental comparison of two Inductive

Logic Programming algorithms, Progol and Tilde , with C4.5, a propo-

sitional learning algorithm, on a propositional dataset of road tra�c ac-
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cidents. Methods are described for handling the skewed distribution of

positive and negative examples in this dataset, and the relative cost of

errors of commission and omission in this domain. Rules learnt by the

algorithms are evaluated by these methods, and the conclusion is drawn

that ILP algorithms can perform competitively on such a propositional

domain.

1 Introduction

ILP (Inductive Logic Programming) has been de�ned [10] as the intersection of

Machine Learning and Logic Programming, and as such it represents an advance

over propositional learning systems. ILP systems are able to handle complex

relational data which are not representable propositionally, such as chemical

structures (e.g. see [16]). However, there are many domains of interest which

are representable propositionally, and ILP systems must also be able to handle

these domains as e�ectively as a propositional learner if they are to become as

widely used.

This paper presents an experimental comparison of two Inductive Logic Pro-

gramming systems, Progol and Tilde , with C4.5, a standard propositional

algorithm, on just such a domain, that of tra�c accidents. The paper grew from

previous work [17] and from applications of various systems to this data at an

ILP Transport workshop held at the University of York on December 3rd, 1997.

2 Systems

2.1 Progol

Progol is a state of the art ILP system described in [11]. The user speci�es a

restricted language of �rst order expressions to be used as the hypothesis space

H . Restrictions are stated using \mode declarations", which specify which

predicates are to be used in the heads and bodies of learnt rules, and the types

and formats of their arguments.

Progol uses a sequential covering algorithm to learn a set of rules from

H which cover the examples. For each positive example e

+

not yet covered,

Progol constructs the most speci�c hypothesis? fromH such that B^? ` e

+

,

where B is background knowledge supplied. Progol then performs a general

to speci�c search of the hypothesis space bounded by ?. During this search,

Progol looks for the hypothesis having minimum description length.

Progol has been used successfully in many domains, including �nite ele-

ment mesh design [8], mutagenesis [16], natural language [6] and road tra�c

accidents [17]. It is available by anonymous ftp from ftp.cs.york.ac.uk in the

directory pub/ML GROUP/progol4.4 and includes a manual written by the

author.
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2.2 Tilde

A main feature of Tilde [2, 3] is the representation of examples, which corre-

spond to a small relational database (or Prolog knowledge base). In other words,

an example consists of multiple relations and each example can have multiple

tuples for these relations. This setting is known in the literature as learning

from interpretations and was �rst introduced in [15]. This representation is a

natural upgrade of the attribute-value representation where each example con-

sists of a single tuple in a relational database. Learning from interpretations

contrasts with the classical inductive logic programming setting learning from

entailment which is employed by systems such as Progol and Foil . Details

about the relation between these di�erent settings can be found in [14].

The setting learning from interpretations allows us to upgrade a proposi-

tional learner towards a relational learner. Tilde is a �rst-order upgrade of an

existing attribute-value learning system, Quinlan's popular predictive C4.5 al-

gorithm for decision tree induction [13]. Other examples of �rst-order upgrades

are ICL , which upgrades the predictive production rule approach as incorpo-

rated in e.g. CN2 [5, 4] and AQ [9], and Warmr [7], which extends Apriori

[1] to mine association rules in multiple relations.

Tilde learns a theory which discriminates as well as possible between (train-

ing) examples of di�erent classes. The learned theory can be used to classify

new, unseen examples into one of the available classes.

Tilde (Top down Induction of Logical DEcision trees) builds a decision

tree similar to C4.5, but with �rst order logic conjunctions of literals as tests

in the nodes. Heuristics are used to choose the best test at each node. The

resulting classi�cation tree can also be outputted as a Prolog program or a

logical program. Tilde can discretize numerical values and has look ahead

ability (see [2]). Tilde is an e�cient ILP-system that can handle large datasets

(in experiments datasets up to 100 Mb were used).

More information on Tilde and ICL can be found at the following URL:

http://www.cs.kuleuven.ac.be/~ml/MLRG-E.shtml

2.3 C4.5

C4.5 [13] is an extension of Quinlan's ID3 system [12]. Decision trees are induced

by growing them from the root downward, using a greedy algorithm to select

the next best attribute for each new decision branch added to the tree. The

complete hypothesis space is searched, with an inductive bias to prefer smaller

trees. Extensions to ID3 include methods for avoiding over�tting data and for

handling training examples with missing attribute values.
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3 Data and Datasets

3.1 The Road Accident Reporting System in Great Britain

In Great Britain, the national database of police accident reports contains details

of all road accidents involving personal injury of which the police become aware

within 30 days. Each report contains:

� 1 Attendant Circumstances Record

� 1 Casualty Record for each injured person

� 1 Vehicle Record for each vehicle involved

The data are largely objective, such as road number or age of driver, and do

not include details of why the accidents occurred. The potential contribution

of such information to attempts to improve road safety has been recognised for

several years, and recent research at the Transport Research Laboratory has

developed a new system for recording these `Contributory Factors'. It is hoped

that this system will be adopted as a regular part of the national reporting

system.

The new system was trialed with 8 police forces for 3 months in 1996, and

the data analysed in this paper is the result of matching about half of the

Contributory Factor reports with the accident records routinely collected by

the police.

The new system is unique in dividing the factors into two groups: `What went

wrong' (known as Precipitating Factors) and `Why?' (known as Contributory

Factors). This approach leads reporting o�cers to structure their investigations:

they work back from the actual accident to identify the principal failure or ma-

noeuvre which led directly to the accident, select the appropriate Precipitating

Factor from the list, then try to establish the reasons for this failure or manoeu-

vre. Up to four Contributory Factors can be entered, in order of diminishing

importance, and each is marked as De�nite, Probable or Possible. The trial

showed that the police were able to operate the system with little training, and

the data collected were of good quality.

3.2 Dataset

The dataset used for this study consists of 1413 accident reports, during the

period from April until August 1996. It was studied previously in [17] to �nd

rules for predicting accidents caused by young male drivers (a class of accidents

of interest to tra�c experts).

Accidents are given preclassi�ed as positive or negative. Positive examples

are those accidents which were caused by a young male driver.

Each of the above types of record (attendant circumstances, casualties, ve-

hicles, and contributory factors) is represented by the following four predicates.

� acc record/25
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� cas record/24

� veh record/16

� caus record/19

Seventeen �elds were selected from these records for relevance to classifying

accidents as caused by young male drivers, by experience from the previous

study. The values of these �elds for each accident form the background knowl-

edge concerning the accidents.

4 Experimental Description

4.1 Learning task

The dataset of 1413 examples was split 10 times randomly and independently

into training and test sets. The training sets contained 70% of the examples

and the corresponding test set contained the remaining 30%. A second set of

training sets was also constructed from the �rst by rebalancing (see section 4.2).

Using each algorithm in turn, and supplying identical background knowledge

in each case, rules for predicting whether an accident was caused by a young

male driver were learnt from each training set, and from each rebalanced training

set. The time taken to learn was recorded, and the accuracy of the learnt rules

was assessed on the corresponding test set.

4.2 Rebalancing

The data under discussion in this paper have two unusual properties. The �rst

is that they are skewed towards negative examples; out of 1413 examples, only

255 are positive and 1158 negative. The second is that tra�c experts are less

concerned about errors of commission than about errors of omission; it is more

important to be able to predict when an accident is caused by a young male

driver than when it is not. These properties, when combined, reduce the value of

standard testing methods; accuracies and �

2

�gures obtained from contingency

tables give too much weight to negative predictions. What is needed is a method

of reweighting the in
uence of the positive examples on these results.

This e�ect can be reduced by rebalancing the training and test data. A

training set can be rebalanced by the following method. All positive examples

in the set are kept, along with an equal number of the negative examples in the

set, randomly selected. Thus a rebalanced training set consists of 50% positive

and 50% negative examples.

A test set can be rebalanced in a similar way, or the e�ect can be simulated

easily by the following method. Say a set of rules has been tested on an un-

rebalanced test set T , giving the contingency table on the left of table 1. We

can construct a new contingency table from this by multiplying the left hand
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Actual Actual

Predicted Positive Negative Predicted Positive Negative

Positive A B Positive

A

2P

B

2(1�P )

Negative C D Negative

C

2P

D

2(1�P )

Table 1: Reweighting a contingency table to simulate a rebalanced test set.

Here P =

A+C

A+B+C+D

.

Algorithm Original Rebalanced

Progol 80.78% � 0.61% 55.25% � 0.76%

Tilde 80.93% � 0.60% 55.25% � 0.76%

C4.5 81.64% � 0.60% 54.49% � 0.77%

Majority Class 81.95% 50%

Table 2: Evaluation of rules learnt from original training sets on original and

rebalanced test sets.

column by

1

2P

and the right hand column by

1

2(1�P )

, where

P =

A+ C

A+B + C +D

:

This ratio ensures that the totals for both contingency tables remain equal, and

the new table gives the values which we would have obtained had we rebal-

anced T . Note that \accuracy" values obtained from the resulting table cannot

correctly be regarded as such; rather they are an estimate of how valuable the

predictions will be to an expert who places a higher cost on errors of omission

than commission.

5 Results

The results shown in tables 2 and 3 show evaluations of rules learnt from original

and rebalanced training sets. Note again that only �gures for original training

sets on original test sets can be regarded as accuracy values. The majority class

(empty algorithm) is also shown.

Table 4 shows the mean times taken to learn from original and rebalanced

training sets. Standard deviations are given in brackets where available. All

times were measured on an i586 running Linux2.0.30.
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Algorithm Original Rebalanced

Progol 66.79% � 0.72% 58.42% � 0.76%

Tilde 66.08% � 0.73% 61.72% � 0.75%

C4.5 68.47% � 0.71% 62.57% � 0.74%

Majority Class 50% 50%

Table 3: Evaluation of rules learnt from rebalanced training sets on original and

rebalanced test sets.

Learning time (secs)

Algorithm Original Rebalanced

Progol 2249.7 (93.39) 579.4 (42.32)

Tilde 585.0 (98.85) 95.0 (13.54)

C4.5 3.09 0.8

Table 4: Mean times taken for learning from each training set. Figures in

brackets are standard deviations.

6 Discussion

The clearest implication of the results is the di�erence in times taken for learning

between the systems. Tilde is signi�cantly faster than Progol , and C4.5 is

signi�cantly faster than either of the two ILP algorithms.

What is more interesting is the information in tables 2 and 3. Let us �rst

consider rules learnt from original training sets (table 2). When evaluated nor-

mally, C4.5 gives a greater accuracy than Progol and Tilde , though since

the error bars overlap, this is not signi�cant. However, when evaluated on a

rebalanced test set to give a more realistic appraisal of rules from the point

of view of a tra�c expert, the reverse is the case. The explanation for this is

that the proportion of C4.5's correct predictions which were negative was much

higher than that of the ILP systems. Note also that when avaluated normally,

all algorithms perform worse than the majority class algorithm. When eval-

uated on rebalanced data, the majority class algorithm performs signi�cantly

more poorly.

The situation with rules learnt from rebalanced training sets is not so clear

cut, but nevertheless points in a similar direction. When evaluated on the

original test sets, C4.5 performs better than the ILP systems. Progol does

drop a little, but C4.5's lead over Tilde is much reduced.

These results suggest that ILP systems, as well as being able to cope with

a wider range of more structurally complex domains, can also compete on an

even footing with propositional learning algorithms on their home ground.
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7 Conclusions

This paper has presented an experimental comparison of three learning algo-

rithms, two ILP and one propositional, on a propositional dataset. It has shown

that, whilst being signi�cantly slower, ILP systems can indeed perform as well

as propositional learning systems in such a domain. This is especially true when

methods of evaluation are used which re
ect the understanding and values of

domain experts more appropriately than simple contingency table analysis.
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